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Abstract. In the presented paper known (up to the beginning of 2008) Lie-
and non-Lie exact solutions of different (1+1)-dimensional diffusion–convection
equations of form f(x)ut = (g(x)A(u)ux)x + h(x)B(u)ux are collected.
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1. Introduction

This is a review paper, where we present a brief summary of known exact
solutions of variable coefficient (1 + 1)-dimensional diffusion–convection equations
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of form

(1) f(x)ut = (g(x)A(u)ux)x + h(x)B(u)ux,

where f = f(x), g = g(x), h = h(x), A = A(u) and B = B(u) are arbitrary smooth
functions of their variables, f(x)g(x)A(u) 6=0.

Our aim is not to give a physical interpretation of the solution of diffusion
equations (that is too huge and cannot be reached in the scope of a short paper),
but to list the already known exact solutions of equations from the class under
consideration. However, in some cases we give a short discussion of the nature of
the listed solutions.

The majority of the listed solutions have been obtained by means of different
symmetry methods, such as reduction with respect to Lie and non-Lie symmetries,
separation of variables, equivalence transformations, etc.

Let us note that the constant coefficient diffusion equations (f = g = 1, B = 0)
are well investigated and some of exact solutions given below were summarized
before in [26,48].

Our paper is organized as follows. First of all we adduce solutions of the linear
heat equation obtained by means of various symmetry methods. In Section 3 the
linearizable Burgers, Fujita–Storm and Fokas–Yortsos equations are considered. Lie
reduction of constant coefficient nonlinear diffusion equation (hB = 0, f = g = 1)
is performed in Section 4. Solutions of constant coefficient diffusion equations with
exponential nonlinearity are adduced in Section 5. Solutions of constant coefficient
diffusion equations with power nonlinearity are presented in Section 6. The im-
portant particular case of such equations, namely, the fast diffusion equation, is
studied in more detail in Section 8. Diffusion equations with other nonlinearities
are briefly discussed in Section 9. The next considered case (Section 10) covers the
nonlinear constant coefficient diffusion–convection equations (f = g = h = 1). In
Section 11 we adduce a brief analysis of known solutions of n-dimensional radially
symmetric nonlinear diffusion equations. In Section 12 exact solutions of some vari-
able coefficient diffusion–convection equations are collected. At last, in Sections 13
and 14 we present a detailed analysis of interesting variable coefficient equations
having distinguished invariance properties.

In the Appendix A we adduce the complete results of group classification of
equations (1) with respect to the extended group Ĝ∼ of equivalence transforma-
tions (23).

Below, if it is not indicated separately, α, εi, λ, a, b, c, ci are arbitrary constants,
ε = ±1. For convenience we use double numeration T.N of classification cases and
local equivalence transformations, where T denotes the number of table and N
does the number of case (or transformation, or solution) in table T. The notion
“equation T.N” is used for the equation of form (1) where the parameter-functions
f , g, h, A, B take values from the corresponding case.

2. Linear heat equation

Systematical investigation of invariant solutions of different diffusion equations
was started by the case of linear heat equation [32,33,39,42,44,45]

(2) ut = uxx
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which is invariant with respect to the six dimensional symmetry algebra generated
by the vector fields

Q1 = ∂x, Q2 = ∂t, Q3 = u∂u, Q4 = 2t∂t + x∂x,

Q5 = 2t∂x − xu∂u, Q6 = 4t2∂t + 4tx∂x − (x2 + 2t)u∂u

(For the moment we are ignoring the trivial infinite-dimensional subalgebras coming
from the linearity of the heat equation and corresponding to the linear superposition
principle).

The most general solution obtainable from a given solution u = f(t, x) by group
transformations is of the form

(3) ũ =
ε3√

1 + 4ε6t
e
− ε5x+ε6x2

−ε2
5t

1+4ε6t f

(

ε24t

1 + 4ε6t
− ε2,

ε4(x− 2ε5t)

1 + 4ε6t
− ε1

)

+ v(t, x),

where v(t, x) is an arbitrary solution to the linear heat equation [42]. Considering
the higher-order symmetry generators, one can prove that if u = f(t, x) is a solution
of the linear heat equation than

ũ = 2tfx(t, x) + xf(t, x) and

ũ = t2ft(t, x) + txfx(t, x) +
1

4
(2t+ x2)f(t, x)

are also solutions of the same equation [4].
All possible inequivalent (with respect to inner automorphisms) one-dimensio-

nal subalgebras of the given algebra are exhausted by the ones listed in Table 1 [68]
together with the corresponding ansatzes and the reduced ODEs.

Table 1. Reduced ODEs for linear heat equation (2)

N Subalgebra Ansatz u = ω Reduced ODE

1 〈Q4 + aQ3〉 taϕ(ω) x/
√

t ϕ′′ + ωϕ′

2
− aϕ = 0

2 〈Q2 + Q6 + aQ3〉 (4t2 + 1)
1
4 ϕ(ω) (4t2 + 1)−

1
2 x ϕ′′ + (a + ω2)ϕ = 0

e−(4t2+1)−1tx2−a arctan(2t)/2

3 〈Q2 − Q5〉 ϕ(ω)etx+2t3/3 x + t2 ϕ′′ = ωϕ

4 〈Q2 + aQ3〉 ϕ(ω)eat x ϕ′′ = aϕ

5 〈Q1〉 ϕ(ω) t ϕ′ = 0

6 〈Q3〉 — — —

Thus we have the following solutions of (2):

u = tae−x2/(8t)

(

c1U
(

2a+
1

2
,
x√
2t

)

+ c2V
(

2a+
1

2
,
x√
2t

)

)

,

u = (4t2 + 1)1/4

(

c1W
(

− a

2
,

x√
8t2 + 2

)

+c2W
(

− a

2
,− x√

8t2 + 2

)

)

e
− tx2

(4t2+1)
−a

2 arctan(2t)
,

u = c1e
α2t cosh(αx+ c2), u = c1x+ c2, u = c1e

−α2t cos(αx + c2),

where U(b, z), V (b, z), W (c, z) are parabolic cylinder functions [1].
Multiplicative separation of variables leads to the solutions invariant with re-

spect to 〈Q2 + aQ3〉. The additive separation of variables yields an exact solution
of form

u = c1x
2 + c2x+ 2c1t.
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The known Q-conditional symmetry operators and corresponding reductions
are adduced in Table 2. [21]

Table 2. Nonclassical reductions for linear heat equation (2)

N Operator Q Ansatz Reduced equation

1 −x∂t + ∂x u = ϕ
“

t + x2

2

”

ϕ′′ = 0

2 −x∂t + ∂x + x3∂u u = ϕ
“

t + x2

2

”

+ x4

4
ϕ′′ = −3

3 x2∂t − 3x∂x − 3u∂u u = xϕ
“

t + x2

6

”

ϕ′′ = 0

4 x2∂t − 3x∂x − (3u + x5)∂u u = xϕ
“

t + x2

6

”

+ x5

12
ϕ′′ = −15

5 x∂x + u∂u u = xϕ(t) ϕ′ = 0

6 coth x∂x + u∂u u = ϕ(t) cosh x ϕ′ − ϕ = 0

7 − cot x∂x + u∂u u = ϕ(t) cos x ϕ′ + ϕ = 0

8 ∂x − u∂u − u
2t−x

∂u u = (2t − x)e−xϕ(t) ϕ′ − ϕ = 0

9 ∂x −
p

−2(t + u)∂u u = −t − 1
2
[x + ϕ(t)]2 ϕ′ = 0

10
“

t + x2

2

”

∂t − x∂x u = ϕ
“

tx + x2

3!

”

ϕ′′ = 0

If function f(t, x) is an arbitrary solution of the linear heat equation and u is
the general integral of the ODE fxdt + fdx = 0, then u satisfies the linear heat
equation. This statement can be considered as another algorithm of generating
solutions of the linear heat equation [21]. Indeed, even starting from a rather
trivial solution of the heat equation u = 1 one gets the chain of quite interesting
solutions

1→ x → t+
x2

2!
→ tx+

x3

3!
→ · · · ,

and among them the solutions

x2m

(2m)!
+

t

1!

x2m−2

(2m− 2)!
+
t2

2!

x2m−4

(2m− 4)!
+ · · ·+ tm−1

(m− 1)!

x2

2!
+
tm

m!
,

x2m+1

(2m+ 1)!
+

t

1!

x2m−1

(2m− 1)!
+
t2

2!

x2m−3

(2m− 3)!
+ · · ·+ tm−1

(m− 1)!

x3

3!
+
tm

m!

x

1!
,

called often the heat polynomials [69].

3. Linearizable equations

Class (1) contains three equations, namely Burgers equation

(4) ut = uxx + 2uux,

Fujita–Storm equation

(5) ut =
(

u−2ux

)

x

and Fokas–Yortsos equation

(6) ut = (u−2ux)x + u−2ux,

that are linearizable by the potential equivalence hodograph transformation and
additional local equivalence transformations [10,14,18,19,25,38,50,63,64]:
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ǔť = (ǔ−2ǔx̌)x̌

v̌x̌ = ǔ, v̌ť = ǔ−2ǔx̌

ût̂ = (û−2ûx̂)x̂ + û−2ûx̂

v̂x̂ = û, v̂t̂ = û−2ûx̂ − û−1

ũt̃ = ũx̃x̃ + 2ũũx̃

ṽx̃ = ũ, ṽt̃ = ũx̃ + ũ2

ut = uxx

vx = u, vt = ux

-� ť = t, x̌ = v, ǔ = u−1, v̌ = x

-� t̂ = t̃, x̂ = ṽ, û = ũ−1, v̂ = x̃

?

6

ť = t̂, x̌ = ex̂, ǔ = e−x̂û, v̌ = v̂

?

6

t = t̃, x = x̃, u = ũeṽ , v = eṽũ =
vx

v
, vt = vxx ⇐=

Therefore, applying the above transformations to the well-known solutions of
the linear heat equation one can easily construct solutions of the linearizable equa-
tions.

Thus, e.g., the fundamental (source) solution u = (4πt)−1/2e−x2/(4t) and dipole

solution u = −((4πt)−1/2e−x2/(4t))x are mapped into the separable and self-similar
solutions of the Fujita–Storm equation [48]

u = (4πt)1/2ev2

where x = π−1/2

∫ v

0

e−y2

dy,

and u = x−1(2t)1/2

(

ln
1

4πtx2

)−1/2

.

correspondingly.
Other solutions of the linear heat equation presented in the previous section

yield the following explicite exact solutions of the Fujita–Storm equation [30]:

u = c, u = x−1, u = (x − 2t)−
1
2 , u = (x2 ± e2t)−

1
2 ,

u = ±(e−2t − x2)−
1
2 , u =

1

4
√

24t2 + x
√

−6t±
√

24t2 + x
, u =

t

x
√

−t ln(x
√
t)
,

u =
1

√

c21e
−2t + 2e−8t + 2e−4tx

√

4− e8t(−c1e−t ±
√

c21e
−2t + 2e−8t + 2e−4tx)2

,

u =
1

√

c21e
2t + 2e8t + 2e4tx

√

e−8t(−c1e−t ±
√

c21e
−2t + 2e−8t + 2e−4tx)2 − 4

.

In [66] the following formula for deriving exact solutions of the Fujita–Storm
equation is derived: if u(t, x) is a solution of the Fujita–Storm equation (5) then

v = u+
2tut + u+ xux

−t(ux − 1
2u

2)− x
2u

is also solution of the same equation.
Similarly [67], if u(t, x) is a solution of the and the Fokas–Yortsos equation (6)

then

v =
u2

u− ux
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is also solution of the same equation. In [67] a new exact solution of the Fokas–
Yortsos equation is presented:

u =
1

2

W (e4t+x)

1 +W (e4t+x)
,

where W (x) is the Lambert W function determined as W (x)eW (x) = x. Let us note
that other exact solutions of the Fokas–Yortsos equation (6) can be easily recovered
from the solution set of the Fujita–Storm equation (5) by means of application of
the local transformation of variables shown in the above scheme.

The same tricks can be used for obtaining exact solutions of the remaining
linearizable equations. However, since the adduced transformations are nonlocal,
sometimes it could be easier to search directly for solutions of the nonlinear equa-
tions. Thus, e.g., one can easily find Lie solutions of the Burgers equation:

u =
c1 − x
2t+ c2

, u = ε+
1

x+ 2εt+ c
, u =

2x+ c1
x2 + c1x+ 2t+ c2

,

u =
6(x2 + 2t+ c1)

2x3 + 12tx+ 6c1t+ c2
, u =

c1

1 + c2e−c2
1t−c1x

, u = −ε+
a

2

ec1(x−2εt) − c2
ec1(x−2εt) + c2

,

u = −ε+ c1 tanh(c1(x− 2εt) + c2),

u =
λ

2(λ2t+ c1)

(

2 tanh
λx+ c2
λ2t+ c1

− λx− c2
)

,

u = −ε− c1 tan(c1(x− 2εt) + c2), u =
λ cos(λx+ c1)

c2eλ2t + sin(λx + c1)
,

u =
c1

√

π(t+ c2)
exp

(

− x+ c3
4(t+ c2)

)(

c1erf
x+ c3

2
√
t+ c2

+ c4

)−1

,

u = − cos 2xe−3t + c1 sinx

− cosx sinxe−3t + c1 cosx+ c2et
,

u = − c1e
−t(cosx+ sinx) + c2e

t+x

c1e−t(cosx− sinx) − c2et+x + b
.

Here erfz = 2√
π

∫ z

0 e
−ξ2

dξ is the error function (also called the probability integral).

The last two solutions were found in [54].
Solutions of the Fujita–Storm and Fokas–Yortsos equations can be singled out

form the solutions adduced in Sections 6 and 10 taking µ = −2, ν = −2. (Note that
all these solutions can be also reconstructed from ones of the linear heat equation
by means of potential equivalence transformations.)

If if u(t, x) is a solution of the Burgers equation (4) then

v = u+
ut

ux + u2
, u = u+

ut + ux

ux + u2 + u

are also solutions of the same equation [66].
Potential equivalence transformations were used to obtain solutions of some

boundary-value problems adduced in [10,41,63,64]

4. Nonlinear diffusion equations. General case

Consider now the class of nonlinear diffusion equations

(7) ut = (A(u)ux)x,
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where Au 6= 0. Lie symmetries of this class have been studied in [44]. The Lie
symmetry algebra of equation from class (7) with arbitrary value of parameter-
function A(u) is three-dimensional and spanned by

Q1 = ∂t, Q2 = ∂x, Q3 = 2t∂t + x∂x.

Taking into account discrete symmetry transformations of changing sings of
independent variables one can formulate the following statement. If u = f(t, x) is a
solution of equation (7), then ũ = f(ε21t+ ε2, ε1x+ ε3) is also solution of the same
equation.

All possible inequivalent (with respect to inner automorphisms) one-dimensio-
nal subalgebras of the given symmetry algebra,the corresponding ansatzes and the
reduced ODEs are exhausted by the ones listed in Table 3.

Table 3. Reduced ODEs for nonlinear diffusion equations (7), Au 6= 0.

N Subalgebra Ansatz u = ω Reduced ODE

1 〈Q1〉 ϕ(ω) x (A(ϕ)ϕ′)′ = 0

2 〈Q2〉 ϕ(ω) t ϕ′ = 0

3 〈Q1 + εQ2〉 ϕ(ω) x − εt εϕ′ = −(A(ϕ)ϕ′)′

4 〈Q3〉 ϕ(ω) x/
√

t ωϕ′ = −2(A(ϕ)ϕ′)′

The first three equations can be easily integrated for all values of A(u). Solu-
tions of the last equation are known for many functions A(u) (see Section 9).

Consider now in more detail equations with wider symmetry algebras. Up to
the group of equivalence transformations

t̃ = ε1t+ ε4, x̃ = ε2x+ ε5, ũ = ε3u+ ε6, Ã = ε−1
1 ε22A

there exist three inequivalent cases of extensions of Lie symmetry algebra [44]:
a = eu, a = uµ, µ 6= −4/3 and a = u−4/3.

5. Nonlinear diffusion equations. Exponential nonlinearity

We start from the equation with exponential nonlinearity

(8) ut = (euux)x,

having the four-dimensional Lie algebra spanned by the operators

Q1 = ∂t, Q2 = t∂t − ∂u, Q3 = ∂x, Q4 = x∂x + 2∂u.

The only non-zero commutators of these operators are [Q1, Q2] = Q1 and [Q3, Q4] =
Q3. Therefore Amax is a realization of the algebra 2A2.1 [40]. All the possible
inequivalent (with respect to inner automorphisms) one-dimensional subalgebras
of 2A2.1 [46] are exhausted by the ones listed in Table 4.

Table 4. Reduced ODEs for (8). α 6= 0, ε = ±1, δ = sign t.

N Subalgebra Ansatz u = ω Reduced ODE

1 〈Q3〉 ϕ(ω) t ϕ′ = 0
2 〈Q4〉 ϕ(ω) + 2 ln |x| t ϕ′ = 2eϕ

3 〈Q1〉 ϕ(ω) x (eϕ)′′ = 0
4 〈Q2〉 ϕ(ω) − ln |t| x (eϕ)′′ = −δ
5 〈Q1 + εQ3〉 ϕ(ω) x − εt (eϕ)′′ = −εϕ′

6 〈Q2 + εQ3〉 ϕ(ω) − ln |t| x − ε ln |t| (eϕ)′′ = −δ(εϕ′ + 1)
7 〈Q1 + εQ4〉 ϕ(ω) + 2εt xe−εt (eϕ)′′ = −εωϕ′ + 2ε
8 〈Q2 + αQ4〉 ϕ(ω) + (2α − 1) ln |t| x|t|−α (eϕ)′′ = δ(−αωϕ′ + 2α − 1)
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Solving the equations 4.1–4.5 we have the following solutions of (8):

u = ln |c1x+ c0|, u = ln

(−x2

2t
+
c1x+ c0

t

)

,

u = ϕ(x − εt) where

∫

eϕ

c1 − εϕ
dϕ = x− εt+ c0.

Equation (8) admits an additive separation of variable that leads to the solution
invariant with respect to scale transformation.

If u = f(t, x) is a solution of equation (8), then

ũ = f(ε1t+ ε3, ε2x+ ε4)− ε1 + 2ε2

is also solution of the same equation.

6. Nonlinear diffusion equations. Power nonlinearities

Another case of equations admitting extension of the Lie symmetry algebra is
the one having power nonlinearity

(9) ut = (|u|µux)x .

As in the previous cases the invariance algebra of (9)

Amax = 〈Q1 = ∂t, Q2 = t∂t − µ−1u∂u, Q3 = ∂x, Q4 = x∂x + 2µ−1u∂u〉

is a realization of the algebra 2A2.1.
If u = f(t, x) is a solution of equation (9), then

ũ = ε−1
1 ε22f(εµ

1 t+ ε3, ε
µ
2x+ ε4)

is also solution of the same equation.
The result of reduction (9) under inequivalent subalgebras of Amax is written

down in Table 5.

Table 5. Reduced ODEs for (9). µ 6= 0 α 6= 0, ε = ±1, δ = sign t.

N Subalgebra Ansatz u = ω Reduced ODE

1 〈Q3〉 ϕ(ω) t ϕ′ = 0

2 〈Q4〉 ϕ(ω)|x|2/µ t ϕ′ = 2µ−2(2 + µ)ϕµ+1

3 〈Q1〉 ϕ(ω) x (ϕµϕ′)′ = 0

4 〈Q2〉 ϕ(ω)|t|−1/µ x (ϕµϕ′)′ = −δµ−1ϕ

5 〈Q1 + εQ3〉 ϕ(ω) x − εt (ϕµϕ′)′ = −εϕ′

6 〈Q2 + εQ3〉 ϕ(ω)|t|−1/µ x − ε ln |t| (ϕµϕ′)′ = −δεϕ′ − δµ−1ϕ

7 〈Q1 + εQ4〉 ϕ(ω)e2εµ−1t xe−εt (ϕµϕ′)′ = −εωϕ′ + 2µ−1εϕ

8 〈Q2 + αQ4〉 ϕ(ω)|t|(2α−1)/µ x|t|−α (ϕµϕ′)′ = δµ−1(2α − 1)ϕ − δαωϕ′
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For some of the reduced equations the general solutions are known. For other
ones we succeeded to find only particular solutions. These solutions are following:

u = |c1x+ c0|
1

µ+1 , u = (c0 − εµ(x− εt)) 1
µ ,

u =

(

− µ

µ+ 2

(x+ c0)
2

2t
+ c1|t|−

µ
µ+2

)
1
µ

,(10)

u =

(

− µ

µ+ 2

(x+ c0)
2

2t
+ c1(x+ c0)

µ
µ+1 |t|−

µ(2µ+3)

2(µ+1)2

)

1
µ

,

u = ϕ(x − εt) where

∫

ϕµ

c1 − εϕ
dϕ = x− εt+ c0.(11)

Equation (9) admits multiplicative separation of variables. Namely, for all
values of µ one can find solution in form of the product of two functions of different
arguments:

(12) u(t, x) = (b1t+ b0)
−1/µf(x),

where the function f = f(x) is given implicitly
∫

fµdf
√

c1 − λfµ+2
= ±x+ c0, λ =

2b1
µ(µ+ 2)

.

These could be found also in [2,5,6,15,24,26,48,52,58,72,74]. The most
studied cases are equations with µ = ±1,−2,−4/3,−3/2. Below we adduce their
exact solutions that are inequivalent to (11) with respect to the Lie symmetry
transformations.

Equation with the singular value of the parameter µ = −1 called often the
fast diffusion equation, is distinguished by the reduction procedure. Lie invariant
solutions of it will be adduced in separate section together with non-Lie solutions
obtained from invariance of the fast diffusion equation with respect to the nonclas-
sical potential reduction operators.

Fujita–Storm equation (5) is linearizable and has been considered in a separate
section.

Equation

(13) ut =
(

u−4/3ux

)

x

admits the five-dimensional Lie symmetry algebra generated by

Q1 = ∂t, Q2 = t∂t − µ−1u∂u, Q3 = ∂x, Q4 = x∂x +
3

2
u∂u, Q5 = −x2∂x + 3xu∂u.

An optimal system of one-dimensional subalgebras of this algebra is

〈Q1 +Q4〉, 〈aQ3 +Q4〉, 〈Q5〉, 〈Q2 +Q5〉, 〈Q3 +Q5〉.
One can easily construct the corresponding ansatzes and the reduced ODEs. How-
ever, to the best of our knowledge all the found solutions of these equations are
equivalent to (11) with particular value of parameter µ = −4/3. Solutions of (13)
invariant with respect to dilatation operators can be found also in [35]. Besides
the already adduced Lie invariant solutions, equation (13) has functional separated
solution [22,57]

u = (ϕ4(t)x
4 + ϕ3(t)x

3 + ϕ2(t)x
2 + ϕ1(t)x+ ϕ0(t))

−3/4,
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where the functions ϕi = ϕi(t) are determined by the system of ordinary differential
equations

ϕ′
0 = −3

4
ϕ2

1 + 2ϕ0ϕ2, ϕ′
1 = −ϕ1ϕ2 + 6ϕ0ϕ3, ϕ′

2 = −ϕ2
2 +

3

2
ϕ1ϕ3 + 12ϕ0ϕ4,

ϕ′
3 = −ϕ2ϕ3 + 6ϕ1ϕ4, ϕ′

4 = −3

4
ϕ2

3 + 2ϕ2ϕ4.

The general form of exact solutions of (13) obtained from the known ones u = f(t, x)
with action of group transformations is

ũ =
ε−1
1 ε22

(ε5x+ 1)3
f

(

ε
−4/3
1 t+ ε3,

ε
−4/3
2 x

ε5x+ 1
+ ε4

)

.

Equation

ut =
(

u−3/2ux

)

x
,

admits also the functional separation of variables. The corresponding exact solution
is

u = (3c1x
3 + f2(t)x

2 + f1(t)x + f0(t))
−2/3.

Here

f2(t) = 3
∫

ϕ(t)dt+ 3c2, f1(t) =
1

c1
(
∫

ϕ(t)dt+ c2)
2 +

1

2c1
ϕ(t),

f0(t) =
1

9c21
(
∫

ϕ(t)dt + c2)
3 +

1

6c21
ϕ(t)(

∫

ϕ(t)dt + c2) +
1

36c21
ϕ′(t),

where the function ϕ = ϕ(t) is defined implicitly by
∫

(c3 − 8ϕ3)−1/2dϕ = ±t+ c4 .
T.K. Amerov [3] and J.R. King [36] suggested to look for solutions of the

equation

ut = (u−1/2ux)x

in the form u = (ϕ1(x)t+ϕ0(x))2 where the functions ϕ1(x) and ϕ0(x) satisfy the
system of ODEs ϕ1

xx = (ϕ1)2, ϕ0
xx = ϕ0ϕ1. A particular solution of this system is

ϕ1 =
6

x2
, ϕ0 =

c1
x2

+
c2
x3
.

7. Porous medium equation ut = (uux)x

Another important subclass of diffusion equations is a special case of equa-
tion (9) with µ = 1

(14) ut = (uux)x,

called also porous medium equation. It first exact solution has been obtained
by Boussinesq [13]. He was looking for a solution in a separated form u(t, x) =
X(x)T (t) satisfying conditions

u(t, 0) = 0, ux|x=L = 0.

Thus constructed solution reads as

u =
H0F (ξ)

1 + (3b2H0/2L2)t
,

where H0 is a constant, ξ = x/L and the function F = F (ξ) is defined implicitly

ξ =
1

b

∫ F

0

λdλ√
1− λ3

, b =

∫ 1

0

λdλ√
1− λ3

=
1

3
B
(2

3
,
1

2

)

.
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The next exact solution of the porous medium equation (14) was found much later
by Barenblatt [6] and written in the present form by Sokolov [59] (the instant
source solution):

u =
1

6t
((9t)2/3 − x2), 0 ≤ x ≤ (9t)1/3 = l.

It is easy to become convinced of the fact that both Boussinesq and Barenblatt
solutions correspond to the Lie symmetry of the porous medium equation (14) [73].
Indeed, the Boussinesq solution is a particular case of the ansatz

u = (1 + αt)−1φ(x), α =
3b2H0

2L2
,

that is invariant with respect to the one-parameter Lie symmetry group generated
by Q = (1 + αt)∂t − u∂u. Barenblatt solution is invariant with respect to the
one-parameter Lie symmetry group generated by Q = 3t∂t + x∂x − u∂u.

Besides (11), its exact solutions in parametric form are known [48]:

x = (6t+ c1)ξ + c2ξ
2 + c3, u = −(6t+ c1)ξ

2 − 2c2ξ
3,

x = tf(ω) + g(ω), u = tf ′(ω) + g′(ω),

where the functions f = f(ω) and g = g(ω)are determined by the system of ODEs:

(f ′)2 − ff ′′ = f ′′′, f ′g′ − fg′′ = g′′′.

It is obvious, that the second equation has two linearly independent particular so-
lutions g = 1 and g = f . The general solution of these equations can be represented
in form

g = c1 + c2f + c3(f
∫

ψdω −
∫

fψdξ), f = f(ω), ψ =
1

(f ′)2
e−

R

fdω.

It is not difficult to verify, that it has the following particular solutions

f =
6

ω + c1
and f = c1e

c2ω.

One can see, that the first solution leads to the previously given implicit solution.

8. Fast diffusion equation ut = (u−1ux)x

All invariant solutions of fast diffusion equation

(15) ut =
(

u−1ux

)

x
,

which were earlier constructed in closed forms with the classical Lie method, were
collected e.g. in [48–51]. A complete list of G1-inequivalent solutions of such type
is exhausted by the following ones:

1) u =
1

1 + εex+t
, 2) u = ex, 3) u =

1

x− t+ µte−x/t
,

4) u =
2t

x2 + εt2
, 5) u =

2t

cos2 x
, 6) u =

−2t

cosh2 x
, 7) u =

2t

sinh2 x
.

(16)

The below arrows denote the possible transformations of solutions (16) to each
other by means of the potential hodograph transformation (17) up to translations
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with respect to x [50]:

� 1)ε=0 ; 1)ε=1 ←→ 1)ε=−1, x+t<0 ; � 1)ε=−1, x+t>0 ; 2)←→ 3)µ=0, x>t ;

� 4)ε=0 ; 5)←→ 4)ε=4 ; 6)←→ 4)ε=−4, |x|<2|t| ; 7)←→ 4)ε=−4, |x|>2|t| .

The sixth connection can be found also in [20,53]. If µ 6= 0 solution 3) from list (16)
is mapped by (17) to the solution

8) u = tϑ(ω)− t+ µte−ϑ(ω), ω = x− ln |t|,
which is invariant with respect to the algebra 〈t∂t+∂x+u∂u〉. Here ϑ is the function
determined implicitly by the formula

∫

(ϑ− 1 + µe−ϑ)−1dϑ = ω.
Some non-Lie exact solutions of (15) were obtained in [23, 55, 56]. Thus,

P.Rosenau [56] found that potential equation vt = vx
−1vxx corresponding to (15)

admits, in addition to the usual variable separation v = T (t)X(x), the additive one
v = Y (x+ λt) +Z(x− λt) which is a potential additive variable separation for the
fast diffusion equation (15). (The classical multiplicative separation of variables is
given by (12) with µ = −1.) To construct nonclassical solutions of (15), C. Qu [55]
made use of generalized conditional symmetry method, looking for the conditional
symmetry operators in the special form Q = (uxx +H(u)ux

2 + F (u)ux +G(u))∂u.
M.L. Gandarias [23] investigated some families of usual and potential nonclassical
symmetries of (9). In particular, using an ansatz for the coefficient η, she found
non-trivial reduction operators in the so-called “no-go” case when the coefficient
of ∂t vanishes, i.e. operators can be reduced to the formQ = ∂x+η(t, x, u)∂u. These
solutions and the ones similar to them were represented uniformly over the complex
field as compositions of two simple waves which move with the same “velocities”
in opposite directions in [51]. Using such representation the following solutions of
fast diffusion equation (15) were obtained [51]:

1′) u = cot(x− t)− cot(x+ t) =
2 sin 2t

cos 2t− cos 2x
,

2′) u = coth(x − t)− coth(x+ t) =
2 sinh 2t

cosh 2x− cosh 2t
,

3′) u = coth(x − t)− tanh(x + t) =
2 cosh 2t

sinh 2x− sinh 2t
,

4′) u = tanh(x− t)− tanh(x+ t) = − 2 sinh 2t

cosh2x+ cosh 2t
,

5′) u = cot(ix+ t)− cot(ix− t) =
2 sin 2t

cosh 2x− cos 2t
,

6′) u = i cot(x+ it)− i cot(x − it) =
2 sinh 2t

cosh 2t− cos 2x
.

Transformation (17) acts on the set of solutions 1′)–6′) in the following way [51]:

1′)cos 2t<cos 2x ←→ 5′)|t→t+π/2, x→x/2, v→2v ;

1′)cos 2t>cos 2x ←→ 5′)|x→x/2, v→2v−π ;

2′)|x|<|t| ←→ 4′)|x→x/2, v→2v ; � 2′)|x|>|t||x→x/2, v→2v ;

� 3′)x<t|x→x/2, v→2v ; 3′)x>t ←→ 3′)x>t|x→−x/2, v→−2v ;

� 6′)|x→x/2, v→2v .
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These actions can be interpreted in terms of actions of transformation (17) on the
nonclassical symmetry operators which correspond to solutions 1′)–6′).

In [56] P. Rosenau considered additive separation of variables for the potential
fast diffusion equation (15) and constructed solution 4′). Using the generalized
conditional symmetry method, C. Qu [55] found solutions which can be written in
forms 1′) and 6′). After rectifying computations in two cases from [55], one can
find also solutions 2′) and 5′). Solutions 1′), 3′) and 4′) were obtained in [23]. The
remaining solutions from the above list were found in [51].

One of techniques which can be applied for finding the above solutions is re-
duction by conditional symmetry operators of the form Q = ∂x + (η1(t, x)u +
η2(t, x))u∂u (see [23] for details). All reductions performed with reduction opera-
tors of such type result in solutions which are equivalent to the listed Lie solutions
1)–7) or solutions 1′)–6′).

9. Nonlinear diffusion equations. Other nonlinearities

Known exact solutions of the reduced equation 3.4 corresponding to 〈Q3 =
2t∂t + x∂x〉 (which are self-similar solutions of (7)) are adduced in Table 6 [48].

Table 6. Self-similar solutions for nonlinear diffusion equations (7), ω = x/
√
t

N A(u) Solution ω = ω(u) Conditions

1
n

2
un − n

2(n + 1)
u2n 1 − un n > 0

2
n

2(n + 1)
((1 − u)n−1 − (1 − u)2n) (1 − u)n n > 0

3
n

2(1 − n)
u−2n − n

2
u−n u−n − 1 0 < n < 1

4
1

2
sin2 πu

2
cos

πu

2

5
1

8
sinπu (πu + sinπu) cos2

πu

2

6
1

16
sin2 πu (5 + cos πu) cos3

πu

2

7
1

2
cos

πu

2

“

cos
πu

2
+

πu

2
− 1

”

1 − sin
πu

2

8
u arccos u + 1

2
√

1 − u2
− 1

2
arccos u

9
π − 2(1 − u) arcsin(1 − u)

4
√

2u − u3
− 1

2
arcsin(1 − u)

10
u arcsinu

4
√

1 − u2
+

1

4
u2

√
1 − u2

11
1

2
(1 − ln u) − lnu
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Let us give some more examples of travelling wave solutions [26,48,58]:

ut = (sinh2 uux)x, u = arccosh2 ±x+ c1√
c2 − 2t

,

ut = (cosh2 uux)x, u = arcsinh2 ±x+ c1√
c2 − 2t

,

ut = ((u2µ + buµ)ux)x, u =

(
√

c1
a(c1 + 1)(c2 − t)

(x+ c1)−
2bc1

a(c1 + 1)

)
1
µ

.

ut = ((e2u + bueu)ux)x, u = ln

( ±x+ c1√
c2 − 2t

− b
)

.

ut = (ueuux)x, u = ln(c1x+ c21t+ c0).

For equation with logarithmical nonlinearity

ut = (ln uux)x

travelling wave and self-similar solutions are known:

u = exp

(

±
√

2c1x+ 2c21t+ c2

)

, u = exp

(±x+ c1
c2 − 2t

− 1

)

.

A number of exact solution for equations of class (7) were constructed with
nonlocal (quasilocal or potential) symmetries [2,11,12,60–62].

Thus, e.g., reductions with respect to the optimal system of subalgebras of Lie
algebra of potential/quasilocal symmetries of equation

ut = ((1 + u2)−1ux))x

give rise to exact solutions of form

u = cet−x(1− c2e2(t−x))−1/2, u = −x(c− 2t− x2)−1/2,

u = tan(ϕ(ω) + arctan(λ(ω)) + εt),

where ω = x2 + v2, v = tan(ϕ(ω) + εt), and

u = x tan(ϕ(ω) + arctan(λ(ω)) + εt),

where ω =
x2 + v2

t
, v = x tan

(

ϕ(ω) +
α

2
εt
)

.

Here ϕ(ω) and λ(ω) are arbitrary solutions of the system ϕ′ = ω−1λ/2, λ′ =
(1 + λ2)(ε − ω−1λ)/2. The list of known exact solutions of this equation (called
often the Fujita’s equation) involves also the following ones [2,16,26,48]:

u = tan(c1x+ c2), u = ±x(c1 − 2t− x2)−1/2,

u =
±et−x

√
1− e2(t−x)

, ε(x+ εt) + c2 =
1

c21 + 1

(

ln
|u+ c1|√
u2 + 1

+ c1 arctanu

)

,

u =
v√

1− v2
, where v =

c1e
λx + c2e

−λx

√

4c1c2 + c3e−2λ2t
or

v =
c1 sinλx + c2 cosλx
√

c21 + c22 + c3e2λ2t
,

u =
sinhx

√

− cosh2 x− e−2t
, u =

± coshx
√

− sinh2 x+ e−2t
, u =

sinx√
cos2 x± e2t

.
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We adduce also some exact solutions of another equation with Fujita’s type
nonlinearity

ut = ((1 − u2)−1ux))x,

namely [16]:

u = c, u = tanhx, u =
x√

x2 + 2t
(t > 0),

u =
±et−x

√
1 + e2(x−t)

, u =
sinhx

√

cosh2 x+ e−2t
,

u =
sinhx

√

cosh2 x− e−2t
(t > 0), u =

± coshx
√

sinh2 x+ e−2t
(t < 0),

u =
sinx√

− cos2 x+ e2t

The third similarity solution converges (pointwise) to a step function as t → 0+,
and to zero as t→∞. The fourth solutions are bounded travelling waves. The fifth
and sixth solutions converge to the time independent second solution as t → ∞.
The sixth solution converge to a step function as t → 0+. The seventh solution
converges to the values ±1 as t→ 0−. The last solution converges to a square wave
as t→ 0+, and to zero as t→∞.

One more example of solution obtained with application of potential symmetry
is u = tan(ϕ(ω) + arctan(2ωϕ′)− λ−1 ln t) for the equation

ut = ((1 + u2)−1eλ arctan uux))x.

Here

ω = x2 + v2, ϕ =
1

λ
ln
c− ω

2
− arctanψ(ω),

ψ′

1 + ψ2
+

ψ

2ω
+

2

λ(c− ω)
= 0.

All the potential symmetries of equations from class (18) can be obtained from
Lie symmetries of (18) by means of prolongation to the potential variable v and
application of potential equivalence transformations [50]

t̃ = t, x̃ = x+ εv, ũ =
u

1 + εu
, ṽ = v, Ã = (1 + εu)2A

and hodograph transformation

t̃ = t, x̃ = v, ũ = u−1, ṽ = x, Ã = u2A,(17)

where vx = u, vt = Aux.
Therefore, these transformations can be used for obtaining potentially invari-

ant exact solutions from the Lie ones. The complete list of nonlinear constant
coefficient diffusion and diffusion–convection equations having potential symme-
tries together with the transformations mapping them to the equations with power
and exponential nonlinearities can be found in [50].

In [65] non-point nonclassical symmetry operators are used to obtain exact
solutions of evolution equations. In particular, it is shown that equation

ut = (u−2e1/uux))x
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admits an exact solution in implicit form u = (z2 + c)/(2t), where

z =
z

ln z2+c
2e2t + 2

√
c

z arctan z√
c

+ c1

z

, if c > 0, and

z =
z

ln z2+c
2e2t + 2

√
−c

z ln z−
√
−c

z+
√
−c

+ c1

z

, if c < 0.

A number of authors considered additive separated solutions of diffusion equa-
tions (7), i.e., solutions of form

u(t, x) = ϕ(t) + ψ(x).

Usually such solutions are Lie invariant. They were adduced in previous sections.
So, here we adduce only list of equations admitting such kind of separation of
variables. Namely, a diffusion equation (7) admits separation of variables if and
only if it is G∼-equivalent to equation with the diffusion coefficient being of the
following functions [16]:

A = |u|µ, A = eu, A = (u2 ± 1)−1,

A = z(u)ez(u), u =

∫ z

1

s−3/2e−s/2ds, z > 0,

A = eσz(u) cosh z(u), σ 6= ±1, u =

∫ z

0

cosh−3/2 se−σs/2ds, −∞ < z <∞

A = eσz(u) sinh z(u), σ 6= ±1, u =

∫ z

1

sinh−3/2 se−σs/2ds, z > 0,

A = eσz(u) cos z(u), u =

∫ z

0

cos−3/2 se−σs/2ds, −π/2 < z < π/2.

10. Constant coefficient diffusion–convection equations

Lie symmetries of the constant coefficient diffusion–convection equation

(18) ut = (A(u)ux)x + B(u)ux,

B 6= 0 and corresponding Lie reductions were considered by a number of authors,
see for example, [17,32,33,43,71]. However the complete group classification of
class (18) was presented only recently in [49].

Any equivalence transformation of class (18) has the form:

t̃ = tε24ε5 + ε1, x̃ = xε4 + ε7t+ ε2, ũ = uε6 + ε3,

Ã = Aε−1
5 , B̃ = Bε−1

4 ε−1
5 − ε7,

(19)

where ε1, . . . , ε7 are arbitrary constants, ε4ε5ε6 6= 0. Note, that all the equations
with B(u) = const are reducible to diffusion equation (7). Besides such ‘triv-
ial’ cases, Burgers equation and Fokas–Yortsos equation, only few Lie invariant
solutions for equations with non-zero convectivity are found. Thus, e.g., in [71]
scale-invariant solution

xu−µ/2 − (1 + 2/µ) ln(xu−µ/2 − 1− 2/µ) = c1t+ c0

in implicit form is found for the equation with power nonlinearities

ut = (uµux)x + uµ/2ux.

was found.
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M. Edwards [17] investigated Lie symmetries of (18) and constructed optimal
subalgebras of the symmetry algebras for some of equations from the class. Here we
supplement her results and adduce the complete list of Lie reductions of equations
from class (18). (The linearizable Fokas–Yortsos and Burgers equations have been
considered separately in Section 3.)

Table 7. Reduced ODEs for ut = (eµuux)x + euux (µ 6= 0)

Subalgebra Ansatz u = ω Reduced ODE

〈∂x〉 ϕ(ω) t ϕ′ = 0

〈∂t〉 ϕ(ω) x (eµϕϕ′)′ + eϕϕ′ = 0

〈∂t + ε∂x〉 ϕ(ω) x − εt −εϕ′ = (eµϕϕ′)′ + eϕϕ′

〈(µt − 2t + ε)∂t ϕ(ω)+ x((µ − 2)t ϕ′(1 − µ)ω + 1

+(µ − 1)x∂x + ∂u〉 (µ 6= 2) +
ln((µ − 2)t + ε)

µ − 2
+ε)

1−µ
µ−2 = (eµϕϕ′)′ + eϕϕ′

〈ε∂t + x∂x + ∂u〉 (µ = 2) ϕ(ω) +
t

ε
xe−t/ε 1

ε
− ϕ′ω = (e2ϕϕ′)′ + eϕϕ′

If u = f(t, x) is an exact solution of equation ut = (eµuux)x + euux, then

u = f
(

e(µ−2)ε1 t+ ε3, e
(µ−1)ε1+ε2x+ ε4

)

+ ε1 + ε2

is also solution of the same equation.

Table 8. Reduced ODEs for ut = (euux)x + uux.

Subalgebra Ansatz u = ω Reduced ODE

〈∂x〉 ϕ(ω) t ϕ′ = 0

〈∂t〉 ϕ(ω) x (eϕϕ′)′ + ϕϕ′ = 0

〈∂t + ε∂x〉 ϕ(ω) x − εt −εϕ′ = (eϕϕ′)′ + ϕϕ′

〈(t + ε)∂t + (x − t)∂x + ∂u〉 ϕ(ω)
x + ε

t + ε
1 + ϕ′(1 − ω) = (eϕϕ′)′ + ϕϕ′

+ln |t + ε| +ln |t + ε|

If u = f(t, x) is an exact solution of equation ut = (euux)x + uux, then

u = f
(

eε1 t+ ε2, e
ε1(x − ε1t+ ε3)

)

+ ε1

is also solution of the same equation.

Table 9. Reduced ODEs for ut = (uµux)x + uνux.

Subalgebra Ansatz u = ω Reduced ODE

〈∂x〉 ϕ(ω) t ϕ′ = 0

〈∂t〉 ϕ(ω) x (ϕµϕ)′ + ϕνϕ′ = 0

〈∂t + ε∂x〉 ϕ(ω) x − εt −εϕ′ = (ϕµϕ′)′ + ϕνϕ′

〈(µt − 2νt + ε)∂t ϕ(ω)((µ − 2ν)t x((µ − 2ν)t ϕ + ϕ′ω = (ϕµϕ′)′ + ϕνϕ′

+(µ − ν)x∂x + u∂u〉, (µ 6= 2ν) +ε)
1

µ−2ν +ε)
ν−µ

µ−2ν

〈ε∂t + νx∂x + u∂u〉, (µ = 2ν) ϕ(ω)et/ε xe−νt/ε ϕ − ϕ′ω = (ϕ2νϕ′)′ + ϕνϕ′

If u = f(t, x) is an exact solution of equation ut = (uµux)x + uνux, then

u = eε1+ε2f
(

e(µ−2ν)ε1 t+ ε3, e
(µ−ν)ε1+νε2x+ ε4

)

is also solution of the same equation.
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For equations with ν = µ the generalized travelling wave solution is known:

u =

(

c2 − x
t+ c1

+
ln |t+ c1|
µ(t+ c1)

)1/µ

.

If µ = 2, ν = 1 then the generalized travelling wave solution in implicit form is
the following:

2

∫

u2du

−u2 − 2εu+ c1
= x− εt+ c2.

For such values µ and ν the degenerate solution linear in x has the form u =
τ(t)(x + c1), where function τ is given in implicit form

−1

τ
+ 2 ln

∣

∣

∣

∣

2τ + 1

τ

∣

∣

∣

∣

= t+ c2.

Table 10. Reduced ODEs for ut = (uµux)x + lnuux.

Subalgebra Ansatz u = ω Reduced ODE

〈∂x〉 ϕ(ω) t ϕ′ = 0

〈∂t〉 ϕ(ω) x (ϕµϕ)′ + lnϕϕ′ = 0

〈∂x + ε∂t〉 ϕ(ω) x − εt −εϕ′ = (ϕµϕ)′ + lnϕϕ′

〈(µt + ε)∂t ϕ(ω)(µt + ε)1/µ µ2x + ε

µ2(µt + ε)
+

ln |µt + ε|
µ2

1

µ
ϕ − µωϕ′

+(µx − t)∂x + u∂u〉 = (ϕµϕ)′ + ln ϕϕ′

If u = f(t, x) is an exact solution of equation ut = (uµux)x + ln uux, then

u = eε1f
(

eµε1 t+ ε2, e
µε1(x− ε1t+ ε3)

)

is also solution of the same equation.
In particular, if µ = 0, we obtain ut = uxx + ln uux. This equation has two

known travelling wave solutions (usual and generalized ones):

u(t, x) = exp(c1e
−x+c2t + 1− c2), u(t, x) = exp

(

c1 − x
t+ c2

+
ln |t+ c2|
t+ c2

)

.

Generalized travelling wave solution are known for the following equations:

ut = ((u2µ + buµ)ux)x + uµux, u =

(

xϕ(t) + c1ϕ(t) +
b

n
ϕ(t)

∫

ϕ(t)dt

)1/µ

.

ut = ((ae2u + beu)ux)x + euux, u = ln
(

xϕ(t) + c1ϕ(t) + bϕ(t)
∫

ϕ(t)dt
)

,

where ϕ = ϕ(t) is determined by the equation ϕ′ = aϕ3 + ϕ2.

11. n-dimensional radially symmetric nonlinear
diffusion equations

Class (1) contains a subclass of physically important n-dimensional radially
symmetric nonlinear diffusion equations. Preserving the common terminology we
use for them the notation

(20) ut = r1−n(rn−1A(u)ur)r.

Equations of the form (20), especially for power nonlinearity

(21) ut = r1−n(rn−1uµur)r.

have a large number of applications, for both µ > 0 (slow diffusion) and µ < 0 (fast
diffusion).
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To the best of our knowledge, first similar solutions of (20) were instantaneous
source-type solutions [6,47] namely, solutions of form

u = t−n/(µn+2)f(ξ), ξ = rt−1/(µn+2)

if µ 6= −2/N and

u = e−λntf(ξ), ξ = reλt,

where λ is an arbitrary constant, in case µ = −2/N . Substituting these values
into (21) yields (assuming t > 0 in the first three cases):

µ > 0 : u =







t−
n

µn+2

[

µ
2(µn+2) (a

2 − r2t− 2
µn+2 )

]
1
µ

, r < at
1

µn+2

0, r ≥ at 1
µn+2

,

µ = 0 : u = At−n/2e−r2/4t,

0 > µ > − 2
n : u = t−

n
µn+2

[

−µ
2(µn+2) (a

2 + r2t−2/(µn+2))
]

1
µ

,

µ = − 2
n : u = e−λnt

[

λ
n (a2 + r2e−2λt)

]−n/2

,

µ < − 2
n : u =







(−t)− n
µn+2

[

µ
2(µn+2) (a

2 + r2(−t)− 2
µn+2 )

]
1
µ

, t < 0

0, t ≥ 0
.

The following instantaneous source-type solutions for equations (21) were ob-
tained by King [34]:

Case µ = −1, n 6= −2: f = (µn+2) exp
(

− αξ−2−n

2−n

)

/
∫

ξ exp
(

− αξ−2−n

2−n

)

dξ.

Case µ = −1, n = 1: f = 1/(βe−αξ − α−2(µn+ 2)−1(1 + αξ)).

Case µ = −1, n = 2: f = 1/(βξα + ξ2(µn+ 2)−1(2− α)−1), if α 6= 2 and
f = 1/(βξ2 + ξ2(µn+ 2)−1 ln ξ, if α = 2.

Case µ = −1, n = 3: f = 2/(2βe−α/ξ +(ξ(α+ξ)+α−2e−α/ξE1(−α/ξ))(µn+
2)−1), where E1(z) =

∫∞
z e−tt−1dt is the exponential integral.

Case µ = −2/n: f = ξ−ng, where
∫

(ng − αg2/n − λg1+2/n)dg = ln ξ.

Case µ = −1/2:

f = α(µn+ 2)ξ−n

(

βJν−1

( α1/2ξ(4−n)/2

(µn+ 2)1/2(4− n)

)

+

+(1− β)Yν−1

( α1/2ξ(4−n)/2

(µn+ 2)1/2(4− n)

)

)2

×
(

βJν

( α1/2ξ(4−n)/2

(µn+ 2)1/2(4− n)

)

+ (1− β)Yν

( α1/2ξ(4−n)/2

(µn+ 2)1/2(4− n)

)

)−2

,

where ν = 2/(4−n), Jν(z) and Yν(z) are Bessel functions of the first and the second
type correspondingly.

We now consider solutions [34] that generalize the one-dimensional dipole so-
lutions given for µ > 0 in [7]. The similarity variables are chosen to fix

∫∞
o rudr
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in time (if the integral exists). In one dimension this corresponds to the centre of
mass. The appropriate similarity solution to (21) then takes the form

u = t−1/(µ+1)f(ξ), ξ = rt−1/(2(µ+1)), n 6= −1,

u = e−2λtf(ξ), ξ = re−λt, n = −1.

For different values n and µ the following solutions are known [7,34]:

Case µ 6= 0,−2/n: f = ξ(2−n)/(µ+1)
(

n
2(µn+2) (β − ξ(µn+2)/(µ+1))

)1/n

.

Case µ = 0: f = βξ2−ne−ξ2/4.

Case µ = −2/n: f =
(

ξ2

n−2 ln ξ
β

)−n/2

.

Case µ = −1/2: (here ν = 2− n/2)

f =
α

ξ2

[

βJν−1

(α1/2ξ

2

)

+ (1− β)Yν−1

(α1/2ξ

2

)

]2

×

×
[

βJν

(α1/2ξ

2

)

+ (1− β)Yν

(α1/2ξ

2

)

]−2

.

Case µ = −1/2, n = 3 (cr [70]): f = α
ξ2 tan2

(

α1/2

2 (ξ − c)
)

or f = α
ξ2 tanh2

(

α1/2

2 (ξ − c)
)

.

Case µ = −1/2, n = 1: f = α2

(2−α1/2ξ cot[α1/2(ξ−c)/2])2

or f = α2

(2−α1/2ξ coth[α1/2(ξ−c)/2])2
.

Case µ = n/2− 2: f = ξ(2−n)/(µ+1)g, where

∫

gn/2−2

g + (n− 2)α
dg = − 1

(n− 2)2
ξn−2.

12. Variable coefficient diffusion–convection equations

To obtain invariant solutions of the variable coefficient diffusion–convection
equations of form (1) two approaches were used. The first one is the direct finding
of solutions invariant with respect to a subalgebra of the Lie invariance algebra,
and the second one is reconstructing of new solutions from the known ones using
equivalence transformations.

As an example of implementation of the first approach we adduce some of the
invariant solutions of equation [24,48].

(22) |x|put = (|u|µux)x.
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Namely,

u = |c1x+ c0|1/(µ+1),

u =

( −c1µ
(p+ 2)(2 + µ+ p+ µp)

)1/µ

(c1t+ c0)
−1/µx(2+p)/µ

u = t(p+1)β

(

µβ

2 + p
x2+pt(p+2)β + c0

)1/µ

, where β = − 1

pµ+ p+ µ+ 2
.

For equation (22) with p = −(µ+2)/(µ+1) solution obtained with multiplica-
tive separation of variables is known:

u = e−c1t
(

c1(µ+ 1)2xµ/(µ+1)ec1µt + c2

)1/µ

See also the next two sections for invariant solutions of essentially variable
coefficient equations.

Another possible way of finding exact solutions is based on application of equiv-
alence transformations. The complete extended equivalence group Ĝ∼ of class (1)
is formed by the transformations [27,28]

t̃ = δ1t+ δ2, x̃ = X(x), ũ = δ3u+ δ4,

f̃ =
ε1δ1ϕ

Xx
f, g̃ = ε1ε

−1
2 Xxϕg, h̃ = ε1ε

−1
3 ϕh, Ã = ε2A, B̃ = ε3(B + ε4A),

(23)

where δj (j = 1, 4) and εi (i = 1, 4) are arbitrary constants, δ1δ3ε1ε2ε3 6= 0, X is

an arbitrary smooth function of x, Xx 6= 0, ϕ = e−ε4

R h(x)
g(x)

dx.
It appears also, that class (1) contains equations being mutually equivalent with

respect to point transformations which do not belong to this group. In particular,
it is proved in [28,31,49] that if an equation of form (1) is invariant with respect
to a Lie algebra of dimension not less than 4 then it can be reduced by point
transformations to a constant coefficient diffusion–convection equation (18). All
such equations and corresponding transformations were found in [28,31,49]. Some
of them were known previously [41]. For the convenience of the readers we adduce
the results of group classification up to the extended equivalence group (23) in
Appendix A.

Up to equivalence transformations (23) the list of equations of form (1) re-
ducible to the constant coefficient form together with corresponding transforma-
tions is exhausted by the following ones [28]:

1. ut = (euux)x + εxux → (8): t̃ = e2εt/(2ε), x̃ = xeεt, ũ = u;

2. x−3ut = (euux)x → (8): t̃ = t signx, x̃ = 1/x, ũ = u− ln |x|;
3. x−3ut = (euux)x+x−2ux→ (8): t̃ = (e2tt signx)/2, x̃ = e−t/x, ũ = u−t−ln |x|;
4. ut = (|u|µux)x + εxux → (9): t̃ = e2εt/(2ε), x̃ = xeεt, ũ = u;

5. |x|−
3µ+4
µ+1 ut = (|u|µux)x → (9): t̃ = t, x̃ = −1/x, ũ = |x|− 1

1+µu;

6. |x|−
3µ+4
µ+1 ut = (|u|µux)x + εx|x|−

3µ+4
µ+1 ux

∣

∣

µ6=2
→ (9): t̃ =

µ+ 1

ε(µ+ 2)
(1− e−ε µ+2

µ+1 t),

x̃ = xeεt, ũ = u;

7. x−2ut = (u−2ux)x + εx−1ux → (5): t̃ = t, x̃ = xeεt, ũ = u;
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8. exut = (u−1ux)x → (15): t̃ = t, x̃ = x, ũ = exu;

9. exut = (u−1ux)x + εexux → (15): t̃ = eεt/ε, x̃ = x+ εt, ũ = ex+εtu.

Combining these transformations with symmetry and equivalence transforma-
tions one can easily obtain solutions of such “non-essentially variable coefficient”
equations. For instance, starting from solutions of equation (8), we obtain corre-
sponding solutions for the more complicated and interesting equation

ex

(γex + 1)3
ut = (euux)x + euux

having the density f localized in space [49]:

u = ln
∣

∣c1 + c0(e
−x + γ)

∣

∣ , u = ln

(

− 1

2t(e−x + γ)
− c1

t
+ c0

e−x + γ

t

)

.

Similarly one can find exact solutions of equation

exut = (u−1ux)x + εexux

that is reducible to the fast diffusion equation [29]:

u =
e−(x+εt)

1 + cex+εt+eεt/ε
, u =

εe−(x+εt)

εx+ ε2t− eεt ± eεt−ε(x+εt)e−εt ,

u =
2e−x

ε(x+ εt)2 ± e2εt
, u =

2e−x

ε cos2(x+ εt)
, u = − 2e−x

ε cosh2(x+ εt)
,

u =
2e−x

ε sin2(x + εt)
, u =

2e−(x+εt) sin(2eεt/ε)

cos(2eεt/ε)− cos 2(x+ εt)
,

u =
2e−(x+εt) sinh(2eεt/ε)

cosh 2(x+ εt)− cosh(2eεt/ε)
, u = − 2e−(x+εt) sinh(2eεt/ε)

cosh 2(x+ εt) + cosh(2eεt/ε)
,

u =
2e−(x+εt) cosh(2eεt/ε)

sinh 2(x+ εt)− sinh(2eεt/ε)
, u =

2e−(x+εt) sin(2eεt/ε)

cosh 2(x+ εt)− cos(2eεt/ε)
,

u =
2e−(x+εt) sinh(2eεt/ε)

cosh(2eεt/ε)− cos 2(x+ εt)
.

Using the same approach we constructed exact solutions for the following equa-
tions [29,31,49]:

e−2x+γe−x

ut = (u−1ux)x + u−1ux :

u = c0e
(c1−γ)e−x

, u =
2c21te

−γe−x

cos2 c1(e−x + c0)
, u =

2tc0c
2
1e

(c1−γ)e−x

(1− c0ec1e−x)2
,

u =
c1e

−γe−x

−ε+ c0ec1(e−x−εt)
, u =

εe−γe−x

e−x − εt+ c0
, u =

2te−γe−x

(e−x + c1)2 + c0t2
.

Equation

e−2x

(e−x + γ)
4+3µ

1+µ

ut = (uµux)x + uµux
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has exact solutions of the form

u = |c0(e−x + γ)− c1|
1

µ+1 , u =

(

c0 +
εµ

e−x + γ
+ ε2µt

)
1
µ

|e−x + γ|− 1
µ+1 ,

u =

(

− µ

µ+ 2

1

2t

(

c0 −
1

e−x + γ

)2

+ c1|t|−
µ

µ+2

)
1
µ

|e−x + γ|− 1
µ+1 ,

u =

(

− µ

µ+ 2

1

2t

(

c0 −
1

e−x + γ

)2

+

+c1

(

c0 −
1

e−x + γ

)

µ
µ+1

|t|−
µ(2µ+3)

2(µ+1)2

)
1
µ

|e−x + γ|− 1
µ+1 ,

u = (6t+ c′1 + c2e
−x)2(e−x + γ)6.

exut = (u−1ux)x + µexux

admits the following invariant exact solutions:

u =
c0
µ
e(1−c1)(x+µt), u =

2c21
µ

e−x

cos2[c1(x+ µt+ c0)]
,

u =
2c0c

2
1

µ

e(c1−1)x+c1µt

[1− c0ec1(x+µt)]2
, u =

c1
µ

e−(x+µt)

c2 + c0ec1(x+µt+c2eµt)
,

u =
2

µ

e−x

(x+ µt+ c1)2 + c0e2µt
, u =

1

µ

e−(x+µt)

x+ µt− eµt + c0
.

f(x)ut = (u−1ux)x −
(

fx

2f
−

√
f

∫ √
fdx

)

u−1ux,

where f = f(x) is an arbitrary positive function has the following invariant solu-
tions:

u = c0(

∫

√

fdx)c1−2, u =
2c21t(

∫ √
fdx)−2

cos2[c1(ln
∫ √

fdx+ c0)]
,

u =
2c0c

2
1t(
∫ √

fdx)c1−2

[1− c0(
∫ √

fdx)c1 ]2
, u =

c1(
∫ √

fdx)−2

c2 + c0(
∫ √

fdx)c1ec1c2t
,

u =
(
∫ √

fdx)−2

ln(
∫ √

fdx)− t+ c0
, u =

2t(
∫ √

fdx)−2

[ln(
∫ √

fdx) + c1]2 + c0t2
.

ut = (u−1ux)x + µxux

admits the following solutions:

u = c0e
c1xeµt

, u =
c21e

2µt

µ cos2[c1(xeµx + c0)]
, u =

c0c
2
1e

(2µt+c1xeµt)

µ(1− c0ec1xeµt)2
,

u =
c1

c2 + c0e
c1(xeµt+

c2
2µ

e2µt)

, u =
2µ

2µxeµt − e2µt + 2µc0
,

u =
4µe2µt

4µ2(xeµt + c1)2 + c0e4µt
.
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See [28, 29, 31, 49] for more detail and more examples. Since the solutions
of these equations can be reconstructed from ones presented in other sections, we
tern back to the more interesting cases, in particular, to the equations which are
“essentially variable coefficient”.

13. Examples of Lie reduction of variable coefficient equation

The results of this section have been obtained in [29,31].
In this section we consider Lie reductions of some variable coefficient equations

of form (1). We start from the equation

(24) epxut = [euux]x + epxux

which admits three-dimensional Lie algebra Q1 = −p−1∂t, Q2 = e−pt(∂t − ∂x),
Q3 = ∂x + p∂u. The only non-zero commutators of these operators are [Q1, Q2] =
Q2. Therefore Amax is a realization of the algebra 2A2.1 [40]. All the possible
inequivalent (with respect to inner automorphisms) one-dimensional subalgebras
of A2.1 ⊕ A1 [46] are exhausted by the ones listed in Table 11 along with the
corresponding ansätze and the reduced odes.

Table 11. Reduced odes for (24). λ 6= 0, ε = ±1

N Subalgebra Ansatz u = ω Reduced ODE

1 Q1 ϕ(ω) x (eϕϕ′)′ + epxϕ′ = 0
2 Q2 ϕ(ω) t + x (eϕϕ′)′ = 0
3 Q3 ϕ(ω) + px t ϕ′ = p2eϕ + p
4 Q1 + λQ3 ϕ(ω) + λpt x − λt eω [λp − (λ + 1)ϕ′] = (eϕϕ′)′

5 Q2 + εQ3 ϕ(ω) + εept x + t − ε
p
ept epωε(p − ϕ′) = (eϕϕ′)′

As a second example we consider the equation

(25) xput = [umux]x + xp+1ux.

The invariance algebra of (25) is generated by the operators Q1 = −(p + 2)−1∂t,
Q2 = e−(p+2)t(∂t − x∂x), Q3 = mx∂x + (p + 2)u∂u and is a realization of the
algebra A2.1 ⊕A1 too. The reduced equations for (25) are listed in table 12.

Table 12. Reduced odes for (25). λ 6= 0, ε = ±1

N Subalgebra Ansatz u = ω Reduced ODE

1 Q1 ϕ(ω) x (ϕmϕ′)′ + xp+1ϕ′ = 0
2 Q2 ϕ(ω) xet (ϕmϕ′)′ = 0

3 Q3 x
p+2
m ϕ(ω) t ϕ′ = (p+2)(p+2+m)

m2 ϕm+1 + p+2
m

ϕ

4 Q1 + λQ3 eλ(p+2)tϕ(ω) xe−λmt (ϕmϕ′)′ + (1 + λm)ωp+1ϕ′

= λ(p + 2)ωpϕ

5 Q2 + εQ3 eεe(p+2)t
ϕ(ω) xe

t− mε
p+2

e(p+2)t

(ϕmϕ′)′ = ε(p + 2)ωpϕ
−mεωp+1ϕ′

At last, let us analyze in more detail equation

(26) epx2

ut = (epx2

ux)x + epx2

uux,

which is invariant with respect to three-dimensional Lie symmetry algebra

〈∂t, e
−2pt∂x, ∂x − 2p∂u〉.

In contrast to the case of equations with four-dimensional Lie symmetry algebra we
cannot reduce equation (26) to a constant coefficient equation of form (1). However,
it is an interesting feature of this equation that using a point transformation v =
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u + 2px it can be mapped to a constant coefficient reaction–convection–diffusion
equation

(27) vt = vxx + vvx − 2pv

that does not belong to class (1). For simplification of the technical calculations
we will investigate the constant coefficient equation (27) instead of (26). The Lie
symmetry algebra of equation (27)

〈X1 = ∂t, X2 = e−2pt(∂x + 2p∂v), X3 = ∂x〉
is a realization of A2.1 ⊕ A1 [40]. These operators generate the following group of
point transformations:

t̃ = t+ ε1, x̃ = x+ ε2e
−2pt + ε3, ṽ = v + 2ε2pe

−2pt.

A list of proper inequivalent subalgebras of the given algebra is exhausted by the
following ones

〈X1 + αX3〉, 〈X3 + εX2〉, 〈X2〉, 〈X1, X3〉, 〈X2, X3〉, 〈X1 + βX3, X2〉,
where α and β are arbitrary constants, ε = 0,±1 [46].

The first three (one-dimensional) subalgebras lead to Lie reductions to ordinary
differential equations, the fourth and sixth (two-dimensional) ones yield reductions
to algebraic equations. Lie reductions with respect to these subalgebras are sum-
marized in Table 13. One can easily check that it is impossible to construct a Lie
ansatz corresponding to the subalgebra 〈X2, X3〉.

Table 13. Lie reductions of equation (27).

N Subalgebra Ansatz v = ω Reduced equation

1 〈X1 + αX3〉 ϕ(ω) x − αt ϕ′′ + (ϕ + α)ϕ′ − 2pϕ = 0

2 〈X3 + εX2〉 ϕ(ω) +
2pεx

e2pt + ε
t ϕ′ =

2pe2pω

e2pω + ε
ϕ

3 〈X2〉 ϕ(ω) + 2px t ϕ′ = 0

4 〈X1, X3〉 C — C = 0

5 〈X1 + βX3, X2〉 2px − 2pβt + C — −2pβ = 0

Integration of equations 2–5 from Table 13 give the following invariant solutions
of equation (27):

v = 0, v = 2px+ C, v =
2pεx+ Ce2pt

e2pt + ε
.

The corresponding exact invariant solutions of equation (26) have the form

u = −2px, u = C, u =
2pεx+ Ce2pt

e2pt + ε
− 2px,(28)

where C is an arbitrary constant.
Ansatzes 4.2 and 4.3 give a hint for a possible form

v = ϕ(t)x + ψ(t)

of nonlinear separation of variables for construction of exact solutions of equa-
tion (27). Substitution of the ansatz to equation (27) leads to antireduction:

ϕ′ = ϕ2 − 2pϕ, ψ′ = ϕψ − 2pψ.

Solving the above system of ODEs for ϕ and ψ we obtain exactly the solutions of
equations 4.2 and 4.3.
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Note 1. Using the point transformation t̃ = e−2pt, x̃ = x, ṽ = e2ptv equa-
tion (27) can be mapped to a variable coefficient Burgers equation ṽt̃ = −2pt̃−1ṽx̃x̃−
2pṽṽx̃ studied in [37].

Note 2. The well-known Cole–Hopf transformation v = 2wx/w reduces equa-
tion (27) to the famous constant coefficient reaction–diffusion equation with weak
nonlinearity

wt = wxx − 2pw ln |w|.

After application of the Cole–Hopf transformation to the list of known exact so-
lutions (see, e.g., [48]) of the equation with weak nonlinearity we obtain exactly
solutions (28) of equation (27).

14. Exact solutions of sl(2, R)-invariant equation

Analyzing the results of group classification of diffusion–convection equations,
we can observe a number of Ĝ∼-inequivalent equations (1) which are invariant with
respect to different realizations of the algebra sl(2,R). The set of such equations is
practically exhausted by the well-known (“constant coefficient”) Burgers and u−4/3-
diffusion equations and by the equations which are equivalent to them with respect
to additional transformations. This set is supplemented by the unique essentially
variable coefficient equation [28,31]

(29) x2ut = (u−6/5ux)x + x2ux,

sl(2,R)-invariance of (29) is directly connected with the fact that h is not constant.
The corresponding realization

Pt = ∂t, D = 2t∂t + 2x∂x − 5u∂u, Π = t2∂t + (2tx+ x2)∂x − 5(t+ x)u∂u.

of the algebra sl(2,R) is quite different from ones of cases of Burgers and u−4/3-
diffusion equations and is the maximal Lie invariance algebra of equation (29). It
was a reason to study equation (29) from the symmetry point of view in detail
in [29]. These operators generate the following one-parameter groups of point
transformations:

Pt : t̃ = t+ ε, x̃ = x, ũ = u;

D : t̃ = eεt, x̃ = eεx, ṽ = e3εv;

Π: t̃ =
t

1− εt , x̃ =
t+ x

1− ε(t+ x)
− t

1− εt , ũ = (1− ε(t+ x))6u.

The complete Lie invariance group Gmax is generated by both the above contin-
uous transformations and the discrete transformation of changing of sign in the
triple (t, x, u). The transformations from Gmax can be used for construction of new
solutions from known ones.

A list of proper Gmax-inequivalent subalgebras of Amax is exhausted by the
algebras 〈Pt〉, 〈D〉, 〈Pt + Π〉, 〈Pt, D〉. Reduction of (29) with respect to these
subalgebras and application of the invariance transformations lead to the following
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set of Gmax-inequivalent Lie invariant exact solutions (below δ ∈ {0, 1}):

u = C(t+ x)−5, u = 2−5/6
(x

t

)−5/2

(t+ x)−5/2,

u =

(

3x4

4t

(t+ x)2

Ct− 1
+ 2

x3

t3
(t+ x)3

)−5/6

,

u = x−5/6

(

(t+ x)2

Ct+ 1

)−5/6(
5

4

x3

t3
+ 2

x2

t2
(C(t + x) + 1)

)−5/6

.

In [29] it was proposed to use functional separation of variables

(30) u =

(

6
∑

i=0

ϕi(t)xi

)−5/6

.

to obtain solutions of equation (29). The set of all solutions of the form (30) is closed
with respect to transformations from Gmax and is exhausted, up to translations
with respect to t and scale transformations, by the above solutions u = δ and
u = δ(t+ x)−5 and the solutions given by the generalized ansatz

(31) u = (2x3 + ϕ4(t)x4 + ϕ5(t)x5 + ϕ6(t)x6)−5/6

and the corresponding reduced system

(32) ϕ4
t = 7ϕ5 − 4

3
(ϕ4)2, ϕ5

t = 18ϕ6 − 4

3
ϕ4ϕ5, ϕ6

t = −5

6
(ϕ5)2 + 2ϕ4ϕ6.

System (32) can be reduced to the single third-order ordinary differential equation
on the function ϕ4:

63ϕ4
ttt + 387(ϕ4

t )
2 + 126ϕ4ϕ4

tt + 192(ϕ4)2ϕ4
t + 16(ϕ4)4 = 0

having particular solutions ϕ4 = 0, ϕ4 = C/t, where C ∈ {0, 3/4, 21/4, 6}, that
lead to Lie invariant solutions of (29).

Conclusive remarks. This work is constantly under updating. So, the au-
thor will appreciate any suggestions, comments and references sent to the e-mail
ivanova@imath.kiev.ua.
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Appendix A. Group classification of diffusion–convection equations

Table 14. Case of ∀A(u), g = 1

N B(u) f(x) h(x) Basis of Amax

1 ∀ ∀ ∀ ∂t

2a ∀ epx 1 ∂t, pt∂t + ∂x

2a′ ∀ |x|p x−1 ∂t, (p + 2)t∂t + x∂x

2b 1 ex ex + β ∂t, e−t(∂t − ∂x)

2c 1 |x|p x|x|p + βx−1 ∂t, e−(p+2)t(∂t − x∂x)

3 1 x−2 x−1 ln |x| ∂t, e−tx∂x

4 0 1 1 ∂t, ∂x, 2t∂t + x∂x

Here p ∈ {0, 1} mod G∼
1 in case 2; p 6= −2 in case 2c; β ∈ {0,±1} in case 2b.

Additional equivalence transformations:

1. 2a(p = 0, B = 1) → 2a(p = 0, B = 0): t̃ = t, x̃ = x + t, ũ = u;

1′. 2a′(p = −2, B = 1) → 2a′(p = −2, B = 0): t̃ = t, x̃ = xet, ũ = u;

2. 2b → 2a(B = β, p = 1): t̃ = et, x̃ = x + t, ũ = u;

3. 2c(p 6= −2) → 2′a(p 6= −2): t̃ = (e(p+2)t − 1)/(p + 2), x̃ = xet, ũ = u.

Table 15. Case of A(u) = eµu

N B(u) f(x) g(x) h(x) Basis of Amax

1 0 ∀ 1 1 ∂t, t∂t − ∂u

2 eνu |x|p 1 |x|q ∂t, pµ − pν − 2ν − qµ + µ)t∂t

+((µ − ν)x∂x + (q + 1)∂u

2∗ eνu epx 1 εex ∂t, (pµ − pν − µ)t∂t + (µ − ν)∂x + ∂u

3 ueu epx2+qx epx2
epx2

∂t, (2p + q)t∂t + ∂x − 2p∂u

4 eνu + κ 1 1 1 ∂t, ∂x, (µ − 2ν)t∂t + ((µ − ν)x + νκt)∂x + ∂u

5 u 1 1 1 ∂t, ∂x, t∂t + (x − t)∂x + ∂u

6a 0 f1(x) 1 1 ∂t, t∂t − ∂u, αt∂t + (βx2 + γ1x + γ0)∂x + βx∂u

6b 1 |x|p 1 εx|x|p ∂t, x∂x + (p + 2)∂u, e−ε(p+2)t(∂t − εx∂x)

6b∗ 1 ex 1 εex ∂t, ∂x + ∂u, e−εt(∂t − ε∂x)

6c 1 x−2 1 εx−1 ∂t, x∂x, t∂t − εtx∂x − ∂u

7a 0 1 1 1 ∂t, t∂t − ∂u, 2t∂t + x∂x, ∂x

7b 1 1 1 1 ∂t, ∂x, t∂t − t∂x − ∂u, 2t∂t + (x − t)∂x

7c 1 1 1 εx ∂t, x∂x + 2∂u, e−εt∂x, e−2εt(∂t − εx∂x)

7d 0 x−3 1 1 ∂t, t∂t − ∂u, x∂x − ∂u, x2∂x + x∂u

7e 1 x−3 1 x−2 ∂t, x∂x − ∂u, et(∂t − x∂x), et(x2∂x + x∂u)

Here (µ, ν) ∈ {(0, 1), (1, ν)}, ν 6= µ in cases 2, 2∗ and 4; µ = 1 and ν 6= 1 in the other cases;
q 6= −1 in case 2∗ (otherwise it is subcase of the case 1.2a′); ε = ±1 in cases 2, 6b–6c and 7e;
p 6∈ {−3,−2, 0} in case 6b; α, β, γ1, γ0 = const and

f1(x) = exp

Z −3βx − 2γ1 + α

βx2 + γ1x + γ0
dx

ff

.

Case 2(q = −1) is a subcase of case 1.2a′. Additional equivalence transformations:

1. 4(κ 6= 0) → 4(κ = 0): t̃ = t, x̃ = x + κt, ũ = u;

2. 6b → 6a (β = γ0 = 0, α = (p + 2)γ1): t̃ = (eε(p+2)t − 1)/(ε(p + 2)), x̃ = xeεt, ũ = u;

3. 6b∗ → 6a (β = γ1 = 0, α = γ0): t̃ = eεt/ε, x̃ = x + εt, ũ = u;
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4. 6c → 6a (β = γ0 = α = 0): t̃ = t, x̃ = xeεt, ũ = u;

5. 7b→7a: t̃ = t, x̃ = x + t, ũ = u;

6. 7c→7a: t̃ = e2εt/(2ε), x̃ = xeεt, ũ = u;

7. 7d→7a: t̃ = t sign x, x̃ = 1/x, ũ = u − ln |x|;
8. 7e→7a: t̃ = (e2tt sign x)/2, x̃ = e−t/x, ũ = u − t − ln |x|.

Table 16. Case of A(u) = |u|µ

N µ B(u) f(x) g(x) h(x) Basis of Amax

1 ∀ 0 ∀ 1 1 ∂t, µt∂t − u∂u

2 ∀ |u|ν |x|p 1 |x|q ∂t, (µ + pµ − qµ − pν − 2ν)t∂t

+(µ − ν)x∂x + (q + 1)u∂u

2∗ ∀ |u|ν epx 1 εex ∂t, (pµ − pν − µ)t∂t + (µ − ν)∂x + u∂u

3 ∀ |u|µ ln |u| epx2+qx epx2
epx2

∂t, (2µp + q)t∂t + ∂x − 2pu∂u

4 ∀ 1 f2 1 εxf2 ∂t,

eεt(∂t − ε((µ + 1)βx2 + x)∂x − εβxu∂u)

5 0 ∀ epx2
epx2

epx2
∂t, e−2pt∂x

6 0 ∀ ex+γex
eγex

eγex
∂t, e−γt(∂t − γ∂x)

7 0 u epx2+x epx2
epx2

∂t, t∂t + ∂x − 2p∂u

8 ∀ |u|ν + κ 1 1 1 ∂t, ∂x,

(µ − 2ν)t∂t + ((µ − ν)x + νκt)∂x + u∂u

9 ∀ ln |u| 1 1 1 ∂t, ∂x, µt∂t + (µx − t)∂x + u∂u

10 0 u epx2
epx2

epx2
∂t, e−2pt∂x, ∂x − 2p∂u

11 0 ln |u| epx2
epx2

epx2
∂t, e−2pt∂x, ∂x − 2pu∂u

12a ∀ 0 f3 1 1 ∂t, µt∂t − u∂u, αt∂t

+((µ + 1)βx2 + γ1x + γ0)∂x + βxu∂u

12b ∀ 1 |x|p 1 εx|x|p ∂t, µx∂x + (p + 2)u∂u,

e−ε(p+2)t(∂t − εx∂x)

12b∗ 6= −1 1 ex 1 εex ∂t, µ∂x + u∂u, e−εt(∂t − ε∂x)

12c 6= −2 1 x−2 1 εx−1 ∂t, x∂x, µt∂t − εµtx∂x − u∂u

13 − 6
5

1 x2 1 x2 ∂t, 2t∂t + 2x∂x − 5u∂u,

t2∂t + (2tx + x2)∂x − 5(t + x)u∂u

14a 6= − 4
3

0 1 1 1 ∂t, µt∂t − u∂u, ∂x, 2t∂t + x∂x

14b 6= − 4
3

1 1 1 1 ∂t, µt∂t − µt∂x − u∂u, ∂x,

2t∂t + (x − t)∂x

14c 6= − 4
3

1 1 1 εx ∂t, µx∂x + 2u∂u, e−εt∂x,

e−2εt(∂t − εx∂x)
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Table 16. Continuation

N µ B(u) f(x) g(x) h(x) Basis of Amax

14d 6= − 4
3
, 0 |x|s(µ) 1 1 ∂t, µt∂t − u∂u, (µ + 2)t∂t − (µ + 1)x∂x,

−1 (µ + 1)x2∂x + xu∂u

14e 6= −2, 1 |x|s(µ) 1 εx|x|s(µ) ∂t, µ(µ + 1)x∂x − (µ + 2)u∂u,

− 4
3
,−1 e

ε µ+2
µ+1

t
(∂t − εx∂x),

eεt((µ + 1)x2∂x + xu∂u)

14f −1 0 ex 1 1 ∂t, t∂t + u∂u,

∂x − u∂u, 2t∂t + x∂x − xu∂u

14g −1 1 ex 1 εex ∂t, ∂x − u∂u, e−εt(∂t − ε∂x),

(x + εt − 2)∂x − (x + εt)u∂u

14h −2 1 x−2 1 εx−1 ∂t, x∂x, 2t∂t − 2εtx∂x + u∂u,

eεt(x2∂x − xu∂u)

15a − 4
3

0 1 1 1 ∂t, 4t∂t + 3u∂u, ∂x, 2t∂t + x∂x,

x2∂x − 3xu∂u

15b − 4
3

1 1 1 1 ∂t, 4t∂t + 4x∂x − 3u∂u, 2t∂t + (x − t)∂x,

∂x, (x + t)2∂x − 3(x + t)u∂u

15c − 4
3

1 1 1 εx ∂t, 2x∂x − 3u∂u,

e−εt∂x,

e−2εt(∂t − εx∂x), eεt(x2∂x − 3xu∂u)

16 0 u 1 1 1 ∂t, ∂x, t∂x − ∂u, 2t∂t + x∂x − u∂u,

t2∂t + tx∂x − (tu + x)∂u

Here s(µ) = − 3µ+4
µ+1

, ν 6= µ; ε = ±1; q 6= −1 in case 2∗ (otherwise it is subcase of the case 1.2a′);

p 6= −2,−(3µ + 4)/(µ + 1) in case 12c; α, β, γ1, γ0 = const, and

f2(x) = exp

Z −(3µ + 4)βx − 3

(µ + 1)βx2 + x
dx

ff

, f3(x) = exp

Z −(3µ + 4)βx − 2γ1 + α

(µ + 1)βx2 + γ1x + γ0
dx

ff

.

Additional equivalence transformations:

1. 8(κ 6= 0) → 8(κ = 0): t̃ = t, x̃ = x + κt, ũ = u;

2. 12b → 12a (β = γ0 = α = 0), 14e → 14a: t̃ = (e(p+2)t − 1)/(p + 2), x̃ = xet, ũ = u;

3. 12b∗ → 12a (β = γ1 = 0, α = γ0): t̃ = (eε(p+2)t − 1)/(ε(p + 2)), x̃ = xeεt, ũ = u;

4. 12c → 12a (β = γ0 = α = 0), 14h → 14a: t̃ = t, x̃ = xeεt, ũ = u;

5. 14b → 14a, 15b → 15a: t̃ = t, x̃ = x − t, ũ = u;

6. 14c → 14a, 15c → 15a: t̃ = e2εt/(2ε), x̃ = xeεt, ũ = u;

7. 14d → 14a: t̃ = t, x̃ = −1/x, ũ = |x|−
1

1+µ u;

8. 14f → 14a(µ = −1): t̃ = t, x̃ = x, ũ = exu.

9. 14g → 14a(µ = −1): t̃ = eεt/ε, x̃ = x + εt, ũ = ex+εtu;
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