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The Existence of Chaos in Infinite Dimensional

Non-Resonant Systems
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Communicated by Y. Charles Li, received July 21, 2008.

Abstract. This work is concerned with showing the existence of chaotic dy-
namics in the flow generated by an infinite system of strongly coupled ordinary
differential equations with a finite dimensional hyperbolic part and an infinite
dimensional center part. This theory can be applied to partial differential
equations by using a Galerkin expansion which is illustrated by the problem
of oscillations of a buckled elastic beam.
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1. Introduction

To motivate the ideas of this work consider the partial differential equation

(1.1) ü = −u′′′′ − P0u
′′ +

[∫ π

0

u′(s)2 ds

]

u′′ − 2µ2u̇+ µ1 cosω0t

where P0, µ1, µ2, ω0 are constants and u is a real valued function of two variables
t ∈ R, x ∈ [0, π], subject to the boundary conditions

u(0, t) = u(π, t) = u′′(0, t) = u′′(π, t) = 0 .
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Figure 1. The forced buckled beam (1.1).

In (1.1), a superior dot denotes differentiation with respect to t and prime differ-
entiation with respect to x. This is a model for oscillations of an elastic beam with
a compressive axial load P0 (see Figure 1). When P0 is sufficiently large, (1.1) can
exhibit chaotic behavior. The first work on this was done by Holmes and Marsden
[18]. Some more recent work on the full equation is by Rodrigues and Silveira [32],
by Berti and Carminati [4] and by Battelli, Fečkan and Franca [2]. An undamped
buckled beam is investigated by Yagasaki [41] to show Arnold diffusion type mo-
tions. We will discuss some of this in more detail when we return to this problem
in Section 5.

In (1.1) substitute u(x, t) =
∞∑

k=1

uk(t) sin kx, multiply by sinnx and integrate

from 0 to π. This yields the infinite set of ordinary differential equations

ün = n2(P0 − n2)un − π

2
n2

[ ∞∑

k=1

k2u2
k

]

un − 2µ2u̇n + 2µ1

[
1 − (−1)n

πn

]

cosω0t,

n = 1, 2, . . . .

We see that the linear parts of these equations are uncoupled and the equations
divide into two types. The system of equations defined by 1 ≤ n2 < P0 has a
hyperbolic equilibrium at the origin whereas, for the system of equations satisfying
n2 ≥ P0, this equilibrium is a center.

For simplicity let us assume 1 < P0 < 4. Then only the equation with n = 1
is hyperbolic while the system of remaining equations has a center. To emphasize
this let us define p = u1 and qn = un+1, n = 1, 2, . . .. The preceding equations now
take the form



THE EXISTENCE OF CHAOS 187

p̈ = a2p− π

2

[

p2 +
∞∑

k=1

(k + 1)2q2k

]

p− 2µ2ṗ+
4

π
µ1 cosω0t, (1.2a)

q̈n = −ω2
nqn − π

2
(n+ 1)2

[

p2 +

∞∑

k=1

(k + 1)2q2k

]

qn

−2µ2q̇n + 2µ1

[
1 − (−1)n+1

π(n+ 1)

]

cosω0t , (1.2b)

n = 1, 2, . . .

where we have defined a2 = P0 − 1 and ω2
n = (n+ 1)2

[
(n+ 1)2 − P0

]
.

In (1.2) we project onto the hyperbolic subspace by setting q = 0 in (1.2a) to
obtain what we shall call the reduced equation. In our example this is

(1.3) p̈ = a2p− π

2
p3 − 2µ2ṗ+

4

π
µ1 cosω0t.

We see that this is the forced, damped Duffing equation with negative stiffness for
which standard theory yields chaotic dynamics. The purpose of the present work
is to show that the chaotic dynamics of (1.3) are, in some sense, shadowed in the
dynamics of the full equation (1.2).

To put our example in first order form we define x = (p, ṗ) and

y = (q1, q̇1/ω1, q2, q̇2/ω2, . . .).

The equations (1.2) now become

ẋ1 = x2 , (1.4a)

ẋ2 = a2x1 −
π

2

[

x2
1 +

∞∑

k=1

(k + 1)2y2
2k−1

]

x1

−2µ2x2 +
4

π
µ1 cosω0t , (1.4b)

ẏ2n−1 = ωny2n , (1.4c)

ẏ2n = −ωny2n−1 −
π

2

(n+ 1)2

ωn

[

x2
1 +

∞∑

k=1

(k + 1)2y2
2k−1

]

y2n−1

−2µ2y2n + 2µ1

[
1 − (−1)n+1

π(n+ 1)ωn

]

cosω0t. (1.4d)

For these equations we define the Hilbert space

Y =

{

y = {yn}∞n=1

∣
∣ yn ∈ R,

∞∑

n=1

ω2
n(y2

2n−1 + y2
2n) <∞

}

with inner product 〈u, v〉 =
∞∑

n=1
ω2

n(u2n−1v2n−1 + u2nv2n). By a weak solution

to (1.4) we mean a pair of functions x0 : R → R
2, y0 : R → Y such that x0

is differentiable and y0 has a derivative ẏ0 → ℓ2 and which satisfy (1.4a), (1.4b)
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pointwise in R
2; (1.4c), (1.4d) pointwise in ℓ2. Note that in this case we have

(u1, u2, . . .) = (x, p1, p2, . . .), x2 +
∞∑

n=1

ω2
np

2
n <∞,

(u̇1, u̇2, . . .) = (ẋ, ṗ1, ṗ2 . . .) ∈ ℓ2

so that for the original differential equation (1.1), u ∈ H
2(0, π) ∩ H

1
0(0, π) and

u̇ ∈ L
2(0, π). This is discussed in [10].

In the next section we will formulate an abstract problem for which the hy-
potheses will consist of the essential features of (1.4). We have already mentioned
one of these: when y is set equal to zero in (1.4a) the resulting equation is the
transverse perturbation of an autonomous equation with a homoclinic solution.

To see another important property we linearize (1.4c), (1.4d) about the origin
which yields the system of equations

(1.5)
v̇2n−1 = ωnv2n,
v̇2n = −ωnv2n−1 − 2µ2v2n

}

n = 1, 2, . . . .

Note that for each n we get a pair of equations uncoupled from the others and for
|µ2| < ωn we have a fundamental solution for (v2n−1, v2n) given by

Vn(t) =





cos ω̃nt+
µ2

ω̃n

sin ω̃nt
ωn

ω̃n

sin ω̃nt

−ωn

ω̃n

sin ω̃nt cos ω̃nt− µ2

ω̃n

sin ω̃nt



 e−µ2t

where ω̃n =
√

ω2
n − µ2

2. This solution has the properties Vn(0) = I and

|Vn(t)Vn(s)−1| = |Vn(t)Vn(−s)| = |Vn(t− s)| ≤ K eµ2(s−t)

where K > 0 is independent of n.
Using the sequence {Vn}∞n=1 we can define a group {Vµ2

(t)} of bounded oper-
ators from Y to Y by

[
(Vµ2

(t)y)2n−1

(Vµ2
(t)y)2n

]

= Vn(t)

[
y2n−1

y2n

]

.

Then |Vµ2
(t)Vµ2

(s)−1| ≤ K eµ2(s−t). For y0 ∈ Y, y(t) = Vµ2
(t)y0 is the weak

solution to (1.5) satisfying y(0) = y0.
If we retain the forcing term from (1.4d) we obtain the system of nonhomoge-

neous variational equations

v̇2n−1 = ωnv2n ,

v̇2n = −ωnv2n−1 − 2µ2v2n + µ1νn cosω0t ,

where νn =
2[1 − (−1)n+1]

π(n+ 1)ωn

.

Here we encounter the question of resonance. In the nonresonant case, i.e.
ωn 6= ω0, the preceding has a particular solution in Y with components given by

[
v2n−1(t)
v2n(t)

]

=
µ1νn

(ω2
n − ω2

0)
2 + 4µ2

2ω
2
0

[
ωn(ω2

n − ω2
0) cosω0t+ 2µ2ω0ωn sinω0t

−ω0(ω
2
n − ω2

0) sinω0t+ 2µ2ω
2
0 cosω0t

]

We make the existence of such a solution a separate hypothesis.
Finally, we mention others works on chaos in partial differential equations. For

the complex Ginzburg-Landau equation in the near nonlinear Schrödinger regime
(i.e. perturbed nonlinear Schrödinger equation), existence of homoclinic orbits is
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proved by Li, McLaughlin, Shatah and Wiggins [21, 27, 28], and existence of
chaos is shown by Li [22, 23] under generic conditions. For perturbed sine-Gordon
equation, existence of chaos and chaos cascade around a homoclinic tube was proved
by Li [24, 25, 26]. For the reaction-diffusion equation, entropy study on the
complexity of attractor is conducted by Zelik [36, 37, 38]. Chaotic oscillations of
a linear wave equation with nonlinear boundary conditions are shown by Chen, Hsu
and Zhou [6]. The development of chaos and its controlling for PDEs is summarized
by Zhao [39]. Chaos for elastic beams is shown by Battelli and Fečkan [1].

2. The Abstract Problem

Using the example in the preceding section as a model we now develop an
abstract theory. Let Y and H be separable real Hilbert spaces with Y ⊂ H.

We now consider differential equations of the form

(2.1)
ẋ = f(x, y, µ, t) = f0(x, y) + µ1f1(x, y, µ, t) + µ2f2(x, y, µ, t) ,
ẏ = g(x, y, µ, t) = Ay + g0(x, y) + µ1ν cosω0t+ µ2g2(x, y, µ) ,

with x ∈ R
n, y ∈ Y, µ = (µ1, µ2) ∈ R

2, ν ∈ Y. We make the following assumptions
about (2.1):

(H1) A : Y → H is a continuous and linear transformation.
(H2) The functions fi and gi are in the spaces:

f0 ∈ C4(Rn × Y,Rn); f1, f2 ∈ C4(Rn × Y × R
2 × R,Rn);

g0 ∈ C4(Rn × Y,Y); g2 ∈ C4(Rn × Y × R
2,Y) .

(H3) f1 and f2 are periodic in t with period T = 2π/ω0.
(H4) f0(0, 0) = 0 and D2f0(x, 0) = 0.
(H5) The eigenvalues of D1f0(0, 0) lie off the imaginary axis.
(H6) The equation ẋ = f0(x, 0) has a nontrivial solution homoclinic to x = 0.
(H7) g0(x, 0) = g2(x, 0, µ) = 0, D12g0(0, 0) = 0 and D22g0(x, 0) = 0.
(H8) There are constants K > 0, δ > 0 and b > 0 so that when 0 ≤ |µ2| ≤ δ

the variational equation

v̇ =
(
A+ µ2D2g2(0, 0, 0)

)
v

has a group {Vµ2
(t)} of bounded evolution operators from Y to Y satisfying

|Vµ2
(t)Vµ2

(s)−1| ≤ K ebµ2(s−t).
(H9) There is a constant K > 0 such that the nonhomogeneous variational

equation

v̇ = [A+ µ2D2g2(0, 0, 0)]v + µ1ν cosω0t

has a particular solution ψ : R → Y satisfying |ψ(t)| ≤ K|µ1||ν|.
By a weak solution to (2.1) we mean a pair of continuous functions x0 : R → R

n,
y0 : R → Y such that x0 is differentiable and y0 has a derivative ẏ0 : R → H and
which satisfy (2.1) pointwise in H.

By (H8) we mean that Vµ2
(s)−1 = Vµ2

(−s), Vµ2
(s) ◦ Vµ2

(t) = Vµ2
(s + t),

Vµ2
(0) = I and that for y0 ∈ Y, y(t) = Vµ2

(t)y0 is the weak solution to v̇ =
[A+ µ2D2g2(0, 0, 0)] v satisfying y(0) = y0.
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3. Chaos on the Hyperbolic Subspace

The reduced system of equations for (2.1) is

(3.1) ẋ = f(x, 0, µ, t) = f0(x, 0) + µ1f1(x, 0, µ, t) + µ2f2(x, 0, µ, t)

with x ∈ R
n. In [3, 13, 14, 15] a general Melnikov theory is developed for first

order systems in R
n. We summarize those results here as applied to (3.1).

By (H6), (3.1) has a nontrivial homoclinic solution γ when µ = 0. By the
variational equation along γ we mean the linear equation

(3.2) u̇ = D1f0(γ, 0)u

and by the adjoint the system

(3.3) v̇ = −D1f0(γ, 0)∗v .

We let {u1, . . . , ud} denote a basis for the vector space of bounded solutions to
(3.2) with ud = γ̇ and we let {v1, . . . , vd} denote a basis for the vector space of
bounded solutions to (3.3). Now define the functions aij : R → R, constants bijk

and function

M : R
2 × R × R

d−1 → R
d

by

(3.4)

aij(α) =
∫ ∞
−∞ 〈vi(t), fj(γ(t), 0, 0, t+ α)〉 dt ;

i = 1, . . . , d; j = 1, 2 ;

bijk =
∫ ∞
−∞ 〈vi, D11f0(γ, 0)ujuk〉 dt ;

i = 1, . . . , d; j, k = 1, . . . , d− 1 ;

Mi(µ, α, β) =
2∑

j=1

aij(α)µj + 1
2

d−1∑

j,k=1

bijkβjβk ; 1 ≤ i ≤ d .

The function M is our bifurcation function and is used in Theorem 1 below.
Suppose that (3.2) has a (d − 1)-parameter family of homoclinic orbits given

by t→ γβ(t) with β ∈ U0 where U0 is an open neighborhood of the origin in R
d−1.

Then in (3.4) all bijk = 0, the hypotheses of Theorem 1 below cannot be satisfied
and an alternate bifurcation function is required.

For each fixed β we let {vβ1, . . . , vβd} denote a basis for the vector space of
bounded solutions to the adjoint equation v̇ = −D1f0(γβ , 0)∗v. Without loss of
generality we can assume that each vβi depends differentially on β. Now define
functions aij : R × U0 → R and M : R

2 × R × U0 → R
d by

(3.5)

aij(α, β) =
∫ ∞
−∞ 〈vβi(t), fj(γβ(t), 0, 0, t+ α)〉 dt ;

i = 1, . . . , d; j = 1, 2 ;

Mi(µ, α, β) =
2∑

j=1

aij(α, β)µj ; 1 ≤ i ≤ d .

This function, M , is the bifurcation function for this situation.
The concept of exponential dichotomy is important in our next consideration

so we state the definition for easy reference (cf. [7]).
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Definition 1. We say the linear differential equation ẋ = A1(t)x has an ex-
ponential dichotomy on R if its fundamental solution U has a projection P along
with constants (Ã, a) such that:

i): |U(t)PU(s)−1| ≤ Ã ea(s−t) for s ≤ t,

ii): |U(t)(I − P )U(s)−1| ≤ Ã ea(t−s) for t ≤ s.

The following result can be proved as in [3, 9, 15, 29, 30].

Theorem 1. Let M be as in (3.4) or (3.5) and suppose µ0, α0, β0 are such
that M(µ0, α0, β0) = 0 and D(α,β)M(µ0, α0, β0) is nonsingular. Then there exists
an interval J = (0, ξ0] such that for each ξ ∈ J the equation ẋ = f(x, 0, ξµ0, t) has
a homoclinic solution γξ to a small hyperbolic periodic solution.

Furthermore, γξ depends continuously on ξ,

lim
ξ→0

γξ(t) = γ(t− α0) (or = γβ0
(t− α0), respectively)

uniformly in t and the variational equation along γξ has an exponential dichotomy
on R.

We can use the preceding result to obtain chaos for (3.1) as follows: Let Σ
denote the space of doubly infinite sequences with entries from the set of integers
{0, 1}. The space Σ, endowed with the metric

d ({σn}n∈Z}, {σ′
n}n∈Z}) :=

∑

n∈Z

|σn − σ′
n|

2|n|+1
,

is a compact metric space. Let ϕ : Σ → Σ be the Bernoulli shift map defined by

ϕ
(
{σj}j∈Z

)
= {σ̃j}j∈Z, σ̃j = σj+1 .

The dynamics of ϕ is extremely rich as it is indicated in the next theorem [8, 19,
31, 35].

Theorem 2. ϕ is a homeomorphism having

i) a countable infinity of periodic orbits of all possible periods,
ii) an uncountable infinity of nonperiodic orbits, and
iii) a dense orbit.

Suppose Theorem 1 holds. Then we can show chaos for the differential equation
ẋ = f(x, 0, ξµ0, t) by establishing a topological conjugacy between ϕ and some
multiple of the period map of the flow for the differential equation [34, 35]. For
this, first, for any m ∈ N, ξ ∈ J and σ ∈ Σ define the function γξ,σ,m ∈ L∞(R,Rn)
by

γξ,σ,m(t) =

{
γξ(t− 2jmT ) if (2j − 1)mT < t ≤ (2j + 1)mT and σj = 1
0 if (2j − 1)mT < t ≤ (2j + 1)mT and σj = 0 .

We now use Theorem 1 to show chaos for (3.1) following [1, 11, 29, 30].

Theorem 3. a): Let µ0, α0, β0, ξ0 be as in Theorem 1. Fix ξ ∈ (0, ξ0]
and let γξ be obtained from Theorem 1. Then there exist an ε0 > 0 and a
function ε → M(ε) ∈ N such that given ε with 0 < ε ≤ ε0 and a positive
integer m ≥ M(ε) the equation ẋ = f(x, 0, ξµ0, t) has for each σ ∈ Σ a
unique solution t → xσ(t) satisfying

|xσ(t) − γξ,σ,m(t)| ≤ ε ∀t ∈ R .
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b): xσ depends continuously on σ and xσ(t + 2mT ) = xϕ(σ)(t) where ϕ is
the Bernoulli shift on Σ.

c): The correspondence φ(σ) = xσ(0) is a homeomorphism of Σ onto the
compact subset Λ of R

n given by

Λ := {xσ(0) | σ ∈ Σ}
on which the 2mth iterate F 2m of the period map F of (3.1) is invariant
and satisfies F 2m ◦ φ = φ ◦ ϕ.

Theorem 3 asserts that the following diagram is commutative

Σ
ϕ

//

φ

��

Σ

φ

��

Λ
F 2m

// Λ

This means that F 2m : Λ 7→ Λ has the same dynamics on Λ as the Bernoulli shift ϕ
on Σ. Moreover, it is possible to show a sensitive dependence on initial conditions
of F 2m on Λ in the sense [8, 31, 35] that there is an c0 > 0 such that for any x ∈ Λ
and any neighborhood U of x, there exists u ∈ U ∩ Λ and an integer q ≥ 1 such
that

|F 2mq(x) − F 2mq(u)| > c0 .

Consequently, F 2m is chaotic on Λ, so (3.1) is also chaotic.
This construction is sometimes referred to as embedding a Smale horseshoe in

the flow of the differential equation [8, 31, 34].

4. Chaos in the Full Equation

Since the homoclinic orbit γξ obtained in Section 3 is hyperbolic the variational
equation u̇ = D1f(γξ, 0, ξµ0, t)u has an exponential dichotomy on R with constant
Kξ. Now, we show in [12] that the Kξ tends to infinity as ξ → 0. For this reason
we consider the following modification of (2.1)

(4.1)
ẋ = f(x, y, µ, λ, t) := f(x, λy, µ, t) ,
ẏ = g(x, y, µ, λ, t) := Ay + g0(x, y) + λµ1ν cosω0t+ µ2g2(x, y, µ)

for a parameter λ ∈ [0, 1].
Now let (µ0, α0, β0) with µ0,2 6= 0 and γξ be as in Theorem 1. Following the

arguments of [12, pp. 82-85], we obtain a constant ξ̄0 and for each ξ ∈ (0, ξ̄0] a
homoclinic orbit

Γ(λ, ξ)(t) =
(
Γ1(λ, ξ)(t),Γ2(λ, ξ)(t)

)

for (4.1) with µ = ξµ0 such that

Γ1(λ, ξ)(t) → γ(t− α0) (or → γβ0
(t− α0), respectively) ,

and Γ2(λ, ξ)(t) → 0

as ξ → 0 uniformly for λ ∈ [0, 1]. Moreover, we have Γ(0, ξ) = (γξ, 0) and Γ(1, ξ)
is a homoclinic solution for (2.1). The linearization of (4.1) with µ = ξµ0 along
Γ(λ, ξ)(t) has an exponential dichotomy on R with dichotomy constants uniform
with respect to 0 ≤ λ ≤ 1 and fixed ξ.
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Analogous to the construction in Section 3, for each σ ∈ Σ, ξ ∈ (0, ξ̄0] and
m ∈ N we construct from Γ(λ, ξ) a corresponding

Γσ(λ, ξ,m) = (Γ1,σ(λ, ξ,m),Γ2,σ(λ, ξ,m)) .

Similarly, from γξ we obtain γξ,σ,m. Then we have Γ1,σ(0, ξ,m) = γξ,σ,m and also
Γ2,σ(0, ξ,m) = 0. Using the uniform exponential dichotomy, following [1, 11], we
now obtain the following extension of Theorem 3.

Theorem 4. a): Let µ0, α0, β0 be as in Theorem 1 with µ0,2 6= 0. Fix
ξ ∈ (0, ξ̄0] and let Γ(λ, ξ,m)(t) be obtained above. Then there exist an
ε̄0 > 0 and a function ε → M̄(ε) ∈ N such that given ε with 0 < ε ≤ ε̄0
and a positive integer m ≥ M̄(ε) the equation (4.1) with µ = ξµ0 has for
each σ ∈ Σ a unique weak solution t→ (xσ,λ(t), yσ,λ(t)) satisfying

|xσ,λ(t) − Γ1,σ(λ, ξ,m)(t)| + |yσ,λ(t) − Γ2,σ(λ, ξ,m)(t)| ≤ ε ∀t ∈ R .

b): The functions (xσ,λ(t), yσ,λ(t)) depend continuously on σ, λ and we also
have xσ,λ(t + 2mT ) = xϕ(σ),λ(t), yσ,λ(t + 2mT ) = yϕ(σ),λ(t) where ϕ is
the Bernoulli shift on Σ.

c): The correspondence φλ(σ) = (xσ,λ(0), yσ,λ(0)) is a homeomorphism of Σ
onto the compact subset Λλ of R

n × Y given by

Λλ := {(xσ,λ(0), yσ,λ(0)) | σ ∈ Σ}
on which the 2mth iterate F 2m

λ of the period map Fλ of (4.1) is invariant
and satisfies F 2m

λ ◦ φλ = φλ ◦ ϕ.
d): (xσ,0(t), yσ,0(t)) = (xσ(t), 0) and φ0 = φ where φ is as in Theorem 3.

Summarizing, we obtain the following main result.

Theorem 5. Suppose (H1)-(H10) hold. Let M be as in (3.4) or (3.5) and
suppose (µ0, α0, β0) are such that M(µ0, α0, β0) = 0 and D(α,β)M(µ0, α0, β0) is

nonsingular. Then there exists ξ̄0 > 0 such that if 0 < ξ ≤ ξ̄0, if the parameters
in (2.1) are given by µ = ξµ0, and µ0,2 6= 0 then there exists a homeomorphism,
φ1, of Σ onto a compact subset of R

n × Y on which the 2mth iterate, F 2m
1 , of the

period map F1 of (2.1) is invariant and satisfies F 2m
1 ◦ φ1 = φ1 ◦ ϕ where ϕ is the

Bernoulli shift on Σ.

We might paraphrase Theorem 5, loosely, as saying that the Smale horseshoe
embedded in the flow of the reduced equation (3.1) is shadowed by a horseshoe in
the full equation (2.1).

5. Applications: Vibrating Elastic Beams

We now return to the example in Section 1 and apply our theory to the prob-
lem of vibrating elastic beams. We shall consider a number of different cases and
generalizations. In each case our procedure will be:

i) Use a Galerkin expansion to convert the partial differential equation to
an infinite set of ordinary differential equations as (2.1).

ii) Truncate the equation to get the finite problem (3.1).
iii) Apply Theorem 3 to get a Smale horseshoe for the finite problem. For

this we must verify (H1) through (H6).
iv) Use Theorem 5 to lift the horseshoe to the flow of the original partial

differential differential equation. This requires (H7)-(H9).
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5.1. Planer Motion with One Buckled Mode. The boundary value prob-
lem for planer deflections of an elastic beam with a compressive axial load P0 and
pinned ends is

ü = −u′′′′ − P0u
′′ +

[∫ π

0

u′(s)2 ds

]

u′′ − 2µ2u̇+ µ1 cosω0t,

u(0, t) = u(π, t) = u′′(0, t) = u′′(π, t) = 0

where u(x, t) is the transverse deflection at a distance x from one end at time t.
We consider the µi terms as perturbations.

Our first step is to consider the linearized, unperturbed problem. We compute
the eigenvalues at the origin to be λn = n2(n2 −P0) with corresponding eigenfunc-
tions ϕn(x) = sinnx for n = 1, 2, . . .. For small P0 the origin is a center. As P0 is
increased the first bifurcation occurs at P0 = 1, the first Euler buckling load. The
corresponding eigenfunction, ϕ1(x) = sinx, is referred to as the first buckled mode.
The second bifurcation occurs at P0 = 4. Thus, the simplest case, which we now
consider, consists of 1 < P0 < 4.

In the first equation we define a2 = λ1 = P0−1. The eigenvalues for the center
modes, or unbuckled modes, provide the frequencies used in (2.1) as we define
ω2

n−1 = λn = n2[n2 − P0], n = 2, 3, . . .. We now use the eigenfunctions for the

Galerkin expansion u(x, t) =
∞∑

k=1

uk(t) sin kx and obtain the system of equations

(5.1)

ün = n2(P0 − n2)un − π

2
n2

[ ∞∑

k=1

k2u2
k

]

un

− 2µ2u̇n + 2µ1

[
1 − (−1)n

πn

]

cosω0t, n = 1, 2, . . . .

To obtain a first order system as in (2.1) we define

x = (u1, u̇1), y = (u2, u̇2/ω1, u3, u̇3/ω2, . . .).

The reduced equations are

(5.2)

ẋ1 = x2 ,

ẋ2 = a2x1 −
π

2
x3

1 − 2µ2x2 +
4

π
µ1 cosω0t

obtained by setting y = 0 in the hyperbolic part. When µ = 0, (5.2) has a homo-
clinic solution given by γ = (r, ṙ) where r(t) = (2a/

√
π ) sechat. Equation (3.3)

becomes

v̇1 = −(a2 − 3π
2 r

2)v2, v̇2 = −v1
with solution (v1, v2) = (−r̈, ṙ).

In (3.4) we have d = 1 so the variable β does not appear, M is a scalar function,
and the function M = M1 becomes

M(α) =
[

8ω0√
π

sinω0α sech πω0

2a

]

µ1 −
(

16a3

3π

)

µ2.

Thus, the conditions M(µ0, α0) = 0, (∂M/∂α)(µ0, α0) 6= 0 are satisfied for all µ0

such that ∣
∣
∣
∣

µ0,2

µ0,1

∣
∣
∣
∣
<

3
√
πω0

2a3
sech πω0

2a
.
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Figure 2. The chaotic open wedge-shaped region of (5.1) in R
2.

Now we check condition (H9) which, for the present problem, requires us to consider
the equation

v̇2n−1 = ωnv2n ,

v̇2n = −ωnv2n−1 − 2µ2v2n + µ1νn cosω0t

where νn = 2[1−(−1)n−1]
π(n+1)ωn

.

This system has a particular solution in Y with components given by
[
v2n−1(t)
v2n(t)

]

=
µ1νn

(ω2
n − ω2

0)
2 + 4µ2

2ω
2
0

[
ωn(ω2

n − ω2
0) cosω0t+ 2µ2ω0ωn sinω0t

−ω0(ω
2
n − ω2

0) sinω0t+ 2µ2ω
2
0 cosω0t

]

.

From this we see that (H9) is satisfied whenever ω0 6= ωn for all n.
We note that while the conditions M(α) = 0, M ′(α) 6= 0 can be satisfied with

µ2 = 0, α = 0 we require µ2 6= 0 in Section 4 where we use a weak exponential
dichotomy to lift to the full equation. Thus, we obtain the following result using
Theorem 5.

Theorem 6. If ω0 6= ωn for all n then whenever µ0 satisfies µ0,1 6= 0 and

(5.3) 0 <

∣
∣
∣
∣

µ0,2

µ0,1

∣
∣
∣
∣
<

3
√
πω0

2a3
sech πω0

2a
,

there exists a corresponding ξ̄0 > 0 such that if 0 < ξ ≤ ξ̄0, if the parameters in
(5.1) are given by µ = ξµ0 then there exists a compact subset of R

2 × Y on which
the 2mth iterate, F 2m, of the period map F of (5.1) is invariant and conjugate to
the Bernoulli shift on Σ.

These results are stated in terms of the Galerkin equations (5.1) but they can
be transferred back to the original partial differential equation. In this case we
get a Bernoulli shift embedded in

[
H

1
0(0, π) ∩ H

2(0, π)
]
× L

2(0, π). This is dis-
cussed in [10]. In the µ1-µ2 plane we get from the condition (5.3) four small
open wedge-shaped regions of parameter values for which the partial differential
equation exhibits chaos (see Figure 2). These regions are bounded by the lines

µ1/µ2 = ± 3
√

πω0

2a3 sech πω0

2a
and µ2 = 0.
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It is interesting to look at some history of this problem. The first work was
by Holmes [17] in which he started with the partial differential equation and car-
ried out the Galerkin expansion but restricted his analysis to the reduced equation
(5.2). The significance of that work is that it introduced the idea of Melnikov anal-
ysis. In subsequent work [18] Holmes and Marsden extended the results to infinite
dimension but abandoned the Galerkin approach in favor of nonlinear semigroup
techniques directly in infinite dimensions. In our work we go back to the original,
simpler analysis of the reduced equation and then show that the results apply to the
original partial differential equation. Some advantages to this are that the Galerkin
projection is a technique familiar to many engineers and physicists and, also, we are
able to utilize our general Melnikov results in Section 3. This is illustrated further
in the generalizations which follow. We note that equation (5.1) was treated also
in [4].

5.2. Nonplaner Motion of a Symmetric Beam with One Buckled
Mode. Let us consider a beam with symmetric cross section, pinned ends and
compressive axial load P0 and assume now that the beam is not constrained to
defect in a plane. If u(x, t) and w(x, t) denote the transverse defections at position
x and time t we obtain the following boundary value problem.

ü = −u′′′′ − P0u
′′ +

[∫ π

0

(
u′(s)2 + w′(s)2

)
ds

]

u′′

− 2µ2u̇ cos η + µ1 cos ζ cosω0t ,

ẅ = −w′′′′ − P0w
′′ +

[∫ π

0

(
u′(s)2 + w′(s)2

)
ds

]

w′′

− 2µ2ẇ sin η + µ1 sin ζ cosω0t ,

u(0, t) = u(π, t) = u′′(0, t) = u′′(π, t) = w(0, t)

= w(π, t) = w′′(0, t) = w′′(π, t) = 0

where η, ζ are constants.
The parameters µ1, µ2 represent the coefficients of, respectively, total transverse

forcing and total viscous damping. These effects are distributed between the two
directions of motion. The quantity tan ζ represents the ratio of forcing in the
u-direction to forcing in the w-direction while tan η plays the same role for the
damping. We suppose η, ζ ∈ (0, π/2) in order to avoid certain degeneracies.

In these equations we use the Galerkin expansions

u(x, t) =

∞∑

k=1

uk(t) sin kx , w(x, t) =

∞∑

k=1

wk(t) sin kx

and proceed as before. This yields the system of equations

(5.4)

ün = n2(P0 − n2)un − π
2n

2

[ ∞∑

k=1

k2(u2
k + w2

k)

]

un

−2µ2u̇n cos η + 2µ1 cos ζ
[

1−(−1)n

πn

]

cosω0t ,

ẅn = n2(P0 − n2)wn − π
2n

2

[ ∞∑

k=1

k2(u2
k + w2

k)

]

wn

−2µ2ẇn sin η + 2µ1 sin ζ
[

1−(−1)n

πn

]

cosω0t .
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As before, we assume 1 < P0 < 4 and define a2 = P0 − 1 and

ω2
n−1 = n(n2 − P0), n = 2, 3, . . . .

The equations (5.4) take the form of (2.1) when we define x = (u1, u̇1, w1, ẇ1) and
y = (u2, u̇2/ω1, w2, ẇ2/ω1, u3, u̇3/ω2, w3, ẇ3/ω2, . . .).

The reduced equations are

ẋ1 = x2 ,

ẋ2 = a2x1 −
π

2
(x2

1 + x2
3)x1 − 2µ2x2 cos η +

4

π
µ1 cos ζ cosω0t ,

ẋ3 = x4 ,

ẋ4 = a2x3 −
π

2
(x2

1 + x2
3)x3 − 2µ2x4 sin η +

4

π
µ1 sin ζ cosω0t .

When µ = 0 we have a two-dimensional homoclinic manifold given by γβ =
(r cosβ, ṙ cosβ, r sinβ, ṙ sinβ) where, as before, r(t) = (2a/

√
π ) sechat and β is

a parameter. The adjoint equations (3.3) take the form

v̇1 =
[

−a2 +
π

2
(3r2 cos2 β + r2 sin2 β)

]

v2 +
(
πr2 sinβ cosβ

)
v4 ,

v̇2 = −v1,

v̇3 =
(
πr2 sinβ cosβ

)
v2 +

[

−a2 +
π

2
(r2 cos2 β + 3r2 sin2 β)

]

v4 ,

v̇4 = −v3.
A one-parameter family of bounded solutions to these equations is given by

(5.5)
vβ1 = (−ṙ sinβ, r sinβ, ṙ cosβ,−r cosβ) ,
vβ2 = (−r̈ cosβ, ṙ cosβ,−r̈ sinβ, ṙ sinβ)

and the function, M , as in (3.5) becomes

M1(µ, α, β) =

[
8√
π

sin (β − ζ) cosω0α sech πω0

2a

]

µ1 ,

M2(µ, α, β) =

[
8ω0√
π

cos (β − ζ) sinω0α sech πω0

2a

]

µ1

−
[
16a3(cos η cos2 β + sin η sin2 β)

3π

]

µ2 .

Next, the conditions M(µ0, α0, β0) = 0, D(α,β)M(µ0, α0, β0) nonsingular are satis-
fied in two different cases. Of course, we suppose µ0,1 6= 0, µ0,2 6= 0 and then put
λ0 =

µ0,2

µ0,1

. We have the following two cases:

Case 1. We can choose either β0 = ζ and then look for a simple root of the
equation

(5.6) λ0 = m1 sinω0α ,

or choose β0 = ζ + π and look for a simple root of the equation

(5.7) λ0 = −m1 sinω0α

for

m1 =
3
√
πω0

2a2(cos η cos2 ζ + sin η sin2 ζ)
sech

πω0

2a
.



198 MICHAL FEČKAN AND JOSEPH GRUENDLER

Supposing the condition

(5.8) 0 < |λ0| < m1 ,

there is a simple root α0 of (5.6). Similarly, (5.7) has also a simple root −α0.
According to the formulas (5.5) for vβ1

and vβ2
, these simple roots (ζ, α0) and

(ζ + π,−α0) give two different solutions of (5.4).

Case 2. In this case we begin by choosing ω0α0 = (2k0 + 1)π
2 for k0 ∈ {0, 1}

and then we look for a simple root β0 6= ζ + kπ, ∀k ∈ Z of

(5.9) λ0 = (−1)k0Φ(β)

where

Φ(β) =
3ω0

√
π

2a3

cos (β − ζ)

cos η cos2 β + sin η sin2 β
sech

πω0

2a
.

Let m2 = maxβ∈R Φ(β). We discuss the computation of the constant m2 in Appen-
dix A. Since Φ(β + π) = −Φ(β), the range of Φ is the closed interval [−m2,m2].
We now split this case into two parts:

Part 2A). For η = π/4 we get Φ(β) = m1 cos(β − ζ), so m2 = m1. Equation
(5.9) has now the form

(−1)k0m1 cos(β − ζ) = λ0 ,

so under condition (5.8), there is a simple root β0 different from ζ + kπ, ∀k ∈ Z.
This holds for both cases k0 ∈ {0, 1} so we have two different solutions of (5.4). In
addition, the results of Case 1 still apply here.

Thus, in this situation, we have in the µ1-µ2 plane four wedged-shaped regions
of parameter values bounded by µ2/µ1 = ±m1, µ2 = 0 for which the partial
differential equation exhibits chaos. In particular, (5.4) has four distinct homoclinic
solutions, two from Case 1, two from Case 2A. These regions are labeled II in
Figure 3. In this case there are no regions labeled I.

Part 2B). For η 6= π/4 we get Φ′(ζ) 6= 0, so m1 < m2. Certainly for the
solvability of (5.9) we need |λ0| ≤ m2. Now we claim:

Lemma 1. If

(5.10) λ0 ∈ (−m2,m2) \ {±m1, 0} ,
then equation (5.9) has a simple root β0 ∈ [0, 2π] \ {ζ, ζ + π}.

Proof. Assume to the contrary that (5.9) has no simple roots for a λ0 ∈
(−m2,m2) \ {±m1, 0}. Then there are 0 ≤ β1 < β2 ≤ 2π such that

(5.11) Φ(β1,2) = (−1)k0λ0, Φ′(β1,2) = 0, Φ′′(β1,2) = 0 .

Note then β1,2 6= ζ + kπ and β1,2 6= ζ + 2k+1
2 π, ∀k ∈ {0, 1}. After some calculation

we derive from (5.11) that cos 2β1,2 6= 0, sin 2β1,2 6= 0 and that (5.11) is equivalent
to

(5.12)

cos(β1,2 − ζ)

cos η cos2 β1,2 + sin η sin2 β1,2

=
sin(β1,2 − ζ)

(cos η − sin η) sin 2β1,2

=
cos(β1,2 − ζ)

2(cos η − sin η) cos 2β1,2
= (−1)k0

2a3

3ω0
√
π

cosh
πω0

2a
λ0 .



THE EXISTENCE OF CHAOS 199

��
��

@@
@@

a

6

?

� - µ1

µ2

��
��

@@
@@

@@
@@

@
@@

@
@@

@
@@

@
@@�

��

�
��

�
��

�
���

��

�
��

�
��

�
�� @

@@

@
@@

@
@@

@
@@

I

II

II

I

I

II

II

I

�
��

� -
@

@@

@
@@

�
��

�
��

HHHHHHH

HHHHHHH

�������

�������

Figure 3. The chaotic wedge-shaped regions of (5.4) in R
2.

From (5.12) we derive

(5.13) cos 2β1,2 =
cosη + sin η

3(cos η − sin η)
, 2 tan(β1,2 − ζ) = tan 2β1,2 .

Hence

β2 ∈ {π − β1, π + β1, 2π − β1} .
If β2 = π − β1 then from 2 tan(β2 − ζ) = tan 2β2 we get 2 tan(β1 + ζ) = tan 2β1,
but 2 tan(β1 − ζ) = tan 2β1, so

tan(β1 + ζ) = tan(β1 − ζ) ,

i.e. ζ = kπ/2, k ∈ {0, 1}. This contradicts ζ ∈ (0, π/2).
If β2 = π + β1 then

(−1)k0λ0 = Φ(β2) = Φ(β1 + π) = −Φ(β1) = (−1)k0+1λ0 ,

which implies λ0 = 0, a contradiction.
If β2 = 2π−β1 then again we derive tan(β1+ζ) = tan(β1−ζ), so that ζ = kπ/2,

k ∈ {0, 1}, a contradiction to ζ ∈ (0, π/2). The proof is finished. �

Note β0 ∈ {ζ, ζ + π} for the Case 1, while β0 ∈ [0, 2π) \ {ζ, ζ + π} for the
Case 2. Lemma 1 can be applied to both cases α0 = π

2ω0

(2k0 + 1), k0 ∈ {0, 1} so
Part 2B yields, in the µ1-µ2 plane, four wedge-shaped regions of parameter values
bounded by µ2/µ1 = ±m2, µ2/µ1 = ±m1, µ2 = 0 for which (5.4) has two different
homoclinic solutions. These regions are labeled I in Figure 3. Note we have four
different solutions of (5.4) on regions labeled II, since there the Case 1 can be also
applied (see (5.6) and (5.7)). This completes the analysis of the Melnikov function.

We now check for resonance. Because in the present problem all coupling terms
are nonlinear, the linear equation in (H9) consists in two copies of the system of
equations in the preceding example. This yields the following result obtained from
Theorem 5.

Theorem 7. Suppose ω0 6= ωn for all n and let m1, m2 be as above.
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i) If m0 6= 0 satisfies one but not both of |m0| < mi then if µ0,2/µ0,1 =
m0 there exists a corresponding ξ̄0 > 0 such that if 0 < ξ ≤ ξ̄0, if the
parameters in (5.4) are given by µ = ξµ0 then there exist two homoclinic
orbits which can be used to construct a compact subset of R

4×Y on which
the 2mth iterate, F 2m, of the period map F of (5.4) is invariant and
conjugate to the Bernoulli shift on Σ.

ii) If m0 6= 0 satisfies each of |m0| < mi then there are four homoclinic orbits
as in (i).

Summarizing, we obtain eight open small wedge-shaped regions of parameter
values in the µ1-µ2 plane bounded by the lines µ2/µ1 = ±m1, µ2/µ1 = ±m2 and
µ2 = 0 with m1 ≤ m2 for which the partial differential equation exhibits chaos
(see Figure 3). In the regions labeled I there are two homoclinics while in regions
II there exist four. It is interesting to note that in this case, by adjusting the
parameters η and ζ, it is possible to make the size of the wedge arbitrarily close to
filling the µ1-µ2 plane.

5.3. Nonplaner, Nonsymmetric Beam with One Buckled Mode in
Each Plane. For the case of a nonsymmetric beam with nonplaner motion we
have the boundary value problem

ü = −u′′′′ − P0u
′′ +

[∫ π

0

(
u′(s)2 + w′(s)2

)
ds

]

u′′

−2µ2u̇ cos η + µ1 cos ζ cosω0t ,

ẅ = −R2w′′′′ − P0w
′′ +

[∫ π

0

(
u′(s)2 + w′(s)2

)
ds

]

w′′

−2µ2ẇ sin η + µ1 sin ζ cosω0t ,

u(0, t) = u(π, t) = u′′(0, t) = u′′(π, t)

= w(0, t) = w(π, t) = w′′(0, t) = w′′(π, t) = 0 ,

where R2 is constant representing the stiffness ratio for the two directions. We
assume R > 1 which amounts to choosing w as the direction with stiffer cross-
section. Note that R = 1 reduces to Section 5.2. As before we assume η, ζ ∈
(0, π/2).

The Galerkin expansion becomes

(5.14)

ün = n2(P0 − n2)un − π

2
n2

[ ∞∑

k=1

k2(u2
k + w2

k)

]

un

− 2µ2u̇n cos η + 2µ1 cos ζ

[
1 − (−1)n

πn

]

cosω0t ,

ẅn = n2(P0 − n2R2)wn − π

2
n2

[ ∞∑

k=1

k2(u2
k + w2

k)

]

wn

− 2µ2ẇn sin η + 2µ1 sin ζ

[
1 − (−1)n

πn

]

cosω0t .

If P0 is increased only enough to give one buckled mode, necessarily in the u direc-
tion, the problem reduces to Section 5.1. We shall assume here the next simplest
case consisting of one buckled mode in each direction which occurs when 1 < P0 < 4
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and R2 < P0 < 4R2. Note that this requires R < 2 and we assume R2 < P0 < 4. If
the stiffness ratio is too high there will be multiple buckled in the u (soft) direction
before occurrence of the first buckled mode in the w (stiff) direction.

We define

a2
1 = P0 − 1, ω2

n−1,1 = n2[(n2 − P0], n = 2, 3, . . . ;

a2
2 = P0 −R2, ω2

n−1,2 = n2[n2R2 − P0], n = 2, 3, . . . .

We put (5.14) in the form of (2.1) by defining

x = (u1, u̇1, w1, ẇ1) ,

y = (u2, u̇2/ω1,1, w2, ẇ2/ω1,2, u3, u̇3/ω2,1, w3, ẇ3/ω2,2, . . .) .

The reduced equations are

ẋ1 = x2 ,

ẋ2 = a2
1x1 −

π

2
(x2

1 + x2
3)x1 − 2µ2x2 cos η +

4

π
µ1 cos ζ cosω0t ,

ẋ3 = x4 ,

ẋ4 = a2
2x3 −

π

2
(x2

1 + x2
3)x3 − 2µ2x4 sin η +

4

π
µ1 sin ζ cosω0t .

For the unperturbed equations we have two homoclinic solutions given by

γ1 = (r1, ṙ1, 0, 0), γ2 = (0, 0, r2, ṙ2)

where r1(t) = (2a1/
√
π ) sech a1t and r2(t) = (2a2/

√
π ) secha2t .

Using γ1 the adjoint equations (3.3) become

v̇1 =
(
−a2

1 + 3π
2 r

2
1

)
v2 ,

v̇2 = −v1 ,
v̇3 =

(
−a2

2 + π
2 r

2
1

)
v4 ,

v̇4 = −v3 .
The essential question here is to determine the space of bounded solutions to these
equations. We can write these in the form

v̈2 =
(
a2
1 − 3π

2 r
2
1

)
v2, v̈4 =

(
a2
2 − π

2 r
2
1

)
v4.

The v2 equation has a one-dimensional space of bounded solutions spanned by the
solution v2 = ṙ1, obtained from γ̇1. For the v4 equation we have the following
result.

Lemma 2. Let κ > 0. The equation

v̈ + (−λ+ κ sech2 t)v = 0

has a bounded solution if and only if there exists an integer M such that

λ = 1
4

(√
4κ+ 1 − 4M − 1

)2
for 0 ≤M < 1

4

(√
4κ+ 1 − 1

)

or λ = 1
4

(√
4κ+ 1 − 4M − 3

)2
for 0 ≤M < 1

4

(√
4κ+ 1 − 3

)
.

The idea for the proof of this lemma is to express the solution as the product
of a power of sech t and a hypergeometric function with argument − sinh2 t. The
condition for the existence of a bounded solution is that the hypergeometric series
terminate and the resulting polynomial be of sufficiently small degree. The details
for this have been worked out by Yagasaki in Appendix of [40]. See also Sections
23,25 of [20].
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Applying Lemma 2 to the equation for v4 we find that the condition for a
bounded solution is a1 = a2 which is ruled out by the assumption R > 1. Hence,
the system of equations for v has a one dimensional space of bounded solutions
spanned by v = (−r̈1, ṙ, 0, 0) and the Melnikov function (3.4) is

M(α) =

[
8ω0 cos ζ√

π
sinω0α sech πω0

2a1

]

µ1 −
(

16a3
1 cos η

3π

)

µ2.

The non-resonance hypothesis follows as in the previous examples which leads, in
the present case, to the following result obtained from Theorem 5.

Theorem 8. If ω0 6= ωn,i for all n and for i = 1, 2, then whenever µ0 satisfies
µ0,1 6= 0 and

0 <

∣
∣
∣
∣

µ0,2

µ0,1

∣
∣
∣
∣
<

3
√
π ω0 cos ζ

2a3
1 cos η

sech πω0

2a1

there exists a corresponding ξ̄0 > 0 such that if 0 < ξ ≤ ξ̄0, if the parameters in
(5.14) are given by µ = ξµ0 then there exists a compact subset of R

4 × Y on which
the 2mth iterate, F 2m, of the period map F of (5.14) is invariant and conjugate to
the Bernoulli shift on Σ.

Replacing γ1 with γ2 yields the following analogous result.

Theorem 9. If ω0 6= ωn,i for all n and for i = 1, 2, then whenever µ0 satisfies
µ0,1 6= 0 and

0 <

∣
∣
∣
∣

µ0,2

µ0,1

∣
∣
∣
∣
<

3
√
π ω0 sin ζ

2a3
2 sin η

sech πω0

2a2

there exists a corresponding ξ̄0 > 0 such that if 0 < ξ ≤ ξ̄0, if the parameters in
(5.14) are given by µ = ξµ0 then there exists a compact subset of R

4 × Y on which
the 2mth iterate, F 2m, of the period map F of (5.14) is invariant and conjugate to
the Bernoulli shift on Σ.

In the µ1-µ2 plane in this case we get a diagram as in Figure 3. For parameter
values in the regions labeled I there is one homoclinic orbit while for those in II
there are two.

5.4. Multiple Buckled Modes. It remains to consider the situation where
the axial load, P0, is increased sufficiently to produce multiple buckled modes. We
will look at the case of a beam constrained to planer motion. The calculations for
the non-planer case are similar.

We return to the boundary value problem of Section 5.1 and use the same
Galerkin equations

(5.15)

ün =n2(P0 − n2)un − π

2
n2

[ ∞∑

k=1

k2u2
k

]

un

− 2µ2u̇n + 2µ1

[
1 − (−1)n

πn

]

cosω0t, n = 1, 2, . . . .

In the present case we assume there exists an integer N such that N2 < P0 <
(N + 1)2. We then define

a2
n = n2(P0 − n2), for n = 1, 2, . . . , N ;

ω2
n−N = n2(n2 − P0), for n = N + 1, N + 2, . . .
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and put (5.15) in the form of (2.1) by defining

x = (u1, u̇1, u2, u̇2, . . . , uN , u̇N) ,
y = (uN+1, u̇N+1/ω1, uN+2, u̇N+2/ω2, . . .) .

A truncated version of the resulting equations with N = 2 was studied in [40].
The reduced equations are

ẋ2n−1 = x2n

ẋ2n = a2
nx2n−1 − πn2

2

(
N∑

k=1

k2x2
2k−1

)

x2n−1

−2µ2x2n + 2µ1

[
1−(−1)n

πn

]

cosω0t







n = 1, 2, . . . , N .

When µ = 0 we have N homoclinic solutions given by

γm = (0, . . . , 0, rm, ṙm
︸ ︷︷ ︸

2m−1,2m

, 0, . . . , 0), m = 1, 2, . . . , N

where rm(t) = (2am/m
2
√
π ) sechamt and the adjoint equation (3.3) along γm is

v̇2n−1 =
(

−a2
n + πm2n2

2 r2m

)

v2n ,

v̇2n = −v2n−1 ,

}

n 6= m

v̇2m−1 =
(

−a2
m + 3πm4

2 r2m

)

v2m ,

v̇2m = −v2m−1 .

For the distinguished equation we have the bounded solution v2m−1 = −r̈m, v2m =
ṙm while for the equations with n 6= m we must solve

d2v2n

dx2
=

(
a2

n

a2
m

− 2n2

m2
sech2 x

)

v2n.

Using Lemma 2 we find that this last equation has a bounded solution if and only
if there is an integer M such that one of the following conditions hold:

n2(P0 − n2)

m2(P0 −m2)
= 1

4

[√

8n2

m2 + 1 − 4M − 1

]2

(5.16a)

for 0 ≤M < 1
4

(√

8n2

m2 + 1 − 1

)

,

n2(P0 − n2)

m2(P0 −m2)
= 1

4

[√

8n2

m2 + 1 − 4M − 3

]2

(5.16b)

for 0 ≤M < 1
4

(√

8n2

m2 + 1 − 3

)

.

If, for some fixed m, none of the equations in (5.16) are satisfied for n 6= m we can
proceed much as in Section 5.1 since then the adjoint equation obtained from γm

has a one-dimensional space of bounded solutions spanned by

v = (0, . . . , 0,−r̈m, ṙm
︸ ︷︷ ︸

2m−1,2m

, 0, . . . , 0).

One complication has been introduced by our assumption in the original partial dif-
ferential equation that the transverse applied load is uniform in x. This assumption
causes the µ1 terms to drop out in (5.15) for n even which prohibits nonsingular
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solutions of M(α) = 0 as can be seen by examining Section 5.1. For this reason,
we must choose m odd. Theorem 5 now yields the following result.

Theorem 10. Let m be an odd integer, 1 ≤ m ≤ N , and suppose P0 is chosen
so that none of the equations in (5.16) is satisfied. If ω0 6= ωn for all n, then
whenever µ0 satisfies µ0,1 6= 0 and

0 <

∣
∣
∣
∣

µ0,2

µ0,1

∣
∣
∣
∣
<

3m
√
π ω0

2a3
m

sech πω0

2am

there exists a corresponding ξ̄0 > 0 such that if 0 < ξ ≤ ξ̄0, if the parameters in
(5.15) are given by µ = ξµ0 then there exists a compact subset of R

2N ×Y on which
the 2kth iterate, F 2k, of the period map F of (5.15) is invariant and conjugate to
the Bernoulli shift on Σ.

We can simplify the preceding results by finding cases where the equations in
(5.16) can never have a solution. The following is a helpful result along these lines.

Lemma 3. The equations in (5.16) can never be satisfied for n < m ≤ N .

Proof. For (5.16a) we have 1
4

(√

8n2/m2 + 1 − 1
)

< 1
2 so we have only one

equation to consider with M = 0. But then we have, first, n2(P0−n2)
m2(P0−m2) >

n2

m2 , and

also

1

4

[√

8n2

m2 + 1 − 1

]2

− n2

m2 =
2 n2

m2

(
n2

m2 − 1
)

2 n2

m2 + 1 +
√

8n2

m2 + 1
< 0

so that the equation (5.16a) has no solution for any P0.

Next we note that in when n < m, we have 1
4

(√

8n2/m2 + 1 − 3
)

< 0 so that

there are no equations for (5.16b).

When m = N the preceding result will eliminate any restriction, obtained
from (5.16), on P0. This fact was shown with a different technique by Berti and
Carminati [4] where they used a more general transverse forcing term which allowed
for the possibility of a µ2 term for each n in (5.15) and, hence, also for each n in the
reduced equation. They then take m = N . Since, for our specific form of loading,
we must have m odd we have the following result.

Theorem 11. Let N and P0 be as for (5.15) and suppose one of the following
hold:

(i) N is odd and m = N .
(ii) N is even, N ≥ 4, m = N − 1 and

P0 6= 4N2 − (N − 1)2
[√

9N2 − 2N + 1 − 3(N − 1)
]2

4N2 −
[√

9N2 − 2N + 1 − 3(N − 1)
]2 .

(iii) N = 2, m = 1 and

P0 6= 37 + 5
√

33

16
, P0 6= 55 + 9

√
33

16
.

Suppose in addition that ωn 6= ω0 for all n. Then whenever µ0 satisfies µ0,1 6= 0
and

0 <

∣
∣
∣
∣

µ0,2

µ0,1

∣
∣
∣
∣
<

3m
√
π ω0

2a3
m

sech πω0

2am
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there exists a corresponding ξ̄0 > 0 such that if 0 < ξ ≤ ξ̄0, if the parameters in
(5.15) are given by µ = ξµ0 then there exists a compact subset of R

2N ×Y on which
the 2kth iterate, F 2k, of the period map F of (5.15) is invariant and conjugate to
the Bernoulli shift on Σ.

Proof. The result is obtained by using γm and proceeding as in Section 5.1. This
is valid as long as the equations (5.16) have no solutions for n 6= m so it remains
to show this is true in each case. If (i) holds we can use Lemma 3.

If m = N − 1 then, using Lemma 3, we need check only n = N . Define

fa(N) = 1
4

(√
8N2

(N−1)2 + 1 − 1

)

, fb(N) = 1
4

(√
8N2

(N−1)2 + 1 − 3

)

.

Then (5.16a) must be checked for integers M ∈ [0, fa(N)) and (5.16b) for integers
M ∈ [0, fb(N)).

In case (ii) we have N ≥ 4 which implies 1/2 < fa(N) ≤ (
√

137− 3)/12 < 1 so
we need consider only M = 0. In this case we solve

N2(P0 −N2)

(N − 1)2[P0 − (N − 1)2]
= 4fa(N)2

for P0 to get

P0 =
N4 − 4fa(N)2(N − 1)4

N2 − 4fa(N)2(N − 1)2
.

But this value is negative and so can be discarded.
Similarly, we have for N ≥ 4, 0 < fb(N) ≤ (

√
137− 9)/12 < 1 so in (5.16b) we

need also consider only M = 0. Here we get

P0 =
N4 − 4fb(N)2(N − 1)4

N2 − 4fb(N)2(N − 1)2

=
4N4 − (N − 1)2

[√
9N2 − 2N + 1 − 3(N − 1)

]2

4N2 −
[√

9N2 − 2N + 1 − 3(N − 1)
]2 .

Next, we consider (iii) where N = 2, m = 1. Since 2 > fa(2) = (
√

33−1)/4 > 1
we must consider M = 0 and M = 1 in (5.16a). When M = 0 we get the value

P0 = −(7 +
√

33)/2 < 0 which can be discarded while for M = 1 we have P0 =

(37 + 5
√

33)/16.

Finally, 0 < fb(2) = (
√

33 − 3)/4 < 1 so only M = 0 must be considered in

(5.16b) and this yields P0 = (55 + 9
√

33)/16.

Appendix A. Appendix

We propose here a method for computing the constant m2 of Section 5.2. For
this reason, we first search for critical points of the function Φ(β) from equation
(5.9). Note

Φ(β) =
3ω0

√
π

2a3
sech

πω0

2a
Ψ(β)

for

Ψ(β) =
cos (β − ζ)

cos η cos2 β + sin η sin2 β
.
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Since Ψ(β + π) = −Ψ(β) and Ψ(0) = cos ζ
cos η

> 0, Ψ′(0) = sin ζ
cos η

> 0, we restrict our

analysis to β ∈ (0, π). Taking x := tanβ/2 and using the formulas

sinβ =
2 tan(β/2)

1 + tan2(β/2)
=

2x

1 + x2
, cosβ =

1 − tan2(β/2)

1 + tan2(β/2)
=

1 − x2

1 + x2
,

we get Ψ(β) = Υ(x) for

(A.1) Υ(x) :=
(1 − x4) cos ζ + 2x(1 + x2) sin ζ

(x2 − 1)2 cos η + 4x2 sin η
.

We compute

Υ′(x) = − 2f(x) sin η sin ζ
(

(x2 − 1)
2
cos η + 4x2 sin η

)2

for
f(x) := Gx6 + x5(4Z − 2GZ) + x4(5G− 4)

+4GZx3 + x2(4 − 5G) + x(4Z − 2GZ) −G ,

where Z = cot ζ > 0 and G = cot η > 0. Hence Υ′(x) = 0, x > 0 if and only if

(A.2) f(x) = 0 .

Verifying

(A.3) x6f(−1/x) = −f(x) ∀x 6= 0 ,

f(x) is an anti-reciprocal polynomial [33]. Due to f(0) = −G < 0, certainly
f(x) = 0 has a positive root. Also if f(x0) = 0 then f(−1/x0) = 0. Using (A.3),
we put

y := x− x−1 .

Note the mapping x 7→ x−x−1 is increasing on (0,∞) with the range R. Its inverse

is x =
y+

√
y2+4

2 . Next we rewrite (A.2) as

(A.4) Gx3 −Gx−3 + (x2 + x−2)(4Z − 2GZ) + (x− x−1)(5G− 4) + 4GZ = 0 .

From

y2 = x2 + x−2 − 2, y3 = x3 − x−3 − 3(x− x−1) ,

in the variable y, (A.4) has the form

(A.5) p(y) := Gy3 + 2Z(2 −G)y2 + 4(2G− 1)y + 8Z = 0 .

Rewriting (A.1) in the variable y we get

(A.6) Θ(y) =
2 sin ζ − y cos ζ

y2 cos η + 4 sin η

√

y2 + 4 .

Recall y = x−x−1, y = −2 cotβ and Ψ(β) = Υ(x) = Θ(y) for β ∈ (0, π), x ∈ (0,∞),
y ∈ R. We can easily check that

Θ′(y) = − 2p(y) sin ζ sin η
√

y2 + 4 (y2 cos η + 4 sin η)2
.

Hence Θ′(y) = 0 if and only if p(y) = 0. Note

f(x) = x3p
(
x− x−1

)
.

Summarizing, in order to find m2, we need to solve (A.5) and then insert its solu-
tions to (A.6).
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?

�
G

Z

√
8/8

√
8

1/2 2

D < 0

D > 0

D > 0

6

-

Figure 4. Sign regions of the discriminant D.

Next we compute the discriminant D of (A.5) (see [5]):

D =
64

27G4
(Z2 +G)((G − 2)3Z2 − (2G− 1)3) .

Now (see Figure 4) we have the following possibilities:

1) D > 0 ⇔ (G − 2)3Z2 > (2G − 1)3, and then (A.5) has 3 different real
roots.

2) D = 0 ⇔ (G − 2)3Z2 = (2G − 1)3, and then (A.5) has 3 real roots, but
one is double.

3) D < 0 ⇔ (G− 2)3Z2 < (2G− 1)3, and then (A.5) has 1 real root.

These roots are done by the Cardano formulas [5]. For general ζ and η these
formulas are rather awkward, but for concrete values of ζ and η, we can easily
check which one of the above cases (1)-(3) hold, and then we easily compute the
roots by using these Cardano formulas. Inserting these roots into (A.6) we are able
to find m2 for concrete values of ζ and η. Moreover, in the cases (2), (3) there is a

unique simple zero y0 of p(y) and then m2 = 3ω0

√
π

2a3 sech πω0

2a
Θ(y0).

Summarizing, we suggest this simple algorithm/method for finding m2: For
general ζ and η, the formula for m2 is very awkward, so we do not derive it, but for
concrete values of ζ and η, we can directly calculate m2 avoiding the use of some
numerical/approximation methods.
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[2] Battelli, F., Fečkan, M. and Franca, M. On the chaotic behavior of a compressed beam,
Dynamics of PDE 4 (2007), 55-86.

[3] Battelli, F. and Lazzari, C. Exponential dichotomies, heteroclinic orbits, and Melnikov
functions, J. Differential Equations 86 (1990), 342–366.

[4] Berti, M and Carminati, C. Chaotic dynamics for perturbations of infinite dimensional
Hamiltonian systems, Nonlinear Analysis 48 (2002), 481-504.

[5] Birkhoff, G. and Mac Lane, S. A Survey of Modern Algebra, 5th ed. Macmillan, New
York, 1996.
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