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Abstract. Let u : R
3+1 −→ H2 be a Wave Map with smooth compactly

supported initial data satisfying the smallness condition ||u[0]||
Ḣ

3
2 ×Ḣ

1
2

< ε

for a sufficiently small ε > 0. In particular, the Wave Map exists globally in
time and is smooth. Then denoting u(0, x) = u∞ ∈ H for |x| large enough,
we have

||u(t, x) − u∞||L∞
x

. t−δ

for |t| >> 1 and δ > 0 some universal constant. Here the implied constant
depends on weighted norms of the the initial data (which, however, need not

be small). Furthermore, there exist (f, g) ∈ Ḣ
3
2 × Ḣ

1
2 such that

u(t, x) = S(t)(f, g) + o
Ḣ

3
2
(1)

where S(t) denotes the free wave propagator.
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1. Introduction

A wave map u : Rn+1 −→M with (M, g) a Riemannian manifold, and Rn+1 the
(n+1)-dimensional Minkowski space with Minkwoski metricmµν = diag(−1, 1, . . . 1),
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is critical with respect to the functional1

u→ L(u) :=

∫

Rn+1

〈∂αu, ∂αu〉gdσ, ∂α = mαβ∂β

The Euler Lagrange equations associated with this functional in local coordinate
are of the form

2ui + Γijk(u)∂νu
j∂νuk = 0, 2 = ∂ν∂

ν

Although the global well-posedness of the Wave Maps problem for general smooth
large data, generic target, and spatial dimension n ≥ 2 is far from understood (for
a recent survey of results and conjectures see e. g. [12]), global existence results
have been obtained with increasingly weaker smallness conditions on the data. The
first such results follow from the classical work of Klainerman, which uses vector
field methods and in particular imposes a very strong smallness condition on the
data, in terms of certain weighted Hs-norms. These conditions in particular imply
that the Wave Map will be confined to a single coordinate chart inside the target.
Further, they immediately yield strong asymptotic results for the corresponding
solutions, including pointwise decay estimates as well as scattering in terms of the
local coordinate functions.
Recent work by Tataru, Tao and others [25], [26], [23], [24], [6], [13], [9], [11], [27]
based on new techniques introduced in [26], [23], [24], led to significantly stronger
global existence results. In particular, one only needs to assume that the initial
data u[0] = (u, ∂tu)t=0 are small in the critical Sobolev norm ||.||

Ḣ
n
2 ×Ḣ

n
2

−1 in a

suitable sense. Note that the latter condition no longer implies that the data are
confined to a single chart: indeed, the Wave Map can now move all over the target.
The works [23], [24], [6], [13], [9], [11], [27] are based on a geometric trick, in-
troduced in [23], [24], namely exploiting the inherent Gauge invariance of the
equations to pass to a more convenient Gauge (e. g. the Coulomb Gauge). Fur-
thermore, they reveal that the cases n = 3 and especially n = 2 appear significantly
more complicated than the cases n ≥ 4 since the Strichartz estimates by themselves
appear no longer strong enough to close the estimates, even using the inherent null-
structure. Instead, the only method thus far establishing the well-posedness at the
critical level hinges on a sophisticated framework from harmonic analysis, blending
Xs,θ-type or Bourgain spaces with Tataru’s null-frame spaces, both of which are
based on localizations of the space-time Fourier transform of the unknown function.
Both the fact that one needs to pass into a new Gauge as well as the use of complex
spaces based on the space-time Fourier transform render the question of global as-
ymptotic behavior as well as scattering in the original coordinates highly non-trivial
in the dimensions n = 2, 3. The present paper has the goal of answering these ques-
tions for 3+1-dimensional2 Wave Maps with target H2, the hyperbolic plane. This
target appears quite natural, as it occurs in the context of General Relativity, and
is the natural counterpoint to Wave Maps with target S2. As already observed in
[9], and exploited in [11], Wave Maps with target H2 enjoy the remarkable prop-
erty that the derivative components in the Coulomb Gauge satisfy an autonomous
first order div-curl system, which no longer involves the local coordinate functions.

1Throughout this paper, the Einstein summation convention is in force. This means that we
sum over repeated raised and lowered indices.

2Our argument can obviously be modified to also handle the higher dimensional cases n ≥
4. Indeed, the argument becomes much simpler then, since one has stronger estimates for the
nonlinearity.
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This allows one to conveniently disentangle the global behavior of these derivative
components from the global behavior of the actual coordinate functions, and to
pass from the former to the latter. The main result of this paper is the following

Theorem 1.1. Let u : R3+1 −→ H2 be a Wave Map with smooth compactly
supported3 initial data satisfying the smallness condition (suitably interpreted as
explained below) ||u[0]||

Ḣ
3
2 ×Ḣ

1
2
< ε for a sufficiently small ε > 0. In particular, the

Wave Map exists globally in time and is smooth. Then denoting u(0, x) = u∞ ∈ H
for |x| large enough, we have

||u(t, x) − u∞||L∞
x

. t−δ

for |t| >> 1 and δ > 0 some universal constant. Here the implied constant depends
on weighted norms of the the initial data (which, however, need not be small).

Furthermore, there exist (f, g) ∈ Ḣ
3
2 × Ḣ

1
2 such that

u(t, x) = S(t)(f, g) + o
Ḣ

3
2
(1)

where S(t) denotes the free wave propagator.

Remark 1.2. The critical case n = 2 appears much more technically involved,
although the same strategy should work in principle, see the estimates in [11].
Furthermore, a similar method should in principle work for more general targets,
although the fact that one can no longer formulate an autonomous system of wave
equations for the derivative components (they now also depend on the local coor-
dinates) introduces additional technical difficulties.

2. Wave Maps with target H2: the basic setup

We use the setup in [11] : identify H2 = {(x,y)|y ≥ 0} equipped with metric

dg = dx2+dy2

y2 . Then introduce the derivative components φ1
α = ∂αx

y
, φ2

α = ∂αy

y
,

α = 0, 1, 2, 3. Further, introduce the derivative components in the Coulomb Gauge
in complex notation

ψα = ψ1
α + iψ2

α = (φ1
α + iφ2

α)e−i4
−1 P3

j=1 ∂jφ
1
j

We recall that we then obtain the following divergence curl system

(2.1) ∂αψβ−∂βψα = iψβ4−1
3∑

j=1

∂j(ψ
1
αψ

2
j−ψ2

αψ
1
j )−iψα4−1

3∑

j=1

∂j(ψ
1
βψ

2
j−ψ2

βψ
1
j )

(2.2) ∂νψν = iψν4−1
3∑

j=1

∂j(ψ
1
νψ

2
j − ψ2

νψ
1
j )

3This means that u(0, x) = u∞ is a fixed point for |x| sufficiently large, as well as ∂tu(0, x) =
0. One may weaken this condition to sufficiently fast decay at infinity.
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From here one infers the wave equations

2ψα =i∂β [ψα4−1
3∑

j=1

∂j(ψ
1
βψ

2
j − ψ2

βψ
1
j )]

− i∂β[ψβ4−1
3∑

j=1

∂j(ψ
1
αψ

2
j − ψ2

αψ
1
j )]

+ i∂α[ψν4−1
3∑

j=1

∂j(ψ
1νψ2

j − ψ2νψ1
j )]

(2.3)

Schematically speaking, the terms on the right are of the form ∇x,t[ψ∇−1[ψ2]]. In
dimensions n = 2, 3, the right hand side of (2.3) is not amenable to estimates as
is, and as in [11], we need to exploit the underlying divergence-curl structure to
decompose it into a null-form plus a better error term. For this, we split

(2.4) ψα = Rαψ + χα, α = 0, 1, 2, 3,

where we impose the vanishing divergence condition
∑3

j=1 ∂jχj = 0. Here, the

symbols Rα = ∇−1∂α with ∇̂−1f(ξ) = |ξ|−1f̂(ξ) denote Riesz type operators. The
χα can then be obtained as solutions of an elliptic divergence curl system, and are
schematically of the form

χα = ∇−1[ψ∇−1(ψ2)]

If we now insert the splitting (2.4) into (2.3), we can replace the right hand side by

2ψα =i∂β[Rαψ4−1
3∑

j=1

∂j(Rβψ
1Rjψ

2 −Rβψ
2Rjψ

1)]

− i∂β[Rβψ4−1
3∑

j=1

∂j(Rαψ
1Rjψ

2 −Rαψ
2Rjψ

1)]

+ i∂α[Rνψ4−1
3∑

j=1

∂j(R
νψ1Rjψ

2 −Rνψ2Rjψ
1)]

+ ∇x,t[∇−1[ψ∇−1(ψ2)]∇−1(ψ2)] + ∇x,t[ψ∇−1[∇−1[ψ∇−1(ψ2)]ψ]]

+ ∇x,t[ψ∇−1[∇−1[ψ∇−1(ψ2)]∇−1[ψ∇−1(ψ2)]]]

(2.5)

Here the last three expressions are of course recorded schematically, with each ∇−1

denoting operators of the form
∑3

k=1 4−1∂k. It is this complicated system of wave
equations which shall be at the heart of our analysis, similarly to [11].
Recall that the basic paradigm for establishing scattering for a wave equation of
the form

2u = F (u,∇u)
is to establish lim|t|→∞

∫ ∞
t
U(t − s)F (u,∇u)(s)ds = 0 in the underlying Sobolev

space Ḣs (which is dictated by scaling reasons, for example). This follows by

establishing L1
t Ḣ

s-bounds on the source F (u,∇u). For our system (2.3), such
estimates are not available in dimensions n = 2, 3.
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2.1. The method to obtain scattering for the ψα. Fixing a large dyadic
time interval Il := [−2l+2, 2l+2], l >> 1, we shall split the components ψα into two
parts ψα = ψα,1 +ψα,2. Here ψα,1 approximates the moderate-frequency part of ψα
(where ’moderate’ is in relation to the scale 2l), while ψα,2 approximates the very
large/small frequency part of ψα,2. While ψα,2 will turn out to be small since the
extreme frequencies of ψα carry only little energy, ψα,1 will be shown to be small
(albeit in a different sense) since we shall be able to apply commutating vector
fields to it. Thus the simple basic premise of the present approach is to split ψα
into a moderate frequency part, obtained by filtering out the extreme frequencies in
the nonlinearity, which is basically amenable to classical commutating vector field
methods (although of course ψα,1 is not small with respect to the weighted norms),
as well as an error term which accounts for the remaining errors due to extreme
frequencies. Scattering of ψα will then follow by splitting the right hand side of
(2.3) into two parts, upon writing ψα = ψα,1 + ψα,2. Indeed, crudely denoting the
right hand side of (2.3) as F (ψ) (it being understood that it is not a locally defined
function evaluated at ψ), we can decompose

F (ψα) =
∑

l

χt∼2l [F (ψα,1) + error],

where the splitting ψα = ψα,1+ψα,2 is the one on the interval [−2l+2, 2l+2]. We shall
then show that ψα,1 can be placed into L2

tL
∞
x , which allows us to estimate F (ψα,1)

in L1
1Ḣ

− 1
2 , while the error is exponentially decaying in l (but with respect to a more

complicated norm!). This shall then imply scattering for ψα, as well as pointwise
decay. The latter facts allow one to retrace the steps from local coordinates to the
ψα to obtain decay and scattering for the coordinates (x,y).

2.2. Tools from harmonic analysis. In order to precisely define ψα,1, we
introduce the Littlewood-Paley localizers Pk, k ∈ Z, as well as the space-time local-
izersQk, as follows: choose a function φ ∈ C∞

0 (R+) with the property
∑
j∈Z

φ( x2j ) =

1, x > 0. See e.g. [20]. The we define Pk, Qk via

P̂kf(ξ) = φ(
ξ

2k
)f̂(ξ), Q̃kf(τ, ξ) = φ(

∣∣|τ | − |ξ|
∣∣

2k
)f̃(τ, ξ)

Here ˆ denotes the spatial Fourier transform f̂(ξ) =
∫

R3 f(x)e−2πix·ξdx, while we

denote the space-time Fourier transform by f̃(τ, ξ) =
∫

R3+1 f(t, x)e−2πi(tτ+x·ξ)dtdx.
We can then also introduce the operators

P<l =
∑

k<l

Pk , P[a,b] =
∑

k∈[a,b]

Pk, etc

Further, let F (ψ) denote any of the multilinear expressions on the right hand side
of (2.3). Then introduce the operator P[−δl,δl], which acts by restricting the fre-
quencies and modulations (i. e. the distance of the space-time Fourier support to
the light cone, measured by

∣∣|τ | − |ξ|
∣∣) of all the inputs, as follows:

Definition: the function P[−δl,δl]F (ψ) is obtained from F (ψ) by
(i) replacing the ith input ψ by Pki

Q<ki+δlψ, and summing over ki ∈ [−δl, δl] for
each i.
(ii) replacing the ith operator 4−1∂j by Pri

4−1∂j and summing over ri ∈ [−δl, δl]
for each i.
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(iii) Applying an operator PkQ<k+δl to the output and summing over k ∈ [−δl, δl].

Example: the trilinear expression

i∂β[ψα4−1
3∑

j=1

∂j(ψ
1
βψ

2
j − ψ2

βψ
1
j )]

is replaced by

P[−δl,δl]
[
i∂β[ψα4−1

3∑

j=1

∂j(ψ
1
βψ

2
j − ψ2

βψ
1
j )]

]

=
∑

k,k1,2,3 ,r∈[−δl,δl]
PkQ<k+δl[i∂

β[Pk1Q<k1+δlψα4−1Pr

3∑

j=1

∂j(Pk2Q<k2+δlψ
1
βPk3Q<k3+δlψ

2
j

− Pk3Q<k3+δlψ
2
βPk2Q<k2+δlψ

1
j )]

2.3. Definition of ψα,1, ψα,2 on some interval [−2l+2, 2l+2]. We can now
define the equation which defines ψα,1, as follows:

2ψα,1 =P[−δl,δl]
[
i∂β[Rαψ14−1

3∑

j=1

∂j(Rβψ
1
1Rjψ

2
1 −Rβψ

2
1Rjψ

1
1)]

− i∂β[Rβψ14−1
3∑

j=1

∂j(Rαψ
1
1Rjψ

2
1 −Rαψ

2
1Rjψ

1
1)]

+ i∂α[Rνψ14−1
3∑

j=1

∂j(R
νψ1

1Rjψ
2
1 −Rνψ2

1Rjψ
1
1)]

+ ∇x,t[∇−1[ψ1∇−1(ψ2
1)]∇−1(ψ2

1)] + ∇x,t[ψ1∇−1[∇−1[ψ1∇−1(ψ2
1)]ψ1]]

+ ∇x,t[ψ1∇−1[∇−1[ψ1∇−1(ψ2
1)]∇−1[ψ1∇−1(ψ2

1)]]]
]
,

ψα,1[0] = ψα[0] := (ψα(0), ∂tψα(0))

(2.6)

Here we use as before ψ1 = −∑3
j=1 Rjψj,1 for the first three trilinear terms on the

right. For the schematic higher order terms, it is understood that ψα is replaced
by ψα,1 ∀α.

We immediately observe that this is not a standard wave equation, since it
involves nonlocal operators in its source term, even in the space-time sense. Thus
it certainly does not satisfy Huyghen’s principle! Nevertheless, we shall be able
to construct solutions on some interval [−T, T ] which contains [−2l+2, 2l+2] and
also matches the initial data, via Banach iteration in a suitable space. Indeed, the
solution will be smooth. We note here that this iteration is qualitatively different
than the procedure used in [11]. There the equation (2.3) is only used to deduce a
priori estimates, while the local existence of a solution is ensured by the classical
local existence theory in local coordinates. For the problem (2.6), such a step is
not possible, since it is not a geometrically motivated problem. Thus the existence
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of local solutions needs to be demonstrated from scratch via iteration.
We can now also define ψα,2 via

ψα,2 = ψα − ψα,1

2.4. Analytical preliminaries. Here we recall the functional framework un-
derpinning [26], [24], [11], in Tao’s formulation. We shall use the following homo-
geneous Xs,θ-type norm:

||ψ||Ẋp,q,r

k
:= 2kp(

∑

j∈Z

[2qj ||Qjψ||L2
tL

2
x
]r)

1
r ,

provided r < ∞, as well as the obvious modification when r = ∞. In order to
estimate the frequency localized components of ψα, we have the family of norms
||.||S[k], k ∈ Z, defined as follows: let

||ψ||S[k] :=||∇x,tψ||
L∞

t Ḣ− 1
2

+ ||∇x,tψ||
Ẋ

− 1
2

, 1
2

,∞
k

+

sup
l<−10

(
∑

κ∈Kl

||Pk,±κQ±
<k+2lψ||2S[k,±κ])

1
2

Here we have chosen for each integer l < −10 a finitely overlapping cover Kl (with
the overlapping being uniform in l) of caps κ of size ∼ 2l of the sphere S2. The
superscript ± in Q±

<k+2l indicates that we further localize (sharply) to the upper
or lower half-space ±τ > 0, repsectively, and finally, the norms ||.||S[k,κ] are defined
as follows: first, let

||ψ||NFA[κ]∗ := supω/∈2κdist(ω, κ)||ψ||L∞
tω
L2

xω

where ω ranges over S2 and we use the null-coordinates

tω := (t, x) · 1√
2
(1, ω), xω = (t, x) − tω

1√
2
(1, ω)

We then also have the dual norm, i. e.

||ψ||NFA[κ] := inf
R

ω∈S2 ψω=ψ

∫

ω/∈2κ

1

dist(ω, κ)
||ψω||L1

tω
L2

xω

Further, we introduce

||ψ||PW [κ] := inf
R

ω∈κ
ψω=ψ

∫

ω∈κ
||ψω||L2

tω
L∞

xω

Then we put

||ψ||S[k,κ] := 2
k
2 ||ψ||NFA[κ]∗ + |κ|− 1

2 2−
k
2 ||ψ||PW [κ] + 2

k
2 ||ψ||L∞

t L2
x

Further, the frequency localized components of the source term, i. e. the right
hand side of (2.3) etc, shall be evaluated with respect to the following norm:

||ψ||N [k] := inf
ψ1+ψ2+ψ3+ψ4=PkQ<k+10ψ

||ψ1||
L1

t Ḣ
− 1

2
+ ||ψ2||

Ẋ− 1
2

,− 1
2

,1

+ inf
P

l ψ3l=ψ3

( inf
P′

κ∈Kl
ψκ=ψ3l

∑

κ∈Kl

||ψκ||2NFA[κ])
1
2

+ ||PkQ>k+10ψ||
Ẋ− 1

2
,− 1

2
,∞∩2|∇x,t|−1L∞

t L
− 1

2
x

Here in the last term but one upon fixing l < −10 we only consider those ψκ with
Fourier satisfying

∣∣|τ | − |ξ|
∣∣ ≤ 2k−2l−100, 2k−4 ≤ |ξ| ≤ 2k+4, Θ := ξ

|ξ|
τ
|τ | ∈ 1

2κ. We
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note that the norm ||.||N [k] we use here is slightly different than the one in [11], as
the elliptic portion PkQ>k+10ψ is estimate with a weaker norm, namely

||PkQ>k+10ψ||
Ẋ

− 1
2

,− 1
2

,∞
k

+ ||∇x,t2
−1PkQ>k+10ψ||

L∞
t Ḣ

− 1
2

x

This change barely affects the estimates, though.
Finally, we need time localized versions of these norms: for T > 0, we introduce

||ψ||N [k]([−T,T ]×R3) := inf
f∈S(R3+1)

∣∣f |[−T,T ]×R3=ψ|[−T,T ]×R3

||f ||N [k]

and similarly for ||.||N [k]([−T,T ]×R3) etc.

2.5. Some geometric preliminaries. Here we quickly recall the infinitesi-
mal generators of the Poincare group on R3+1, namely the vector fields Γ which are
given by ∂t, ∂xi

, i = 1, 2, 3 (translations), t∂t +
∑3
i=1 xi∂xi

(scaling), xi∂xj
− xj∂xi

,
i, j,= 1, 2, 3 (rotations), t∂xi

+ xi∂t, i = 1, 2, 3 (Lorentz boosts). We shall denote
these by Γα where α = 1, 2, . . . , 11 for some ordering. We shall denote products of
these by Γα1Γα2 =: Γ(α1,α2). In particular, the notation Γβ , |β| = 2, refers to a
product of two such vector fields (as an operator, with β a pair of indices, hence
of length two), while Γβ, |β| = 1, refers to a single such vector field. We recall that
we then have the relations

[2,Γβ ] = cβ2, |β| = 1

[2,Γβ] = cβγΓ
γ
2 + dβ2, |β| = 2, |γ| = 1

2.6. The core estimates. With the above setup, we can now formulate

Proposition 2.1. Make the same assumptions as in Theorem 1.1. Specifically,
we assume that the coordinate functions at time zero (x,y)(0, x) : R3 −→ (R×R+),
(∂tx, ∂ty)(0, x) : R3 −→ (R × R) satisfy the condition

∫

R3

[(|∇xx|
y

)2 + (
|∇xx|

y
)2]dx+

∫

R3

[(
∂tx

y
)2 + (

∂tx

y
)2]dx < ε

for sufficiently small ε > 0. Further, fix a time scale 2l, l >> 1. Then there exists a
smooth solution ψα,1 solving (2.6) on [−2l+2, 2l+2]. Further, the following estimates
hold: Introducing the families of numbers

ck :=
∑

0≤|β|≤3

(
∑

l∈Z

2−σ|k−l|||PlΓβψ[0]||2
Ḣ

1
2 ×Ḣ− 1

2
)

1
2 ,

dk :=
∑

l∈Z

2−σ|l−k|||Plψ[0]||2
Ḣ

1
2 ×Ḣ− 1

2
)

1
2

for a sufficiently small σ > 0, we have
∑

0≤|β|≤2

||PkΓβψα,1||S[k] . 2Cδlck

for some fixed C. We also have

||Pkψα,1||S[k] . dk

Proposition 2.2. Under the same assumptions as in the previous Proposition,
we have

||Pkψα,2||S[k] . min{dk, 2µmax{k−δl,−k−δl}dk} := ek

for a sufficiently small µ > 0.
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These Propositions will follow essentially from estimates established in [9],
[10], as well as some elementary observations concerning commutators of the Γβ

and Fourier localizers. They will be deferred to the end of the paper. In a similar
vein, we have the following

Proposition 2.3. Let F (ψ) denote the right hand side of (2.3). Then for
T ∼ 2l we have

||Pk(1 −P[−δl,δl])F (ψ)||N [k]([−T,T ]×R3) . ek

where ek is as in Proposition 2.2. The same estimate applies if we replace ψ by ψ1

(i. e. we replace each ψα by ψα,1). Also, without any further localization, we have

||PkF (ψ1, ψ2)||N [k]([−T,T ]×R3) . ek

where F (ψ1, ψ2) is any of the multilinear expressions on the right hand side of (2.3)
with at least one factor ψα,ν,β replaced by ψα,ν,β,2.

Remark 2.4. The numbers dk, ek form frequency envelopes, a notation bor-
rowed from [23]. A frequency envelope is a sequence {ck}k∈Z of non-negative
numbers such that for some σ > 0 we have

2−σ|k−l|cl ≤ ck ≤ 2σ|k−l|cl

for each k, l.

3. Deducing asymptotic decay and scattering from the core estimates

Assuming the above Propositions, we now deduce asymptotic decay for the
ψα,1, ψα,2, as well as scattering for ψα. Combining these ingredients, we then
obtain Theorem 1.1. We commence with the following crucial

Lemma 3.1. Let ψα,1 be as above, and assume t ∈ [−2l+2, 2l+2] satisfies t ∼ 2l.
Then we have

|ψα,1(t, x)| . 2Cδl−
2
3 l

In particular, if we choose δ small enough, we can achieve |ψα,1(t, x)| . 2−
7l
12 .

Proof. (Lemma 3.1) This is a consequence of the Klainerman-Sobolev in-
equalities: recall (see e. g. [22]) that we have

|ψα,1(t, x)| . (1 + |t| + |x|)−1(1 +
∣∣|t| − |x|

∣∣)− 1
2

∑

|β|≤2

||Γβψα,1||L2
x

Assume first that |x| & 2l. Using a smooth cutoff function χ∣∣|t|−|x|
∣∣∼2s

, we localize

this to

|χ|x|&2lχ∣∣|t|−|x|
∣∣∼2s

ψα,1(t, x)| . (1 + |t| + |x|)−1(1 +
∣∣|t| − |x|

∣∣)− 1
2

×
∑

|β|≤2

||Γβ [χ|x|&2lχ∣∣|t|−|x|
∣∣∼2s

ψα,1]||L2
x

for s = 1, 2, 3, . . .. It is straightforward to verify that the expressions

Γβ[χ|x|&2lχ∣∣|t|−|x|
∣∣∼2s

], |β| ≤ 2,
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are uniformly bounded for |x| & 2l. Now we distinguish between the cases 2s >>
|t| ∼ 2l, 2s . |t| ∼ 2l. In the former, we have using Proposition 2.1 as well as the
Sobolev embedding and Holder’s inequality

||Γβ [χ|x|&2lχ∣∣|t|−|x|
∣∣∼2s

ψα,1]||L2
x

. ||Γβ [χ|x|&2lχ∣∣|t|−|x|
∣∣∼2s

ψα,1]||
Ḣ

1
2

x

||χ∣∣|t|−|x|
∣∣∼2s

χ|t|∼2l ||L6
x

. 2Cδl2
s
2 ,

whence we obtain

|χ∣∣|t|−|x|
∣∣∼2s

ψα,1(t, x)| . 2Cδl2−s, |x| & 2l

Summing over 2s >> 2l yields the bound . 2Cδl2−l, which better than what we
need. Next, assuming 2s . 2l and arguing in the same way, we get the bound

||Γβ[χ|x|&2lχ∣∣|t|−|x|
∣∣∼2s

ψα,1]||L2
x

. 2Cδl[22l2s]
1
6 2−

s
2 2−l . 2−

s
3 2Cδl−

2
3 l

Summing over s ≥ 1 yields the desired estimate in this range. Finally, if |x| << 2l,
apply the above reasoning to ||Γβ [χ|x|<<2lψα,1]||L2

x
. �

Corollary 3.2. Under the assumptions of the preceding lemma, we have the
estimate

||χ|t|∼2lψα,1||L2
tL

∞
x

. 2−
l
12 ,

provided δ > 0 is chosen small enough.

We can now prove

Proposition 3.3. Under the assumptions of Theorem 1.1 and using the pre-

ceding terminology, there exists (ψ̃α1, ψ̃α2) ∈ Ḣ
1
2
x × Ḣ

− 1
2

x with the property

lim
|t|→∞

||ψα(t, .) − S(t)(ψ̃α1, ψ̃α2)||
Ḣ

1
2

= 0, ∀α

Remark 3.4. The proof actually shows that the convergence occurs at rate
|t|−ν for small enough ν > 0.

Proof. (Proposition 3.3) We decompose ψα = ψα,1 +ψα,2 for some fixed time
scale 2l, viz. preceding discussion. Accordingly, denoting the right hand side of
(2.3) as F (ψ), we write it as F (ψ1 + ψ2). Exploiting multilinearity, we write it as

F (ψ) = F (ψ1) + error,

where error is a sum of multilinear expressions each of which contains at least one
power of ψα,2 (for some α). Then we further decompose

F (ψ) = P[−δl,δl]F (ψ1) + (1 −P[−δl,δl])F (ψ1) + error

Finally, we time localize , i. e. write
(3.1)

F (ψ) =
∑

l≥1

φ(
t

2l
)F (ψ) =

∑

l≥1

φ(
t

2l
)[P[−δl,δl]F (ψ1) + (1 −P[−δl,δl])F (ψ1) + error]

where ψ1, ψ2 in each decomposition of course depends on l. Now the frequency
localizations implied in P[−δl,δl]F (ψ1), together with lemma 3.1 easily imply

||φ(
t

2l
)P[−δl,δl]F (ψ1)||

L1
t Ḣ

− 1
2

. 2−
l
12 ,
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provided we choose δ > 0 small enough. Further, on account of Proposition 2.3, we
obtain

||Pk(1 −P[−δl,δl])F (ψ1)||N [k]([−T,T ]×R3) + ||Pkerror||N [k]([−T,T ]×R3) . ek

Note that error is of the form F (ψ1, ψ2) as in Proposition 2.3. Further, due to a
lemma in [24], we also have the same estimates for Pkφ( t

2l )(1−P[−δl,δl])F (ψ1) etc.
Now fix some T0 >> 1 as well as T >> T0 and write

ψα(t, .) = S(t)(ψα[0]) +

∫ t

0

η+
T (t− s)U(t− s)F (ψ)(s)ds

where t ∈ [T0, 2T0]. Here η+
T (t) vanishes for t < 0, equals 1 on [0, T ], and is

compactly supported and smooth on (0,∞]. For example, upon choosing such a
η+
1 (t), one can set η+

T (t) = η+
1 ( tT ). Then decompose

∫ t

0

η+
T (t− s)U(t− s)F (ψ)(s)ds =

∫ T0

0

η+
T (t− s)U(t− s)F (ψ)(s)ds

+

∫ t

T0

η+
T (t− s)U(t− s)F (ψ)(s)ds

We need to show (A) that

lim
T0→∞

∫ T0

0

η+
T (t− s)U(t− s)F (ψ)(s)ds = S(t)(ψ̃α1, ψ̃α2)

in the Ḣ
1
2 -sense for suitable (ψ̃α1, ψ̃α2) ∈ Ḣ

1
2 × Ḣ− 1

2 , as well as (B)

lim
T0→∞

||
∫ t

T0

η+
T (t− s)U(t− s)F (ψ)(s)ds||

Ḣ
1
2

= 0

Use that U(t − s) =
√
−4−1

sin(
√
−4(t − s)) =

√
−4−1 ei(t−s)

√−4−e−i(t−s)
√−4

2i .
Hence it suffices to consider

∫ T0

0

η+
T (t− s)

√
−4−1

e±i(t−s)
√−4F (ψ)(s)ds

=
√
−4−1

e±it
√
−4

∫ T0

0

e∓is
√
−4F (ψ)(s)ds

Here we use that η+
T (t− s) = 1 for t ∈ [T0, 2T0], 0 ≤ s ≤ t, since T >> T0. We will

show that the limit

lim
T0→∞

∫ T0

0

e∓is
√
−4F (ψ)(s)ds

exists in Ḣ− 1
2 , from which (A) follows. Consider

∫ T ′
0

T0

e∓is
√
−4F (ψ)(s)ds =

∑

2l&T0

∫ T ′
0

T0

φ(
s

2l
)e∓is

√
−4F (ψ)(s)ds

Then note that

||
∫ T ′

0

T0

φ(
s

2l
)e∓is

√
−4F (ψ)(s)ds||

Ḣ− 1
2

= sup
||g||

Ḣ
1
2

=1

〈
∫ T ′

0

T0

φ(
s

2l
)e∓is

√
−4F (ψ)(s)ds, g〉
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Now, using (3.1), we get

|〈
∫ T ′

0

T0

φ(
s

2l
)e∓is

√
−4P[−δl,δl]F (ψ1)(s)ds, g〉| . 2−

l
12 . T

− 1
12

0

Further, write

〈
∫ T ′

0

T0

φ(
s

2l
)e∓is

√
−4(1 −P[−δl,δl])F (ψ1)(s)ds, g〉

=
∑

k

∫ ∞

−∞

∫

R3

φ(
s

2l
)Pk(1 −P[−δl,δl])F (ψ1)(s, x)e

±is
√
−4P̃kg(x)dxds

Here P̃k is a multiplier like Pk but satisfying P̃kPk = Pk. Then use that [24]

||φ( s2l )e
±is

√
−4P̃kg||S[k] . ||g||

Ḣ
1
2
, as well as | < PkF, ψ > | . ||F ||N [k]||ψ||S[k].

Using Cauchy-Schwarz, we conclude that

|〈
∫ T ′

0

T0

φ(
s

2l
)e∓is

√
−4(1 −P[−δl,δl])F (ψ1)(s)ds, g〉|

.
∑

k∈Z

||Pkφ(
s

2l
)(1 −P[−δl,δl])F (ψ1)(s)||N [k]||P̃kg||Ḣ 1

2
. (

∑

k∈Z

e2k)
1
2 . 2−νl . T−ν

0

for suitable ν > 0. Of course the same argument applies to the contribution of error
in (3.1), whence summing over l with 2l ∼ T0 and letting T0 → ∞, we obtain (A),

i. e. the Ḣ
1
2 convergence of

∫ T0

0
e∓is

√
−4F (ψ)(s)ds. The argument for establishing

(B), i. e.

lim
T0→∞

||
∫ t

T0

η+
T (t− s)U(t− s)F (ψ)(s)ds||

Ḣ
1
2

= 0,

is no different, using Theorem 4.4 as well as the fact (see e. g. [24]) that

||
∫ t

T0

η+
T (t− s)U(t− s)F (ψ)(s)ds||S[k]([−T,T ]×R3) . ||F (ψ)||N [k]([−T,T ]×R3),

and applying the same reasoning to the term ”error”, the proof of Proposition 3.3
is complete. �

We now show how to deduce scattering of the original derivative components
from Proposition 3.3. We have

Proposition 3.5. Under the assumptions of the preceding Proposition, we have

lim
|t|→∞

||φα − S(t)(ψ̃α1, ψ̃α2)||
Ḣ

1
2

= 0

Furthermore, there exist pairs (f1, g1) ∈ Ḣ
3
2 × Ḣ

1
2 , (f2, g2) ∈ Ḣ

3
2 × Ḣ

1
2 , such that

lim
|t|→∞

||x(t, .) − S(t)(f1, g1)||
Ḣ

3
2

= 0, lim
|t|→∞

||y(t, .) − S(t)(f2, g2)||
Ḣ

3
2

= 0

Proof. (Proposition 3.5). Recall that φα = ψαe
i4−1 P3

j=1 ∂jφ
1
j . We shall need

the following

Lemma 3.6. We have

||Pkei4
−1 P3

j=1 ∂jφ
1
j ||
Ḣ

3
2

+ ||Pkφα||
Ḣ

1
2

. dk
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Proof. (Lemma 3.6) Expand

Pk[e
i4−1 P3

j=1 ∂jφ
1
j ||
Ḣ

3
2
]

= Pk

3∑

l=1

∂l4−1[P<k−5(

3∑

j=1

4−1∂l∂jφ
1
j )P[k−2,k+2]e

i4−1 P3
j=1 ∂jφ

1
j ||
Ḣ

3
2

+ Pk

3∑

l=1

∂l4−1[P[k−5,k+5](

3∑

j=1

4−1∂l∂jφ
1
j )P<k+10e

i4−1 P3
j=1 ∂jφ

1
j ||
Ḣ

3
2
]

+ Pk

3∑

l=1

∂l4−1[P>k+5(

3∑

j=1

4−1∂l∂jφ
1
j )P>k+2e

i4−1 P3
j=1 ∂jφ

1
j ||
Ḣ

3
2
]

Similarly, we have the identity

Pkφα =Pk[P<k−5ψαP[k−2,k+2]e
i4−1 P3

j=1 ∂jφ
1
j ]

+ Pk[P[k−5,k+5]ψαP<k+10e
i4−1 P3

j=1 ∂jφ
1
j ]

+ Pk[P>k+5ψαP>k+2e
i4−1 P3

j=1 ∂jφ
1
j ]

We infer from the first identity above that

||Pk[ei4
−1 P3

j=1 ∂jφ
1
j ||
Ḣ

3
2

.||P[k−2,k+2]e
i4−1 P3

j=1 ∂jφ
1
j ||
Ḣ

3
2

max
j

{||φ1
j ||Ḣ 1

2
}

+ ||Pk−5,k+5φ
1
j ||Ḣ 1

2
+

∑

l>k+5

2
k−l
2 ||Plφ1

j ||Ḣ 1
2

Further, from the 2nd equality above we infer

||Pkφα||
Ḣ

1
2

.||P[k−2,k+2]e
i4−1 P3

j=1 ∂jφ
1
j ||
Ḣ

3
2
||P<k−5ψα||

Ḣ
1
2

+ ||P[k−5,k+5]ψα||Ḣ 1
2

+
∑

l>k+5

2
k−l
2 ||Plψα||

Ḣ
1
2

Substituting the latter inequality into the former, we obtain

||Pk[ei4
−1 P3

j=1 ∂jφ
1
j ]||

Ḣ
3
2

.||P[k−2,k+2]e
i4−1 P3

j=1 ∂jφ
1
j ||
Ḣ

3
2

max
j

{||φ1
j ||Ḣ 1

2
}

+ ||P[k−7,k+7]e
i4−1 P3

j=1 ∂jφ
1
j ||
Ḣ

3
2
||P<kψα||

Ḣ
1
2

+ ||P[k−10,k+10]ψα||Ḣ 1
2

+
∑

l>k

2
k−l
2 ||Plψα||

Ḣ
1
2

+
∑

l>k

2
k−l
2 ||Plψj ||

Ḣ
1
2

Using the definition of dk, this implies

||Pk[ei4
−1 P3

j=1 ∂jφ
1
j ]||

Ḣ
3
2

. ε||P[k−7,k+7][e
i4−1 P3

j=1 ∂jφ
1
j ]||

Ḣ
3
2

+ dk

Iterating and choosing ε small enough, we obtain the desired bound

||Pk [ei4
−1 P3

j=1 ∂jφ
1
j ]||

Ḣ
3
2

. dk,

which in conjunction with the above easily implies ||Pkφα||L2
x

. dk. �
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Returning to the proof of the Proposition, fix a time scale |t| ∼ 2l, l >> 1, and
correspondingly decompose ψα = ψα,1 +ψα,2. Then we can write φα = φα,1 + φα,2
with

φα,1 = ψα,1e
i4−1 P3

j=1 ∂jφ
1
j , φα,2 = ψα,2e

i4−1 P3
j=1 ∂jφ

1
j

Using reasoning as above, it is then clear that

||φα,1||L∞
x

. 2−
7
12 l, ||φα,2||

Ḣ
1
2

. 2−νl,

for some ν > 0. Indeed, we can strengthen the latter to ||φα,2||
Ḃ

1
2

,1 . 2−νl and

similarly ||P[−νl,νl]cφα,1||Ḃ 1
2

,1 . 2−ν
′l for some ν′ > 0. By splitting

4−1
3∑

j=1

∂jφ
1
j = 4−1

3∑

j=1

P[−νl,νl]∂jφ
1
j + 4−1

3∑

j=1

P[−νl,νl]c∂jφ
1
j ,

and using the decomposition φ1
j = φ1

j1 + φ1
j2 from above, we then deduce

||4−1
3∑

j=1

∂jφ
1
j (t, .)||L∞

x
. 2−ν

′l, |t| ∼ 2l

for some ν′ > 0. Now write

φα − S(t)(ψ̃α1, ψ̃α2) = (ei4
−1 P3

j=1 ∂jφ
1
j − 1)ψα + ψα − S(t)(ψ̃α1, ψ̃α2)

We need to show that the first expression on the right converges to zero as t→ ∞,

with respect to Ḣ
1
2 . Once again decompose

Pk[(e
i4−1 P3

j=1 ∂jφ
1
j − 1)ψα] =Pk[P[k−10,k+10](e

i4−1 P3
j=1 ∂jφ

1
j − 1)P<k−5ψα]

+ Pk [P<k+10(e
i4−1 P3

j=1 ∂jφ
1
j − 1)P[k−5,k+5]ψα]

+ Pk [P>k+2(e
i4−1 P3

j=1 ∂jφ
1
j − 1)P>k+5ψα]

For the first term on the right, we can bound

||Pk [P[k−10,k+10](e
i4−1 P3

j=1 ∂jφ
1
j − 1)P<k−5ψα]||

Ḣ
1
2

. ||P[k−10,k+10](e
i4−1 P3

j=1 ∂jφ
1
j − 1)||

Ḣ
3
2
||P<k−5ψα||

Ḣ
1
2

Thus, using Lemma 3.6, if we restrict to |k| > νl, we obtain exponential decay in
l. Hence we can restrict to |k| < νl. Then use the splitting ψα = ψα,1 + ψα,2 and
estimate

||Pk[P[k−10,k+10](e
i4−1 P3

j=1 ∂jφ
1
j − 1)P<k−5ψα,1]||

Ḣ
1
2

. ||P[k−10,k+10](e
i4−1 P3

j=1 ∂jφ
1
j − 1)||

Ḣ
3
2
2−k||ψα,1||L∞

x
. 2νl−

7
12 l2−kdk

Choosing ν > 0 small enough and summing over |k| < νl still results in exponential
decay in l. Further, we have

||Pk[P[k−10,k+10](e
i4−1 P3

j=1 ∂jφ
1
j − 1)P<k−5ψα,2]||

Ḣ
1
2

. ||P[k−10,k+10](e
i4−1 P3

j=1 ∂jφ
1
j − 1)||

Ḣ
3
2
2−k||P<k−5ψα,2||L∞

x
. ek,

where in the last step we have used Bernstein’s inequality and the Sobolev embed-
ding as well as the definition of ek. Square-summing over k results in an exponential
gain in l.
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Next, consider the term Pk[P<k+10(e
i4−1 P3

j=1 ∂jφ
1
j − 1)P[k−5,k+5]ψα]. Here we

obtain exponential decay from

||(ei4−1 P3
j=1 ∂jφ

1
j (t,.) − 1)||L∞

x
. 2−ν

′l, |t| ∼ 2l,

which follows from the bound on the exponent obtained further above. The term

Pk[P>k+2(e
i4−1 P3

j=1 ∂jφ
1
j − 1)P>k+5ψα] is handled similarly.

Finally, we also need to demonstrate scattering for the original coordinate func-
tions x, y. Recall that we have

log[
y

y∞
] = 4−1

3∑

j=1

∂jφ
2
j

Reasoning as above for 4−1
∑3

j=1 ∂jφ
1
j , we obtain

(3.2) lim
|t|→∞

||4−1
3∑

j=1

∂jφ
2
j (t, .)||L∞

x
= 0

with a small polynomial decay rate in t. The already proved fact that φj(t, .) =

S(t)(ψ̃α1, ψ̃α2) + o
Ḣ

1
2
(1) yields

log[
y

y∞
](t, .) = S(t)(4−1

3∑

j=1

∂jψ̃
2
j1,4−1

3∑

j=1

∂jψ̃
2
j2) + o

Ḣ
3
2
(1)

Here we of course write ψ̃α1,2 = ψ̃1
α1,2+iψ̃

2
α1,2. Further, invoking (3.2) and reasoning

as above, we obtain from here

y

y∞
(t, .) = S(t)(4−1

3∑

j=1

∂jψ̃
2
j1,4−1

3∑

j=1

∂j ψ̃
2
j2) + o

Ḣ
3
2
(1)

From the relation φ1
j =

∂jx

y
, we obtain in the same fashion that

x

y∞
= S(t)(4−1

3∑

j=1

∂jψ̃
1
j1,4−1

3∑

j=1

∂jψ̃
1
j2) + o

Ḣ
3
2
(1)

�

We further have the following

Corollary 3.7. (of preceding proof) We have the bound

||
(
(x,y) − (x∞,y∞)

)
(t, .)||L∞

x
. |t|−ν

for ν > 0 sufficiently small and large |t|. Here (x∞,y∞)
)

are the values of u(0, x)
for large |x|, i. e. the ”data at infinity”.

4. The core propositions

We now outline the proofs of Proposition 2.1, Proposition 2.2, as well as Propo-
sition 2.3. We observe that these are essentially contained in [9], [10], the only new
ingredient being the presence of the vector fields Γβ . We shall refer some details to
these papers. We begin by collecting some
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4.1. Basic facts concerning the spaces S[k], N [k]. .

Lemma 4.1. ([9])We have

||RνPkψ||Lp
tL

q
x

. 2[( 1
4− 1

p
)+( 3

4− 3
p
)]k||Pkψ||S[k], ν = 0, 1, 2, 3

provided 1
p + 1

q < 1
2 , with implicit constant possibly depending on p, q. Also, we

have

||Pkψ||S[k] . ||Pk∇x,tψ||
Ẋ

− 1
2

, 1
2

,1

k

The first part of this lemma allows us to control some Strichartz type norms.
This shall be especially handy when estimating terms of high degree of multilinear-
ity.

Lemma 4.2. (e. g. [9]) The following estimate holds for suitable δ > 0:

||PkQj [Pk1ψ1Pk2ψ2]||
Ẋ− 1

2
, 1
2

,∞ . 2δmin{j−min{k,k1,k2},0}2−|k1−k2|
∏

j=1,2

||Pkj
ψj ||S[kj ]

Furthermore, for any µ > 0 we have

||Pk[Pk1ψ1Pk2ψ2]||L2
tL

2+µ
x

. 2
µ

4µ+2k2−
|k1−k2|

2

∏

j=1,2

||Pkj
ψj ||S[kj ]

Finally, the following bound obtains4 for p > 2:

||Pk[RνPk1ψ1RjPk2ψ2 −RjPk1ψ1RνPk2ψ2]||L2
tL

p
x

. 2( 3
2− 3

p
)k2

min{k,k1,2}−max{k,k1,2}
2

∏

i=1,2

||Pki
ψi||S[ki]

Proof. (Lemma 4.2) Only the last part requires a justification, and this only
in the case k1 >> k. We decompose

Pk[RνPk1ψ1RjPk2ψ2 −RjPk1ψ1RνPk2ψ2]

= PkQ<k+20[RνPk1ψ1RjPk2ψ2 −RjPk1ψ1RνPk2ψ2]

+ PkQ≥k+20[RνPk1ψ1RjPk2ψ2 −RjPk1ψ1RνPk2ψ2]

For the first term, use a simple algebraic identity and estimate

||PkQ<k+20[RνPk1ψ1RjPk2ψ2 −RjPk1ψ1RνPk2ψ2]||L2
tL

p
x

≤ ||PkQ<k+20∂ν [∇−1Pk1ψ1RjPk2ψ2||L2
tL

p
x

+ ||PkQ<k+20∂j [RνPk1ψ1∇−1Pk2ψ2||L2
tL

p
x

. 2−k1 ||Pk1ψ1||L4
tL

2p
x
||Pk2ψ2||L4

tL
2p
x

and from here the claimed inequality follows easily. Further, we decompose

PkQ≥k+20[RνPk1ψ1RjPk2ψ2 −RjPk1ψ1RνPk2ψ2]

= PkQ≥k+20[RνPk1Q≥k+10ψ1RjPk2ψ2 −RjPk1Q≥k+10ψ1RνPk2ψ2]

+ PkQ≥k+20[RνPk1Q<k+10ψ1RjPk2Q≥k+10ψ2 −RjPk1Q<k+10ψ1RνPk2Q≥k+10ψ2]

+ PkQ≥k+20[RνPk1Q<k+10ψ1RjPk2Q<k+10ψ2 −RjPk1Q<k+10ψ1RνPk2Q<k+10ψ2]

4One can significantly strengthen this estimate and also include the case p = 2, see e. g.
[11], but we don’t need this here.
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The first two terms are estimated similarly: for example, we have

||PkQ≥k+20[RνPk1Q≥k+10ψ1RjPk2ψ2 −RjPk1Q≥k+10ψ1RνPk2ψ2]||L2
tL

2
x

. 2
3k
2 ||∇x,t∇−1Pk1Q≥k+10ψ1||L2

tL
2
x
||∇x,t∇−1Pk1Q≥k+10ψ1||L∞

t L2
x

. 2
3k
2 −k

2 −k1
∏

i=1,2

||Pki
ψi||S[ki],

and the inequality of the Lemma follows from Bernstein’s inequality. Finally, for
the last term above, upon freezing the output to modulation 2l, l ≥ k + 10 (i. e.
apply an operator Ql to the expression), use that we may assume k1 = l + O(1).
Then the inequality follows from the same calculation as at the end the of the proof
of Lemma 4.8 below, after summing over l. �

Of fundamental importance is furthermore the following

Lemma 4.3. ([24], [10])Let j ≤ min{k1, k2} + O(1). Also, let F and ψ be
Schwartz functions, the former at frequency ∼ 2k1 and modulation (distance of the
space-time Fourier support to the light cone) ∼ 2j, the latter at frequency 2k2 . Then
the following inequalities hold for suitably small δ1,2 > 0:

||Pk(Fψ)||N [k] . 2−δ1|k−max{k1,k2}|2−δ2|j−min{k1,k2}|||F ||
Ẋ

1
2

,− 1
2

,∞
k1

||ψ||S[k2]

||∇xPk(Fψ)||N [k] . 2−δ1|k−max{k1,k2}|2−δ2|j−min{k1,k2}|||F ||
Ẋ

1
2

,− 1
2

,∞
k1

||∇xψ||S[k2]

Finally, the relation between S[k] ad N [k] is obtained via the following

Theorem 4.4. The following inequality holds:

||Pkφ||S[k]([−T,T ]×R3) . ||2Pkφ||N [k]([−T,T ]×R3) + ||φ[0]||
Ḣ

1
2 ×Ḣ− 1

2

The proof of this follows from simple modifications of the one given in [24].
We now give the proof of Propositon 2.1

Proof. (Proposition 2.1). We fix a number l >> 1, and construct a solution
ψα,1 (for all α) on the time interval [−2l+2, 2l+2]. This solution is obtained via
simple Banach iteration: specifically, we require that the iterates ψα,1,j , j ≥ 1,
all be smooth functions which are supported on a compact time interval [−T ′, T ′],
T ′ >> 2l, and furthermore solve (2.6) on the interval [−2l+2, 2l+2]. The iterative
step is given by the following:

ψα,1,j+1(t, .) := ηT (t)S(t)(ψα[0]) +

∫ t

0

ηT (t− s)P[−δl,δl]F (ψ1,j)(s)ds, j ≥ 1

where T ′ >> T >> 2l. Furthermore, we start the iteration with

ψα,1,1(t, .) := ηT (t)S(t)(ψα[0])

Here ηT (t) equals 1 on [−T, T ] and smoothly truncates to a dilate of this interval,
contained within [−T ′, T ′]. Proposition 2.1 now follows from theorem 4.4 and the
following

Proposition 4.5. Assume we have the bounds

||Pkψα,1,j ||S[k]([−T,T ]×R3) ≤Mdk, ∀k ∈ Z
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Further, assume we have
∑

0≤|β|≤2

||PkΓβψα,1,j ||S[k]([−T,T ]×R3) ≤ M̃2Cδlck, ∀k ∈ Z

||Pk∇N
x ψα,1,j ||S[k]([−T,T ]×R3) ≤MNdk, ∀k ∈ Z

Here the numbers ck, dk are as in Proposition 2.1, and N ≥ 1 is arbitrary. Then,
provided M, M̃ are large enough absolute constants and ε > 0 is small enough
(again with ε as in Proposition 2.1), and MN ,MN−1 . . . are large enough constants
depending on the initial data (and N), we infer the bounds

||Pkψα,1,j+1||S[k]([−T,T ]×R3) ≤ [εM + C]dk , ∀k ∈ Z

for some C independent of M , as well as
∑

0≤|β|≤2

||PkΓβψα,1,j+1||S[k]([−T,T ]×R3) ≤ [εM̃2Cδl + C2Cδl]ck, ∀k ∈ Z

||Pk∇N
x ψα,1,j+1||S[k]([−T,T ]×R3) ≤ [εMN +MN−1]dk, ∀k ∈ Z

Furthermore, we obtain for the differences
∑

0≤|β|≤2

∑

0≤k≤N
||∇k

xΓ
βPk[ψα,1,j+1 − ψα,1,j ]||S[k]([−T,T ]×R3) ≤ CNε

j

To see how the proof of Proposition 2.1 follows from this, note that each

∇k
xΓ

βPk[ψα,1,j ] converges with respect to L∞
t Ḣ

1
2 , whence the limit is smooth and

satisfies the same bounds. �

Hence we now direct our efforts to proving Proposition 4.5. This will be
achieved via multilinear estimates much in the spirit of [9], [11], the only new
ingredient being the Γβ :

Proof. (Proposition 4.5) We shall first establish the inequality

||Pkψα,1,j+1||S[k]([−T,T ]×R3) ≤ [εM + C]dk , ∀k ∈ Z

This will follow from the energy inequality Theorem 4.4 as well as the following
two fundamental Propositions 4.6, 4.9. The first deals with estimating the trilinear
null-forms on the right hand side of (2.6), while the 2nd deals with the higher order
terms

Proposition 4.6. The following trilinear null-form estimates hold:

||Pk∂β [RαPk1ψPk44−1
3∑

j=1

∂j(RβPk2ψ2RjPk3ψ3 −RjPk2ψ2RβPk3ψ3)]||N [k]

. 2−δ1|k2−k3|2δ2[k4−max{k2,k3}]2−δ3|k−k1|
3∏

i=1

||Pki
ψi||S[ki]

||Pk∂β[RβPk1ψPk44−1
3∑

j=1

∂j(RαPk2ψ2RjPk3ψ3 −RjPk2ψ2RαPk3ψ3)]||N [k]

. 2−δ1|k2−k3|2δ2[k4−max{k2,k3}]2−δ3|k−k1|
3∏

i=1

||Pki
ψi||S[ki]
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||Pk∂α[RνPk1ψPk44−1
3∑

j=1

∂j(R
νPk2ψ2RjPk3ψ3 −RjPk2ψ2R

νPk3ψ3)]||N [k]

. 2−δ1|k2−k3|2δ2[k4−max{k2,k3}]2−δ3|k−k1|
3∏

i=1

||Pki
ψi||S[ki]

for suitable positive δ1,2,3.

Remark 4.7. We observe that these estimates are very similar to Theorem
4.2 contained in [10], and indeed essentially implicitly contained in the proofs of
[10], see also [11] in the 2-dmensional context. The only extra feature here is
an exponential gain in the difference k4 − max{k2, k3}. Our treatment shall be
correspondingly brief.

Proof. (Proposition 4.6) We shall treat the first inequality, the other two fol-
lowing from identical reasoning. By scaling invariance we may assume k = 0. We
note that the cases k4 = k2 + O(1), k1 ∈ [−10, 10]c follow from Theorem 4.2 in
[10]. Hence we now assume k2 = k3 + O(1) >> k4, k1 ∈ [−10, 10], k4 < 15. One
distinguishes between the following cases:

(1): output in elliptic regime. This is the expression

P0Q>20∂
β[RαPk1ψPk44−1

3∑

j=1

∂j(RβPk2ψ2RjPk3ψ3 −RjPk2ψ2RβPk3ψ3)]

Recalling the definition of ||.||N [0], we need to estimate this with respect to

||.||
Ẋ

− 1
2

,− 1
2

,∞
0 ∩2|∇x,t|−1L∞

t Ḣ
− 1

2
x

First, we observe easily that

||2−1|∇x,t|P0Q>20∂
β [RαPk1ψ

Pk44−1
3∑

j=1

∂j(RβPk2ψ2RjPk3ψ3 −RjPk2ψ2RβPk3ψ3)]||
L∞

t Ḣ− 1
2

. ||RαPk1ψ||L∞
t L2

x
||Pk44−1

3∑

j=1

∂j(RβPk2ψ2RjPk3ψ3 −RjPk2ψ2RβPk3ψ3)||L∞
t L∞

x

which can be bounded by . 2k4−k2
∏3
i=1 ||Pki

ψi||S[ki],which is as desired. Next,

freeze the modulation of the output to dyadic size 2l, l > 20. Then we can write
(using that k1 ∈ [−10, 10])

P0Ql∂
β[RαPk1ψPk44−1

3∑

j=1

∂j(RβPk2ψ2RjPk3ψ3 −RjPk2ψ2RβPk3ψ3)]

= P0Ql∂
β [RαPk1Q≥l−10ψPk44−1

3∑

j=1

∂j(RβPk2ψ2RjPk3ψ3 −RjPk2ψ2RβPk3ψ3)]

+ P0Ql∂
β [RαPk1Q<l−10ψ

Pk4Q>l−104−1
3∑

j=1

∂j(RβPk2ψ2RjPk3ψ3 −RjPk2ψ2RβPk3ψ3)]
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The first term on the right is estimated by

||P0Ql∂
β[RαPk1Q≥l−10ψ

Pk44−1
3∑

j=1

∂j(RβPk2ψ2RjPk3ψ3 −RjPk2ψ2RβPk3ψ3)]||
Ẋ

− 1
2

,− 1
2

,∞
0

=
∑

l1≥l−10

||P0Ql∂
β[RαPk1Ql1ψ

Pk44−1
3∑

j=1

∂j(RβPk2ψ2RjPk3ψ3 −RjPk2ψ2RβPk3ψ3)]||
Ẋ

− 1
2

,− 1
2

,∞
0

.
∑

l1>10

2
1
2 (l−l1)2k4−k2

3∏

i=1

||Pki
ψi||S[ki] . 2k4−k2

3∏

i=1

||Pki
ψi||S[ki]

For the 2nd term, we use the following

Lemma 4.8. If l >> k, then the following bound holds for suitable δ > 0:

||PkQl[RνPk1ψ1Pk2ψ2]||L2
tL

2
x

. 2
k−l
2 2δ[min{k,k1,k2}−max{k,k1,k2}]

∏

i=1,2

||Pki
ψi||S[ki]

Proof. It is very similar to that of the last part of lemma 4.2: we can write

PkQl[RνPk1ψ1Pk2ψ2] =

PkQl[RνPk1Q≥l−10ψ1Pk2ψ2]

+ PkQl[RνPk1Q<l−10ψ1Pk2Q≥l−10ψ2]

+ PkQl[RνPk1Q<l−10ψ1Pk2Q<l−10ψ2]

Here the last term on the right is nonzero only if k1 = l + O(1). Then when
k1 = k2 +O(1) we estimate

||PkQl[RνPk1Q≥l−10ψ1Pk2ψ2]||L2
tL

2
x

. 2
3k
2 ||RνPk1Q≥l−10ψ1||L2

tL
2
x
||Pk2ψ2||L∞

t L2
x

. 2
3k
2 − 1

2 l−k1
∏

i=,2

||Pki
ψi||S[ki],

which is as desired. The cases k = k1+O(1), k = k2+O(1) are handled analogously,
as is the expression PkQl[RνPk1Q<l−10ψ1Pk2Q≥l−10ψ2]. Now for the last term
above, we may assume k1 ∈ [l − 5, l + 5]. Furthermore, we may microlocalize the
two inputs to the same half-space ±τ > 0, i. e.

PkQl[RνPk1Q<l−10ψ1Pk2Q<l−10ψ2] =
∑

±
PkQ

±
l [RνPk1Q

±
<l−10ψ1Pk2Q

±
<l−10ψ2]

We split this into three terms as follows:
∑

±
PkQ

±
l [RνPk1Q

±
<l−10ψ1Pk2Q

±
<l−10ψ2]

=
∑

±
PkQ

±
l [RνPk1Q

±
[ 32k− 1

2k1,l−10]
ψ1Pk2Q

±
<l−10ψ2]

+
∑

±
PkQ

±
l [RνPk1Q

±
< 3

2k− 1
2k1

ψ1Pk2Q
±
[ 32k− 1

2k1,l−10]
ψ2]

+
∑

±
PkQ

±
l [RνPk1Q

±
< 3

2k− 1
2k1

ψ1Pk2Q
±
< 3

2k− 1
2k1

ψ2]
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The first term is estimated by

||
∑

±
PkQ

±
l [RνPk1Q

±
[ 32k− 1

2k1,l−10]
ψ1Pk2Q

±
<l−10ψ2]||L2

tL
2
x

.
∑

±
2

3
2k2−

k1
2 −

3
2

k− 1
2

k1
2 ||RνPk1Q±

[ 32k− 1
2k1,l−10]

ψ1||
Ẋ

1
2

, 1
2

,∞
k1

||Pk2Q±
<l−10ψ2||L∞

t L2
x

. 2
3
2k−k1−

3
2

k− 1
2

k1
2

∏

i=1,2

||Pki
ψi||S[ki] = 2

3
4 (k−k1)

∏

i=1,2

||Pki
ψi||S[ki]

The 2nd term above can be estimated similarly. Finally, for the third term, we can
decompose it into

∑

±
PkQ

±
l [RνPk1Q

±
< 3

2 k− 1
2k1

ψ1Pk2Q
±
< 3

2k− 1
2k1

ψ2]

=
∑

±

∑

κ1,2∈K 3
4
(k−k1)

|dist(κ1,−κ2).2
3
4
(k−k1)

PkQ
±
l [RνPk1,κ1Q

±
< 3

2k− 1
2k1

ψ1Pk2,κ2Q
±
< 3

2k− 1
2k1

ψ2]

Using the definition of ||.||S[k,κ] and the Cauchy-Schwarz inequality, we can estimate
this by

||
∑

±

∑

κ1,2∈K 3
4
(k−k1)

|dist(κ1,−κ2).2
3
4
(k−k1)

PkQ
±
l [RνPk1,κ1Q

±
< 3

2k− 1
2k1

ψ1Pk2,κ2Q
±
< 3

2k− 1
2 k1

ψ2]||L2
tL

2
x

. 2
3
4 (k−k1)

∑

±
(

∑

κ∈K 3
4
(k−k1)

||Pk1,κQ±
< 3

2k− 1
2k1

ψ1||2S[k1,κ1]
)

1
2

× (
∑

κ∈K 3
4
(k−k1)

||Pk2,κQ±
< 3

2k− 1
2k1

ψ1||2S[k1,κ1]
)

1
2

This in turn is bounded by . 2
3
4 (k−k1)

∏
i=1,2 ||Pki

ψi||S[ki], which is as desired. �

Then we can estimate

||P0Ql∂
β [RαPk1Q<l−10ψ

Pk4Q>l−104−1
3∑

j=1

∂j(RβPk2ψ2RjPk3ψ3 −RjPk2ψ2RβPk3ψ3)]||
Ẋ

− 1
2

,− 1
2

,∞
0

. 2
l
2 ||RαPk1Q<l−10ψ||L∞

t L2
x

||Pk4Q>l−104−1
3∑

j=1

∂j(RβPk2ψ2RjPk3ψ3 −RjPk2ψ2RβPk3ψ3)]||L2
tL

∞
x

. 2
k4
2 2δ[k4−k2]

3∏

i=1

||Pki
ψi||S[ki]

This concludes estimating the contribution of the output in the elliptic regime.
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(2): Output in hyperbolic regime. This is the expression

P0Q<20∂
β[RαPk1ψPk44−1

3∑

j=1

∂j(RβPk2ψ2RjPk3ψ3 −RjPk2ψ2RβPk3ψ3)]

Here, we first reduce RαPk1ψ as well as the output further to modulation < 2k4−10.
To achieve this, estimate

||P0Q20>.≥k4−10∂
β[RαPk1ψ1

Pk44−1
3∑

j=1

∂j(RβPk2ψ2RjPk3ψ3 −RjPk2ψ2RβPk3ψ3)]||
Ẋ

− 1
2

,− 1
2

,1

0

. 2−
k4
2 ||RαPk1ψ1||L∞

t L2
x

||Pk44−1
3∑

j=1

∂j(RβPk2ψ2RjPk3ψ3 −RjPk2ψ2RβPk3ψ3)||L2
tL

∞
x

Using Lemma 4.2, the right hand factor can be estimated by

||Pk44−1
3∑

j=1

∂j(RβPk2ψ2RjPk3ψ3 −RjPk2ψ2RβPk3ψ3)||L2
tL

∞
x

. 2
k4
2 2

k4−k2
2

∏

i=2,3

||Pki
ψi||S[ki]

and the desired estimate follows. The expression

P0Q<20∂
β[RαPk1Q≥k4−10ψ1Pk44−1

3∑

j=1

∂j(RβPk2ψ2RjPk3ψ3−RjPk2ψ2RβPk3ψ3)]

is estimated similarly(place the output into L1
t Ḣ

− 1
2 ), hence we now need to estimate

P0Q<k4−10∂
β[RαPk1Q<k4−10ψ1Pk44−1

3∑

j=1

∂j(RβPk2ψ2RjPk3ψ3−RjPk2ψ2RβPk3ψ3)].

Note that we may include an operator Q<k4+10 in front of Pk44−1 . . .. We further
reduce the inner inputs Pk2,3ψ2,3 to modulation < 2k4+20 as follows: for example,
consider

P0Q<k4−10∂
β[RαPk1Q<k4−10ψ1

Pk44−1
3∑

j=1

∂j(RβPk2Q≥k4+20ψ2RjPk3ψ3 −RjPk2Q≥k4+20ψ2RβPk3ψ3)]
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Simple geometric reasoning then allows one to include a multiplier Q>k4+15 in front
of each Pk3ψ3. Then one estimates

||P0Q<k4−10∂
β[RαPk1Q<k4−10ψ1Pk44−1

3∑

j=1

∂j(RβPk2Q≥k4+20ψ2RjPk3Q>k4+15ψ3

−RjPk2Q≥k4+20ψ2RβPk3Q>k4+15ψ3)]||
L1

t Ḣ
− 1

2
x

. 22k4 ||RαPk1Q<k4−10ψ1||L∞
t L2

x

||∇x,t∇−1Pk2Q≥k4+20ψ2||L2
tL

2
x
||∇x,t∇−1Pk3Q≥k4+20ψ3||L2

tL
2
x

. 2k4−k2
3∏

i=1

||Pki
ψi||S[ki]

We now let the outer derivative fall inside and obtain two terms, each of which
admits a null-form expansion: the terms are

P0Q<k4−10[Rα∂
βPk1Q<k4−10ψ1Pk44−1

3∑

j=1

∂j(RβPk2Q<k4+20ψ2RjPk3Q<k4+20ψ3

−RjPk2Q<k4+20ψ2RβPk3Q<k4+20ψ3)]

P0Q<k4−10[RαPk1Q<k4−10ψ1Pk44−1
3∑

j=1

∂j∂
β(RβPk2Q<k4+20ψ2RjPk3Q<k4+20ψ3

−RjPk2Q<k4+20ψ2RβPk3Q<k4+20ψ3)]

We treat these separately. In order to streamline the formulae a bit, we shall omit
the localizers Q<k4+20, it being understood that the inputs Pk2,3ψ2,3 have Fourier

support at distance < 2k4+20 from the light cone.

(3): The first null-form. We use the expansion

2

3∑

j=1

4−1∂j [RνfRjg −RjfRνf ]∂νh

=

3∑

j=1

2[4−1∂j [∇−1fRjg]h] −
3∑

j=1

24−1∂j [∇−1fRjg]h

−
3∑

j=1

4−1∂j [∇−1fRjg]2h−∇−1f2[(∇−1g)h]

+ ∇−1f2(∇−1g)h+ ∇−1f∇−1g2h

(4.1)

Hence we need to estimate the following terms: first assume k2 < −20.
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(i): P0Q<k4−102[RαPk1Q<k4−10ψ1Pk44−1
∑3

j=1 ∂j(∇−1Pk2ψ2RjPk3ψ3)]. Here
we use lemma 4.1 to estimate it by

||P0Q<k4−102[RαPk1Q<k4−10ψ1Pk44−1
3∑

j=1

∂j(∇−1Pk2ψ2RjPk3ψ3)]||
Ẋ

− 1
2

,− 1
2

,1

0

. 2
k4
2 ||RαPk1Q<k4−10ψ1||L∞

t L2
x
||||Pk44−1

3∑

j=1

∂j(∇−1Pk2ψ2RjPk3ψ3)||L2
tL

∞
x

. 2−
k4
2 −k22

6
p
k4 ||RαPk1Q<k4−10ψ1||L∞

t L2
x
||Pk2ψ2||L4

tL
p
x
||Pk3ψ3||L4

tL
p
x

This is seen to be bounded by . 2δ[k4−k2]
∏3
i=1 ||Pki

ψi||S[ki] for some δ > 0, pro-
vided we choose p > 4 sufficiently close to 4.

(ii): P0Q<k4−10[RαPk1Q<k4−10ψ1Pk44−1
∑3

j=1 ∂j2(∇−1Pk2ψ2RjPk3ψ3)]. This
we estimate by using Lemma 4.3 as well as Lemma 4.2: First, we have

P0Q<k4−10[RαPk1Q<k4−10ψ1Pk44−1
3∑

j=1

∂j2(∇−1Pk2ψ2RjPk3ψ3)]

= P0Q<k4−10[RαPk1Q<k4−10ψ1Pk4Q<k4+104−1
3∑

j=1

∂j2(∇−1Pk2ψ2RjPk3ψ3)]

Then we first remove the localization operators Q<k4−10, which is simple (estimat-
ing as before) and omitted. Thus we now need to estimate (including an operator
Q<k1 to render the Rα harmless)

P0[RαPk1Q<k1ψ1Pk4Q<k4+104−1
3∑

j=1

∂j2(∇−1Pk2ψ2RjPk3ψ3)]

=
∑

j<k4+10

P0[RαPk1Q<k1ψ1Pk4Qj4−1
3∑

j=1

∂j2(∇−1Pk2ψ2RjPk3ψ3)]

Using Lemma 4.3 we have

||P0[RαPk1Q<k1ψ1Pk4Qj4−1
3∑

j=1

∂j2(∇−1Pk2ψ2RjPk3ψ3)]||N [0]

. 2δ(j−k4)||Pk1ψ1||S[k1]||2∇−1Pk4Qj(∇−1Pk2ψ2RjPk3ψ3)||
Ẋ

1
2

,− 1
2

,1

k4

for suitable δ > 0. Using Lemma 4.2, we estimate this by

2δ(j−k4)||Pk1ψ1||S[k1]||2∇−1Pk4Qj(∇−1Pk2ψ2RjPk3ψ3)||
Ẋ

1
2

,− 1
2

,1

k4

. 2δ(j−k4)||Pk1ψ1||S[k1]2
k4−k2

∏

i=1,2

||Pki
ψi||S[ki]

which is as desired upon summing over j.

(iii): P0Q<k4−10[Rα2Pk1Q<k4−10ψ1Pk44−1
∑3

j=1 ∂j(∇−1Pk2ψ2RjPk3ψ3)]. This

is estimated similarly to (i). Simply place the output into L1
t Ḣ

− 1
2 .
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(iv): the term corresponding to ∇−1f2(∇−1gh) in the above expansion is
the most difficult to handle; we use that Pk4 acts via convolution with a function
ak4(x) of bounded L1-mass. Further, we recall here the precise microlocalization of
Pk2,3ψ2,3. Thus we write this term as

∫

R3

ak4(y)P0Q<k4−10[2[Pk1Q<k4−10Rαψ1∇−1Pk3Q<k4+20ψ3(.− y)]

∇−1Pk2Q<k4+20ψ2(.− y)]dy

Note that the restriction that Pk2ψ2Pk3ψ3 is reduced to frequency 2k4 allows us
to simultaneously localize them to angular sectors κ2,3 such that dist(κ2,−κ3) .

2
k4−k2

2 . Thus we can write
∫

R3

ak4(y)P0Q<k4−10[2[Pk1Q<k4−10Rαψ1∇−1Pk3Q<k4+20ψ3(.− y)]

∇−1Pk2Q<k4+20ψ2(.− y)]dy

=
∑

κ2,3∈Kk4−k2
|dist(κ2,−κ3).2k4−k2

∫

R3

ak4(y)P0Q<k4−10[2[Pk1Q<k4−10Rαψ1∇−1Pk3,κ3Q<k4+20ψ3(.− y)]

∇−1Pk2,κ2Q<k4+20ψ2(.− y)]dy

Here we first abolish the outer localizer Q<k4−10, and modify 2 to 2Q<k3+O(1):
clearly, we have

P0Q<k4−10[2[Pk1Q<k4−10Rαψ1∇−1Pk3,κ3Q<k4+20ψ3(.− y)]

∇−1Pk2,κ2Q<k4+20ψ2(.− y)]

= P0Q<k4−10[Pk1+O(1)Q<k3+O(1)2[Pk1Q<k4−10Rαψ1∇−1Pk3,κ3Q<k4+20ψ3(.− y)]

∇−1Pk2,κ2Q<k4+20ψ2(.− y)]

Then, replacing the outer Q<k4−10 by Q≥k4−10, say, we can estimate

||P0Q≥k4−10[Pk1+O(1)Q<k3+O(1)2[Pk1Q<k4−10Rαψ1

∇−1Pk3,κ3Q<k4+20ψ3(.− y)]∇−1Pk2,κ2Q<k4+20ψ2(.− y)]||
Ẋ

− 1
2

,− 1
2

,1

0

. 2−
k4
2 2k3 ||Pk1Q<k4−10Rαψ1||L∞

t L2
x
||∇−1Pk3,κ3Q<k4+20ψ3(.− y)||L4

tL
∞
x

||∇−1Pk2,κ2Q<k4+20ψ2(.− y)||L4
tL

∞
x

We have taken advantage of the fact (see e. g. [24]) that the operator Pk1Q<k3+O(1)

acts boundedly on spaces of the form L
p
tL

2
x, 1 ≤ p ≤ ∞. Then we use Lemma 4.2

as well as the fact that
∑

κ∈Kl

||Pk,κQ<k+2lψ||2S[k] . ||Pkψ||2S[k]

This is straightforward for the first two components defining ||.||S[k]. For the com-
plicated null-frame part, use that ||.||S[k,κ′] . ||.||S[k,κ] for κ ⊂ κ′. Hence we have
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for −10 ≥ l′ ≥ l

∑

κ∈Kl

∑

κ′∈Kl′

||Pk,κ′Q±
<k+2l′Pk,κQ<k+2lψ||2S[k,±κ′]

.
∑

κ′∈Kl′

∑

κ∈Kl, κ⊂2κ′

||Pk,κ′Q±
<k+2l′Pk,κQ

±
<k+2lψ||2S[k,±κ]

.
∑

κ∈Kl

∑

κ′∈Kl′ |κ∈2κ′

||Pk,κQ±
<k+2lψ||2S[k,±κ] .

∑

κ∈Kl

||Pk,κQ±
<k+2lψ||2S[k,±κ]

The case when l′ < l is handled similarly. Hence we now see that (using Bernstein’s
inequality)

∑

κ1,2∈Kk4−k2
|dist(κ2,−κ3).2k4−k2

2−
k4
2 2k3 ||Pk1Q<k4−10Rαψ1||L∞

t L2
x
||∇−1Pk3,κ3Q<k4+20ψ3(.− y)||L4

tL
∞
x

||∇−1Pk2,κ2Q<k4+20ψ2(.− y)||L4
tL

∞
x

. 2(1−)(k4−k3)
3∏

i=1

||Pki
ψi||S[ki]

We have now reduced ourselves to estimating
∫

R3

ak4(y)P0[2Q<k3+O(1)[Pk1Q<k4−10Rαψ1Pk3Q<k4+20ψ3(.− y)]

∇−1Pk2Q<k4+20ψ2(.− y)]dy

We first write

||2Pk1+O(1)Q<k3+O(1)[Pk1Q<k4−10Rαψ1∇−1Pk3,κ3Q<k4+20ψ3(.− y)]||
Ẋ

1
2

,− 1
2

,1

k1

.
∑

l<k3+O(1)

||Pk1+O(1)Ql[Pk1Q<k4−10Rαψ1∇−1Pk3,κ3Q<k4+20ψ3(.− y)]||
Ẋ

1
2

, 1
2

,1

k1

We need to estimate this expression for fixed l first, the point being to eke out a
small gain in |κ3|. One distinguishes between different ranges for l: first, assume
l ≥ k4 + 30 whence l−k3

2 ≥ k4−k3
2 + 15. Then write (here we have to go into full

detail)

Pk1+O(1)Ql[Pk1Q<k4−10Rαψ1∇−1Pk3,κ3Q<k4+20ψ3(.− y)]

=
∑

±,±

∑

κ′
1,2∈K l−k3

2

|dist(±κ′
1,±κ′

2)∼2
l−k3

2

Pk1+O(1)Ql[Pk1,κ′
1
Q±
<k4−10Rαψ1∇−1Pk3,κ′

2
Pk3,κ3Q

±
<k4+20ψ3(.− y)],

At this point, the operator Q±
<k4−10 becomes harmful, as it is applied to a large

frequency input. However, we can easily abolish it, by estimating the contribution
from Pk1,κ′

1
Q±

≥k4−10Rαψ1 as above, where the operator Q≥k4−10 was applied to the

output (here one places the output into L1
t Ḣ

− 1
2 ). Now we estimate (Here Q± is
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the operator which localizes to ±τ > 0)

||
∑

±,±

∑

κ′
1,2∈K l−k3

2

|dist(±κ′
1,±κ′

2)∼2
l−k3

2

Pk1+O(1)Ql[Pk1,κ′
1
Q±Rαψ1∇−1Pk3,κ′

2
Pk3,κ3Q

±
<k4+20ψ3(.− y)]||

Ẋ
1
2

, 1
2

,∞
k1

.
∑

κ′
1,2∈K l−k3

2

|dist(±κ′
1,±κ′

2)∼2
l−k3

2

2
l
2 ||Pk1,κ′

1
Q±Rαψ1||NFA[±κ′

2]
||∇−1Pk3,κ′

2
Pk3,κ3Q

±
<k4+20ψ3||PW [±κ3]

Since κ′2 is much larger than κ3 in the present case, we only sum for finitely many
κ′1,2 for fixed κ3. Now we use the estimate

||Pk1Q±Rαψ1||NFA[±κ′
2]

∗ . |l − k3|2−
l−k3

2 ||Pk1ψ1||S[k1]

Hence we get

∑

κ′
1,2∈K l−k3

2

|dist(±κ′
1,±κ′

2)∼2
l−k3

2

2
l
2 ||Pk1,κ′

1
Q±Rαψ1||NFA[±κ′

2]
||∇−1Pk3,κ′

2
Pk3,κ3Q

±
<k4+20ψ3||PW [±κ3]

. 2
k4−k3

2 2
l−k3

2 2−
l−k3

2 |k3 − l|||Pk1ψ1||S[k1]||Pk3,κ3Q<k4+20ψ3||S[k3]

Note that since k4 − k3 << l − k3, the factor |l − k3| can be absorbed by 2
k4−k3

2 .
Finally, we can wrap up case (iv) under the assumption l > k4 + 30: we have

∑

κ2,3∈Kk4−k2
|dist(κ2,−κ3).2k4−k2

||P0[2Pk1+O(1)Ql[Pk1Q<k4−10Rαψ1∇−1Pk3,κ3Q<k4+20ψ3(.− y)]

∇−1Pk2,κ2Q<k4+20ψ2(.− y)]||N [0]

. 2δ[l−k3]
∑

κ1,2∈Kk4−k2
|dist(κ2,−κ3).2k4−k2

||2Pk1+O(1)Ql[Pk1Q<k4−10Rαψ1∇−1Pk3,κ3Q<k4+20ψ3(.− y)]||
Ẋ

1
2

,− 1
2

,1

k1

||Pk2,κ2Q<k4+20ψ2||S[k2]

By the preceding, we can estimate this by

∑

κ2,3∈Kk4−k2
|dist(κ2,−κ3).2k4−k2

2
k4−k3

2 |k3 − l|||Pk1ψ1||S[k1]||Pk2,κ2Q<k4+20ψ2||S[k3]||Pk3 ,κ3Q<k4+20ψ3||S[k3]

Using Cauchy-Schwartz as well as the observation from further above, we obtain
the desired estimate by summing over k4 + 30 ≤ l < k3 +O(1).
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Next, assume l < k4 + 30. Here we decompose

Pk1+O(1)Ql[Pk1Q<k4−10Rαψ1∇−1Pk3,κ3Q<k4+20ψ3(.− y)]

= Pk1+O(1)Ql[Pk1Q<k4−10Rαψ1∇−1Pk3,κ3Ql−10≤.<k4+20ψ3(.− y)]

+ Pk1+O(1)Ql[Pk1Ql−10≤.<k4−10Rαψ1∇−1Pk3,κ3Q<l−10ψ3(.− y)]

+ Pk1+O(1)Ql[Pk1Q<l−10Rαψ1∇−1Pk3,κ3Q<l−10ψ3(.− y)]

For the first term, estimate

||2Pk1+O(1)Ql[Pk1Q<k4−10Rαψ1∇−1Pk3,κ3Ql−10≤.<k4+20ψ3(.− y)]||
Ẋ

1
2

,− 1
2

,∞

. 2
l
2

∑

j∈[l−10,k4+20]

||Pk1Q<k4−10Rαψ1||L∞
t L2

x
2

3k3
2 2

j−k3
2+ ||∇−1Pk3,κ3Qjψ3||L2

tL
2
x

We have used here the ’improved Bernstein’s inequality’, see e. g. [24], [10]. This in

turn we can bound by .
∑
j∈[l−10,k4−10] 2

l−j
2 2

j−k3
2+

∏
i=1,2 ||Pki

ψi||S[ki]. Summing

over j and then over l < k4 + 20, one easily obtains the gain 2
k4−k2

2+ , and from here
the argument proceeds just as before. Next, we have

Pk1+O(1)Ql[Pk1Ql−10≤.<k4−10Rαψ1∇−1Pk3,κ3Q<l−10ψ3(.− y)]

=
∑

j∈[l−10,k4−10]

Pk1+O(1)Ql[Pk1QjRαψ1∇−1Pk3,κ3Q<l−10ψ3(.− y)]

Now we can simultaneously localize both Pk1QjRαψ1, ∇−1Pk3,κ3Q<l−10ψ3(. − y)

to caps κ′1,2 of size ∼ 2
j−k3

2 , such that ±κ′1, ±κ′2 have angular separation . 2
j−k3

2 .
Hence we can write

Pk1+O(1)Ql[Pk1QjRαψ1∇−1Pk3,κ3Q<l−10ψ3(.− y)]

=
∑

±,±

∑

κ′
1,2∈K j−k3

2

|dist(±κ′
1,±κ′

2).2
j−k3

2

Pk1+O(1)Ql[Pk1,κ′
1
Q±
j Rαψ1∇−1Pk3,κ′

2
Pk3,κ3Q

±
<l−10ψ3(.− y)]

Of course for fixed κ′1,2, there are only finitely many κ3 for which this expression
does not vanish. Then we can estimate

||2Pk1+O(1)Ql[Pk1,κ′
1
Q±
j Rαψ1∇−1Pk3,κ′

2
Pk3,κ3Q

±
<l−10ψ3(.− y)]||

Ẋ
1
2

,− 1
2

,∞
k1

. 2
l
2 ||Pk1,κ′

1
Q±
j Rαψ1||L2

tL
2
x
||∇−1Pk3,κ′

2
Pk3,κ3Q

±
<l−10ψ3||L∞

t L∞
x

Using Bernstein’s inequality for the 2nd factor, we estimate this by

. 2
l−j
2 2

j−k3
2 |l− j|

∏

i=1,2

||Pk1,κ′
1
ψ1||S[k1]||Pk3,κ′

2
ψ3||S[k3]

Now, for fixed j, l, one sums over κ′1,2 as well as κ2,3 (of which there are only finitely
many for fixed κ′1,2), and finally sums over j, l in the appropriate ranges, to obtain
the desired estimate, just as in the case l ≥ k4 + 30.

The expression

Pk1+O(1)Ql[Pk1Q<l−10Rαψ1∇−1Pk3,κ3Q<l−10ψ3(.− y)]

is handled similarly. Here one localizes the inputs to caps κ′1,2 which are separated,
and reasons as in the case l ≥ k4.
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This concludes case (iv).

(v): Pk4(∇−1Pk2Q<k4+20ψ22[∇−1Pk3Q<k4+20ψ3]Pk1RαQ<k4−10ψ1. This is
much simpler to estimate: use

||Pk4(∇−1Pk2Q<k4+20ψ22[∇−1Pk3Q<k4+20ψ3]Pk1RαQ<k4−10ψ1||L1
tL

2
x

. ||2[∇−1Pk3Q<k4+20ψ3]||L2
tL

2
x
||∇−1Pk2Q<k4+20ψ2||L4

tL
∞
x
||Pk1RαQ<k4−10ψ1||L4

tL
∞
x

This can be estimated by 2
k4
2 − k2

4

∏3
i=1 ||Pki

ψi||S[ki], which is better than what we
need.

(vi): This is the expression

∇−1Pk2Q<k4+20ψ2∇−1Pk3Q<k4+20ψ32Pk1RαQ<k4−10ψ1.

This is again straightforward: we estimate it by

||∇−1Pk2Q<k4+20ψ2∇−1Pk3Q<k4+20ψ32Pk1RαQ<k4−10ψ1||L1
tL

2
x

. ||∇−1Pk2Q<k4+20ψ2||L4
tL

∞
x
||∇−1Pk3Q<k4+20ψ3||L4

tL
∞
x
||2Pk1RαQ<k4−10ψ1||L2

tL
2
x
,

and the last expression is easily estimated by . 2
k4−k2

2

∏3
i=1 ||Pki

ψi||S[ki].

Now, we assume k2 > 20. Here cases (i), (ii), (iii), (v), (vi) are handled in
identical fashion. For (iv), we now have the identity

[Pk1Qk4−10Rαψ1Pk3Q<k4+20ψ3(.− y)]]

= Pk3+O(1)Q<k1+O(1)[Pk1Qk4−10Rαψ1Pk3,κ3Q<k4+20∇−1ψ3(.− y)]]

Freeze the modulation to size 2l. Then we need to distinguish between the cases
l ≥ k4, l < k4. The calculations are essentially the same, so we outline how to deal
wit the first case. Now one writes

Pk3+O(1)Ql[Pk1Qk4−10Rαψ1Pk3Q<k4+20∇−1ψ3(.− y)]]

=
∑

κ′
1,2∈K l−k1

2

|dist(±κ′
1,±κ′

2)∼2
l−k1

2

Pk3+O(1)Ql[Pk1,κ′
1
Q±
k4−10Rαψ1Pk3,κ′

2
Pk3,κ3Q

±
<k4+20∇−1ψ3(.− y)]]

From this point on the proof is an exact replica of the case k3 < −20.
The case k2 ∈ [−20, 20] is also essentially the same, the only difference being that
now in case (iv), the term [Pk1Q<k4−10Rαψ1Pk3Q<k4+20∇−1ψ3(. − y)]] may have
very small frequency. This is handled similarly, see e. g. [11], where such an argu-
ment is carried out in detail.
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(4) The 2nd null-form. This is handled just like the first null-form, the only
difference being that one uses the identity

3∑

j=1

4−1∂j∂
ν [RνfRjg −RjfRνg]h

= 2[

3∑

j=1

4−1∂j(∇−1fRjg)]h− 1

2
2(∇−1f)∇−1gh

− 1

2
2[∇−1f∇−1g]h+

1

2
2(∇−1g)∇−1fh

These can be handled just as the terms in the identity underlying (3).

The remaining expressions in the statement of Proposition 4.6 can be estimated
in the same way. �

We next state the following Proposition needed to handle the quintilinear and
higher order terms:

Proposition 4.9. We have the bounds

||Pk∇x,t[Pk1ψ1Pr1∇−1[Pr2∇−1[Pk2ψ2∇−1Pr3 [Pk3ψ3Pk4ψ4]]Pk5Rνψ5]]||N [k]

. 2−δ[|k−k1|+|k3−k4|]2δ[min{k2,5,r1,2,3}−max{k2,5,r1,2,3}]
5∏

i=1

||Pki
ψi||S[ki]

for suitable δ > 0. Analogous bounds hold for the other higher order terms in (2.3):

||Pk∇x,t[Pr1∇−1[Pk1ψ1Pr2∇−1[Pk2ψ2Pk3ψ3]]Pr3∇−1[Pk4ψ4Pk5ψ5]]||N [k]

. 2−δ[|k4−k5|+|k2−k3|]2δ[min{r1,3,k}−max{r1,3,k}]2δ[min{r1,2,k1}−max{r1,2,k1}]

5∏

i=1

||Pki
ψi||S[ki]

Proof. We show the first estimate, the 2nd following in a similar vein. This is
in principle straightforward given Lemma 4.1, the only difficulty being the operator
∇x,t in front. To deal with it, assume the output is at frequency ∼ 1 ( as we may
by scale invariance) as well as modulation 2l, l >> 1. Thus this is the expression

P0Ql∇x,t[Pk1ψ1Pr1∇−1[Pr2∇−1[Pk2ψ2∇−1Pr3 [Pk3ψ3Pk4ψ4]]Pk5Rνψ5]]

Then either k1 ≥ l − 10, or Pk1ψ1 has modulation ≥ 2l−10, or else Pr1∇−1 . . . has
modulation ≥ 2l−10. In the last case, repeat the same argument with

Pr1∇−1[Pr2∇−1[Pk2ψ2∇−1Pr3 [Pk3ψ3Pk4ψ4]]Pk5Rνψ5]

The conclusion is that at least one of the inputs needs to have frequency at least
comparable to 2l, or else at least one input needs to have modulation at least
comparable to 2l. Note that we can organize the expression as

∇x,tP0Ql[Pk1ψ1Pr1∇−1[XPk5Rνψ5]]

with

X = Pr2∇−1[Pk2ψ2∇−1Pr3 [Pk3ψ3Pk4ψ4]]
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Then use the decomposition

∇x,tP0Ql[Pk1ψ1Pr1∇−1[XPk5Rνψ5]]

= χk1≥l−100∇x,tP0Ql[Pk1ψ1Pr1∇−1[XPk5Rνψ5]]

+ χk1<l−100∇x,tP0Ql[Pk1Q≥l−10ψ1Pr1∇−1[XPk5Rνψ5]]

+ χk1<l−100∇x,tP0Ql[Pk1Q<l−10ψ1Pr1Q≥l−10∇−1[XPk5Rνψ5]]

To estimate the first and 2nd terms, we use the following

Lemma 4.10. We have the bounds

||X ||
L2

tḢ
1
x∩L2

tẆ
∞,− 1

2
x ∩L∞

t Ḣ
1
2

x

. 2δ[min{r2,3,k2,3,4}−max{r2,3,k2,3,4}]
∏

i=2,3,4

||Pki
ψi||S[ki]

Proof. (Lemma 4.10) simple application of Bernstein’s inequality. �

Then we compute (for suitable δ > 0)

||χk1≥l−100∇x,tP0Ql[Pk1ψ1Pr1∇−1[XPk5Rνψ5]]||
Ẋ

− 1
2

,− 1
2

,∞
0

. 2
1
2 l||Pk1ψ1||L∞

t L2
x
||Pk1+O(1)∇−1[XPk5Rνψ5]||L2

tL
2
x

. 2δ[min{r2,3,k2,3,4}−max{r2,3,k2,3,4}]
∏

i=2,3,4

||Pki
ψi||S[ki]

× 2
l
2 2−k12δ[min{k1,r2,k5}−max{k1,r2,k5}]

∏

i=1,5

||Pki
ψi||S[ki]

where we have again invoked Bernstein’s inequality a number of times in the last
step. This is of course more than enough to get the estimate of Proposition 4.9 in
this case. Next, estimate

||χk1<l−100∇x,tP0Ql[Pk1Q≥l−10ψ1Pr1∇−1[XPk5Rνψ5]]||N [0]

. 2
l
2 min{||Pk1Q≥l−10ψ1||L2

tL
2
x
||Pr1∇−1[XPk5Rνψ5]||L∞

t L∞
x +L∞

t L2
x
,

||Pk1Q≥l−10ψ1||L2
tL

∞
x
|Pr1∇−1[XPk5Rνψ5]||L∞

t L2
x
}

Again, one checks this is bounded by an expression as in the Proposition. Finally,
for the last term, use a similar decomposition

Pr1Q≥l−10∇−1[XPk5Rνψ5]

= χk5≥l−100Pr1Q≥l−10∇−1[XPk5Rνψ5]

+ χk5<l−100Pr1Q≥l−10∇−1[XPk5RνQ≥l−20ψ5]

+ χk5<l−100Pr1Q≥l−10∇−1[Q≥l−20XPk5RνQ<l−20ψ5]

For the first term here, use that

||χk5≥l−100Pr1Q≥l−10∇−1[XPk5Rνψ5]||L2
tL

2
x

. 2
r1
2 ||X ||L2

tL
2
x
||Rνψ5||L∞

t L2
x

and from here one concludes

||χk1<l−100∇x,tP0Ql[Pk1Q<l−10ψ1χk5≥l−100Pr1Q≥l−10∇−1[XPk5Rνψ5]]||N [0]

. 2
l
2 ||Pk1Q<l−10ψ1||L∞

t L∞
x
||Pk5+O(1)X ||L2

tL
2
x
||Pk5Rνψ5||L∞

t L2
x

. 2
l
2 +k1− 3

2k52δ(min{r2,3,k2,3,4}−max{r2,3,k2,3,4})
5∏

i=i

||Pki
ψi||S[ki]
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Further, write

χk5<l−100Pr1Q≥l−10∇−1[XPk5RνQ≥l−20ψ5]

=
∑

l1≥l−20

χk5<l−100Pr1Q≥l−10∇−1[XPk5RνQl1ψ5]

Then we get

||
∑

l1≥l−20

χk1<l−100∇x,tP0Ql[Pk1Q<l−10ψ1χk5<l−100Pr1Q≥l−10

∇−1[XPk5Ql1Rνψ5]]||N [0]

.
∑

l1≥l−20

2
1
2 (l−l1)2δ(min{k1,2,3,4,5 ,r1,2,3}−max{k1,2,3,4,5 ,r1,2,3})

5∏

i=1

||Pki
ψi||S[ki]

for suitable δ > 0. Finally, consider the contribution of

χk5<l−100Pr1Q≥l−10∇−1[Q≥l−20XPk5RνQ<l−20ψ5]

Here we use

Lemma 4.11. The following estimate holds:

||Ql1X ||L2
tL

2
x

. 2−
1
2 l12−

1
2 r22δ(min{r2,r3,k2,3,4}−max{r2,r3,k2,3,4})

∏

i=2,3,4

||Pki
ψi||S[ki]

for suitable δ > 0.

Proof. (Lemma 4.11) Use reasoning as in Lemma 4.8, as well as above. �

Using this, we can estimate

||χk1<l−100∇x,tP0Ql[Pk1ψ1χk5<l−100Pr1Q≥l−10∇−1[Q≥l−20XPk5RνQ<l−20ψ5]||N [0]

≤
∑

l1≥l−20

2
l
2 ||χk1<l−100P0Ql[Pk1ψ1χk5<l−100Pr1Q≥l−10

∇−1[Ql1XPk5RνQ<l−20ψ5]||L2
tL

2
x

.
∑

l1≥l−20

2
1
2 (l−l1)2δ[min{k1,2,3,4,5 ,r1,2,3}−max{k1,2,3,4,5,r1,2,3}]

5∏

i=1

||Pki
ψi||S[ki]

for suitable δ > 0. This follows as usual via various frequency trichotomies as well
as Bernstein’s inequality. This concludes dealing with the large output-at-large-
modulation-case, and we now need to focus on

∇x,tP0Q<20[Pk1ψ1Pr1∇−1[Pr2∇−1[Pk2ψ2∇−1Pr3 [Pk3ψ3Pk4ψ4]]Pk5Rνψ5]]]

This we do via the following

Lemma 4.12. We have the estimate

2( 3
4 + 3

p
−1)r2 ||Pr2∇−1[Pk2ψ2∇−1Pr3 [Pk3ψ3Pk4ψ4||

L
4
3
t L

p
x

. 2δ[min{k2,r2,3}−max{k2,r2,3}]2−δ|k3−k4|
∏

i=2,3,4

||Pki
ψi||S[ki]

for suitable δ > 0 and p ≥ 2.

Proof. (Lemma 4.12) Follows from Lemma 4.2 and some simple frequency
trichotomies and Bernstein’s inequality. �
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From here one easily concludes

||∇x,tP0Q<20[Pk1ψ1Pr1∇−1[Pr2∇−1[Pk2ψ2∇−1Pr3 [Pk3ψ3Pk4ψ4]]Pk5Rνψ5]]]||
L1

t Ḣ
− 1

2
x

. 2−δ[|k1|+|k3−k4|]2δ[min{k2,5,r1,2,3}−max{k2,5,r1,2,3}]
5∏

i=1

||Pki
ψi||S[ki],

again choosing δ > 0 small enough. This concludes the proof of Proposition 4.9 for
the first inequality. The 2nd follows similar reasoning. �

We now continue with the proof of Proposition 4.5, where we need to establish
the last 3 inequalities for the iterates ψα,1,j . This only requires some additional
work for the terms involving the vector fields Γβ. To get estimates on Γβψα,1,j , we
need commute the vector fields Γβ inside the source terms on the right hand side
of (2.6). To do this, we require the following simple

Lemma 4.13. The following commutator bounds obtain for any translation in-
variant norm ||.||S:

||[Γβ,2−1PkQ≥k]ψ||S . 2−2k2−|β|k||∇|β|
x,tPkψ||S + (|β| − 1)

∑

|γ|=|β|−1

2−3k||∇x,tΓ
γPkψ||S

||[Γβ , PkQ<k+δl]ψ||S . 2−|β|k||∇|β|
x,tPkψ||S + (|β| − 1)

∑

|γ|=|β|−1

2−k||∇x,tΓ
γPkψ||S

First considering the case |β| = 1, note that 2
−1PkQ≥k is given by convolution

with a function a(t, x) with the property ||a(t, x)||L1
t,x(R3+1 . 2−2k. Then we have

[Γ,2−1PkQ≥k] = Γt,x

∫

R3+1

a(t− s, x− y)ψ(s, y)dsdy

−
∫

R3+1

a(t− s, x− y)Γs,yψ(s, y)dsdy

Taking into account that Γ is of the form ∂t, ∂xi
, xi∂xj

−xj∂xi
, t∂t+

∑3
i=1 xi∂xi

, xi∂t+
t∂xi

, we see the above integral can be written in the form
∫

R3+1

sa(s, y)∇t,xψ(t− s, x− y)dsdy +

∫

R3+1

ya(s, y)∇t,xψ(t− s, x− y)dsdy

Then conclude by observing

||sa(s, y)||L1
s,y

+ |||y|(s, y)||L1
s,y

. 2−3k

For higher order operators, use

[Γ1Γ2,2
−1PkQ≥k] = Γ1[Γ2,2

−1PkQ≥k] + [Γ1,2
−1PkQ≥k]]Γ2,

as well as the fact that [Γ2,2
−1PkQ≥k] can be written as a convolution operator

whose kernel enjoys similar properties to the one associated with 2
−1PkQ≥k. The

proof or [Γβ , PkQ<k+δl] is similar. �

With this in hand, observe that we have

2[Γψα,1,j+1] = [2,Γ]ψα,1,j+1 + Γ2[ηT (t)S(t)(ψα[0])]

+Γ2[

∫ t

0

ηT (t− s)P[−δl,δl]F (ψ1,j)(s)ds]
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Then clearly we have

2[Γψα,1,j+1]|[−T,T ] = [2,Γ]ψα,1,j+1|[−T,T ] + ΓP[−δl,δl]F (ψ1,j)|[−T,T ]

In order to estimate the right hand side, and in particular the right most term,
observe that application of Γ does leave the null-structure (4.1) intact: indeed,
[2,Γ] = c2 for each vector field Γ and a suitable number c = cΓ. Re-iterating the
proofs of Proposition 4.6, 4.9, and applying the preceding Lemma, we can conclude
that

||ΓP[−δl,δl]F (ψ1,j)|[−T,T ]||N [k]([−T,T ]×R3) . εM̃2Cδlck,

provided we make the bootstrap assumption ||PkΓψ1||S[k]([−T,T ]×R3) . M̃2Cδlck.
The claim of the Proposition follows when |β| = 1 for ψα,1,j+1, by using the energy
inequality Theorem 4.4, and one argues similarly for Γβψα,1, |β| = 2, etc. This
concludes the proof of Proposition 4.5.

Next, we explain the proof of Proposition 2.2:

Proof. (Proposition 2.2) We shall again use Proposition 4.6, Proposition 4.9,
as well as some elementary additional estimates. Fix a time scale l >> 1 and
consider tψα,2 defined on [−2−l+2, 2l+2] as in the preceding. The equations satisfied
by the ψα,2 = ψα − ψα,1 is as follows:

2ψα,2 = F (ψ1, ψ2) + (1 −P[−δl,δl])F (ψ1), ψα,2

Here F (ψ1, ψ2) is the right hand side of (2.3) but with ψ replaced by ψ1,2, and the
additional requirement that at least one copy of ψ2 is present. We need to establish
the following

Bootstrapping step: Let 0 ≤ T ≤ 2l+2 and assume that we have

||Pkψα,2||S[k]([−T,T ]×R3) ≤Mek, α = 0, 1, 2, 3

for some M larger than some M0 = M0(ψ[0]). Then we have

||Pkψα,2||S[k]([−T,T ]×R3) ≤
M

2
ek, α = 0, 1, 2, 3

We recall the definition of ek := min{dk, 2µ(max{k−δl,−k−δl})dk} for µ > 0
sufficiently small. Having established the bootstrapping, Proposition 2.2 will then
follow from the fact that (see e. g. [11])

lim
T→0

sup
k∈Z

||Pkψα,2||S[k]([−T,T ]×R3) = 0

We will show that the assumption above implies

||PkF (ψ1, ψ2)||N [k]([−T,T ]×R3) + ||Pk(1 −P[−δl,δl])F (ψ1)||N [k]([−T,T ]×R3) . εM9ek,

which implies the bootstrapping step by invoking Theorem 4.4. We shall first prove
the estimate

||PkF (ψ1, ψ2)||N [k]([−T,T ]×R3) . εM9ek,



LARGE TIME DECAY AND SCATTERING FOR WAVE MAPS 35

Recall that PkF (ψ1, ψ2) consists of trilinear null-forms as well as quintilinear and
higher order terms. From Proposition 4.6, we have the schematic relation

||”Pk∇x,t[Pk1ψ1∇−1Pk4 [Pk2ψ2Pk3ψ3]]”||N [k]([−T,T ]×R3)

. 2−δ1|k2−k3|2−δ2[k4−max{k2,k3}]2−δ3|k−k1|
3∏

i=1

||Pki
ψi||S[ki]([−T,T ]×R3)

Here the term ”Pk∇x,t . . . ” of course stands for one of the trilinear null-forms in
(2.3). Now, we we think of the entries ψ1, ψ2, ψ3 as either given by a ψα,1 or a ψα,2,
with at least one occurence of ψα,2. Then we have two possible cases:

(i): at least one copy of ψα,2 inside ∇−1Pk4 [. . .]. Let this be Pk2ψα,2.

This we estimate by

. 2−δ3|k−k1|2−δ1|k2−k3|2−δ2|k4−max{k2,k3}|dk1ek2dk3

Now use that

ek2 = min{dk2 , 2µmax{k2−δl,−k2−δl}dk2} . 2−µδl

since we have dk . 2−σ|k| for some σ > 0, and we assume that µ is chosen small
enough. Then we have

∑

k1∈Z

2−µδl2−δ3|k−k1|dk1 . ek

We can now infer that∑

k1,2,3∈Z

2−δ3|k−k1|2−δ1|k2−k3|2−δ2|k4−max{k2,k3}|dk1ek2dk3 . εek

(ii): The first input Pk1ψ1 is Pk1ψα,2. Here we infer the desired bound directly
since the ek form a frequency envelope.

The remaining terms in F (ψ1, ψ2) if higher degree of multilinearity are treated
similarly and omitted here.

Now we turn to estimating the term

Pk(1 −P[−δl,δl])F (ψ1)

Recalling the definition of −P[−δl,δl], we see that in the expressions constituting

(1 − P[−δl,δl])F (ψ1) either at least one frequency 2k satisfies |k| ≥ δl, or else at
least one operator PkQ≥k+δl occurs. We need to show that this implies an extra
exponential gain in l. We do this here for the trilinear terms, the higher order terms
being treated similarly: first, again using the schematic notation

”Pk∇x,t[Pk1ψ1∇−1Pk4 [Pk2ψ2Pk3ψ3]]”,

assume that one of k1,2,3,4 is of large absolute size. Then reasoning exactly as before
in (i), (ii), implies

||”Pk∇x,t[Pk1ψ1∇−1Pk4 [Pk2ψ2Pk3ψ3]]”||N [k] . ek

Further, we have
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Lemma 4.14. The following estimates hold, where we again use schematic no-
tation:

||”PkQ>k+δl∇x,t[Pk1ψ1∇−1Pk4 [Pk2ψ2Pk3ψ3]]”||N [k] . 2−νldk

||”Pk∇x,t[Pk1Q>k1+δlψ1∇−1Pk4 [Pk2ψ2Pk3ψ3]]”||N [k] . 2−νldk

||”Pk∇x,t[Pk1ψ1∇−1Pk4 [Pk2Q>k2+δlψ2Pk3ψ3]]”||N [k] . 2−νldk

||”Pk∇x,t[Pk1ψ1∇−1Pk4Q>k4+δl[Pk2ψ2Pk3ψ3]]”||N [k] . 2−νldk

Here ν > 0 is a constant depending on δ but not on µ.

Proof. (Lemma 4.14). All of these follow essentially directly from the proof
of Proposition 4.6. �

The preceding Lemma completes our treatment of the trilinear terms in (1 −
P[−δl,δl])F (ψ1) since 2−νldk ≤ ek for µ (in the definition of ek) small enough. The
quintilinear etc terms in (1 −P[−δl,δl])F (ψ1) are treated similarly. �

Proof. (Proposition 2.3) This is contained in the preceding proof. �
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