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ABSTRACT. Let u : R3t! — H2 be a Wave Map with smooth compactly
supported initial data satisfying the smallness condition Hu[OmH% it <€
for a sufficiently small ¢ > 0. In particular, the Wave Map exists globally in
time and is smooth. Then denoting u(0,z) = ue € H for |z| large enough,
we have
|lu(t, ) — woo||ge St7°

for |t| >> 1 and 6 > 0 some universal constant. Here the implied constant
depends on weighted norms of the the initial data (which, however, need not

be small). Furthermore, there exist (f, g) € H% x H?% such that
u(t,z) = St)(f,g9) + °.3 (1)

where S(t) denotes the free wave propagator.
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1. Introduction

A wave map u : R"*? — M with (M, g) a Riemannian manifold, and R"* the
(n+1)-dimensional Minkowski space with Minkwoski metric m,,,, = diag(—1,1,...1),
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is critical with respect to the functional®
u— L(u) := / (Oau, 0%u) ydo, 0% = m*P g
]Rn+1

The Euler Lagrange equations associated with this functional in local coordinate
are of the form
Ou’ + F;k(u)&,ujayuk =0,0=290,0"

Although the global well-posedness of the Wave Maps problem for general smooth
large data, generic target, and spatial dimension n > 2 is far from understood (for
a recent survey of results and conjectures see e. g. [12]), global existence results
have been obtained with increasingly weaker smallness conditions on the data. The
first such results follow from the classical work of Klainerman, which uses vector
field methods and in particular imposes a very strong smallness condition on the
data, in terms of certain weighted H®-norms. These conditions in particular imply
that the Wave Map will be confined to a single coordinate chart inside the target.
Further, they immediately yield strong asymptotic results for the corresponding
solutions, including pointwise decay estimates as well as scattering in terms of the
local coordinate functions.

Recent work by Tataru, Tao and others [25], [26], [23], [24], [6], [13], [9], [11], [27]
based on new techniques introduced in [26], [23], [24], led to significantly stronger
global existence results. In particular, one only needs to assume that the initial
data u[0] = (u,0yu)i=o are small in the critical Sobolev norm [|.|[ ;2 ;2-1 in a
suitable sense. Note that the latter condition no longer implies that the data are
confined to a single chart: indeed, the Wave Map can now move all over the target.
The works [23], [24], [6], [13], [9], [11], [27] are based on a geometric trick, in-
troduced in [23], [24], namely exploiting the inherent Gauge invariance of the
equations to pass to a more convenient Gauge (e. g. the Coulomb Gauge). Fur-
thermore, they reveal that the cases n = 3 and especially n = 2 appear significantly
more complicated than the cases n > 4 since the Strichartz estimates by themselves
appear no longer strong enough to close the estimates, even using the inherent null-
structure. Instead, the only method thus far establishing the well-posedness at the
critical level hinges on a sophisticated framework from harmonic analysis, blending
X9 type or Bourgain spaces with Tataru’s null-frame spaces, both of which are
based on localizations of the space-time Fourier transform of the unknown function.
Both the fact that one needs to pass into a new Gauge as well as the use of complex
spaces based on the space-time Fourier transform render the question of global as-
ymptotic behavior as well as scattering in the original coordinates highly non-trivial
in the dimensions n = 2,3. The present paper has the goal of answering these ques-
tions for 34 1-dimensional? Wave Maps with target H2, the hyperbolic plane. This
target appears quite natural, as it occurs in the context of General Relativity, and
is the natural counterpoint to Wave Maps with target S2. As already observed in
[9], and exploited in [11], Wave Maps with target H? enjoy the remarkable prop-
erty that the derivative components in the Coulomb Gauge satisfy an autonomous
first order div-curl system, which no longer involves the local coordinate functions.

1Throughout this paper, the Einstein summation convention is in force. This means that we
sum over repeated raised and lowered indices.

20ur argument can obviously be modified to also handle the higher dimensional cases n >
4. Indeed, the argument becomes much simpler then, since one has stronger estimates for the
nonlinearity.
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This allows one to conveniently disentangle the global behavior of these derivative
components from the global behavior of the actual coordinate functions, and to
pass from the former to the latter. The main result of this paper is the following

THEOREM 1.1. Let u : R3*!' — H?2 be a Wave Map with smooth compactly
supported® initial data satisfying the smallness condition (suitably interpreted as
ezplained below) ||[u[0]|] ;3 .1 <€ for a sufficiently small € > 0. In particular, the
Wave Map exists globally in time and is smooth. Then denoting u(0,z) = us € H
for |z| large enough, we have

llu(t, ) — usollre St7°

for |t| >>1 and § > 0 some universal constant. Here the implied constant depends
on weighted norms of the the initial data (which, however, need not be small).
Furthermore, there exist (f,g) € H2 x H= such that

u(t,x) = S(t)(f.9) + 0,5 (1)
where S(t) denotes the free wave propagator.

REMARK 1.2. The critical case n = 2 appears much more technically involved,
although the same strategy should work in principle, see the estimates in [11].
Furthermore, a similar method should in principle work for more general targets,
although the fact that one can no longer formulate an autonomous system of wave
equations for the derivative components (they now also depend on the local coor-
dinates) introduces additional technical difficulties.

2. Wave Maps with target H?: the basic setup
We use the setup in [11] : identify H? = {(x,y)|y > 0} equipped with metric

2 2
dg = 4" Then introduce the derivative components oy = 8‘;,—"7 oz = &;_y7

a=0,1,2,3. Further, introduce the derivative components in the Coulomb Gauge
in complex notation

i : —inATEY3 s
Yo = P +iY2 = (9h +igd)e AT o= %,

We recall that we then obtain the following divergence curl system

3 3
(2.1) Oathp—0pthe = ithp A 0 (b0 —y20)) —itha AT D5 (WY —9f1)))

j=1 j=1

3
(2.2) 0y = i, ATV 05 (F — b))

Jj=1

3This means that u(0,#) = uso is a fixed point for |z| sufficiently large, as well as dyu(0, ) =
0. One may weaken this condition to sufficiently fast decay at infinity.
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From here one infers the wave equations

3
Otpa =i0° [ho A1 05 (050F — bF))]

j=1

3
(2.3) — 0[Ny 05 (it — van)]

j=1
3
+ 0ol AN 0 (T — )]
j=1

Schematically speaking, the terms on the right are of the form V., ;[ V~1[¢?]]. In
dimensions n = 2,3, the right hand side of (2.3) is not amenable to estimates as
is, and as in [11], we need to exploit the underlying divergence-curl structure to
decompose it into a null-form plus a better error term. For this, we split

(24) "/}a :Ra¢+Xa7 a=0,1,2,3,

where we impose the vanishing divergence condition 23:1 0;x; = 0. Here, the

symbols R, = V719, with V/*l\f(g) = |¢|71 £ (€) denote Riesz type operators. The
Xo can then be obtained as solutions of an elliptic divergence curl system, and are
schematically of the form

Xa =V WV Y?)]
If we now insert the splitting (2.4) into (2.3), we can replace the right hand side by

3
Dt =i0° [Rat A1 0;(Rgv Ryt — R Ryt

Jj=1

3
—i0°[Rgp A1 0;(Rath' Rjv)® — Rotp® Rjib)]
(2.5) ’:1
+i0a[Ry AT Z 9;(RVY' Rj1p* — RVY*Rjph)]
+ Vo iV VT @)V )] 4 Vet [0V VTV (7)Y
+ Vo [V IV VT @)V [V (2]

Here the last three expressions are of course recorded schematically, with each V!
denoting operators of the form 22:1 AT19. Tt is this complicated system of wave
equations which shall be at the heart of our analysis, similarly to [11].

Recall that the basic paradigm for establishing scattering for a wave equation of
the form

Ou = F(u, Vu)

is to establish lim ;e [~ U(t — s)F(u, Vu)(s)ds = 0 in the underlying Sobolev
space H* (which is dictated by scaling reasons, for example). This follows by
establishing L} H*-bounds on the source F(u,Vu). For our system (2.3), such
estimates are not available in dimensions n = 2, 3.
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2.1. The method to obtain scattering for the 1,. Fixing a large dyadic
time interval I; := [—2!%2 2!42] | >> 1, we shall split the components 1, into two
parts Yo = Ya,1+%a,2. Here ¢, 1 approximates the moderate-frequency part of 1,
(where 'moderate’ is in relation to the scale 2'), while 1, 2 approximates the very
large/small frequency part of ¥4 2. While 14,2 will turn out to be small since the
extreme frequencies of 1, carry only little energy, 1,1 will be shown to be small
(albeit in a different sense) since we shall be able to apply commutating vector
fields to it. Thus the simple basic premise of the present approach is to split ¥,
into a moderate frequency part, obtained by filtering out the extreme frequencies in
the nonlinearity, which is basically amenable to classical commutating vector field
methods (although of course 11 is not small with respect to the weighted norms),
as well as an error term which accounts for the remaining errors due to extreme
frequencies. Scattering of 1, will then follow by splitting the right hand side of
(2.3) into two parts, upon writing o = a1 + Ya,2. Indeed, crudely denoting the
right hand side of (2.3) as F'() (it being understood that it is not a locally defined
function evaluated at 1), we can decompose

F(¢o¢) = Z Xt~2t [F(wa,l) + GI"I‘OTL
l

where the splitting 1, = ¥a.1+%q.2 is the one on the interval [—2!72 2!2]. We shall
then show that 1), 1 can be placed into LZ?L5°, which allows us to estimate F'(1q,1)
in L%H _%, while the error is exponentially decaying in { (but with respect to a more
complicated norm!). This shall then imply scattering for 14, as well as pointwise
decay. The latter facts allow one to retrace the steps from local coordinates to the
1, to obtain decay and scattering for the coordinates (x,y).

2.2. Tools from harmonic analysis. In order to precisely define 1, 1, we
introduce the Littlewood-Paley localizers Py, k € Z, as well as the space-time local-
izers Qy, as follows: choose a function ¢ € C§° (R ) with the property >, ¢(55) =
1,2 > 0. See e.g. [20]. The we define Py, Qy via

|I7] =

PiF () = 0() (), Qrf(7,6) = ¢(T|§H)f(ﬂ 6

Here " denotes the spatial Fourier transform f(£) = Jps f(2)e 2™ dx, while we

denote the space-time Fourier transform by f(7,€) = [ps11 f(t, 2)e 27T+ dtdz.
We can then also introduce the operators

Po=> Pi Pay= Y P etc
k<l k€[a,b]

Further, let F (1) denote any of the multilinear expressions on the right hand side
of (2.3). Then introduce the operator P|_s 5, which acts by restricting the fre-
quencies and modulations (i. e. the distance of the space-time Fourier support to
the light cone, measured by ||7| — [¢]|) of all the inputs, as follows:

Definition: the function P|_s 5 F(¢) is obtained from F(v) by
(i) replacing the ith input ¥ by Py, Q<k,+51%, and summing over k; € [—=6l,0l] for
each i.
(ii) replacing the ith operator A='0; by P.,A™10; and summing over r; € [—6l, 4l]
for each i.
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(iii) Applying an operator PrQ <kts1 to the output and summing over k € [—4l, dl].

Example: the trilinear expression

3
10°[ha D71y 05 (YT — wEu))]
j=1
is replaced by

P_si.on[10°[a > 123 (Y7 — 3wl

j=1

= Z PiQ<iot51[i0° [Py Q<ioy 461000 NPy
k,k112,3,7‘6[—(5l,6l]

3
Z 0; (Pry Q <y 45105 Py Q <y +-510

=1
— Py Q<hy 45105 Pry Q< iy 5107 )]

2.3. Definition of 9,1, 1o 2 on some interval [—2/72 2/+2]. We can now
define the equation which defines 1,1, as follows:

(2.6)

Otpa,1 =P _g,51 [10°[Rath1 A 128 (Rp1 Rjyt — Rppi Ry )]
— i0°[Rgir A 128 PR ¥ — RatiRj})]

+i0a[Rup A Z 0;(R* Y1 Rjyb7 — RPTR )]

+ Vo VOV @DV @D + Ve [pr VIV T n V(9] 4]
+ Va1 VIV o VDIV [ V@)

wa,l[o] = wa[o] = (d’a(o)a 011 (0))

Here we use as before ¢ = — E;’:l Rj1; 1 for the first three trilinear terms on the
right. For the schematic higher order terms, it is understood that v, is replaced
by a1 Vo

We immediately observe that this is not a standard wave equation, since it
involves nonlocal operators in its source term, even in the space-time sense. Thus
it certainly does not satisfy Huyghen’s principle! Nevertheless, we shall be able
to construct solutions on some interval [—T,T] which contains [—2!72 2/+2] and
also matches the initial data, via Banach iteration in a suitable space. Indeed, the
solution will be smooth. We note here that this iteration is qualitatively different
than the procedure used in [11]. There the equation (2.3) is only used to deduce a
priori estimates, while the local existence of a solution is ensured by the classical
local existence theory in local coordinates. For the problem (2.6), such a step is
not possible, since it is not a geometrically motivated problem. Thus the existence
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of local solutions needs to be demonstrated from scratch via iteration.
We can now also define 9, 2 via

¢a72 = wa - ’@[Ja,l

2.4. Analytical preliminaries. Here we recall the functional framework un-
derpinning [26], [24], [11], in Tao’s formulation. We shall use the following homo-
geneous X *%-type norm:

; 1
16l xprar = 27D _[2911Q¢l 22]")7
jez
provided r < oo, as well as the obvious modification when r = oco. In order to

estimate the frequency localized components of 1,, we have the family of norms
|[[|s[x], k € Z, defined as follows: let

1Pllsim =NVedll o gy + ||Vm,t1/f||X;%,%,m+
+ 1
sup ( Z ||Pk7iNQ<k+2l¢||%[k,:tn])2

1<—10 weEK]

Here we have chosen for each integer | < —10 a finitely overlapping cover K; (with
the overlapping being uniform in /) of caps & of size ~ 2! of the sphere S2. The
superscript + in Qi 421 indicates that we further localize (sharply) to the upper
or lower half-space £7 > 0, repsectively, and finally, the norms ||.|[ s, . are defined
as follows: first, let

[N Fafx)s = supgga.dist(w, £)|[]|Lee £z

tw T
where w ranges over S? and we use the null-coordinates

1
ﬁ(lﬂw)

ty = (t,z) - L(1,w), 2, = (t,x) — t,

V2
We then also have the dual norm, i. e.
1
K] *— i f T2 w

Wllvra = il / o T el a2,

Further, we introduce
Wollw = nf [l o
fwen w= wWEK

Then we put
k _1__ k k
Wl stk,n) = 22 [Vl INFa)s + 1617227 2|[Y pwis) + 22 |[¥]| Loo L2

Further, the frequency localized components of the source term, i. e. the right
hand side of (2.3) etc, shall be evaluated with respect to the following norm:

[Pl v = 191l g + 12l g3 -1

inf
Y1+ +Y3+pa=PrQ<rr10Y

+ inf inf |2 z
5 dnf S W K;(ZH wllvrap)

+ ||PkQ>k+10¢||X

Here in the last term but one upon fixing ! < —10 we only consider those v, with

Fourier satisfying ||7| — [¢]]| < 2F72/7100 2k=4 < j¢| < 2MH4 @ = ‘—éﬁ € k. We

1 1

1
2°72°°N0|V, | 1L L, 2
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note that the norm |[|.||ypx we use here is slightly different than the one in [11], as
the elliptic portion PyQs=k+10% is estimate with a weaker norm, namely

—1
||P]€Q>I€+10¢||X’:%,fl,m +|Vz,:0 PkQ>k+1o¢||L?oH;%

2

This change barely affects the estimates, though.
Finally, we need time localized versions of these norms: for T' > 0, we introduce

[l Nk (=7, 1) xRS) 2= inf 1l
fES(RHl)’.ﬂ[fT,T]X]@ =Y|[_7,7xr3

and similarly for ||.|| g (—7,7)xR?) etc.

2.5. Some geometric preliminaries. Here we quickly recall the infinitesi-
mal generators of the Poincare group on R3*+!, namely the vector fields " which are
given by 0, 0x,, i = 1,2, 3 (translations), td; + Z?:l 20y, (scaling), 2;0,, — 20,
i,7,= 1,2,3 (rotations), t0,, + x;0;, i = 1,2,3 (Lorentz boosts). We shall denote
these by I'* where o = 1,2,...,11 for some ordering. We shall denote products of
these by ' T'®2 =: T(@1.22)  In particular, the notation T2, |3| = 2, refers to a
product of two such vector fields (as an operator, with 3 a pair of indices, hence
of length two), while I', | 3| = 1, refers to a single such vector field. We recall that
we then have the relations

0,77 =¢50, |8 =1
[0,T7] = ¢, 70+ dg0, Bl =2, ] = 1
2.6. The core estimates. With the above setup, we can now formulate

PROPOSITION 2.1. Make the same assumptions as in Theorem 1.1. Specifically,
we assume that the coordinate functions at time zero (x,y)(0,z) : R® — (RxRy),
(0ix,0:y)(0,2) : R® — (R x R) satisfy the condition

Vax|o |Vax| o / x5 X o
RS[(I y ) T e IRS[( y ) () de<e
for sufficiently small € > 0. Further, fix a time scale 2!, 1 >> 1. Then there exists a
smooth solution v, 1 solving (2.6) on [—2142 2!72]. Further, the following estimates
hold: Introducing the families of numbers

= 3 Qo NATOIE, L 4)*
0<|BI<3 leZ
— —o|l—k| 2 1
hi= 3 2 NNy )
€

for a sufficiently small o > 0, we have
Z 1P a1 |lspiy S 29 e
0<[B]<2
for some fized C. We also have

|1 Petba,1llsin S di

PROPOSITION 2.2. Under the same assumptions as in the previous Proposition,
we have
|| Petba2||sip) S min{dy, 2#max{k=ol=k=dli g1 .= ¢,

for a sufficiently small p > 0.
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These Propositions will follow essentially from estimates established in [9],
[10], as well as some elementary observations concerning commutators of the I'?
and Fourier localizers. They will be deferred to the end of the paper. In a similar
vein, we have the following

PROPOSITION 2.3. Let F(¢) denote the right hand side of (2.3). Then for
T ~ 2! we have

[[Pe(1 = P_s1.60) F (V)| Nk ((=,1)xR3) S €k

where ey s as in Proposition 2.2. The same estimate applies if we replace ¥ by 1
(i. e. we replace each o by Ya.1). Also, without any further localization, we have

||[PeF (1, Y2)l| Nk (=71 x k%) S €k

where F (11, 12) is any of the multilinear expressions on the right hand side of (2.3)
with at least one factor a8 replaced by o 8,2.

REMARK 2.4. The numbers di, e, form frequency envelopes, a notation bor-
rowed from [23]. A frequency envelope is a sequence {ci}rez of non-negative
numbers such that for some ¢ > 0 we have

270|k7l‘cl S Ck; S 20"kfl|cl

for each k, .

3. Deducing asymptotic decay and scattering from the core estimates

Assuming the above Propositions, we now deduce asymptotic decay for the
Ya,1; Ya,2, as well as scattering for 1,. Combining these ingredients, we then
obtain Theorem 1.1. We commence with the following crucial

LEMMA 3.1. Let 4.1 be as above, and assume t € [—2!12 2142] satisfies t ~ 2L
Then we have

[a,1(t,z)| S 9Csl—21
In particular, if we choose & small enough, we can achieve Yo 1(t, )| S 215,

PRrROOF. (Lemma 3.1) This is a consequence of the Klainerman-Sobolev in-
equalities: recall (see e. g. [22]) that we have

— 1
Yo (t,2)] S (L4l + )+ [[H = J21)72 Y (T anllez
181<2

Assume first that |z| > 2!, Using a smooth cutoff function X“t|f|x|| 5. we localize
this to
_ 1
X220y e Yot (52)] S (L 18+ 211+ e = ol
X Z ||FB[X|m|221X||t‘7‘z“N23¢a,1]||L%
|B1<2

for s =1,2,3,.... It is straightforward to verify that the expressions

FB[XIIIZQLX‘|t‘7‘z“w2s]5 |/8| S 27
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are uniformly bounded for |z| > 2!. Now we distinguish between the cases 2° >>
[t| ~ 2!, 25 < |t| ~ 2! In the former, we have using Proposition 2.1 as well as the
Sobolev embedding and Holder’s inequality

||FB[X|$IZQLX|\t|7|x||~28w0"1]||L%
Slas
S ||Fﬁ[X|m|Z2lX‘It‘_‘w“,ﬂswa,l]||HI%||X"tI_IIIINQSX\t|~2L||Lg S 2C l22,

whence we obtain

Célo— l
|X||t\7\z\‘~23¢a’1(t’z)| 5 2 2 57 |I| 2 2

Summing over 2° >> 2! yields the bound < 29%27! which better than what we
need. Next, assuming 2° < 2! and arguing in the same way, we get the bound

DD 22X e Vel S 27222 P27 827 g 270!

| |~

Summing over s > 1 yields the desired estimate in this range. Finally, if |2| << 2/,
apply the above reasoning to ||PB[X\1\<<21¢0¢,1]||L§- O

COROLLARY 3.2. Under the assumptions of the preceding lemma, we have the
estimate

_ L
2

||X|t\~2”/’a,1||L§L;o S27,
provided § > 0 is chosen small enough.

We can now prove

PROPOSITION 3.3. Under the assumptions of Theorem 1.1 and using the pre-
R L1 L
ceding terminology, there exists (Va1,Va2) € HZ X Hy 2 with the property

lim [t (t,.) = S(t)(Yar1, Ya2)ll 3 = 0, Vo

[t]—o0
REMARK 3.4. The proof actually shows that the convergence occurs at rate
[t|~" for small enough v > 0.

PROOF. (Proposition 3.3) We decompose ¥4 = 14,1 + Va2 for some fixed time
scale 2!, viz. preceding discussion. Accordingly, denoting the right hand side of
(2.3) as F(¢), we write it as F'(¢1 + 12). Exploiting multilinearity, we write it as

F(w) = F(d}l) + €rror,

where error is a sum of multilinear expressions each of which contains at least one
power of 1,2 (for some ). Then we further decompose

F() =P _s,5nF (1) + (1 = P_s,50)F (¢1) + error

Finally, we time localize , i. e. write
(3.1)

) = Y2 6 FW) = 3 6Pt () + (1~ Py ) F) + error]

1>1 1>1

where 1, 12 in each decomposition of course depends on [. Now the frequency
localizations implied in P[_s; 5 F(¢1), together with lemma 3.1 easily imply

N‘N

t _
(5 )P sran F W0l -3 S 2772,
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provided we choose § > 0 small enough. Further, on account of Proposition 2.3, we
obtain
[1Pe(1 = P_sio0) F (1)l Ny (-1, 77 xR2) + | Prerror| | v -1,7)xr2) < €k

Note that error is of the form F(i)1,2) as in Proposition 2.3. Further, due to a
lemma in [24], we also have the same estimates for Pr¢(%)(1—P_s,s)F (1) ete.
Now fix some Ty >> 1 as well as T >> T, and write

bolt, ) = S(t) ($al0]) + / n(t — )U(t — s)F() (s)ds

where t € [Ty,2Tp]. Here nf(t) vanishes for t < 0, equals 1 on [0,7], and is
compactly supported and smooth on (0, 00]. For example, upon choosing such a
;" (t), one can set 7. (t) = 1y (%). Then decompose

t To
[t =90 = 9P s = [ - U - 9 F@)ds
0 0

4 / Wt — $)U(t — $)F()(s)ds

To
We need to show (A) that
To o
lim 7 (t = Ut = s)F(¥)(s)ds = S(t)(Va1, Yaz)

To—o0 0

in the H 2-sense for suitable (a1, Va2) € H2 x H™2, as well as (B)

lim || [ n7(t=s)U(t —s)F(¥)(s)ds| ;1 =0

To—o0 To

Use that U(t — s) = \/Ifl sin(v/=A(t — 5)) = mil&i(tis)mgf%(tﬁwj.

Hence it suffices to consider

To
/ n(t — s)\/—A_leii(t_s)mF(d;)(s)ds
0

_ . TO .
= \/I 1ei”m/ e:F”mF(w)(s)ds
0

Here we use that 07 (t — s) = 1 for t € [T, 2Tp], 0 < s < t, since T >> Ty. We will

show that the limit
To .
lim eTIV=LF(4)(s)ds

To—00 0
exists in H 2, from which (A) follows. Consider
T, < LE o
[ B = Y [ egem B rw)e)ds
TD 2L2T0 TO 2

Then note that

Ty ) T ]
1] oGP "EE@)(s)dsll, g = sup (| o(5)eFVTER()(s)ds.g)

To llgll  1=1 JTo
H2
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Now, using (3.1) we get

. L
I ¢< 2 )eFIVIEP g sy F () (s)ds, g)| S 271 S Ty 2
To

Further, write

<T ¢( )jFism(l—P _st,60) F(11)(s)ds, g)

S isv/— A D
_ Z/ 0P = P F(wn) (s, 2)e** "2 Bug(a)duds
L —oo JR
Here P is a multiplier like P, but satisfying P,P, = Pi. Then use that [24]

l6(3r)e =Y =2 Pegllsiy S gl 40 as well as | < PoF,y > | S |F|Ivwl9]]sp-
Using Cauchy—Schwarz, we conclude that

( (b( C)eFVIE (L = Py ) F(1)(s)ds, g)]

To
S D 1 —v —v
S 1Pk (57) (L = Prosisn) F (1) ()l vw | Pegll 3y S D ez s2M ST,
kEZ keZ

for suitable v > 0. Of course the same argument applies to the contribution of error
n (3.1), Whence summing over [ with 2! ~ T and letting Ty — oo, we obtain (A),
e.

i. e. the H2 convergence of f eTisV=2F(¢))(s)ds. The argument for establishing
(B), i.

To—00

tim [t = U =) P@)(s)dsll =0

is no different, using Theorem 4.4 as well as the fact (see e. g. [24]) that

t
I /T Wt — $)U(t — $)F(6)()dsl[spazrress) S IF )] izixss).
0

and applying the same reasoning to the term ”error”, the proof of Proposition 3.3
is complete. (Il

We now show how to deduce scattering of the original derivative components
from Proposition 3.3. We have

PROPOSITION 3.5. Under the assumptions of the preceding Proposition, we have

\t1|iinoo l|pa — S(t)(1/~)a1ﬂ/~)a2)||gé =

Furthermore, there exist pairs (f1,91) € H? x H=z, (fa,92) € H? x H2, such that

i [fx(t.) = S (o)l s =0 Jim[ly(t) = SOF2.g2)ll,5 =

PRrOOF. (Proposition 3.5). Recall that ¢, = 1/)aem71 33219 We shall need
the following

LEMMA 3.6. We have

[[Pee™ ™ 2= 29| g 4[| Padall 3 S di

H2N
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PRrROOF. (Lemma 3.6) Expand
Pk[em“ 51 019 g

A —1 3 1
—szaz HPek-s ZA '010;6}) P,y 21€'” Z:J':laﬂﬁj||]-1,g

j=1

3
A =13 1
+ Py Z OAT [ Pis s (O AT'010;¢5) Pegyaoe’™ =1 %% 2]

j=1
1
+szal "Psrys ZA o, 0;9; D Pojioe™ P 0505 || 4]
j=1
Similarly, we have the identity
A —1 3 a1
Pk¢a =Py [P<k_5¢aP{k727k+2] elA =1 8]‘15]']
A —1 3 el
+ Pi[Plr—s,k+5] @/JQP<;€+1O@1A j=1 8;¢>j]
+ Py[Pogrstha Poppoe™® Ti=10i9)]
We infer from the first identity above that

A —1 3 L iA—L S8 - pL
|Pyle"® 2=1 %% s S| Ppgpymge’™ == 9| s max{||¢]l|| 1}

+ | Pres k459; 1 + Z 27 ||Pl¢ [
I>k+5
Further, from the 2nd equality above we infer

3
1Pidall ;3 SIPr-2nroe™ 2= %9y [[Paxsthall

+ 1P ks Pall 3 + D 2T||Pl¢a||,-{%
I>k+5

Substituting the latter inequality into the former, we obtain

S A —1 53 e iA—1$3 -t
||Pk[ezA >t 31¢]]||H% §||P[k—27k+2]€ZA 251095 ||H% mjax{H(ﬁ]lHH%}
A—1 53 41
+ ||1D[lc—77lc-§—7]eZA 25=1%9; ||H% ||P<k7/}a||H%

k-1
+ 1 P—10,k+10%all ;1 + ZQTHPH/JOLHH%
I>k

+3 25 1Pl

>k

Using the definition of dj, this implies
A —1 3 e A1 3 - HL
|Pule’® =1 29| g S el|Progpinle’® 2021 %%|| 5 +di
Iterating and choosing e small enough, we obtain the desired bound
A —1 53 st
||Pk[ezA 25— 8]¢]]||H% 5 dg,

which in conjunction with the above easily implies ||Py¢a||r2 < di.- O
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Returning to the proof of the Proposition, fix a time scale |t| ~ 2!, 1 >> 1, and
correspondingly decompose 1o = %a.1 + Ya,2. Then we can write ¢o = ¢o,1 + Pa,2
with

¢o¢,1 - ¢a,leiA71 Z?ZI 8j¢;7 ¢a,2 - wa,QeiA71 Z?ZI 0 ¢}

Using reasoning as above, it is then clear that
_z _
lbaillie S 277 (|9asll 1 S 277,
for some v > 0. Indeed, we can strengthen the latter to Hd)o@”g%,l < 27" and

similarly ||P[,,,ly,,l]c¢a71||B%,1 <27V for some v/ > 0. By splitting

3 3 3
AN 00 = ATV Pligdioh + ATV Py 956),
j=1 j=1 J=1

and using the decomposition ¢} = ¢}, + ¢j, from above, we then deduce
3
AT 0505t e S 2770 [t ~ 2
j=1

for some v/ > 0. Now write
Pa — S(O)(Par1, Paz) = (€27 Z=1%% 1)y, + o — S(1)(Par, Ya2)

We need to show that the first expression on the right converges to zero as t — oo,
with respect to H 2. Once again decompose

Pk[(emil 05 )%a) =Pr[Pi—10,k+10] (emil 05 1)Pcr—5%a]
+ Py [P<1~c+10(€m71 X1 0305 1) Py—s5 k45 %a)
+ P[Porya(e™® ™ 202129 — 1) Poyystal
For the first term on the right, we can bound
|| P [Pi—10,k+10] (€7 =995 — 1) Pjo_sipal|
iNTEYE 050 1)

i
S I Pr—10,k+10) (€ ;3 [P<k—stall 1

Thus, using Lemma 3.6, if we restrict to |k| > vl, we obtain exponential decay in
I. Hence we can restrict to |k| < vi. Then use the splitting 1o = ¥a,1 + a2 and
estimate

A —1 3 o
|| Pr[Pri—10,k+10] (€' 23=1%9 — 1) Py s51)a 1]
dATL Z?:l BJ(,‘b; _ 1)

|
H?2

_ A R
S Pik—10,k+10] (€ 52 Mallpe S 27 12l27F,

Choosing v > 0 small enough and summing over |k| < v still results in exponential
decay in [. Further, we have

A =153 1
|| PelP—10,p410) (€2 Z0=1 %% — 1) Pcr—svazlll ;1
A =153 1 -
SPhr0ps10 (€ 22020 — D[] 5 27F|| Pop—stballre S en,

where in the last step we have used Bernstein’s inequality and the Sobolev embed-
ding as well as the definition of e;. Square-summing over k results in an exponential
gain in [.
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Next, consider the term Py [P<k+1o(em71 =105 _ 1) P—5 k+5%a). Here we
obtain exponential decay from

(7" 3= 2950 ]| S 27 e ~ 2,
which follows from the bound on the exponent obtained further above. The term

P Pojia (e E5219595 _ 1)Poy 451, is handled similarly.

Finally, we also need to demonstrate scattering for the original coordinate func-
tions x, y. Recall that we have

log -1 Z 0 (;52
Reasoning as above for A1 Ej:l D¢, we obtain

(3.2) lim _[|A” 1Zaj¢ M= =0

[t|—

with a small polynomial decay rate in t. The already proved fact that ¢;(¢,.) =
S(t) (a1, vaz) + 0,1 (1) yields

log[yiw . 12@ 12@ 0,5 (1)

oo

Here we of course write a1 2 = 1}, o+i12, . Further, invoking (3.2) and reasoning
as above, we obtain from here

y
v )= 12@ 12@ 03 (1)
From the relation ¢} = ay—x we obtain in the same fashion that
X -1 -1
v Z djij1, O Z ;v a3 (1)

We further have the following
COROLLARY 3.7. (of preceding proof) We have the bound
(G, 3) = (%00, ¥00)) (& g S 1E7"

for v > 0 sufficiently small and large |t|. Here (Xo0,yoo)) are the values of u(0, )
for large |x|, i. e. the "data at infinity”.

4. The core propositions

We now outline the proofs of Proposition 2.1, Proposition 2.2, as well as Propo-
sition 2.3. We observe that these are essentially contained in [9], [10], the only new
ingredient being the presence of the vector fields I'?. We shall refer some details to
these papers. We begin by collecting some
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4.1. Basic facts concerning the spaces S[k], N[k]. .
LEMMA 4.1. ([9])We have

1_1y,(3_3

[|Ry Pet)llprra S 2la=3)+ p)]kHPkaS[k]a v=0,1,2,3
provided % + % < %, with implicit constant possibly depending on p,q. Also, we
have

1Pe sy S 1P Vartll

~5.5.1
k

The first part of this lemma allows us to control some Strichartz type norms.
This shall be especially handy when estimating terms of high degree of multilinear-

ity.
LEMMA 4.2. (e. g. [9]) The following estimate holds for suitable § > 0:

1 PLQy [ Pry o1 Prytboll| g 3 o S 200 mintiba kel O g mtia kol TT ) P oy 1
j=1,2

Furthermore, for any p > 0 we have

[k1—ka|
2

[Pk Pry 01 Py ]|l 2 200 S omirako— IT 115 willsp,
j=1,2
Finally, the following bound obtains® for p > 2:
|| Pi[ Ry Py, b1 Rj Prytb2 — Rj Py b1 Ry Py o] || 2 1
min{k,ky o} —max{k,ky 2}
<2672k B = T 11Pe il sim,

i=1,2

PRrROOF. (Lemma 4.2) Only the last part requires a justification, and this only
in the case k1 >> k. We decompose

Py[R, Py, 1 Rj Py, — Rj Py, 1Ry Prytbo)

= PpQ<ky20[ Ry Pr, 01 Rj Pryh2 — Rj Py 1 Ry Pr,y 2]

+ PpQ>k+20[RyPi, 1 R Pryh2 — R P, Y1 Ry Pry o]
For the first term, use a simple algebraic identity and estimate
|[PrQ <kt20[ R Pry Y1 Rj Pry b2 — Rj Py th1 Ry Proy o] | L2 e
< | PeQ<k 2000 [V Pry 01 R Py hal| L2 1o + || PuQ<hoy 2005 [Ry Py 1V ™ Prythal| 211
S 27| Poy ¥l g v l| P2 20
and from here the claimed inequality follows easily. Further, we decompose
PrQ>k+20[ Ry Pr, 01 Rj Py ha — Rj Py, 1 Ry Pry 2]
= PrQ>k+20[ Ry Py Q> k1001 R Py 02 — R Pry, Q> k1001 Ry Pry 2]
+ PQ>r420[RuPr, Q<1001 Rj Proy Q> i+10%2 — RjPr, Q<o 10U1 Ry Proy Q> 1002]
+ PrQ>k120[Ry Py Q <k 11001 R Pry Q <y 10%2 — RjPr, Q<iy 1091 Ry Pry Q <y 10v2)

40ne can significantly strengthen this estimate and also include the case p = 2, see e. g.
[11], but we don’t need this here.
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The first two terms are estimated similarly: for example, we have
[ PrQ>k+20[ Ry Py @>k+10901 Ry Pry b2 — Rj P, Q> k1081 Ry Py o] || 2 12

< 2% (Vo u VT Py Qukrr0t 1222 [ Vaa VT Py Qakrr0tn |22
k

3k _k _
<2773k H [Pk il s ki1

i=1,2

and the inequality of the Lemma follows from Bernstein’s inequality. Finally, for
the last term above, upon freezing the output to modulation 2¢, I > k + 10 (i. e.
apply an operator @Q); to the expression), use that we may assume k; = [ + O(1).
Then the inequality follows from the same calculation as at the end the of the proof
of Lemma 4.8 below, after summing over [. g

Of fundamental importance is furthermore the following

LEMMA 4.3. ([24], [10])Let j < min{ky, k2} + O(1). Also, let F and ¢ be
Schwartz functions, the former at frequency ~ 2% and modulation (distance of the
space-time Fourier support to the light cone) ~ 27, the latter at frequency 2¥2. Then
the following inequalities hold for suitably small 612 > 0:

[Pk (F) | viwg S 2_‘”'k_m"{”“”“2}'2_62']‘_“‘“‘{]’“"“2}'||F||XA 3o 1Yl s1ka]

2 2

[IV2 Pe(FY) N S 2751“ﬁnm({kl’h}l2752lj;min{kl’b}l||F||X oo | V21| sk

1 _1
272
k1

Finally, the relation between S[k] ad N[k] is obtained via the following
THEOREM 4.4. The following inequality holds:

[Peollsw) (-1 xr2) S OPe@l N (=111 +190]] 11 o1

The proof of this follows from simple modifications of the one given in [24].
We now give the proof of Propositon 2.1

PRrROOF. (Proposition 2.1). We fix a number [ >> 1, and construct a solution
a1 (for all @) on the time interval [—272 2/+2]. This solution is obtained via
simple Banach iteration: specifically, we require that the iterates a1, 7 > 1,
all be smooth functions which are supported on a compact time interval [—T", T"],
T’ >> 2!, and furthermore solve (2.6) on the interval [—2!72 2+2]. The iterative
step is given by the following:

t
Ya,1,5+1(t, ) = nr(t)S(t)(¥a[0]) +/ nr(t — $)PsionF (Y1) (s)ds, j =1
0
where 77 >> T >> 2!. Furthermore, we start the iteration with

Ya1,1(t, ) = nr(t)S(t)(¥al0])

Here nr(t) equals 1 on [T, T] and smoothly truncates to a dilate of this interval,
contained within [—7",T']. Proposition 2.1 now follows from theorem 4.4 and the
following

PROPOSITION 4.5. Assume we have the bounds

[[Petba,1,5 sik)((-T, 1) xR3) < Mdy, Yk € Z
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Further, assume we have

> PP a jll s (-1 xmey < M29%, VE € Z
0<|Bl<2
[PV Y V15l s (-1 xR3) < Mydy, Yk € Z
Here the numbers cy,dy are as in Proposition 2.1, and N > 1 is arbitrary. Then,
provided M, M are large enough absolute constants and € > 0 s small enough

(again with € as in Proposition 2.1), and My, Mpy_1 ... are large enough constants
depending on the initial data (and N ), we infer the bounds

[[Petpa,1 i1l sk (=11 xR8) < [€M + Cldy, Vk € Z
for some C independent of M, as well as
> P Yo llsm-rrxre < [€M29% + C29%Y ey, VE € Z
0<|BI<2
1PV Y Va1 i1l sp—rmxrs) < [€My + My_1]di, Vk € Z
Furthermore, we obtain for the differences
S0 VTP Piltbatjrr — Ve lllsp(-r.mxe) < Cne
0<|B|<20<k<SN

To see how the proof of Proposition 2.1 follows from this, note that each
VETB Py[tha 1,4] converges with respect to L;’OH%, whence the limit is smooth and
satisfies the same bounds. ]

Hence we now direct our efforts to proving Proposition 4.5. This will be
achieved via multilinear estimates much in the spirit of [9], [11], the only new
ingredient being the I'?:

PROOF. (Proposition 4.5) We shall first establish the inequality
| Petba,1 j+1llsiy—r, 1) xre) < [€M + Cldy, Vk € Z

This will follow from the energy inequality Theorem 4.4 as well as the following
two fundamental Propositions 4.6, 4.9. The first deals with estimating the trilinear
null-forms on the right hand side of (2.6), while the 2nd deals with the higher order
terms

PROPOSITION 4.6. The following trilinear null-form estimates hold:

3
|| Pu0”[Ro Py 0 P, A1~ 05(R Py 02 Ry Pryths — R Piytba R Piyths)] | v

=1
3
< 2751|k27k3‘252[k47max{k2,k3}]2753|k7k1| H ||Pk/¢)1||5’[k]
=1
3
|| PO’ Ry Py, o Piy A1 05(Ra Pry 03 Ry Py tbs — R Piytho R Py t03)]l vk

j=1

3
< 9= 01k —ks|gdalka—max{ks,k3}]9—dalk—Fk1] H ||Pk"‘/]i||5[k-]
=1
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3
|| PO [Ry Pry 0 Pry A1~ 05 (RY Pytpa Ry Pigths — Ry Pryth2R” Piyths)]l s

Jj=1

3
< 2751|k27k3‘252[k47max{k2,k3}]2753|k7k1| H ||Pk/¢)1||s[k]
i=1
for suitable positive 612 3.

REMARK 4.7. We observe that these estimates are very similar to Theorem
4.2 contained in [10], and indeed essentially implicitly contained in the proofs of
[10], see also [11] in the 2-dmensional context. The only extra feature here is
an exponential gain in the difference k4 — max{ks, k3}. Our treatment shall be
correspondingly brief.

PROOF. (Proposition 4.6) We shall treat the first inequality, the other two fol-
lowing from identical reasoning. By scaling invariance we may assume k = 0. We
note that the cases kg = ko + O(1), k1 € [-10,10]¢ follow from Theorem 4.2 in
[10]. Hence we now assume kg = kg + O(1) >> k4, k; € [—10,10], k4 < 15. One
distinguishes between the following cases:

(1): output in elliptic regime. This is the expression
3

PyQ>200" [Ra Py, Piy A 0 (R Piytba Ry Pryths — R; Py 02 R Piyibs)]

j=1

Recalling the definition of ||.|| o), we need to estimate this with respect to

| B - 1
X 2" 2 NO|Ve| 1L H, 2
First, we observe easily that

|07Vt | Po@5200° [Ro Py ¥
3

Py, A1 05(RpPry Ry Puyths — Ry Piy o Ry Prgs)ll| oy
i=1 '
3
S NRaPiy || poo 2 |[Pe, A1 Z 0j(RpPry 2 R Pytbs — RjPry 0o R Prybs)|| Loe oo
j=1

which can be bounded by < 2ki—k2 Hle || Pr;il| s[k,),Which is as desired. Next,
freeze the modulation of the output to dyadic size 2¢, I > 20. Then we can write
(using that k; € [—10,10])

3
PyQu0”[Ra P, Pe, A1~ 9;(RpPry 2Ry Prytbs — R; Prytha RpPr,s)]
j=1
3
= PyQi0°[RaPi, Q21-100Pr, A 0;(R3Piytba R Pryths — R; Py 02 R Pryths)]
j=1

+ PyQi0° [Ro Py, Qi—10%
3
Pp, Q1210071 9;(RpPry 02 R Pieytbs — R;PrytbaRp Pry3)]

Jj=1
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The first term on the right is estimated by
|1PoQi0°[Ro Pr, Q>1-10¢

3
Py, A1y 05(Rp Py, oo Ry Pagis — R Py Y2 Rp Prys)lll 3.3
=1 0
= Y |RQO°[RaPr, Qi
11>1-10
3
Py, A1 05(RyPrytha Ry Pryts — R Py 2 Rp Peytha)ll 3.3
i=1 0
L 3 3
< Y 22k R TP il sy S 25752 TP, il spm
11>10 i=1 =1

For the 2nd term, we use the following
LEMMA 4.8. Ifl >> k, then the following bound holds for suitable 6 > 0:
| PrQi[Ry Py, o1 Pyl 212 S 275 golmin{lkn bz} —max{ikn ks )] 1T 11Peillsim,
i=1,2
PROOF. It is very similar to that of the last part of lemma 4.2: we can write
PrQi[Ry Py, 1 Prytha] =
PrQi[Ry Py, @>1-10%1 Pry 2]
+ PrQi[Ry P, Q<i—10%1 Pr, @>1-10%2]
+ PrQi[Ry Py, Q<i-10%1 Pr, Q <1-10%2]
Here the last term on the right is nonzero only if k1 = I + O(1). Then when
k1 = k2 + O(1) we estimate

3k
| PhQi[Ry Pry Q1-1001 Pry 2|l 212 < 2% || Ry Py @1-10%1 | 122 || Py U2l | 13o 12
3k 1

S22 R T 1P tillsies
i=,2
which is as desired. The cases k = k1 +O(1), k = k2+O(1) are handled analogously,
as is the expression PyQ[R, Pr, Q<i—10%1Pe, @>1—10%2]). Now for the last term

above, we may assume k1 € [l — 5,1 4+ 5]. Furthermore, we may microlocalize the
two inputs to the same half-space &7 > 0, i. e.

PyQi[Ry Py Q<1-1001 Pry Qi—10%) = > PrQE[R, P Q% 1011 Po, Q% 102
+

We split this into three terms as follows:

Z Plei[RVPkl Qizqod’lpkz Qj<[17102/’2]
+
= ZPle:t[RVPle?:%k,%k17l710]¢1Pk2Q:<tl—10¢2]
+
+ Z Plei[R”PklQi%k—%klwlpsz[i%k—%khl—lO]wQ]
+

+ ZPlei[RypklQi%kf%klwlpri%kf%kldjz]
-
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The first term is estimated by
|| ZPlei[RVPkl [i%k,%klyl,lo]wlpril—lod)ﬂ||L§L§
+

SRR
£

EPRIPA. L L0 3(p_
S 22h Tl H || Pe, il sy = 2390 H || P il sk,

i=1,2 i=1,2

The 2nd term above can be estimated similarly. Finally, for the third term, we can

Sk—3k .
o 1P Q2 102l oo 2

+
||RVPk1Q[%k*%k1,l710]w1||Xé’%
1

decompose it into
+ + +
ZPle B2y Pry <%k7%k1wlpk2Q<%k7%k1w2]

+
* KlgeK%(nm)‘diSt(’flw*Kz)ﬁﬁ(k*kl)
PeQi [Ry Pry iy Q% 1 Py e, Q 5
klgp vk ,m W o8 Lp, Y15 ke k2 W o8 L1y, 2
Using the definition of ||.||g[,.) and the Cauchy-Schwarz inequality, we can estimate
this by

IIZi: >

; 3 (k—k
Hl,zEK%(kikl)|dlst(n1,—n2)§24( 1)

+ + +
Ple [RVP/C17N1Q<%;C_%klwlpk27N2Q<%k_%kl¢2]||L§L§

1

3 (k— 1
524(k kl) Z( Z ||P]€1,HQ::%]€_%]€1¢1||2S[k1,l~i1])2
+

S )
+ 1
x ( Z ||Pk2,nQ<%k,%kl1/)1||?9[k1,n1])2

S )
This in turn is bounded by < 2% (k—F1) [1iz1 2 [P, %ills(k,), which is as desired. [

Then we can estimate

|Po@10°[Ra Pry Q<i—10%

3
P, Q110071 Z 0j(Rp Pry 2R Pryths — Rij27/}2RBPk31/)3)]||X7%,7%,m
i=1 0
<28 |[Ra Py, Q<1—10%]| Lo L2
3
1PryQ51-10A™" > 05(R Pry 02 Ry Pryths — R; Piytha Ry Piyths)l| | 12 e
=

3
k
< 9% 9ilki—ka] H [P, il sk

i=1
This concludes estimating the contribution of the output in the elliptic regime.
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(2): Output in hyperbolic regime. This is the expression

3
PoQ<200°[Ra Pry b P, A1 Z 0j(Rp Py o R Pyyths — Ry Pi,ha R Py t)3)]

j=1

Here, we first reduce R, Py, as well as the output further to modulation < 2%+~10,
To achieve this, estimate

|PoQ20> > ks—100°[Re Piy 91

3
P, A1 Z 9 (R P, po R Prytbs — Ry P, 02 Ra Py ¥s)] 4

j=1

k.
<o [|[Ra Py 1||Lee L2

3
1P, A7 0;(Rp Py Ry Pyt — Ry Prytho R Pryts)l| 12 oo

j=1

Using Lemma 4.2, the right hand factor can be estimated by

3
1P, A7~ 05(Rp Pyt Ry Py b3 — Ry Prytho Ry Prytha)l| 12 1
Jj=1
k kg—k
<2727 ] 1Pl s,
i=2,3

and the desired estimate follows. The expression

3
PyQ<200"[RaPr, @1y 1001 Py, A1 Z 05 (Rp Py 0o R Pyyths — Rj Py, 12 Rg Piy)3)]

Jj=1

is estimated similarly(place the output into L%H —3 ), hence we now need to estimate

3
PyQ<ry 100" [RoPry Q<rys 1081 Py A1) 05(R Payth Ry Pryths— R Py o Ry Pryt)s)].

J=1

Note that we may include an operator Q <, 110 in front of P, A™1.... We further
reduce the inner inputs Py, ;42,3 to modulation < 2ka+20 a5 follows: for example,
consider

PoQ<1oy~100°[Ro Pr, Q <oy —10%1
3
Py, AT 05(Rp Py Qg a0¥a Ry Py s — Ry Py Q> 2002 R Py 3))

Jj=1
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Simple geometric reasoning then allows one to include a multiplier Qsx,+15 in front
of each Py,13. Then one estimates

3
1PoQ<ks—100°[Ra Pry Qs 1081 Py A1~ 05 (Rp Piy @ ks t2002 Ry Pry Qs ky 4150
j=1
— R P, Q> k12002 R Py Q> ki +15¢3)] |
< 2| R Pry Q <y —1001 || £3o 12
VetV PryQkay20¥2l 12221V iV Pry Qo k2093|1212

L1
LiH, 2

x

3
< 28R TT 1P illse

i=1

We now let the outer derivative fall inside and obtain two terms, each of which
admits a null-form expansion: the terms are

3

PoQ<ry—10[Ra0” Pr, Q<ky— 1001 Py A1 Z 05 (R Pry Q <oy 42002 R Prey Q < ey 2003
j=1
— R P, Q<koy+2002 R3 Pry Q < 1oy +2003)]

3
PoQ<y—10[RaPiy Qcry—1001 Py A1 Z 0;0° (R Pry Q <ky 12002 R Piy Q <oy 2003
j=1
— R P, Q<ky+2002R3 Pry Q <1y 2003)]
We treat these separately. In order to streamline the formulae a bit, we shall omit
the localizers Q<r, 420, it being understood that the inputs Py, ;123 have Fourier
support at distance < 284129 from the light cone.

(3): The first null-form. We use the expansion

3

Z AT'0;(Ry fRjg — R f R f10"h

V' fR;g]0h — V1 fO[(V1g)h]

=1

3 3

= O[AT VT fRiglh] = > OA TV fRg]h
Jj=1 =1

} J
I

+VHfO(vTigh+ VLV Tigon

Hence we need to estimate the following terms: first assume ko < —20.
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(1): PoQ<ky—100[Ra Py, Q<py—10t1 Pry A1 23:1 0j (V1 Py, 0o R;j Py, 1p3)]. Here
we use lemma 4.1 to estimate it by

1

11
272

3
1PoQ<ks—100[Ra Pry Qs 1091 Puy A 3j(V71Pk21/12Rij31/)3)]||X7

j=1 0

3
k
< 27 || RaPry Qrg—1001 || pgor2|||| Py A7 > 0;(V7 Prytpa Ry Py ths)|l 21
=1

ka6
S22 P20 M Ry P, Qeky 100 || Lo 12| Pry ool | o e || Pey sl | o e

This is seen to be bounded by < 20[ka1—F2] Hle || Py, vil|s[k,) for some § > 0, pro-
vided we choose p > 4 sufficiently close to 4.

(i1): PoQ<rs—10[RaPr, Q<hym10%1Pe, A1 Y2 0;0(V L PhythaR; Pryt)3)]. This
we estimate by using Lemma 4.3 as well as Lemma 4.2: First, we have

3
Po@<hs-10[RaPry Qeky— 101 Pe, AT~ 0;0(V ™! Prytha R; Py t3)]
=1

3
= PoQ<ky-10[RaPr, Qs 1001 P, @iy p 107> 0;0(V " Prytho R Piybs))]

j=1
Then we first remove the localization operators Q) <k, —10, which is simple (estimat-

ing as before) and omitted. Thus we now need to estimate (including an operator
Q <k, to render the R, harmless)

3
Po[RaPi, Q <k, th1 Pry Qerap 100> 0;0(V ! Prytho Ry Prytha)]

Jj=1

3
= Y Po[RaPiQar 1 PrQ;A7 1Y 9;0(V ! Pyt R; Pryihs)]
=1

j<ks+10

Using Lemma 4.3 we have
3
|| Po[Ra P, Q<ryth1 Pe, Qi A1 Z 9;0(V ™' Py thaRj Py ¥03)]| o)
j=1

N 25(j_k4)||Pk1¢1||S[k1]||DV—1Pk4Qj(V_lPk2¢2Rij3¢3)||X%,7%,1
k

~

for suitable § > 0. Using Lemma 4.2, we estimate this by
20050 || Py 1 || ||DV*leQj(Vﬁlpkz1/)2Rij31/)3)||X

11
220!

k

S

526(j_k4)||Pk11/11||5[k1]2k4_k2 H [Pl spe
i=1,2

which is as desired upon summing over j.

(ii): PoQ<k,—10[RaDPr, Q<kym10%1 Pry A1 Y01 05(V L Phyt02 Ry Pryibs)]. This
is estimated similarly to (i). Simply place the output into L}H 2.
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(iv): the term corresponding to V~1fO(V~lgh) in the above expansion is
the most difficult to handle; we use that Py, acts via convolution with a function
ax, (z) of bounded L!'-mass. Further, we recall here the precise microlocalization of
Py, ;12,3. Thus we write this term as

/R3 ey (W) PoQ <hoy—10[0[Piy Q<hos—10Rat1V ™ Py Q <oy 2003 (- — )]
V! Poy Qeryto0t2(. — y)]dy

Note that the restriction that Py, Pr,13 is reduced to frequency 2%4 allows us

to simultaneously localize them to angular sectors kg3 such that dist(ke, —k3) <
243" Thus we can write

/}R3 ey (V) PoQ <y —10[0[Pity Q< by —10 Rat01V ™ Py Q <oy 2003 (- — )]

V! Py Qcryr202(. — y)]dy

- >

K/2,36Kk47k2Idist(ﬁz,—ﬁg)§2k47’c2
/R% ey (V) PoQ < ks —10[0[Pry Q< ks —10 Rat1 V™ Prog s Q< ka 2003 (- — v)]
V! Pry ey Q<kat20t2(- — y)dy

Here we first abolish the outer localizer Q<x,—10, and modify O to OQ «x,10(1):
clearly, we have

PoQ<ry—10[0[Pry Q< ka—10Rat1 V™ Pry ey Q <isy20¢3(- — )]
V! Pry oy Q<kar202(- — 9)]

= PoQ<ry—10[Pry+0(1)Q <ty +0(1) D[Py Q <y —10Rat¥1 V™ Pry 10y Q <y 42003 (- — )]
V! Pry oy Q<kar202(. — 9)]

Then, replacing the outer Q<x,—10 by @>k,—10, say, we can estimate

[Po@>ks—10[Pr, +0(1)@<ks+0(1) B[Py Q<ros—10Rathr
V! Prg ey @<kat2093(- = )]V Pry oy Q<iear2002(- — 9)]|

P g
2°7 2
Xo

_ka _
<272 25| Py Qeny—10Ratt || o 12|V 7 Pry ey @ <kar2083(- — 9) | Lo
IV Pry s Q<kar20t2 (- — y)l| e
We have taken advantage of the fact (see e. g. [24]) that the operator Py, Q<x,+0(1)

acts boundedly on spaces of the form LYL2, 1 < p < co. Then we use Lemma 4.2
as well as the fact that

> Pk Qearsantbllzpg S 1P| B
rEK;

This is straightforward for the first two components defining ||.||g[3). For the com-
plicated null-frame part, use that |[.[|sp,x < |I-l|sk,x for & C £'. Hence we have
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for =10 >10'>1
+ 2
Y > P QF oy Pen Qi3
KEK K€Ky

+ + 2
S Z Z ||Pk,n/Q<k+2l/Pk,nQ<k+2ﬂ/’||5[k,in]

K eEK; kEK, kC2K'

+
5 Z Z ||P/€,NQ§k+21w||2S[k,:l:n] S Z ||P]€,HQ<k+2lw||%[k,ﬂ:K]

KEK k' €K/ |KE2K! KEK;

The case when I’ < [ is handled similarly. Hence we now see that (using Bernstein’s
inequality)

>

K1,2€ K, ko |dist(ra,—r3) S2Fa—k2

k
272 28| Py, Qey—10Ratn || £2 |V ™ Pry ny Qkyt20¥3(- — 1) pa e
IV Pry ey Qiar202(. — Yllsre
3
< 20900 =k) TT || Py il s
i=1

We have now reduced ourselves to estimating

/3 ke, (Y) Po[OQ <y +-0(1) [Py Q< ks —10 Rat01 Pry Q <oy 42003 (- — )]
R

V! Py Qg r20%2(. — )l dy
We first write

I8P, +00) @<k 0[P Qcba-10Ratt V7 PramaQbataots( )l

11
2°7 2
Xy

S Y Ph+o) QP Qeki—10Rat1 V! Py 1y Qkyr20¥3(- — y M
I<ks+O(1) k1

N=

We need to estimate this expression for fixed [ first, the point being to eke out a
small gain in |k3]. One distinguishes between different ranges for I: first, assume
[ > k4 + 30 whence % > ’“4;2’“3 + 15. Then write (here we have to go into full
detail)

Pry+01)Q1[Pry Q<ki—10Rat)1V ™ Pry 10y Q<2003 (- — 9)]
tx

K2 €K 1—kg |dist(E£r],£R5)~272
2

Proy+0(1)Qu[Pry wt QF 1, 10Rat1V ™ Pry iy Prara @, 20¥3(- — )],

I—k3

At this point, the operator Qik _10 becomes harmful, as it is applied to a large
4

frequency input. However, we can easily abolish it, by estimating the contribution

from thﬁ’lQim—loRa‘/’l as above, where the operator @)>x,—10 was applied to the

output (here one places the output into LI H~2). Now we estimate (Here Q- is
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the operator which localizes to =7 > 0)

1> >
+E Ky 2€EK kg \dist(iﬁ’l,in’z)ma%l
2
Proy+0(1) QU Pry ey @F Rath1V ™ Pry ot Pry s Q00?3 (. — ]I
S >

l—k3
“/I,ZEKl*Qka |dist(£r],£r5)~272

L _
22| Py, oy QF Rathn || v aiang) |V ™ Prg oy Prs s QE 1y 4 20Ws | PW ]

Since k% is much larger than k3 in the present case, we only sum for finitely many
K} o for fixed k3. Now we use the estimate

l—k
|1 Pe, QF Rathn||vpany)s S 10— k3|27 = [|Pry 1 |spay)

Hence we get

>

. Loks
Ky 2 €K kg |dist(E£r],£ry)~272
2

1 _
22 || Py, ey QF Ratb1 |l v painy) [V ™ Prg i, Prars QE 1y 20¥3 1 | PW )

kg—ky l—k3 -

k:
S277 27727 22|k3_l|||Pk11/)l||S[k1]||Pk3,K3Q<k4+201/)3||S[k3]

ka—k3

Note that since k4 — kg << [ — k3, the factor |l — k3| can be absorbed by 27 =
Finally, we can wrap up case (iv) under the assumption | > k4 + 30: we have

>

K2 3E K, g, |dist(rg,—r3)S2ka—F2
|1 Po[OPx, +01)Qi[Pry Q<is—10Rat1 V™! Pry 10y Q <oy 42003 (. — )]
V7 Pry iy @ <kat20V2(- — 1))l vjo)

< 9dli—ks] 3

n1,2€Kk4,k2|dist(n2,753)§2k4*k2
1O Ps, +01) Qi[Pr, Q<is—10Rat1 V™" Py g Qs 2093 (- — Dl 534
k1
|| Prez 15 Q<kat2002] | (ks)
By the preceding, we can estimate this by

K2 3E€E Kk, Ky |dist(r2,—r3)S2k4—F2

kqg—k
277 ks — U|| Py 1| 57| Pra s @ <hea- 2092 |5 1] | Ps s @ <hea+-2003 | s

Using Cauchy-Schwartz as well as the observation from further above, we obtain
the desired estimate by summing over k4 + 30 <1 < k3 + O(1).
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Next, assume [ < k4 4+ 30. Here we decompose
Pr+01)Qu[Pry Q<ki—10Rath1V ™ Pry 10y Q<2003 (- — 9)]
= P +01) Q[P Q<ks—10Rath1V ™ Pry 1oy Qu—10<. <kat2003(- — )]
+ P+ o) Qu[Pr, Qi—10<.<ks—10Rat1 V™' Pry 10, Q<i—10¥3(. — )]
+ Py +o(1)QulPr, Q<i—10Rat)1V ™ Pry 1y Q<i—1003(. — 9)]
For the first term, estimate
18P, +0(1)Qi[Pry Q<ks—10Rat1 V™ Pry ey Qi—10<. < kat2003(. — ]|/ PR

2
i—

L 3kg k3 —
S 22 Z P, Qs 10Ratn || o227 2755 ||V Pry oy Qs || 22
JEN—10,ka+20]

We have used here the "improved Bernstein’s inequality’, see e. g. [24], [10]. This in
—j J—k3

1 .
turn we can bound by < > ici_10k,—102 2 2 27 [liz1 2 [[Pe¥ills(r;). Summing

kqg—k
over j and then over [ < k4 + 20, one easily obtains the gain 2 e , and from here
the argument proceeds just as before. Next, we have

P +0(1)Qu[Pry Qu-10<.<ks—10Rat1 V™ Pry s Q<1—10%3(. — 9)]

= > Puto@ilPuQjRathi V! Piy s Qi 10ts(- — )]
jE[I—10,ks—10]
Now we can simultaneously localize both Py, Q;Rat1, V71 Py 10, Q<i—10%3(. — )
o T
to caps k) 5 of size ~ 272" such that +x/, £x), have angular separation < 272" .
Hence we can write

Py, +01)Qi[Pry QjRatt1 V™ Pry 10y Qi—10%3(. — )]

J
kY o €K j_pgy |dist(£r],1k5)S2 2
2

Py ro)@i [Pkl,n’lQ;tRa1/}1v_1Pk3,népk3,li3Qi:l_101/)3(' - y)]

Of course for fixed x7 5, there are only finitely many x3 for which this expression
does not vanish. Then we can estimate

10Ps, +01) QulPey vy @5 Ratt1 V™ Pry et Pry s @21 1093 (- — )]

1 1
5T 5
Xk

[

< 25| Py, ot QF Rathn | 12021V ™ Prg et Pra s @5 103l | Lo 1.

Using Bernstein’s inequality for the 2nd factor, we estimate this by

|l — jl H Py ey V11511 ] 1| Phs ety V3] S k)

i=1,2

k3

52%2@

Now, for fixed 7,1, one sums over x' 5 as well as 2,3 (of which there are only finitely
many for fixed «} ,), and finally sums over j, 1 in the appropriate ranges, to obtain
the desired estimate, just as in the case [ > ky + 30.

The expression
Py, +01)Qu[Pr; Q<i—10Rat1V ™ Pry 1y Q <1—10%3(. — 9)]

is handled similarly. Here one localizes the inputs to caps 5’172 which are separated,
and reasons as in the case [ > k4.
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This concludes case (iv).

(V): Pry (V7 Py Qs 120920V ™! Pry Q <y +2093] Py RaQ<ky—10%1.  This is
much simpler to estimate: use

| Py (V7 Pry Qs 20028(V ™ Piy Q <y 12003) Py RaQ<ky—10%1 [ 11 12
SOV Py Qeravo0¥sll 212 [V Pry @ <rar 2002l L 100 || Pty Ra@Q<ks—1091 || 13 100

k3

This can be estimated by 2% -2 H?:1 || Px;i]|s[k,), which is better than what we
need.

(vi): This is the expression

V! Py Qg 12002V ™ Pry Q <oy 4200030 Pry RaQ <oy — 1091

This is again straightforward: we estimate it by

IV Pry Qiy 42092V ™! Prg Qg 420930 Pry, RaQ <oy 1091 || 11 12
SV Py Qanavaotall o poe [V Py Q<rar20¥s] oo || O Pry RaQ<ks—10¢1 [ 12225

ka—Fko

and the last expression is easily estimated by <272 H?:l I Pr; Vil | 5101 -

Now, we assume ko > 20. Here cases (i), (ii), (iii), (v), (vi) are handled in
identical fashion. For (iv), we now have the identity

[Pry Qri—10Rath1 Pry Q <y +2003(- — v)]]
= Proy10(1) Qs +0(1) [Pry Qis— 10 Rat1 Pry 1oy Q<ia 120V~ 93(. — 9)]]

Freeze the modulation to size 2'. Then we need to distinguish between the cases
Il > kg4, I < ky. The calculations are essentially the same, so we outline how to deal
wit the first case. Now one writes

Py +01)Qu[Pry Qry—10Rat01 Pry Q <y +20V ~ 1h3(. — )]

- 3

W S €K1y |dist(dR},£rp)m2 2t
2
+ + 1
Pry+01)QulPry x Qi —10Ra1 Pry oty P 15 Q% 420V ¥3(- — y)]]

From this point on the proof is an exact replica of the case k3 < —20.

The case ko € [—20,20] is also essentially the same, the only difference being that
now in case (iv), the term [Pr, Q<k,—10Rat1 PrsQ<ky+20V " 03(. — y)]] may have
very small frequency. This is handled similarly, see e. g. [11], where such an argu-
ment is carried out in detail.
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(4) The 2nd null-form. This is handled just like the first null-form, the only
difference being that one uses the identity

3
S AT'9;0"[Ry fRig — R; fRug)h

=1
3

= O[3 ATV FRig)h — 5OV )V g
j=1

~ SOV Y g+ 5OV gV

These can be handled just as the terms in the identity underlying (3).

The remaining expressions in the statement of Proposition 4.6 can be estimated
in the same way. ([l

We next state the following Proposition needed to handle the quintilinear and
higher order terms:

PRrROPOSITION 4.9. We have the bounds
| PeV i [Pry 01 Py V7 [Pry V7 Proy 02V ! Pry [Pay 13 Pry ta]) Py Ruts ]| v s

5
< 275[|k7k1\+|k37k4H26[min{k2’5,T1,2’3}7max{k2,5,r1’2,3}] H ||sz/]7,||s[k]
i=1
for suitable § > 0. Analogous bounds hold for the other higher order terms in (2.3):
[PeV ot [Pry V7 [Pry 01 Pry V™ [Pry o Pry 03] Pry V™ [Proy b Prg s ]| v g

S 2—5[|k4—k5|+\k2—k3|]26[min{rl,3,k}—max{r1,3,k}]26[min{rl,2,k1}—max{rl,g,kl}]

5
H [ Pre; il 5k
=1

PrOOF. We show the first estimate, the 2nd following in a similar vein. This is
in principle straightforward given Lemma 4.1, the only difficulty being the operator
V¢ in front. To deal with it, assume the output is at frequency ~ 1 ( as we may
by scale invariance) as well as modulation 2!, [ >> 1. Thus this is the expression

PoQiV ot [Py 1 Pr, V7 [P,V [Py 2V ™ Pry [P 03 P )| Py Ruts]
Then either k; > [ — 10, or Py, %1 has modulation > 2!=10 o1 else PhV_l ... has
modulation > 2!719. In the last case, repeat the same argument with

PTlv_l[PTzv_l[PICzw?v_lPTS [Pk3¢3pk4¢4]]PksRu¢5]

The conclusion is that at least one of the inputs needs to have frequency at least
comparable to 2!, or else at least one input needs to have modulation at least
comparable to 2!. Note that we can organize the expression as

Vot PoQi[ Py, 01 Pry VX Py Rys]]
with
X = P,V [Py tp2V ! Pry [Py 3 Prytba]]
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Then use the decomposition
Vi PoQu[Pry 1 P, V™ [X Pig Ry)s]|
= X1 >1-100 Vet PoQi [P, Y1 Pr, VX Piy Ry 15|
+ Xy <1-100 Var,t PoQ1[Prey @>1-10%1 Py VX Py Rutbs]]
+ Xy <1100Vt PoQu[ Py Q <1-10%1 P, @ 31-10V [ X Pry Ryt

To estimate the first and 2nd terms, we use the following

LEMMA 4.10. We have the bounds
b | < 90[min{ra s k2 5.4} —max{ras,k2zs4}] H |1 Pros s sk

. oo, —d LS
L2HINL2W,  ~ 2NLH2 554

PRrROOF. (Lemma 4.10) simple application of Bernstein’s inequality. (]

Then we compute (for suitable § > 0)

[[Xk 21-100V ¢ PoQu[ Pr, 1 Pry V7 [X Pyy Ry 5] Y
0

1 _
< 224 P, rl| Lz 2 1Py o) V™ X Pry Ruths)| 1212
<26[min{r2,3,k2,3,4}7max{r2,3,k2,3,4}] H ||Pk¢z||5[k]
i=2.3,4

X2%27k126[min{k1,r2,k5}7max{k1,r2,k5}] H ||P]§¢1||S[k]
i=1,5

_1
2

where we have again invoked Bernstein’s inequality a number of times in the last
step. This is of course more than enough to get the estimate of Proposition 4.9 in
this case. Next, estimate

Xk <1-100 Vot PoQu[Piy @>1- 1001 Pry VX Pioy Ruts]] || o)

1 . _
< 22 min{|| Py, Qx1- 1091222 ||Pry V7 [X Pry Ryts] || Lo oo Lo 12,
||Pk1QZl7107/}1||Lng°|PT1V71[XPk5RV1/}5]||Lt°°L§}

Again, one checks this is bounded by an expression as in the Proposition. Finally,
for the last term, use a similar decomposition

P Q>1-10V X Py, R5]
= Xks>1-100Pr; Q@>1-10V [ X Piy Ry 15
+ X <1100 Pry @1-10V X Py Ry Q512005
+ Xks <1-100Pr, @110V Q21-20X Pry Ry Q <1—200s]
For the first term here, use that
[IXks 21-100Pr, @21-10V " X Py Ruts)l| 212 < 277 || X || 22 || Ruths || e 12
and from here one concludes

|1Xkr <1—100Va,t PoQ1[Piey @ <1=10%1 X 1-100 Pry Q@ >1-10V ™ [X Pioy Ry 5] || o)
L
S 22| Py, Q<i—10¥1]| Lo Lo [ Prs ro 1) X M 222 || Prs Rutbs || Lo L2

5
L 3 B
s+ki—5ks590 3,k2,3,4}— N
< g23thi=3ks (min{ra s,k2,3,4} —max{ras,k2,3,4}) | | ||Pki¢i||s[ki]

=1
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Further, write
Xks<1—100Pr @>1-10V X Piy Ry Q>1—2005]

= Z Xks<1—100Pry @>1-10V " [X Piy Ry Qi 15

11 >1—-20
Then we get
1) X<i-100Va e PoQi[Pr, @ <i-10%1 Xy <1100 Pry Q21-10
11 >1-20

VX Py, Qi Rutds]]| o)

5
< Z 2%(l—l1)25(min{7€1,2,3,4,57T1,2,3}—max{1€1,2,3,4,5,T1,2,3}) H ||Pk"/]z| |S[k»]
1,>1-20 i=1

for suitable § > 0. Finally, consider the contribution of
Xks<1-100Pry @51-10V " [@51-20X Pry Ry Q <1—20%5]
Here we use

LEMMA 4.11. The following estimate holds:

1

1Qu X |22 S 27 2homaregdlmintramskosapmmaxtrarskosad) TT || Pyt |spr
1=2,3,4
for suitable 6 > 0.

PROOF. (Lemma 4.11) Use reasoning as in Lemma 4.8, as well as above. [

Using this, we can estimate

X k1 <1100 Vet PoQt [Py ¥1 Xy <1—100Pry @ 21-10V ~ [Q31-20X Prey Ry Q <1—20s] || v o)
i
< Y 22Xk <i-100 PoQu[Pe, Y1 Xk <1100 Pry @110
11 >1-20
V QL X Py RyQ <1205 | 212

5
< E 93 (I=l1)9d[min{ky 2,5,4,5,71,2,3} —max{k1 2.5.4,5,71,2,3}] H || Py 1/,1.”5% ]
~ 7 i
11 >1-20 i=1

for suitable § > 0. This follows as usual via various frequency trichotomies as well
as Bernstein’s inequality. This concludes dealing with the large output-at-large-
modulation-case, and we now need to focus on

vm,tP0Q<20[Pk1¢1PT1v_l[PT2V_1[Pk2U)2V_1PT3 [Pk3¢3pk41/}4]]Pk5Rl/w5]]]

This we do via the following

LEMMA 4.12. We have the estimate

234512 P,V [Py, VL Py, [PrsthsPrall 4,

< 25[min{k2,T2,3}7max{k2,7“2,3}]275|k37k4\ H ||sz/]7,||s[k]
i=2,3,4
for suitable § > 0 and p > 2.

PrOOF. (Lemma 4.12) Follows from Lemma 4.2 and some simple frequency
trichotomies and Bernstein’s inequality. 0
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From here one easily concludes
1V PoQ <20[Pry 91 Pry V[P, V™ [Phy 02V ™ Pry [Py s Prey ]| P Rl ||

-1
1 2
+H

x

5
S 275[\k1|+\k37k4|]25[min{k2,5,r1,2,3}7max{k2,5,T1,2,3}] H ||Pk1¢z||5[k]7

i=1
again choosing § > 0 small enough. This concludes the proof of Proposition 4.9 for
the first inequality. The 2nd follows similar reasoning. O

We now continue with the proof of Proposition 4.5, where we need to establish
the last 3 inequalities for the iterates 1o,1,;. This only requires some additional
work for the terms involving the vector fields T, To get estimates on %), ;, we
need commute the vector fields I'? inside the source terms on the right hand side
of (2.6). To do this, we require the following simple

LEMMA 4.13. The following commutator bounds obtain for any translation in-
variant norm ||.||s:

1%, 07 PQsilvlls S 2722~ 10F) 19 Py |s + (18] — 1)
> 27|V TPl
[v|=18]-1
107, PoQerssiltlls S 27 VPRV Paglls + (181 = 1) D 278|IVau D" Prylls
[v[=18]-1

First considering the case |3| = 1, note that O~ P,Q>, is given by convolution
with a function a(t, ) with the property |la(t,z)|[1: @s+1 S 272k Then we have

T, 07 PuQsx] = v / alt — 5,2 — y)(s, y)dsdy

R3+1
— / a(t — s,z — y)Ts (s, y)dsdy
R3+1

Taking into account that I' is of the form 0, 0., , ;0,; — ;0% , t@t—i-Zf:l 23O, iOp+
t0.,, we see the above integral can be written in the form

/ SG(S, y)vt,mw(t — 5T — y)dey + / ya(s7 y)vt,mw(t — 5T — y)dey
R3+1

R3+1
Then conclude by observing

llsa(s, )1, + llyl(s,9)l[es, S 27
For higher order operators, use
[[102, 07 " Ph@Qxk] = T1[T2, 07 PeQxk) + [[1, 07 ' Pr@Qxk]IT2,

as well as the fact that [z, D_lPszk] can be written as a convolution operator
whose kernel enjoys similar properties to the one associated with 07! P,@Q>y. The
proof or [I'?, PLQ 1] is similar. |

With this in hand, observe that we have
Ola,1,j+1] = [0, Ma,1,j+1 + TOr(8)S(t)(4al0])]

+FD[/O nr(t — 8)P_s1,50F (¥1,5)(s)ds]



34 J. KRIEGER AND K. NAKANISHI

Then clearly we have

Ol %a,1j+1]l—77) =[O, TYa1 41l —r7) + TP_si.50 F (Y1) -1.1)

In order to estimate the right hand side, and in particular the right most term,
observe that application of T' does leave the null-structure (4.1) intact: indeed,
[0,T] = cO for each vector field T and a suitable number ¢ = cr. Re-iterating the
proofs of Proposition 4.6, 4.9, and applying the preceding Lemma, we can conclude
that

TP (51,60 F (1, 5)| 1) | N[y (-1 3y S €M29%%¢y,,

provided we make the bootstrap assumption ||PrI't1||spm—7,mxr3) S M2,
The claim of the Proposition follows when |3]| = 1 for 14,1 j+1, by using the energy
inequality Theorem 4.4, and one argues similarly for Fﬁwa,l, |B] = 2, etc. This
concludes the proof of Proposition 4.5.

Next, we explain the proof of Proposition 2.2:

PRrOOF. (Proposition 2.2) We shall again use Proposition 4.6, Proposition 4.9,
as well as some elementary additional estimates. Fix a time scale [ >> 1 and
consider t1), 2 defined on [-271+2 2!*2] as in the preceding. The equations satisfied
by the ¥q.2 = 1o — a1 is as follows:

Otha,2 = F (11, %2) + (1 = P_si,60) F (Y1), Va2

Here F'(11,1)2) is the right hand side of (2.3) but with ¢ replaced by 1 2, and the
additional requirement that at least one copy of 15 is present. We need to establish
the following

Bootstrapping step: Let 0 < T < 242 and assume that we have

| Prtpa 2|l stk (=11 xR8) < Mey, a=0,1,2,3

for some M larger than some My = My(¢[0]). Then we have

M
| Petba2|| i) (=1 xR3) < >k a=0,1,2,3

We recall the definition of e, := min{dk,2“(ma"{k’517*k*‘”})dk} for p > 0
sufficiently small. Having established the bootstrapping, Proposition 2.2 will then
follow from the fact that (see e. g. [11])

Jim sup | Petba,2|| i) ((—1,7]x %) = 0

We will show that the assumption above implies

[ PeF (1, 02)| | vy (=1 xR2) + | Pe(1 = P_sr0) F (1) v (o1 xr2) S €M e,

which implies the bootstrapping step by invoking Theorem 4.4. We shall first prove
the estimate

|[PeF (1, Y)l Ny (e S €M e,
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Recall that Py F(11,12) consists of trilinear null-forms as well as quintilinear and
higher order terms. From Proposition 4.6, we have the schematic relation

" PV 2, [Py 1V ™" Pay [Pioy b2 Py 3)]” | | vy (- 7.1 xR?)

3
S 2—51Vi}g—kg|2—52[k4—max{k2,k3}]2—53“{}—7{}1‘ H ||Pkl¢7,
i=1

ki (=7, 7] xR2)

Here the term " PV, ...”7 of course stands for one of the trilinear null-forms in
(2.3). Now, we we think of the entries 1, 12, 93 as either given by a 1.1 or a 14,2,
with at least one occurence of 1, 2. Then we have two possible cases:

i): at least one copy of V.o inside V1P, [...]. Let this be Py, qa.2.
B 4 2 )

This we estimate by
5 2—63|k}—k}1|2—61Ik}z—k}3‘2—62|k}4—1’ﬂax{k}2,k}3}‘dk1 ekz dk;3

Now use that
€ky = HliIl{dkz7 2“max{k2_5l,—k2—5l}dk2} < 9—ndl

since we have dj, < 2771l for some ¢ > 0, and we assume that u is chosen small
enough. Then we have

Z 2*#512*53“@*’91|dk1 /S e
ki1 €Z
We can now infer that

E 2—63“6—]61|2—61Ik}g—kg‘2—62|]€4—max{]€2,k}3}‘dk1ek2dk3 5 eey,
k1,2,3€Z

(ii):  The first input Py, v is Py, Yq,2. Here we infer the desired bound directly
since the ey form a frequency envelope.

The remaining terms in F'(11,2) if higher degree of multilinearity are treated
similarly and omitted here.

Now we turn to estimating the term

Pi(1 = Pi_s50) F (1)
Recalling the definition of —P|_g5 5, we see that in the expressions constituting
(1 — P_s1,50)F(¢1) either at least one frequency 2" satisfies |k| > 41, or else at
least one operator P,Q)>ky5 occurs. We need to show that this implies an extra
exponential gain in [. We do this here for the trilinear terms, the higher order terms
being treated similarly: first, again using the schematic notation

" PeVa t[Pry 1V " Pry [Proy b2 Py 03],
assume that one of k1 2 3 4 is of large absolute size. Then reasoning exactly as before
in (i), (ii), implies
|I” PeV gt [Pr 1V ™" Py [Prytha Pry 3] | vy S ek

Further, we have
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LEMMA 4.14. The following estimates hold, where we again use schematic no-
tation:

" Pe@sk+51V [Py V1V~ Pioy [Py o Py 03]]” | | vppg S 27" e
" PV ot [Py Qs key 45181V ™ Proy [Py 2 Py s3] || vy S 277 de
" PeV ot [Py 01V ™ P,y [Py Q> kst s1%2 Py 03] || vppy S 27

17 Pe Ve [P, 01V ™ Py Qs kg1 Pra b2 Prg ¥3]) vy S 27" di
Here v > 0 is a constant depending on § but not on p.

PRrROOF. (Lemma 4.14). All of these follow essentially directly from the proof
of Proposition 4.6. |

The preceding Lemma completes our treatment of the trilinear terms in (1 —
P(_s1,61)F (11) since 27¥'dy, < ey, for p (in the definition of e;) small enough. The

quintilinear etc terms in (1 — P_g; ) (1) are treated similarly. |
PROOF. (Proposition 2.3) This is contained in the preceding proof. (]
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