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Abstract. We provide a rigorous mathematical derivation of the conver-

gence in the long-wave transonic limit of the minimizing travelling waves for
the two-dimensional Gross-Pitaevskii equation towards ground states for the
Kadomtsev-Petviashvili equation (KP I).
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1. Introduction

1.1. Statement of the results. The Gross-Pitaevskii equation

(GP) i∂tΨ = ∆Ψ + Ψ(1 − |Ψ|2) on RN × R,

appears as a relevant model in various areas of physics: Bose-Einstein condensation,
fluid mechanics (see e.g. [13, 27, 19, 8]), nonlinear optics (see e.g. [23])... At
least on a formal level, this equation is hamiltonian, with a conserved Hamiltonian
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given by the Ginzburg-Landau energy,

(1) E(Ψ) =
1

2

∫

RN

|∇Ψ|2 +
1

4

∫

RN

(1 − |Ψ|2)2 ≡
∫

RN

e(Ψ).

Note that the boundedness of the Ginzburg-Landau energy implies that in some
sense,

|Ψ(x, ·)| → 1, as |x| → +∞.

As a matter of fact, this condition provides a richer dynamics than in the case of
null condition at infinity which is essentially governed by dispersion and scattering.
In particular, (GP) has nontrivial coherent localized structures called travelling
waves.

The existence of finite energy travelling waves was addressed and established in
several papers (see [20, 22, 21, 6, 5, 7, 3]). Travelling waves are special solutions
to (GP) of the form

Ψ(x, t) = u(x1 − ct, x⊥), x⊥ = (x2, . . . , xN ).

They are supposed to play an important role in the full dynamics of (GP). The
equation for the profile u is given by

(TWc) ic∂1u+ ∆u+ u(1 − |u|2) = 0.

The parameter c ∈ R corresponds to the speed of the travelling waves. We may
restrict to the case c ≥ 0. Indeed, when u is a travelling wave of speed c, the map
u obtained by complex conjugation is a travelling wave of speed −c.

The existence of solutions to (TWc) was obtained in the above quoted papers
through variational arguments, namely minimization under constraints [5, 3], or
mountain-pass theorems [6, 7]. In dimensions two and three, a full branch of
solutions is constructed in [3] minimizing the Ginzburg-Landau energy E under
fixed momentum p. In this context, the momentum is defined by

(2) p(u) =
1

2

∫

RN

〈i∂1u , u− 1〉.

This integral quantity is also formally conserved by (GP). A notable difficulty in
the variational approach is to give a meaning to the momentum in the space of
maps of finite Ginzburg-Landau energy (see e.g. [2, 4]). However, the momentum
is well-defined for finite energy travelling wave solutions. Indeed, it is proved in
[16] that they belong to the space W (RN ), defined as

W (RN ) = {1} + V (RN ),

where we have set

V (RN ) =
{
v : RN 7→ C, s.t. (∇v,Re(v)) ∈ L2(RN )2,

Im(v) ∈ L4(RN ), and ∇Re(v) ∈ L
4

3 (RN )
}
.

Separating real and imaginary parts, a direct computation shows that the quantity
〈i∂1v, v − 1〉 is integrable for any function v ∈ W (RN ), so that the momentum of
travelling wave solutions is well-defined.

The main focus of this paper is a qualitative description of small Ginzburg-
Landau energy solutions in the two-dimensional case. Such solutions are known to
exist in view of the following result.
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Theorem 1 ([3]). i) Let p > 0. There exists a non-constant finite energy

solution up ∈ W (R2) to (TWc), with 0 < c = c(up) <
√

2, and

p(up) ≡
1

2

∫

R2

〈i∂1up, up − 1〉 = p,

such that up is solution to the minimization problem

E(up) = Emin(p) = inf
{
E(v), v ∈W (R2), p(v) = p

}
.

ii) There exist some positive constants K0, K1 and SKP , not depending on p, such
that we have the asymptotic behaviours

(3) 0 <
48

√
2

S2
KP

p
3 −K0p

4 ≤
√

2p − E(up) ≤ K1p
3,

for any p sufficiently small.

A more precise definition of the constant SKP will be provided in the course of
our discussion of the Kadomtsev-Petviashvili equation (KP I). It should be noticed
that we have, in view of (3),

E(up) ∼
√

2p,

for small values of the momentum p, so that Theorem 1 provides a branch of
travelling wave solutions with arbitrary small energy. Our aim is to describe the
asymptotic behaviour, as p → 0, of the solutions up constructed above.

We recall that, in view of [6, 15, 17], any finite energy travelling waves are
subsonic in dimension two, i.e. any non-constant finite energy solution v to (TWc)
satisfies

(4) 0 < |c(v)| <
√

2.

The speed
√

2 corresponds to the speed of sound waves at infinity around the
constant solution Ψ = 1 to (GP). Moreover, the quantity

ε(v) =
√

2 − c(v)2

is related to the energy E(v) and the uniform norm of 1 − |v| as follows.

Proposition 1 ([3]). Let v be a non-constant finite energy solution to (TWc)
on R2. Then,

(5)
∥∥∥1 − |v|

∥∥∥
L∞(R2)

≥ ε(v)2

10
.

Moreover, there exists a universal constant K2 > 0 such that

ε(v) ≤ K2E(v).

In particular, the solutions up given by Theorem 1, satisfy in view of Proposition
1,

εp ≡ ε(up) → 0, as p → 0,

so that we deal with a transonic limit. In [20, 22, 21], it is proposed to study this
transonic limit of solutions v in the new anisotropic space scale,

x̃1 = ε(v)x1, and x̃2 =
ε(v)2√

2
x2.

Considering the real-valued function

η ≡ 1 − |v|2,
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and performing the change of variables above, we introduce the rescaled map Nv

defined by

(6) Nv(x) =
6

ε(v)2
η
( x1

ε(v)
,

√
2x2

ε(v)2

)
.

Notice that the same long-wave anisotropic scaling is performed to derive the
Kadomtsev-Petviashvili equation, for instance in the water-wave context (see e.g.
[1, 25]). It is formally shown in [20, 22, 21] that the renormalized amplitude Nv of

solutions to (TWc) converges, as the speed c(v) converges to
√

2, i.e. as ε(v) → 0,
to solitary wave solutions to the two-dimensional Kadomtsev-Petviashvili equation
(KP I), that is

(KP I) ∂tψ + ψ∂1ψ + ∂3
1ψ − ∂−1

1 (∂2
2ψ) = 0.

Our main goal in this paper is to provide a rigorous mathematical proof of that
convergence for the branch of minimizing solutions presented in Theorem 1.

Solitary waves are localized solutions to (KP I) of the form ψ(x, t) = w(x1 −
σt, x2), where w belongs to the energy space for (KP I), i.e. the space Y (R2) defined
as the closure of ∂1C∞

c (R2) for the norm

‖∂1f‖Y (R2) ≡
(
‖∇f‖2

L2(R2) + ‖∂2
1f‖2

L2(R2)

) 1

2

.

The parameter σ ≥ 0 denotes the speed of the solitary wave. The equation of a
solitary wave w of speed σ = 1 is given by

(SW) ∂1w − w∂1w − ∂3
1w + ∂−1

1 (∂2
2w) = 0.

When w ∈ Y (R2), the function ∂−1
1 ∂2w is well-defined (see [10]), so that (SW)

makes sense.
In contrast with the Gross-Pitaevskii equation, the range of speeds is the full

positive axis. In particular, there are no solitary waves of negative speed (see [10]).
Given any σ ≥ 0, a solitary wave wσ of speed σ is deduced from a solution w to
(SW) by the scaling

(7) wσ(x1, x2) = σw(
√
σx1, σx2).

Solitary waves may be obtained in dimension two minimizing the Hamiltonian keep-
ing the L2-norm fixed (see [9, 10]). Like (GP), equation (KP I) is indeed hamil-
tonian, with Hamiltonian given by

EKP (ψ) =
1

2

∫

R2

(∂1ψ)2 +
1

2

∫

R2

(∂−1
1 (∂2ψ))2 − 1

6

∫

R2

ψ3,

and the L2-norm of ψ is conserved as well. Setting

S(N) = EKP (N) +
σ

2

∫

R2

N2,

we term ground state, a solitary wave N which minimizes the action S among all
non-constant solitary waves of speed σ (see [11] for more details). In dimension
two, a solitary wave is a ground state if and only if it minimizes the Hamiltonian
EKP keeping the L2-norm fixed (see [9]). The constant SKP , which appears in
Theorem 1, denotes the action S(N) of the ground states N of speed σ = 1.
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Going back to the solutions up of Theorem 1, we may drop the invariance under
translations of our problem, assuming without loss of generality, since |up(x)| → 1,
as |x| → +∞ (see [14]), that ηp ≡ 1−|up|2 achieves its maximum at the origin, i.e.

∥∥ηp

∥∥
L∞(R2)

=
∣∣ηp(0)

∣∣.

We next consider the map

Np ≡ Nup
.

Notice that the origin is a maximum point for Np, and that in view of (5), we have

(8) Np(0) ≥ 3

5
.

Our main result is

Theorem 2. There exists a subsequence (pn)n∈N, tending to 0 as n tends to
+∞, and a ground state N0 of (KP I) such that

Npn
→ N0 in W k,q(R2), as n→ +∞,

for any k ∈ N and any 1 < q ≤ +∞.

Remark 1. There is a well-known explicit solitary wave solution to (KP I) of
speed 1, namely the so-called ”lump” solution, which may be written as

wℓ(x1, x2) = 24
3 − x2

1 + x2
2

(3 + x2
1 + x2

2)
2
.

It is conjectured that the ”lump” solution is a ground state. It is also conjectured
that the ground state is unique, up to the invariances of the problem. If this was
the case, then the full family (Np)p>0 would converge to wℓ, as p → 0.

So far, we have only discussed properties of the modulus of up. However, in
our argument, the phase is central as well. More precisely, if p is sufficiently small,
then up has no zero in view of (5), and we may lift it as up = ̺p exp iϕp. Setting

(9) Θp(x) =
6
√

2

εp

ϕp

(x1

εp

,

√
2x2

ε2p

)
,

we prove

Proposition 2. Let (pn)n∈N and N0 be as in Theorem 2. Passing possibly to
a further subsequence, we have

∂1Θpn
→ N0 in W k,q(R2), as n→ +∞,

for any k ∈ N and any 1 < q ≤ +∞.

Remark 2. Equation (KP I) is a higher dimensional extension of the well-
known Korteweg-de Vries equation (KdV), which may be written as

(KdV) ∂tψ + ψ∂1ψ + ∂3
1ψ = 0.

In dimension one, travelling wave solutions vc to (TWc) are related to the classical

soliton of the Korteweg-de Vries equation as follows. Setting ε =
√

2 − c2, we
consider the rescaled function

Nε(x) =
6

ε2
ηc

(x
ε

)
,
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where ηc ≡ 1 − |vc|2. An explicit integration of (TWc) in dimension one leads to

Nε(x) = N(x) ≡ 3

ch2
(

x
2

) ,

where N is the classical soliton to the Korteweg-de-Vries equation. Concerning the
phase ϕc of vc, we consider the scale change

Θε(x) =
6
√

2

ε
ϕc

(x
ε

)
,

so that we obtain similarly

Θε(x)
′ =

√
1 − ε2

2

N(x)

1 − ε2

2 N(x)
→ N(x), as ε→ 0.

Remark 3. Let uc be a solution to (TWc) in dimension three, which may be
written as uc = ̺c exp iϕc, and denote

Nc(x) =
6

ε2
ηc

(x1

ε
,

√
2x2

ε2
,

√
2x3

ε2

)
, and Θc(x) =

6
√

2

ε
ϕc

(x1

ε
,

√
2x2

ε2
,

√
2x3

ε2

)
,

where ηc ≡ 1− ̺2
c and ε =

√
2 − c2. Then, it is also formally shown in [20, 22, 21]

that the functions Nc and ∂1Θc converge, as the parameter ε converges to 0, to a
solitary wave solution w to the three-dimensional Kadomtsev-Petviashvili equation
(KP I), which writes

∂tψ + ψ∂1ψ + ∂3
1ψ − ∂−1

1 (∂2
2ψ + ∂2

3ψ) = 0.

In particular, the equation for the solitary wave w is now written as

∂1w − w∂1w − ∂3
1w + ∂−1

1 (∂2
2w + ∂2

3w) = 0.

However, the existence of a transonic branch of solutions is still an open problem, at
least on the mathematical level. This branch of solutions is conjectured in [20, 22]
in view of numerical computations and formal arguments.

1.2. Some elements in the proofs. The first element in the proofs of The-
orem 2 and Proposition 2 deals with the asymptotic behaviour of εp as a function
of p.

Lemma 1 ([3]). Let εp = ε(up) =
√

2 − c(up)2. There exist some positive
constants K3 and K4, not depending on p, such that

(10) K3p ≤ εp ≤ K4p,

for any p sufficiently small.

The second step is to derive estimates on the renormalized maps Np, which do
not depend on p. More precisely, we prove

Proposition 3. Let k ∈ N and 1 < q ≤ +∞. There exists some constant
K(k, q), depending possibly on k and q, but not on p, such that

(11) ‖Np‖W k,q(R2) + ‖∂1Θp‖W k,q(R2) + εp‖∂2Θp‖W k,q(R2) ≤ K(k, q),

for any p sufficiently small.
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At this stage, we may invoke standard compactness theorems to assert that
there exists some subsequence (pn)n∈N, tending to 0 as n tends to +∞, and a
function N0 such that, for any k ∈ N and any compact subset K of R2,

Npn
→ N0 in Ck(K), as n→ +∞.

In view of (8), we have

N0(0) ≥ 3

5
,

so that N0 is not identically constant. Moreover, we also have

Lemma 2. The function N0 is a non-constant solution to (SW).

In order to complete the proof of Theorem 2, it remains to establish strong con-
vergence on the whole plane. For this last step, we essentially rely on a variational
argument, proving a kind of gamma-convergence of the energies, combined with a
concentration-compactness result for constrained minimizers of (KP I) established
in [9].

As a matter of fact, considering scalings (6) and (9), the momentum p(up) can
be expressed as

p(up) =
εp

72

∫

R2

Np∂1Θp,

while the energy E(up) has the expansion

E(up) =
√

2
εp

144

(
E0(Np,Θp) + ε2pE2(Np,Θp) + ε4pE4(Np,Θp)

)
.

It turns out that the functions E0, E2 and E4 are uniformly bounded for p ap-
proaching 0. Moreover, E0 and E2 are given by the expressions

E0(Np,Θp) =

∫

R2

(
N2

p + (∂1Θp)
2
)
,

and

(12) E2(Np,Θp) =

∫

R2

(1

2
(∂1Np)

2 +
1

2
(∂2Θp)

2 − 1

6
Np(∂1Θp)

2
)
.

In the course of our proof, we will show that

(13) Np ∼ ∂1Θp, as p → 0,

and that the difference is actually of order ε2p. This yields, at least heuristically,

p(up) ∼
εp

72

∫

R2

N2
p , and E(up) ∼

√
2
εp

72

∫

R2

N2
p ∼

√
2p(up),

so that the discrepancy term

Σ(up) =
√

2p(up) − E(up),

tends to 0 as p → +∞.
The (KP I) energy appears when we consider the second order term. Inserting

at least formally relation (13) into (12), we are led to

(14) E2(Np,Θp) ∼ EKP (Np), as p → 0.

Using some precise estimates on the solutions, we will actually show that

(15) E2(Np,Θp) ∼ EKP (∂1Θp), as p → 0,
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since it turns out that it is easier to work, in view of the nonlocal term in the (KP I)
energy, with ∂1Θp than with Np, these two terms having the same limit in view of
(13).

The proof of (15) amounts to a careful analysis of any lower order terms, includ-
ing terms provided by E0. In particular, we obtain for the discrepancy functional,

Lemma 3. We have

(16) Σ(up) = −
√

2ε3p
144

EKP (∂1Θp) + o
p→0

(
ε3p
)
.

We then use the lower bound on Σ(up) provided by the left-hand side of (3) to
derive a precise upper bound on EKP (∂1Θp). More precisely, we show

Lemma 4. We have
(17)

− 1

54S2
KP

(∫

R2

(
∂1Θp

)2
)3

≤ EKP (∂1Θp) ≤ − 1

54S2
KP

(∫

R2

(
∂1Θp

)2
)3

+ o
p→0

(1).

In particular, the function ∂1Θp, or alternatively Np, has approximatively the
energy of a ground state for (KP I) corresponding to its L2-norm. The proof of
Theorem 2 is then completed using a concentration-compactness argument of [9].
This result yields the strong convergence of some subsequence (∂1Θpn

)n∈N in the
space Y (R2).

Proposition 4. There exists a subsequence (pn)n∈N, tending to 0 as n tends
to +∞, and a ground state N0 of (KP I) such that

∂1Θpn
→ N0 in Y (R2), and Npn

→ N0 in L2(R2), as n→ +∞.

In order to improve the convergence, we finally invoke the estimates of Propo-
sition 3. This concludes the proofs of Theorem 2 and Proposition 2 giving the
convergence in any space W k,q(R2) by standard interpolation theory.

To conclude this introduction, let us emphasize that the results in this paper
only concern travelling waves. This raises quite naturally the corresponding issue for
the time-dependent equations. More precisely, in which sense do the Korteweg-de
Vries equation in dimension one and the Kadomtsev-Petviashvili equation in higher
dimensions approximate the Gross-Pitaevskii equation in the transonic limit ? No-
tice that this question has already been formally addressed in the one-dimensional
case in [24].

1.3. Outline of the paper. The paper is organized as follows. Sections 2
and 3 are devoted to various properties of solitary wave solutions to (KP I) and
travelling wave solutions to (TWc) which are subsequently used. In Section 4, we
perform the expansion of (TWc) with respect to the small parameter ε occurring in
the definition of the slow space variables. Terms in this expansion are more clearly
analyzed in Fourier variables. Various kernels then appear, which are studied in
Section 5. In Section 6, we provide Sobolev bounds on Np and prove Proposition
3. Finally, we prove our main theorems in Section 7.

2. Some properties of solitary wave solutions to (KP I)

We first recall some facts about equation (KP I), which will enter in some places
in our proofs.



TRANSONIC LIMIT 249

2.1. Rewriting the solitary wave equation. The existence and qualitative
properties of the solutions w to (SW) in the energy space Y (R2) are considered in
the series of papers [10, 11, 9]. In [11], a new formulation of (SW) is provided
which turns out be also fruitful in our context. Applying the operator ∂1 to (SW),
we obtain

(2.1) ∂4
1w − ∆w +

1

2
∂2
1(w2) = 0.

The Fourier transform of (2.1) has the following simple form

(2.2) ŵ(ξ) =
1

2

ξ21
|ξ|2 + ξ41

ŵ2(ξ),

so that we may recast (2.1) as a convolution equation

(2.3) w =
1

2
K0 ⋆ w

2,

where the Fourier transform of the kernel K0 is given by

(2.4) K̂0(ξ) =
ξ21

|ξ|2 + ξ41
.

In view of (2.2), equation (2.3) provides an equivalent formulation to (SW), i.e.
any solution w to (2.3) in the energy space Y (R2) is also solution to (SW).

Several properties of the kernel K0 are studied in [18]. In particular, it is
proved there that K0 belongs to Lp(R2) for any 1 < p < 3 (see also Lemma 5.1).

2.2. Existence of ground state solutions. Given any µ ≥ 0, the minimiza-
tion problem

(PKP (µ)) EKP
min (µ) = inf

{
EKP (w), w ∈ Y (R2),

∫

R2

|w|2 = µ
}
,

is considered in [9], where the existence of minimizers is established. The minimizers
N for this problem happen to be ground states for (KP I). They are solutions to

(2.5) σ∂1N −N∂1N − ∂3
1N + ∂−1

1 (∂2
2N) = 0.

The speed σ appears as a Lagrange multiplier associated to (PKP (µ)). In par-
ticular, σ is not necessarily equal to 1. The proof in [9] relies on the following
concentration-compactness result, which gives the compactness of minimizing se-
quences to (PKP (µ)).

Theorem 2.1 ([9]). Let µ ≥ 0, and let (wn)n∈N be a minimizing sequence
to (PKP (µ)) in Y (R2). Then, there exist some points (an)n∈N and a function
N ∈ Y (R2) such that, up to some subsequence,

wn(· − an) → N in Y (R2), as n→ +∞.

The limit function N is solution to the minimization problem (PKP (µ)). In par-
ticular, N is a ground state for (KP I).
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2.3. Scale invariance. As mentioned in the introduction, if w is solution to
(SW), then, for any σ > 0, the map wσ defined by (7) is solution to (2.5), i.e. wσ is
a solitary wave solution to (KP I) with speed σ. Concerning the energy, we notice
that∫

R2

|wσ |2 =
√
σ

∫

R2

|w|2,
∫

R2

|wσ|3 = σ
3

2

∫

R2

|w|3,
∫

R2

|∂1wσ |2 = σ
3

2

∫

R2

|∂1w|2,

and ∫

R2

(
∂−1
1 (∂2wσ)

)2

= σ
3

2

∫

R2

(
∂−1
1 (∂2w)

)2

.

It follows that

(2.6) EKP (wσ) = σ
3

2EKP (w), and

∫

R2

|wσ|2 =
√
σ

∫

R2

|w|2.

It is shown in [9] that ground states N with speed σ = 1 correspond to solutions
to (PKP (µ)) for

µ = µ∗ ≡ 3SKP .

As a matter of fact, it is proved in [10, 18] that any solution w to (SW) satisfies
the relations

EKP (w) = −1

6

∫

R2

w2, and S(w) =
1

3

∫

R2

w2,

so that the energy and the L2-norm of ground states N with speed σ = 1 are given
by

EKP (N) = −1

2
SKP , and

∫

R2

N2 = 3SKP = µ∗.

Relations (2.6) then provide

Lemma 2.1. Let N ∈ Y (R2). Given any σ ≥ 0, the map Nσ defined by (7)
is a minimizer for EKP

min (
√
σµ∗) if and only if N is a minimizer for EKP

min (µ∗). In
particular, we have

(2.7) EKP
min (µ) = − µ3

54S2
KP

, ∀µ ≥ 0.

Moreover, Nσ and N are ground states for (KP I), with speed σ, respectively, 1. In
particular, they are solutions to (2.5), respectively, (SW).

Proof. Given any µ > 0, we denote Λ2
µ(R2) = {w ∈ L2(R2), s.t.

∫
R2 |w|2 =

µ}. In view of (2.6), the function w 7→ wσ maps Λ2
µ∗(R2) onto Λ2

µ∗

√
σ
(R2), such

that

EKP (wσ) = σ
3

2EKP (w).

Hence, Nσ is a minimizer for EKP
min (µ∗√σ) if and only if N is a minimizer for

EKP
min (µ∗). Moreover,

EKP
min (µ∗√σ) = σ

3

2 EKP
min (µ∗) = −σ

3

2SKP

2
.

Identity (2.7) follows letting σ = µ2

(µ∗)2 . The last statements of Lemma 2.1 are

proved in [9]. �
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In the course of our proofs, we will encounter sequences (wn)n∈N which are not
exactly minimizing sequences for (PKP (µ)), but which satisfy

(2.8) EKP (wn) → EKP
min (µ), and

∫

R2

w2
n → µ, as n→ +∞,

for some positive number µ. In this case, we will invoke the following variant (and
in fact, consequence) of Theorem 2.1.

Proposition 2.1. Let µ0 > 0, and (wn)n∈N denote a sequence of functions
in Y (R2) satisfying (2.8) for µ = µ0. Then, there exist some points (an)n∈N and

a ground state solution Nσ to (2.5), with σ =
µ2

0

(µ∗)2 , such that, up to some subse-
quence,

wn(· − an) → Nσ in Y (R2), as n→ +∞.

Proof. We denote

µn =

∫

R2

w2
n, and σn =

µ2
0

µ2
n

,

and consider the functions

zn(x1, x2) = σnwn(
√
σnx1, σnx2).

In view of (2.6) and (2.8),

(2.9) σn → 1, as n→ +∞,

and (zn)n∈N is a minimizing sequence of (PKP (µ)) for µ = µ0. Therefore, by
Theorem 2.1, there exist some points (an)n∈N and a minimizer Nσ to (PKP (µ)) for
µ = µ0 such that, up to some subsequence,

(2.10) zn(· − an) → Nσ in Y (R2), as n→ +∞.

In particular, it follows from Lemma 2.1 that Nσ is solution to (2.5), with σ =
µ2

0

(µ∗)2 .

We now denote

Nn(x1, x2) =
1

σn

Nσ

( x1√
σn

,
x2

σn

)
,

so that, by the change of variables (y1, y2) = (
√
σnx1, σnx2),

‖zn(· − an) −Nσ‖2
Y (R2) =

√
σn‖wn(· − an) −Nn‖2

L2(R2)

+ σ
3

2

n ‖∂1wn(· − an) − ∂1Nn‖2
L2(R2)

+σ
3

2

n ‖∂−1
1 ∂2wn(· − an) − ∂−1

1 ∂2Nn‖2
L2(R2).

By (2.9) and (2.10), we have

wn(· − an) −Nn → 0 in Y (R2), as n → +∞.

Proposition 2.1 follows provided we first prove that

Nn → Nσ in Y (R2), as n → +∞.

This last assertion is itself a consequence of the general observation that

λψ
(√
µ·, µ ·

)
→ ψ in L2(R2), as λ→ 1 and µ→ 1,

which may be deduced from the dominated convergence theorem, when ψ is in
C∞

c (R2), then, using the density of C∞
c (R2) into L2(R2), when ψ only belongs to

L2(R2). �
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3. Some properties of solutions to (TWc)

In this section, we gather a number of properties of solutions to (TWc), which
enter in our asymptotic analysis. Most of these results are available in the literature
on the subject.

3.1. General solutions. Let v be a finite energy solution to (TWc) on R2.
It can be shown using various elliptic estimates (see [12, 28, 3]) that there exists
some positive constant K, not depending on c, such that

(3.1)
∥∥∥1 − |v|

∥∥∥
L∞(R2)

≤ 1,

and

(3.2) ‖∇v‖L∞(R2) ≤ K
(
1 +

c2

4

) 3

2

.

In view of (4), estimates (3.1) and (3.2) may be recast as

(3.3) ‖η‖L∞(R2) + ‖∇v‖L∞(R2) ≤ K,

where we have set η ≡ 1 − |v|2. For higher order derivatives, it similarly follows
from the proof of Lemma 2.1 in [3] that there exists some positive constant K(k),
not depending on c, such that

(3.4) ‖v‖Ck(R2) ≤ K(k),

for any k ∈ N.
More generally, we have

(3.5) ‖η‖W k,q(R2) + ‖∇v‖W k,q(R2) ≤ K(c, k, q),

for any k ∈ N and any 1 < q < +∞ (see [16]). Notice that the constant K(c, k, q)
possibly depends on the speed c, so that we may have

K(c, k, q) → +∞, as c→
√

2.

Before establishing the convergence of the rescaled functions Np and Θp, we shall
need to establish their boundedness in the spaces W k,q(R2). This requires to get
some control upon the dependence on c of the constant K(c, k, q). The proof of
Proposition 3 in Section 6 below provides such a control.

We will also take advantage of the fact that the maps up have small energy.
Indeed, in view of (4) and elliptic estimate (3.3), we may show that, if a solution v
to (TWc) has sufficiently small energy, it does not vanish. More precisely, we have

Lemma 3.1 ([3]). There exists a universal constant E0 such that, if v is a
solution to (TWc) which satisfies E(v) ≤ E0, then

(3.6)
1

2
≤ |v| ≤ 2.

If v satisfies (3.6), then we may lift it as

v = ̺ exp iϕ,

where ϕ is a real-valued, smooth function on R2 defined modulo a multiple of 2π.
We have in that case,

∂jv =
(
i̺∂jϕ+ ∂j̺

)
exp iϕ,
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so that

(3.7) 〈i∂1v, v〉 = −̺2∂1ϕ, and e(v) =
1

2

(
|∇̺|2 + ̺2|∇ϕ|2

)
+

1

4
η2.

Moreover, the momentum p takes the simple form

p(v) =
1

2

∫

R2

η∂1ϕ.

The system of equations for ̺ and ϕ is written as

(3.8)
c

2
∂1̺

2 + div
(
̺2∇ϕ

)
= 0,

and

(3.9) c̺∂1ϕ− ∆̺− ̺
(
1 − ̺2

)
+ ̺|∇ϕ|2 = 0.

Combining both the equations, the quantity η satisfies

∆2η − 2∆η + c2∂2
1η = −2∆

(
|∇v|2 + η2 − cη∂1ϕ

)
− 2c∂1div

(
η∇ϕ

)
,

where the left-hand side is linear with respect to η, whereas the right-hand side is
(almost) quadratic with respect to η and ∇ϕ.

Multiplying (3.8) by ϕ and integrating by parts, we obtain a first relation for
the momentum

(3.10) cp(v) =

∫

RN

̺2|∇ϕ|2.

In another direction, Pohozaev identities yield

(3.11) E(v) =

∫

R2

|∂1v|2, and E(v) =

∫

R2

|∂2v|2 + cp(v).

Introducing the quantities Σ(v) =
√

2p(v)−E(v), the second identity in (3.11) may
be recast as

(3.12)

∫

R2

|∂2v|2 + Σ(v) =
(√

2 −
√

2 − ε(v)2
)
p(v) =

ε(v)2√
2 +

√
2 − ε(v)2

p(v).

In the case Σ(v) > 0, this yields an interesting estimate for the transversal derivative
∂2v. Adding both the equalities in (3.11), we also derive a second relation for the
momentum

1

2

∫

R2

η2 = cp(v).

With similar arguments and combining with (3.10), we are led to

Lemma 3.2 ([3]). Let v be a finite energy solution to (TWc) on R2 satisfying
(3.6). Then, we have the identities

(3.13) Σ(v) +
1

2

∫

R2

|∇̺|2 =
ε(v)2√
2 + c(v)

p(v),

(3.14)

∫

R2

|∇̺|2
(
1 +

1

̺2

)
=

∫

R2

η|∇ϕ|2,

and the inequality

(3.15) E(v) ≤ 7c(v)2
∫

R2

η2.
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In view of definition (1), we have
∫

R2

η2 ≤ 4E(v),

so that inequality (3.15) shows that the energy is comparable to the integral of η2

for any solutions v satisfying (3.6). When Σ(v) > 0, identity (3.13) shows that

Σ(v) ≤ ε(v)2√
2
p(v) ≤ KE(v)2p(v) ≤ 2Kp(v)3,

where we have invoked Proposition 1 for the second inequality. In particular, we
obtain

E(v) ∼
√

2p(v),

as E(v), or p(v), approaches 0.
In several places (in particular, in the proof of Proposition 3), we shall need

estimates for higher order derivatives. For that purpose, we shall use

Lemma 3.3. Let 1 < q < +∞, and let v be a finite energy solution to (TWc)
on R2 satisfying (3.6). Then, there exists some constant K(q), not depending on
c, such that

(3.16) ‖∇ϕ‖Lq(R2) ≤ K(q)‖η‖Lq(R2),

More generally, given any index α = (α1, α2) ∈ N2, there exist some constants
K(q, α), not depending on c, such that
(3.17)

‖∂α(∇ϕ)‖Lq(R2) ≤ K(q, α)
(∥∥∂αη

∥∥
Lq(R2)

+
∑

0≤β<α

‖∂βη‖L∞(R2)‖∂α−β
(
∇ϕ
)
‖Lq(R2)

)
.

Proof. First notice that in view of (3.4) and (3.5), the functions η and ∇ϕ
belong to W k,q(R2) for any k ∈ N and any 1 < q ≤ +∞. In particular, the norms
in inequalities (3.16) and (3.17) are well-defined and finite. Lemma 3.3 is then a
consequence of the elliptic nature of equation (3.8), which may be written as

∆ϕ =
c

2
∂1η + div

(
η∇ϕ

)
,

so that, more generally,

(3.18) ∆(∂αϕ) =
c

2
∂1∂

αη + div
(
∂α(η∇ϕ)

)
,

for any α ∈ N2. Using standard elliptic estimates and inequality (4), we derive
from (3.18) that

(3.19) ‖∇(∂αϕ)‖Lq(R2) ≤ K(q)
(∥∥∂αη

∥∥
Lq(R2)

+
∥∥∂α

(
η∇ϕ

)∥∥
Lq(R2)

)
.

For α = (0, 0), inequality (3.16) is a direct consequence of (3.19) invoking (3.3).
For α 6= (0, 0), the derivative ∂α(η∇ϕ) may be written as

∂α(η∇ϕ) =
∑

0≤β≤α

(
α

β

)
∂βη∂α−β

(
∇ϕ
)
,
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by Leibniz formula, so that

‖∂α(η∇ϕ)‖Lq(R2) ≤ K(q, α)

(
‖∂αη‖Lq(R2)‖∇ϕ‖L∞(R2)

+
∑

0≤β<α

‖∂βη‖L∞(R2)‖∂α−β
(
∇ϕ
)
‖Lq(R2)

)
.

Estimate (3.17) follows from (3.19) using again uniform bound (3.3). �

3.2. Properties of up. We now restrict ourselves to the solutions up provided
by Theorem 1. We begin with the

Proof of Lemma 1. In view of (3), we have

Σp ≡ Σ(up) ≥
48

√
2

S2
KP

p
3 −K0p

4,

for any p sufficiently small, whereas, by (3.13),

Σp ≤ p
ε2p√
2
,

so that, combining both the inequalities, we obtain

εp ≥ 9

SKP

p.

On the other hand, in view of Proposition 1, we have

εp ≤ KEp,

where we have set Ep ≡ E(up). Since Ep ≤
√

2p, we conclude that (10) holds.
Moreover, we also have

(3.20) K5Ep ≤ εp ≤ K6Ep,

for any p sufficiently small, and some positive constants K5 and K6, not depending
on p. �

Finally, since Σp > 0 by (3), we deduce from Lemma 1 that (3.12), (3.13) and
(3.14) may be recast as

(3.21)

∫

R2

(
|∇̺p|2 + (∂2up)

2
)

+

∣∣∣∣
∫

R2

ηp|∇ϕp|2
∣∣∣∣ ≤ Kp

3,

where we denote up = ̺p exp iϕp. Since (∂2up)
2 = ̺2

p(∂2ϕp)
2 + (∂2̺p)

2 and |ηp| ≤
3̺2

p, we deduce that
∫

R2

|ηp|(∂2ϕp)
2 ≤ 3

∫

R2

̺2
p(∂2ϕp)

2 ≤ Kp
3,

so that

(3.22)

∣∣∣∣
∫

R2

ηp(∂1ϕp)
2

∣∣∣∣ ≤ Kp
3.
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4. (TWc) in the slow space variables

4.1. Expansion of the energy functionals. In this subsection, we consider
a finite energy map v on R2, satisfying (3.6), and a small given parameter ε > 0.
In view of assumption (3.6), we may lift v as v = ̺ exp iϕ. Following the expansion
given in the physical literature, we introduce anisotropic slow space variables x̃1 =

εx1, and x̃2 = ε2

√
2
x2. We then consider the rescaled functions N = Nv,ε and

Θ = Θv,ε defined as follows

(4.1) N(x) =
6

ε2
η
(x1

ε
,

√
2x2

ε2

)
, and Θ(x) =

6
√

2

ε
ϕ
(x1

ε
,

√
2x2

ε2

)
.

We next express the functionals p and E in terms of the functions N , Θ and ε. In
the course of the analysis, we will also compute several other integral quantities in
the rescaled variables. For instance,

∫

R2

N2 =
18

√
2

ε

∫

R2

η2,

∫

R2

(∂1N)2 =
18

√
2

ε3

∫

R2

(∂1η)
2,

∫

R2

(∂2N)2 =
36

√
2

ε5

∫

R2

(∂2η)
2,

whereas
∫

R2

(∂1Θ)2 =
36

√
2

ε

∫

R2

(∂1ϕ)2, and

∫

R2

(∂2Θ)2 =
72

√
2

ε3

∫

R2

(∂2ϕ)2.

A rather tedious computation along the same lines allows to derive the following
expansions.

Lemma 4.1. Let v be a smooth map on R2 satisfying (3.6), and let N and Θ be
the corresponding functions defined by (4.1). The momentum p(v) can be expressed
in terms of the new functions as

(4.2) p(v) =
ε

72

∫

R2

N∂1Θ,

while the energy E(v) has the expansion

(4.3) E(v) =
√

2
ε

144

(
E0(N,Θ) + ε2E2(N,Θ) + ε4E4(N,Θ)

)
,

where the functions E0, E2 and E4 are given by

(4.4) E0(N,Θ) =

∫

R2

(
N2 + (∂1Θ)2

)
,

(4.5) E2(N,Θ) =

∫

R2

(1

2
(∂1N)2 +

1

2
(∂2Θ)2 − 1

6
N(∂1Θ)2

)
,

and

(4.6) E4(N,Θ) =

∫

R2

(
(∂2N)2

4 − 2ε2

3 N
+

N(∂1N)2

12 − 2ε2N
− 1

12
N(∂2Θ)2

)
.

Remark 4.1. Recall that the map up found in Theorem 1 minimizes the
Ginzburg-Landau energy keeping the momentum p fixed, equal to p. If one takes
instead only the first term of the energy in expansion (4.3), i.e. if one minimizes
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E0 keeping the momentum p equal to p, then ũp will be a minimizer for the new
problem if and only if

Ñp = ∂1Θ̃p, and

∫

R2

Ñ2
p =

72p

ε
.

Notice in particular that Θ̃p = ∂−1
1 Ñp, so that ∂−1

1 (∂2Ñp) = ∂2Θ̃p. If we insert

these relations into the definition of E2(Ñp, Θ̃p), one obtains

E2(Ñp, Θ̃p) =

∫

R2

(
1

2
(∂1Ñp)

2 +
1

2
(∂−1

1 (∂2Ñp))
2 − 1

6
Ñ3

p

)
= EKP (Ñp).

This identity gives a first heuristic relation between the (GP) functional and the
(KP I) functional, as well as between the solutions up and the ground states for
(KP I).

Specifying the above change of variables to the case v = up and ε = εp, set-
ting Np = Nup,εp

and Θp = Θup,εp
, we obtain bounds for the integral quantities

appearing in Lemma 4.1. In view of (1) and (3.20), we have
∫

R2

(Np)
2 =

18
√

2

εp

∫

R2

η2
p ≤ 72

√
2E(up)

εp

≤ K,

where K is some universal constant, whereas by (3.6) and (3.7),
∫

R2

(∂1Θp)
2 =

36
√

2

εp

∫

R2

(∂1ϕp)
2 ≤ 144

√
2

εp

∫

R2

̺2
p(∂1ϕp)

2 ≤ 288
√

2E(up)

εp

,

so that

(4.7)

∫

R2

(
(Np)

2 + (∂1Θp)
2

)
≤ K.

Similarly, it follows from (3.21) and (3.22) that

(4.8)

∫

R2

(
(∂1Np)

2 + (∂2Θp)
2

)
+

∣∣∣∣
∫

R2

Np(∂1Θp)
2

∣∣∣∣ ≤ K.

For various other quantities, we only have at this stage rather crude estimates. For
instance, concerning the uniform norm of Np, the bound provided by (3.3) yields

(4.9) ‖Np‖L∞(R2) ≤
K

ε2p
.

We also only have for the transverse derivatives

(4.10)

∫

R2

(∂2Np)
2 +

∫

R2

∣∣∣Np(∂2Θp)
2
∣∣∣ ≤ K

ε2p
.

It follows from (4.8) that ∣∣E2(Np,Θp)
∣∣ ≤ K,

whereas for E4, we only obtain combining estimates (4.8), (4.9) and (4.10),

∣∣E4(Np,Θp)
∣∣ ≤ K

ε2p
.

Hence, going back to the expansion of the energy, we deduce

(4.11)
∣∣∣E(up) −

√
2
εp

144
E0(Np,Θp)

∣∣∣ ≤ Kε3p.

This leads to
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Lemma 4.2. There exists some positive constant K, not depending on p, such
that

(4.12)

∫

R2

(
Np − ∂1Θp

)2

≤ Kε2p,

for any p sufficiently small.

Proof. Using (4.2), (4.4) and (4.11), we are led to
∫

R2

(
Np − ∂1Θp

)2

= E0(Np,Θp) − 2

∫

R2

Np∂1Θp ≤ 144E(up)√
2εp

− 144p

εp

+Kε2p.

Since E(up) ≤
√

2p, the conclusion follows. �

Estimate (4.7) provides a first step to compactness. In particular, there exists
some map N0 ∈ L2(R2) such that, up to a subsequence,

Np ⇀ N0 in L2(R2), as p → 0.

As a consequence of Lemma 4.2, we also have

∂1Θp ⇀ N0 in L2(R2), as p → 0.

To improve this convergence and characterize the limit function N0, we turn to the
equations for Np and Θp.

4.2. Expansion of the equations. We now consider a finite energy solution
v to (TWc) satisfying (3.6), so that v may be written as v = ̺ exp iϕ, and the
functions ̺ and ϕ satisfy the system of equations (3.8)-(3.9). At first order, each
of the equations (3.8) and (3.9) express the fact that

N ∼ ∂1Θ, as ε→ 0.

Indeed, we first have

Lemma 4.3. Assume ̺ and ϕ satisfy (3.9), and let N and Θ be the correspond-
ing functions defined by (4.1). Then, N and Θ satisfy

(4.13) N − ∂1Θ = ε2
(
Lε,1(N,Θ) + Rε,1(N,Θ)

)
,

where the remainder terms Lε,1(N,Θ) and Rε,1(N,Θ) are given by

Lε,1(N,Θ) =
1

ε2

(√
1 − ε2

2
− 1
)
∂1Θ +

1

2
∂2
1N +

ε2

4
∂2
2N,

and

Rε,1(N,Θ) =
1

12

(
2N2 − 2

√
1 − ε2

2
N∂1Θ + (∂1Θ)2

)

+
ε2

72

(
3

(∂1N)2

1 − ε2

6 N
−N(∂1Θ)2 + 3(∂2Θ)2

)

+
ε4

144

(
3

(∂2N)2

1 − ε2

6 N
−N(∂2Θ)2

)
.

We similarly have
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Lemma 4.4. Assume ̺ and ϕ satisfy (3.8), and let N and Θ be the correspond-
ing functions defined by (4.1). Then, N and Θ satisfy

(4.14) ∂1N − ∂2
1Θ = ε2

(
Lε,2(N,Θ) + Rε,2(N,Θ)

)
,

where the remainder terms Lε,2(N,Θ) and Rε,2(N,Θ) are given by

Lε,2(N,Θ) =
1

ε2

(
1 −

√
1 − ε2

2

)
∂1N +

1

2
∂2
2Θ,

and

Rε,2(N,Θ) = −1

6
∂1

[
N∂1Θ

]
− ε2

12
∂2

[
N∂2Θ

]
.

As mentioned above, equations (4.13) and (4.14) twice express the fact that
the functions N and ∂1Θ are equal at the limit ε → 0. In order to identify their
common limit, we expand some combination of (4.13) and (4.14) to deduce

Proposition 4.1. Let v be a finite energy solution to (TWc) on R2 satisfying
(3.6), and let N and Θ be the corresponding functions defined by (4.1). Then, N
and Θ satisfy

(4.15) L(N) = −∂2
1

[1
3
N2 +

1

6
(∂1Θ)2

]
+ ε2

(
Lε(N) + Rε(N,Θ)

)
,

where L is the linear operator given by

L(N) = ∂4
1N − ∆N,

and the remainder terms Lε(N) and Rε(N,Θ) are given by

Lε(N) = −∂2
1∂

2
2N − ε2

4
∂4
2N,

and

Rε(N,Θ) =
1

72

(
2∂2

1

[
N(∂1Θ)2

]
− 6∂2

1

[ (∂1N)2

1 − ε2

6 N

]

−24∂2
2(N2) − 6

√
1 − ε2

2
∂1∂2

[
N∂2Θ

]

+12

√
1 − ε2

2
∂2
2

[
N∂1Θ

]
− 3∂2

1

[
(∂2Θ)2

]
− 6∂2

2

[
(∂1Θ)2

])

+
ε2

144

(
− 3∂2

1

[ (∂2N)2

1 − ε2

6 N

]
+ ∂2

1

[
N(∂2Θ)2

]

−6∂2
2

[ (∂1N)2

1 − ε2

6 N

]
+ 2∂2

2

[
N(∂1Θ)2

]

−3∂2
2

[
(∂2Θ)2

])
+

ε4

288

(
− 3∂2

2

[ (∂2N)2

1 − ε2

6 N

]
+ ∂2

2

[
N(∂2Θ)2

])
.

Proof. Equation (4.15) is derived applying the differential operator −∂2
1 −

ε2

2 ∂
2
2 to (4.13), the operator

√
1 − ε2

2 ∂1 to (4.14), and adding the corresponding

relations. �
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Notice that we have at this stage,

∂4
1N − ∆N +

1

2
∂2
1N

2 =
1

6
∂2
1(N2 − (∂1Θ)2) + ε2

(
Lε(N,Θ) + Rε(N,Θ)

)
,

where we recognize equation (2.1) for N in the left-hand side. Specifying this
relation to the solutions Np and Θp, it remains to prove that the weak limit N0 of
the sequence (Np)p>0 is a solution to (SW), and to show some strong convergence.
This requires to establish that the nonlinear remainder term Rε is small in some
suitable sense. Indeed, the first term on the right-hand side will tend to 0 in view
of Lemma 4.2, whereas the linear term Lε(N) presents no difficulty.

The remainder term Rε is a sum of several second order derivatives. We order
them according to the type of second order derivatives, writing

Rε(N,Θ) =
∑

i+j=2

∂i
1∂

j
2Ri,j

ε ,

where

R2,0
ε =

1

36
N(∂1Θ)2 − (∂1N)2

12(1 − ε2

6 N)
− 1

24
(∂2Θ)2

−ε2 (∂2N)2

48(1 − ε2

6 N)
+

ε2

144
N(∂2Θ)2,(4.16)

R0,2
ε = −N

2

3
+

1

6

√
1 − ε2

2
N∂1Θ − (∂1Θ)2

12
− ε2

(∂1N)2

24(1 − ε2

6 N)

+
ε2

72
N(∂1Θ)2 − ε2

48
(∂2Θ)2 − ε4

(∂2N)2

96(1 − ε2

6 N)
+

ε4

288
N(∂2Θ)2,(4.17)

and

(4.18) R1,1
ε = − 1

12

√
1 − ε2

2
N∂2Θ.

In several places, it will be convenient to write

Ri,j
ε = Ri,j

ε + ε2νi,j
ε ,

where ν1,1
ε = 0,

ν2,0
ε = − (∂2N)2

48(1 − ε2

6 N)
+

1

144
N(∂2Θ)2,

and

ν0,2
ε = − (∂1N)2

24(1 − ε2

6 N)
+

1

72
N(∂1Θ)2 − 1

48
(∂2Θ)2 − ε2

(∂2N)2

96(1 − ε2

6 N)
+

ε2

288
N(∂2Θ)2.

Notice in particular that

(4.19) |R2,0
ε | ≤ K

(
(∂1N)2 + (∂2Θ)2 + |N(∂1Θ)2|

)
,

whereas

(4.20) |R1,1
ε | ≤ K

∣∣N
∣∣∣∣∂2Θ

∣∣, and |R0,2
ε | ≤ K

(
N2 + (∂1Θ)2

)
.
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Similarly, we also have

|ν2,0
ε | ≤ K

(
(∂2N)2 + |N(∂2Θ)2|

)
,

|ν0,2
ε | ≤ K

(
(∂1N)2 + |N(∂1Θ)2| + (∂2Θ)2 + ε2

(
(∂2N)2 + |N(∂2Θ)2|

))
.

(4.21)

Specifying the previous quantities for Np and Θp, we obtain some initial bounds on
the nonlinear remainder terms, which will prove essential to compute the estimates
of Proposition 3.

Lemma 4.5. There exists some positive constant K, not depending on p, such
that

(4.22)

∫

R2

(
|R1,1

εp
| + |R0,2

εp
|
)
≤ K,

and

(4.23)

∫

R2

(
|R2,0

εp
| + |ν2,0

εp
| + |ν0,2

εp
|
)
≤ K

ε2p
,

for any p sufficiently small.

Proof. Bounds (4.22) and (4.23) are consequences of bounds (4.7), (4.8) and
(4.10), and inequalities (4.19), (4.20) and (4.21). Concerning the term

∫
R2 Np(∂1Θp)

2

in (4.23), we have to invoke the crude bound (4.9), which yields
∫

R2

∣∣∣Np(∂1Θp)
2
∣∣∣ ≤ K

ε2p

∫

R2

(∂1Θp)
2 ≤ K

ε2p
.

�

4.3. Estimates for the phase Θp. In the previous discussion, we did not
consider the function Θ. In particular, we did not compute any rescaled equation
for this function. Applying the partial differential operator L − ε2Lε to (4.14)
and introducing equation (4.15) in the resulting equation in order to eliminate the
function N in the linear part, we compute

(4.24) L(∂2
1Θ) = −∂3

1

(1

3
N2 +

1

6
(∂1Θ)2

)
+ ε2

(
Lε,3(Θ) + Rε,3(N,Θ)

)
,

where the remainder terms Lε,3(Θ) and Rε,3(N,Θ) are given by

Lε,3(Θ) = Lε(∂
2
1Θ) − 1

2
L(∂2

2Θ) +
ε2

2
Lε(∂

2
2Θ),

and

Rε,3(N,Θ) =
1

ε2

(
1 −

√
1 − ε2

2

)
∂3
1

(1

3
N2 +

1

6
(∂1Θ)2

)
+

√
1 − ε2

2
∂1Rε(N,Θ)

− L
(
Rε,2(N,Θ)

)
+ ε2Lε

(
Rε,2(N,Θ)

)
.

At least formally, this may be written as

∂4
1(∂1Θ)−∆(∂1Θ)+

1

2
∂2
1(∂1Θ)2 =

1

3
∂2
1

(
(∂1Θ)2−N2

)
+ε2∂−1

1

(
Lε,3(Θ)+Rε,3(N,Θ)

)
.

We recognize once more equation (2.1) for ∂1Θ in the left-hand side. However, the
analysis of equation (4.24) is substantially more difficult than the study of (4.15),
due to the intricacy of the remainder terms and the necessity to apply the operator
∂−1
1 to (4.24) to recover (2.1). Hence, our argument to deal with the phase Θ does
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not rely on (4.24). Instead, we invoke the estimates of Lemma 3.3, whose rescaled
versions give bounds on Θ in function of those on N .

Lemma 4.6. Let 1 < q < +∞. There exists some positive constant K(q), not
depending on p, such that

(4.25) ‖∂1Θp‖Lq(R2) + εp‖∂2Θp‖Lq(R2) ≤ K(q)‖Np‖Lq(R2),

for any p sufficiently small. Similarly, given any α ∈ N2, and denoting

Ξp(q, α) ≡ ‖∂α∂1Θp‖Lq(R2) + εp‖∂α∂2Θp‖Lq(R2),

there exists some positive constant K(q, α), not depending on p, such that

(4.26) Ξp(q, α) ≤ K(q, α)

(
‖∂αNp‖Lq(R2) + ε2p

∑

0≤β<α

‖∂βNp‖L∞(R2)Ξp(q, α− β)

)
,

for any p sufficiently small.

Proof. Inequalities (4.25) and (4.26) are rescaled versions of (3.16) and (3.17).
In view of scalings (4.1), given any 1 < q ≤ +∞, the Lq-norm of the function ∂αN

is related to the Lq-norm of ∂αη by

(4.27) ‖∂αN‖Lq(R2) =
K(q, α)

ε2+α1+2α2− 3

q

‖∂αη‖Lq(R2),

where K(q, α) denotes some positive constant, not depending on ε. Similarly, we
compute for the functions ∂α∂1Θ and ∂α∂2Θ,

‖∂α∂1Θ‖Lq(R2) =
K(q, α)

ε2+α1+2α2− 3

q

‖∂α∂1ϕ‖Lq(R2),

and ‖∂α∂2Θ‖Lq(R2) =
K(q, α)

ε3+α1+2α2− 3

q

‖∂αϕ‖Lq(R2).(4.28)

Inequalities (4.25) and (4.26) then follow from rescaling (3.16) and (3.17), specifying
identities (4.27) and (4.28) for the functions Np and Θp. �

In view of Lemma 4.6, we will not invoke equation (4.24) to bound the function
Θp. Instead, we will take advantage of the regularizing properties of equation
(4.15), and rely on the initial estimates of Lemma 4.5, to bound the Lq-norm of
Np (and actually, its first order derivatives) independently on p. We will then
deduce from (4.25) and (4.26), Lq-estimates of some low order derivatives of Θp.
This in turn will provide new bounds on the nonlinear terms Ri,j

εp
, and on their

first order derivatives, improving the estimates of Lemma 4.5. Using in particular,
the inductive nature of (4.26), we will iterate the argument to obtain Lq-bounds
on any order derivatives of Np and Θp, and complete the proof of Proposition 3
(see Section 6 below). Notice that this strategy will first require to analyse the
regularizing nature of (4.15) which becomes more transparent taking its Fourier
transform.

4.4. Kernels of the rescaled equations. We derive a new formulation of
(4.15) which brings out its regularizing properties. Taking the Fourier transform of
the previous rescaled equations, we deduce
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Corollary 4.1. Let v be a finite energy solution to (TWc) on R2 satisfying

(3.6), and let N and Θ be the corresponding functions defined by (4.1). Then, N̂

and Θ̂ satisfy

(4.29)
(
1 +

ε2

2
ξ21 +

ε4

4
ξ22

)
N̂(ξ) − i

√
1 − ε2

2
ξ1Θ̂(ξ) = ε2R̂ε,1(ξ),

(4.30)
(
ξ21 +

ε2

2
ξ22

)
Θ̂(ξ) + i

√
1 − ε2

2
ξ1N̂(ξ) = ε2R̂ε,2(ξ),

and

(4.31)
(
ξ41 + |ξ|2 + ε2ξ21ξ

2
2 +

ε4

4
ξ42

)
N̂(ξ) = ξ21

(1

3
N̂2(ξ) +

1

6
(̂∂1Θ)2(ξ)

)
+ ε2R̂ε(ξ).

Proof. Equations (4.29), (4.30) and (4.31) follow from taking the Fourier
transform of equations (4.13), (4.14) and (4.15). �

At this stage, it is presumably worthwhile to compare equations (4.31) and
(2.2). This leads us to consider the perturbed kernel Kε, whose Fourier transform
is given by

K̂ε(ξ) =
ξ21

|ξ|2 + ξ41 + ε2ξ21ξ
2
2 + ε4

4 ξ
4
2

.

The kernel Kε is a regularization of the kernel K0, since it belongs to H
1

4 (R2)
(see Lemma 5.1 below), and tends to K0 in L2(R2), as ε → 0, by the dominated
convergence theorem. We will extensively use this additional regularizing property
of Kε to compute estimates of the function N .

More generally, since

R̂ε(ξ) = −
∑

i+j=2

ξiξjR̂ε

i,j
(ξ),

we also introduce the kernels Ki,j
ε defined by

(4.32) K̂
i,j
ε (ξ) =

ξi
1ξ

j
2

|ξ|2 + ξ41 + ε2ξ21ξ
2
2 + ε4

4 ξ
4
2

,

for any 0 ≤ i, j ≤ 4 such that 2 ≤ i+ j ≤ 4 (so that, in particular, Kε = K2,0
ε ). We

then recast equation (4.15) as a convolution equation

(4.33) Np = K2,0
εp

⋆ fp −
∑

i+j=2

ε2pK
i,j
εp
⋆Ri,j

εp
,

where

(4.34) fp =
1

3
N2

p +
1

6
(∂1Θp)

2.

In view of the multiplier properties of the kernels Ki,j
εp

(see Lemma 5.2 below),

equation (4.33) provides a control on the Lq-norm of Np in function of the Lq-
norms of the nonlinear terms fp and Ri,j

εp
. This control is the starting point of

the proof of Proposition 3, which follows combining the superlinear nature of the
nonlinear terms fp and Ri,j

εp
with the estimates of Θp provided by Lemma 4.6 (see

Section 6 below).
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5. Properties of the kernels Ki,j
ε

We now turn to the analysis of the kernels Ki,j
ε . In particular, we provide a

number of estimates, which are required by the proof of Proposition 3.

5.1. Hα-estimates of the kernels. For given 0 ≤ α < 1, we establish Hα-
estimates for the kernels Ki,j

ε . We first consider their Ḣα-semi-norms defined in
the Fourier space by

‖Ki,j
ε ‖2

Ḣα(R2)
=

∫

R2

|ξ|2α|K̂i,j
ε (ξ)|2dξ.

Lemma 5.1. Let 0 < ε ≤ 1 and 0 ≤ α < 1. Then,

(5.1) ‖K2,0
ε ‖Ḣα(R2) ≤ K(α)

(
1 + ε

1

2
−2α

)
, ‖K1,1

ε ‖Ḣα(R2) ≤ K(α)
(
1 + ε−

1

2
−2α

)
,

and

(5.2) ‖K0,2
ε ‖Ḣα(R2) ≤ K(α)

(
1 + ε−

3

2
−2α

)
.

Proof. The proof is an explicit computation. In view of the definition of the
semi-norms, we compute using polar coordinates, and noticing that i+ j = 2,

‖Ki,j
ε ‖2

Ḣα(R2)
=

∫

R2

|ξ|2αξ2i
1 ξ

2j
2(

|ξ|2 + ξ41 + ε2ξ21ξ
2
2 + ε4

4 ξ
4
2

)2 dξ

=

∫ +∞

0

∫ 2π

0

r2α+1 cos(θ)2i sin(θ)2j

(
1 + r2 cos(θ)4 + ε2r2 cos(θ)2 sin(θ)2 + ε4

4 r
2 sin(θ)4

)2 drdθ

= 4

∫ +∞

0

∫ +∞

0

r2α+1 u2j(1 + u2)3−i−j

(
(1 + u2)2 + r2 + ε2r2u2 + ε4

4 r
2u4
)2 drdu,

where we have set u = tan(θ) in the last integral. The previous computation leads
us to introduce the quantity

Jβ,ε(r) =

∫ +∞

0

u2β

(
(1 + u2)2 + r2 + ε2r2u2 + ε4

4 r
2u4
)2 du,

so that

(5.3) ‖Ki,j
ε ‖2

Ḣα(R2)
≤ K

∫ +∞

0

r2α+1
(
Jβ1,ε(r) + Jβ2,ε(r)

)
dr,

where β1 = j and β2 = 3 − i. We now claim that

(5.4)

∫ +∞

0

r2α+1Jβ,ε(r)dr ≤ K(α, β)

(
1 +

1

ε4α+2β−3

)
,

for any 0 ≤ β < 7
2 and any 0 ≤ α < 1. We postpone the proof of Claim (5.4),

and first complete the proof of Lemma 5.1. Combining identity (5.3) with (5.4), we
obtain

‖Ki,j
ε ‖2

Ḣα(R2)
≤ K

(
1 +

1

ε4α+2j−3
+

1

ε4α+3−2i

)
,

and the conclusion follows applying this inequality for the various choices of i and
j. �
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Proof of Claim (5.4). In order to estimate the integral in the left-hand side
of Claim (5.4), we first compute some bounds for the function Jβ,ε. When 0 ≤ r ≤ 1,
we have

(5.5) |Jβ,ε(r)| ≤
∫ +∞

0

u2β

1 + u8
du ≤ K(β),

since 0 ≤ β < 7
2 . On the other hand, when r > 1, we compute

|Jβ,ε(r)| ≤ K

(∫ 1

0

du

1 + r4
+

∫ 1

ε

1

u2β

(u4 + r2)2
du+

∫ +∞

1

ε

u2β−8

(1 + r2ε4)2
du

)
,

so that, since 0 ≤ β < 7
2 ,

(5.6) |Jβ,ε(r)| ≤ K(β)
( 1

r4
+ rβ− 7

2 + ε7−2β
)
,

when 1 ≤ r ≤ 1
ε2 . Similarly, when r ≥ 1

ε2 ,

(5.7) |Jβ,ε(r)| ≤ K(β)
( 1

r4
+

1

ε2β+1r4
+

ε7−2β

(1 + r2ε4)2

)
.

Estimates (5.5), (5.6) and (5.7) finally provide Claim (5.4), when 0 ≤ α < 1. �

Since inequalities (5.1) and (5.2) are also valid for α = 0, i.e. for the L2-norm,
we may remove the dots in inequalities (5.1) and (5.2). Notice in particular that
we have the bounds

(5.8) ‖K1,1
ε ‖Hα(R2) + ε‖K1,2

ε ‖Hα(R2) + ε2‖K2,2
ε ‖Hα(R2) ≤ K(α),

for any 0 ≤ α ≤ 1
4 .

5.2. Multiplier properties of the kernels. We now provide some multiplier
properties of the kernels Ki,j

ε . Our analysis relies on a theorem by Lizorkin [26] 1

, which we first recall for sake of completeness.

Theorem 5.1 ([26]). Let K̂ be a bounded function in C2(R2 \{0}), and assume
that

ξk1

1 ξk2

2 ∂k1

1 ∂k2

2 K̂(ξ) ∈ L∞(R2),

for any 0 ≤ k1, k2 ≤ 1 such that k1 + k2 ≤ 2. Then, K̂ is a multiplier from Lq(R2)
to Lq(R2) for any 1 < q < +∞. More precisely, given any 1 < q < +∞, there
exists a constant K(q), depending only on q, such that

(5.9) ‖K ⋆ f‖Lq(R2) ≤ K(q)M(K̂)‖f‖Lq(R2), ∀f ∈ Lq(R2),

where we denote

M(K̂) ≡ sup
{
|ξ1|k1 |ξ2|k2

∣∣∣∂k1

1 ∂k2

2 K̂(ξ)
∣∣∣, ξ ∈ R2, 0 ≤ k1 ≤ 1, 0 ≤ k2 ≤ 1, k1+k2 ≤ 2

}
.

Applying Theorem 5.1 to the kernels Ki,j
ε , we obtain

1Estimate (5.9) in Theorem 5.1 is more precisely a consequence of Lemma 6 and of the proof
of Theorem 8 in [26].
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Lemma 5.2. Let 1 < q < +∞. Given any integers 0 ≤ i, j ≤ 4 such that
2 ≤ i+ j ≤ 4, we denote

κi,j = max{i+ 2j − 4, 0},
Then, there exists some positive constant K(q), not depending on ε, such that

(5.10) ‖Ki,j
ε ⋆ f‖Lq(R2) ≤

K(q)

εκi,j
‖f‖Lq(R2),

for any function f ∈ Lq(R2) and any ε > 0.

Proof. Inequality (5.10) is a consequence of (5.9) once we have checked that

the functions K̂i,j
ε satisfy the assumptions of Theorem 5.1, and established the

dependence with respect to ε of the quantity M(K̂i,j
ε ).

First notice that the functions K̂i,j
ε , which are bounded on R2, and belong to

C2(R2 \ {0}), may be written as

K̂
i,j
ε (ξ) =

ξi
1ξ

j
2

Q(ξ)
,

where Q(ξ) ≡ |ξ|2 + ξ41 + ε2ξ21ξ
2
2 + ε4

4 ξ
4
2 . We therefore compute

ξ1∂1K̂
i,j
ε (ξ) = i

ξi
1ξ

j
2

Q(ξ)
− ξi

1ξ
j
2

Q(ξ)

ξ1∂1Q(ξ)

Q(ξ)
,

ξ2∂2K̂
i,j
ε (ξ) = j

ξi
1ξ

j
2

Q(ξ)
− ξi

1ξ
j
2

Q(ξ)

ξ2∂2Q(ξ)

Q(ξ)
,(5.11)

and

ξ1ξ2∂1∂2K̂
i,j
ε (ξ) =

ξi
1ξ

j
2

Q(ξ)

(
ij − (i+ j)

ξ1∂1Q(ξ) + ξ2∂2Q(ξ)

Q(ξ)

−ξ1ξ2∂1∂2Q(ξ)

Q(ξ)
+ 2

ξ1∂1Q(ξ)

Q(ξ)

ξ2∂2Q(ξ)

Q(ξ)

)
.(5.12)

On the other hand, we check that

εκi,j |ξ1|i|ξ2|j ≤ 4Q(ξ), |ξk||∂kQ(ξ)| ≤ 4Q(ξ), and |ξ1||ξ2||∂1∂2Q(ξ)| ≤ 4Q(ξ),

so that, by (5.11) and (5.12), there exists some universal constant K such that

εκi,jM
(
K̂

i,j
ε

)
≤ K.

Inequality (5.10) then follows from (5.9) applying Theorem 5.1. �

6. Sobolev bounds for Np and Θp

This section is devoted to the proof of the Sobolev estimates of Np, ∂1Θp and
∂2Θp stated in Proposition 3. As previously mentioned in Section 4, we focus on
Sobolev bounds on Np.

Proposition 6.1. Let α ∈ N2 and 1 < q < +∞. There exists some constant
K(q, α), depending possibly on α and q, but not on p, such that

‖∂αNp‖Lq(R2) + ‖∂1∂
αNp‖Lq(R2) + ‖∂2∂

αNp‖Lq(R2)

+‖∂2
1∂

αNp‖Lq(R2) + εp‖∂1∂2∂
αNp‖Lq(R2) + ε2p‖∂2

2∂
αNp‖Lq(R2) ≤ K(q, α),

(6.1)

for any p sufficiently small.
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Remark 6.1. The proof of Proposition 6.1 is by induction on the derivation
order α. The inductive assumption is given by (6.1). This explains the redundant
form of this inequality.

Proposition 3 is a direct consequence of Proposition 6.1 invoking rescaled in-
equalities (4.25) and (4.26) to bound the functions ∂1Θp and ∂2Θp.

Proof of Proposition 3 (assuming Proposition 6.1). In view of (6.1),
given any k ∈ N and any 1 < q < +∞, there exists some positive constant K(k, q),
not depending on p, such that

(6.2) ‖Np‖W k,q(R2) ≤ K(k, q),

for any p sufficiently small. In particular, by Sobolev embedding theorem,

(6.3) ‖Np‖Ck(R2) ≤ K(k).

Using (6.2) and (6.3), inequality (4.26) becomes

(6.4) Ξp(q, α) ≤ K(q, α)

(
1 + ε2p

∑

0≤β<α

Ξp(q, α− β)

)
,

where we have set as in Lemma 4.6,

Ξp(q, α) ≡ ‖∂α∂1Θp‖Lq(R2) + εp‖∂α∂2Θp‖Lq(R2).

By (4.25) and (6.2), the quantity Ξp(q, (0, 0)) is bounded independently on p, so that
it follows by induction from formula (6.4) that Ξp(q, α) is bounded independently
on p for any 1 < q < +∞ and any α ∈ N2. Inequality (11) follows invoking Sobolev
embedding theorem for q = +∞. This completes the proof of Proposition 3. �

The remainder of this section is devoted to the proof of Proposition 6.1. As
previously mentioned in Subsection 4.4, the proof relies on decomposition (4.33).
Recall that it is proved in [16] that the functions η and ϕ, and therefore Np and
Θp, belong to W k,q(R2) for any k ∈ N and any 1 < q ≤ +∞. Hence, we can
differentiate (4.33) to any order α ∈ N2 to obtain

(6.5) ∂αNp = K2,0
εp

⋆ ∂αfp + ε2p

∑

i+j=2

Ki,j
εp
⋆ ∂αRi,j

εp
.

Taking the Lq-norm of this expression and invoking the regularizing properties of
the kernels provided by Lemma 5.2, we are led to

(6.6) ‖∂αNp‖Lq(R2) ≤ K(q)
(
‖∂αfp‖Lq(R2) + ε2p

∑

i+j=2

‖∂αRi,j
εp
‖Lq(R2)

)
.

In view of definitions (4.16), (4.17), (4.18) and (4.34), the derivatives ∂αfp and
∂αRi,j

εp
in the right-hand side of (6.6) are nonlinear functions of the derivatives of

Np and Θp, so that we may estimate their Lq-norms using Sobolev bounds on Np

and Θp.
This provides an iterative scheme to estimate the Sobolev norms of Np. Us-

ing the available information on the nonlinear source terms fp and Ri,j
εp

, which is
initially reduced to Lemma 4.5, we improve the regularity and integrability prop-
erties of Np using inequality (6.6). This in turn provides improved bounds of the
nonlinear terms fp and Ri,j

εp
.

As a consequence, we prove (6.1) by induction on the derivation order α. We
first compute Lq-estimates of the nonlinear terms fp and Ri,j

εp
, and of convolution
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equation (4.33). In particular, this requires to bound some derivatives of the phase
Θp, which is made possible invoking Lemma 4.6. Using the initial bounds given by
Lemma 4.5, we conclude that inequality (6.1) holds for α = (0, 0). We then turn
to higher order estimates. Assuming that (6.1) holds for any index α such that
|α| ≤ k, we derive Lq-estimates of the derivatives of order k + 1 of the functions
fp and Ri,j

εp
. In view of (6.6), this provides bounds for the derivatives of order

k+ 1 of Np, so that we can prove that (6.1) is also valid for any index α such that
|α| = k + 1. This completes the sketch of the proof of Proposition 6.1, which is
detailed below.

6.1. Lq-estimates of nonlinear terms. We first compute Lq-estimates on
the nonlinear terms fp, R

i,j
εp

and νi,j
εp

.

Lemma 6.1. Let 1 ≤ q < +∞. There exists some universal constant K such
that

‖fp‖Lq(R2) + ‖R0,2
εp

‖Lq(R2) + εp‖R1,1
εp

‖Lq(R2) ≤ K‖Np‖2
L2q(R2),(6.7)

‖R2,0
εp

‖Lq(R2) ≤ K
(
ε−2

p ‖Np‖2
L2q(R2) + ‖Np‖3

L3q(R2) + ‖∂1Np‖2
L2q(R2)

)
,(6.8)

‖ν2,0
εp

‖Lq(R2) ≤ K
(
ε−2

p ‖Np‖3
L3q(R2) + ‖∂2Np‖2

L2q(R2)

)
,(6.9)

and
(6.10)

‖ν0,2
εp

‖Lq(R2) ≤ K
(
ε−2

p ‖Np‖2
L2q(R2)+‖Np‖3

L3q(R2)+‖∂1Np‖2
L2q(R2)+ε

2
p‖∂2Np‖2

L2q(R2)

)
.

Proof. Bounds (6.7), (6.8), (6.9) and (6.10) are consequences of inequalities
(4.19), (4.20) and (4.21) using Hölder inequalities. For the quantities involving the
functions ∂1Θp and ∂2Θp, we also use (4.25) to compute

‖(∂1Θp)
2‖Lq(R2) + εp‖Np∂2Θp‖Lq(R2) + ε2p‖(∂2Θp)

2‖Lq(R2) ≤ K(q)‖Np‖2
L2q(R2),

whereas

‖Np(∂1Θp)
2‖Lq(R2) + ε2p‖Np(∂2Θp)

2‖Lq(R2)

≤ K(q)‖Np‖L3q(R2)

(
‖∂1Θp‖2

L3q(R2) + ε2p‖∂2Θp‖2
L3q(R2)

)
≤ K(q)‖Np‖3

L3q(R2).

�

6.2. Lq-estimates of the convolution equation. We now compute Lq-
estimates of equation (4.33) invoking the multiplier properties of the kernels Ki,j

ε

given by Lemma 5.2, and the previous Lq-estimates on the nonlinear terms fp, R
i,j
εp

and νi,j
εp

. This provides

Lemma 6.2. Let 1 < q < +∞. There exists some constant K(q), depending
only on q, such that

‖Np‖Lq(R2) + ‖∂1Np‖Lq(R2) + ‖∂2Np‖Lq(R2)

+‖∂2
1Np‖Lq(R2) + εp‖∂1∂2Np‖Lq(R2) + ε2p‖∂2

2Np‖Lq(R2)

≤ K(q)
(
‖Np‖2

L2q(R2) + ε2p‖Np‖3
L3q(R2) + ε2p‖∂1Np‖2

L2q(R2) + ε4p‖∂2Np‖2
L2q(R2)

)
,

(6.11)

for any p sufficiently small.
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Proof. Given any α = (α1, α2) such that 0 ≤ α1 + α2 ≤ 2, we estimate the
Lq-norm of ∂αNp using equations (4.33), so that

‖∂αNp‖Lq(R2) ≤‖∂αK2,0
εp

⋆ fp‖Lq(R2) + ε2p

∑

i+j=2

‖∂αKi,j
εp
⋆ Ri,j

εp
‖Lq(R2)

+ε4p‖∂αK2,0
εp

⋆ ν2,0
εp

‖Lq(R2) + ε4p‖∂αK0,2
εp

⋆ ν0,2
εp

‖Lq(R2).

Since by (4.32),

∂αKj,k
εp

= iα1+α2Kj+α1,k+α2

εp
,

the multiplier properties of Lemma 5.2 provide

‖Np‖Lq(R2) ≤ K(q)
(
‖fp‖Lq(R2) + ε2p

∑

i+j=2

‖Ri,j
εp
‖Lq(R2)

+ε4p‖ν2,0
εp

‖Lq(R2) + ε4p‖ν0,2
εp

‖Lq(R2)

)
,

‖∂1Np‖Lq(R2) ≤ K(q)
(
‖fp‖Lq(R2) + ε2p‖R2,0

εp
‖Lq(R2) + ε2p‖R1,1

εp
‖Lq(R2)

+εp‖R0,2
εp

‖Lq(R2) + ε4p‖ν2,0
εp

‖Lq(R2) + ε3p‖ν0,2
εp

‖Lq(R2)

)
,

and

‖∂2Np‖Lq(R2) + ‖∂2
1Np‖Lq(R2) + εp‖∂1∂2Np‖Lq(R2) + ε2p‖∂2

2Np‖Lq(R2) ≤

K(q)

(
‖fp‖Lq(R2) + ε2p‖R2,0

εp
‖Lq(R2) + εp‖R1,1

εp
‖Lq(R2)

+‖R0,2
εp

‖Lq(R2) + ε4p‖ν2,0
εp

‖Lq(R2) + ε2p‖ν0,2
εp

‖Lq(R2)

)
,

Estimate (6.11) follows invoking nonlinear bounds (6.7), (6.8), (6.9) and (6.10). �

6.3. Initial bounds on Np and its first order derivatives. In view of
(6.11), some preliminary Lq-bounds on Np, ∂1Np and ∂2Np are required to in-
ductively estimate the Lq-norms of these functions. These preliminary bounds are
consequences of the uniform estimates given by (3.3), and the L2-bounds provided
by (4.7), (4.8) and (4.10).

Lemma 6.3. Let 2 ≤ q ≤ 8
3 . There exists some constant K(q), depending only

on q, such that

(6.12) ‖Np‖Lq(R2) ≤ K(q),

for any p sufficiently small. Moreover, given any 8
3 < q < 8, we have

(6.13) ε
2

3

p ‖Np‖Lq(R2) ≤ K(q),

whereas, given any 2 ≤ q ≤ +∞,

(6.14) ‖∂1Np‖Lq(R2) + εp‖∂2Np‖Lq(R2) ≤ K(q)ε
6

q
−3

p .

Proof. For estimate (6.14), we have in view of (3.3),

‖∂1Np‖L∞(R2) ≤
K

ε3p
, and ‖∂2Np‖L∞(R2) ≤

K

ε4p
,

so that (6.14) is a consequence of (4.8) and (4.10) using standard interpolation
between Lq-spaces.
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The proofs of (6.12) and (6.13) are more involved. The first step is to compute
Hα-estimates ofNp combining equation (4.33) withHα-bounds (5.8) on the kernels.

Step 1. Let 0 ≤ α ≤ 1
4 . There exists some constant K(α) such that

(6.15) ‖Np‖Hα(R2) ≤ K(α),

for any p sufficiently small. In particular, there exists some constant K(q) such
that (6.12) holds.

Applying Young inequality to decomposition (4.33), we have

‖Np‖Hα(R2) ≤ ‖K2,0
εp

‖Hα(R2)

(
‖fp‖L1(R2) + ε2p‖R2,0

εp
‖L1(R2) + ε4p‖ν2,0

εp
‖L1(R2)

)

+ε2p‖K1,1
εp

‖Hα(R2)‖R1,1
εp

‖L1(R2) + ε2p‖K0,2
εp

‖Hα(R2)

(
‖R0,2

εp
‖L1(R2) + ε2p‖ν0,2

εp
‖L1(R2)

)
.

Combining (5.8) with (4.7), (4.22) and (4.23), we derive (6.15), whereas (6.12) is a
consequence of Sobolev embedding theorem,

Hα(R2) →֒ Lq(R2),

for any 2 ≤ q ≤ 2
1−α

.
The second step is to compute uniform bounds on Np using Sobolev embedding

theorem.

Step 2. Let ν > 0. There exists some constant K(ν) such that

(6.16) ‖Np‖L∞(R2) ≤ K(ν)
(
1 + ε−1−ν

p

)
,

for any p sufficiently small.

In view of (6.12) and (6.14), there exists some number q > 2 such that

‖Np‖W 1,q(R2) ≤ K(ν)
(
1 + ε−1−ν

p

)
.

Estimate (6.16) follows by Sobolev embedding theorem.
Combining with (6.12), and invoking standard interpolation between Lq-spaces,

estimate (6.16) yields (6.13). �

6.4. Proof of inductive assumption (6.1) for α = (0, 0). We now rely on
Lemma 6.2 to improve the preliminary estimates of Lemma 6.3. This gives

Lemma 6.4. Let 1 < q < +∞. Then, assumption (6.1) holds for α = (0, 0),
i.e. there exists some constant K(q), not depending on p, such that

‖Np‖Lq(R2) + ‖∂1Np‖Lq(R2) + ‖∂2Np‖Lq(R2)

+‖∂2
1Np‖Lq(R2) + εp‖∂1∂2Np‖Lq(R2) + ε2p‖∂2

2Np‖Lq(R2) ≤ K(q),
(6.17)

for any p sufficiently small.

Proof. The proof relies on some bootstrap argument. Given any 1 < q ≤ 4
3 ,

we deduce from (6.11), (6.12), (6.13) and (6.14),that

‖Np‖Lq(R2) + ‖∂1Np‖Lq(R2) + ‖∂2Np‖Lq(R2)

+‖∂2
1Np‖Lq(R2) + εp‖∂1∂2Np‖Lq(R2) + ε2p‖∂2

2Np‖Lq(R2) ≤ K(q),

so that by Sobolev embedding theorem,

‖Np‖Lq(R2) + εp‖∂1Np‖Lq(R2) + ε2p‖∂2Np‖Lq(R2) ≤ K(q),
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for any 1 < q ≤ 4. Invoking (6.11) and (6.13) once more time, we are led to

‖Np‖Lq(R2) + ‖∂1Np‖Lq(R2) + ‖∂2Np‖Lq(R2)

+‖∂2
1Np‖Lq(R2) + εp‖∂1∂2Np‖Lq(R2) + ε2p‖∂2

2Np‖Lq(R2) ≤ K(q),

for any 1 < q ≤ 2. In particular, we have by Sobolev embedding theorem,

‖Np‖Lq(R2) + εp‖∂1Np‖Lq(R2) + ε2p‖∂2Np‖Lq(R2) ≤ K(q),

for any 1 < q < +∞, so that (6.11) now yields (6.17) for any 1 < q < +∞. This
completes the proof of Lemma 6.4. �

6.5. Higher order estimates of the nonlinear terms fp and Ri,j
εp

. We

now assume that assumption (6.1) holds for any 1 < q < +∞ and any α ∈ N2 such
that |α| ≤ k, and prove that it remains valid when |α| = k + 1. Invoking again
equation (4.33), we first derive improved Sobolev bounds on the nonlinear terms
fp and Ri,j

εp
. In view of definitions (4.16), (4.17), (4.18) and (4.34), this requires to

compute Lq-bounds on the derivatives of Θp. Hence, we show

Lemma 6.5. Let k ∈ N, and assume that (6.1) holds for any 1 < q < +∞ and
any α ∈ N2 such that |α| ≤ k. Then, there exist some positive constants K(q, α),
not depending on p, such that

(6.18) ‖∂α∂1Θp‖Lq(R2) + εp‖∂α∂2Θp‖Lq(R2) ≤ K(q, α),

for any 1 < q < +∞, any α ∈ N2 such that |α| ≤ k + 1, and any p sufficiently
small.

Proof. Inequality (6.18) is a consequence of (4.26). Applying Sobolev em-
bedding theorem to assumption (6.1), we have

‖Np‖Ck(R2) ≤ K(k),

where K(k) is some positive constant, not depending on p. Therefore, given any
α ∈ N2 such that |α| ≤ k + 1, (4.26) may be written as

‖∂α∂1Θp‖Lq(R2) + εp‖∂α∂2Θp‖Lq(R2)

≤ K(q, α)

(
‖∂αNp‖Lq(R2) + ε2p

∑

0≤β<α

(
‖∂α−β∂1Θp‖Lq(R2) + εp‖∂α−β∂2Θp‖Lq(R2)

))
.

Denoting

S
q
k =

∑

|α|≤k+1

(
‖∂α∂1Θp‖Lq(R2) + εp‖∂α∂2Θp‖Lq(R2)

)
,

we deduce that

S
q
k ≤ K(q, α)

(
ε2pS

q
k +

∑

|α|≤k+1

‖∂αNp‖Lq(R2)

)
.

Combined with assumption (6.1), this provides (6.18) for any p sufficiently small.
�

We now turn to Lq-estimates of the functions fp and Ri,j
εp

.
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Lemma 6.6. Let k ∈ N, and assume that (6.1) holds for any 1 < q < +∞ and
any α ∈ N2 such that |α| ≤ k. Then, there exist some positive constants K(q, α),
not depending on p, such that
(6.19)
‖∂αfp‖Lq(R2) + ‖∂αR0,2

εp
‖Lq(R2) + εp‖∂αR1,1

εp
‖Lq(R2) + ε2p‖∂αR2,0

εp
‖Lq(R2) ≤ K(q, α),

for any 1 < q < +∞, any α ∈ N2 such that |α| ≤ k + 1, and any p sufficiently
small.

Proof. Lemma 6.6 is a consequence of assumption (6.1), and Lemma 6.5. For
instance, applying Leibniz formula to definition (4.34), we have

∣∣∂αfp

∣∣ ≤ K(α)
∑

0≤β≤α

(∣∣∂βNp

∣∣∣∣∂α−βNp

∣∣+
∣∣∂β∂1Θp

∣∣∣∣∂α−β∂1Θp

∣∣
)
,

so that, by (6.1), (6.18), and Hölder inequality,

‖∂αfp‖Lq(R2) ≤ K(q, α).

The proof is identical for the function R1,1
εp

, which verifies, in view of (4.18) and
Leibniz formula,

∣∣∂αR1,1
εp

∣∣ ≤ K(α)
∑

0≤β≤α

∣∣∂βNp

∣∣∣∣∂α−β∂2Θp

∣∣.

Similarly, for ∂αR2,0
εp

and ∂αR0,2
εp

, it follows from (6.1), (6.18) and Leibniz formula,
that

‖∂αR0,2
εp

‖Lq(R2) + ε2p‖∂αR2,0
εp

‖Lq(R2)

≤ K(q, α)

(
1 + ε2p

∥∥∥∂α
( (∂1Np)

2

1 − ε2
p

6 Np

)∥∥∥
Lq(R2)

+ ε4p

∥∥∥∂α
( (∂2Np)

2

1 − ε2
p

6 Np

)∥∥∥
Lq(R2)

)
,

(6.20)

so that the proof of (6.19) reduces to estimate the Lq-norms in the left-hand side
of (6.20). In view of (6.1), we deduce from Sobolev embedding theorem that

(6.21) ‖∂βNp‖L∞(R2) ≤ K(β),

for any β ∈ R2 such that β ≤ k and any p sufficiently small. When |α| ≤ k, the
chain rule theorem combined with (6.1) and (6.21) again provides estimates (6.19).
When |α| = k + 1, this argument yields

ε2p

∥∥∥∥∂α
( (∂1Np)

2

1 − ε2
p

6 Np

)∥∥∥∥
Lq(R2)

≤ K(q, α)
(
1 + ε2p

∥∥∂α∂1Np

∥∥
Lq(R2)

)
≤ K(q, α),

and

ε4p

∥∥∥∥∂α
( (∂2Np)

2

1 − ε2
p

6 Np

)∥∥∥∥
Lq(R2)

≤ K(q, α)
(
1 + ε4p

∥∥∂α∂2Np

∥∥
Lq(R2)

)
≤ K(q, α),

where we have used the estimates in the second line of (6.1) for the second inequal-
ities. Combined with (6.20), this completes the proof of inequality (6.19). �
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6.6. Proof of Proposition 6.1. We are now in position to conclude the
inductive proof of Proposition 6.1.

Proof of Proposition 6.1. Given any k ∈ N, we assume that (6.1) holds
for any 1 < q < +∞ and any α ∈ N2 such that |α| ≤ k, and consider some index
γ ∈ N2 such that |γ| = k + 1. Invoking equation (6.5) and the kernel estimates of
Lemma 5.2, we compute

‖∂γ∂1Np‖Lq(R2) ≤ K(q)
(
‖∂γfp‖Lq(R2) + ε2p

(
‖∂γR2,0

εp
‖Lq(R2)

+‖∂γR1,1
εp

‖Lq(R2)

)
+ εp‖∂γR0,2

εp
‖Lq(R2)

)
,(6.22)

and

‖∂γ∂2Np‖Lq(R2) + ‖∂γ∂2
1Np‖Lq(R2) + εp‖∂γ∂1∂2Np‖Lq(R2) + ε2p‖∂γ∂2

2Np‖Lq(R2)

≤K(q)
(
‖∂γfp‖Lq(R2) + ε2p‖∂γR2,0

εp
‖Lq(R2) + εp‖∂γR1,1

εp
‖Lq(R2)

)
+ ‖∂γR0,2

εp
‖Lq(R2)

)
.

(6.23)

In view of inequalities (6.6), (6.22) and (6.23), and estimates (6.19), assumption
(6.1) also holds for α = γ. This completes the inductive proof of Proposition
6.1. �

7. Convergence towards (KP I)

This section is devoted to the proofs of Theorem 2 and Proposition 2. As
mentioned above in the introduction, our strategy is to prove that the sequence
(∂1Θp)p>0 is, for p sufficiently small, a minimizing sequence for minimization prob-
lem (PKP (µ)) We then invoke Proposition 2.1 to obtain the strong convergence of
some subsequence towards a function N0, which is a solution to minimization prob-
lem (PKP (µ)), i.e. a ground state for (KP I). Finally, we improve the convergence
using the previous Sobolev estimates.

7.1. Weak convergence towards (KP I). We first use the Sobolev bounds
provided by Proposition 3 to establish the weak convergence of some subsequence
(Npn

)n∈N to some non-constant solution N0 to (SW), as pn → 0.

Proposition 7.1. There exists a subsequence (pn)n∈N, tending to 0 as n →
+∞, and a non-constant solution N0 to (SW) such that, given any 1 < q < +∞,

(7.1) Npn
⇀ N0 in W 1,q(R2), as n→ +∞.

In particular, given any 0 ≤ γ < 1, we have

(7.2) Npn
→ N0 in C0,γ(K), as n→ +∞,

for any compact subset K of R2.

Proof. In view of bounds (11), there exists a subsequence (pn)n∈N, tending
to 0 as n → +∞, and a function N0 such that (7.1) holds for any 1 < q <

+∞. Convergences (7.2) follow by standard compactness theorems. The proof of
Proposition 7.1 therefore reduces to prove Lemma 2, i.e. to establish that N0 is a
non-constant solution to (SW). �
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Proof of Lemma 2. Denoting

N0
p =

1

2
K2,0

εp
⋆ fp,

we deduce from (4.33) and Lemma 5.1 that

‖Np −N0
p‖L2(R2) ≤ ε2p

∑

i+j=2

‖Ki,j
εp
⋆Ri,j

εp
‖L2(R2)

≤ ε2p‖R2,0
εp

‖L1(R2) + ε
3

2

p ‖R1,1
εp

‖L1(R2) + ε
1

2

p ‖R0,2
εp

‖L1(R2).

In view of estimates (6.7), (6.8), (6.9) and (6.10), and Lq-bounds (11), we obtain

‖Np −N0
p‖L2(R2) ≤ Kε

1

2

p ,

so that

(7.3) Np −N0
p → 0 in L2(R2), as p → 0.

We now claim that, up to some subsequence (pn)n∈N satisfying (7.2),

(7.4) N0
pn
⇀

1

2
K0 ⋆ N

2
0 in L2(R2), as n→ +∞.

Invoking the weak L2-convergence provided by (7.1), we deduce from (7.3) and
(7.4) that the function N0 satisfies

N0 =
1

2
K0 ⋆ N

2
0 ,

so that, in view of (2.3), the function N0 is solution to (SW).
Finally, in view of (8) and convergences (7.2), we have

N0(0) ≥ 3

5
,

so that N0 cannot be a constant solution to (SW). This ends the proof of Lemma
2. �

We now show Claim (7.4).

Proof of Claim (7.4). Claim (7.4) follows from (7.2) after the following sim-
plification.

Step 1. We have

N0
p − 1

2
K0 ⋆ N

2
p → 0 in L2(R2), as p → 0.

In view of (4.34), we have

N0
p − 1

2
K0 ⋆ N

2
p =

(
K2,0

εp
−K0

)
⋆
(1

3
N2

p +
1

6
(∂1Θp)

2
)

+
1

6
K0 ⋆

(
(∂1Θp)

2 −N2
p

)
,

so that, by Young inequality, and estimates (11),
(7.5)∥∥∥N0

p − 1

2
K0 ⋆N

2
p

∥∥∥
L2(R2)

≤ K
(
‖K2,0

εp
−K0‖L2(R2) + ‖K0‖L2(R2)‖∂1Θp −Np‖L2(R2)

)
.

In view of definitions (2.4) and (4.32), we have

̂
K

2,0
εp

(ξ) → K̂0(ξ), as p → 0,
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and

0 ≤ ̂
K

2,0
εp

(ξ) ≤ K̂0(ξ),

for any εp ≥ 0 and any ξ 6= 0. Since K0 belongs to L2(R2) by Lemma 5.1, it follows
from the dominated convergence theorem that∫

R2

∣∣∣̂K2,0
εp

(ξ) − K̂0(ξ)
∣∣∣
2

dξ → 0, as εp → 0.

Hence, by Plancherel formula, the first term in the right-hand side of (7.5) tends
to 0, as p → 0, whereas the second term also tends to 0 by (4.12). This completes
the proof of Step 1.

Invoking Step 1, the proof of Claim (7.4) reduces to

Step 2. Given some subsequence (pn)n∈N such that (7.2) holds, we have

K0 ⋆ N
2
pn
⇀K0 ⋆ N

2
0 in L2(R2), as n→ +∞.

First notice that, in view of (11), there exists some constant K, not depending
on n, such that

‖K0 ⋆
(
N2

pn
−N2

0

)
‖L2(R2) ≤ ‖K0‖L2(R2)‖N2

pn
−N2

0 ‖L1(R2) ≤ K,

so that by density of C∞
c (R2) into L2(R2), the proof of Step 2 reduces to prove that

(7.6)

∫

R2

(
K0 ⋆

(
N2

pn
−N2

0

))
ψ → 0, as n→ +∞,

for any function ψ ∈ C∞
c (R2). Moreover, given any δ > 0, the density of C∞

c (R2)
into L2(R2) also implies the existence of a function κδ ∈ C∞

c (R2) such that

‖K0 − κδ‖L2(R2) ≤ δ.

Given any function ψ ∈ C∞
c (R2), this gives by Young inequality,

∣∣∣∣
∫

R2

(
K0⋆

(
N2

pn
−N2

0

))
ψ

∣∣∣∣ ≤
∣∣∣∣
∫

R2

(
κδ⋆
(
N2

pn
−N2

0

))
ψ

∣∣∣∣+δ‖N2
pn
−N2

0‖L1(R2)‖ψ‖L2(R2),

which may be written as∣∣∣∣
∫

R2

(
K0 ⋆

(
N2

pn
−N2

0

))
ψ

∣∣∣∣ ≤
∣∣∣∣
∫

R2

(
κ̌δ ⋆ ψ

)(
N2

pn
−N2

0

)∣∣∣∣+Kδ,

denoting κ̌δ(x) = κδ(−x), and invoking (11) and Fubini theorem. Since the function
κ̌δ ⋆ ψ belongs to C∞

c (R2), we deduce from (7.2) that
∫

R2

(
κ̌δ ⋆ ψ

)(
N2

pn
−N2

0

)
→ 0, as n→ +∞,

so that (7.6) holds. This completes the proof of Step 2 and of Claim (7.4). �

7.2. Convergence of the energies. In order to apply Proposition 2.1 to the
family (∂1Θp)p>0 to deduce its strong convergence in the space Y (R2), we first
prove

Proposition 7.2. Let (pn)n≥0 denote some subsequence, tending to 0 as n
tends to +∞, such that (7.1) and (7.2) hold. Then, up to some further subsequence,
there exists a positive number µ0 such that

(7.7) EKP (∂1Θpn
) → EKP

min (µ0), and

∫

R2

|∂1Θpn
|2 → µ0, as n→ +∞.
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Proposition 7.2 is a consequence of Lemmas 3 and 4, so that we first address
the proof of Lemma 3.

Proof of Lemma 3. In view of formulae (4.2) and (4.3), the discrepancy

quantity Σ(up) =
√

2p(up) − E(up) may be recast in the slow space variables as

Σ(up) = −
√

2
εp

144

(∫

R2

(
Np − ∂1Θp

)2
+ ε2p

∫

R2

(1

2
(∂1Np)

2 +
1

2
(∂2Θp)

2

−1

6
Np(∂1Θp)

2
)

+ ε4p

∫

R2

(
(∂2Np)

2

4 − 4ε2
p

6 Np

+
Np(∂1Np)

2

12 − 2ε2pNp

− 1

12
Np(∂2Θp)

2

))
.

Hence, we deduce from Proposition 3 and estimate (4.8) for the function ∂2Θp that

Σ(up) = −
√

2
εp

144

(∫

R2

(
Np − ∂1Θp

)2
+ ε2p

∫

R2

(1

2
(∂1Np)

2

+
1

2
(∂2Θp)

2 − 1

6
Np(∂1Θp)

2
)

+ o
p→0

(
ε2p
))
.(7.8)

Let us now recall that the value of EKP (∂1Θp) is given by

EKP (∂1Θp) =

∫

R2

(1

2
(∂2

1Θp)
2 +

1

2
(∂2Θp)

2 − 1

6
(∂1Θp)

3
)
.

In particular, provided we may prove that

(7.9) ∂1Np → ∂2
1Θp, as p → 0,

we have, in view of (11) and (4.12),

(7.10)

∫

R2

(1

2
(∂1Np)

2 +
1

2
(∂2Θp)

2 − 1

6
Np(∂1Θp)

2
)
− EKP (∂1Θp) → 0, as p → 0.

Hence, by (7.8),

(7.11) Σ(up) = −
√

2
εp

144

(∫

R2

(
Np − ∂1Θp

)2
+ ε2pEKP (∂1Θp) + o

p→0

(
ε2p
))
.

We then claim that

(7.12)
1

ε2p

∫

R2

(
Np − ∂1Θp

)2 → 0, as p → 0,

which gives (16) using (7.11).
In order to complete the proof of Lemma 3, it only remains to prove Claims (7.9)

and (7.12). For Claim (7.9), we invoke equation (4.14) and the Sobolev estimates
of Proposition 3. Taking the L2-norm of (4.14), we deduce from (11) that

‖∂1Np − ∂2
1Θp‖L2(R2) ≤ Kεp,

where K is some universal constant. Claim (7.9) follows taking the limit p → 0.
Similarly, for Claim 7.12, we take the L2-norm of equation (4.13), and obtain by
(11),

‖Np − ∂1Θp‖L2(R2) ≤ Kε2p,

so that
1

ε2p

∫

R2

(
Np − ∂1Θp

)2 ≤ Kε2p → 0, as p → 0.

This concludes the proof of Lemma 3. �
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Remark 7.1. Equivalence (15) is a consequence of inequality (7.10), since it
will be proved in the sequel that the quantity EKP (∂1Θp) has a nonzero limit as
p → 0.

We now turn to the proof of Lemma 4.

Proof of Lemma 4. Lemma 4 is a consequence of estimate (3) of Theorem
1. Combining (3) with (10) and (16), we obtain

EKP (∂1Θp) ≤ −6912p3

S2
KP ε

3
p

+ o
p→0

(
1
)
,

so that by formula (4.2),

EKP (∂1Θp) ≤ − 1

54S2
KP

(∫

R2

Np∂1Θp

)3

+ o
p→0

(
1
)
.

In view of (4.12), we have

EKP (∂1Θp) ≤ − 1

54S2
KP

(∫

R2

(∂1Θp)
2

)3

+ o
p→0

(
1
)
.

On the other hand, it follows from Lemma 2.1 that

EKP (∂1Θp) ≥ EKP
min

(∫

R2

(∂1Θp)
2

)
= − 1

54S2
KP

(∫

R2

(∂1Θp)
2

)3

,

which completes the proof of Lemma 4. �

We finally deduce Proposition 7.2 from Lemma 4.

Proof of Proposition 7.2. In view of (4.12) and (7.1), we have

lim inf
n→+∞

∫

R2

(
∂1Θpn

)2 ≥
∫

R2

N2
0 ,

so that we may assume up to some further subsequence, that

(7.13)

∫

R2

(
∂1Θpn

)2 → µ0, as n→ +∞,

where

µ0 ≥
∫

R2

N2
0 > 0.

Assertion (7.7) is then a consequence of (17), (7.13), and formula (2.7) of EKP
min . �

7.3. Strong convergence towards (KP I). We now show Proposition 4. i.e.
the strong convergence of the family (Np)p>0 in L2(R2) (up to some subsequence).

Proof of Proposition 4. In view of Proposition 7.2, we may construct a
subsequence (pn)n∈N, tending to 0 as n→ +∞, and some positive number µ0 such
that

EKP (∂1Θpn
) → EKP

min (µ0), and

∫

R2

|∂1Θpn
|2 → µ0, as n→ +∞.

By Proposition 2.1, up to some further subsequence, there exists some points

(an)n∈N and a ground state solution N0 to (2.5), with σ =
µ2

0

(µ∗)2 , such that

∂1Θpn
(· − an) → N0 in Y (R2), as n→ +∞.
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By (4.12), we are led to

(7.14) Npn
(· − an) → N0 in L2(R2), as n→ +∞.

Invoking Proposition 7.1 for the subsequence (Npn
(· − an))n∈N, there exists a non-

constant solution Ñ0 to (SW) such that weak convergences (7.1) hold, up to some

further subsequence. In particular, by (7.14), N0 = Ñ0, so that N0 is a ground
state of speed 1 of (KP I).

In order to complete the proof of Proposition 4, it is now necessary to drop the
invariance by translation, i.e. to prove that convergences in Y (R2) and in L2(R2),
also hold for the sequences (∂1Θpn

)n∈N, respectively (Npn
)n∈N. Assuming first that,

up to some further subsequence, there exists some number a such that

an → a, as n→ +∞,

we obtain that

∂1Θpn
→ N0(· + a) in Y (R2), and Npn

→ N0(· + a) in L2(R2), as n→ +∞,

using the continuity of the map a 7→ ψ(· − a) from R to any space Lq(R2) (with
1 < q < +∞). Since the function x 7→ N0(x + a) is still a ground state of speed 1
of (KP I), this completes the proof of Proposition 4.

Hence, it remains to prove that the sequence (an)n∈N contains some bounded
subsequence. Assuming by contradiction that this is false, we may construct some
subsequence, still denoted (an)n∈N, such that

(7.15) an → +∞, as n→ +∞.

In view of (8) and (11), there exists some positive number δ, not depending on n,
such that ∫

B(0,1)

N2
pn

≥ 2δ,

for any n sufficiently large. By (7.14), we also have
∫

B(0,1)

|N0(x+ an) −Npn
(x)|2dx→ 0, as n→ +∞,

so that ∫

B(0,1)

|N0(x+ an)|2dx ≥ δ,

for any n sufficiently large. However, it is proved in [18] that there exists some
positive constant K such that

N0(x) ≤
K

1 + |x|2 , ∀x ∈ R2,

so that
10K

1 + |an|2
≥ δ,

for any n sufficiently large. This provides a contradiction to (7.15) and completes
the proof of Proposition 4. �
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7.4. Proofs of Theorem 2 and Proposition 2. We finally conclude the
proofs of our main theorems.

Proof of Theorem 2. In view of Propositions 3 and 4, given any k ∈ N and
any 1 < q < +∞, the family (Np)p>0 is bounded, uniformly with respect to p small,
in W k,q(R2), and converges, up to some subsequence, to some ground state N0 of
(KP I) in the space L2(R2), as p → 0. Hence, by standard interpolation theorem, it
actually converges to N0 in W k,q(R2). This concludes the proof of Theorem 2. �

Proof of Proposition 2. The proof is identical to the proof of Theorem 2,
considering the function ∂1Θp instead of Np, and noticing that Y (R2) continuously
embeds into L2(R2). �
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