
Dynamics of PDE, Vol.5, No.1, 87-99, 2008

Regularity for Quasi-linear Elliptic Systems with

Discontinuous Coefficients
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Abstract. In this paper we study regularity and partial regularity for the
weak solution of a class of general quasi-linear elliptic equations and systems,
which are of the quasi-linear main coefficients satisfying the VMO conditions
in x uniformly with respect to u, and of the lower order items satisfying con-
trollable growth.
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1. Introduction

In this paper, our purpose is to study regularity and partial regularity of weak
solutions for the general quasi-linear elliptic equation and system of divergence
form:

−Dα

[

A
αβ
ij (x, u)Dβuj + aα

i (x, u)
]

= bi(x, u,∇u), in Ω, (1.1)
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for α, β = 1, 2, · · · , n; i, j = 1, 2, · · · , N , which contains the lower order items
bi(x, u,∇u) satisfying controllable growth, where Ω is a domain of the Euclidean

space Rn (n ≥ 2), and u : Ω → RN is a vector-valued function and u ∈ W
1,2
loc (Ω,RN)

is any weak solution of system (1.1) in the distributional sense:
∫

Ω

A
αβ
ij (x, u)DβujDαφi dx =

∫

Ω

[−aα
i (x, u)Dαφi + bi(x, u,∇u)φi] dx, (1.2)

for any φ ∈ C∞
0 (Ω, RN ).

If A
αβ
ij (x, u) ∈ C(Ω × RN ), when N = 1, an interior Hölder estimate can be

obtained by using the classical Schauder approach and an Lp estimate can be ob-
tained by using the potential theory [1, 2]. When N > 1, Giaquinta and Modica
[3, 4] investigated partial regularity of weak solutions of system (1.1) in the Morrey
space L2, λ and the Campanato space L2, λ [5, 6]. For linear divergence equations
with bounded measurable coefficients, De Giorgi [7] and Nash [8] first established
an interior Hölder estimate in the scalar case. Afterward, many researchers had ob-
tained analogous results for general nonlinear single equation essentially by applying
the technique of De Giorgi-Nash-Moser’s iteration [1, 2, 9,10 etc.], and regularity
results for some second-order elliptic partial differential equations related to the
primitive equations were derived by Hu and his co-workers [11, 12]. But a sharp
Hölder exponent was not shown by way of the iteration technique and the Harnack
inequality. So in this paper we are interested in establishing a sharp regularity of
weak solutions reflected by the integrability of fα

i (x) and gi(x) under certain min-

imal assumptions on the quasi-linear coefficient operators A
αβ
ij (x, u), in particular,

which possibly have discontinuous coefficients. Partial regularity of weak solutions
to nonlinear elliptic systems satisfying a Dini condition was studied by Wolf [13].
The VMO (vanishing mean oscillation) function, introduced by Sarason [14], is of
a number of good properties, which is not shared by general bounded measurable
functions and BMO (bounded mean oscillation) functions. Another motivation
for studying this problem comes from the recent development of the Lp-Schauder
theory for linear and nonlinear elliptic and parabolic equations with V MO

⋂

L∞

coefficients by means of the harmonic analysis [15-21], and local minimizers of func-
tionals by way of the freezing coefficient method [22]. So a naturally generalized

assumption in this paper is to suppose that coefficients A
αβ
ij are of vanishing mean

oscillation in x ∈ Ω uniformly with respect to u ∈ RN , this is because we allow
the coefficient VMO to be dependent on the variable x, and to be continuous with
respect to u. However, the assumption of continuity with respect to u is necessary
and can not be removed by any standard argument in the literature. The main
difficulty lies in that the composition of the VMO function with the C∞ function
is not a priori VMO.

Here let us recall the definition of the VMO function and state some basic con-
ditions which we will need to use in our main results.

Definition 1. [1, 23] A locally integrable function f is said to belong to
BMO(Ω) (the space of bounded mean oscillation in Ω), if f ∈ Lloc(Ω) and for any
0 < a < ∞, we have

Ma(f, Ω) = sup
x∈Ω, 0<ρ<a

|Ω(x, ρ)|−1

∫

Ω(x, ρ)

|f(y) − fx, ρ| dy < +∞,
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where Ω(x, ρ) = Ω ∩ B(x, ρ) with any open ball B(x, ρ) in Rn centered at x of
radius ρ, and fx, ρ := −

∫

Ω(x, ρ) f(y) dy = 1
|Ω(x, ρ)|

∫

Ω(x, ρ) f(y) dy.

Definition 2. [13] A function f ∈ Lloc(Ω) is said to be in V MO(Ω) (the
space of vanishing mean oscillation in Ω), if

M0(f) = lim
a→0

Ma(f, Ω) = 0.

Suppose that f ∈ BMO(Ω), then it actually satisfies a stronger version of
following property: for any 1 < p < +∞, it follows that f locally belongs to Lp(Ω).
Moreover, we have [23]

(

|Ω(x, ρ)|−1

∫

Ω(x,ρ)

|f(y) − fx,ρ|
p dy

)
1
p

≤ C(p)Ma(f, Ω), (1.3)

for any 0 < ρ < a. For system (1.1), we suppose that coefficient operators A
αβ
ij (x, u),

and the lower order items aα
i (x, u) and bi(x, u,∇u) satisfy the following four con-

ditions:

(H1) (Ellipticity). There exists a constant ν > 0 such that

A
αβ
ij (x, u)ξi

αξ
j
β ≥ ν|ξ|2, ∀ x ∈ Ω, ∀u ∈ W

1,2
loc , ∀ ξ ∈ RnN .

(H2) (V MO∩L∞ Property). Assume that A
αβ
ij (x, u0) belongs to V MO

⋂

L∞(Ω)

uniformly with respect to u0 ∈ RN . That is,

lim
a→0

Ma(A
αβ
ij (· , u0)) = 0,

uniformly with respect to u0 ∈ RN , and there exists a positive constant L such

that |Aαβ
ij (x, u)| ≤ L for all x ∈ Ω and u ∈ RN .

(H3) (Continuity). There exist a constant C and a continuous concave func-
tion1 ω : R+ → R+ with ω(0) = 0, 0 ≤ ω ≤ 1 such that

|Aαβ
ij (x0, u) − A

αβ
ij (x0, v)| ≤ Cω(|u − v|2), ∀ x0 ∈ Ω, ∀u, v ∈ W

1,2
loc .

(H4) (Lower Order Items). We assume that aα
i (x, u) and bi(x, u, ∇u) are

measurable for all u ∈ W
1, 2
loc (Ω, RN) with growth conditions

|aα
i (x, u)| ≤ µ1

(

|u|
γ

2 + fα
i (x)

)

,

|bi(x, u, ∇u)| ≤ µ2

(

|∇u|2(1−
1
γ
) + |u|r−1 + gi

)

,

where

γ =

{

2n
n−2 if n > 2,

any γ > 2 if n = 2,
(1.4)

fα
i ∈ Lp(Ω), p > n, gi ∈ Lq(Ω), q >

n

2
;

for α = 1, 2, · · · , n and i = 1, 2, · · · , N .

1The continuous concave function ω(t) can be constructed by taking ω(t) = inf{λ(t) :
λ(t) concave and continuous with λ(t) ≥ α(t) for any modulus of continuity α(t) which satisfies
|A(x0, u) − A(x0, v)| ≤ Cα(|u − v|2)}.
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We summarize our main results by distinguishing the scalar case N = 1 from
the vectorial case N > 1. That is, in the scalar case of N = 1, we have:

Theorem 1. For N = 1, let u ∈ W
1, 2
loc (Ω, R) be a local weak solution of

quasi-linear elliptic equation (1.1). Suppose that coefficients Aαβ(x, u) satisfy as-
sumptions (H1)-(H3), and the lower order items aα(x, u) and b(x, u, ∇u) satisfy
assumption (H4). Then we have u ∈ C0, κ(Ω, R) for some κ = min{1− n

p
, 2− n

q
}.

In the vectorial case of N > 1, we have:

Theorem 2. For N > 1, let u ∈ W
1, 2
loc (Ω,RN ) be a local weak solution

of quasi-linear elliptic system (1.1). Suppose that coefficient operators A
αβ
ij (x, u)

satisfy assumptions (H1)-(H3), and the lower order items aα
i (x, u) and bi(x, u, ∇u)

satisfy assumption (H4). Then there exists an open subset Ω0 ⊂ Ω with dimH(Ω \
Ω0) ≤ n − 2 such that u ∈ C0, κ(Ω0, RN) for some κ = min{1− n

p
, 2 − n

q
}.

The rest of the paper is organized as follows. In Section 2, to make our paper
sufficiently self-contained, we introduce several technical lemmas. In Section 3, we
present our proofs for Theorems 1 and 2. Section 4 presents a brief conclusion.

2. Preliminaries

For our convenience, in the following context we use the notation

A
αβ
ij (· , ux0, R)x0, R = −

∫

BR(x0)

A
αβ
ij (y, ux0, R) dy.

Let v(x) be a weak solution to the Dirichlet problem:






Dα((Aαβ
ij (·, ux0, R)x0, R)Dβvj) = 0, i = 1, 2, · · · , N in BR(x0)

v − u ∈ W
1, 2
0 (BR(x0), RN).

(2.1)

In order to present proofs of our main results in a straightforward manner, here we
introduce several technical lemmas:

Lemma 1. (Jensen’s inequality [24]) Let ω : R → R be a concave function.
For any bounded open subset U ⊂ Rn, suppose that u : U → R is an integrable
function. Then we have

−

∫

U

ω(u) dx ≤ ω

(

−

∫

U

u dx

)

. (2.2)

Lemma 2. [4] Let v(x) ∈ W 1, 2(BR, RN) be a weak solution of system (2.1).
Then there exists a constant C = C(ν, L) such that for any x0 ∈ Ω and 0 < ρ <

R ≤ dist(x0, ∂Ω), there holds
∫

Bρ(x0)

|Dv|2 dx ≤ C
( ρ

R

)n
∫

BR(x0)

|Dv|2 dx.

Lemma 3. (Iteration Lemma [2, 10]) For any fixed x0 ∈ Ω, let Φ(ρ) be a
nonnegative and nondecreasing function. Suppose that

Φ(ρ) ≤ A
[( ρ

R

)a

+ ε
]

Φ(R) + BRb, for all 0 < ρ < R ≤ R0 = dist(x0, ∂Ω),
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where A, B, a, b are nonnegative constants with a > b. Then there exist positive
constants ε0 = ε0(A, a, b) and C = C(A, a, b) such that if ε < ε0, such that

Φ(ρ) ≤ C

[

( ρ

R

)b

Φ(R) + Bρb

]

, ∀ 0 < ρ < R < R0.

Lemma 4. (Reverse Hölder Inequality [4]) Let u ∈ W
1,2
loc (Ω,RN) be a local

weak solution of system (1.1) under assumptions of (H1)(H2) and (H4). Then
Du ∈ Lr

loc(Ω, RN ) for some r > 2. Moreover, there exist constants

C = C(n, ν, µ1, µ2, p, q, L) > 0

and R̄ > 0, for each ball BR(x0) ⊂ Ω when 0 < R < R̄, such that


−

∫

B R
2

(|u|γ + |Du|2)
r
2 dx





1
r

≤ C

(

−

∫

BR

(|u|γ + |Du|2) dx

)
1
2

+ C



−

∫

BR

∑

α,i

|fα
i (x)|r dx





1
r

+ CR

(

−

∫

BR

∑

i

|gi(x)|
γ

γ−1
r
2 dx

)
2
r

γ−1

γ

, (2.3)

which γ is the same exponent as given in (1.4).

Since Φp(f) =
(

1
|BR|

∫

BR
|f(x)|p dx

)
1
p

is non-decreasing in p > 0 for any fixed

f(x) [1, 24], from (2.3) we have


−

∫

B R
2

|Du|r dx





2
r

≤



−

∫

B R
2

(|u|γ + |Du|2)
r
2 dx





2
r

,

≤ C

(

−

∫

BR

(|u|γ + |Du|2) dx

)

+ C



−

∫

BR

∑

α,i

|fα
i (x)|p dx





2
p

,

+ CR2

(

−

∫

BR

∑

i

|gi(x)|q dx

)
2
q

. (2.4)

Lemma 5. (Dirichlet Growth Theorem [2]) Suppose that u ∈ W 1, 2(BR(x0), RN )
satisfies the inequality:

∫

BR

|∇u|2 dx ≤ M2Rn−2+2κ,

for any BR(x0) ⊂ Ω, where M is a positive constant and κ ∈ (0, 1). Then we have
u ∈ Cκ

loc(Ω, RN), and for any Ω′ ⊂⊂ Ω there holds

sup
Ω′

|u| + sup
x,y∈Ω′,x6=y

|f(x) − f(y)|

|x − y|κ
≤ C

[

M + ‖u‖L2(Ω)

]

,

where C = C(n, κ, Ω′, Ω) > 0.

Lemma 6. (Estimate of Hausdorff Dimension [25]) Let Ω be an open subset
of Rn and u ∈ Lloc(Ω). For 0 ≤ s < n we set

Es :=

{

x ∈ Ω : lim inf
ρ→0

ρ−s

∫

Bρ(x)

|u| dy > 0

}

.
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Then we have the estimate

Hs(Es) = 0.

3. Proofs of Main Results

For any fixed x0 ∈ Ω and 0 < R < d
2 with d = dist(x0, ∂Ω), we know that

B2R := B2R(x0) ⊂ Ω. Suppose that v(x) is the solution of the Dirichlet problem
(2.1), by Lemma 2, for 0 < ρ < R, then we immediately obtain

∫

Bρ

|Du|2 dx ≤ C
( ρ

R

)n
∫

BR

|Du|2 dx + C

∫

BR

|D(u − v)|2 dx. (3.1)

Set w = u − v. The difference between (1.2) and (2.1) yields
∫

BR

A
αβ
ij (·, ux0,R)x0,RDβwjDαφi dx =

∫

BR

[

−aα
i (x, u)Dαφi + bi(x, u,∇u)φi

]

dx

+

∫

BR

(Aαβ
ij (·, ux0,R)x0,R − A

αβ
ij (x, u))DβujDαφi dx, (3.2)

for any φ ∈ W
1, 2
0 (BR, RN). Since w = u − v ∈ W

1, 2
0 (BR, RN ) with w = 0 on

∂BR(x0), we may take it as a test function. Taking into account the ellipticity
assumption (H1), from (3.1) and (3.2) we have

ν

∫

BR

|Dw|2 dx ≤

∫

BR

A
αβ
ij (·, ux0,R)x0,RDβwjDαwi dx,

=

∫

BR

[

−aα
i (x, u)Dαwi + bi(x, u,∇u)wi

]

dx

+

∫

BR

[

A
αβ
ij (·, ux0,R)x0,R − A

αβ
ij (x, ux0,R)

]

DβujDαwi dx,

+

∫

BR

[

A
αβ
ij (x, ux0,R) − A

αβ
ij (x, u)

]

DβujDαwi dx.

According to Young’s inequality and Sobolev’s inequality for w ∈ W
1, 2
0 (BR), there

is a constant C such that
∫

BR

|Dw|2 dx ≤ C

∫

BR

|aα
i (x, u)|2 dx + C

(∫

BR

|bi(x, u,∇u)|
2n

n+2 dx

)
n+2

n

+ C

∫

BR

|Aαβ
ij (·, ux0,R)x0,R − A

αβ
ij (x, ux0,R)|2|Du|2 dx

+ C

∫

BR

|Aαβ
ij (x, ux0,R) − A

αβ
ij (x, u)|2|Du|2 dx,

≡ C(I + II + III + IV), (3.3)

where I =
∫

BR
|aα

i (x, u)|2 dx, II =
(

∫

BR
|bi(x, u,∇u)|

2n
n+2 dx

)
n+2

n

, III =
∫

BR
|Aαβ

ij (·, ux0,R)x0,R − A
αβ
ij (x, ux0,R)|2|Du|2 dx, and

IV =
∫

BR
|Aαβ

ij (x, ux0,R) − A
αβ
ij (x, u)|2|Du|2 dx.

Now we are going to estimate I, II, III and IV, respectively. For estimates of
I, II and III, both the scalar and vectorial cases can be discussed in the same way,
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but for the estimate of IV, we need to divide discussions into the scalar case and
vectorial case separately. First, for the cases of I and II, using assumption (H4) we
have

I =

∫

BR

|aα
i (x, u)|2 dx ≤ 2µ1

∫

BR

(|u|r +
∑

α,i

|fα
i (x)|2) dx,

≤ C

∫

BR

|u|r dx + CRn−2+2κ1





∫

BR

∑

α,i

|fα
i (x)|p dx





2
p

, (3.4)

II =

(∫

BR

|bi(x, u,∇u)|
2n

n+2 dx

)
n+2

n

,

≤ C

(

∫

BR

(|∇u|2 + |u|r +
∑

i

|gi(x)|
2n

n+2 ) dx

)
n+2

n

,

≤ C

(∫

BR

(|∇u|2 + |u|r) dx

)1+ 2
n

+ CRn−2+2κ2

(

∫

BR

∑

i

|gi(x)|q

)
2
q

, (3.5)

where κ1 = 1 − n
p

and κ2 = 2 − n
q
.

In order to estimate Part III, we make use of the VMO assumption (H2),
inequality (1.3) as well as the reverse Hölder inequality (2.4), and have

III =

∫

BR

|Aαβ
ij (·, ux0,R)x0,R − A

αβ
ij (x, ux0,R)|2|Du|2 dx,

≤

(
∫

BR

|Aαβ
ij (x, ux0,R) − A

αβ
ij (·, ux0,R)x0,R|

2r
r−2 dx

)
r−2

r

·

(
∫

BR

|Du|r dx

)
2
r

,

≤ C(r)(ωnRn)
r−2

r · M2
R[Aαβ

ij (·, ux0,R)] ·

(∫

BR

|Du|r dx

)
2
r

,

≤ CM2
R[Aαβ

ij (·, ux0,R)] · Rn

(

−

∫

BR

|Du|r dx

)
2
r

,

≤ CRnM2
R[Aαβ

ij (·, ux0,R)] ·

[

−

∫

B2R

(|u|γ + |Du|2) dx

+



−

∫

B2R

∑

α,i

|fα
i (x)|p dx





2
p

+ R2

(

−

∫

B2R

∑

i

|gi(x)|q dx

)
2
q






,

= CM2
R[Aαβ

ij (·, ux0,R)] ·

∫

B2R

(|u|γ + |Du|2) dx

+ CM2
R[Aαβ

ij (·, ux0,R)] ·






Rn− 2n

p





∫

B2R

∑

α,i

|fα
i (x)|p dx





2
p

+ Rn+2− 2n
q

(

∫

B2R

∑

i

|gi(x)|q dx

)
2
q



 .
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Since fα
i (x) ∈ Lp for p > n and fi(x) ∈ Lq for q > n

2 , we get

III ≤ CM2
R[Aαβ

ij (·, ux0,R)] ·

[∫

B2R

(|u|γ + |Du|2) dx

+ Rn+2−2κ1

∑

α,i

‖fα
i ‖

2
Lp + Rn+2−2κ2

∑

i

‖gi‖
2
Lq



 , (3.6)

where κ1 = 1 − n
p

and κ2 = 2 − n
q
.

On the other hand, if we set

γ =

{

2n
n−2 if n > 2,

any γ > 2 if n = 2,

then there holds an inequality
∫

BR

|u|γ dx ≤ C

∫

BR

|u − ux0,R|
γ + CRn|ux0,R|

γ

≤ C

(∫

BR

|∇u|2 dx

)2γ

+ CRn|ux0,R|
γ

≤ C

(∫

BR

|∇u|2 dx

)
γ

n

·

(∫

BR

(|u|γ + |∇u|2) dx

)

+ CRn|ux0,R|
γ .

(3.7)

In order to estimate Part IV, we distinguish the proof in the scalar case from that
in the vectorial case. Let us state a well-known result before starting to prove
Theorem 1 in the scalar case. When N = 1 we have a local Hölder continuity with
some Hölder exponent σ (undetermined) for the single equation (1.1):

Lemma 7. [1] Let u(x) ∈ W 1, 2(BR, R) be a local weak solution of equation
(1.1), which satisfies assumptions (H1), (H2) and (H4). Then u ∈ Cσ(BR) for
some σ = σ(n, ν, µ1, µ2, p, q) with 0 < σ < 1. Moreover, there exists a positive
constant C = C(n, ν, µ1, µ2, p, q) such that

‖u‖Cσ(BR) ≤ C(‖u‖L2
BR

+
∑

α

‖fα(x)‖Lp + ‖g(x)‖Lq).

Now we are ready to prove Theorem 1.

Proof of Theorem 1. For the scalar case N = 1, by assumption (H3) we
have

IV =

∫

BR

|Aαβ
ij (x, ux0,R) − A

αβ
ij (x, u)|2|Du|2 dx,

≤ C

∫

BR

ω2(|u − ux0,R|
2)|Du|2 dx,

≤ Cω2(CR2σ)

∫

BR

(

|u|γ + |Du|2
)

dx.

(3.8)
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When N = 1, due to u ∈ Cσ(BR) from the conclusion of Lemma 7, we know
|ux0,R| ≤ M . Substituting (3.4)-(3.8) into (3.3) and (3.1), we obtain

∫

Bρ

(|u|γ + |Du|2) dx ≤ C
[( ρ

R

)n

+ χ(x0, R)
]

∫

B2R

(|u|γ + |Du|2) dx + CRn

+ CRn+2−2κ1

∑

α,i

‖fα
i ‖

2
Lp(B2R) + CRn+2−2κ2

∑

i

‖gi‖
2
Lq(B2R),

≤ C
[( ρ

R

)n

+ χ(x0, R)
]

∫

B2R

(|u|γ + |Du|2) dx + CRn+2−2κ,

(3.9)

where

χ(x0, R) = ω2(CR2σ) + M2
R[Aαβ

ij (·, ux0,R)]

+

(∫

B2R

|∇u|2 dx

)
γ

n

+

(∫

B2R

(|∇u|2 + |u|r) dx

)
2
n

.

Due to u ∈ W
1, 2
loc (Ω, R), we know that

∫

BR
|∇u|2 dx and

∫

BR
|u|r dx are absolutely

continuous in R. With the addition of the modulus of continuity ω2(CR2σ) and the

VMO condition of M2
R[Aαβ

ij (x0, ux0, R)], then χ(x0, R) → 0 if R → 0. By virtue of

Lemma 3, from (3.9) we have

∫

BR

(|u|γ + |Du|2) dx ≤ CRn+2−2κ,

for any 0 < R < R0 ≤ dist(x0, ∂Ω), where κ = min{1− n
p
, 2− 2n

q
}. Using Lemma

5 it shows that u ∈ Cκ(Ω, R). This completes the proof of Theorem 1. �

Next, we prove Theorem 2.

Proof of Theorem 2. In the vectorial case N > 1, we use the assumption
(H3), the Hölder inequality, the reserve Hölder inequality (2.3) and the Jensen
inequality (2.2) of concave functions in Lemma 1, to consider the estimate of Part
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IV, then we have

IV =

∫

BR

|Aαβ
ij (x, ux0,R) − A

αβ
ij (x, u)|2|Du|2 dx,

≤ C

∫

BR

ω2(|u − ux0,R|
2)|Du|2 dx,

≤ C

(∫

BR

[ω(|u − ux0,R|
2)]

2r
r−2 dx

)
r−2

r

·

(∫

BR

|Du|r dx

)
2
r

,

≤ CRn

(

−

∫

BR

ω(|u − ux0,R|
2) · [ω(|u − ux0,R|

2)]
r+2

r−2 dx

)
r−2

r

·

(

−

∫

BR

|Du|r dx

)
2
r

,

≤ CRn

(

−

∫

BR

ω(|u − ux0,R|
2) dx

)
r−2

r

·

(

−

∫

BR

|Du|r dx

)
2
r

,

≤ CRnω
r−2

r

[

−

∫

BR

|u − ux0,R|
2 dx

]

·

[

−

∫

B2R

(|u|γ + |Du|2) dx

+



−

∫

B2R

∑

α,i

|fα
i (x)|p dx





2
p

+ R2

(

−

∫

B2R

∑

i

|gi(x)|q dx

)
2
q






.

Using Sobolev’s inequality again yields

IV ≤ Cω
r−2

r

(

CR2−n

∫

BR

|Du|2 dx

)

·

[∫

B2R

(|u|γ + |Du|2) dx

+ Rn+2−2κ1

∑

α,i

‖fα
i ‖

2
Lp + Rn+2−2κ2

∑

i

‖gi‖
2
Lq



 .

(3.10)

where κ1 = 1 − n
p

and κ2 = 2 − n
q
.

Combining (3.1), (3.3)-(3.6) with (3.10), we derive
∫

Bρ

(|u|γ + |Du|2) dx ≤ C
[( ρ

R

)n

+ ϑ(x0, R)
]

·

∫

B2R

(|u|γ + |Du|2) dx

+ CRn|ux0,R|
γ + CRn+2−2κ, (3.11)

for any 0 < ρ < R, where

ϑ(x0, R) = ω
r−2

r

(

CR2−n

∫

BR

|Du|2 dx

)

+ M2
R

[

A
αβ
ij (·, ux0,R)

]

+

(∫

B2R

|∇u|2 dx

)
γ

n

+

(∫

B2R

(|∇u|2 + |u|r) dx

)
2
n

.

Since

Rn|ux0,R|
γ ≤

∫

BR

|u|γ dx,
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Inequality (3.11) becomes
∫

Bρ

(|u|γ + |Du|2) dx ≤ C
[( ρ

R

)n

+ ϑ(x0, R)
]

·

∫

B2R

(|u|γ + |Du|2) dx

+ CRn+2−2κ + C

∫

B2R

|u|γ dx. (3.12)

Here let us recall the following quantity, which is called an excess E(ρ) defined
by

E(ρ) = ρ2−n

∫

Bρ(x0)

|Du|2 dx.

In view of [26], there exists a positive ε0 such that if E(R0) < ε0 for some R0 ≤
dist(x0, ∂Ω), then we have

E(ρ) ≤ C
( ρ

R

)2α

E(R), ∀ ρ < R < R0,

for some 0 < α < 1. In the following analysis, we need a bootstrap argument.
By the reverse Hölder inequality (2.3), we know that uγ ∈ L1+ε

loc for some constant
ε > 0. Due to the fact that

(

−

∫

BR

|u|γ dx

)

≤

(

−

∫

BR

|u|γ(1+ε) dx

)
1

1+ε

,

or

R− nε
1+ε

∫

BR

|u|γ dx ≤ C‖uγ‖L1+ε(BR),

we have u ∈ L
γ,σ
loc (Ω) for σ = nε

1+ε
. By (3.12) with the previous assumption E(R0) <

ε0, thus we have |∇u| ∈ L
2,σ
loc (Ω). By virtue of Sobolev’s inequality it follows that

∫

BR

|u − ux0,R|
γ dx ≤ C

(∫

BR

|Du|2 dx

)
γ

2

.

Accordingly, we have u ∈ Lγ,
γ

2
σ . On the basis of definition (1.4) for γ, we get

γ
2 > 1. We repeat the same procedure, then after finite steps an improvement can be
reached with σ > n−2+2κ. By means of the same arguments as described in [2, 4, 6,
10, 27], it follows that u ∈ Cκ(Ω0) for an open subset Ω0 with κ = min{1−n

p
, 2−n

q
},

where

Ω \ Ω0 =

{

x ∈ Ω : lim inf
ρ→0

ρ2−n

∫

Bρ

|Du|2 dx > 0

}

.

By virtue of Lemma 6, we obtain

Hn−2(Ω \Ω0) = 0.

Therefore, we complete the proof of Theorem 2. �

4. Conclusion

In this work, we are concerned with regularity and partial regularity of weak
solutions for the general quasi-linear elliptic equations and systems of divergence
form, which contains the lower order items satisfying controllable growth in the

Euclidean space. When coefficient operators A
αβ
ij (x, u) and the lower order items

aα
i (x, u), bi(x, u,∇u) of the systems (1.1) satisfy the given four conditions, we obtain
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two theorems for the scalar case N = 1 and the vectorial case N > 1, respectively.

It is worthwhile to mention that one may consider the same problem by modi-
fying assumption (H4) under the natural growth. We are planning to present some
interesting results in a forthcoming paper somewhere else.
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