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A Hopf Bifurcation in a Radially Symmetric Free Boundary

Problem
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Abstract. We consider an interface problem derived by a reaction-diffusion
equation in two- and three- dimensional system with radial symmetry. Ex-
istence of Hopf bifurcation as a parameter varies will be studied in two- and
three- dimensional spaces.
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1. Introduction

Dynamics of interfacial patterns are discussed in many systems from biology,
chemistry, physics and other fields [1, 3, 5, 13, 19]. Internal layers (or free bound-
ary), which separate two stable bulk states by a sharp transition near interfaces,
are often observed in bistable reaction-diffusion equations when the reaction rate
is faster than the diffusion effect.
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The typical patterns appearing in bistable media can be modeled by two-
component reaction-diffusion systems:

(1)

{
σεwt = ε2 ∇2w +H(w − a0) − w − v,

vt = D∇2v + µw − v, t > 0, x ∈ Rn,

where ε, σ and a0 are positive constant parameters, and ∇ is the gradient operator.
Here u and v measure the levels of two diffusing quantities, and H is a Heaviside
function satisfying H(z) = 1 for z > 0 and H(z) = 0 for z < 0.

When ε is sufficiently small, the singular limit analysis ε → 0 is applied to
show the existence and the stability of localized radially symmetric equilibrium
solutions ([15, 16]). In one-dimensional space, such equilibrium solutions should
undergo certain instabilities and the loss of stability resulting from a Hopf bifur-
cation produces a kind of periodic oscillation in the location of the internal layers
([2, 4, 11, 14, 15]). As the parameter D varies, the stability of the spherically
symmetric solutions and their symmetry-breaking bifurcations into layer solutions
which are not spherically symmetric have been examined in [17, 18]. Moreover,
for ε = 0, a free boundary problem of (1) in one dimensional space has been ob-
tained and a Hopf bifurcation of this problem has been examined in [6, 7, 10] as
a parameter σ varies.

In the present literature, the free boundary problem of (1) for the case when
ε = 0 in two- and three- dimensional space has not been studied. Motivated by
these facts, our main purpose of this paper is to study this problem. In order to
consider the free boundary in this problem, the equation of interfaces can be derived
from (1). Suppose that there is only one (n − 1) -dimensional hypersurface η(t)
which is simply single closed curve given in the whole plane Rn in such a way that
Rn = Ω1(t)∪ η(t) ∪Ω0(t), where Ω1(t) = {(x, t) ∈ Rn × (0,∞) : w(x, t) > a0} and
Ω0(t) = {(x, t) ∈ Rn × (0,∞) : w(x, t) < a0}. Then the equation of η(t) is given
by (see [9, 12, 16]):

(2)
d η(t)

dt
· ν = C(vi), (x, t) ∈ η(t),

where ν is the outward normal vector on η(t), vi is the value of v on the interface
η(t), and C(v) is the velocity of the interface. The reaction terms in (1) satisfy the
bistable condition, i.e., the nullclines of H(w − a0) − w − v = 0 and µw − v = 0
must have three intersection points and the nullcline H(w − a0) − w − v = 0 is
the triple valued function of w which are called h+(v), h−(v) and h0(v). From
[4, 8, 12], the trajectory with a unique value of C = C(v) exists which is given by
C(v) = h+(v) − 2h0(v) + h−(v). Furthermore, the velocity of the interface C(v) is
a continuously differentiable function defined on an interval I := (−a0, 1− a0) and
thus the velocity of the interface can be normalized by

(3) C(v) =
1

σ

1 − 2a0 − 2v√
(v + a0)(1 − a0 − v)

.
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Hence a free boundary problem of (1) when ε is equal to zero is given by :

(4)





vt = ∇2v − (µ+ 1)v + µ, (x, t) ∈ Ω1(t)

vt = ∇2v − (µ+ 1)v, (x, t) ∈ Ω0(t)

v(x, 0) = v0(x)

v(η(t) − 0, t) = v(η(t) + 0, t)

d
dν v(η(t) − 0, t) = d

dν v(η(t) + 0, t)

lim
|x|→∞

v(|x|, t) = 0, t > 0.

Our aim is to explore the dynamics of interfaces in the problem (4) in order
to investigate the existence of time periodic solutions as the bifurcation parame-
ter σ varies in two and three dimensions. In section 2, a change of variables is
given which regularizes problem (4) in such a way that results from the theory of
nonlinear evolution equations can be applied. In this way, we obtain enough regu-
larity of the solution for an analysis of the bifurcation. In section 3, we show the
existence of radially symmetric localized equilibrium solutions for (4) and obtain
the linearization of problem (4). In the last section we show the existence of the
periodic solutions and the bifurcation of the interface problem as a parameter σ
varies in two and three dimensions.

2. Regularization of the interface equation

We look for an existence problem of radially symmetric equilibrium solutions
of (4) with |x| = r where the center and the interface are located at the origin and
r = η, respectively. The problem is given by:

(5)





vt =
∂2v

∂r2
+
n− 1

r

∂v

∂r
− (µ+ 1)v + µH(η(t) − r), r ∈ (0,∞), t > 0

v(r, 0) = v0(r)

∂v

∂r
v(0, t) = 0 = v(∞, t), t > 0

η′(t) · ν = C(v(η(t), t)), t > 0.

Let A be a differential operator A := − ∂2

∂r2 − n−1
r

∂
∂r + µ+ 1 with the domain

D(A) = {v ∈ H2,2(Rn) : ∂v
∂r v(0, t) = 0, lim

r→∞
v(r, t) = 0}. For the application of

semigroup theory to (4), we choose the space

X := L2(R
n) with norm ‖ · ‖2 .

We define g : R2 → R,

g(r, η) := A−1(µ(H(η − ·))(r) = µ

∫ ∞

η

G(r, y) dy,



176 SANG-GU LEE* AND YOONMEE HAM**

where G : Rn → R is a Green’s function of A satisfying the boundary conditions:

G(r, z) =






zK0(z
√

1 + µ) I0(r
√

1 + µ) , 0 < r < z

zI0(z
√

1 + µ)K0(r
√

1 + µ) , z < r for n = 2,

G(r, z) =





z e−z
√

1+µ sinh(r
√

1+µ)

r
√

1+µ
, 0 < r < z

z sinh(z
√

1 + µ) e−r
√

1+µ

r
√

1+µ
, z < r for n = 3,

where I0 and K0 are modified Bessel functions.
Applying the transformation u(t)(r) = v(r, t) − g(r, η(t)) then we obtain an

equivalent abstract evolution equation of (5) :

(6)





d

dt
(u, η) + Ã(u, η) = f(u, η)

(u, η)(0) = (u0(r), η0),

where Ã is a 2 × 2 matrix whose (1,1)-entry is an operator A and all others are
zero. The nonlinear forcing term f is

f(u, η ) =




C(u(η) + γ(η))G(r, η)

C(u(η) + γ(η))



 ,

where the function γ : R → R is defined by γ(η) := g(η, η).
The well posedness of solutions of (6) are shown in [10] applying the semigroup

theory using domains of fractional powers α ∈ (3/4, 1] of A and Ã. Moreover, the

nonlinear term f is a continuously differentiable function from W ∩ X̃α to X̃ where

W := {(u, η) ∈ C1(R) × R : u(η) + γ(η) ∈ I} ⊂open C
1(R) × R × R ,

X̃ := D(Ã) = D(A) × R, Xα := D(Aα) and X̃α := D(Ãα) = Xα × R.

3. Radially symmetric equilibrium solutions and Linearization of the

interface equation

In this section, we shall examine the existence of radially symmetric equilibrium

solutions of (6) in Rn (n = 2, 3). We look for (u∗, η∗) ∈ D(Ã) ∩W satisfying the
following problem :

(7)





d2u

dr2
+
n− 1

r

du

dr
− (µ+ 1)u = G(r, η)C(u(η) + γ(η))

0 = C(u(η) + γ(η))
du
dr (0) = 0 = u(∞).

Theorem 3.1. Suppose that 0 < 1
2 − a0 <

µ
µ+1 . Then equation (6) has at least

one radially symmetric equilibrium solutions (0, η∗) for all σ 6= 0.
The linearization of f at the stationary solution (0, η∗) is

Df(0, η∗)(û, η̂) =

( 4
σ

(
û(η∗) + γ′(η∗)η̂

)
G(·, η∗)

4
σ

(
û(η∗) + γ′(η∗)η̂

)

)
.
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The pair (0, η∗) corresponds to a unique steady state (v∗, η∗) of (4) for σ 6= 0 with
v∗(r) = g(r, η∗) .

Proof: System (7) is equivalent to the pair of equations:

(8)






0 = −u′′(r) − n−1
r u′(r) + (1 + µ)u with u′(r)(0) = 0 = u(∞)

0 = 1
2 − a0 − u(η) − γ(η).

For n = 2, the general solution of (8) is given by

u(r) = c1I0(r
√

1 + µ) + c2K0(r
√

1 + µ)

for some constants c1 and c2. The boundary condition u(∞) = 0 implies that

c1 = 0 since lim
r→∞

K0(r
√

1 + µ) = 0. Moreover, u′(0) = 0 implies that c2 = 0. We

have u∗ = 0. For n = 3, the general solution of (8) is given by

u(r) = c1
e−r

√
1+µ

r
+ c2

er
√

1+µ

2r
√

1 + µ

for some constants c1 and c2. Applying the boundary conditions, we obtain u∗ = 0.
In order to show an existence of η∗ we define Γ(η) := γ(η) − ( 1

2 − a0). Then

Γ ′(η) = γ ′(η) = −µG(η, η) + µ
∫∞

η
Gη(η, y)dy which is

Γ ′(η) = −µG(η, η) + µ η I1(η
√

1 + µ)K1(η
√

1 + µ)

= µ η
(
I1(η

√
1 + µ)K1(η

√
1 + µ) − I0(η

√
1 + µ)K0(η

√
1 + µ)

)
(n = 2),

Γ ′(η) = µ
( 1√

1 + µ
+

1

(1 + µ)η
+

1

2(1 + µ)3/2 η2

)
e−2η

√
1+µ

− 1
2(1+µ)3/2 η2 (n = 3),

where Ii and Ki are the modified Bessel function of the ith order. Since γ ′(η) < 0
and lim

η→∞
γ(η) = 0 for n = 2, 3, there is a unique η∗ ∈ (0,∞) when Γ(0) > 0 which

means 1/2− a0 < γ(0) = µ
1+µ .

The formula for Df(0, η∗) is obtained from the relation C ′(1/2 − a0) = 4/σ
and Lemma 4 in [10]. The corresponding steady state (v∗, η∗) for (4) is obtained

using the transformation and Proposition 7 in [10].

4. A Hopf bifurcation

We shall show that there is a Hopf bifurcation from the curve σ 7→ (0, η∗) of
radially symmetric stationary solution, and we therefore introduce the following
definition.

Definition 4.1. Under the assumptions of Theorem 3.1, define (for 1 ≥ α >

3/4) the linear operator B from X̃α to X̃

B :=
σ

4
Df(0, η∗) .
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We then define (0, η∗) to be a Hopf point for (6) if and only if there exists an ε0 > 0
and a C1-curve

(−ε0 + τ∗, τ∗ + ε0) 7→ (λ(τ), φ(τ)) ∈ C × X̃C

(YC denotes the complexification of the real space Y ) of eigendata for −Ã + τB
with

(i) (−Ã+ τB)(φ(τ)) = λ(τ)φ(τ), (−Ã+ τB)(φ(τ)) = λ(τ) φ(τ);
(ii) λ(τ∗) = iβ with β > 0;

(iii) Re (λ) 6= 0 for all λ ∈ σ(−Ã+ τ∗B) \ {±iβ};
(iv) Reλ′(τ∗) 6= 0 (transversality);

where τ = 4/σ.

Next, we have to check (6) for Hopf points. For this we have to solve the
eigenvalue problem:

−Ã(u, η) + τB(u, η) = λ(u, η)

which is equivalent to

(9)






(A+ λ)u = τ µ (u(η∗) + γ′(η∗) η)G(·, η∗)
λ η = τ(u(η∗) + γ′( η∗) η).

Now we shall show that radially symmetric equilibrium solution becomes a
Hopf point.

Theorem 4.2. Assume 0 < 1/2 − a0 < µ
µ+1 and the operator −Ã + τ∗B

has a unique pair {±iβ} of purely imaginary eigenvalues for some τ ∗ > 0. Then
(0, η∗, τ∗) is a Hopf point for (6).

Proof: We assume without loss of generality that β > 0, and φ∗ is the (normal-

ized) eigenfunction of −Ã+ τ∗B with eigenvalue iβ. We have to show that (φ∗, iβ)

can be extended to a C1-curve τ 7→ (φ(τ), λ(τ)) of eigendata for −Ã + τB with
Re(λ′(τ∗)) 6= 0.

For this let φ∗ = (ψ0, η0) ∈ D(A) × R × R. First, we see that η0 6= 0, for
otherwise, by (9), (A+ iβ)ψ0 = µ iβ η0G(·, η∗ ) = 0, which is not possible because
A is symmetric. So without loss of generality, let η0 = 1. Then E(ψ0, iβ, τ

∗) = 0
by (9), where

E : D(A)C × C × R −→ XC × C,

E(u, λ, τ) :=

(
(A+ λ)u− µ τ

(
u(η∗) + γ′(η∗))G(·, η∗)

λ− τ
(
u(η∗) + γ′(η∗)

)

)
.

The equation E(u, λ, τ) = 0 is equivalent to λ being an eigenvalue of −Ã+ τB with
eigenfunction (u, 1). We shall apply here the implicit function theorem to E. For
that, it is necessary that E is of C1 -class and

(10) D(u,λ)E(ψ0, iβ, τ
∗) ∈ L(D(A)C × C × R, XC × C) is an isomorphism.

It is easy to see that E is of C1- class. In addition, the mapping

D(u,λ)E(ψ0, iβ, τ
∗)(û, λ̂) =




(A+ iβ)û− µ τ∗û(η∗)G(·, η∗) + λ̂ ψ0

λ̂− τ∗ û(η∗)



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is a compact perturbation of the mapping

(û, λ̂) 7−→
(
(A+ iβ)û, λ̂

)

which is invertible. Thus D(u, λ)E(ψ0, iβ, τ
∗) is a Fredholm operator of index 0.

Therefore in order to verify (10), it suffices to show that the system

D(u, λ)E(ψ0, iβ, τ
∗)(û, λ̂) = 0

which is equivalent to

(11)





(A+ iβ)û+ λ̂ψ0 = µτ∗ û(η∗)G(·, η∗)

λ̂ = τ∗ û(η∗)

necessarily implies that û = 0 and λ̂ = 0. We define ψ1 := ψ0 − µG(·, η∗) then the
first equation of (11) is given by

(12) (A+ iβ)û+ λ̂ψ1 = 0.

On the other hand, since E(ψ0, iβ, τ
∗) = 0, we have

(A+ iβ)ψ0 = iβ µG(·, η∗) .
ψ1 is a solution to the equation

(13) (A+ i β)ψ1 = −µ δη∗

and

(14) iβ = τ∗
(
ψ1(η

∗) + µG(η∗, η∗) + γ′(η∗)
)
.

From (13) and (14),
τ∗ Imψ1(η

∗) = β.

Equation (13) implies that

−µψ1(η∗) =

∫

R

|A1/2ψ1|2 + iβ

∫

R

|ψ1|2 ,

so that

µ Im (ψ1(η
∗)) = β

∫

R

|ψ1|2 .

Hence we have

(15)

∫

R

|ψ1|2 =
µ

τ∗
.

From (13), we now can calculate û(η∗) as
∫

R
(A+iβ)û ψ1 = −µ û(η∗) which together

with (11), (12) and (15) implies that

λ̂

∫
ψ2

1 + i β µ η̂

∫
G(x, η∗)ψ1(x)dx = µû(η∗)

= λ̂
µ

τ∗
− µψ0(η

∗)η̂ = λ̂

∫

R

|ψ1|2 − µψ0(η
∗)η̂.

Since from (13)

iβ

∫
G(x, η∗)ψ1(x)dx = −

∫
Aψ1(x)G(x, η∗)dx− µG(η∗, η∗) = −ψ0(η

∗)

is obtained, we have

λ̂
(∫

R

(ψ1
2 − |ψ1|2)

)
= 0
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which implies that λ̂ = 0 and thus û = 0. We have shown (10), and thus get a
C1-curve τ 7→ (φ(τ), λ(τ)) of eigendata such that φ(τ ∗) = φ∗ and λ(τ∗) = iβ.

It remains to be shown that the transversality condition Reλ′(τ∗) 6= 0 holds.
Implicit differentiation of E(ψ0(τ), λ(τ), τ) = 0 implies that

D(u,λ)E(ψ0, iβ, τ
∗)(ψ′

0(τ
∗), λ′(τ∗)) =

(
µ(ψ0(η

∗) + γ′(η∗))G(·, η∗)

ψ0(η
∗) + γ′(η∗)

)
.

This means that the function ũ := ψ′(τ∗), η̃ := η′(τ∗) and λ̃ := λ′(τ∗) satisfy the
equations

(16)





(A+ iβ)ũ+ λ̃ψ1 = 0

λ̃− τ∗(ũ(η∗) + γ′(η∗)) = ψ0(η
∗) + γ′(η∗),

where ψ1 := ψ0 − µG(·, η∗). The equations (14) and (16) implies that

(17) ũ(η∗) =
λ̃

τ∗
− iβ

τ∗2 .

Multiplying ψ1 to (16) then
∫

(A+ iβ)ũψ1 + λ̃

∫
|ψ1|2 = 0

which implies that

−ũ(η∗) + 2i β

∫
ũψ1 + λ̃

∫
|ψ1|2 = 0 .

Multiplying ũ to (16) then
∫

|A1/2ũ|2 − iβ

∫
|ũ|2 + λ̃

∫
ũψ1 = 0.

Comparing the above equations, we have

− 1

τ∗
|λ̃|2 +

i β

τ∗2 λ̃+ |λ̃|2
∫

|ψ1|2 − 2iβ

∫
|A1/2ũ|2 − 2β2

∫
|ũ|2 = 0

which implies that

Im λ̃ = 2β τ∗2
∫

|ũ|2 and Re λ̃ = 2τ∗2
∫

|A1/2ũ|2 .

Hence Reλ̃ = Reλ′(τ∗) = 2τ∗2
∫
|A1/2ũ|2 > 0 which implies that the transversality

condition Reλ̃ 6= 0 holds.

We shall show that there exists a unique τ ∗ > 0 such that (0, η∗, τ∗) is a Hopf
point, thus τ∗ is the origin of a branch of nontrivial periodic orbits.

Lemma 4.3. Let Gβ be a Green function of the differential operator A + iβ.
Then the expression Re (Gβ(η∗, η∗)) is strictly decreasing in β ∈ R+ with

ReG0(η
∗, η∗) = G(η∗, η∗), lim

β→∞
ReGβ(η∗, η∗) = 0 ,

and ImGβ(·, η∗) < 0 for any β > 0.
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Proof: First we have (A+ iβ)−1 = (A− iβ)(A2 + β2)−1, so if L(β) := Re (A+
iβ)−1 and T (β) := Im (A+ iβ)−1, then

L(β) = A(A2 + β2)−1 and T (β) = −β(A2 + β2)−1 .

Since (A2 +β2)−1 is a positive operator, it follows that −T (β) is positive for β > 0,
which implies that ImGβ(·, η∗) < 0. Moreover, L(β) −→ A−1 as β → 0 and
L(β) −→ 0 as β → ∞, which results in the corresponding limiting behavior for
Re
(
Gβ(η∗, η∗)

)
.

Now to show that β 7→ Re(Gβ(η∗, η∗)) is strictly decreasing, define h(β)(x) :=
Gβ(x, η∗) −G(x, η∗). Then (in the weak sense at first)

(A+ iβ)h(β) = −iβG(·, η∗).
As a result h(β) ∈ D(A)C and h : R+ → D(A)C is differentiable with ih(β) + (A+
iβ)h′(β) = −iG(·, η∗), therefore

(A+ iβ)h′(β) = −iGβ(·, η∗).
We thus get

−i h′(β)(η∗)) =

∫

R

(A+ iβ)2h′(β)h′(β)(x) dx

=

∫

R

(A+ iβ)h′(β) · (A+ iβ)h′(β) dx

=

∫

R

|Ah′(β)|2 − β2|h′(β)|2 dx+ 2iβ

∫

R

Ah′(β)h′(β) dx .

It follows that

Re (h′(β)(η∗)) = −2β

∫

R

|A1/2h′(β)|2 < 0.

Since Reh′(β) cannot vanish identically, Re(Gβ(η∗, η∗)) < 0.

Theorem 4.4. Assume 0 < 1/2 − a0 <
µ

µ+1 , then for a unique critical point

τ∗ > 0, there exists a unique, purely imaginary eigenvalue λ = iβ of (9) with β > 0.

Proof: We need to show only that the function (u, β, τ) 7→ E(u, iβ, τ) has a
unique zero with β > 0 and τ > 0. This means solving the system (9) with λ = iβ
and u = v − µG(·, η∗) ,

(18) (A+ iβ)v = −µ δη∗

and

(19)
iβ

τ∗
= v(η∗) + µG(η∗, η∗) + γ′(η∗).

The real and imaginary parts of the above equation are given by

(20)

{
β
τ∗ = −µ Im

(
Gβ(η∗, η∗)

)

0 = −µRe
(
Gβ(η∗, η∗)

)
+ µG(η∗, η∗) + γ′(η∗).

Since µ Im
(
Gβ(η∗, η∗)

)
is negative, there is a critical point τ∗ provided the existence

of β. We now define

(21) K(β) := −µRe
(
Gβ(η∗, η∗)

)
+ µG(η∗, η∗) + γ′(η∗).
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By Lemma 4.3, then K ′(β) > 0, K(0) = γ′(η∗) < 0 and

lim
β→∞

K(β) = µG(η∗, η∗) + γ′(η∗)

=





µ η∗ I1(η∗
√
µ+ 1 )K1(η

∗√µ+ 1 ) > 0 (n = 2),

µ η∗ I3/2(η
∗√µ+ 1 )K3/2(η

∗√µ+ 1 ) > 0 (n = 3).

Therefore, there exists a unique β > 0.

The following theorem summarizes the things we have proved.

Theorem 4.5. Assume that 0 < 1
2−a0 <

µ
µ+1 . Then (6), respectively (5), has at

least one radially symmetric stationary solutions (u∗, η∗) where u∗ = 0, respectively

(v∗, η∗) for all σ. Then there exists a unique σ∗ such that the linearization −Ã +
4

σ∗ B has a purely imaginary pair of eigenvalues. The point (0, η∗, σ∗) is then a

Hopf point for (6) and there exists a C0-curve of nontrivial periodic orbits for (6),
respectively (5), bifurcating from (0, η∗, σ∗), respectively (v∗, η∗, σ∗).

In two- and three- dimensional systems we have found the same variety of
behaviors including Hopf bifurcation appearing in the unidimensional system.
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