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Abstract. In this paper, we study the dynamical behavior of a species which
inhabits two independent habitat patches. Due to the long range foraging be-
havior, frequent transfers happen between two patches with an exponentially
decaying nonlinear transfer rate. Periodic oscillation is observed as a Hopf
bifurcation occurs at some critical values of the delay τ . By applying the cen-
ter manifold theorem, the Poincaré normal form and the approximate periodic
solution near the critical delay values are obtained. The complete synchroniza-
tion of variations of the population size of species in two patches is analyzed
and numerical simulations under various parametric conditions are illustrated.
The moment stability of the solution of the stochastic delay equation is also
considered by applying the Itô integral.
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1. Introduction

As we know, many consumer species go through two or more life stages as they
proceed from birth to death. A large number of the models in the existing literature
ignore such reality and lump individuals into one single reproducing category which
can be modeled by a single ordinary differential equation (ODE) [1]. However, such
simple ODEs are only capable of generating simple equilibrium dynamics. In order
to capture the oscillatory and chaotic behavior often observed in nature, various
mechanisms are proposed. Such mechanisms mainly include difference models and
delay differential models [2]. Due to finite propagation speeds of signals, finite
processing times in synapses, and finite reaction time, time delay is ubiquitous in
many of physical [3], chemical [4, 5], biological [1, 2], neural [6] and other natural
phenomena. In the population biology literature, the numbers of biological and
ecological population often display a highly dynamic nature characterized by sta-
tistically significant oscillations. Theoretical models with time delay are postulated
and analyzed in an attempt to explain these oscillations. Mathematically, it be-
comes very natural and often of interest to ask under what conditions bifurcations,
oscillations, and even chaos occur while we take into account the length of time
delay.

x (t) y (t)

Patch A Patch B

τtransfer time

Figure 1. Schematic figure for the species inhabiting two patches
and transferring between each other.

In the present paper, we are concerned with the persistence characteristic of a
simple species which inhabits two independent patches A and B (see Figure 1). The
fact that stochastic perturbations occur in the real world may lead to instability
and oscillation. For example, the birth and the death may randomly vary due to
the season switching, the change of climate and weather, etc. Therefore, in our
study, on one of patches we take into account the effect of random factor such as
noise, which may help us better understand the oscillatory behavior of system for
the population size of a species. We assume that the species growth is governed by
the following ODE with the Allee effect [7]

N ′(t) = aN(t)
(

1 − α1N(t) − α2N
2(t)

)

− dN(t),

where N(t) denotes the population density of one species, and constants a and
d represent the birth rate and the death rate, respectively. α1 > 0 and α2 > 0
are constants which depend on the specific species. The equation may have one
N = N∗ (or two) positive equilibrium solutions which satisfies N ′(t) = 0, and
N = N∗ is usually called the balance state of the system.

In the case of the long range foraging behavior, the species inhabiting two
patches may transfer to each other which leads to the change of the model of the
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species growth. Denote the population densities in Patch A and B by x(t) and y(t),
respectively, then we propose a model as follows:

(1)







x′(t) = ax(t)(1 − k1x− k2x
2) − dx+ Tx + σ(t, x)ξ̇t(ω),

y′(t) = ay(t)(1 − b1y − b2y
2) − dy + Ty,

where constants ki and bi (i = 1, 2) are distinct to indicate the limitation effects
of resources, because the abundance degrees of food resources in two patches are
often different. Tx and Ty represent the density change due to transferring. In order
to seek for ample food resources, the species inhabiting one patch may transfer to
the other by taking some time. Here we assume that the transfer time is a fixed
constant τ . The transferring rate is exponentially decaying nonlinear with respect
to the time τ which takes the form De−pτ , where p represents the death rate
during the process of transferring. The population number in each patch varies
because of incoming and outgoing population of the species. We assume that in
Patch A the incoming number at time t is a definite integral of the density y(t)
in the interval of time △t ([t − △t, t]), and the outgoing number at time t is a
definite integral of the density x(t) in the time interval [t− τ −△t, t− τ ]. Hence,
when △t is sufficiently small, we obtain the density change in Patch A at time t is

Tx = De−pτ
(

y(t) − x(t − τ)
)

. Similarly, the density change in Patch B at time t

is derived as Ty = De−pτ
(

x(t) − y(t− τ)
)

. The term ξt(ω) is a stochastic process

which represents the noise term. In our study this noise is internal to the system
because of random fluctuations in the system parameters. To gain insight into the
effect of noise on the system, we assume the noise to be Gaussian distributed white
noise with zero mean and a delta function autocorrelation < ξtξs >= δ(t − s). In
our study, we only consider the case where one patch is affected by the noise factor.
So far as our best knowledge goes, it seems that the reference for the noise terms
on both patches is not available yet.

Note that without noise system (1) is the delay differential model with a nonlin-
ear delay dependant coefficient De−pτ . Many elegant results have been established
in the literature [8-15]. Ailello and his co-workers [8, 9] showed that under appropri-
ate assumptions all solutions are positive and bounded. Criteria for the existence of
positive equilibria and the stability of the equilibria are also discussed. Kuang and
Beretta etc. [10-12] proposed practically perfect guidelines that combine graphical
information with analytical work to effectively study the local stability of some
models of Bence and Nisbet involving delay dependent parameters. Specifically, it
was shown that the stability of a given steady state is determined by the graphs
of some functions of τ which can be expressed explicitly. In [13-15], it was shown
that the delay can qualitatively change the dynamics. For some fixed values of the
parameters, as the delay increases the equilibrium can switch from being stable to
unstable (with numerically observed periodic solutions) and then back to stable.
Lei and Mackey [16] studied the moment stability of the trivial solution of a linear
differential delay equation in the presence of multiplicative white noise and applied
their results to examining the local stability of the hematopoietic stem cell regu-
lation system in the presence of noise. Lotka-Volterra type predator-prey systems
with stage structure and time delays under various assumptions were investigated
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in [17-19]. For the role of noise in delay models and the stochastic differential de-
lay equations, and applications of bifurcations in dynamical systems, we refer the
reader to the literature [20-22].

The rest of the paper is organized as follows. In Section 2, we discuss dynamics
of system (1) without the noise effect, and aim to develop an effective geometrical
method to study the local stability of the balance states. By integrating the graph-
ical information into analytical work, the stability area and Hopf bifurcation curves
in the (τ − p) parameter plane are depicted. In Section 3, the bifurcation direction
and the stability of bifurcating periodic solution are investigated. By applying the
center manifold theorem, the Poincaré normal form is found and the approximate
periodic solution near the critical delay values is obtained. In Section 4, the com-
plete synchronization of variations of the population size of species in two patches
is analyzed qualitatively and numerically. The moment stability of the solution of
the stochastic delay equation is also studied by applying the Itô integral. Section
5 presents a brief conclusion.

2. Stability Analysis of the Balance State (x∗, y∗) Without the Noise

Term

Suppose that (x∗, y∗) is the positive equilibrium solution of system (1) without
the noise term. Here, for the convenience of our study, we assume x∗ = y∗ be-
cause in this case it is translation invariant. Namely, after making the coordinate
transformations x̄ = x − x∗, ȳ = y − y∗ we transform the balance state (x∗, y∗)
to the origin (0, 0). The resultant system preserves the same form as system (1)
under certain parametric conditions, and local behaviors at (x∗, y∗) of the original
system and at (0, 0) of the resultant system are topologically equivalent. Therefore,
hereafter we only need to focus on the stability of the origin (0, 0) of system (1).

Here we suppose r = d− a > 0, which means the death rate is larger than the
birth rate. The linear form of system (1) at the origin is

(2)















x′(t) = −rx(t) +De−pτ
(

y(t) − x(t− τ)
)

,

y′(t) = −ry(t) +De−pτ
(

x(t) − y(t− τ)
)

.

The corresponding characteristic equation of (2) is given as

(3) ∆(λ, τ) = (r + λ+De−(λ+p)τ )
2
−D2e−2pτ = 0.

When τ = 0, it becomes

(4) ∆(λ, 0) = (r + λ+D)2 −D2 = 0.

From equation (4), we can see that the trivial solution of system (2) is stable in the
case of τ = 0.

For the case of τ > 0, we suppose that λ = ±iβ (β > 0) are two roots of
equation (3). Substituting it into equation (3) and equating coefficients of the real
part and the imaginary part to zero, respectively, yields

(5)







D sin(βτ) = epτβ,

D cos(βτ) = D − repτ .
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Letting βτ = T , then from equation (5), we have

(6)



















τ =
1

p
ln
D(1 − cosT )

r
,

p =
r sinT

1 − cosT

1

T
ln
D(1 − cosT )

r
.

When 2kπ < T < (2k + 1)π (k = 0, 1, 2, · · · ), we get that sinT > 0 and the
boundary condition is given as D > r

2 . Assume T0 = T − 2kπ for every k =
0, 1, 2, · · · , then T0 is limited to the range 0 < T0 < π. By the second equation
of (6), we deduce that, for any fixed values of D and r, p continuously varies in
the range [arccos(1 − D

r
) + 2kπ, (2k + 1)π], and the maximal value pmax

k can be
attained for each k. If we fix the parameters as r = 2.0 and D = 3.0, the curves of
parameter p versus T0 are depicted for the cases of k = 0, 1, 2 in Figure 2.

0
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k = 2

Figure 2. From the top to the bottom, the curves of parameter
p versus T0 for the cases of k = 0, 1, 2, in the (p− T0) plane with
parameters r = 2.0 and D = 3.0.

From the above analysis, we can see that if p > pmax
0 , no imaginary roots

exist for equation (3), and system (2) is asymptotically stable for every τ ≥ 0. If
pmax

k < p < pmax
k−1 , there are 2k (k = 1, 2, · · · ) pairs of imaginary roots for equation

(3) in total. If p = pmax
k for some k, there are 2k + 1 (k = 0, 1, 2, · · · ) pairs of

imaginary roots for equation (3). We denote the corresponding delay bifurcation
values by τ1, j and τ2, j from the left to the right for j = 1, 2, · · · , k.

Suppose that the characteristic equation (3) has roots λ(τ) = α(τ) ± iν(τ),
which satisfy α(τc) = 0 and ν(τc) = β with τc = τ1, k or τ2, k (k = 1, 2, · · · ). By
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substituting it into equation (3), we have

(7)
α+ r +De−(p+α)τ cos(ντ) −De−pτ = 0,

ν −De−(p+α)τ sin(ντ) = 0.

Differentiating both side of equation (7) with respect to τ gives

(1 −De−pτ cos(ντ)τ)
dα

dτ
−De−pτ sin(ντ)τ

dν

dτ
= De−pτ [p cos(ντ) + sin(ντ)ν − p],

Dτe−pτ sin(ντ)
dα

dτ
+ (1 −De−pτ cos(ντ)τ)

dν

dτ
(8)

= −De−pτ [p sin(ντ) − ν cos(ντ)].

Solving
dα

dτ
from equation (8) we have

(9)
dα

dτ

∣

∣

∣

τ=τc

=
Depτ [−p+ p cos(βτ) −De−pτpτ + β sin(βτ) +Dpe−pτ cos(βτ)τ ]

e2pτ − 2epτD cos(βτ)τ +D2τ2
,

=
r2(cosT + 1)

(

T (1 + cosT ) − (sinT + T ) ln −D(cos T−1)
r

)

T (1 + T 2 − 2T cosT sinT − cos2 T )
.

Using a similar argument as the above, we can obtain the maximal value pmax
k

for p by differentiating both sides of the second equation of (6) with respect to T

(10)
dp

dT
=
r
(

T (1 + cosT ) − (T + sinT ) ln D(1−cos T )
r

)

T 2(1 − cosT )
.

When p attains the maximal value pmax
k , we have

dp

dT
= 0. Denote the correspond-

ing maximal values of T and τ by Tmax
k and τmax

k , respectively, then from (10) we
get

dp

dT







> 0, if T < T k
max,

< 0, if T > T k
max,

for k = 0, 1, 2, · · · .
Combining equations (7) and (9), we have

dα

dτ







> 0, if τ = τ1, j ,

< 0, if τ = τ2, j ,

for j = 0, 1, · · · , k. For the fixed parameters r = 2 and D = 3.0, in Figure 3 it
shows the Hopf bifurcation curves of system (2) in the (p, τ) plane for k = 0, 1, 2.
The shaded part represents the stable region.

We can see from Figure 3 if the value of p is fixed, the trivial solution of system
(2) experiences three stability switches from being stable to unstable, and then back
to stable. Inside the region enclosed by the Hopf bifurcation curves, the complex
dynamical behavior may occur.
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Figure 3. From the top to the bottom, the Hopf bifurcation
curves of system (2) for the cases of k = 0, 1, 2, in the (p − τ)
plane with parameters r = 2.0 and D = 3.0. The shaded part
represents the stable regime.

3. Poincaré Normal Form

In this section, the bifurcation direction and the stability of bifurcating peri-
odic solutions, in a simple Hopf bifurcation of system (1) without noise at τ = τc
presented in the preceding section, are considered by means of the center manifold
theory and the Poincaré normal form technique.

Set σ(t, x) = 0. System (1) can be rewritten as

(11)

[

x′(t)
y′(t)

]

= M

[

x(t)
y(t)

]

+N

[

x(t− τ)
y(t− τ)

]

+

[

−s1x
2(t) − s2x

3(t)
−l1y

2(t) − l2y
3(t)

]

,

with

(12) M =

[

−r De−pτ

De−pτ −r

]

, N =

[

−De−pτ 0
0 −De−pτ

]

.

Choose the phase space as C = C
(

[−τ, 0], R2
)

. For φ = (φ1(θ), φ2(θ))
T ∈ C, we

define

(13) Lφ =

∫ 0

−τ

[dη(θ)]φ(θ),

where η : [−τ, 0] → R2 × R2 is a 2 × 2 bounded variation function with

dη(θ) =





−rδ(θ) −De−pτ δ(θ + τ) De−pτ δ(θ)

De−pτδ(θ) −rδ(θ) −De−pτ δ(θ + τ)



 dθ.
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For any φ ∈ C, the linear operator defined by (13) generates a strong continuous
semigroup of bounded linear operators with the infinitesimal generator

(14) Aφ =

{

dφ
dθ
, θ ∈ [−τ, 0),

Lφ, θ = 0,

and

(15) Q(φ) =

{

0, θ ∈ [−τ, 0),
F (φ), θ = 0,

where

F (φ) =

(

−s1φ
2
1(0) − s2φ

3
1(0)

−l1φ
2
2(0) − l2φ

3
2(0)

)

.

As for the parametric case of τ = τc, system (11) can be written as a operator
differential equation

u′(t) = Aut + Qut,

where u = (x, y)T and ut = u(t+ θ) for −τ ≤ θ < 0. Let ψ ∈ C∗ = C
(

[0, τ ], R2
)

(the dual space of C). We define the adjoint operator A∗ of A as

A∗ψ(s) =







−
dψ

ds
, 0 < s ≤ τ,

∫ 0

−τ
dηT (s)ψ(−s), s = 0.

Thus, for ϕ ∈ C and ψ ∈ C∗, we can define a bilinear form:

(16) < ψ, ϕ >= ψ̄T (0)ϕ(0) −

∫ 0

−τ

∫ θ

0

ψ̄T (ξ − θ)dη(θ)ϕ(ξ)dξ.

From the discussions presented in the last section, we know that, when p <

pmax
0 the characteristic equation (3) has a pair of pure imaginary eigenvalues Λ =

{iβ, −iβ} at τc = τ1, 1 and τ2, 1, and other eigenvalues with negative real parts.
Hence, C can be decomposed as C = PΛ ⊕QΛ, where PΛ is the characteristic space
corresponding to eigenvalues Λ, and QΛ is the complementary subspace of PΛ. We
suppose that q1, q2 ∈ C are two real eigenvectors of the linear operator A associated
with the critical eigenvalue iβ, which satisfy

(17) Aq1(θ) = −βq2(θ), Aq2(θ) = βq1(θ).

Making use of the definition (14), system (17) generates a 4-dimensional coupled
linear first-order boundary value problem and its solution is given by

q1(θ) =

[

cos(βθ)
cos(βθ)

]

, q2(θ) =

[

sin(βθ)
sin(βθ)

]

.

Eigenvectors p1, p2 ∈ C∗ of A∗ associated with the eigenvalue −iβ are determined
by a similar boundary value problem

A∗p1(s) = βp2(s), A∗p2(s) = −βp1(s).

The use of definition of A∗ leads to
(18)

p1(s) =

[

n1 cos(βs) + n2 sin(βs)
n1 cos(βs) + n2 sin(βs)

]

, p2(s) =

[

−n2 cos(βs) + n1 sin(βs)
−n2 cos(βs) + n1 sin(βs)

]

.

Thus, the orthogonality conditions

< p1, q1 >= 1, < p1, q2 >= 0,
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become equivalent to

(19)

[

G −τ sin(βτ)De−pτ

τ sin(βτ)De−pτ G

] [

n1

n2

]

=

[

1
0

]

,

where

G = −Dτe−pτ cos(βτ) +
D sin(βτ)e−pτ

β
.

Solving for n1 and n2 from equation (19), we have

(20)

n1 =
β(− cos(βτ)τβ + sin(βτ))

De−pτ (τ2β2 − 2 cos(βτ)τβ sin(βτ) + sin2(βτ))
,

n2 =
−τ sin(βτ)β2

De−pτ (τ2β2 − 2 cos(βτ)τβ sin(βτ) + sin2(βτ))
.

Set
Φ(θ) = (q1(θ), q2(θ)), −τ ≤ θ ≤ 0,

Ψ(s) = (p1(s), p2(s)), 0 ≤ s ≤ τ.

We re-express ut ∈ C as

(21) ut = Φz + w,

with z = (z1, z2)
T , and Φz is the projection vector of ut onto the center manifold.

Since
< Ψ, Φz′ + w′ >=< Ψ, (A + Q)(Φz + w) >,

using the definition of innerproduct (16) and the definition of operator Q as given
in equation (15), from (21) we obtain a resultant ODE system as
(22)




z′1
z′2
w′



 =





0 β 0
−β 0 0
0 0 A









z1
z2
w





+





pT
1 (0)Q(z1q1 + z2q2 + w)(0)
pT
2 (0)Q(z1q1 + z2q2 + w)(0)

−
∑

j=1,2 p
T
j (0)Q(z1q1 + z2q2 + w)(0)qj + Q(z1q1 + z2q2 + w)



 .

With the aid of formulas (14)-(18), the right hand side of system (22) can be
decomposed in the form:
(23)





z′1
z′2
w′



 =





0 β 0
−β 0 0
0 0 A









z1
z2
w



 +





−n1(l1 + s1)z
2
1 − n1(l2 + s2)z

3
1

n2(l1 + s1)z
2
1 + n2(l2 + s2)z

3
1

H





+













−2n1z1(l1w2 + s1w1)(0)
2n2z1(l1w2 + s1w1)(0)






0 if − τ ≤ θ < 0
[

−s1z
2
1

−l1z
2
1

]

if θ = 0













,

where

H = (l1 + s1)z
2
1

[

1
1

]

(n1 cos(βθ) − n2 sin(βθ)).

The plane spanned by eigenvectors q1 and q2 is tangent to the center manifold at
the origin. This implies that by using the Taylor Series the center manifold can
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be approximated locally as a truncated power series of w depending on the second
power of the coordinates z1 and z2 as

w(θ) =
1

2

(

h20(θ)z
2
1 + 2h11(θ)z1z2 + h02(θ)z

2
2

)

.

So the derivative of w with respect to θ is

(24) w′(θ) = −βh11(θ)z
2
1 + β(h20(θ) − h02(θ))z1z2 + βh11(θ)z

2
2 .

Note that the formula of the derivative w′(θ) can also be expressed by the third
equation of system (23). The comparison of the coefficients of z2

1 , z1z2 and z2
2

yields a linear boundary value problem for the unknown coefficients of the center
manifold, where the resultant differential system is

(25)















h′20(θ) = −2βh11(θ) − 2(l1 + s1)

[

1
1

]

(n1 cos(βθ) − n2 sin(βθ)),

h′11(θ) = βh20(θ) − βh02(θ),
h′02(θ) = 2βh11(θ),

with boundary conditions

(26)















Mh20(0) +Nh20(−τ) = −2βh11(0) − 2n1(l1 + s1)

[

1
1

]

+ 2

[

s1
l1

]

,

Mh11(0) +Nh11(−τ) = βh20(0) − βh02(0),
Mh02(0) +Nh02(−τ) = 2βh11(0),

where n1 and n2 are the same as (20), and the definition of matrix M and N are
given as in (12). Solving system (25) we obtain



















































h20(θ) =
−2(l1 + s1)(n2 cos(βθ) + n1 sin(βθ))

3β
I

+E1 − E2 sin(2βθ) + E3 cos(2βθ),

h11(θ) =
−2(l1 + s1)(n1 cos(βθ) − n2 sin(βθ))

3β
I

+E2 cos(2βθ) + E3 sin(2βθ),

h02(θ) =
−4(l1 + s1)(n2 cos(βθ) + n1 sin(βθ))

3β
I

+E1 + E2 sin(2βθ) − E3 cos(2βθ),

where I is the identity matrix and Eij are determined by boundary conditions (26)
as

E1 =

[

E11

E12

]

, E2 =

[

E21

E22

]

, E3 =

[

E31

E32

]

,

where

E11 = −
s1re

pτ +D(l1 + s1)

r(repτ + 2D)
,

E12 = −
l1re

pτ +D(l1 + s1)

r(repτ + 2D)
,

E21 =
−2D sin(βτ)[2D2(3repτ −D)(s1 + l1) + (4rs1e

pτ − 4l1D − 13s1D)r2e2pτ ]

r(36D4 + 16r4e4pτ − 104r3De3pτ − 124rD3epτ + 201r2D2e2pτ )
,

E22 =
−2D sin(βτ)[2D2(3repτ −D)(s1 + l1) + (4rl1e

pτ − 4s1D − 13l1D)r2e2pτ ]

r(36D4 + 16r4e4pτ − 104r3De3pτ − 124rD3epτ + 201r2D2e2pτ )
,
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E31 =
6D4(l1 + s1) +Drl1e

pτ (20Drepτ − 13D2 − 8e2pτr2)

r(36D4 + 16r4e4pτ − 104r3De3pτ − 124rD3epτ + 201r2D2e2pτ )

+
rs1e

pτ (55D2repτ + 8e3pτr3 − 38e2pτr2D − 31D3)

r(36D4 + 16r4e4pτ − 104r3De3pτ − 124rD3epτ + 201r2D2e2pτ )
,(27)

E32 =
6D4(l1 + s1) +Drs1e

pτ (20Drepτ − 13D2 − 8e2pτr2)

r(36D4 + 16r4e4pτ − 104r3De3pτ − 124rD3epτ + 201r2D2e2pτ )
,

+
rl1e

pτ (55D2repτ + 8e3pτr3 − 38e2pτr2D − 31D3)

r(36D4 + 16r4e4pτ − 104r3De3pτ − 124rD3epτ + 201r2D2e2pτ )
.

With formulas (27) and system (24), the approximate equation of the center man-
ifold can be reconstructed. Substituting w1 and w2 into the equation of w(θ), we
obtain the following system that describes the flow restricted to the 2-dimensional
center manifold:

(28)

[

z′1
z′2

]

=

[

0 β

−β 0

] [

z1
z2

]

+

[

∑j+k=2, 3
j,k≥0 g

(1)
jk z

j
1z

k
2

∑j+k=2, 3
j,k≥0 g

(2)
jk z

j
1z

k
2

]

,

where

g
(1)
20 = −n1(l1 + s1), g

(1)
11 = g

(1)
02 = g

(1)
03 = 0,

g
(1)
30 = −2n1

[

l1(
1

2
E32 −

1

3β
n2l1 −

1

3β
n2s1 +

1

2
E12) +

s1(
1

2
E31 −

1

3β
n2l1 −

1

3β
n2s1 +

1

2
E11)

]

− n1(l2 + s2),

g
(1)
21 = −2n1

[

l1(E22 −
2

3β
n1s1 −

2

3β
n1l1) + s1(E21 −

2

3β
n1s1 −

2

3β
n1l1)

]

,

g
(1)
12 = −2n1

[

1

2
l1(−E32 −

4

3β
n2l1 −

4

3β
n2s1 + E12)

+
1

2
s1(−E31 −

4

3β
n2l1 −

4

3β
n2s1 + E11)

]

,

g
(2)
20 = n2(l1 + s1), g

(2)
11 = g

(2)
02 = g

(2)
03 = 0,

g
(2)
30 = 2n2

[

l1(
1

2
E32 −

1

3β
n2l1 −

1

3β
n2s1 +

1

2
E12) + s1(

1

2
E31 −

1

3β
n2l1 −

1

3β
n2s1 +

1

2
E11)

]

+ n2(l2 + s2),
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g
(2)
21 = 2n2

[

l1(E22 −
2

3β
n1s1 −

2

3β
n1l1) + s1(E21 −

2

3β
n1s1 −

2

3β
n1l1)

]

,

g
(2)
12 = 2n2

[

1

2
l1(−E32 −

4

3β
n2l1 −

4

3β
n2s1 + E12)

+
1

2
s1(−E31 −

4

3β
n2l1 −

4

3β
n2s1 + E11)

]

.

By using the Bautin formula [2], the Poincaré-Lyapunov constant can be found in
the Poincaré normal form of system (28) as

(29) △ =
1

8

(

2

β
g
(1)
20 g

(2)
20 + g

(1)
30 + g

(1)
12 + g

(2)
21

)

.

So the bifurcation is supercritical if △ < 0 or subcritical if △ > 0. The amplitude
of the stable (unstable) oscillation is given by

A =

√

−
1

△
Re

dλ1,2(τc)

dτ
(τ − τc).

When τ is not close to the critical value τc, the approximation periodic solution
is obtained as

x(t) ≈ A cos(βt)
y(t) ≈ A cos(βt)

where β is the vibrational frequency corresponding to the critical point τ = τc.

4. Moment Stability with the Noise Perturbation

Noise is internal to system (1) since both the birth and the death are randomly
varying due to the outer environment, season change, climate and weather, etc. For
simplicity, we assume that the function σ does not depend on t explicitly. Using
the definition of the Gaussian white noise ξt as the derivative of the Wiener process
W (t), we can rewrite system (1) as
(30)






dx = −rxdt− s1x
2dt− s2x

3dt+De−pτ
(

y(t) − x(t− τ)
)

dt+ σ(x) · dW (t),

dy = −rydt− l1y
2dt− l2y

3dt+De−pτ
(

x(t) − y(t− τ)
)

dt.

Set u(t) = (x(t), y(t))T , then the linear stochastic differential equation of (30) can
be re-expressed as

(31) du(t) = Mu(t)dt+Nu(t− τ)dt + (Θ0u(t) + Θ1)dW (t),

where the matrices M and N are given as in (12), and Θ0 and Θ1 are

Θ0 =

(

σ0 0
0 0

)

, Θ1 =

(

σ1

0

)

.

Let U(t) be the fundamental solution of equation (31) for t ≥ 0 and satisfy the
initial condition

U(t) =

{

O, t < 0,
I, t = 0,

where O is the zero solution and I is the identity matrix of 2 × 2. Suppose that
ϕ(θ) ∈ C([−τ, 0], R

2) with the norm definition ‖ ϕ ‖= sup−τ≤θ≤0 |ϕ(θ)T ξ|, for
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any vector ξ with the character ‖ ξ ‖= 1. If σ0 = σ1 = 0, using the fundamental
solution matrix U(t), the solution of system (31) with the initial condition

ϕ(θ) = (ϕ1(θ), ϕ2(θ))
T ∈ C([−τ, 0], R

2),

is given by

(32) uϕ(t) = U(t)ϕ(0) +

∫ 0

−τ

U(t− τ − s)ϕ(s)ds.

If σ0 or σ1 is not equal to zero, the solution of equation (32) is a stochastic process
given by

(33) u(t;ϕ) = uϕ(t) +

∫ t

0

U(t− s)(Θ0u(s;ϕ) + Θ1)dW (s).

Taking the mathematical expectation of both sides of equation (33), with the
Itô interpretation [16, 20], we have

(34) Eu(t; ϕ) = Euϕ(t) = uϕ(t).

Therefore, the stability condition of the first moment for the solution u(t, ϕ) is
identical to that of the unperturbed system and is determined exclusively by p

and τ . As discussed in the preceding section, the solution uϕ(t) of system (2) is
asymptotically stable if (p, τ) lies in the shaded region of Figure 3, which leads to
the first moment stability of the solution u(t, ϕ) due to formula (34). Furthermore,
since there exists an α > 0, such that |uϕ(t)| ≤ e−αt is satisfied, the solution of the
nonlinear stochastic delay differential equation (30) has the first moment stability
too.

Next, some numerical simulations are undertaken for equation (30) both for the
case of noise disappearing and the case of noise arising. We assume σ0 = σ1 = 0, and
choose r = 2.0, D = 3.0, s1 = l1 = 0, s2 = 0.2, l2 = 0.01 and p = 0.08, the analysis
in Section 2 shows the delay of the Hopf bifurcation to be τc = {0.4569, 13.5884}.
Using τc to compute the bifurcation direction determined by △ in equation (29),
we obtain △ = −.8050446328× 10−2 and −.1746873495× 10−2, respectively. That
is, the stable periodic solution will appear inside the interval [0.4569, 13.5884].
Choosing x(t) = 0.01 and y(t) = 0.01 as t ∈ [−τ, 0] and applying the Runge-Kutta
method, we obtain the time course and the corresponding phase portraits of three
stable periodic solutions for τ = 0.48, 2.98 and 12.48 as illustrated in Figure 4 (a),
(b) and (c), respectively. As shown in Figure 4 (a) and (c), the state variables x and
y are almost completely synchronizing when the delay parameter τ gets close to the
Hopf bifurcation value. They change to non-synchronize periodic states when the
delay gets far away from the critical value, as shown in Figure 4 (b). To verify the
moment stability solution, we take σ0 = 0.05 and σ1 = 0.3. To be assured (p, τ) to
lie in the shaded region of Figure 3, the delay values are chosen to be τ = 0.2, 0.38
and τ = 13.78, respectively. It is known that the solution should asymptotically
tend to zero without the noise effect. However, with choices σ0 = 0.05 and σ1 = 0.3
we observe oscillatory solutions if noise appears. The expectation values of x(t, ϕ)
asymptotically approach to zero, which implies that the solution is the first moment
stable since Ex(t, ϕ) = xϕ(t) → 0.
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Figure 4. Phase portraits of system (30) with or without noise.
(a) The synchronization phase portrait of y(t) versus x(t) at
τ = 0.48 when σ0 = σ1 = 0; (b) The non-synchronization phase
portrait of y(t) versus x(t) at τ = 2.98 when σ0 = σ1 = 0; (c) The
phase portrait of y(t) versus x(t) at τ = 12.48 when σ0 = σ1 = 0;
(d) The expectation values of the stochastic process x(t; ϕ) asymp-
totically tend to zero as t gets larger and larger with σ0 = 0.05 and
σ1 = 0.3, where τ = 0.2, 0.38 and τ = 13.78, respectively.

Set Fk to be composed of time series ti, k which satisfies x(t, ϕ) = 0 and
y(t, ϕ) = 0 at t = ti, k with k = 1, 2, that is

F1 = {ti, 1|x(t, ϕ) = 0, dx > 0 at t = ti, 1}, F2 = {ti, 2|y(t, ϕ) = 0 at t = ti, 2}.

(i = 1, 2, · · · )

Furthermore, we define the phase as

Φk(t) =



















π
t− ti,k

ti+1,k − ti,k
, if ti,k ≤ t ≤ ti+1,k,

π + π
t− ti+1,k

ti+2,k − ti+1,k

, if ti+1,k ≤ t ≤ ti+2,k,

ti,k ∈ Fk.
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Figure 5. The stochastic processes defined by system (30) ap-
pears disorder when we choose σ0 = 0.05 and σ1 = 0.3. (a) The
stochastic process y(t; ϕ) versus x(t; ϕ) at τ = 0.38; (b) The phase
portrait of Φ2(t) versus Φ1(t) at τ = 0.38; (c) The stochastic pro-
cess y(t; ϕ) versus x(t; ϕ) at τ = 13.78; (d) The phase portrait of
Φ2(t) versus Φ1(t) at τ = 13.78.

As shown in Figure 5 (b) and (d), the stochastic processes x(t, ϕ) and y(t, ϕ)
are always keeping in phase synchronizing states, with delay values τ = 0.38 and
τ = 13.78, while we choose σ0 = 0.05 and σ1 = 0.3, respectively.

To find what the periodic oscillatory solution looks like with the noise per-
turbation, we draw the stochastic processes defined by equation (30) by taking
τ = 0.48, 2.98 and τ = 13.78, respectively. As shown in Figure 6, with a strong
noise perturbation σ0 = 0.3, the stochastic processes defined by equation (30) per-
turb a little bit around the periodic solution as in Figure 4 (a) and (b). If we take
τ = 12.48, the synchronizing periodic solution as shown in Figure 4 (c) has a signif-
icant change and becomes non-synchronizing, although a weaker noise perturbation
σ0 = 0.05 is considered. As shown in Figure 7 (a) and (b), oscillatory solutions with
a random perturbation are observed with σ1 = 0.05 and σ1 = 0.3, respectively.
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Figure 6. Oscillatory periodic solutions with random perturba-
tion defined by system (30) when σ0 = 0.3 and σ1 = 0.3, and (a)
with τ = 0.48; (b) with τ = 2.98.
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Figure 7. Oscillatory periodic solutions with random perturba-
tion defined by system (30) when τ = 13.78, and (a) σ0 = 0.05 and
σ1 = 0.3; (b) σ0 = 0.3 and σ1 = 0.3.

Based on the above discussions, we can see that noise acts as an important and
sensitive role in some biological systems since it is the internal natural factor. Nu-
merically, noise can induce phase synchronizing oscillatory solutions if the original
state is asymptotically stable to zero. Noise can also destroy original synchronizing
periodic solutions to become other type periodic oscillations.

5. Conclusion

In nature, the population size of many species is randomly varying with many
factors. In this paper, we studied the dynamical behavior of a species which inhabits
two independent patches and a nonlinear transfer rate De−pτ between two patches
was assumed. The noise effect was considered on one patch and the stochastic delay
model of a simple species inhabiting two patches was proposed. Without noise, we
developed a geometrical method to effectively investigate stability conditions of the
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trivial solution. The stable region and the Hopf bifurcation curves were well plotted
in the (τ−p) plane. Moreover, an approximate equation on the center manifold was
constructed, and the Poincaré normal form with the Poincaré-Lyapunov constants
was determined. With the noise effect, the first moment stability of the stochastic
process was assured in the stable region. Numerically, both phase portraits of
system (1) with and without noise were plotted. Synchronizing periodic solutions
were found near the Hopf bifurcation values without noise, which appear to oscillate
furiously when the noise effect was taken into account. On the other hand, from
simulations it seems that the noise effect induced phase synchronization oscillatory
solutions of system (1).

In a forthcoming paper, the noise effect will be considered on each patch and the
stochastic delay model for the two-patch mode of a simple species will be studied.
Synchronizing periodic solutions and oscillatory solutions will be presented both
theoretically and numerically.
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