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Abstract. The paper is a comprehensive study of the existence, uniqueness,
blow up and regularity properties of solutions of the Burgers equation with
fractional dissipation. We prove existence of the finite time blow up for the
power of Laplacian α < 1/2, and global existence as well as analyticity of
solution for α ≥ 1/2. We also prove the existence of solutions with very rough
initial data u0 ∈ Lp, 1 < p < ∞. Many of the results can be extended to a more
general class of equations, including the surface quasi-geostrophic equation.

Contents

1. Introduction 211
2. Local existence, uniqueness and regularity 214
3. Global existence and analyticity for the critical case α = 1/2 220
4. Blow-up for the supercritical case. 225
5. Global existence and regularity for rough initial data for the case

α = 1/2 233
6. The critical Sobolev space 237
References 239

1. Introduction

The purpose of this paper is to present several results on Burgers equation with
fractional dissipation

(1) ut = uux − (−∆)αu, u(x, 0) = u0(x).

We will consider (1) on the circle S
1. Equivalently, one can consider (1) on the real

line with periodic initial data u0(x).
The Burgers equation with α = 0 and α = 1 has received an extensive amount

of attention since the studies by Burgers in the 1940s (and it has been considered
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even earlier by Beteman [3] and Forsyth [12], pp 97–102). If α = 0, the equation
is perhaps the most basic example of a PDE evolution leading to shocks; if α = 1,
it provides an accessible model for studying the interaction between nonlinear and
dissipative phenomena.

The Burgers equation can also be viewed as the simplest in the family of partial
differential equations modeling the Euler and Navier-Stokes equation nonlinearity.
Recently, there has been increased interest in models involving fractional dissipa-
tion, in particular Navier-Stokes (see [13]) and surface quasi-geostrophic equations
(see e.g. [7, 4, 14, 18] for further references). Fractional dissipation also appears
naturally in certain combustion models [15]. Our goal is to present here, in the
most accessible framework of the Burgers equation, results and techniques that in
some cases apply (with relatively straightforward adjustments) to a wider class of
equations including in particular surface quasi-geostrophic. Among the results we
prove are the global existence of solutions for α = 1/2 (more generally α ≥ 1/2),
space analyticity of solutions for α ≥ 1/2, the existence of solutions with very rough
initial data, as well as blow up in finite time for α < 1/2.

Let us now describe in more detail some of the results that we prove. We
denote by W s

p , s ∈ R, 1 ≤ p ≤ ∞ the standard Sobolev spaces. If p = 2 we use
notation Hs, and denote by ‖ · ‖s the norm in Hs. Without loss of generality, we
will consider equation (1) on the subspace of mean zero functions. This subspace
is preserved by evolution and contains all non-trivial dynamics. The advantage of
this subspace is that the Hs norm dominates the L2 norm, and this simplifies the
estimates. We will also always assume that the initial data (and so the solution)
are real valued.

The case α > 1/2 is subcritical, and smooth solutions exist globally. This is a
fairly simple fact to prove, using the maximum principle control of the L∞ norm for
α ≤ 1, and straightforward estimates for α > 1 (see [16, 9] for the quasi-geostrophic
case and 1/2 ≤ α ≤ 1; the argument transfers to the dissipative Burgers equation
without significant changes). One can also use the scheme of the proof suggested
here for the critical case α = 1/2. That is why we just state the result for α > 1/2
without proof.

Theorem 1.1. Assume that α > 1/2, and the initial data u0(x) belongs to Hs,
s > 3/2 − 2α, s ≥ 0. Then there exists a unique global solution of the equation (1)
u(x, t) that belongs to C([0,∞), Hs). Moreover, this solution is real analytic in x
for t > 0.

We have been unable to find the analyticity claim in the existent literature, but
again the proof is parallel to that for the α = 1/2 case, which we will do in detail.
In what follows, we will consider mostly 0 < α ≤ 1/2. Our first result concerns
the local existence and uniqueness of classical solutions to Burgers equation with
initial data in Sobolev spaces.

Let us denote Cw([0, T ], L2) the class of solutions that are weakly continuous
as functions with values in L2.

Definition. We say that u ∈ L2([0, T ], L2) ∩ Cw([0, T ], L2) and such that du/dt ∈
L1([0, T ], H−1) is a weak solution of (1) for t ∈ (0, T ) if for any smooth periodic
function ϕ(x) we have

(2) (u, ϕ)t = −1

2
(u2, ϕx) − (u, (−∆)αϕ), a.e. t ∈ (0, T ), (u, ϕ)(0) = (u0, ϕ).
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Note that then (u, ϕ)(t) is absolutely continuous and

(3) (u, ϕ)(t) − (u0, ϕ) =

t
∫

0

(

−1

2
(u2, ϕx) − (u, (−∆)αϕ)

)

ds

for any t ∈ [0, T ].

Theorem 1.2. Assume that 0 < α ≤ 1/2, and the initial data u0(x) ∈ Hs, s >
3/2−2α. Then there exists T = T (α, ‖u0‖s) > 0 such that there exists a weak solu-
tion of the equation (1) u(x, t) satisfying u(x, t) ∈ C([0, T ], Hs) ∩L2([0, T ], Hs+α).
Moreover, u can be chosen to satisfy u(x, t) ∈ C∞ for 0 < t < T. If v is another weak
solution of (1) with initial data u0 such that v ∈ C([0, T ], L2) ∩ L3/2δ([0, T ], Hδ)
with some δ ∈ (1/2, 1], then v coincides with u.

Remark 1. In particular, it follows that the solution u in Theorem 1.2 solves (1) in
classical sense for every t > 0.
Remark 2. It is clear from Theorem 1.2 that the solution is unique in the C([0, T ], Hs)
class.

We prove a slightly stronger version of Theorem 1.2 in Section 2.
In the case α = 1/2, we prove a result similar to Theorem 1.1. However, the

critical case is harder and requires a new nonlocal maximum principle. We handle
this case in Section 3.

Theorem 1.3. Assume that α = 1/2, and that the initial data u0 belongs to
Hs with s > 1/2. Then there exists a global solution of (1) which is real analytic
in x for any t > 0.

The corresponding question for the quasi-geostrophic equation has been a focus
of significant effort (see e.g. [6, 7, 9]) and has been recently resolved independently
and by different means in [14] and [4]. The proof in [14] is similar to the argument
presented here.

Next, we prove the finite time blow up for the supercritical case α < 1/2.

Theorem 1.4. Assume that 0 < α < 1/2. Then there exists smooth periodic
initial data u0(x) such that the solution u(x, t) of (1) blows up in Hs for each
s > 3

2 − 2α in finite time.

We will also obtain a fairly precise picture of blow up, similar to that of Burgers
equation without dissipation – a shock is formed where the derivative of the solution
becomes infinite. In the scenario we develop, the initial data leading to blow up is
odd and needs to satisfy a certain size condition, but no other special assumptions.
After this work has been completed, we became aware of the preprint [1], where a
result similar to Theorem 1.4 is proved in the whole line (not periodic) setting, and
for a class of initial data satisfying certain convexity assumption.

The blow up or global regularity for α < 1/2 remains open for the surface
quasi-geostrophic equation. The problem is that the conservative surface quasi-
geostrophic dynamics is not well understood, in contrast to the non-viscous Burgers
equation where finite time shock formation is both well-known and simple. Exis-
tence of blow up in the non-viscous quasi-geostrophic equation remains a challenging
open question (see e.g. [8]). Still, some elements of the blow up construction we
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present here may turn out to be useful in future attempts to attack the question of
blow up or regularity for the dissipative surface quasi-geostrophic equation.

In Section 5, we prove existence of solutions with rough initial data, u0 ∈
Lp, 1 < p < ∞, when α = 1/2 (the case α > 1/2 is similar). These solutions
become smooth immediately for t > 0, however the behavior near zero may be
quite singular. The uniqueness for such solutions is not known and remains an
interesting open problem.

The results of Theorems 1.1, 1.2, 1.3, 1.4 remain valid for the case s = 3/2−2α,
with slight modifications. However, more subtle estimates are needed. This critical
space case is handled in Section 6.

2. Local existence, uniqueness and regularity

Denote by PN the orthogonal projection to the first (2N +1) eigenfunctions of
Laplacian, e2πikx, k = 0,±1, . . . ,±N. Consider Galerkin approximations uN(x, t),
satisfying

(4) uN
t = PN (uNuN

x ) − (−∆)αuN , uN(x, 0) = PNu0(x).

We start with deriving some a-priori bounds for the growth of Sobolev norms.

Lemma 2.1. Assume that s ≥ 0 and β ≥ 0. Then

(5)

∣

∣

∣

∣

∫

(uN)2(−∆)suN
x dx

∣

∣

∣

∣

≤ C‖uN‖q‖uN‖2
s+β

for any q satisfying q > 3/2 − 2β.

Proof. On the Fourier side, the integral in (5) is equal to (up to a constant
factor)

∑

k+a+b=0,|k|,|a|,|b|≤N

k|k|2sûN(k)ûN (a)ûN (b) =: S.

Symmetrizing, we obtain

|S| =
1

3

∣

∣

∣

∣

∣

∣

∑

k+a+b=0,|k|,|a|,|b|≤N

(

k|k|2s + a|a|2s + b|b|2s
)

ûN (k)ûN(a)ûN (b)

∣

∣

∣

∣

∣

∣

≤(6)

2
∑

k+a+b=0,|a|≤|b|≤|k|≤N

∣

∣ k|k|2s + a|a|2s + b|b|2s
∣

∣ |ûN (k)ûN (a)ûN (b)|.

Next, note that under conditions |a| ≤ |b| ≤ |k|, a + b + k = 0, we have |a| ≤
|k|/2, |b| ≥ |k|/2 and

∣

∣k|k|2s + a|a|2s + b|b|2s
∣

∣ =
∣

∣b(|b|2s − |b+ a|2s) + a(|a|2s − |k|2s)
∣

∣ ≤
C(s)|a||k|2s ≤ C(s)|a|1−2β |b|s+β |k|s+β .

(7)

Thus

|S| ≤ C
∑

k+a+b=0,|a|≤|b|≤|k|≤N

|a|1−2β |b|s+β |k|s+β |ûN(k)ûN (a)ûN (b)| ≤

C‖uN‖2
s+β

∑

|a|≤N

|a|1−2β |ûN (a)| ≤ C(β, q, s)‖uN‖q‖uN‖2
s+β .

Here the second inequality is due to Parseval and convolution estimate, and the
third holds by Hölder’s inequality for every q > 3/2 − 2β.
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Lemma 2.1 implies a differential inequality for the Sobolev norms of solutions
of (4).

Lemma 2.2. Assume that α > 0, q > 3/2 − 2α, and s ≥ 0. Then

(8)
d

dt
‖uN‖2

s ≤ C(q)‖uN‖M(q,α,s)
q − ‖uN‖2

s+α.

If in addition s = q then

(9)
d

dt
‖uN‖2

s ≤ C(ǫ)‖uN‖2+ α
ǫ

s − ‖uN‖2
s+α,

for any

(10) 0 < ǫ < min

(

2q − 3 + 4α

4
, α

)

.

Proof. Multiplying both sides of (4) by (−∆)suN , and applying Lemma 2.1,
we obtain (here we put β := α− ǫ, with ǫ satisfying (10))

d

dt
‖uN‖2

s ≤ C(q, ǫ, α, s)‖uN‖q‖uN‖2
s+α−ǫ − 2‖uN‖2

s+α.

Observe that if q ≥ s+α− ǫ, the estimate (8) follows immediately. If q < s+α− ǫ,
by Hölder we obtain

(11) ‖uN‖2
s+α−ǫ ≤ ‖uN‖2(1−δ)

s+α ‖uN‖2δ
q

where δ =
ǫ

s+ α− q
. Applying Young’s inequality we finish the proof of (8) in this

case.
The proof of (9) is similar. We have

d

dt
‖uN‖2

s ≤ C(s, ǫ, α)‖uN‖s‖uN‖2
s+α−ǫ − 2‖uN‖2

s+α.

Applying the estimate (11) with q = s and δ = ǫ/α and Young’s inequality we
obtain

d

dt
‖uN‖2

s ≤ C‖uN‖1+2ǫ/α
s ‖uN‖2−2ǫ/α

s+α − 2‖uN‖2
s+α ≤ C‖uN‖2+ α

ǫ
s − ‖uN‖2

s+α.

The following lemma is an immediate consequence of (9) and local existence of
the solution to the differential equation y′ = Cy1+α/2ǫ, y(0) = y0.

Lemma 2.3. Assume s > 3/2− 2α, α > 0 and u0 ∈ Hs. Then there exists time
T = T (s, α, ‖u0‖s) such that for every N we have the bound (uniform in N)

(12) ‖uN‖s(t) ≤ C(s, α, ‖u0‖s), 0 ≤ t ≤ T.

Proof. From (9), we get that z(t) ≡ ‖uN‖2
s satisfies the differential inequality

z′ ≤ Cz1+α/2ǫ. This implies the bound (12) for time T which depends only on
coefficients in the differential inequality and initial data.

Now, we obtain some uniform bounds for higher orderHs norms of the Galerkin
approximations.

Theorem 2.4. Assume s > 3/2 − 2α, s ≥ 0, α > 0 and u0 ∈ Hs. Then there
exists time T = T (s, α, ‖u0‖s) such that for every N we have the bounds (uniform
in N)

(13) tn/2‖uN‖s+nα ≤ C(n, s, α, ‖u0‖s), 0 < t ≤ T,
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for any n ≥ 0. Here time T is the same as in Lemma 2.3.

Proof. We are going to first verify (13) by induction for positive integer n.
For n = 0, the statement follows from Lemma 2.3. Inductively, assume that
‖uN‖2

s+nα(t) ≤ Ct−n for 0 ≤ t ≤ T. Fix any t ∈ (0, T ], and consider the inter-
val I = (t/2, t). By (8) with s replaced by s + nα and q by s, we have for every
n ≥ 0

(14)
d

dt
‖uN‖2

s+nα ≤ C‖uN‖M
s − ‖uN‖2

s+(n+1)α.

Due to Lemma 2.3 and our induction assumption,
∫ t

t/2

‖uN‖2
s+(n+1)α ds ≤ Ct+ C‖uN (t/2)‖2

s+nα ≤ Ct−n.

Thus we can find τ ∈ I such that

‖uN(τ)‖2
s+(n+1)α ≤ C|I|−1t−n ≤ Ct−n−1.

Moreover, from (14) with n changed to n+ 1 we find that

‖uN(t)‖2
s+(n+1)α ≤ ‖uN(τ)‖2

s+(n+1)α + Ct ≤ Ct−n−1,

concluding the proof for integer n. Non-integer n can be covered by interpolation:

‖uN‖s+rα ≤ ‖uN‖1− r
n

s ‖uN‖
r
n
s+nα, 0 < r ≤ n.

Now we are ready to prove existence and regularity of a weak solution of Burgers
equation (1).

Theorem 2.5. Assume s > 3/2 − 2α, s ≥ 0, α > 0, and u0 ∈ Hs. Then there
exists T (s, α, ‖u0‖s) > 0 and a solution u(x, t) of (1) such that

(15) u ∈ L2([0, T ], Hs+α) ∩C([0, T ], Hs);

(16) tn/2u ∈ C((0, T ], Hs+nα) ∩ L∞([0, T ], Hs+nα)

for every n > 0.

Corollary 2.6. If α > 0 and u0 ∈ Hs with s > 3/2 − 2α, s ≥ 0, then there
exists a local solution u(x, t) which is C∞ for any 0 < t ≤ T.

Proof. The proof of Theorem 2.5 is standard. It follows from (4) and (13) that
for every small ǫ > 0 and every r > 0 we have uniform in N and t ∈ [ǫ, T ] bounds

(17) ‖uN
t ‖r ≤ C(r, ǫ).

By (16) and (17) and the well known compactness criteria (see e.g. [5], Chapter
8), we can find a subsequence uNj converging in C([ǫ, T ], Hr) to some function u.
Since ǫ and r are arbitrary one can apply the standard subsequence of subsequence
procedure to find a subsequence (still denoted by uNj) which converges to u in
C((0, T ], Hr), for any r > 0. The limiting function u must satisfy the estimates
(13) and it is straightforward to check that it solves the Burgers equation on (0, T ].
Thus, it remains to show that u can be made to converge to u0 strongly in Hs as
t→ 0.
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We start by showing that u converges to u0 as t → 0 weakly in Hs. Let ϕ(x)
be arbitrary C∞ function. Consider

gN (t, ϕ) ≡ (uN , ϕ) =

∫

uN (x, t)ϕ(x) dx.

Clearly, gN (·, ϕ) ∈ C([0, τ ]), where τ ≡ T/2. Also, taking inner product of (4) with
ϕ we can show that for any δ > 0,

(18)

∫ τ

0

|gN
t |1+δ dt ≤ C

(∫ τ

0

‖uN‖2+2δ
L2 ‖ϕ‖1+δ

W 1
∞

dt+

∫ τ

0

‖uN‖1+δ
L2 ‖ϕ‖1+δ

2α dt

)

.

Due to (9), the definition of τ, and the condition s ≥ 0, we have that ‖uN‖L2 ≤ C on
[0, τ ], and thus ‖gN

t (·, ϕ)‖L1+δ ≤ C(ϕ). Therefore the sequence gN (t, ϕ) is compact
in C([0, τ ]), and we can pick a subsequence gNj (t, ϕ) converging uniformly to a
function g(t, ϕ) ∈ C([0, τ ]). Clearly, by choosing an appropriate subsequence we
can assume g(t, ϕ) = (u, ϕ) for t ∈ (0, τ ]. Next, we can choose a subsequence {Nj}
such that gNj(t, ϕ) has a limit for any smooth function ϕ from a countable dense
set in H−s. Given that we have uniform control over ‖uNj‖s on [0, τ ], it follows
that gNj (t, ϕ) converges uniformly on [0, τ ] for every ϕ ∈ H−s. Now for any t > 0,

(19) |(u− u0, ϕ)| ≤ |(u − uNj , ϕ)| + |(uNj − u
Nj

0 , ϕ)| + |(uNj

0 − u0, ϕ)|.
The first and the third terms in RHS of (19) can be made small uniformly in (0, τ ]
by choosing sufficiently large Nj. The second term tends to zero as t → 0 for any
fixed Nj . Thus u(·, t) converges to u0(·) as t→ 0 weakly in Hs. Consequently,

(20) ‖u0(·)‖s ≤ lim inf
t→0

‖u(·, t)‖s.

Furthermore, it follows from (9) that for every N the function ‖uN‖2
s(t) is always

below the graph of the solution of the equation

yt = Cy1+ α
2ǫ , y(0) = ‖u0‖2

s.

By construction of the solution u, the same is true for ‖u‖2
s(t). Thus, ‖u0‖s ≥

lim sup
t→0

‖u‖s(t). From this and (20), we obtain that ‖u0‖s = lim
t→0

‖u‖s(t). This

equality combined with weak convergence finishes the proof.
We next turn to the uniqueness. First of all, we obtain some identities which

hold for every weak solution of the Burgers equation (1). Let u be a solution of the
Burgers equation in a sense of (3), (2). Then for any function f of the form

f(x, t) :=

K
∑

k=1

ϕk(x)ψk(t),

where ϕk ∈ C∞(T) and ψk ∈ C∞
0 ([0, T ]), we have (see (2))

K
∑

k=1

(u, ϕk)tψk = −1

2
(u2, fx) − (u, (−∆)αf), a.e. t ∈ (0, T ).

Integrating and using integration by parts on the left hand side we obtain

(21) −
T
∫

0

(u, ft) dt = −1

2

T
∫

0

(u2, fx) dt−
T
∫

0

(u, (−∆)αf) dt.

Applying closure arguments to (21) and using inclusion u ∈ L1([0, T ], L2) we derive
the following statement.
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Lemma 2.7. Let u be a weak solution of the Burgers equation (1) in the sense
of (3), (2). Then for every function f ∈ C∞

0 ([0, T ], C∞(T)) we have
(22)

−
T
∫

0

(u, ft) dt = −1

2

T
∫

0

(u2, fx) dt−
T
∫

0

(u, (−∆)αf) dt, f ∈ C∞
0 ([0, T ], C∞(T)).

Now, we are ready to prove

Theorem 2.8. Assume v(x, t) is a weak solution of (1) for 0 < α ≤ 1/2, and
initial data u0 ∈ Hs, s > 3/2 − 2α. If

(23) v(x, t) ∈ C([0, T ], L2) ∩ L3/2δ([0, T ], Hδ), 1 ≥ δ > 1/2,

then v(x, t) coincides with the solution u(x, t) described in Theorem 2.5.

Remark. Theorems 2.8 and 2.5 imply Theorem 1.2.
Proof. We will need an auxiliary estimate for ‖v2‖1−δ. Recall that by integral

characterization of Sobolev spaces,

‖v2‖1−δ ≤ C

(∫

S1

∫

S1

|v(x)2 − v(y)2|
|x− y|1−δ

dxdy + ‖v2‖L2

)

≤ C‖v‖L∞‖v‖1−δ.

Recall that for 1/2 < δ ≤ 1, we have ‖v‖L∞ ≤ C‖v‖1−1/2δ‖v‖1/2δ
δ . Applying this

inequality the L∞ norm and Hölder inequality to H1−δ norm above we obtain

(24) ‖v2‖1−δ ≤ C′‖v‖2−k‖v‖k
δ , k :=

3

2δ
− 1.

Now, let us obtain a bound for dv
dt . Since v is a weak solution of the equation (1),

due to Lemma 2.7 for every function f(x, t) ∈ C∞
0 ([0, T ], C∞(T)) we have

∣

∣

∣

∣

∣

∫ T

0

(v, ft) dt

∣

∣

∣

∣

∣

≤ 1

2

∫ T

0

|(D1−δ(v2), Dδf)| dt+
∫ T

0

|(D2α−δv,Dδf)| dt ≤

(

∫ T

0

‖f‖γ
δdt

)1/γ




1

2

(

∫ T

0

‖v2‖γ′

1−δdt

)1/γ′

+

(

∫ T

0

‖v‖γ′

1−δdt

)1/γ′


 .

(25)

Here D := (−∆)1/2, γ := 3
2δ and γ−1 + (γ′)−1 = 1. It follows from (23), (24) and

equality γ′k = γ that the integral
∫ T

0
‖v2‖γ′

1−δdt is convergent. The estimate for
∫ T

0
‖v‖γ′

1−δdt is similar and even simpler. Thus, it follows from (25) that dv
dt belongs

to Lγ′

([0, T ], H−δ). Certainly, the same (and even more) is true for du
dt . Thus,

((u − v)t, (u − v)) ∈ L1([0, T ]). Moreover, it follows from the definition of a weak
solution, our assumptions and estimates for vt and v2 that for a.e. t ∈ [0, T ]

ut − vt =
1

2
(u2)x − 1

2
(v2)x − (−∆)α(u− v), a.e. t ∈ [0, T ],

where the equality is understood in H−δ sense. Thus,

(26) 2((u − v)t, (u− v)) = ((u2)x − (v2)x, u− v) − 2‖u− v‖2
α, a.e. t ∈ [0, T ].
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For every fixed t ∈ [0, T ] where (26) holds we approximate v in Hδ by smooth
functions vn. Direct calculations using integration by parts give

((u2)x − (v2
n)x, u− vn) = 2(ux, (u− vn)2) + 2((u− vn)x, vn(u− vn)) =

2(ux, (u− vn)2) − 2((u− vn)x, (u− vn)2) + 2((u− vn)x, u(u− vn))

= (ux, (u− vn)2).

Due to (23) and (24) we may apply closure arguments in Hδ to obtain

((u2)x − (v2)x, u− v) = (ux, (u− v)2).

Substituting into (26) we get

(27) 2((u− v)t, (u− v)) = (ux, (u− v)2) − 2‖u− v‖2
α, a.e. t ∈ [0, T ].

Note that 2((u− v)t, (u− v)) = ∂t‖u− v‖2. Indeed, denote u− v =: g. Recall

that gt ∈ Lγ′

([0, T ], H−δ) and g ∈ C([0, T ], L2) ∩ Lγ([0, T ], Hδ). Approximate g
in W 1

γ′([0, T ], H−δ) ∩ C([0, T ], L2) ∩ Lγ([0, T ], Hδ) by smooth functions gn. Then

2((gn)t, gn) = ∂t‖gn‖2 and for every t ∈ (0, T ] we have

t
∫

0

2((gn)t, gn) dt = ‖gn‖2(t) − ‖gn‖2(0).

Now, we can take the limit to obtain

t
∫

0

2(gt, g) dt = ‖g‖2(t) − ‖g‖2(0).

This proves the desired identity.
Finally,

|(ux, (u− v)2)| =

∣

∣

∣

∣

∫

ux(u− v)2 dx

∣

∣

∣

∣

≤ ‖u− v‖2
L2p‖u‖W 1

p′

,

where p = 1
1−α and p′ is the Hölder conjugate exponent to p. The exponent p was

chosen so that, by Gagliardo-Nirenberg inequality,

‖u− v‖2
L2p ≤ C‖u− v‖‖u− v‖α.

Also by Sobolev inequality

‖u‖W 1

p′

≤ C‖u‖r,

where r = 3/2 − α. Thus

(28)

∣

∣

∣

∣

∫

ux(u− v)2 dx

∣

∣

∣

∣

≤ C‖u− v‖‖u− v‖α‖u‖r.

Then from (27), (28) we find

‖u− v‖2(t) − ‖u− v‖2(0) = 2

t
∫

0

((u− v)s, (u − v)) ds

≤ C

t
∫

0

‖u− v‖2‖u‖2
r ds, for everyt ∈ [0, T ].(29)
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Now we are in position to apply Gronwall inequality. Notice that
∫ T

0
‖u‖2

s+α dt is

controlled by ‖u‖2
C([0,T ],Hs) because of (9). But if s > 3/2− 2α, then

∫ T

0
‖u‖2

r dt is

also under control. This proves the Theorem.

3. Global existence and analyticity for the critical case α = 1/2

As we have already mentioned in the introduction, if α > 1/2, then the local
smooth solution can be extended globally. In Section 4, we show that a blow up
can happen in finite time if α < 1/2. Thus the only remaining case to consider is
the critical one, α = 1/2. In this section, we will prove

Theorem 3.1. Assume α = 1/2, and u0 ∈ Hs, s > 1/2. Then there exists a
global solution u(x, t) of (1) which belongs to C([0,∞), Hs) ∩ C((0,∞), C∞). If v
is another weak solution of (1) with initial data u0 such that v ∈ C([0, T ], L2) ∩
L3/2δ([0, T ], Hδ) with some δ ∈ (1/2, 1], then v coincides with u on [0, T ].

We also state the following result separately to break the otherwise unwieldy
proof:

Theorem 3.2. The solution of Theorem 3.1 is real analytic for every t > 0.

Together, Theorems 3.1 and 3.2 imply Theorem 1.3. We first discuss the global
existence. Much of the discussion follows [14]; we reproduce the argument here
for the sake of completeness. Recall that a modulus of continuity is an arbitrary
increasing continuous concave function ω : [0,+∞) → [0,+∞) such that ω(0) = 0.
Also, we say that a function f : R → R has modulus of continuity ω if |f(x) −
f(y)| ≤ ω(|x− y|) for all x, y ∈ R.

The term uux in the dissipative Burgers equation tends to make the modulus of
continuity of u worse while the dissipation term (−∆)1/2u tends to make it better.
Our aim is to construct some special moduli of continuity for which the dissipation
term always prevails and such that every periodic C∞-function u0 has one of these
special moduli of continuity.

Our moduli of continuity will be derived from one single function ω(ξ) by
scaling: ωB(ξ) = ω(Bξ). Note that the critical (α = 1

2 ) equation has a simple
scaling invariance: if u(x, t) is a solution, then so is u(Bx,Bt). This means that
if we prove that the modulus of continuity ω is preserved by the evolution, then
the whole family ωB(ξ) = ω(Bξ) of moduli of continuity will also be preserved
(provided that we look at the initial data of all periods). Also observe that if ω
is unbounded, then every C∞ periodic function has modulus of continuity ωB if
B > 0 is sufficiently large.

We will eventually have an explicit expression for ω. For now, we show how
preservation of ω is used to control the solution.

Lemma 3.3. Assume that ω(ξ) satisfies

(30) ω′(0) <∞, ω′′(0) = −∞.

Then if a smooth function f has modulus of continuity ω, it must satisfy ‖f ′‖L∞ <
ω′(0).

Proof. Indeed, take a point x ∈ R at which max |f ′| is attained and consider
the point y = x + ξ. Then we must have f(y) − f(x) ≤ ω(ξ) for all ξ ≥ 0. But
the left hand side is at least |f ′(x)|ξ − Cξ2 where C = 1

2‖f ′′‖L∞ while the right
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hand side can be represented as ω′(0)ξ− ρ(ξ)ξ2 with ρ(ξ) → +∞ as ξ → 0+. Thus
|f ′(x)| ≤ ω′(0) − (ρ(ξ) − C)ξ for all ξ > 0 and it remains to choose some ξ > 0
satisfying ρ(ξ) > C.

Given this observation, Theorem 3.1 will be proved as follows. By Theorem 2.5,
if u0 ∈ Hs, s > 1/2, then the solution immediately becomes C∞ and stays smooth
at least till time T . Hence it will preserve one of our moduli of continuity, ωB.
This will imply that ‖ux‖L∞ remains bounded by ω′

B(0). Starting at time T we
construct again Galerkin approximations which define our solution for one more
step in time. And we continue this process inductively. Since our solution remains
smooth and its W 1,∞ norm satisfies uniform bound, it implies uniform boundedness
of, for instance, H1 norm for which our local existence result is valid. Therefore
our time step can be chosen to be fixed. Thus we obtain smooth global solution of
the equation (1).

We next proceed with the construction of ω and the proof of preservation. Let
us outline the only scenario how the modulus of continuity satisfying (30) can be
lost.

Lemma 3.4. Assume that a smooth solution u(x, t) has modulus of continuity
ω at some time t0. The only way this modulus of continuity may be violated is if
there exists t1 ≥ t0 and y, z, y 6= z, such that u(y, t1) − u(z, t1) = ω(|y − z|), while
for all t < t1, the solution has modulus of continuity ω.

Proof. Assume that u(x, t) loses modulus of continuity ω. Define

τ = sup{t : ∀x, y, |u(x, t) − u(y, t)| ≤ ω(|x− y|).}

Then u remains smooth up to τ, and, by local existence and regularity theorem, for
a short time beyond τ. Suppose that |u(x, τ) − u(y, τ)| < ω(|x − y|) for all x 6= y.
We claim that in this case u has modulus of continuity ω for all t > τ sufficiently
close to τ. Indeed, by Lemma 3.3 at the moment τ we have ‖u′‖L∞ < ω′(0). By
continuity of derivatives and compactness in space variable, this also holds for
t > τ close to τ, which immediately takes care of the inequality |u(x, t)− u(y, t)| <
ω(|x − y|) for small |x − y|. Observe that we only need to consider x, y within a
fixed bounded domain since u is periodic and ω increasing. Thus, it suffices to show
that |u(x, t) − u(y, t)| < ω(|x − y|) holds for all t close enough to τ and x, y such
that δ ≤ |x − y| ≤ δ−1 with some δ > 0. But this follows immediately from the
inequality for time τ, smoothness of the solution and compactness of the domain.

Remark. The key point of the above lemma is that we do not have to worry
about ω being violated ”first” at the diagonal x = y, namely ||u′||L∞ = ω′(0);
the modulus of continuity equality must happen first at two distinct points. This
knowledge makes the argument below simpler by ruling out the extra case which
otherwise would have to be considered.

Proof. [Proof of Theorem 3.1] Assume now that u(y, t1)− u(z, t1) = ω(|y − z|)
for some y, z and |y − z| = ξ > 0. We will henceforth omit t1 from notation. The
plan now is to show that we have necessarily d

dt (u(y, t1)−u(z, t1)) < 0. We need to
estimate the flow and the dissipative terms entering the Burgers equation. First,
note that

u(y)u′(y) =
d

dh
u(y + hu(y))

∣

∣

∣

∣

h=0
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and similarly for z. But

u(y + hu(y)) − u(z + hu(z)) ≤ ω (|y − z| + h|u(y) − u(z)|) ≤ ω(ξ + hω(ξ)).

Since also u(y) − u(z) = ω(ξ), we conclude that

u(y)u′(y) − u(z)u′(z) ≤ ω(ξ)ω′(ξ).

Note that we assume differentiability of ω here. The ω that we will construct below
is differentiable except at one point, and this special point is handled easily (by
using the larger of the one-sided derivatives). Next let us estimate the difference of
dissipative terms. Due to translation invariance, it is sufficient to consider y = ξ/2
and z = −ξ/2. Let us denote by Ph the one dimensional Poisson kernel, Ph(x) =
1

π

h

x2 + h2
. Recall that

−(−∆)1/2u(x) =
d

dh
Ph ∗ u(x)

∣

∣

∣

∣

h=0

.

By the Poisson summation formula, this equality is valid for periodic u(x) of every
period. By symmetry and monotonicity of the Poisson kernel,

(Ph ∗ u)(y) − (Ph ∗ u)(z) =

∫ ∞

0

[Ph(ξ/2 − η) − Ph(−ξ/2 − η)](u(η) − u(−η)) dη ≤
∫ ∞

0

[Ph(ξ/2 − η) − Ph(−ξ/2 − η)]ω(2η) dη =

∫ ξ

0

Ph(ξ/2 − η)ω(2η) dη +

∫ ∞

0

Ph(ξ/2 + η)[ω(2η + 2ξ) − ω(2η)] dη.

The last formula can also be rewritten as
∫ ξ/2

0

Ph(η)[ω(ξ + 2η) + ω(ξ − 2η)] dη +

∫ ∞

ξ/2

Ph(η)[ω(2η + ξ) − ω(2η − ξ)] dη.

Since
∫∞
0
Ph(η) dη = 1/2, we see that the difference (Ph ∗u)(y)− (Ph ∗u)(z)−ω(ξ)

can be estimated from above by
∫ ξ/2

0

Ph(η)[ω(ξ+2η)+ω(ξ−2η)−2ω(ξ)] dη+

∫ ∞

ξ/2

Ph(η)[ω(2η+ξ)−ω(2η−ξ)−2ω(ξ)] dη.

Dividing by h and passing to the limit as h → 0+, we obtain the following upper
bound on the contribution of the dissipative term into the time derivative

1

π

∫ ξ/2

0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)

η2
dη+

1

π

∫ ∞

ξ/2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η2
dη.

Note that due to concavity of ω, both terms are strictly negative. We will denote
the first integral by Iω,1(ξ) and the second integral by Iω,2(ξ).

Now we are ready to define our modulus of continuity. Let us set ξ0 ≡
(

K
4π

)2
,

where K is to be chosen later. Then ω is given by

(31) ω(ξ) =

{

ξ
1+K

√
ξ

for 0 ≤ ξ ≤ ξ0;

CK log ξ for ξ ≥ ξ0.

Here CK is chosen to provide continuity of ω. A direct computation shows that

(32) CK ∼ (logK)−1 as K → ∞.
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One can check that if K is sufficiently large, then ω is concave, with negative and
increasing second order derivative on both intervals in (31) (on the first interval,
ω′′(ξ) = −K(3ξ−1/2 +K)/4(1+K

√
ξ)3). The first derivative of ω may jump at ξ0,

but the left derivative at ξ0 is ∼ K−2, while the right derivative is ∼ K−2(logK)−1.
We choose K large enough so that the left derivative is larger than the right deriv-
ative assuring concavity. The bound on the flow term is valid at ξ0 using the value
of larger (left) derivative.

It remains to verify that we have

ω(ξ)ω′(ξ) + I1,ω(ξ) + I2,ω(ξ) ≤ 0

for any ξ.
I. The case ξ ≤ ξ0. Using the second order Taylor formula and the fact that ω′′

is negative and monotone increasing on [0, ξ], we obtain that

ω(ξ + 2η) + ω(ξ − 2η) ≤ ω(ξ) + ω′(ξ)2η + ω(ξ) − ω′(ξ)2η + 2ω′′(ξ)η2.

This leads to an estimate

I1,ω(ξ) ≤ 1

π
ξω′′(ξ).

From (31), we find that

2ω(ξ)ω′(ξ) =
ξ1/2(2ξ1/2 +Kξ)

(1 +Kξ1/2)3
,

while

1

π
ξω′′(ξ) = −K(3ξ1/2 +Kξ)

4π(1 +Kξ1/2)3
.

Taking into account that ξ ≤ ξ0, we find

(33) 2ω(ξ)ω′(ξ) + I1,ω(ξ) ≤ 0,

for any K.
II. The case ξ > ξ0. Due to concavity, we have ω(ξ + 2η) ≤ ω(2η − ξ) + ω(2ξ),

and thus

I2,ω(ξ) ≤ 1

π

∫ ∞

ξ/2

ω(2ξ) − 2ω(ξ)

η2
dη.

Clearly we have ω(2ξ) ≤ 3
2ω(ξ) for ξ ≥ ξ0 provided that K was chosen large

enough. In this case, we obtain I2,ω(ξ) ≤ −ω(ξ)
πξ . Now it follows from (31) that

2ω(ξ)ω′(ξ) = 2C2
Kξ

−1 log ξ, while ξ−1ω(ξ) = CKξ
−1 log ξ. Given (32), it as clear

that

(34) 2ω(ξ)ω′(ξ) + I2,ω(ξ) ≤ 0, ξ ≥ ξ0

if only K was chosen sufficiently large.
Observe that as a byproduct, the proof also yields uniform in time control of

‖u′‖L∞ .

Corollary 3.5. Assume that the initial data u0(x) is such that ‖u′0‖L∞ <∞.
Then for every time t, the solution u(x, t) of the critical Burgers equation satisfies

‖u′(x, t)‖L∞ ≤ ‖u′0‖L∞ exp(C‖u0‖L∞).
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Proof. Choose B so that u0(x) has the modulus of continuity ωB. Given the
asymptotic behavior of ω for large ξ, this is guaranteed if

CK log

(

B

‖u′0‖L∞

)

≥ ‖u0‖L∞ .

The Corollary then follows from (31) and preservation of ωB by evolution.
Finally, we prove Theorem 3.2, establishing analyticity of the solution.
Proof. [Proof of Theorem 3.2] We will assume that the initial data u0 ∈ H2.

Even if we started from u0 ∈ Hs, s > 1/2, Theorem 2.5 implies that we gain the
desired smoothness immediately.

Let us rewrite the equation (4) on the Fourier side (α = 1/2, without loss of
generality assume the period is equal to one):

dûN (k)

dt
= πi

∑

a+b=k, |a|,|b|,|k|≤N

kûN(a)ûN (b) − |k|ûN(k).

To simplify notation we will henceforth omit the restrictions |a|, |b|, |k| ≤ N in
the summation, but they are always present in the remainder of the proof. Put

ξN
k (t) := ûN (k, t)e

1
2
|k|t. Observe that since u(x, t) is real, ξ

N

k = ξN
−k. We have

(35)
dξN

k

dt
= πi

∑

a+b=k

e−γa,b,ktkξN
a ξ

N
b − 1

2
|k|ξN

k ,

where γa,b,k := 1
2 (|a| + |b| − |k|). Note that

(36) 0 ≤ γa,b,k ≤ min{|a|, |b|}.
Consider YN (t) :=

∑

k

|k|4|ξN
k (t)|2. Then we have

dYN

dt
= ℜ

(

−2πi
∑

a+b+k=0

e−γa,b,ktk|k|4ξN
a ξ

N
b ξ

N
k

)

−
∑

k

|k|5|ξN
k |2

= ℜ
(

−2πi
∑

a+b+k=0

k|k|4ξN
a ξ

N
b ξ

N
k

)

+ ℜ
(

−2πi
∑

a+b+k=0

(e−γa,b,kt − 1)k|k|4ξN
a ξ

N
b ξ

N
k

)

−
∑

k

|k|5|ξN
k |2 =: I1 + I2 + I3.

(37)

Symmetrizing I1 over a, b and k we obtain

(38) I1 =
2π

3
ℜ
(

−i
∑

a+b+k=0

(k|k|4 + a|a|4 + b|b|4)ξN
a ξ

N
b ξ

N
k

)

.

Thus

|I1| ≤ 4π
∑

a+b+k=0, |a|≤|b|≤|k|
|k|k|4 + a|a|4 + b|b|4||ξN

a ||ξN
b ||ξN

k | ≤(39)

≤ 160π
∑

a+b+k=0, |a|≤|b|≤|k|
|a||b|2|k|2|ξN

a ||ξN
b ||ξN

k |

≤ 160πYN

∑

|a||ξN
a | ≤ C1Y

3/2
N .
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Here in the second step we used a+ b+k = 0 (compare to (7)), and in the last step
we used Hölder inequality:

(40)
∑

a

|a||ξN
a | ≤





∑

a6=0

|a|−2





1/2

Y
1/2
N (t).

For I2 we have

|I2| ≤ 2π
∑

a+b+k=0

min(|a|, |b|)t|k|5|ξN
a ||ξN

b ||ξN
k |.

Here we used (36). Furthermore,
∑

a+b+k=0

min(|a|, |b|)|k|5|ξN
a ||ξN

b ||ξN
k | ≤

∑

a+b+k=0, |a|≤|b|≤|k|
3|a||k|5|ξN

a ||ξN
b ||ξN

k | +

∑

a+b+k=0, |b|≤|a|≤|k|
3|b||k|5|ξN

a ||ξN
b ||ξN

k | ≤
∑

a+b+k=0

6|a||b|5/2|k|5/2|ξN
a ||ξN

b ||ξN
k |

≤ 6

(

∑

a

|a||ξN
a |
)(

∑

k

|k|5|ξN
k |2
)

.

We used Young’s inequality for convolution in the last step. Combining all estimates
and applying (40), we obtain

(41) |I2| ≤ CtY
1/2
N

∑

k

|k|5|ξN
k |2.

Combining (37), (39) and (41) we arrive at

(42)
dYN

dt
≤ C1Y

3/2
N + (C2Y

1/2
N t− 1)

∑

k

|k|5|ξN
k |2.

Note that YN (0) = ‖uN
0 ‖2

2. Thus we have a differential inequality for YN ensur-
ing upper bound on YN uniform in N for a short time interval τ which depends only
on ‖u0‖2. Observe that Theorem 2.4 and Corollary 3.5 ensure that the H2 norm of
solution u(x, t) is bounded uniformly on [0,∞). Thus we can use the above construc-
tion to prove for every t0 > 0 uniform in N and t > t0 bound on

∑

k |ûN (k, t)|2eδ|k|

for some small δ(t0, u0) > 0. By construction of u, it must satisfy the same bound.

4. Blow-up for the supercritical case.

Our main goal here is to prove Theorem 1.4. At first, we are going to produce
smooth initial data u0(x) which leads to blow up in finite time in the case where
the period 2L is large. After that, we will sketch a simple rescaling argument which
gives the blow up for any (and in particular unit) period.

The proof will be by contradiction. We will fix L and the initial data, and
assume that by time T = T (α) the blow up does not happen. In particular, this
implies that there exists N such that ‖u(x, t)‖C3 ≤ N for 0 ≤ t ≤ T. This will lead
to a contradiction. The overall plan of the proof is to reduce the blow up question
for front-like data to the study of a system of differential equations on the properly
measured steepness and size of the solution. To control the solution, the first tool
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we need is a time splitting approximation. Namely, consider a time step h, and let
w(x, t) solve

(43) wt = wwx, w(x, 0) = u0(x),

while v(x, t) solves

(44) vt = −(−∆)αv, v(x, 0) = w(x, h).

The idea of approximating u(x, t) with time splitting is fairly common and goes back
to the Trotter formula in the linear case (see for example [2], page 120, and [17],
page 307, for some applications of time splitting in nonlinear setting). The situation
in our case is not completely standard, since the Burgers equation generally does
blow up, and moreover the control we require is in a rather strong norm.

The solution of the problem (44) with the initial data v0(x) is given by the
convolution

(45) v(x, t) =

∫

R

Φt(x− y)v0(y) dy (= e−(−∆)αtv0(x)),

where

(46) Φt(x) = t−1/2αΦ(t−1/2αx), Φ(x) =
1

2π

∫

R

exp(ixξ − |ξ|2α) dξ.

It is evident that Φ(x) is even and
∫

Φ(x) dx = 1. We will need the following further
properties of the function Φ :

(47) Φ(x) > 0; xΦ′(x) ≤ 0, Φ(x) ≤ K(α)

1 + |x|1+2α
, |Φ′(x)| ≤ K(α)

1 + |x|2+2α
.

These properties are not difficult to prove; see e.g. [11] for some results, in partic-
ular positivity (Theorem XIII.6.1). We need the following lemma.

Lemma 4.1. For every f ∈ Cn+1, n ≥ 0,

(48) ‖(e−(−∆)αt − 1)f‖Cn ≤ C(α)t‖f‖Cn+1.

Proof. Obviously, it is sufficient to prove the Lemma for n = 0. We have (see
(45), (46), (47))

∣

∣(e−(−∆)αt − 1)f
∣

∣ =

∣

∣

∣

∣

∣

∞
∫

−∞
Φt(y)(f(x− y) − f(x))dy

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1
∫

−1

Φt(y)(f(x− y) − f(x))dy

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

|y|≥1

Φt(y)(f(x − y) − f(x))dy

∣

∣

∣

∣

∣

≤

2‖f‖C1t
1
2α

t−
1
2α
∫

0

yΦ(y)dy + 4‖f‖C

∞
∫

t−
1
2α

Φ(y)dy ≤ CK(α)
α ‖f‖C1t.(49)

Next lemma provides local solvability for our splitting system.

Lemma 4.2. Assume ‖u0(x)‖C3 ≤ N. Then for all h small enough, v(x, h) is
C3 and is uniquely defined by (43), (44). Moreover, it suffices to assume h ≤ CN−1

to ensure

(50) ‖w(x, t)‖C3 , ‖v(x, t)‖C3 ≤ 2N

for 0 ≤ t ≤ h.
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Proof. Using the characteristics one can explicitly solve equation (43). We have
w(t, y) = u0(x), where x = x(y) is such that

(51) y = x− u0(x)t.

Now, implicit function theorem and direct computations show that ‖w(t, ·)‖C3 ≤
2‖u0‖C3 provided that ‖u0‖C3t ≤ c for some small constant c > 0. This proves
the statement of the Lemma for w. To prove it for v we just notice that v
is a convolution of the w(h, x) with Φt(x). Since ‖Φt‖L1 = 1 we obtain that
‖v(t, ·)‖C3 ≤ ‖w(h, ·)‖C3 .

The main time splitting result we require is the following

Proposition 4.3. Assume that ‖u0(x)‖C3 ≤ N for 0 ≤ t ≤ T. Define v(x, t)
by (43), (44) with time step h. Then for all h small enough, we have

‖u(x, h) − v(x, h)‖C1 ≤ C(α,N)h2.

Proof. Since ‖u0(x)‖C3 ≤ N, let us choose h as in Lemma 4.2. Notice that by
Duhamel’s principle,

u(x, h) = e−(−∆)αhu0(x) +

h
∫

0

e−(−∆)α(h−s)(u(x, s)ux(x, s)) ds,

while

v(x, h) = e−(−∆)αhu0(x) +

h
∫

0

e−(−∆)αh(w(x, s)wx(x, s)) ds.

Then it follows from (48) that

‖u(x, h) − v(x, h)‖C1 ≤
h
∫

0

‖e−(−∆)α(h−s)(u(x, s)ux(x, s))

−e−(−∆)αh(w(x, s)wx(x, s))‖C1 ds ≤
h
∫

0

‖u(x, s)ux(x, s) − w(x, s)wx(x, s)‖C1 ds+

h
∫

0

‖
(

e−(−∆)α(h−s) − 1
)

u(x, s)ux(x, s)‖C1 +

h
∫

0

‖
(

e−(−∆)αh − 1
)

w(x, s)wx(x, s)‖C1 ds ≤

h
∫

0

‖u(x, s)ux(x, s) − w(x, s)wx(x, s)‖C1 ds+(52)

C(α)h

h
∫

0

(‖u(x, s)ux(x, s)‖C2 + ‖w(x, s)wx(x, s)‖C2) ds.(53)
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From (50), it follows that the last integral does not exceed C(α)N2h2. To estimate
the remaining integral, we need the following

Lemma 4.4. For every 0 ≤ s ≤ h, we have ‖u(x, s) − w(x, s)‖C2 ≤ C(α)N2h.

Proof. Observe that g(x, s) ≡ u(x, s) − w(x, s) solves

gt = gux + wgx − (−∆)αu, g(x, 0) = 0.

Thus

g(x, t) =

t
∫

0

(gux + wgx − (−∆)αu) ds.

Because of (50) and the assumption on u, we have ‖gux‖C2 , ‖wgx‖C2 ≤ CN2, and
‖(−∆)αu‖C2 ≤ CN. Therefore, we can estimate that ‖g(x, t)‖C2 ≤ C(α)tN2, for
every 0 ≤ t ≤ h.

From Lemma 4.4 it follows that
h
∫

0

‖uux − wwx‖C1 ds ≤
h
∫

0

(‖(u− w)ux‖C1 + ‖w(ux − wx)‖C1) ds ≤ C(α)N3h2.

This completes the proof of Proposition 4.3.
The next stage is to investigate carefully a single time splitting step. The initial

data u0(x) will be smooth, 2L-periodic, odd, and satisfy u0(L) = 0. It is not hard
to see that all these assumptions are preserved by the evolution. We will assume a
certain lower bound on u0(x) for 0 ≤ x ≤ L, and derive a lower bound that must
hold after the small time step. The lower bound will be given by the following
piecewise linear functions on [0, L] :

ϕ(κ,H, a, x) =







κx, 0 ≤ x ≤ δ ≡ H/κ
H, δ ≤ x ≤ L− a
H
a (L− x), L− a ≤ x ≤ L.

Here L, κ, H and a may depend only on α and will be specified later. We
will set a ≤ L/4, δ ≤ L/4 and will later verify that this condition is preserved
throughout the construction. We assume that blow up does not happen until time
T (to be determined later). Let N = supt‖u(x, t)‖C3 .

Lemma 4.5. Assume that the initial data u0(x) for the equation (43) satisfies
the above assumptions. Then for every h small enough (h ≤ CN−1 is sufficient),
we have

w(x, h) ≥ ϕ

(

κ

1 − κh
,H, a+ ‖u0‖L∞h, x

)

, 0 ≤ x ≤ L.

Proof. The Burgers equation can be solved explicitly using characteristics. The
existence of C3 solution w(x, t) for t ≤ h is assured by the assumption on the initial
data and h.

Now we consider the effect of the viscosity time step. Suppose that the initial
data v0(x) for (44) satisfies the same conditions as stated for u0(x) above: periodic,
odd, v0(L) = 0. Then we have

Lemma 4.6. Assume that for 0 ≤ x ≤ L, v0(x) ≥ ϕ(κ,H, a, x). Moreover,
assume that

(54) Hκ−1 ≤ a, L ≥ 4a, L−2α‖v0‖L∞ ≤ 4Ha−2α.



FRACTAL BURGERS EQUATION 229

Then for every sufficiently small h, we have

v(x, h) ≥ ϕ(κ(1 − C(α)hH−2ακ2α), H(1 − C(α)hH−2ακ2α), a, x), 0 ≤ x ≤ L.

Proof. Let us compute

v(x, h) =

∫ δ

−δ

Φh(x− y)v0(y) dy +

∫ L−a

δ

(Φh(y − x) − Φh(x+ y))v0(y) dy +

∫ ∞

L−a

(Φh(y − x) − Φh(x+ y))v0(y) dy.(55)

In the last integral in (55), we estimate by Mean Value Theorem |Φh(y − x) −
Φh(y + x)| ≤ 2x |Φ′

h(ỹ)| , where ỹ ∈ (y − x, y + x). Using (47), we see that the last
integral in (55) is controlled by C(α)hxL−1−2α‖v0‖L∞ . The second integral on the
right hand side of (55) can be estimated from below by

(56) H

∫ ∞

δ

(Φh(y − x) − Φh(x+ y)) dy

with an error, which, by the previous computation, does not exceed

C(α)hxL−1−2α‖v0‖L∞ .

The expression in (56) is equal to

(57) H

∫ δ+x

δ−x

Φh(z) dz.

For the first integral in (55) we have

δ
∫

−δ

Φh(x− y)v0(y)dy =
δ
∫

0

(Φh(x − y) − Φh(x+ y))v0(y)dy ≥
δ
∫

0

(Φh(x− y) − Φh(x + y))ky dy =

∫ δ

−δ
Φh(x− y)κy dy = κ

∫ δ−x

−δ−x
Φh(z)(x+ z) dz.(58)

Combining (57) and (58), we obtain

v(x, h) ≥ κx
∫ δ−x

−δ−x
Φh(z) dz +H

∫ δ+x

δ−x
Φh(z) dz + κ

∫ δ−x

−δ−x
zΦh(z) dz−

C(α)hxL−1−2α‖v0‖L∞ .(59)

Now we split the proof into several parts according to the regions being con-
sidered.
I. Estimate for 0 ≤ x ≤ δ = H/κ. Observe that for 0 ≤ x ≤ δ/2, the contribution
of the second and third integrals in (59) is positive. Indeed, it is equal to

∫ δ+x

δ−x

(H − κz)Φh(z) dz,

which is positive due to monotonicity of Φh(z) and equality H = κδ. Thus, in this
interval of x we simply estimate v by dropping the combined contribution of the
second and the third integrals:

v(x, h) ≥ κx
∫ δ/2

−δ
Φh(z) dz − C(α)hxL−1−2α‖v0‖L∞ ≥

κx(1 − C(α)hδ−2α) − C(α)xhL−1−2α‖v0‖L∞ ≥ κx(1 − C(α)hδ−2α).

Here we also decreased the interval of integration and used (47).
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For δ/2 ≤ x ≤ δ we combine together the first and the second integral and
notice that H = κδ ≥ κx:

v(x, h) ≥ κx

∫ δ+x

−δ−x

Φh(z) dz + κ

∫ δ−x

−δ−x

zΦh(z) dz

−C(α)hxL−1−2α‖v0‖L∞ ≥ κx

∫ δ

−δ

Φh(z) dz −

κ

∫ 2δ

0

zΦh(z) dz − C(α)hxL−1−2α‖v0‖L∞ ≥

κx(1 − C(α)hδ−2α) − C(α)κhδ1−2α

−C(α)xhL−1−2α‖v0‖L∞ ≥ κx(1 − C(α)hδ−2α).

Here we again used (47) and (54). Combining the estimates together we have

(60) v(x, h) ≥ κx(1 − C(α)hδ−2α)

for 0 ≤ x ≤ δ.

II. Estimate for L − a ≤ x ≤ L case. The estimate is virtually identical to
the first case due to symmetry; δ has to be replaced by a. Thus, (we recall that
δ = Hκ−1 ≤ a by assumption of the lemma)

(61) v(x, h) ≥ H

a
(L − x)(1 − C(α)ha−2α) ≥ H

a
(L− x)(1 − C(α)hδ−2α),

for L− a ≤ x ≤ L.

III. Estimate for δ ≤ x ≤ L/2. Here estimates are similar to the first case. In
the last term in (59) we will just estimate x by L. Furthermore, observe that it
follows from (58) and monotonicity property of Φ that the sum of the first and
the third integrals in (59) is positive. For 2δ ≤ x ≤ L/2 we ignore the positive
combined contribution of the first and the third integrals:

v(x, h) ≥ H
∫ δ

−δ
Φh(z) dz − C(α)hL−2α‖v0‖L∞ ≥

H(1 − C(α)hδ−2α) − C(α)hL−2α‖v0‖L∞ ≥ H(1 − C(α)hδ−2α).

For δ ≤ x ≤ 2δ we combine the first and the second integrals and take into
account that κx ≥ κδ = H :

v(x, h) ≥ H
∫ δ+x

−δ−x
Φh(z) dz + κ

∫ δ−x

−δ−x
zΦh(z) dz − C(α)hL−2α‖v0‖L∞ ≥

H
∫ δ

−δ Φh(z) dz − κ
∫ 3δ

0 zΦh(z) dz − C(α)hL−2α‖v0‖L∞ ≥
H(1 − C(α)hδ−2α) − C(α)κhδ1−2α − C(α)hL−2α‖v0‖L∞ ≥ H(1 − C(α)hδ−2α).

Combining the estimates together we obtain

(62) v(x, h) ≥ H(1 − C(α)hδ−2α).

IV. Estimate for L/2 ≤ x ≤ L− a. By symmetry we obtain

v(x, h) ≥ H(1 − C(α)ha−2α) ≥ H(1 − C(α)hδ−2α).(63)

Together, (63), (62), (61) and (60) complete the proof.
Combining Proposition 4.3 and Lemmas 4.5 and 4.6, we obtain
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Theorem 4.7. Assume that the initial data u0(x) is 2L-periodic, odd, u0(L) =
0, and u0(x) ≥ ϕ(κ,H, a, x). Suppose that (54) holds with v0 replaced by u0. Assume
also that the solution u(x, t) of the equation (1) with initial data u0(x) satisfies
‖u(x, t)‖C3 ≤ N for 0 ≤ t ≤ T. Then for every h ≤ h0(α,N) small enough, we
have for 0 ≤ x ≤ L

(64) u(x, h) ≥ ϕ(κ̃, H̃, a+ h‖u0‖L∞ , x),

where

(65) κ̃ = κ(1 − C(α)κ2αH−2αh)(1 − κh)−1 − C(α,N)h2

and

(66) H̃ = H(1 − C(α)κ2αH−2αh) − C(α,N)h2.

Proof. We can clearly assume that κh ≤ 1/2; in view of our assumptions on
u0, h ≤ 1/2N is sufficient for that. Then Lemmas 4.5 and 4.6 together ensure that
the time splitting solution v(x, h) of (43) and (44) satisfies for 0 ≤ x ≤ L
(67)
v(x, h) ≥ ϕ(κ(1−C(α)κ2αH−2αh)(1−κh)−1, H(1−C(α)κ2αH−2αh), a+‖u0‖L∞h, x).

Furthermore, Proposition 4.3 allows us to pass from the lower bound on v(x, h) to
lower bound on u(x, h), leading to (64), (65), (66).

From Theorem 4.7, we immediately infer

Corollary 4.8. Under assumptions of the previous theorem and the additional
assumption stated below, for all h small enough we have for 0 ≤ x ≤ L and 0 ≤
nh ≤ T

(68) u(x, nh) ≥ ϕ(κn, Hn, an, x).

Here

(69) κn = κn−1(1 − C(α)κ2α
n−1H

−2α
n−1h)(1 − κn−1h)

−1 − C(α,N)h2,

(70) Hn = Hn−1(1 − C(α)κ2α
n−1H

−2α
n−1h) − C(α,N)h2,

and

(71) an = a+ nh‖u0‖L∞ .

The corollary only holds assuming that for every n, we have

(72) Hnκ
−1
n ≤ an, L ≥ 4an, L−2α‖u0‖L∞ ≤ 4Hna

−2α
n .

To study (69) and (70), we introduce the following system of differential equa-
tions:

(73) κ′ = κ2 − C(α)κ1+2αH−2α; H ′ = −C(α)κ2αH1−2α.

Lemma 4.9. Assume that [0, T ] is an interval on which the solutions of the
system (73) satisfy |κ(t)| ≤ 2N, 0 < H1(α) ≤ H(t) ≤ H0(α). Then for every ǫ > 0,
there exists h0(α,N, ǫ) > 0 such that if h < h0, then κn and Hn defined by (69)
and (70) satisfy |κn − κ(nh)| < ǫ, |Hn −H(nh)| < ǫ for every n ≤ [T/h].
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Proof. This is a standard result on approximation of differential equations by a
finite difference scheme. Observe that the assumptions on κ(t) and H(t) also imply
upper bounds on κ′(t), κ′′(t), H ′(t) and H ′′(t) by a certain constant depending
only on N and α. The result can be proved comparing the solutions step-by-step
inductively. Each step produces an error not exceeding C1(α,N)h2, and the total
error over [T/h] steps is estimated by C1(α,N)h. Choosing h0(α,N, ǫ) sufficiently
small completes the proof.

The final ingredient we need is the following lemma on the behavior of solutions
of the system (73).

Lemma 4.10. Assume that the initial data for the system (73) satisfy

(74) H2α
0 κ1−2α

0 ≥ C(α)/(1 − 2α).

Then on every interval [0, T ] on which the solution makes sense (that is, κ(t)
bounded), the function H(t)2ακ1−2α(t) is non-decreasing.

Proof. A direct computation shows that

(

H(t)2ακ1−2α(t)
)′

= (1 − 2α)κ(t)

(

H(t)2ακ(t)1−2α − C(α)

1 − 2α

)

.

Now we are ready to complete the blow up construction.
Proof. [Proof of Theorem 1.4] Set κ0 to be large enough, in particular

(75) κ0 =

(

3C(α)

1 − 2α

)
1

1−2α

will do. Set H0 = 1, a = κ−1
0 , T (α) = 3

2κ0
. Choose L so that

(76) L ≥ 16a.

The initial data u0(x) will be a smooth, odd, 2L−periodic function satisfying
u0(L) = 0 and u0(x) ≥ ϕ(κ0, H0, a, x). We will also assume ‖u0‖L∞ ≤ 2H0. Ob-
serve that H0 and κ0 are chosen so that in particular the condition (74) is satisfied.
From (73) and Lemma 4.10 it follows that

(77) κ′ = κ2 − C(α)κ1+2αH−2α ≥ 2

3
κ2.

This implies κ(t) ≥ 1
κ−1

0
− 2

3
t
. In particular, there exists t0 < T (α) such that κ(t0) =

2N for the first time. Note that due to (77), for 0 ≤ t ≤ t0 we have

(78) κ(t) ≤ 1
2
3 (t0 − t) + 1

2N

≤ 3/2

(t0 − t)
.

Rewrite the equation for H(t) as

(79) (H2α)′ = −2C(α)ακ2α.

Using the estimate (78) in (79), we get that for any 0 ≤ t ≤ t0,

H2α(t) ≥ H2α
0 − 2C(α)α

∫ t0

0

κ2α(s) ds ≥ H2α
0 (1 − α).

We used the fact that H0 = 1, t0 < T (α) = 3
2κ0

and (75). Now we can apply

Lemma 4.9 on the interval [0, t0]. Choosing ǫ and h sufficiently small, we find that
for 0 ≤ nh ≤ t0, κn ≥ 1 and Hn ≥ (1 − α)1/2αH0 ≥ H0/2. Also, evidently,
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an ≤ a+ 2H0T (α) = 4a. This allows us to check that the conditions (72) hold on
each step due to the choice of L (76), justifying control of the true PDE dynamics
by the system (73).

From Lemma 4.9 and κ(t0) = 2N , we also see that, given that h is sufficiently
small, κn0

≥ 3N/2 for some n0 such that n0h ≤ t0 < T (α). Thus Corollary 4.8
provides us with a lower bound u(0, n0h) = 0, u(x, n0h) ≥ 3Nx/2 for small enough
x. This contradicts our assumption that ‖u(x, t)‖C3 ≤ N for 0 ≤ t ≤ T (α), thus
completing the proof.

We obtained blow up in the case where period 2L was sufficiently large (depend-
ing only on α). However, examples of blow up with arbitrary periodic data follow
immediately from a scaling argument. Indeed, assume u(x, t) is a 2L−periodic so-
lution of (1). Then u1(x, t) = L−1+2αu(Lx,L2αt) is a 2−periodic solution of the
same equation. Thus a scaling procedure allows to build blow up examples for any
period.

Remark. Formally we proved the blow up only in C3 class. But since global
regularity in Hs class for s > 3

2 − 2α provides global regularity in C∞ (see The-
orem 1.2), we can conclude that we constructed a blow up in Hs class for every
s > 3

2 − 2α.

5. Global existence and regularity for rough initial data for the case

α = 1/2

In this section we present some results on existence of regular solution for
α = 1/2 and rough initial data. More precisely, we prove that the solution becomes
smooth starting from any initial data of the class Lp, p > 1. It is natural that
the result can be obtained for the case α > 1/2 by more traditional means. In the
present section we consider the case α = 1/2 only.

Consider the equation

(80) ut = uux − (−∆)1/2u, u(x, 0) = u0(x),

with u0 ∈ Lp for some p > 1. Let us look first at the approximating equation

(81) uN
t = uNuN

x − (−∆)1/2uN , uN(x, 0) = uN
0 (x),

where uN
0 ∈ C∞ and ‖uN

0 − u0‖Lp → 0 as N → ∞. We need the following fact.

Lemma 5.1. Assume that a smooth function w(x, t) satisfies the equation (80)
with smooth initial data w0(x). Then for every 1 < p ≤ ∞ and every t, we have
‖w(x, t)‖Lp ≤ ‖w0(x)‖Lp .

This Lemma can be proven in the same way as a corresponding result for the
quasi-geostrophic equation, using the positivity of

∫

|w|p−2w(−∆)αw dx. See [16]
or [10] for more details.

We divide our proof of regularity into three steps.
Step I. Here we prove uniform (in N) estimates for the L∞ norm. Put

MN (t) := ‖uN(·, t)‖L∞ .
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Fix t ≥ 0. Consider any point x0 where |uN(x0, t)| = MN . Without loss of
generality, we may assume that x0 = 0 and uN(0, t) = MN . Then

(82) uN
t (0, t) = (−(−∆)1/2uN )(0, t) =

1

π

∞
∫

−∞

uN(y, t) −MN

y2
dy.

Denote Lebesgue measure of a measurable set S by m(S). Since by Lemma 5.1 we
have

‖uN‖p
Lp ≤ C,

we obtain that

m (x| |uN(x, t)| ≥MN/2
)

≤ C2pM−p
N .

Then the right hand side of (82) does not exceed

−MN

∫

L≥|y|≥C2p−1/Mp
N

y−2dy.

Here 2L is the period. Then

(83) uN
t (0, t) < −C1M

p+1
N + C2MN .

The same bound holds for any point x0 where MN is attained and by continuity in
some neighborhoods of such points. So, we have (83) in some open set UN . Due to
smoothness of the approximating solution, away from UN we have

max
x 6∈UN

|uN(x, τ)| < MN (τ)

for every τ during some period of time [t, t+ τN ], τN > 0. Thus we obtain that

(84)
d

dt
MN < −C1M

p+1
N + C2MN .

Solving equation (84), we get the uniform estimate

Mp
N (t) ≤ eC2pt

M−p
N (0) + C1

C2
(eC2pt − 1)

≤ C2

C1(1 − e−C2pt)
.

In particular,

(85) t1/p‖uN‖L∞ ≤ C, t ≤ 1.

Step II. Here we obtain uniform in N estimates on the approximations uN that
will imply smoothness of the solution. We will use the construction similar to the
one appearing in the proof of Theorem 3.1.

Clearly, it is sufficient to work with t ≤ 1. Let us define

G(t) = inf0≤ω(x)≤Ct−1/p

ω(x)

x
,

where C is as in (85). Observe that, since ω is concave and increasing, the function
G(t) is equal to Ct−1/p/ω−1(Ct−1/p). Define also

(86) F (t) =





t
∫

0

G(s) ds





−1

.

We claim that solution uN (x, t) has modulus of continuity ωF (t) for every t > 0 and

every N. Here ω is defined by (31). Let us fix an arbitrary N > 0. Since uN
0 and uN
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are both smooth and F (t) → ∞ as t → 0, it follows that uN (x, t) has ωF (t) for all
t < t0(N), t0(N) > 0. By the argument completely parallel to that of Lemma 3.4,
we can show that if the modulus of continuity ωF (t) is ever violated, then there
must exist t1 > 0 and x 6= y such that

uN(x, t1) − uN(y, t1) = ω(F (t1)|x− y|)
and uN (x, t) has ωF (t) for any t ≤ t1. Let us denote |x− y| by ξ. Now consider

∂

∂t

[

uN (x, t) − uN (y, t)

ω(F (t)ξ)

]∣

∣

∣

∣

t=t1

=
∂t(u

N (x, t) − uN (y, t))|t=t1ω(F (t1)ξ)

ω(F (t1)ξ)2
(87)

−ω(F (t1)ξ)F
′(t1)ξω′(F (t1)ξ)

ω(F (t1)ξ)2
.

It follows from the proof of Theorem 3.1 (see (33), (34)) that

d

dt

(

uN(x, t) − uN(y, t)
)

∣

∣

∣

∣

t=t1

< −ω(F (t1)ξ)
d

dξ
ω(F (t1)ξ).

Thus the numerator on the right hand side of (87) is smaller than

−ω(F (t1)ξ)
2ω′(F (t1)ξ)F (t1) − ω(F (t1)ξ)F

′(t1)ω
′(F (t1)ξ)ξ.

The numerator is strictly negative as far as

(88) − F ′(t1)

F (t1)2
≤ ω(F (t1)ξ)

F (t1)ξ
.

Notice that by (85), we have

ω(F (t1)ξ) = uN(x, t1) − uN (y, t1) ≤ 2Ct
−1/p
1 .

Using the definition of the function G(t), we obtain the estimate

ω(F (t1)ξ)

F (t1)ξ
≥ G(t1).

Thus (88) is satisfied if
(

1

F

)′
≤ G(t),

which is correct by definition of F. Therefore we obtain

∂

∂t

[

uN(x, t) − uN(y, t)

ω(F (t)ξ)

]∣

∣

∣

∣

t=t1

< 0.

Since N was arbitrary, it follows that u(x, t) has the modulus of continuity ωF (t)

for any t > 0, and thus

(89) F (t)‖uN‖W 1
∞

≤ C, t ≤ 1.

To obtain higher order regularity of the solution we apply arguments from the proof
of Theorem 2.4. We start with s = 1, q = 1. We can repeat the proof step by step.
The only difference is that now we will use the estimate (89) instead of uniform
bound for the norm ‖uN‖1. Finally, we obtain the estimates

(90) Fn(t)‖uN (·, t)‖1+ n
2
≤ Cn, n ≥ 1, t ≤ 1,

with some functions Fn which can be calculated inductively. Now, we can choose
a subsequence Nj (cf. proof of Theorem 2.5) such that uNj → u as Nj → ∞ and
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function u satisfies differential equation (80) as well as the bounds (85), (89), (90)
on (0, 1].

Step III. Here we prove that the function u can be chosen to satisfy the initial
condition.

Lemma 5.2. Assume that p ∈ (1,∞). Then ‖u(·, t) − u0(·)‖Lp → 0 as t→ 0.

Proof. Let ϕ(x) be an arbitrary C∞ function. Put

gN(t, ϕ) := (uN , ϕ) =

∫

uN(x, t)ϕ(x)dx.

Obviously, gN(·, ϕ) ∈ C([0, 1]). We will use the estimate (18):

(91)

∫ 1

0

|gN
t |1+δ dt ≤ C

(∫ 1

0

‖uN‖2+2δ
L2 ‖ϕ‖1+δ

W 1
∞

dt+

∫ 1

0

‖uN‖1+δ
L2 ‖ϕ‖1+δ

2α dt

)

,

which holds for any δ > 0. Put δ := 1 if p ≥ 2 and δ := (p− 1)/(2− p) if 1 < p < 2.
Due to (85) we obtain

(92) ‖uN‖2
L2 ≤ ‖uN‖2−p

L∞ ‖uN‖p
Lp ≤ Ct−

2−p
p , t ≤ 1.

Substituting (92) into (91) we see that ‖gN
t (·, ϕ)‖L1+δ ≤ C(ϕ). By the same argu-

ment as used in the proof of Theorem 2.5 we conclude that there exists a subse-
quence uNj such that for any ϕ ∈ Lp′

the sequence (uNj , ϕ) tends to (u, ϕ) uniformly
on [0, 1].

Next,

(93) |(u− u0, ϕ)| ≤ |(u − uNj , ϕ)| + |(uNj − u
Nj

0 , ϕ)| + |(uNj

0 − u0, ϕ)|.
The first and the third terms in the right hand side of the (93) can be made small
uniformly on [0, 1] by choosing sufficiently large Nj. The second term tends to zero
as t → 0 for every fixed Nj. Thus u(·, t) converges to u0(·) as t → 0 weakly in Lp.
In particular,

(94) ‖u0(·)‖Lp ≤ lim inf
t→0

‖u(·, t)‖Lp .

Due to monotonicity property of Lemma 5.1 we have

(95) ‖u0(·)‖Lp ≥ lim sup
t→0

‖u(·, t)‖Lp .

Thus ‖u0(·)‖Lp = limt→0 ‖u(·, t)‖Lp . Now, it follows from uniform concavity of
the space Lp, p ∈ (1,∞), that weak convergence and convergence of norms imply
convergence in the norm sense.

Let us combine the results in the following theorem.

Theorem 5.3. Let u0 ∈ Lp for some p ∈ (1,∞). Then there exists a solution
u(x, t) of the equation (80) such that u is real analytic for t > 0,

(96) ‖u(·, t) − u0(·)‖Lp → 0 as t→ 0;

(97) t1/p‖u(·, t)‖L∞ ≤ C(‖u0‖Lp), 0 < t ≤ 1;

(98) F (t)−1‖u(·, t)‖W 1
∞

≤ C(‖u0‖Lp), 0 < t ≤ 1;

Here F is defined in (86).
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Remark 1. If u0 ∈ Hs for some s > 1/2 then u converges to u0 in the Hs norm as
well. However, the question whether we have convergence in Hr norm if u0 ∈ Hr,
0 < r < 1/2, is still open. For the case r = 1/2 the answer is positive (see Section
6).
Remark 2. Another interesting open question is the uniqueness of the solution from
Theorem 5.3. Due to the highly singular nature of estimates as t approaches zero,
the usual uniqueness argument based on some sort of Gronwall inequality does not
seem to go through.

6. The critical Sobolev space

Here we show that the results of Theorems 1.1, 1.2, 1.3, 1.4, 2.5, 3.1 and 3.2
hold for s = 3/2 − 2α, as well.

Assume that u0 ∈ Hs, s ≥ q = 3/2 − 2α, 1 > α > 0. We introduce the
following Hilbert spaces of periodic functions. Let ϕ : [0,∞) → [1,∞) be an
unbounded increasing function. Then Hs,ϕ consists of periodic functions f ∈ L2

such that its Fourier coefficients satisfy

(99) ‖f‖2
Hs,ϕ :=

∑

n

|n|2s(ϕ(|n|))2|f̂(n)|2 <∞.

Note that u0 ∈ Hs,ϕ for some function ϕ. Without loss of generality we may
assume, in addition, that ϕ ∈ C∞ and

(100) ϕ′(x) ≤ Cx−1ϕ(x)

for some constant C. It follows from (100) that

(101) ϕ(2x) ≤ 2Cϕ(x).

We start from Galerkin approximations. Consider the sum arising from the non-
linear term when estimating the Hs norm of the solution:

S :=
∑

a+b+k=0,|a|,|b|,|k|≤N

k|k|2s(ϕ(|k|))2ûN (a)ûN (b)ûN(k).

In what follows, for the sake of brevity, we will omit mentioning restrictions |a|, |b|, |k| ≤
N in notation for the sums; all sums will be taken with this restriction. Observe
that (cf. (6))

|S| ≤ 6
∑

k+a+b=0,|a|≤|b|≤|k|
|k|k|2s(ϕ(|k|))2 + a|a|2s(ϕ(|a|))2

+b|b|2s(ϕ(|b|))2||ûN (k)ûN (a)ûN (b)|.(102)

Recall that under conditions |a| ≤ |b| ≤ |k|, a+b+k = 0, we have |a| ≤ |k|/2, |b| ≥
|k|/2. Next, due to (100) and (101) we estimate

|k|k|2s(ϕ(|k|))2 + a|a|2s(ϕ(|a|))2 + b|b|2s(ϕ(|b|))2| =

|b(|b|2s(ϕ(|b|))2 − |b+ a|2s(ϕ(|b + a|))2) + a(|a|2s(ϕ(|a|))2 − |k|2s(ϕ(|k|))2| ≤
C|a||k|2s(ϕ(|k|))2 ≤ C|a||b|sϕ(|b|)|k|sϕ(|k|).

(103)

Fix M > 0 to be specified later. Notice that sum over |k| ≤ M in (102) can be
bounded by a constant C(M). Splitting summation in a over dyadic shells scaled



238 ALEXANDER KISELEV, FEDOR NAZAROV, AND ROMAN SHTERENBERG

with |k|, define

S1(l) =
∑

k+a+b=0,|b|≤|k|,|k|≥M,|a|∈[2−l−1|k|,2−l|k|]
|a|1−2α|b|s+α

ϕ(|b|)|k|s+αϕ(|k|)|ûN (k)ûN (a)ûN (b)|.
Then due to (103) and the relationship between a, b and k in the summation for S
we have

(104) |S| ≤ C

∞
∑

l=1

2−2lαS1(l) + C(M).

Think of S1(l) as a quadratic form in ûN(k) and ûN(b). Then applying Schur test
to each S1(l) we obtain

S1(l) ≤ ‖uN‖2
Hs+α,ϕ · sup

|k|≥M

∑

|a|∈[2−l−1|k|,2−l|k|]
|a|1−2α|ûN(a)| ≤

C‖uN‖2
Hs+α,ϕ‖uN‖Hq,ϕ (ϕ(2−lM))−1.

(105)

Next, note that

∞
∑

l=1

2−2lαS1(l) =

l0
∑

l=1

2−2lαS1(l) +

∞
∑

l=l0

2−2lαS1(l) ≤

C‖uN‖2
Hs+α,ϕ‖uN‖Hq,ϕ

(

1

1 − 2−2α
(ϕ(2−l0M))−1 +

2−2l0α

1 − 2−2α

)

.

(106)

Given ǫ > 0, we can choose, first, sufficiently large l0 and then sufficiently large M
to obtain from (104), (106) and unboundedness of ϕ

(107) |S| ≤ Cǫ‖uN‖2
Hs+α,ϕ‖uN‖Hq,ϕ + C(M(ǫ)).

It follows from (4) and (107) that
(108)
d

dt
‖uN‖2

Hs,ϕ ≤ (Cǫ‖uN‖Hq,ϕ − 1)‖uN‖2
Hs+α,ϕ + C(ǫ), s ≥ q = 3/2 − 2α, α > 0.

Using this estimate and the same arguments as before we can extend the results of
Theorems 1.1, 1.2, 1.3, 1.4, 2.5, 3.1 and 3.2 to the case s = 3/2 − 2α, α > 0. Here
we formulate them for convenience of future references.

Theorem 6.1. Assume that α > 1/2, and the initial data u0(x) ∈ Hs, s ≥
3/2−2α, s ≥ 0. Then there exists a global solution of the equation (1) u(x, t) which
belongs to C([0,∞), Hs) and is real analytic in x for t > 0.

Theorem 6.2. Assume α = 1/2, and u0 ∈ Hs, s ≥ 1/2. Then there exists a
global solution u(x, t) of (1) which belongs to C([0,∞), Hs) and is real analytic in
x for t > 0. If v is another weak solution of (1) with initial data u0 such that
v ∈ C([0, T ], L2) ∩ L3/2δ([0, T ], Hδ) with some δ ∈ (1/2, 1], then v coincides with u
on [0, T ].

Theorem 6.3. Assume that 0 < α < 1/2, and the initial data u0(x) ∈ Hs,
s ≥ 3/2 − 2α. Then there exists T = T (α, u0) > 0 such that there exists a weak
solution of the equation (1) u(x, t) ∈ C([0, T ], Hs) ∩ L2([0, T ], Hs+α). Moreover,
u(x, t) ∈ C∞ for any 0 < t < T. If v is another weak solution of (1) with initial
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data u0 such that v ∈ C([0, T ], L2) ∩ L3/2δ([0, T ], Hδ) with some δ ∈ (1/2, 1], then
v coincides with u.

Theorem 6.4. Assume that 0 < α < 1/2. Then there exists smooth periodic
initial data u0(x) such that the solution u(x, t) of (1) blows up in Hs for each
s ≥ 3

2 − 2α in a finite time.

Theorem 6.5. Assume that s ≥ 3/2 − 2α, s ≥ 0, α > 0, and u0 ∈ Hs. Then
there exists T = T (α, u0) > 0 and a solution u(x, t) of (1) such that

(109) u ∈ L2([0, T ], Hs+α) ∩C([0, T ], Hs);

(110) tn/2u ∈ C((0, T ], Hs+nα) ∩ L∞([0, T ], Hs+nα)

for every n > 0.

Remark. If s > 3/2 − 2α then T (α, u0) = T (α, ‖u0‖s). If s = 3/2 − 2α
then u0 ∈ Hs,ϕ for some function ϕ described at the beginning of the section and
T (α, u0) = T (α, ϕ, ‖u0‖Hs,ϕ).
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