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Abstract. We consider a model of non-isothermal phase transition taking
place in a confined container. The order parameter φ is governed by a Cahn-
Hilliard type equation which is coupled with a nonlinear heat equation for
the temperature θ. The former is subject to a nonlinear dynamic boundary
condition recently proposed by some physicists to account for interactions of
the material with the walls. The latter is endowed with a boundary condi-
tion which can be a standard one (Dirichlet, Neumann or Robin). We thus
formulate a class of initial and boundary value problems whose local exis-
tence and uniqueness is proven by means of a Faedo-Galerkin approximation
scheme. The local solution becomes global owing to suitable a priori estimates.
Then we analyze the asymptotic behavior of the solutions within the theory
of infinite-dimensional dynamical systems. In particular, we demonstrate the
existence of a finite dimensional global attractor as well as of an exponential
attractor.
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1. Introduction

The viscous Cahn-Hilliard equation

(1.1) ∂tφ+ k1∆
(
ρ∆φ − F

′

1 (φ) − α∂tφ
)

= 0, α, ρ, k1 > 0,

is a very important equation in materials science that describes spinodal decom-
position, in absence of mechanical stresses, of binary mixtures that appears, for
example, in cooling processes of alloys, glasses or polymer mixtures (see [12], [37],
[43], [44] and the references cited therein). Here φ is the relative concentration
difference of the mixture components, ρ is related to the surface tension at the
interface, k1 is the mobility, α > 0 is a viscous parameter. We also mention that
the viscosity term can be interpreted as describing the influences of internal micro-
forces (see e.g., [33]). Moreover, F1 is a potential which accounts for the presence
of different phases. For instance, F1 can be a logarithmic potential which is usually

approximated by a double well potential, i.e., F1 (s) = 1
4

(
s2 − 1

)2
. For simplicity,

we shall take ρ = k1 = 1 in what follows.
The mathematical literature regarding (1.1) is rather vast. Now, the usual

boundary conditions considered for problem (1.1) are Neumann and periodic bound-
ary conditions. Equation (1.1) is supplemented by the initial condition φ (0, x) =
φ0 (x) in Ω, where Ω is a bounded domain in R3 with smooth boundary ∂Ω := Γ.
For the Cauchy problem (1.1) with Neumann boundary conditions, the results on
global existence, uniqueness and large time behavior of solutions have been estab-
lished in [17], [18], [38], [51], [54], [55]. For the sake of simplicity, we refer the
reader to [16], where plenty of references are properly quoted. However, in recent
years, physicists have considered the study of phase separation in confined systems.
In this case, one has to account for the dynamic interactions of the material with
the walls (see, e.g., [20], [21] and their references), which leads to additional terms
in the free energy and then to dynamic boundary conditions, in the sense that the
term ∂tφ appears in the boundary conditions. As a consequence, one deduces a
dynamic boundary condition of the form

(1.2) ∂tφ = d∆Γφ− ∂nφ− βφ,

on Γ× (0,+∞). Here the constants d, β > 0 and ∆Γ denotes the Laplace-Beltrami
operator on the surface Γ. We recall that, phenomenologically speaking, the bound-
ary condition (1.2) means that the density at the surface relaxes towards equilibrium
with a rate proportional to the driving force given by the Frechét derivative of the
free energy functional (see [22], [23]). Such problems (1.1)-(1.2), supplemented

with a no-flux condition on the chemical potential µ = α∂tφ − ∆φ + F
′

1 (φ) , have
recently been studied in a series of interesting papers where satisfactory results on
the global existence and uniqueness of solutions, as well as results on the long time
behavior of solutions have been obtained. For instance, R. Racke & S. Zheng [48]
show the existence and uniqueness of a global solution to this problem, and later J.
Prüss, R. Racke & S. Zheng [45] study the problem of maximal Lp-regularity and
asymptotic behavior of the solution and prove the existence of a global attractor
to the non-viscous Cahn-Hilliard equation (that is, (1.1) with α = 0) with dynamic
boundary conditions. Besides, the problem has also been analyzed as a dissipative
dynamical system in [41], where the main result is the construction of a family of
exponential attractors which is robust with respect to the viscosity coefficient α.
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Another well-known mathematical model which describes the behavior of the
phases, but in presence of temperature variations and in absence of mechanical
stresses, is given by the Allen-Cahn equation (see [1]) suitably coupled with the
heat equation. The resulting system governs the order parameter (or phase-field)
and the temperature. Linearizing with respect to a suitable critical temperature at
which the two phases coexist, one obtains the well-known phase-field system (see
[7], cf. also [5])

(1.3) α∂tφ− ∆φ+ F
′

1 (φ) − θ = 0,

(1.4) ∂t(εθ + φ) − ∆θ = 0,

in Ω × (0,+∞). Here ψ is again the order parameter, θ denotes the (relative)
temperature, α and ε are given positive constants. The analysis of the dissipa-
tive dynamical system generated by equations like (1.3)-(1.4) equipped with rather
standard boundary conditions (that is, Neumann or Dirichlet) has been done in a
number of papers (see [6], [3], [4], [34], [35], [36], [39]), proving theorems about
existence of global and/or exponential attractors. Lately, the asymptotic behavior
of single solutions has been investigated by means of the  Lojasiewicz-Simon inequal-
ity (see [29], [30] where singular potentials are considered, cf. also [53]). System
(1.3)-(1.4) can be viewed as a singular perturbation of the celebrated Cahn-Hilliard
equation that accounts for phase separation dynamics (see [12], cf. also [44] and
references therein). In fact, if we formally set ε = 0 in equation (1.4), then we can
easily deduce the viscous Cahn-Hilliard equation (1.1) (see [43]) which reduces to
the usual Cahn-Hilliard equation when α = 0. The rigorous links between system
(1.3)-(1.4) and equation (1.1) have been studied by several authors. We refer the
reader to [42] for more references. Moreover, in this paper, the authors construct
a family of exponential attractors {Mε} for a system like (1.3)-(1.4) with Dirichlet
or Neumann boundary conditions for φ and θ, and in the limit case, they obtain
an exponential attractor M0 for (1.1). Then they prove its robustness, i.e., the
Hausdorff distance between Mε and M0 tends to 0 as ε goes to 0 in an explicitly
controlled way. The dynamic condition (1.2) can also be associated with system
(1.3)-(1.4) (see [9], [29], [23], [24]). The authors in [9] prove well-posedness re-
sults as well as the convergence of the solution to a steady state by means of the
 Lojasiewicz-Simon technique. A more general analysis can be found in [23] and
[29], where the problem is analyzed within the theory of dissipative dynamical sys-
tems. The authors in [29] show that the existence of the global attractor Aε and
its upper semicontinuity at ε = 0. Moreover, they establish the existence of an
exponential attractor. This fact, in particular, entails that Aε has finite fractal
dimension. Furthermore, in [23], we analyze a wider class of boundary conditions
for θ and we allow θ to vary in a larger phase-space than the one in [29]. Finally,
in [24], we construct a robust family of exponential attractors with respect to ε
for problem (1.3)-(1.4) with dynamic boundary conditions like (1.2) and Neumann
boundary conditions for θ.

Our main goals are comparable with the ones cited in the papers above. We will
consider a non-isothermal phase separation governed by the Cahn-Hilliard equation
(1.1) . The derivation is illustrated in [22], where we propose a non-isothermal
version of (1.1) consisting of an evolution equation of fourth order for φ and an
evolution equation of second order (similar to (1.4)) for the temperature function θ.
There, we also show how to derive all the boundary conditions (including dynamic
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for θ) as part of energy and mass conservation laws. Our methods (see also [23])
are based on the derivation of dynamic boundary conditions in the context of heat
and wave equations devised in [32].

Then, we are concerned with the following system of initial value problems:

(1.5) ∂tφ = ∆µ , for x ∈ Ω,

(1.6) µ = α∂tφ− ∆φ+ F
′

1 (φ) − δθ, for x ∈ Ω,

(1.7) ε∂tθ − k2∆θ = −δ∂tφ− F
′

3 (θ) , for x ∈ Ω,

subject to the boundary conditions

(1.8) ∂nµ = 0, for x ∈ Γ,

(1.9) ∂tφ = ∆Γφ− ∂nφ− φ− F
′

2 (φ) , for x ∈ Γ,

(1.10) b∂nθ + cθ = 0, for x ∈ Γ,

and initial conditions

(1.11) φ|t=0 = φ0, θ|t=0 = θ0,

where we distinguish the following cases: if b > 0, c ≥ 0 then (1.10) includes Neu-
mann and Robin boundary conditions; if b = 0, c > 0 then (1.10) is a Dirichlet
boundary condition. Here k2 > 0 is the diffusion coefficient, δ > 0 is the latent heat
parameter and ε > 0. The functions Fi (i = 1, 2, 3) are quite general potential func-
tions and ∆Γ is the Laplace-Beltrami operator on the boundary Γ. In what follows,
we shall also take k2 = 1. Here, we would also like to mention the following papers
in [2], [5], [8], [10], [11], [31]. In all these articles, the differential model describing
non-isothermal phase separation is given by the system (1.5)-(1.7), when both θ
and φ satisfy Dirichlet or Neumann boundary conditions. For the analysis on such
systems or related problems (when memory effects are also incorporated in (1.5)-
(1.7)), we refer the reader to [31] where plenty of references are properly quoted.
Well-posedness and maximal regularity, as well as asymptotic behavior for the non-
viscous Cahn-Hilliard equation in the presence of temperature variations (that is,
system (1.5)-(1.7) with F2 = F3 ≡ 0), equipped with linear dynamic boundary
conditions for φ (of the form (1.2)) and Robin and Neumann boundary conditions
for the temperature function θ (see (1.10)) was studied in [46]. There, the authors
also prove convergence of solutions to steady states as t → +∞. Besides, employ-
ing classical methods, that is, fixed-point theorems and standard energy methods,
we prove in [22] that the original system (1.5)-(1.11) is well-posed in a suitable
Sobolev setting, by formulating appropriate approximate problems Pε and letting
ε→ 0+. However, in that paper, we are unable to prove that our problem generates
a dynamical system, hence the existence of a nonlinear continuous semigroup does
not follow. As far as we know, the system (1.5)-(1.11) has not yet been analyzed
within the theory of infinite-dimensional dynamical theory. Thus, planning in doing
so, we will also include nonlinear dynamic boundary conditions for φ, as well as
quite general nonlinearities F1, F2, F3 in (1.6), (1.9), (1.7). Besides, we develop a
Galerkin approximation scheme for a problem with dynamic boundary conditions
by interpreting the boundary condition as a separate evolution equation on Γ.
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We assume throughout that the functions Fi : R → R, i = 1, 2, 3 are given
C2,1-functions satisfying the conditions

(1.12) lim
|s|→+∞

inf F
′′

i (s) > 0, for all i = 1, 2, 3,

(1.13) F
′

3 (s) s ≥ −ζ1, when b, c > 0 and b = 0, c > 0,

and

(1.14) F
′

3 (s) s ≥ ζ2s
2 − ζ3, when b > 0, c = 0,

for some constants ζ1, ζ3 ≥ 0 and ζ2 > 0 and all real s ∈ R.
Based on ideas from [41], we will prove existence and uniqueness of solutions to

(1.5)-(1.11) based on a Faedo-Galerkin approximation scheme. It is worth mention-
ing that with respect to [22] and [46], there are some generalizations. In fact, our
assumptions on the nonlinearities F1 and F2 are more general. Note that only the
case F2 ≡ 0, F3 ≡ 0 and assuming that F1 ∈ C4− (R) has a polynomially controlled
growth of degree six was discussed in [46]. Our main goal is to show that the above
problem generates a dissipative dynamical system possessing a global attractor as
well as an exponential attractor; however we do not analyze how they depend on
ε, δ and α. Thus it is interesting to note that if we formally take ε = δ = 0 in
equations (1.6)-(1.7) and then taking F3 ≡ 0, then we can easily deduce the viscous
(α > 0) and non-viscous (α = 0) Cahn-Hilliard equations (1.1) after suitable trans-
formations. This issues are analyzed in [27] and [28]. In particular, under suitable
assumptions on these parameters, our main results in [27] allow us to show that the
global attractor A0,0,0 of the non-viscous Cahn-Hilliard equation (corresponding to
(ε, δ, α) = (0, 0, 0)) is upper semicontinuous at (0, 0, 0) with respect to the family
of global attractors Aε,δ,α. Finally, in [28], we construct a family of exponential
attractors Mε,δ,α which is a robust perturbation of an exponential attractor M0,0,α

of the (isothermal) viscous (α > 0) Cahn-Hilliard equation, namely, the symmetric
Hausdorff distance between Mε,δ,α and M0,0,α goes to 0, for each fixed value of
α > 0, as (ε, δ) goes to (0, 0), in an explicitly controlled way. Moreover, the robust-
ness of this family of exponential attractors Mε,δ,α with respect to (δ, α) → (0, 0) ,
for each fixed value of ε > 0, is also obtained.

We outline the plan of the paper as follows. In Section 2 we recall some known
facts about the Cahn-Hilliard equation (1.1) and introduce suitable phase spaces.
Section 3 is devoted to the existence and uniqueness of solutions to problem (1.5)-
(1.11) and the derivation of suitable a priori estimates. The existence of a bounded
absorbing set and, then, of the global attractor is the goal of Section 4. The
existence of an exponential attractor is demonstrated within the same section.

2. Preliminary results

In order to solve the system (1.5) − (1.11) , we will derive a priori estimates
for the solutions in suitable phase spaces. In order to give a rigorous formulation of
our problem, we next set up our framework. We note that the system (1.5)− (1.11)
possesses the following conservation law:

(2.1) 〈φ (t)〉 = 〈φ0〉 := M0,

where 〈·〉 denotes the average over Ω. Let us also observe that if the value of φ (t)
and θ (t) are known for some t = T, then the value of the chemical potential µ (T )
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can be found by solving the following boundary value problem:

(2.2) µ (T ) − α∆µ (T ) = −∆φ (T ) + F
′

1 (φ (T )) − δθ (T ) in Ω,

(2.3) ∂nµ (T ) = 0 on Γ.

Thus, it is only required to find the functions φ (t) and θ (t) . In what follows,
we shall take ε = 1. Following [41], it is more convenient, however, to introduce
the unknown function ψ (t) := φ (t)|Γ , defined on the boundary Γ and to rewrite

(1.5) − (1.11) as

(2.4) ∂tφ = ∆µ, for x ∈ Ω,

(2.5) µ = α∂tφ− ∆φ+ F
′

1 (φ) − δθ, for x ∈ Ω,

(2.6) ∂tθ − ∆θ = −δ∂tφ− F
′

3 (θ) , for x ∈ Ω,

subject to the boundary conditions

(2.7) ∂nµ = 0, for x ∈ Γ,

(2.8) ∂tψ = ∆Γψ − ∂nφ− ψ − F
′

2 (ψ) , for x ∈ Γ,

(2.9) b∂nθ + cθ = 0, for x ∈ Γ,

and initial conditions

(2.10) φ|t=0 = φ0, ψ|t=0 = ψ0, θ|t=0 = θ0,

where ψ0 = φ0|Γ.
The boundary condition (2.8) will be interpreted as an additional second-order

parabolic equation on the boundary Γ. From now on, throughout the paper, we
denote by ‖·‖p and ‖·‖p,Γ , the norms on Lp (Ω) and Lp (Γ) , respectively. The inner

products in Lp (Ω) and Lp (Γ) will be denoted by 〈·, ·〉p and 〈·, ·〉p,Γ, respectively.

Also, the norms on Hs (Ω) and Hs (Γ) are indicated by ‖·‖Hs and ‖·‖Hs(Γ), respec-

tively. Any space Vs := Hs (Ω)⊕Hs (Γ) (s ∈ N) is the completion of Cs
(
Ω
)

under
the natural Sobolev norms. For example, for s = 0, 1, the spaces

Vs = Cs
(
Ω
)‖·‖

Vs
,

where the norms ‖·‖
Vs

are given by

‖(φ, ψ)‖2
V1

=

∫

Ω

|∇φ|2 dx +

∫

Γ

|∇Γψ|2 dS +

∫

Γ

|ψ|2 dS

and

‖(φ, ψ)‖2
V0

=

∫

Ω

|φ|2 dx+

∫

Γ

|ψ|2 dS,

respectively. It easy to see that we can identify Vs = Hs (Ω) ×Hs (Γ) under these
norms, when s = 0, 1. We have the embedding H3/2 (Ω) ⊂ V1 ⊂ L2 (Ω) . As
we mentioned in the introduction, we distinguish between three cases: (i) b > 0,
c > 0; (ii) b > 0, c ≥ 0; (iii) b = 0, c > 0. For this, let us define the family of
operators AK := −∆ on the Banach space L2 (Ω), when K ∈ {R,N,D} and R, N
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and D stand for Robin, Neumann, and Dirichlet boundary conditions, respectively.
Furthermore, let

D (AD) =
{
θ ∈ H2 (Ω) | θ = 0 on Γ

}
,

D (AN ) =
{
θ ∈ H2 (Ω) | ∂nθ = 0 on Γ

}
,

D (AR) =
{
θ ∈ H2 (Ω) | b∂nθ + cθ = 0 on Γ

}
, if b > 0, c ≥ 0.

Then, it is well known that AK , when K = D,N,R, generates a bounded analytic
semigroup e−AKt on L2 (Ω). Also, each AK is nonnegative and self-adjoint on
L2 (Ω) . Note that D (AK) is densely contained in L2 (Ω) , for K ∈ {R,N,D} . Let
us also recall that A−1

N : L2
0 (Ω) → L2

0 (Ω) , where L2
0 (Ω) = L2 (Ω) ∩ {〈φ〉 = 0} ,

is a well defined operator and is usually referred to as the inverse Laplacian with
Neumann boundary conditions. Henceforth, we will always refer to the following
norm in H−1 (Ω) =

(
H1
N (Ω)

)∗
, equivalent to the standard one as follows:

‖u‖2
H−1 =

∥∥∥A−1/2
N (u− 〈u〉)

∥∥∥
2

2
+ 〈u〉2 .

Having established this framework, we introduce the phase space (cf. also [16],
[41]) for our problem (2.4) − (2.10):

Y
α
K :=

{
Φ = (φ, ψ, θ) ∈ H2 (Ω) ×H2 (Γ) ×D (AK) : µ ∈ H1 (Ω) ,

√
αµ ∈ H2 (Ω) ,

(2.11) φ|Γ = ψ, (∂nµ)|Γ = 0
}
, K ∈ {D,N,R} ,

with the obvious norm

(2.12) ‖Φ‖2
Yα

K
:= ‖(φ, ψ)‖2

V2
+ ‖µ‖2

H1 + α ‖µ‖2
H2 + ‖θ‖2

H2

= ‖φ‖2
H2 + ‖ψ‖2

H2(Γ) + ‖µ‖2
H1 + α ‖µ‖2

H2 + ‖θ‖2
H2 .

Definition 1. Let us consider T > 0 fixed, but otherwise arbitrary and let
K ∈ {D,N,R}. By a solution of (2.4) − (2.10) we mean a triplet of functions

(φ (t) , ψ (t) , θ (t)) ∈ L∞ ([0, T ] ,YαK)

with

∂tφ (t) ∈ L2
(
[0, T ] , H1 (Ω)

)
, ∂tψ (t) ∈ L2

(
[0, T ] , H1 (Γ)

)

and

∂tθ (t) ∈ L2
(
[0, T ] , L2 (Ω)

)

which satisfy the equations in the sense of equalities in the spaces L2
(
[0, T ] , L2 (Ω)

)

and L2
(
[0, T ] , L2 (Γ)

)
. Moreover, since Ω ⊂ R3, we have the embeddings H2 (Ω) ⊂

L∞ (Ω) , H2 (Γ) ⊂ L∞ (Γ) , therefore the nonlinearities Fi (i = 1, 2, 3) are well
defined and belong to the space C

(
[0, T ] , L2 (Ω)

)
and C

(
[0, T ] , L2 (Γ)

)
. Also, by

regularity theory, we obtain µ (t) ∈ L2
(
[0, T ] , H3 (Ω)

)
and thus the boundary con-

ditions (2.7) − (2.9) are well defined.

We close this section with the definition of the weaker energy space X :=
V1 × L2 (Ω) for our problem (2.4) − (2.10) through the norm given by

(2.13) ‖Φ‖2
X

= ‖(φ, ψ)‖2
V1

+ ‖θ‖2
2

= ‖φ‖2
H1 + ‖ψ‖2

H1(Γ) + ‖θ‖2
2 ,
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for Φ = (φ, ψ, θ) . Note that YαK is continuously embedded and dense in X for each
K ∈ {D,N,R}. For our convenience, we also set

ZD := H1
0 (Ω), ZK := H1(Ω), if K ∈ {N,R} .

3. Uniform a priori estimates and existence of solutions

In this section, we derive several estimates for the solutions of the problem
(2.4)− (2.10) which are necessary for the study of the asymptotic behavior. In the
first step, we obtain dissipative estimates for solutions in the spaces X and Yα

K .
Throughout the entire section K ∈ {D,N,R} is fixed.

For convenience, we rewrite (2.4)− (2.10) as the following system of equations:

(3.1)

{ (
α+A−1

N

)
∂tφ− ∆φ = δθ − F

′

1 (φ) + 〈µ〉 in Ω × (0,∞) ,

∂tψ = ∆Γψ − ∂nφ− ψ − F
′

2 (ψ) on Γ × (0,∞) , φ|Γ = ψ

(3.2)

{
∂tθ − ∆θ = −δ∂tφ− F

′

3 (θ) in Ω × (0,∞) ,
b∂nθ + cθ = 0, for x ∈ Γ × (0,∞) ,

and

(3.3) φ|t=0 = φ0, ψ|t=0 = ψ0, θ|t=0 = θ0.

Recall that µ can be found from the linear elliptic problem (2.2)−(2.3) when both φ
and θ are known. Moreover, from equations (2.4)-(2.5), we have µ = 〈µ〉−A−1

N (∂tφ),

where 〈µ〉 = −〈∆φ〉+
〈
F

′

1 (φ)
〉
−δ 〈θ〉 , since 〈∂tφ〉 = 0, due to the mass conservation

(2.1). We will come back to (3.1)-(3.3), in the last part of this section, when we
will show existence of solutions based on a Faedo-Galerkin approximation scheme.

Proposition 2. Let the nonlinearities Fi (i = 1, 2, 3) satisfy (1.12)−(1.14) and
let (φ (t) , ψ (t) , θ (t)) be a sufficiently regular solution of (2.4)-(2.10) or (3.1)-(3.3) .
Then, the following estimate holds:

‖(φ (t) , ψ (t) , θ (t))‖2
X

+ 〈F1 (φ (t)) , 1〉2 + 〈F2 (ψ (t)) , 1〉2,Γ

+

t+1∫

t

(
‖F1 (φ (s))‖1 + ‖F2 (ψ (s))‖1,Γ + ‖∂tφ (s)‖2

H−1

)
ds

+

t+1∫

t

(
α ‖∂tφ (s)‖2

2 + ‖∂tψ (s)‖2
2,Γ + ‖∇θ (s)‖2

2 +
c

b
‖θ (s)‖2

2,Γ

)
ds

(3.4) ≤ Q
(
‖(φ (0) , ψ (0) , θ (0))‖2

X
+ 〈F1 (φ (0)) , 1〉2 + 〈F2 (ψ (0)) , 1〉2,Γ

)
e−ρt+C,

where the positive constants ρ, C and the monotonic function Q are independent of
α and t.
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Proof. Multiplying equation (2.5) , (2.6) , (2.8) scalarly by ∂tφ, θ, and ∂tψ,
respectively, then (2.4) by A−1

N (∂tφ), integrating over Ω using the boundary con-
ditions and summing up over the relations that we obtain, we deduce

d

dt

[
‖∇φ (t)‖2

2 + ‖∇Γψ (t)‖2
2,Γ + ‖ψ (t)‖2

2,Γ + ‖θ (t)‖2
2

+2 〈F1 (φ (t)) , 1〉2 + 2 〈F2 (ψ (t)) , 1〉2,Γ
]

+2 ‖∂tφ (t)‖2
H−1 + 2α ‖∂tφ (t)‖2

2

(3.5) +2 ‖∂tψ (t)‖2
2,Γ + 2 〈AKθ (t) , θ (t)〉2 + 2

〈
F

′

3 (θ (t)) , θ (t)
〉

2
= 0,

since 〈〈µ (t)〉 , ∂tφ (t)〉2 = |Ω| 〈µ (t)〉 〈∂tφ (t)〉 = 0, because of (2.1). Here |Ω| denotes

the volume of Ω. Let us now introduce the functions φ (t) := φ (t)−M0 and ψ (t) :=
ψ (t) −M0 and note that

〈
φ (t)

〉
= 0. Then take the inner product of equations

(2.5) , (2.4) and (2.8) with 2ξφ (t) , 2ξA−1
N φ (t) and 2ξψ (t) in L2 (Ω) and L2 (Γ) ,

respectively, and recall that µ = 〈µ〉 −A−1
N (∂tφ). We deduce that

d

dt

[
αξ
∥∥φ (t)

∥∥2

2
+ ξ

∥∥ψ (t)
∥∥2

2,Γ
+ ξ

∥∥φ (t)
∥∥2

H−1

]

+2ξ
[∥∥∇φ (t)

∥∥2

2
+
∥∥∇Γψ (t)

∥∥2

2,Γ
+
〈
ψ (t) , ψ (t)

〉
2,Γ

]

+2ξ

[〈
F

′

1 (φ (t)) , φ (t)
〉

2
+
〈
F

′

2 (ψ (t)) , ψ (t)
〉

2,Γ

]

(3.6) = 2δξ
〈
φ (t) , θ (t)

〉
2

+ 2ξ
〈
φ (t) , 〈µ (t)〉

〉
2
.

Summing up the relations (3.5) and (3.6), we obtain

(3.7)
d

dt
E (t) + τE (t) = h1 (t) ,

where 0 < τ < ξ is sufficiently small and

E (t) = ‖∇φ (t)‖2
2 + ‖∇Γψ (t)‖2

2,Γ + ‖ψ (t)‖2
2,Γ + ‖θ (t)‖2

2 + 2 〈F1 (φ (t)) , 1〉2

(3.8) +2 〈F2 (ψ (t)) , 1〉2,Γ + αξ
∥∥φ (t)

∥∥2

2
+ ξ

∥∥ψ (t)
∥∥2

2,Γ
+ ξ

∥∥φ (t)
∥∥2

H−1 .

The function h1 is given by

h1 (t) = −2
(
‖∂tφ (t)‖2

H−1 + α ‖∂tφ (t)‖2
2 + ‖∂tψ (t)‖2

2,Γ

)
− 2 〈AKθ (t) , θ (t)〉2

−2τ

[〈
F

′

1 (φ (t))φ (t) − F1 (φ (t)) , 1
〉

2
+
〈
F

′

2 (ψ (t))ψ (t) − F2 (ψ (t)) , 1
〉

2,Γ

]

−2
〈
F

′

3 (θ (t)) , θ (t)
〉

2
− 2 (ξ − τ)

[〈
F

′

1 (φ (t)) , φ (t)
〉

2
+
〈
F

′

2 (ψ (t)) , ψ (t)
〉

2,Γ

]

− (2ξ − τ)
(∥∥∇φ (t)

∥∥2

2
+
∥∥∇Γψ (t)

∥∥2

2,Γ

)
+
(
τ ‖ψ (t)‖2

2,Γ − 2ξ
〈
ψ (t) , ψ (t)

〉
2,Γ

)

+τ
[
αξ
∥∥φ (t)

∥∥2

2
+ ξ

∥∥ψ (t)
∥∥2

2,Γ
+ ξ

∥∥φ (t)
∥∥2

H−1

]

+2δξ
〈
φ (t) , θ (t)

〉
2

+ 2ξ
〈
φ (t) , 〈µ (t)〉

〉
2

+ τ ‖θ (t)‖2
2 .

First, it easy to see that

2ξ
〈
φ (t) , 〈µ (t)〉

〉
2

= 2ξ 〈µ (t)〉
〈
φ (t)

〉
= 0.
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Holder and Young inequalities yield

(3.9) τ ‖ψ (t)‖2
2,Γ − 2ξ

〈
ψ (t) , ψ (t)

〉
2,Γ

≤ − (ξ − 2τ)
∥∥ψ (t)

∥∥2

2,Γ
+ CM0

,

where CM0
> 0 depends obviously on M0, ξ, τ and |Ω| , |Γ| . Here, |Γ| denotes the

measure of Γ. We emphasize that when K = D, 〈ADθ (t) , θ (t)〉2 is equivalent to
the norm in H1

0 (Ω) , while in the case K = R, 〈ARθ (t) , θ (t)〉2 is equivalent to a

norm in H1 (Ω) . The case K = N is more delicate since 〈ANθ (t) , θ (t)〉2 = ‖∇θ‖2
2 .

In this case, we will need assumption (1.14) in order to control the H1− norm of
the temperature function θ. It remains to also note that due to assumption (1.12) ,
we have for i = 1, 2:

(3.10) Fi (s) − CFi,M0
≤ Ci (s−M0)2 + F

′

i (s) (s−M0) , ∀s ∈ R,

∣∣∣F ′

i (s)
∣∣∣ (1 + |s|) ≤ 2F

′

i (s) (s−M0) + C
′

Fi,M0
, ∀s ∈ R,

where Ci, CFi,M0
and C

′

Fi,M0
are sufficiently large constants. Consequently, using

(3.9) , (3.10) , the obvious inequality
∥∥φ (t)

∥∥2

H−1 ≤
∥∥φ (t)

∥∥2

2
≤ C

∥∥∇φ (t)
∥∥2

2
(since〈

φ (t)
〉

= 0) and the assumptions (1.13) − (1.14) , it is possible to estimate h1 as
follows:

h1 (t) ≤ −
(
2C1 − τ − CΩδ

2ξ
)
‖θ‖2

ZK

−2
(
‖∂tφ (t)‖2

H−1 + α ‖∂tφ (t)‖2
2 + ‖∂tψ (t)‖2

2,Γ

)

− (ξ − τ)

(〈∣∣∣F ′

1 (φ (t))
∣∣∣ , 1 + |φ (t)|

〉
2

+
〈∣∣∣F ′

2 (ψ (t))
∣∣∣ , 1 + |ψ (t)|

〉
2,Γ

)

− [ξ − τ − C2τ (ξ + C3) − C4αξτ ]
(∥∥∇φ (t)

∥∥2

2
+
∥∥∇ψ (t)

∥∥2

2,Γ

)

− (ξ − 2τ (1 + C5) − τξ)
∥∥ψ (t)

∥∥2

2,Γ
+Q∗ (M0) ,

where all the positive constants and the function Q∗ are independent of t. Here,
recall again that ZK = H1 (Ω) when K ∈ {N,R} and ZD = H1

0 (Ω) . It follows that
we can fix the parameters ξ and τ such that

d

dt
E (t) + τ1E (t) + τ2

(∥∥∇φ (t)
∥∥2

2
+
∥∥∇ψ (t)

∥∥2

2,Γ
+
∥∥ψ (t)

∥∥2

2,Γ
+ ‖θ (t)‖2

ZK

)

+τ2

(〈∣∣∣F ′

1 (φ (t))
∣∣∣ , 1 + |φ (t)|

〉
2

+
〈∣∣∣F ′

2 (ψ (t))
∣∣∣ , 1 + |ψ (t)|

〉
2,Γ

)

(3.11) +2
(
‖∂tφ (t)‖2

H−1 + α ‖∂tφ (t)‖2
2 + ‖∂tψ (t)‖2

2,Γ

)
≤ C∗,

where the positive constants τ1, τ2 and C∗ are independent of α and t. However,
note that C∗ depends on M0. Applying now a suitable version of Gronwall’s in-
equality to relation (3.11) , using (3.8) and observing that the assumption (1.12)

also implies that |Fi (s)| − C ≤
∣∣∣F ′

i (s)
∣∣∣ (1 + |s|) , for some positive constant C and

all s ∈ R (since the functions Fi are monotonic if |s| is large enough), we easily
obtain estimate (3.4). This completes the proof of Proposition 2. �
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Proposition 3. Let the assumptions of Proposition 2 hold. Then the following
estimate holds for a regular solution (φ (t) , ψ (t) , θ (t)) of (2.4)-(2.10):

α ‖∂tφ (t)‖2
2 + ‖∂tφ (t)‖2

H−1 + ‖∂tψ (t)‖2
2,Γ

+ ‖θ (t)‖2
ZK

+

t+1∫

t

(
‖(∂tφ (s) , ∂tψ (s))‖2

V1
+ ‖∂tθ (s)‖2

2

)
ds

(3.12) ≤ Q
(
‖(φ (0) , ψ (0) , θ (0))‖2

Yα
K

)
e−ηt + C,

for each t ≥ 0, where the monotonic function Q and the constants η, C are inde-
pendent of t, α.

Proof. We give a formal derivation of (3.12) , which can be justified within
a Faedo-Galerkin approximation scheme (see the end of Section 3). Therefore,
without loss of generality, we can (and do) differentiate (2.4) , (2.5) , (2.7) , (2.8)
and define

(u (t) , v (t) , $ (t) ,m (t)) := (∂tφ (t) , ∂tψ (t) , ∂tθ (t) , ∂tµ (t)) .

Then, we have

(3.13)





∂tu (t) = ∆m (t) in Ω, ∂nm (t) = 0 on Γ,

m (t) = α∂tu (t) − ∆u (t) + F
′′

1 (φ (t))u (t) − δ$ (t) in Ω,

∂tv (t) = ∆Γv (t) − ∂nu (t) − v (t) − F
′′

2 (ψ) v on Γ, u|Γ = v.

Multiplying equation (2.6) scalarly by $ (t) and integrating over Ω, using the
boundary condition, it follows that we have

(3.14)
1

2

d

dt
[〈AKθ (t) , θ (t)〉2 + 2 〈F3 (θ (t)) , 1〉2] + ‖$ (t)‖2

2 = −δ 〈u (t) , $ (t)〉2 .

Next, multiply the first, third and fourth equations of (3.13) scalarly by A−1
N u (t) ,

u (t) and v (t) , respectively, then integrate over Ω, using the fact that 〈u (t)〉 = 0.
Combining the resulting equation with (3.14), we deduce

1

2

d

dt

[
α ‖u (t)‖2

2 + ‖u (t)‖2
H−1 + ‖v (t)‖2

2,Γ + 〈AKθ (t) , θ (t)〉2 + 2 〈F3 (θ (t)) , 1〉2
]

+ ‖∇u (t)‖2
2 + ‖∇Γv (t)‖2

2,Γ + ‖v (t)‖2
2,Γ + ‖$ (t)‖2

2 + ‖θ (t)‖2
ZK

(3.15) = −
〈
F

′′

1 (φ (t)) , u2
〉

2
−
〈
F

′′

2 (ψ (t)) , v2
〉

2,Γ
+ ‖θ (t)‖2

ZK
:= h2 (t) .

Due to the assumption (1.12), we have F
′′

i (s) ≥ −Ci, for s ∈ R and some positive
constants Ci. Thus, we will estimate h2 (t) , t ≥ 0, using a standard Sobolev

inequality (that is, ‖u‖2
2 ≤ C1 ‖u‖H−1 ‖∇u‖2 , since 〈u (t)〉 = 0) as follows:

h2 (t) ≤ C1 ‖u (t)‖2
2 + C2 ‖v (t)‖2

2,Γ + ‖θ (t)‖2
ZK

(3.16) ≤ η ‖∇u (t)‖2
2 + Cη ‖u (t)‖2

H−1 + C2 ‖v (t)‖2
2,Γ + ‖θ (t)‖2

ZK
,
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for a sufficiently small η > 0 and large constant Cη > 0. Therefore, choosing
η < 1 small, and using estimate (3.4) , the embeddings H2 (Ω) ⊂ L∞ (Ω) , H2 (Γ) ⊂
L∞ (Γ) imply that

(3.17) sup
t≥0

t+1∫

t

h2 (s) ds ≤ Q1

(
‖(φ (0) , ψ (0) , θ (0))‖2

Yα
K

)
e−ρt + C3,

for some monotone increasing function Q1 and positive constant C3 that are inde-
pendent of t, α. Applying now a suitable version of Gronwall’s inequality (see e.g.,
[26, Lemma 2.5]) to relation (3.15) , using estimate (3.17) , we deduce

α ‖u (t)‖2
2 + ‖u (t)‖2

H−1 + ‖v (t)‖2
2,Γ + 〈AKθ (t) , θ (t)〉2

+2 〈F3 (θ (t)) , 1〉2 +

t+1∫

t

[
‖u (s)‖2

H1 + ‖v (s)‖2
H1(Γ) + ‖$ (s)‖2

2

]
ds

(3.18) ≤ Q2

(
α ‖u (0)‖2

2 + ‖u (0)‖2
H−1 + ‖v (0)‖2

2,Γ + ‖θ (0)‖2
H2

)
e−ρt + C4,

for a suitable positive constant C4 and monotonic functions Q1, Q2 which are
independent of t. Moreover, from (2.5), (2.8) , we have

αu (0) = ∆φ (0) − F
′

1 (φ (0)) + δθ (0) + µ (0) in Ω,

v (0) = ∆Γψ (0) − ∂nφ (0) − ψ (0) − F
′

2 (ψ (0)) on Γ.

Therefore, we deduce from H2 (Ω) ⊂ L∞ (Ω) , H2 (Γ) ⊂ L∞ (Γ) , and the fact that
u (0) = ∆µ (0), that

α ‖u (0)‖2
2 + ‖u (0)‖2

H−1 + ‖v (0)‖2
2,Γ

(3.19) ≤ C5

(
‖(φ (0) , ψ (0))‖2

V2
+ α ‖∆µ (0)‖2

2 + ‖∇µ (0)‖2
2

)
,

where C5 > 0 is independent of t and α. Finally, collecting estimates (3.4) , (3.18)
and taking (3.19) into account, we easily obtain our conclusion, for every K ∈
{D,N,R} . The proof of Proposition 3 is complete. �

We are now ready to give the dissipative estimate for solutions of our problem
in the space YαK , K ∈ {D,N,R}.

Theorem 4. Let the assumptions of Proposition 1 hold. Then every solution
(φ, ψ, θ) of (2.4) − (2.10) satisfies the estimate:

‖(φ (t) , ψ (t) , θ (t))‖2
Yα

K
+ ‖(∂tφ (t) , ∂tψ (t))‖2

V0
+ ‖∂tθ (t)‖2

2

+

t+1∫

t

‖(∂tφ (s) , ∂tψ (s) , ∂tθ (s))‖2
X
ds

(3.20) ≤ Qα

(
‖(φ (0) , ψ (0) , θ (0))‖2

Yα
K

)
e−ρ1t +Qα0 (M0) ,

for every t ≥ 0, where the monotonic functions Qα, Q
α
0 and ρ1 are independent of

t, but they depend on α. Moreover, the function Qα0 depends on M0.
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Proof. Recall that ∂tφ = ∆µ. Consequently, (3.18) can be also rewritten as

α ‖∆µ (t)‖2
2 + ‖∇µ (t)‖2

2 + ‖∂tψ (t)‖2
2,Γ + ‖θ (t)‖2

ZK

(3.21) ≤ Q2

(
α ‖∆µ (0)‖2

2 + ‖∇µ (0)‖2
2 + ‖∂tψ (0)‖2

2,Γ + ‖θ (0)‖2
H2

)
e−ρt + C4.

Thus, in order to obtain the H1 estimate for the function µ, we need to get µ−
part of estimate (3.20) . To this end, we can estimate the average of µ (t) over Ω
from (2.5) , as follows (note that 〈∂tφ (t)〉 = 0):

〈µ (t)〉 = −〈∆φ (t)〉 +
〈
F

′

1 (φ (t))
〉
− δ 〈θ (t)〉

= − |Γ|
|Ω| 〈∂nφ (t)〉Γ +

〈
F

′

1 (φ (t))
〉
− δ 〈θ (t)〉

=
|Γ|
|Ω| 〈ψ (t)〉Γ +

|Γ|
|Ω|
〈
F

′

2 (ψ (t))
〉

Γ
+
〈
F

′

1 (φ (t))
〉
− δ 〈θ (t)〉 +

|Γ|
|Ω| 〈∂tψ (t)〉Γ ,

where 〈·〉Γ denotes the the total average over the boundary Γ. Also recall that
〈φ (t)〉 = 〈φ0〉 = M0. Since the terms 〈θ (t)〉 and 〈∂tψ (t)〉Γ are already estimated

in (3.12) , we only need to estimate the average of ψ, F
′

1 (φ) and F
′

2 (ψ) . To do
so, recall that φ (t) := φ (t) −M0 and ψ (t) := ψ (t) −M0 and notice that we have〈
φ (t)

〉
= 0. Then, multiplying the expression for µ in (2.5) by φ (t) , and integrating

over Ω, we have after standard transformations,

‖∇φ (t)‖2
2 + ‖∇Γψ (t)‖2

2,Γ +
〈
F

′

1 (φ (t)) , φ (t)
〉

2
+
〈
F

′

2 (ψ (t)) , ψ (t)
〉

2,Γ

+ 〈ψ (t) , ψ (t) −M0〉2,Γ =
〈
µ (t) , φ (t)

〉
2
− α

〈
φ (t) , ∂tφ (t)

〉
2

(3.22) −
〈
ψ (t) , ∂tψ (t)

〉
2,Γ

+ δ
〈
φ (t) , θ (t)

〉
2
.

The first term on the right-hand side of (3.22) can be estimated by 1/2 ‖∇φ (t)‖2
2 +

C ‖∇µ‖2
2 , since

〈
φ (t)

〉
= 0. Consequently, the estimates (3.18) , (3.21) and (3.22)

yield

‖∇φ (t)‖2
2 + ‖∇Γψ (t)‖2

2,Γ +
〈
F

′

1 (φ (t)) , φ (t)
〉

2
+
〈
F

′

2 (ψ (t)) , ψ (t)
〉

2,Γ

(3.23) ≤ Q∗

(
‖(φ (0) , ψ (0) , θ (0))‖2

Yα
K

)
e−ρt + C4,

where Q∗ and C4 are independent of t. It remains to observe that due to the
assumption (3.10) on the nonlinearities Fi, i = 1, 2 , we obtain

‖ψ (t)‖1,Γ +
∥∥∥F ′

1 (φ (t))
∥∥∥

1
+
∥∥∥F ′

2 (ψ (t))
∥∥∥

1,Γ

(3.24) ≤ Q∗

(
‖(φ (0) , ψ (0) , θ (0))‖2

Y
α
K

)
e−ρt + C5.

Thus, from (3.21) and (3.24), we have the required estimate for the H1 -norm of
µ, that is,

(3.25) 〈µ (t)〉2 ≤ Q3

(
‖(φ (0) , ψ (0) , θ (0))‖2

Yα
K

)
e−ρt + C6.

Collecting now (3.21) and (3.25), we have verified the µ−part of the estimate in
(3.20). It remains to obtain the required estimates of φ, ψ and θ in the H2 -norms.
To do so, we can rewrite (for every fixed t) our problem (2.5) , (2.8) as a second order
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nonlinear elliptic problem where the chemical potential and the dynamic terms are
considered as external forces. We have

(3.26)

{
−∆φ (t) + F

′

1 (φ (t)) = g1 (t) := µ (t) − α∂tφ (t) + δθ (t) , φ|Γ = ψ,

−∆Γψ (t) + ψ + ∂nφ (t) + F
′

2 (ψ (t)) = g2 (t) := −∂tψ (t) .

We notice that the estimates (3.12), (3.21) , and (3.25) imply that

(3.27) ‖g1 (t)‖2
2 + ‖g2 (t)‖2

2,Γ ≤ Q3

(
‖(φ (0) , ψ (0) , θ (0))‖2

Yα
K

)
e−ρt + C6.

Applying now the maximum principle (see, Lemma A.2, [41]) to problem (3.26) ,
we obtain

‖φ (t)‖2
∞ + ‖ψ (t)‖2

∞,Γ ≤ CFi
+ ‖g1 (t)‖2

2 + ‖g2 (t)‖2
2,Γ

≤ Q3

(
‖(φ (0) , ψ (0) , θ (0))‖2

Yα
K

)
e−ρt + C7,

where C7 > 0 is independent of t. Finally, applying the above estimate combined
with a H2- regularity theorem (Lemma A.1, [41]) to the elliptic boundary value

problem (3.26), but with the nonlinearities F
′

i acting as external forces, we easily
deduce that

(3.28) ‖φ (t)‖2
H2 + ‖ψ (t)‖2

H2(Γ) ≤ Q4

(
‖(φ (0) , ψ (0) , θ (0))‖2

Yα
K

)
e−ρt + C8,

where Q4 is a monotonic function independent of t.
In order to obtain the H2 - estimate for the temperature function θ, we apply

the standard parabolic maximum principle to the parabolic equation (cf. [40],
[42]):

(3.29) ∂tθ − ∆θ + F
′

3 (θ) = h3 (t) := −δ∂tφ (t) , θ|t=0 = θ0,

when θ satisfies Dirichlet, Neumann and Robin boundary conditions. Moreover, it
follows from (3.12) that

(3.30) ‖h3 (t)‖2
2 ≤ Q

(
‖(φ (0) , ψ (0) , θ (0))‖2

Yα
K

)
e−ηt + C,

where Q and C are independent of t. Since, we also know that AK = −∆, when
K ∈ {D,N,R} , generates a bounded analytic semigroup on H2 (Ω) ⊂ L∞ (Ω)

(since n = 3) and F
′

3 (θ) θ ≥ −ζ1 (ζ1 > 0), if K ∈ {D,R} , while F
′

3 (θ) θ ≥ ζ2θ
2−ζ3,

(ζ2 > 0, ζ3 ≥ 0), when K = N (also note, from (1.12) , that F
′

3 (s) is monotonic, if
|s| is large enough), it follows that

(3.31) ‖θ (t)‖∞ ≤ C ‖θ (0)‖H2 e
−ηt + C sup

s∈[0,t]

e−η(t−s) ‖h3 (t)‖2 ,

for suitable constants C and η (see [40, Chapter 1, Section 2] for details; cf. [42]
also). Inserting now the L2 -estimate for h3 (t) from (3.30) into (3.31), we obtain

(3.32) ‖θ (t)‖∞ ≤ Qα

(
‖(φ (0) , ψ (0) , θ (0))‖2

Yα
K

)
e−ρt + Cα,

where the new function Qα and Cα, ρ are independent of t. Applying now the
standard parabolic regularity theorem (see e.g., [42, (1.23)-(1.37)]) to

∂tθ − ∆θ = h4 (t) := −δ∂tφ− F
′

3 (θ) , θ|t=0 = θ0,
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and recalling the above estimates (3.31) , (3.32) and the embedding H2 (Ω) ⊂
L∞ (Ω), we obtain

(3.33) ‖θ (t)‖H2 + ‖∂tθ (t)‖2 ≤ Qα

(
‖(φ (0) , ψ (0) , θ (0))‖2

Yα
K

)
e−ρ2t + Cα,

where the new monotonic function Qα and the constants ρ2, Cα are independent
of t. Nevertheless, the function Cα depends on M0. Thus, we have obtained the
required uniform estimate for the solution in Y

α
K . This finishes the proof of the

theorem. �

Let us now denote Zq := Hq (Ω) ×Hq (Γ) ×Hq (Ω) , q ≥ 1, endowed with the
natural norms in Hq. In the sequel, we will also derive uniform bounds on the
solutions (φ, ψ, θ) in Z3 which are given in the following theorem.

Theorem 5. Let the assumptions of Theorem 4 hold and let (φ (t) , ψ (t) , θ (t))
be a solution of (2.4) − (2.10) . Then

(φ (t) , ψ (t) , θ (t)) ∈ Z3,

for every t > 0 and the following estimate holds:

(3.34) ‖φ (t)‖2
H3 +‖ψ (t)‖2

H3(Γ) +‖θ (t)‖2
H3 ≤ t+ 1

t2
Qα

(
‖(φ (0) , ψ (0) , θ (0))‖2

Yα
K

)
,

for every t ∈ [t0, 1] , t0 > 0. Here the monotonic function Qα is independent of t,
but depends on α.

Proof. As in the proof of Proposition 3, we differentiate (2.4) − (2.9) and
define

(u (t) , v (t) , $ (t) ,m (t)) := (∂tφ (t) , ∂tψ (t) , ∂tθ (t) , ∂tµ (t)) .

These functions satisfy (3.13) and

(3.35)

{
∂t$ (t) − ∆$ (t) = −δ∂tu (t) − F

′′

3 (θ (t))$ (t) in Ω,
b∂n$ (t) + c$ (t) = 0 on Γ.

Now, multiplying the first, third and fourth equations of (3.13) scalarly by

tA−1
N (∂tu (t)) , t∂tu (t) and t∂tv (t) ,

respectively and the first equation of (3.35) by t$ (t), then integrating by parts and
using the boundary condition of (3.35), we obtain after standard transformations:

t
(
〈AK$ (t) , $ (t)〉2 + α ‖∂tu (t)‖2

2 + ‖∂tu (t)‖2
H−1 + ‖∂tv (t)‖2

2,Γ

)

+
1

2

d

dt

[
t
(
‖u (t)‖2

H1 + ‖v (t)‖2
H1(Γ) + ‖$ (t)‖2

2

)]

=
1

2

(
‖u (t)‖2

H1 + ‖v (t)‖2
H1(Γ) + ‖$ (t)‖2

2

)
−
〈
F

′′

1 (φ (t))u (t) , t∂tu (t)
〉

2

(3.36) −
〈
F

′′

2 (ψ (t)) v (t) , t∂tv (t)
〉

2,Γ
−
〈
F

′′

3 (θ (t))$ (t) , t$ (t)
〉

2
.

We estimate the last three terms on the right-hand side of (3.36) as follows:
∣∣∣
〈
F

′′

1 (φ (t)) u (t) , t∂tu (t)
〉

2

∣∣∣ ≤ Ct
∥∥∥F ′′

1 (φ (t))u (t)
∥∥∥
H1

‖∂tu (t)‖H−1

(3.37) ≤ t

2
‖∂tu (t)‖2

H−1 +Q9 (‖φ (t)‖H2 ) ‖∂tφ (t)‖2
H1 .
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The estimate for the last term is much simpler since∣∣∣∣
〈
F

′′

2 (ψ (t)) v (t) , t∂tv (t)
〉

2,Γ

∣∣∣∣ ≤ t
∥∥∥F ′′

2 (ψ (t)) v (t)
∥∥∥

2,Γ
‖∂tv (t)‖2,Γ

(3.38) ≤ t

2
‖∂tv (t)‖2

2,Γ +Q9

(
‖ψ (t)‖H2(Γ)

)
‖∂tψ (t)‖2

2,Γ .

The last term on the right-hand side of (3.36) can be estimated analogously. Note,

however, that (1.12) implies that F
′′

3 (s) ≥ −C, thus, for t ∈ [0, 1] , we have

(3.39) −
〈
F

′′

3 (θ (t))$ (t) , t$ (t)
〉

2
≤ C ‖∂tθ (t)‖2

2 .

Integrating now (3.36) in t and recalling the above estimates and collecting (3.33) ,
(3.12) , (3.28) and (3.20) , we obtain

(3.40) t
(
‖∂tφ (t)‖2

H1 + ‖∂tψ (t)‖2
H1(Γ) + ‖∂tθ (t)‖2

2

)
+

t∫

0

s 〈AK∂tθ (s) , ∂tθ (s)〉2 ds

+

t∫

0

s
(
α
∥∥∂2

t φ (t)
∥∥2

2
+
∥∥∂2

t φ (t)
∥∥2

H−1 +
∥∥∂2

t ψ (t)
∥∥2

2,Γ

)
ds

≤ Q10

(
‖(φ (0) , ψ (0) , θ (0))‖2

Yα
K

)
,

t ∈ [0, 1] , for some monotonic function Q10 which is independent of t. Having
obtained estimate (3.40), we can rewrite the equations (2.5) , (2.8) as a linear elliptic
boundary value problem:
(3.41){

−∆φ (t) = g3 (t) := µ (t) − α∂tφ (t) + δθ (t) − F
′

1 (φ (t)) , φ (t)|Γ = ψ (t) ,

−∆Γψ (t) + ψ + ∂nφ (t) = g4 (t) := −∂tψ (t) − F
′

2 (ψ (t)) .

According to the H3 regularity theorem (see [41]) for (3.41) , we have

(3.42) ‖φ (t)‖2
H3 + ‖ψ (t)‖2

H3(Γ) ≤ C
(
‖g3 (t)‖2

H1 + ‖g4 (t)‖2
H1(Γ)

)
,

where C > 0 is independent of the solution (φ, ψ) and t. Moreover, according to
the estimates (3.12) , (3.21) , (3.25) , (3.27) − (3.28) and (3.40) , we have

(3.43) ‖g3 (t)‖2
H1 + ‖g4 (t)‖2

H1(Γ) ≤
1

t
Q11

(
‖(φ (0) , ψ (0) , θ (0))‖2

Yα
K

)
, t ∈ (0, 1] ,

for some monotonic function Q11. Combining now estimate (3.42) with (3.43), we
obtain the required H3− estimate for the function (φ, ψ) in (3.34) .

Next, we multiply the first equation of (3.35) scalarly by t2∂t$ (t) , then inte-
grate over Ω, and use the boundary condition of (3.35) once more. After standard
transformations, we deduce that

t2 ‖∂t$ (t)‖2
2 +

1

2

d

dt

[
t2 〈AK$ (t) , $ (t)〉2

]
= −δ

〈
∂tu (t) , t2∂t$ (t)

〉
2

(3.44) −
〈
F

′′

3 (θ (t))$ (t) , t2∂t$ (t)
〉

2
+ t 〈AK$ (t) , $ (t)〉2 .

We estimate the first two terms on the right-hand side of (3.44) as follows:

(3.45) δ
∣∣〈∂tu (t) , t2∂t$ (t)

〉
2

∣∣ ≤ t2

4
‖∂t$ (t)‖2

2 + Ct2 ‖∂tu (t)‖2
2 ,
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(3.46)
∣∣∣
〈
F

′′

3 (θ (t))$ (t) , t2∂t$ (t)
〉

2

∣∣∣ ≤ t2

4
‖∂t$ (t)‖2

2 + t2Q (‖θ (t)‖∞) ‖$ (t)‖2
2 .

Inserting now (3.45) and (3.46) in (3.44) , then integrating in t ∈ [0, 1] the relation
that we obtain, we deduce from (3.44) that

t2 〈AK∂tθ (t) , ∂tθ (t)〉2 +

t∫

0

s2
∥∥∂2

t θ (s)
∥∥2

2
ds ≤ C

t∫

0

s
∥∥∂2

t φ (s)
∥∥2

2
ds+

(3.47)

+Qα

(
‖(φ (0) , ψ (0) , θ (0))‖2

Yα
K

) t∫

0

s2 ‖∂tθ (s)‖2
2 ds+

t∫

0

s 〈AK∂tθ (t) , ∂tθ (t)〉2 ds,

where Qα is a monotonic function that is independent t, but depends on α. Using
now (3.40) to estimate the last term on the right-hand side of (3.47) , collecting the

estimate for ‖∂tθ (t)‖2
2 from (3.40), we obtain

(3.48) ‖∂tθ (t)‖2
ZK

≤ t+ 1

t2
Qα

(
‖(φ (0) , ψ (0) , θ (0))‖2

Yα
K

)
, t ∈ (0, 1] ,

where Qα is a new function that depends on α, but it is independent of t. Analo-
gously, we can rewrite (2.6) , (2.9) as a linear elliptic boundary value problem:

(3.49)

{
−∆θ (t) = g5 (t) ,

b∂nθ (t) + cθ (t) = 0,

where g5 (t) := −∂tθ (t)− δ∂tφ (t)−F
′

3 (θ (t)) . Standard elliptic theory for problem
(3.49) implies that

(3.50) ‖θ (t)‖2
H3 ≤ C

(
‖g5 (t)‖2

H1 + ‖θ (t)‖2
H2

)

which together with the estimates (3.40) , (3.48) yields the required estimate on the
H3- norm of θ, that is, we obtain

(3.51) ‖θ (t)‖2
H3 ≤ t+ 1

t2
Qα

(
‖(φ (0) , ψ (0) , θ (0))‖2

Yα
K

)
, t ∈ (0, 1] .

This finishes the proof of Theorem 5. �

In the sequel, we will also verify the uniqueness of the solution and the Lipschitz
continuity with respect to the initial data.

Theorem 6. Let K ∈ {D,N,R} . Let the assumptions of Theorem 4 hold and
let the functions (φ1 (t) , ψ1 (t) , θ1 (t)) and (φ2 (t) , ψ2 (t) , θ2 (t)) be two solutions of
problem (2.4) − (2.10). Set

(
φ, ψ, θ

)
:= (φ1 − φ2, ψ1 − ψ2, θ1 − θ2) .

Then the following estimate holds:

‖φ1 (t) − φ2 (t)‖2
H1 + ‖ψ1 (t) − ψ2 (t)‖2

H1(Γ) + ‖θ1 (t) − θ2 (t)‖2
2

+

t∫

0

(
α
∥∥∂tφ (s)

∥∥2

2
+
∥∥∂tφ (s)

∥∥2

H−1 +
〈
AKθ (s) , θ (s)

〉
2

+
∥∥∂tψ (s)

∥∥2

2,Γ

)
ds

(3.52)

≤ CeLt
(
‖φ1 (0) − φ2 (0)‖2

H1 + ‖ψ1 (0) − ψ2 (0)‖2
H1(Γ) + ‖θ1 (0) − θ2 (0)‖2

2

)
,
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where the positive constants C and L are independent of t, but depend on the initial
data and α.

Proof. First, set µ := µ1 − µ2. The functions φ (t) , ψ (t) , θ (t) , µ (t) satisfy

(3.53)





∂tφ (t) = ∆µ (t) in Ω × (0,∞) , ∂nµ (t) = 0 on Γ,

µ (t) = α∂tφ (t) − ∆φ (t) + l1 (t)φ (t) − δθ (t) in Ω,

∂tψ (t) = ∆Γψ (t) − ∂nφ (t) − ψ (t) − l2 (t)ψ (t) on Γ, φ (t)|Γ = ψ (t)

(3.54)

{
∂tθ (t) − ∆θ (t) = −δ∂tφ (t) − l3 (t) θ (t) in Ω,

b∂nθ (t) + cθ (t) = 0 on Γ,

φ|t=0 = φ1 (0) − φ2 (0) , ψ|t=0 = ψ1 (0) − ψ2 (0) , θ|t=0 = θ1 (0) − θ2 (0) ,

where

lj (t) :=

1∫

0

F
′′

j (sv1 (t) + (1 − s) v2 (t)) ds, j = 1, 2, 3.

The definition of the functions vi is as follows: when j = 1, vi = φi, for i = 1,
2, when j = 2, vi = ψi, for i = 1, 2, whereas, when j = 3, vi = θi, i = 1, 2.
It now follows from the estimates of Propositions 2, 3, Theorem 4 and from the
embeddings H2 (Ω) ⊂ L∞ (Ω) , H2 (Γ) ⊂ L∞ (Γ) that

‖∂tl1 (t)‖2 + ‖∂tl2 (t)‖2,Γ + ‖l1 (t)‖H2 + ‖l2 (t)‖H2(Γ) + ‖∂tl3 (t)‖2

(3.55)

+ ‖l3 (t)‖H2 ≤ L := Qα

(
‖(φ1 (0) , ψ1 (0) , θ1 (0))‖

Yα
K

+ ‖(φ2 (0) , ψ2 (0) , θ2 (0))‖
Yα

K

)
,

for a monotonic function Qα that is independent of t, but depends on α. Also,
note that

〈
∂tφ (t)

〉
= 0, due to (2.1) . Multiplying now the first, third and fourth

equations of (3.53) scalarly by A−1
N

(
∂tφ (t)

)
, ∂tφ (t) and ∂tψ (t) , respectively, then

the first equation of (3.54) scalarly by θ (t) , integrating by parts, and using the
boundary condition of (3.54), we obtain after standard transformations:

1

2

d

dt

[∥∥φ (t)
∥∥2

H1 +
∥∥ψ (t)

∥∥2

H1(Γ)
+
∥∥θ (t)

∥∥2

2

]
+ α

∥∥∂tφ (t)
∥∥2

2
+
∥∥∂tφ (t)

∥∥2

H−1

+
〈
AKθ (t) , θ (t)

〉
2
+
∥∥∂tψ (t)

∥∥2

2,Γ
= −

〈
l1 (t)φ (t) , ∂tφ (t)

〉
2
−
〈
l2 (t)ψ (t) , ∂tψ (t)

〉
2,Γ

(3.56) −
〈
l3 (t) θ (t) , θ (t)

〉
2

:= F
(
φ, ψ, θ

)
.

It now follows from the assumptions (1.12) − (1.14) on the nonlinearities Fi (i =
1, 2, 3) and the embeddings H2 (Ω) ⊂ L∞ (Ω) , H2 (Γ) ⊂ L∞ (Γ) that

∣∣F
(
φ, ψ, θ

)∣∣ ≤ 1

α

[
Q (‖φi (t)‖H2)

∥∥φ (t)
∥∥2

2
+Q

(
‖ψi (t)‖H2(Γ)

)∥∥ψ (t)
∥∥2

2,Γ

]

+
α

2

∥∥∂tφ (t)
∥∥2

2
+

1

2

∥∥∂tψ (t)
∥∥2

2,Γ
+Q (‖θi (t)‖H2)

∥∥θ (t)
∥∥2

2
,

where the monotonic function Q is independent of t, α and i = 1, 2. Moreover, in-
serting the above estimate into the right-hand side of (3.56) and using the estimates
(3.12), (3.20), (3.55), we obtain

d

dt

[∥∥φ (t)
∥∥2

H1 +
∥∥ψ (t)

∥∥2

H1(Γ)
+
∥∥θ (t)

∥∥2

2

]
+ 2α

∥∥∂tφ (t)
∥∥2

2
+ 2

∥∥∂tφ (t)
∥∥2

H−1
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(3.57)

+2
〈
AKθ (t) , θ (t)

〉
2

+ 2
∥∥∂tψ (t)

∥∥2

2,Γ
≤ L

[∥∥φ (t)
∥∥2

H1 +
∥∥ψ (t)

∥∥2

H1(Γ)
+
∥∥θ (t)

∥∥2

2

]
.

Applying a suitable version of Gronwall’s inequality to relation (3.57) , we easily
obtain our conclusion (3.52) . The proof is finished. �

We close this section with the proof of the existence of solutions to our problem
(2.4)-(2.10), which was conveniently rewritten as (3.1)-(3.3) in the beginning of this
section. This can be proved based on the a priori estimates derived in this section
and by a Faedo-Galerkin approximation scheme. To this end, let us consider the
operator B0 : D (B0) ⊂ V0 → V0 given formally by

B0

(
φ

ψ

)
=

( −∆φ

−∆Γψ + ∂nφ+ ψ

)
,

with domain D (B0) = {Θ = (φ, ψ) : φ ∈ C2
(
Ω
)
, ψ = φ|Γ}. It is an easy exercise

to show that we have 〈B0Θ,Ξ〉
V0

= 〈Θ,Ξ〉
V1
, for all Θ ∈ D (B0) and all Ξ ∈ V1.

It follows from a well-known result (see, e.g., [25], cf. also [48]) that the closed
bilinear form % (Θ,Ξ) := 〈Θ,Ξ〉

V1
defines a strictly positive self-adjoint unbounded

operator B : D (B) = {Θ ∈ V1 : BΘ ∈ V0} → V0, such that, for any Ξ ∈ V1,
we have 〈BΘ,Ξ〉

V0
= % (Θ,Ξ) . Thus, for i ∈ N, we take a complete system of

eigenfunctions {Θi = (φi, ψi)}i of the problem BΘi = λ̂iΘi in V0 with Θi ∈ D (B) .
Moreover, recall that AK = −∆, when K ∈ {D,N,R} is nonnegative and self-
adjoint on L2 (Ω) . Then, we have (for i ∈ N) a complete system of eigenfunctions{
θKi
}
i

of the problem AKθi = λKi θ
K
i in L2 (Ω) with θKi ∈ D (AK) . According

to the general spectral theory, the eigenvalues λ̂i and λKi , K ∈ {D,N,R} can be
increasingly ordered and counted according to their multiplicities in order to form
a real divergent sequence. Moreover, the respective eigenvectors Θi and θKi turn
out to form an orthogonal basis in V1, V0 and L2 (Ω) , H1 (Ω) respectively. The
eigenvectors Θi and θKi may be assumed to be normalized in the norm of V0 and
L2 (Ω) respectively. At this point, we set the spaces

Kn = span {Θ1,Θ2, ...,Θn} , K∞ = ∪∞
n=1Kn,

PKn = span
{
θK1 , θ

K
2 , ..., θ

K
n

}
, PK∞ = ∪∞

n=1PKn .
Clearly, K∞ and PK∞, K ∈ {D,N,R, } are dense subspaces of V1, V2 and H1 (Ω),
D (AK) respectively. For any n ∈ N, we look for functions of the form

(3.58) Θ = Θn =
∑n

i=1
di (t) Θi, θ

K = θKn =
∑n

i=1
ei (t) θKi

solving the approximate problem that we will introduce below. Note that the
chemical potential µ can be found in terms of Θn and θKn from the boundary value
problem (2.2) − (2.3). That is, it is enough to solve for Θn and θKn . Furthermore,
we also define the function

H (t) := − |Γ|
|Ω|
∑n

i=1
di (t) 〈∂nφi〉Γ +

〈
F

′

1

(∑n

i=1
di (t)φi

)〉
− δ

∑n

i=1
ei (t)

〈
θKi
〉
,

to account for the contribution of the last term on the right-hand side of first
equation of (3.1). Note that from (3.58), we have

(3.59) φ = φn =
∑n

i=1
di (t)φi, ψ = ψn =

∑n

i=1
di (t)ψi.
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Also, in the definition of Θn and θKn , di (t) and ei (t) are sought to be suitably regular
real valued functions. As approximations for the initial data Φ0 = (φ0, ψ0, θ0), we
take

(3.60) Φn0 = (φn0, ψn0, θn0) ∈ Y
K
α , such that lim

n→∞
Φn0 = Φ0 in Y

K
α .

Before we introduce our problem, let us define the following operators F : D (F) ⊂
V0 → V0, F̂ : D(F̂) ⊂ L2 (Ω) → L2 (Ω), G : D (G) ⊂ V0 → V0 and N : V0 → V0

such that

F
(
φ

ψ

)
=

(
F

′

1 (φ)

F
′

2 (ψ)

)
, F̂ (θ) = F

′

3 (θ) , G
(
φ

ψ

)
=

(
H

0

)
,

N
(
φ

ψ

)
=

((
α+A−1

N

)
φ

ψ

)
.

The problem that we must solve is given by
(
PKn

)
, for a fixed K ∈ {D,N,R, } and

for any n ≥ 1,
(3.61){ 〈

∂tN (Θn) ,Θ
〉

V0
+
〈
BΘn,Θ

〉
V0

+
〈
F (Θn) ,Θ

〉
V0

= δ
〈
θKn , φ

〉
2

+
〈
G (Θn) ,Θ

〉
V0
,

〈
∂tθ

K
n , θ

〉
2

+
〈
AKθ

K
n , θ

〉
2

+
〈
F̂
(
θKn
)
, θ
〉

2
= −δ

〈
∂tφn, θ

〉
2
,

and

(3.62)
〈
Θn (0) ,Θ

〉
V0

=
〈
Θn0,Θ

〉
V0
,
〈
θKn (0) , θ

〉
2

=
〈
θn0, θ

〉
2

for all Θ =
(φ
ψ

)
∈ Kn, and all θ ∈ PKn .

We aim to apply the standard existence theorems for ODE’s. For this purpose,
if n is fixed, let us choose Θ = Θj , and θ = θKj , 1 ≤ j ≤ n and substitute the

expressions (3.58) to the unknowns Θn and θKn in (3.61) . We seek to rewrite (3.61)
in compact form. For this purpose, consider now the column vectors d = {di (t)}i∈N

and e = {ei (t)}i∈N
and define the following matrices:

G0 =

(〈
N
(
φi
ψi

)
,

(
φj
ψj

)〉

V0

)

1≤i,j≤n

,

G1 =

(〈
λ̂i

(
φi
ψi

)
,

(
φj
ψj

)〉

V0

)

1≤i,j≤n

= λ̂iIn×n,

F0 (d) =

(〈(
F

′

1 (
∑n

i=1 di (t)φi)

F
′

2 (
∑n
i=1 di (t)ψi)

)
,

(
φj
ψj

)〉

V0

)

1≤i,j≤n

,

W0 =
(〈
θKi , φj

〉
2

)
1≤i,j≤n

, W1 =
(〈
φi, θ

K
j

〉
2

)
1≤i,j≤n

,

G2 =
(〈
θKi , θ

K
j

〉
2

)
1≤i,j≤n

= In×n, G3 =
(〈
λKi θ

K
i , θ

K
j

〉
2

)
1≤i,j≤n

= λKi In×n,

G4 = (|Γ| 〈∂nφi〉Γ 〈φj〉)1≤i,j≤n , G5 =
(
|Ω|
〈
θKi
〉
〈φj〉

)
1≤i,j≤n

,

and

F1 (e) =
(〈
F

′

3

(∑n

i=1
ei (t) θKi

)
, θKj

〉
2

)
1≤i,j≤n

,

F2 (d) =
(
|Ω|
〈
F

′

1

(∑n

i=1
di (t)φi

)〉
〈φj〉

)
1≤i,j≤n

.
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After performing direct calculations (and using the above definitions), we ac-
tually derive the following system of equations in compact form:
(3.63){

G0d
′

(t) + (G1 + G4) d (t) + F0 (d (t)) − F2 (d (t)) = δ (W0 − G5) e (t) ,

G2e
′

(t) + G3e (t) + F1 (e (t)) = −δW1d
′

(t) .

First, note that, based on our definitions, G2 is the identity matrix, whereas the
matrix coefficient G0 of d

′

in (3.63) is symmetric and positive-definite, hence,
non-singular. Secondly, both matrices G1 and G3 are diagonal, with their diag-

onal entries being given by the eigenvalues {λ̂i}i and {λKi }i, respectively. Besides,

the bilinear forms 〈BΘi,Θj〉V0
= 〈Θi,Θj〉V1

= λ̂i 〈Θi,Θj〉V0
and

〈
AKθ

K
i , θ

K
j

〉
2

=

λKi
〈
θKi , θ

K
j

〉
2

are V1-coercive and L2 (Ω)-coercive, respectively. Then, computing

for d
′

from the first equation of (3.63) and replacing the expression that we obtain
into the right-hand side of the second equation of (3.63) , we can transform our
problem and the initial conditions of

(
PKn

)
into a Cauchy problem for a system of

nonlinear ordinary differential equations:

(3.64)

{(
∂te (t)

∂td (t)

)
=

(
U1 (t,d (t) , e (t))

U2 (t,d (t) , e (t))

)
,

where Ul : [τ, tn] ×R2n → R2n, l = 1, 2, with

U1 (t,d, e) = G3e+F1 (e)+δW1G
−1
0 [(G1 + G4) d+F0 (d) − F2 (d) − δ (W0 − G5) e] ,

U2 (t,d, e) = −G
−1
0 [(G1 + G4) d + F0 (d) − F2 (d) + δ (W0 − G5) e] .

Each function Ul, l = 1, 2 is continuous with respect to its arguments, uniformly
in t, by the continuity of the projections and the fact that Fi ∈ C (R) (i = 1, 2, 3).
Applying Cauchy’s theorem for ODE’s, we find a small time tn ∈ (0, T ) such that
(3.64) (and thus (3.63)) holds for all t ∈ [0, tn] . This gives the desired local C1−
solution Φ = (φ, ψ, θ) to our problem (3.63) , since Φn =

(
φn, ψn, θ

K
n

)
satisfies

(3.63) . Now, based on the uniform a priori estimates with respect to t, derived for
the solution Φ = (φ, ψ, θ) of (2.4) − (2.10), we obtain, in particular, that any local
solution of (3.63) is actually a global solution that is defined on the whole interval
[0, T ]. It remains then to pass to the limit as n→ ∞.

According to the a priori estimates derived in the beginning of Section 3, we
have

‖φn‖L∞([0,T ];H2(Ω)) + ‖ψn‖L∞([0,T ];H2(Γ)) + ‖θn‖L∞([0,T ];H2(Ω)) ≤ C,

‖∂tφn‖L2([0,T ];H1(Ω)) + ‖∂tψn‖L2([0,T ];H1(Γ)) + ‖∂tθn‖L2([0,T ];L2(Ω)) ≤ C.

The approximate chemical potentials µn, n ∈ N, satisfy

‖µn‖L∞([0,T ];H2(Ω)) ≤ C,

where C depends on Ω, Γ, T, α, δ, φ0, ψ0, θ0 but is independent of n and t. From
this point on, all convergence relations will be intended to hold up to the extraction
of suitable subsequences, generally not relabelled. Thus, we observe that weak and
weak star compactness results applied to the above sequences Φn = (φn, ψn, θn)
entail that there exist the function Φ = (φ, ψ, θ) such that as n→ ∞, the following
properties hold:

Φn → Φ weakly star in L∞
(
[0, T ] ;H2 (Ω) ×H2 (Γ) ×H2 (Ω)

)
,

(∂tφn, ∂tψn) → (∂tφ, ∂tψ) weakly in L2
(
[0, T ] ;H1 (Ω) ×H1 (Γ)

)
,
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∂tθn → ∂tθ weakly in L2
(
[0, T ] ;L2 (Ω)

)
,

µn → µ weakly star in L∞
(
[0, T ] ;H2 (Ω)

)
.

Then, standard interpolation (for instance, H2−η (Ω) ⊂ L∞ (Ω), for η ∈ (0, 1/2) ,
since Ω ⊂ Rn with n = 3) and compact embedding results for vector valued func-
tions (see e.g., [22, Lemma 8]) ensure that

(3.65) Φn → Φ strongly in C ([0, T ] ;C (Ω) × C (Γ) × C (Ω)) .

Standard arguments and (3.65) imply that Φ (0) = Φ0. By the Lipschitz continuity

of the nonlinear functions F
′

i , i = 1, 2, 3, and standard compactness results (see
e.g., [22, Theorem 9]), the above convergence allows us to infer that

F
′

1 (φn) → F
′

1 (φ) strongly in C
(
[0, T ] ;L2 (Ω)

)
,

F
′

2 (ψn) → F
′

2 (ψ) strongly in C
(
[0, T ] ;L2 (Γ)

)
,

and
F

′

3 (θn) → F
′

3 (θ) strongly in C
(
[0, T ] ;L2 (Ω)

)
.

Thus, passing to the limit in (3.61)− (3.62) and using the above convergence prop-
erties, we immediately have that the solution Φ = (φ, ψ, θ) satisfies (3.1) − (3.3)
(and therefore (2.4)− (2.10)) in the sense introduced in Definition 1, Section 2. It
also worth mentioning that since (∂tφ, ∂tψ) ∈ L2 ([0, T ] ; V1) , by regularity of el-
liptic equations (cf. estimate (3.42), see also [41]) for the boundary value problem
(3.41), we also deduce that φ ∈ L2

(
[0, T ] ;H3 (Ω)

)
and ψ ∈ L2

(
[0, T ] ;H3 (Ω)

)
.

Finally, using this new regularity and a standard result from elliptic theory applied
to equations (2.4), (2.7), we obtain that µ ∈ L2

(
[0, T ] ;H3 (Ω)

)
, as well.

We conclude this section with the following result on the solvability of our
problem (2.4) − (2.10) . Let T > 0 be fixed, but otherwise arbitrary.

Corollary 7. Let (φ0, ψ0, θ0) ∈ YKα , K ∈ {D,N,R} and suppose that the
nonlinearities Fi, i = 1, 2, 3 satisfy assumptions (1.12) − (1.14) . Then, problem
(2.4) − (2.10) has a unique solution (φ (t) , ψ (t) , θ (t)) that belongs to the space
C
(
[0, T ] ,YKα

)
∩L∞

loc ((0, T ] ,Z3) and satisfies (3.52) . Moreover, this problem defines

a semigroup SKt in the phase space YKα by

(3.66) SKt : Y
K
α → Y

K
α ,

such that

(3.67) SKt (φ0, ψ0, θ0) = (φ (t) , ψ (t) , θ (t)) .

Proof. The uniqueness of a solution was actually verified in Theorem 6 and
the existence of solutions in the phase space YK

α was verified above using a Faedo-
Galerkin approximation scheme. Thus, problem (2.4)− (2.10) generates a semiflow
SKt on Y

K
α given by (3.66), where (φ (t) , ψ (t) , θ (t)) solves (2.4)-(2.10) with initial

data in YKα . The corollary is proved. �

4. Global and exponential attractors

We are finally ready to construct an exponential attractor MK in YKα for our
problem. Let us mention that due to equations (2.4) and (2.7), our system possesses
a conservation law (2.1), so that (2.4)− (2.10) is not dissipative on the entire phase
space Y

K
α , so then we have to restrict ourselves to the strips

(4.1) Y
K,m
α := Y

K
α ∩ {|〈φ〉| ≤ m} ,
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for any given m > 0. Precisely, our main results of this section are stated below.

Theorem 8. Suppose that the nonlinearities Fi ∈ C2 (R) , i = 1, 2, satisfy the
assumptions (1.12)−(1.14). For every K ∈ {D,N,R}, there is a connected compact
global attractor AK ⊂ YK,mα ∩ Z3 for the semi-flow SKt associated to the system of
equations (2.4) − (2.10) . Moreover, AK has finite fractal dimension.

Proof. Theorem 4 and 5 imply that the dynamical system (YK,m
α ,SKt ) has

a bounded absorbing set and a compact absorbing set B0 which is contained in
V3 ×H3 (Ω) . Therefore, recalling that SKt is also a closed semigroup (cf. Theorem
6, (3.52)), the proof follows from [47, Theorem 2 and Corollary 6] (see also [23]). �

The finite dimensionality of the attractor AK will be a consequence of the
theorem below.

Theorem 9. Let K ∈ {D,N,R} be fixed. Let the nonlinearities Fi ∈ C2,1 (R)
satisfy the assumptions (1.12) − (1.14). Then, there exists a compact set MK,m ⊂
YK,mα ∩ Z3, which satisfies the following:

(i) MK,m is semi-invariant with respect to the semiflow SKt associated with
problem (2.4) − (2.10) , that is,

(4.2) SKt
(
MK,m

)
⊂ MK,m, t ≥ 0.

(ii) The fractal dimension of MK,m is finite, that is,

(4.3) dimF

(
MK,m,Z2

)
≤ C < +∞,

where C can be determined explicitly in terms of the given parameters (see e.g.,
[15]).

(iii) MK,m attracts exponentially fast the bounded subsets of YK,m
α , that is,

there exists a constant ρ > 0 and a monotonic function Qα independent of t such
that

(4.4) distZ2

(
SKt B,MK,m

)
≤ Qα

(
‖B‖

Y
K,m
α

)
e−ρt, t ≥ 0,

for every bounded subset B of YK,mα . Here distZ2
denotes the non-symmetric Haus-

dorff distance between sets in Z2.

Obviously, the exponential attractor MK,m and the semigroup SKt depend on
m. To prove our last theorem, we introduce the following ball B

K,m with sufficiently
large radius R in the space YK,mα :

(4.5) B
K,m
R :=

{
Φ = (φ, ψ, θ) ∈ Y

K,m
α , ‖Φ‖

Y
K,m
α

≤ R, |〈φ〉| ≤ m
}
.

Due to the dissipative estimate (3.20) and the smoothing property (3.34) , there
exist sufficiently large R = R (m) and t# = t#

(
R,m

)
which are independent of t

such that BK,m := B
K,m

R
is an absorbing set for the semigroup SKt acting on YK,mα

and

(4.6) SKt
(
B
K,m

)
⊂ B

K,m, for t ≥ t#.

Before we construct an exponential attractor to our problem, we will need an
additional lemma. We will derive a smoothing estimate for the difference of two
solutions of (2.4) − (2.10). Let K ∈ {D,N,R} be fixed.
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Lemma 10. Let (φ1, ψ1, θ1) and (φ2, ψ2, θ2) be two solutions of (2.4) − (2.10)

with initial data (φi (0) , ψi (0) , θi (0)) , i = 1, 2, in B
K,m
R , for given R > 0. Then,

for every t > 0, we have the following smoothing estimate:

‖φ1 (t) − φ2 (t)‖2
H2 + ‖ψ1 (t) − ψ2 (t)‖2

H2(Γ) + ‖θ1 (t) − θ2 (t)‖2
ZK

(4.7)

≤ CeLt
t+ 1

t

(
‖φ1 (0) − φ2 (0)‖2

H1 + ‖ψ1 (0) − ψ2 (0)‖2
H1(Γ) + ‖θ1 (0) − θ2 (0)‖2

2

)
,

where C, L depend only on α and R, but they are independent of t.

Proof. Set
(
φ, ψ, θ, µ

)
:= (φ1 − φ2, ψ1 − ψ2, θ1 − θ2, µ1 − µ2) .

Recall that the functions φ, ψ, θ and µ satisfy (3.53) , (3.54). Differentiating now
all equations of (3.53) with respect to t (recall that we can do so within an ap-
propriate Faedo-Galerkin scheme), multiplying the first, third and fourth scalarly
by A−1

N ∂tφ (t) , ∂tφ (t) and ∂tψ (t) , respectively, summing up the relations that we

obtain with the first equation of (3.54) multiplied by ∂tθ (t), and integrating by
parts, we obtain after standard transformations:

d

dt

[
α
∥∥∂tφ (t)

∥∥2

2
+
∥∥∂tφ (t)

∥∥2

H−1 +
∥∥∂tψ (t)

∥∥2

2,Γ
+
〈
AKθ (t) , θ (t)

〉
2

]

+2
∥∥∂tφ (t)

∥∥2

H1 + 2
∥∥∂tψ (t)

∥∥2

H1(Γ)
+ 2

∥∥∂tθ (t)
∥∥2

2

= −2
〈
l1 (t) ∂tφ (t) , ∂tφ (t)

〉
2
− 2

〈
∂tl1 (t)φ (t) , ∂tφ (t)

〉
2
− 2

〈
l3 (t) θ (t) , ∂tθ (t)

〉
2

(4.8) −2
〈
l2 (t) ∂tψ (t) , ∂tψ (t)

〉
2,Γ

− 2
〈
∂tl2 (t)ψ (t) , ∂tψ (t)

〉
2,Γ

.

The first and fourth term on the right-hand side of (4.8) can be estimated using
(3.55) , and for the remaining terms, we use the embeddings H1 (Ω) ⊂ L4 (Ω) ,
H1 (Γ) ⊂ L4 (Γ) so that we have

d

dt

[
α
∥∥∂tφ (t)

∥∥2

2
+
∥∥∂tφ (t)

∥∥2

H−1 +
∥∥∂tψ (t)

∥∥2

2,Γ
+
〈
AKθ (t) , θ (t)

〉
2

]

+2
∥∥∂tφ (t)

∥∥2

H1 + 2
∥∥∂tψ (t)

∥∥2

H1(Γ)
+ 2

∥∥∂tθ (t)
∥∥2

2

≤ L
[
α
∥∥∂tφ (t)

∥∥2

2
+
∥∥∂tψ (t)

∥∥2

2,Γ

]
+ 2 ‖∂tl1 (t)‖2

∥∥φ (t) ∂tφ (t)
∥∥

2

+2 ‖∂tl2 (t)‖2,Γ

∥∥ψ (t) ∂tψ (t)
∥∥

2,Γ
+ 2

∥∥l3 (t) θ (t)
∥∥

2

∥∥∂tθ (t)
∥∥

2

≤ L
[
α
∥∥∂tφ (t)

∥∥2

2
+
∥∥∂tψ (t)

∥∥2

2,Γ

]
+2L

′

[∥∥φ (t)
∥∥

4

∥∥∂tφ (t)
∥∥

4
+
∥∥ψ (t)

∥∥
4,Γ

∥∥∂tψ (t)
∥∥

4,Γ

]

+L
∥∥θ (t)

∥∥2

2
+
∥∥∂tθ (t)

∥∥2

2

≤ L
[
α
∥∥∂tφ (t)

∥∥2

2
+
∥∥∂tψ (t)

∥∥2

2,Γ

]
+
(∥∥∂tφ (t)

∥∥2

H1 +
∥∥∂tψ (t)

∥∥2

H1(Γ)
+
∥∥∂tθ (t)

∥∥2

2

)

(4.9) +L
′′

(∥∥φ (t)
∥∥2

H1 +
∥∥ψ (t)

∥∥2

H1(Γ)
+
∥∥θ (t)

∥∥2

2

)
,

where L
′

and L
′′

depend on L and thus on the norm of the initial data in B
K,m
R

and α, but they are independent of t. Multiplying now both sides of (4.9) by t, we
deduce

d

dt

[
t
(
α
∥∥∂tφ (t)

∥∥2

2
+
∥∥∂tφ (t)

∥∥2

H−1 +
∥∥∂tψ (t)

∥∥2

2,Γ
+
〈
AKθ (t) , θ (t)

〉
2

)]
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+t
(∥∥∂tφ (t)

∥∥2

H1 +
∥∥∂tψ (t)

∥∥2

H1(Γ)
+
∥∥∂tθ (t)

∥∥2

2

)

≤ Lt
[
α
∥∥∂tφ (t)

∥∥2

2
+
∥∥∂tψ (t)

∥∥2

2,Γ

]
+ L

′′

t
(∥∥φ (t)

∥∥2

H1 +
∥∥ψ (t)

∥∥2

H1(Γ)
+
∥∥θ (t)

∥∥2

2

)

(4.10) +α
∥∥∂tφ (t)

∥∥2

2
+
∥∥∂tφ (t)

∥∥2

H−1 +
∥∥∂tψ (t)

∥∥2

2,Γ
+
〈
AKθ (t) , θ (t)

〉
2
.

Integrating (4.10) over (0, t) and then employing estimate (3.52), we easily obtain
that

α
∥∥∂tφ (t)

∥∥2

2
+
∥∥∂tφ (t)

∥∥2

H−1 +
∥∥∂tψ (t)

∥∥2

2,Γ
+
〈
AKθ (t) , θ (t)

〉
2

(4.11) ≤ CeLt
t+ 1

t

(∥∥φ (0)
∥∥2

H1 +
∥∥ψ (0)

∥∥2

H1(Γ)
+
∥∥θ (0)

∥∥2

2

)
.

The estimate (4.7) is then a consequence of (4.11), standard parabolic arguments
and maximum principles as in the proof of Theorem 4 (see (3.26) − (3.33)). �

In order to prove Theorem 9, we use the method introduced in [15] (cf. also
[16]). We construct the required exponential attractor for the semigroup SKt with
discrete times and extend the results to continuous times. We are ready to prove

the existence of the following ”discrete” exponential attractor M̂K,m by using the
following fundamental result on discrete semigroups (see [15]), which is reported
below for the reader’s convenience.

Theorem 11. Let V and W be two Banach spaces such that W is compactly
embedded in V . Let X be a bounded subset of W and consider a nonlinear map
Σ : X → X satisfying the smoothing property

(4.12) ‖Σ (x1) − Σ (x2)‖W ≤ C ‖x1 − x2‖V ,
for all x1, x2 ∈ X, where C > 0 depends on X. Then the discrete dynamical system
(X,Σn) possesses a discrete exponential attractor M∗ ⊂ V , that is, a compact set
with finite fractal dimension such that

(4.13) Σ (M∗) ⊂ M∗,

(4.14) distV (Σn (B) ,M∗) ≤ CXe
−ρ∗n, n ∈ N,

where CX and ρ∗ are positive constants independent of n, with the former depending
on X.

Proof of Theorem 9. Using Theorems 4, 5, 6 and Lemma 10, (4.7), we
can find a bounded subset X of YK,mα ∩ Z3 and t# > 0 such that, setting W :=
V2 × ZK , V := V1 × L2 (Ω) and Σ = SKt# , the mapping Σ : X → X enjoys the
smoothing property (4.12). Therefore Theorem 11 applies to Σ and there exists a

compact set M̂K,m ∈ X of finite fractal dimension (with respect to the metric in
V = V1 × L2 (Ω)) that satisfies (4.13) and (4.14). Hence, setting as usual

MK,m= ∪t∈[t#,2t#] SKt M̂K,m,

we have that (4.2) and (4.4) are fulfilled, however with the metric of Z2 being
replaced by that of V1 × L2 (Ω). Finally, there only remains to verify that MK,m

has finite fractal dimension. We will show that the map SKt is uniformly Hölder
continuous on [t0, T ] × BK,m in the metric of V . It will then follow that MK,m is
still a compact set with finite fractal dimension such that

(4.15) dimF

(
MK,m,V

)
≤ dimF

(
M̂K,m,V

)
+ 2.
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Lemma 12. Under the assumptions of Lemma 10, every solution (φ (t) , ψ (t) , θ (t))
of problem (2.4) − (2.10) is Hölder continuous with respect to t, that is, for every
t ≥ t0 > 0 and 0 ≤ s ≤ 1, we have

‖φ (t+ s) − φ (t)‖H1 + ‖ψ (t+ s) − ψ (t)‖H1(Γ)

(4.16) + ‖θ (t+ s) − θ2 (t)‖2 ≤ Q
(
‖φ (0) , ψ (0) , θ (0)‖

YK
α

)
s1/2.

Proof. The proof is a direct corollary of the estimates proved in Section 3.
Recall that, for every t ∈ [0, T ] , with T fixed, but otherwise arbitrary, we have
(4.17)
T+1∫

0

[
‖∂tφ (s)‖2

H1 + ‖∂tψ (s)‖2
H1(Γ) + ‖∂tθ (s)‖2

2

]
ds ≤ Q

(
‖φ (0) , ψ (0) , θ (0)‖

YK
α

)
:= L.

Moreover, for every t ≥ t0 > 0 and 0 ≤ s ≤ 1, we infer from (4.17) that

‖φ (t+ s) − φ (t)‖H1 + ‖ψ (t+ s) − ψ (t)‖H1(Γ) + ‖θ (t+ s) − θ2 (t)‖2

=

∥∥∥∥∥∥

t+s∫

t

∂tφ (τ) dτ

∥∥∥∥∥∥
H1

+

∥∥∥∥∥∥

t+s∫

t

∂tψ (τ) dτ

∥∥∥∥∥∥
H1(Γ)

+

∥∥∥∥∥∥

t+s∫

t

∂tθ (τ) dτ

∥∥∥∥∥∥
2

≤
t+s∫

t

(
‖∂tφ (τ)‖H1 + ‖∂tψ (τ)‖H1(Γ) + ‖∂tθ (τ)‖2

)
dτ ≤ C |s|1/2 .

Thus, the lemma is proved. �

In order to obtain the finite-dimentionality (4.3) and the required exponential
convergence (4.4) of MK,m in the required metric of Z2, it remains to recall that
SKt , t ≥ t0, possesses the smoothing property (3.34) and to use the standard in-

terpolation inequalities ‖·‖H2 ≤ C ‖·‖1/3
2 ‖·‖2/3

H3 , ‖·‖H2 ≤ C ‖·‖1/2
ZK

‖·‖1/2
H3 , where the

constant C is independent of t. The proof of Theorem 9 is now complete.

Remark 13. Let us say more about the structure of the global attractor AK .
But, first suppose that F3 ≡ 0 in (2.6) . Then, in addition to the mass enthalpy
condition (2.1) , we also have conservation of temperature 〈θ〉 = 〈θ0〉, when K = N,
due to the equations (2.6) and (2.9) . Let us set

LK(φ0, ψ0, θ0) =
1

2

(
‖∇φ0‖2

2 + ‖∇Γψ0‖2
2,Γ + ‖ψ0‖2

2,Γ + ‖θ0‖2
2

)

+

∫

Ω

F1 (φ0) dx+

∫

Γ

F2 (ψ0) dS,

for all (φ0, ψ0, θ0) ∈ YKα , if K ∈ {D,N,R}. Then, it is not difficult to prove that
LK is a (global) Lyapunov functional for the semi-flow SKt (cf. e.g. [46]). We can
verify that for all t > 0, in fact, we have

d

dt
LK(SKt (φ0, ψ0, θ0)) = −‖∇µ (t)‖2

2 − ‖∂tφ (t)‖2
2 − ‖∂tψ (t)‖2

2,Γ − ‖∇θ (t)‖2
2

−c
b

∥∥θ|Γ (t)
∥∥2

2,Γ
.

Hence our semi-flow is a gradient system and this entails that AK coincides with
the unstable manifold of the set EK of the stationary points (cf., e.g., [51, Chapter
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7, Section 4]). Notice that (φ∞, ψ∞, θ∞) ∈ YKα belongs to EK if and only if it is a
solution to the boundary value problem

−∆φ∞ + F
′

1 (φ∞) − δθ∞ = const, in Ω,

−∆θ∞ = 0, in Ω,

−∆Γψ∞ + ∂nφ∞ + ψ∞ + F
′

2 (ψ∞) = 0, on Γ,

b∂nθ∞ + cθ∞ = 0, on Γ.

Also, for any triplet of initial data (φ0, ψ0, θ0) ∈ YKα , the functional LK is constant
on ω(φ0, ψ0, θ0) and, since each trajectory originated from YK

α is precompact (see
Theorem 5), it follows that ω(φ0, ψ0, θ0) is a connected and compact invariant set
which is contained in EK (see [56, Chapter 6, Section 6.3]). This set can be a
continuum, therefore each trajectory might not converge to a single equilibrium.
However, if Fi, i = 1, 2 are real analytic, it should be possible to prove this kind
of convergence via a suitable adaptation of the  Lojasiewicz-Simon inequality. This
result would be a generalization of [46, Theorem 5.5]. We shall investigate this
problem in a forthcoming article.
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