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A Global Compact Attractor for High-Dimensional

Defocusing Non-linear Schrödinger Equations with Potential
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Abstract. We study the asymptotic behavior of large data solutions in the
energy space H := H1(Rd) in very high dimension d ≥ 11 to defocusing
Schrödinger equations iut + ∆u = |u|p−1u + V u in Rd, where V ∈ C∞

0 (Rd)

is a real potential (which could contain bound states), and 1 + 4
d

< p <

1 + 4
d−2

is an exponent which is energy-subcritical and mass-supercritical. In

the spherically symmetric case, we show that as t → +∞, these solutions split
into a radiation term that evolves according to the linear Schrödinger equation,
and a remainder which converges in H to a compact attractor K, which consists
of the union of spherically symmetric almost periodic orbits of the NLS flow
in H. The main novelty of this result is that K is a global attractor, being

independent of the initial energy of the initial data; in particular, no matter
how large the initial data is, all but a bounded amount of energy is radiated
away in the limit.
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1. Introduction

The purpose of this paper is to establish some asymptotic properties of bounded-
energy solutions of non-linear Schrödinger (NLS) equations

(1) iut + ∆u = |u|p−1u + V u

with high dimension d ≥ 5, where the potential V ∈ C∞
0 (Rd) is real, and where the

defocusing nonlinearity |u|p−1u is energy-subcritical and mass-supercritical, which
means that 1 + 4

d < p < 1 + 4
d−2 . No size, positivity, or spectral assumptions

will be made on the potential V , which may thus be arbitrarily large, negative,
and contain many bound states. However, as is well known, the high dimension
d ≥ 5 does automatically exclude any resonances for the linear Schrödinger operator
−∆+V at the origin; see [5]. For technical reasons we will unfortunately be forced
to place further assumptions on the dimension, and ultimately our main results
will only hold for d ≥ 11, though one can improve this bound somewhat with more
effort (see Section 5).

The equation (1) enjoys two conserved quantities, the mass

(2) M(u) = M(u(t)) :=

∫

Rd

|u(t, x)|2 dx

and the energy

(3) E(u) = E(u(t)) :=

∫

Rd

1

2
|∇u(t, x)|2 + V (x)

1

2
|u(t, x)|2 +

1

p + 1
|u(t, x)|p+1 dx.

It is known (see e.g. [1], [6], [16]) that for any initial data u0 in the energy space1

H := H1
x(Rd), there exists a unique local strong solution u ∈ C0

t H1
x([−T, T ]×Rd)

to (1) with that data which conserves both the mass and energy, where we recall
that a strong solution is a solution in C0

t H1
x for which the Duhamel formula

u(t) = eit∆u0 − i

∫ t

0

ei(t−t′)∆(|u|p−1u + V u)(t′) dt′

is valid in the sense of distributions. Furthermore, the time T of existence depends
only on the dimension d, the potential V , and the H1 norm of u0. From the
conservation laws and the Gagliardo-Nirenberg inequality we obtain the a priori

bound

‖u(t)‖H .p,d,V,‖u0‖H
1,

where we use X .k Y or X = Ok(Y ) to denote the estimate X ≤ C(k)Y for some
constant C depending only on k, and similarly for other choices of subscripts. One
can then easily iterate the local existence theory and conclude that there is a unique
global strong solution u ∈ C0

t H1
x(R×Rd) to (1) from any initial data u0 ∈ H1

x(Rd).
Now we consider the long-term behaviour of such global solutions as t → ±∞.

By the time reversal symmetry u(t, x) 7→ u(−t, x) it suffices to consider the limit

1This is the Hilbert space with inner product 〈u, v〉H :=
R

Rd uv + ∇u · ∇v dx.
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t → +∞. A major tool for this task is provided by the generalised virial identity

∂t

∫

Rd

∇a · Im(u∇u) dx = 2

∫

Rd

Hess(a)(∇u,∇u) dx

+
p − 1

p + 1

∫

Rd

|u|p+1∆a dx

−
1

2

∫

Rd

|u|2∆∆a dx

−

∫

Rd

(∇a · ∇V )|u|2 dx

(4)

for any test function a ∈ C∞
0 (Rd), where Hess(a) is the Hessian quadratic form

Hess(a)(v, w) :=

d
∑

i=1

d
∑

j=1

∂2a

∂xixj
viwj .

This identity can be easily verified by formal computation, and can be justified
rigorously by regularising the nonlinearity |u|p−1u and the initial data u0; we omit
the standard details. One can also extend the identity to more general classes of
weights a assuming sufficient regularity and decay conditions on u; see Section 4.

Suppose that we are in the free case V = 0. Formally applying (4) with
a(x) := |x| and then integrating in time, we obtain the Morawetz inequality

∫ ∞

0

∫

Rd

|∇/u|2

|x|
+

|u|p+1

|x|
+

|u|2

|x|3
dxdt .p,d,‖u0‖H

1

where |∇/ u|2 := |∇u|2 − | x
|x| · ∇u|2 is the angular component of the energy density

|∇u|2. This Morawetz inequality can be used to justify a scattering result (or more
precisely, an asymptotic completeness result): given any u0 ∈ H , there exists a
unique scattering state u+ ∈ H such that ‖u(t) − eit∆u+‖H → 0 as t → +∞; see
[3]. In other words, we have an asymptotic u(t) = eit∆u+ + oH(1), where oH(1)
denotes a function which goes to zero in H norm as t → ∞.

Similar arguments can be made when V is radially decreasing or is sufficiently
small. However, when the negative component of V is large, the linear Schrödinger
−∆+V can admit bound states, which then implies the existence of nonlinear bound
states Q that solve the equation −EQ+∆Q = |Q|p−1Q+V Q for some fixed energy
E ∈ R; see [9] for further discussion. This leads to solutions u(t, x) := eiEtQ(x) to
(1) which do not converge to a free solution eit∆u+, and so asymptotic completeness
in the formulation given above fails for such potentials.

However, one may hope that such nonlinear bound states are the only obstruc-
tion to asymptotic completeness for the equation (1), and more specifically that
any global solution u ∈ C0

t H1
x([0, +∞) × Rd) should asymptotically take the form

u(t) = eit∆u++eiEtQ+oH(1) for some nonlinear bound state Q. Such an assertion
would be consistent with the (somewhat imprecise) soliton resolution conjecture;
see [11], [15], [17] for further discussion.

Such a precise asymptotic appears to be well out of reach of current technology
at present2. However we are able to present the following partial result under the

2An exception to this occurs when the nonlinearity is restricted to only a finite number of
points in space, thus reducing the system to a linear dispersive PDE coupled with a nonlinear
ODE; see [7].
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additional assumption of spherical symmetry (i.e. u(t, x) = u(t, |x|)) and very high
dimension d ≥ 11, which is the main result of this paper:

Theorem 1.1 (Global compact attractor). Fix p, d, V as above. Suppose also

that d ≥ 11. Then there exists a compact set K ⊂ H of spherically symmetric

functions, invariant under the flow (1), such that for every global solution u ∈
C0

t H1
x(R×Rd) which is spherically symmetric, there exists a spherically symmetric

scattering state u+ ∈ H such that

distH(u(t) − eit∆u+, K) → 0 as t → +∞.

Thus we have a resolution of the form u(t) = eit∆u+ + w(t) + oH(1), where
w(t) ranges inside a universal compact subset of H . The condition d ≥ 11 can be
relaxed; see Section 5.

The arguments in [17] already yield a weaker version of this theorem, in which
the solution u is assumed to have bounded energy (and the compact set K is then
allowed to depend on this energy bound); we review these arguments in Section 2.
The main novelty in this paper, therefore, is the fact that K is now independent of
the energy of the initial data; in other words, K is a truly global attractor for the
evolution (once one subtracts away the radiation term, of course). In particular, we
see that lim supt→+∞ ‖u(t) − eit∆u+‖H remains bounded even as the energy of u
goes to infinity; to put it another way, every finite energy solution, no matter how
large, radiates all but a bounded amount of its energy to infinity.

Theorem 1.1 raises the possibility that the soliton resolution conjecture could in
principle be establishable for (1) for specific choices of p, d, V by means of rigorous
numerics, combined with a quantitative nonlinear stability analysis of each of the
nonlinear bound states. Indeed, suppose one knew that each nonlinear bound state
was orbitally stable (cf. [9]), even in the presence3 of a radiation term eit∆u+,
provided that the time t was sufficiently large (in order to allow the radiation term
to decay) and that the remaining portion of the solution lay within ε (say) of the
nonlinear bound state in H norm. Suppose also the attractor K was known to
be contained in some other compact set K ′, and that one could show by rigorous
numerics (using quantitative perturbative analysis to control errors) that any initial
data in K ′ would eventually end up either exiting K ′, or coming within ε of a
nonlinear bound state, after a bounded amount of time. Then one could conclude
that any finite energy solution would eventually decouple into a radiation term
plus a term which always stayed within a small distance of a set of nonlinear bound
states. If one then had some asymptotic stability results for such bound states one
could thus (in principle) establish the soliton resolution conjecture for this model
(1); examples of such stability results (in the small energy regime) can be found in
[12], [13], [8], [20]. Note however that such stability results are only likely to be
true for the ground nonlinear bound states; excited bound states are likely to decay
into bound states of lower energy; see [14] for an instance of this. In principle,
though, a modified stability analysis of such excited states as in [14] could still
suffice, in conjunction with rigorous numerics, to establish the soliton resolution
conjecture for any given model of the form (1).

Our argument proceeds as follows. First, we adapt the arguments in [17]
to obtain a preliminary compactness result which allows one to reduce matters

3Note that in some models, radiation is known to introduce instabilities in an otherwise stable
system; see [4].
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to establishing the result for almost periodic spherically symmetric solutions, i.e.
spherically symmetric solutions whose orbit {u(t) : t ∈ [0, +∞)} is precompact in
H . For such solutions we establish additional spatial decay properties, using the
double Duhamel trick from [17]. The decay properties will allow us to utilise the
generalised virial identity (4) for functions a which grow rather fast at infinity to
yield universal bounds on the mass and energy of such solutions. More precisely,
we use the classical virial weight a(x) := |x|2 to control the energy, and the quartic
weight a(x) := |x|4 to control the mass. In order to use the latter weight one
requires quite strong spatial decay on the almost periodic solution, which is why
our results are restricted to high dimension d ≥ 11. Invoking the arguments from
[17] once more then gives the desired compactness to the space of almost periodic
solutions.

1.2. Acknowledgments. The author is supported by a grant from the Macarthur
Foundation and by NSF grant DMS-0649473. The author thanks Michael Weinstein
for posing this question. The author also thanks the referee for corrections.

1.3. Notation. Throughout the remainder of this paper, p, d, V are under-
stood to be fixed and to obey the hypotheses above (i.e. that d ≥ 5, 1 + 4

d < p <

1+ 4
d−2 , and V ∈ C∞

0 (Rd)). All implied constants are allowed to depend on p, d, V .

2. Reduction to a quasi-Liouville theorem

The first step in the argument is to establish a local compact attractor:

Theorem 2.1 (Local compact attractor). Let 0 < E < ∞. Then there exists a

compact set KE ⊂ H of spherically symmetric functions, invariant under the flow

(1), such that for every global solution u ∈ C0
t H1

x(R × Rd) which is spherically

symmetric and which obeys the bound supt ‖u(t)‖H ≤ E, there exists a spherically

symmetric scattering state u+ ∈ H such that

distH(u(t) − eit∆u+, KE) → 0 as t → +∞.

This result was already established in [17, Theorem 1.12], when the potential V
was absent and the nonlinearity |u|p−1u was replaced by a more general nonlinearity
F (u) of pth power type. It turns out that the presence of the lower order term V u in
the equation (1) makes essentially no difference to the arguments in [17], basically
because V u obeys all4 the estimates that were required of |u|p−1u. Thus Theorem
2.1 can be established by repeating the arguments from [17] mutatis mutandis. We
will however provide a little more detail below concerning the (minor) changes in
[17] that have to be made to accomodate the potential.

Roughly speaking, the idea is to repeat the arguments in [17] but with F (u)
replaced by |u|p−1u + V u throughout. The local bound ‖F (u)‖W 1,R

x (Rd) . ‖u‖p
H

in [17, Lemma 2.3] holds as long as one adds the lower order term ‖u‖H to the

4In the model case in which V = G(Q) for a nonlinear bound state Q to some NLS −EQ +
∆Q = F (Q) and some power type nonlinearities F,G of order p and p− 1 respectively, one can in
fact view (1) as a vector-valued free nonlinear Schrödinger equation for the pair (u, QeiEt). An
inspection of the arguments in [17] show that the fact that u is scalar is never actually used in

the paper, and so the results in [17] extend without difficulty to this vector-valued setting, thus
giving Theorem 2.1 in this case. Since this model case already gives quite a large and “generic”
class of potentials V for Theorem 2.1, this already gives a fairly convincing heuristic argument
that Theorem 2.1 must hold in general.
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right-hand side (which turns out to be quite harmless). The local Strichartz control
in [17, Lemma 4.3] is then easily extended to the case of a potential by an appli-
cation of Hölder’s inequality. The smoothing effect in [17, Proposition 4.5] for the
nonlinearity |u|p−1u+V u still holds, by exploiting the well-known Kato smoothing
effect [10], [19] to obtain additional regularity for V u. In the proof of [17, Lemma
5.6], the expression F (v +eit∆u+)−F (v) that needs to be estimated there acquires
an additional term of V eit∆u+, but this is easily seen to be manageable by Hölder’s
inequality.

With these estimates in hand, most of the rest of the argument in [17] goes
through with no changes, as the properties of the nonlinearity F are only exploited
through the above lemmas. In particular, the preliminary decomposition of the
solution in [17, Proposition 5.2] and the frequency localisation in [17, Proposition
6.1] remain true. The preliminary spatial localisation in [17, Theorem 7.1] also can
be established by repeating the arguments, with only one small modification: in
addition to the concentration points x1(t), . . . , xJ(t) identified in that proposition,
one should add one additional concentration point at the origin. This ensures that
V is small away from these concentration points, which allows the effect of V to be
neglected when applying a spatial cutoff χ away from these points. (In any case, we
will reprove this spatial localisation shortly.) The arguments in [17, Section 8] then
yield Theorem 2.1 with no changes (indeed, the nonlinearity is not even mentioned
in that section).

Remark 2.2. The above arguments did not use the defocusing nature of the
nonlinearity, and would indeed hold for more general equations of the form iut +
∆u = F (u) + V u, where F was as in [17].

In view of Theorem 2.1, the proof of Theorem 1.1 reduces to the following
“quasi-Liouville theorem”, which asserts that the space of almost periodic spheri-
cally symmetric solutions is compact:

Theorem 2.3 (Quasi-Liouville theorem). Suppose that d ≥ 11. Then there

exists a compact set K ⊂ H such that any global solution u ∈ C0
t H1

x(R×Rd) which

is spherically symmetric and which is almost periodic in the sense that {u(t) : t ∈
R} is a precompact subset of H, must lie in K.

Indeed, to prove Theorem 1.1, let u be any global spherically symmetric solution
to (1) of finite energy. Then the conservation laws give supt ‖u(t)‖H ≤ E for some
finite E, and so by Theorem 2.1 we have a spherically symmetric scattering state
u+ such that u− eit∆u+ is attracted to an invariant compact set KE of spherically
symmetric functions. But every element of KE generates a solution which stays
in KE (by invariance) and is thus almost periodic (by compactness), and so by
Theorem 2.3 we thus have KE ⊂ K for some compact set K independent of E, and
Theorem 1.1 follows.

Remark 2.4. In view of Theorem 2.1, the soliton resolution conjecture can
also be cast in an equivalent “Liouville theorem” form, asserting that the only
almost periodic solutions are the soliton solutions. See [11], [17] for some further
discussion of this point. The reduction of problems concerning general solutions
to dispersive equations to that of establishing Liouville-type theorems for almost
periodic solutions to such equations (or more generally, to solutions which are
almost periodic modulo the symmetries of the equation) is now well established
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in the literature, by the work of Martel-Merle, Merle-Raphael, Kenig-Merle, and
others; see e.g. [18] for a survey.

3. Polynomial spatial decay

From compactness, one easily sees that an almost periodic solution u must ex-
hibit uniform spatial decay in the sense that supt

∫

|x|≥R
|u(t, x)|2 + |∇u(t, x)|2 dx →

0 as R → ∞ (see [17, Proposition B.1] for a proof). In fact this decay can be made
polynomial in R (answering a question in [17, Remark 1.21] in the spherically sym-
metric case); establishing this will be the purpose of this section. Such enhanced
decay is necessary for us to apply the generalised virial identity (4) with weights a
which grow fairly rapidly at infinity.

More precisely, we shall show

Proposition 3.1 (Polynomial spatial decay). Let u be an almost periodic

spherically symmetric global solution with

(5) sup
t

‖u(t)‖H ≤ E.

Then for any R ≥ 1 and t ∈ R we have

(6)

∫

|x|≥R

|u(t, x)|2 dx .E R4−d.

Note that this proposition works for all dimensions d ≥ 5; the need for the
stronger condition d ≥ 11 only arises when applying the virial identity in the next
section.

Remark 3.2. The exponent R4−d is natural. Indeed, consider a nonlinear
bound state Q, thus −EQ+∆Q = |Q|p−1Q+V Q for some E (not the same as the
E in the proposition). Then we can write Q = −(−∆ + E)−1(|Q|p−1Q + V Q). As
is well known, the fundamental solution of (−∆ +E)−1 is bounded by O(1/|x|2−d)
uniformly in E, and so one expects Q to decay like O(1/|x|2−d) as well, which is
consistent with (6).

Proof. Let u be as in this proposition. Let R0 ≥ 1 be the first radius greater
than or equal to 1 such that V (x) = 0 for all x ≥ R0/100; thus R0 . 1. For any
α ≥ 0, let P (α) denote the assertion that

(7)

∫

|x|≥R

|u(t, x)|2 dx .E,α R−α

for all R ≥ R0 and t ∈ R. The claim P (0) follows immediately from (5). We need
to show that P (d − 4) is true. It will suffice to show that the implication

(8) P (α) =⇒ P (min(d − 4, α + δ))

holds for all α ≥ 0, where δ > 0 is a constant depending only on p, d, since this will
imply P (d − 4) from P (0) after finitely many iterations of (8).

It remains to prove (8). We thus let α ≥ 0 be such that (7) holds. We allow all
implied constants to depend on E, α. Note (from (5)) that (7) implies the variant

(9)

∫

|x|≥R

|u(t, x)|2 dx . (1 + R)−α

for all R ≥ 0 and t ∈ R.
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Fix a smooth cutoff function η : Rd → [0, 1] which equals 1 when |x| ≥ 1 and
vanishes when |x| ≤ 1/2, and let ηR(x) := η(x/R) and χR := ηR − η2R. To show
P (min(d − 4, α + δ), it will suffice by geometric series to show that

(10) ‖χRu(t)‖2
2 . R4−d + R−α−δ

for all t ∈ R and R ≥ R0, and some δ > 0 depending only on p and d, where we
abbreviate ‖‖L2

x(Rd) as ‖‖2.

Fix R. By time translation symmetry we may take t = 0. Let T > R2 be a
large time (which will eventually be sent to infinity). From Duhamel’s formula one
has

(11) χRu(0) = u± + v± + w±

for either choice of sign ±, where

u± := χRe∓iT∆u(±T )

v± := iχR

∫ ±T

0

e−it∆(1 − ηR/10)F (u(t)) dt

w± := iχR

∫ ±T

0

e−it∆ηR/10F (u(t)) dt

and F (u) := |u|p−1u + V u.
From (11) we can expand the left-hand side of (10) for t = 0 as

〈u+ + v+ + w+, u− + v− + w−〉L2

which after some application of Cauchy-Schwarz can be expressed as

〈v+, v−〉L2+O((‖u+‖2+‖w+‖2+‖u−‖2+‖w−‖2)(‖u+‖2+‖w+‖2+‖u−‖2+‖w−‖2+‖χRu(0)‖2)).

Using the elementary inequality ab ≤ εa2 + 1
ε b2 to absorb the ‖χRu(0)‖2 term into

the left-hand side of (10), we thus conclude that

(12) ‖χRu(0)‖2
2 . |〈v+, v−〉L2 | + ‖u+‖

2
2 + ‖w+‖

2
2 + ‖u−‖

2
2 + ‖w−‖

2
2.

We now estimate each of the terms on the right-hand side of (12). From
the almost periodic nature of u and the Riemann-Lebesgue lemma for the free
Schrödinger evolution (see [17, Lemma B.5]) we have

(13) lim
T→+∞

‖u+‖
2
2 + ‖u−‖

2
2 = 0.

Now we estimate ‖w+‖2. By the triangle inequality, we can estimate this by the
sum of

(14) ‖χR

∫ T

R2

e−it∆ηR/10F (u(t)) dt‖2

and

(15) ‖

∫ R2

0

e−it∆ηR/10F (u(t)) dt‖2.

Let us first consider (14). By duality, we can express (14) as
∫ T

R2

〈ηR/10F (u(t)), eit∆χRf〉L2 dt
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for some f with ‖f‖2 = 1. Applying the standard dispersive inequality

(16) ‖eit∆f‖Lr
x(Rd) . |t|−d( 1

2
− 1

r
)‖f‖Lr′

x (Rd)

for any 2 ≤ r ≤ ∞ (where of course r′ := r/(r − 1)), together with Hölder’s
inequality, we can thus bound (14) as

(14) .

∫ T

R2

t−d( 1
2
− 1

r
)‖ηR/10F (u(t))‖Lr′

x (Rd)‖χRf‖Lr′
x (Rd) dt.

By Hölder’s inequality again we have ‖χRf‖Lr′
x (Rd) . Rd( 1

2
− 1

r
). If we now choose

r so that r′ = 2/p, then from (9) we have

(17) ‖ηR/10F (u(t))‖Lr′
x (Rd) . R−pα/2 . R−α/2.

The hypothesis p > 1 + 4
d implies that d( 1

2 − 1
r ) > 2 ≥ 1, and so we conclude that

(14) . R−d( 1
2
− 1

r
)+2R−α/2

and thus the contribution of (14) to (12) is O(R−α−δ) for some δ > 0, which is
acceptable.

Now we turn to (15). We square this expression to obtain

(15)
2

=

∫ R2

0

∫ R2

0

〈ei(t′−t)∆ηR/10F (u(t)), ηR/10F (u(t′))〉L2 dtdt′.

We could invoke the dispersive inequality (16) again to control this expression, but
this turns out to give inferior results. To get better results, we exploit the spherical
symmetry. In general, the fundamental solution of the free Schrödinger propagator
gives that

|〈eit∆f, g〉L2 | =
1

(4π|t|)d/2

∣

∣

∣

∣

∫

Rd

∫

Rd

ei|x−y|2/4tf(x)g(y) dxdy

∣

∣

∣

∣

but when f and g are spherically symmetric, we can average over the angular
variable and obtain

|〈eit∆f, g〉L2 | =
1

(4π|t|)d/2

∣

∣

∣

∣

∫

Rd

∫

Rd

(

∫

Sd−1

ei||x|ω−|y||2/4t dω)f(x)g(y) dxdy

∣

∣

∣

∣

.

A standard stationary phase computation reveals that
∫

Sd−1

ei||x|ω−|y||2/4t dω . (|x||y|/|t|)−(d−1)/2

and so we have the spherically symmetric dispersive inequality

|〈eit∆ηR/10f, ηR/10g〉L2 | .
1

|t|1/2Rd−1
‖f‖L1

x(Rd)‖g‖L1
x(Rd)

which improves over (16) when |t| ≤ R2. On the other hand, from Cauchy-Schwarz
we have

|〈eit∆ηR/10f, ηR/10g〉L2 | ≤ ‖f‖2‖g‖2

and hence by interpolation

|〈eit∆ηR/10f, ηR/10g〉L2 | .
1

|t|
1
2
− 1

r R(d−1)(1− 2
r
)
‖f‖Lr′

x (Rd)‖g‖Lr′
x (Rd)



110 TERENCE TAO

for any 2 ≤ r ≤ ∞. Setting r′ := 2/p and using (17), we thus have

(15)
2

.

∫ R2

0

∫ R2

0

1

|t − t′|
1
2
− 1

r R(d−1)(1− 2
r
)
R−α dtdt′.

The right-hand side is O(R−d(1− 2
r
)+4R−α), and so the contribution of (15) to (12)

is also O(R−α−δ) for some δ > 0. Thus the net contribution of w+ is acceptable.
By symmetry we see that the contribution of w− is also acceptable.

To finish the proof of (10) and hence the proposition, it suffices to show that

|〈v+, v−〉L2 | . R4−d + R−α−δ.

We expand the left-hand side as

|

∫ T

0

∫ 0

−T

〈(1 − ηR/10)e
−it−∆χ2

Re−it+∆(1 − ηR/10)F (u(t+)), F (u(t−))〉L2 dt+dt−|.

Now let us inspect the integral kernel Kt−,t+(x, y) of eit−∆χ2
Reit+∆, which (thanks

to the fundamental solution for the free Schrödinger propagator) is given by the
formula

Kt−,t+(x, y) =
CRd

|t+|d/2|t−|d/2

∫

Rd

e−iΦx,y(z)χ2(z) dz

for some absolute constant C, where the quadratic phase Φx,y(z) is given by the
formula

Φx,y(z) =
|y − Rz|2

4t+
+

|Rz − x|2

4t−
.

Because of the cutoffs 1− ηR/10, we are only interested in this kernel in the regime
when |x|, |y| ≤ R/10. Meanwhile, we have 1/2 ≤ |z| ≤ 1 on the support of χ. Since
t−, t+ are positive, we conclude that the gradient

∇zΦx,y(z) = R
Rz − y

4t+
+ R

Rz − x

4t−

has magnitude bounded away from zero by � R2/ min(|t−|, |t+|). We can thus
integrate by parts repeatedly and obtain the bound

|Kt−,t+(x, y)| .
Rd

|t+|d/2|t−|d/2
min

(

1, (
min(|t−|, |t+|)

R2
)100d

)

.

We thus have

|〈v+, v−〉L2 | .

∫ T

0

∫ 0

−T

Rd

|t+|d/2|t−|d/2
min

(

1, (
min(|t−|, |t+|)

R2
)100d

)

‖(1 − ηR/10)F (u(t+))‖L1
x(Rd)‖(1− ηR/10)F (u(t−))‖L1

x(Rd) dt+dt−.

A direct computation shows that
∫ T

0

∫ 0

−T

Rd

|t+|d/2|t−|d/2
min

(

1, (
min(|t−|, |t+|)

R2
)100d

)

dt−dt+ . R4−d

and so it suffices to show that

‖(1− ηR/10)F (u(t))‖L1
x(Rd) . 1 + R(d−4−α−δ)/2

for all t.
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Fix t. The contribution of V u to this expression is O(1) thanks to (5), so it
suffices to show that

∫

|x|≤R/10

|u(t, x)|p dx . 1 + R(d−4−α−δ)/2.

If p ≥ 2, then this follows from Sobolev embedding and (5) (since p < 1 + 4
d−2 ), so

suppose that p < 2. But then from (9) and Hölder’s inequality we have
∫

|x|∼R′

|u(t, x)|p dx . (R′)−αp/2(R′)−d( p
2
−1).

for any R′ ≥ 1. Summing this over dyadic R′ between 1 and R (and using one last
application of Hölder to treat the case |x| = O(1)) we conclude that

∫

|x|≤R/10

|u(t, x)|p dx . 1 + R−αp/2R−d( p
2
−1) log R.

Since p > 1 + 4
d and αp ≥ α, the claim follows. The proof of Proposition 3.1 is now

complete. �

4. Virial inequalities

We now return to the proof of Theorem 2.3. Let u be a spherically symmetric
almost periodic global solution obeying the energy bound (5) for some large E (it
will be important to track which bounds are uniform in E). From (4) and the
fundamental theorem of calculus we see that

2

∫ T2

T1

∫

Rd

Hess(a)(∇u,∇u) dxdt

+
p − 1

p + 1

∫ T2

T1

∫

Rd

|u|p+1∆a dxdt

−
1

2

∫ T2

T1

∫

Rd

|u|2∆∆a dxdt

−

∫ T2

T1

∫

Rd

(∇a · ∇V )|u|2 dxdt . sup
T1≤t≤T2

∫

Rd

|u||∇u||∇a| dx

(18)

for all times −∞ < T1 < T2 < +∞ and all test functions a ∈ C∞
0 (Rd). From

the bounded energy of u, the dominated convergence theorem, and a standard
truncation argument, we see that this inequality also holds for any smooth a with
∇a,∇2a,∇3a,∇4a uniformly bounded.

Suppose that we are in dimension d ≥ 7. Then from Proposition 3.1 we have
∫

Rd

|u|2|x|2 dx .E 1

and thus by (5) and Cauchy-Schwarz we have
∫

Rd

|u||∇u||x| dx .E 1.
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If we formally apply (18) with a(x) := |x|2, we obtain the virial inequality

4

∫ T2

T1

∫

Rd

|∇u|2 dxdt

+2d
p− 1

p + 1

∫ T2

T1

∫

Rd

|u|p+1 dxdt

−

∫ T2

T1

∫

|x|.1

O(|u|2) dxdt .E 1.

(19)

One can justify (19) rigorously as follows. We let R � 1 be a large radius, and
apply (18) with a chosen to equal |x|2 for |x| ≤ R, vanishing for |x| ≥ 2R, and
smoothly interpolated in between. The terms coming from the region |x| ≥ R to
go to zero as R → ∞ (keeping T1, T2 fixed) by (5) and the dominated convergence
theorem, yielding (19) by monotone convergence.

Using conservation of energy (3) and Hölder’s inequality we can bound

4

∫

Rd

|∇u|2 dx + 2d
p − 1

p + 1

∫

Rd

|u|p+1 dxdt −

∫

|x|.1

O(|u|2) dxdt ≥ cE(u) − O(1)

for some absolute constant c > 0 depending only on p and d. From (19), we conclude
that

E(u) . 1 + OE(
1

T2 − T1
).

Letting T2 − T1 → ∞, we conclude that the energy E(u) of the almost periodic
solution is bounded uniformly in E:

(20) E(u) . 1.

Having controlled the energy, we now turn to the mass. Formally, the idea is to
apply (18) with a(x) := |x|4. If we are in dimension d ≥ 11, then from Proposition
3.1 we have

(21)

∫

Rd

|u|2|x|6 dx .E 1

and thus by (5) (or (20)) and Cauchy-Schwarz we have

(22)

∫

Rd

|u||∇u||x|3 dx .E 1.

One can also compute

Hess(a)(∇u,∇u) = 12|x|2|ur|
2 + 4|x|2|∇/ u|2

∆a = 4(d + 2)|x|2

∆∆a = 8d(d + 2)
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where ur is the radial derivative, and thus we formally have
∫ T2

T1

∫

Rd

24|x|2|ur|
2 + 8|x|2|∇/ u|2 dxdt

+4(d + 2)
p − 1

p + 1

∫ T2

T1

∫

Rd

|u|p+1|x|2 dxdt

−4d(d + 2)

∫ T2

T1

∫

Rd

|u|2 dxdt

−

∫ T2

T1

∫

Rd

(∇a · ∇V )|u|2 dxdt .E 1.

(23)

To justify (23) rigorously, we take a large R > 1 and apply (18) with a equal to |x|4

for |x| < R, equal to 100R3|x| for |x| ≥ 2R, and smoothly interpolated in between in
such a way that a remains convex (so in particular Hess(a) is positive semi-definite
and ∆a is non-negative). The terms coming from the region R ≤ |x| ≤ 2R either
goes to zero as R → ∞ (thanks to (21)), or are non-negative, and one can easily
deduce (23) by monotone convergence.

Using (20) we can estimate
∫ T2

T1

∫

Rd

(∇a · ∇V )|u|2 dxdt = O(T2 − T1).

We discard the positive terms |x|2|∇/u|2 and |u|p+1|x|2 and end up with

(24)

∫ T2

T1

∫

Rd

24|x|2|ur|
2 − 4d(d + 2)|u|2 dxdt . T2 − T1 + OE(1).

To deal with the negative term 4d(d + 2)|u|2 we use

Lemma 4.1 (Hardy’s inequality). Suppose that f ∈ C∞
0 (Rd) vanishes near the

origin, and let β ∈ R. Then

(

d + β

2

)2 ∫

Rd

|f(x)|2|x|β dx ≤

∫

Rd

|fr(x)|2|x|β+2 dx.

Proof. Start with the trivial inequality
∫

Rd

∣

∣

∣

∣

|x|fr(x) +
d + β

2
f(x)

∣

∣

∣

∣

2

|x|β dx ≥ 0

and rearrange the left-hand side by integration by parts. �

Applying this with β = 0 and f equal to a smoothly truncated version of u
(both near zero and near infinity) and applying a limiting argument (using (21)
and (5) to control errors), we conclude that

d2

4

∫

Rd

|u|2 dx ≤

∫

Rd

|ur|
2|x|2 dx.

Multiplying this by 24 and inserting it into (24), we conclude that

2d(d − 4)

∫ T2

T1

∫

Rd

|u|2 dxdt . T2 − T1 + OE(1).
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Note that as d ≥ 5, the constant on the left-hand side is positive5. Using conserva-
tion of mass (2) and letting T2 − T1 → ∞ as before we conclude that

(25) M(u) . 1;

combining this with (20) we conclude that

(26) sup
t

‖u(t)‖H . 1.

Invoking Proposition 3.1 again we conclude that

(27) sup
t

∫

|x|≥R

|u(t, x)|2 dx . R4−d

for all R ≥ 1.
Finally, the arguments used to prove6 [17, Proposition 6.1], when combined

with (26), show that

sup
t

‖u(t)‖H1+η
x (Rd) . 1

for some η > 0 depending only on p, d. Combining this with (27) we see that u(t) lies
inside a compact subset K of H that depends only on p, d, V (cf. [17, Proposition
B.1]). The proof of Theorem 2.3 and thus Theorem 1.1 is thus complete.

5. Remarks and possible generalisations

The hypothesis d ≥ 11 can be improved with some additional work. First of
all, one can exploit the fact that the expression

∫

Rd ∇a · Im(u∇u) dx appearing in
(4) is itself a derivative of a usable expression:

∫

Rd

∇a · Im(u∇u) dx =
d

dt

1

2

∫

Rd

a|u|2 dx.

Thus to bound the left-hand side on average in time, it suffices to control
∫

Rd a|u|2 dx
uniformly in time. Because of this, we can weaken (21) to

∫

Rd

|u|2|x|4 dx .E 1

and still continue the rest of the proof. This lets us relax the condition d ≥ 11 to
d ≥ 9.

One can do even better by establishing an analogue of the decay result in Propo-
sition 3.1 for the derivative ∇u. Indeed, by repeating the proof of that proposition
(but using the nonlinearity ∇F (u) rather than F (u)) one should eventually estab-
lish the bound

∫

|x|≥R

|∇u(t, x)|2 dx .E R2−d

5More generally, it turns out that one can always use Hardy’s inequality to obtain a favourable
sign in this manner in dimensions d ≥ 5 when selecting any weight of the form a(x) = |x|α for
some α ≥ 1. Of course, for large α one still needs to establish sufficiently strong spatial decay of
u and/or ∇u in order to ensure that the right-hand side of (18) remains finite and to rigorously
justify the use of this non-compactly supported weight.

6As already noted in Section 2, the addition of the potential energy term V u does not impact

the proof of this proposition. Also, the proposition as stated only controls u(t) for sufficiently large
times t, in order to obtain decay of the linear solutions eit∆u0, eit∆u+, but for almost periodic
solutions, the contribution of the linear solutions can always be neglected using Riemann-Lebesgue
type lemmas, and so the estimates for almost periodic solutions are valid for all times.



A GLOBAL COMPACT ATTRACTOR FOR NLS WITH POTENTIAL 115

for R ≥ 1. Note that the bound for ∇u is actually better than that for u; one expects
∇u to decay one order of magnitude faster than u (as one can already heuristically
see by looking at the ground state equation Q = −(−∆ + E)−1(V Q + |Q|p−1Q)
and considering the regularity of the resolvent kernel (−∆ + E)−1). See also [15]
for another instance of this phenomeon. This allows one to establish (22) for all
d ≥ 7, and should also let one extend Theorem 1.1 to this case.

The additional truncations to the virial identity in [15, Sections 9,10] should
also allow one to derive (20) for all d ≥ 5 (and perhaps even d ≥ 3), but the
author was not able to adapt the same argument to prove (25) for d = 5 or d = 6.
Nevertheless the author believes that Theorem 2.3 (and thus Theorem 1.1) should
hold for all d ≥ 5.

The requirement that V be compactly supported can easily be relaxed to some
polynomial decay rate on V and ∇V , though we have not attempted to compute
the optimal such rate7. Note that some regularity on V is required in order to keep
the equation (1) well-posed in the energy class H .

Our arguments rely at several key junctures on spherical symmetry. In the
absence of spherical symmetry, the problem is now translation invariant, and one
must modify the notion of a compact attractor to take this into account; see [17].
Nevertheless, since the potential V can only counteract the defocusing nonlinearity
near the origin, it is reasonable to expect that some counterpart of Theorem 2.3
and Theorem 1.1 holds in this setting, at least in sufficiently high dimension. One
possible initial step in this direction would be to remove the assumption of spherical
symmetry from Proposition 3.1. One may also wish to apply interaction virial
estimates (as in [2]) in this case.

One might also wish to consider a model in which the attraction is caused by
a locally focusing nonlinearity rather than by a potential term. For instance, one
could consider the equation iut+∆u = F (u) where F is a Hamiltonian nonlinearity
which behaves like the defocusing nonlinearity |u|p−1u for large u but is allowed to
be negative for small u. It is certainly possible for such models to admit non-trivial
nonlinear bound states. However it is not clear to the author whether the ana-
logue of Theorem 2.3 or Theorem 1.1 holds in this setting, even in extremely high
dimension. It is not even clear that the space of spherically symmetric nonlinear
bound states is bounded in the energy space. One possible obstruction arises from
the fact that one can build partly bound states by starting with a nonlinear bound
state in a lower dimension and extending it trivially to higher dimensions. Such
bound states have infinite energy, but one could imagine that some truncation or
perturbation of this partly bound state would be stable, leading to nonlinear bound
states or other soliton-like solutions to this equation of arbitrarily large but finite
mass and energy. As a variant of this scenario, one could consider spherically sym-
metric solutions concentrated around an annulus {x : |x| = R + O(1)} for some
large R; in polar coordinates, such solutions resemble a one-dimensional nonlin-
ear bound state, and by varying the parameter R this could conceivably create a
family of nonlinear bound states or similar solutions of arbitrarily large mass and
energy. On the other hand, it may well be possible to show that the L∞ norm of
almost periodic solutions to such equations are necessarily bounded by some abso-
lute constant depending only on the dimension and the nonlinearity (here it may

7A back-of-the-envelope computation suggests that one needs |V (x)| ≤ c|x|−2 and |∇V (x)| ≤
c|x|−3 for some small absolute constant c > 0 and all sufficiently large x.
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be convenient to add the additional assumption that the nonlinearity F is smooth,
as this should force the almost periodic solution to be smooth also).
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