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Kirchhoff Type with Nonlinear Damping and Memory Term

at Boundary
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Abstract. In this paper, we prove that the existence of global attractors in
the phase space H0 = H1(Ω) × L2(Ω) for wave equation of Kirchhoff type
with nonlinear dissipation and memory term at boundary. To this end, we
first obtain an bounded absorbing set by the perturbed energy method (see
Zuazua [9, 22], combined with techniques from Munoz Revera [13]). Then we

utilize an especial method of decompose to verity the asymptotic compactness
for the problems.
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1. Introduction

In this paper, our main purpose is to study the existence of global attractors for
a nonlinear wave equation of Kirchhoff type with nonlinear damping and memory
term at boundary. To formalize this problem let us take Ω a open bounded set
of Rn with smooth boundary Γ and let us assume that Γ can be divided into two
non-null parts

Γ = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = φ,
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and Γ0, Γ1 have positive measure. Let us denote by ν(x) the unit normal vector at
x ∈ Γ outside of Ω and let us consider the following initial boundary value problems:

utt −M(‖∇u‖2)∆u− α∆utt − ∆ut + f(u) = h(x) in Ω × (0,∞),(1.1)

u = 0 on Γ0 × (0,∞),(1.2)

M(‖∇u‖2)
∂u

∂ν
+ α

∂utt

∂ν
+
∂ut

∂ν
+ u+ ut + g(t)|ut|

ρut = g ∗ |u|γu on Γ1 × (0,∞),(1.3)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω.(1.4)

Here, α > 0, h(x) ∈ L2(Ω), ‖∇u‖2 =
n∑

i=1

∫
Ω | ∂u

∂xi
(x)|2dx, ∆u =

n∑
i=1

∂2u
∂x2

i

, g ∗ u =

∫ t

0
g(t− r)u(r)dr and

0 < γ, ρ ≤
1

n− 2
if n ≥ 3 or γ, ρ > 0 if n = 1, 2.(1.5)

Problems (1.1)-1.4) has its origin in the mathematical description of small ampli-
tude vibrations of an elastic string [15]. In fact, a mathematical model for the
deflection of an elastic string of length L > 0 is given by the mixed problem for the
nonlinear wave equation

ρh
∂2u

∂t2
=

{
p0 +

Eh

2L

∫ L

0

(∂u
∂x

)2

dx

}
∂2u

∂x2
for 0 < x < L, t ≥ 0,(1.6)

where u is the lateral deflection, x the space coordinate, t the time, E the Young’s
modulus, ρ the mass density, h the cross section area and p0 the initial axial tension.
Kirchhoff was the first to introduce (1.6) in the study of oscillations of stretched
strings and plates, so that (1.6) is called the wave equation of Kirchhoff type after
him. There is an extensive literature on the study of wave equation of Kirchhoff
type. For example, the existence of global solutions and exponential decay to
problem (1.1) and (1.2) with ∂Ω = Γ0 and f(u) = h(x) ≡ 0 has been investigated
by many authors [12, 14].

On the other hand, there exists a large body of literature regarding viscoelastic
problems with the memory term acting in the domain or in the boundary. Among
the numerous works in this direction, we can cite Santos [19, 20]. Cavalcanti et al.
[2, 3] studied the existence and uniform decay of strong solutions of wave equation
with nonlinear boundary damping and memory source term. Park et al.[17] have
been investigated the existence and uniform decay of the solutions of (1.1)-(1.4) with
M(s) = 1 + s and f(u) = h(x) = α ≡ 0. While Bae et al.[1] have been obtained
the same results for problems (1.1)-(1.4) with M(s) = 1 + s and f(u) = h(x) ≡ 0.

As far as dynamic is concerned the existence of the global attractors for wave
equations with nonlinear damping and memory term acting in the domain is study
by authors(for example, see[4, 8, 18] and the references therein). Also, there exist
some literature considering the same questions for nonlinear damping acting on
the boundary (for example, see[5, 6, 7, 10]). It is important to mention that
Papadopoulos and Stavrakakis [16] have been investigated the existence of global
for nonlinear Kirchhoff equation on RN .

In the present paper, our main goal is to show the existence of global attractors
for problem (1.1)-(1.4). It is well known that the proof of the existence of a compact
global attractor for the semigroup will follow the traditional scheme (see, for exam-
ple, [11, 21]). A compact global attractor exists if and only if the semigroup has a
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bounded absorbing set and is asymptotically compact. To obtain bounded absorb-
ing set we used the perturbed energy method, see Zuazua [9, 22], combined with
techniques from Munoz Revera [13]. Generally, one can obtain asymptotically com-
pact by decompose the solution operator into a compact part and a asymptotically
small part. However, there are additional difficulties when proving asymptotically
compact because M(‖∇u‖2) is nonlinear. To overcome the difficulty, we utilize a
especial method of decompose to verity the asymptotic compactness for problem
(1.1)-(1.4).

2. Preliminaries and main result

Now let us introduce the functional spaces. Let

V := {u ∈ H1(Ω); u = 0 on Γ0},

which equipped with the topology given by the norm ‖∇·‖L2(Ω) is a Hilbert subspace

of H1(Ω). We denote

(u, v) :=

∫

Ω

uvdx, ‖u‖2 =

∫

Ω

|u|2dx,

(u, v)Γ1
:=

∫

Γ1

uvdΓ, ‖u‖p
p,Γ1

=

∫

Γ1

|u|pdΓ, ‖u‖2
Γ1

= ‖u‖2
2,Γ1

,

and let

H0 = H1(Ω) ×H1(Ω), ‖(u, ut)‖
2
H0

= ‖∇u‖2 + ‖∇ut‖
2 + ‖ut‖

2.

Let λΩ > 0 and λΓ > 0 are two constants such that for ∀v ∈ V

‖v‖ ≤ λΩ‖∇v‖, ‖v‖Γ1
≤ λΓ‖∇v‖.

Let us make some hypothesis for function f , M and g:

Hyp.f The function f ∈ C1(R) satisfy

f(0) = 0,(2.1)

and f is super-linear, that is

f(s)s ≥ (2 + δ)F (s), F (s) +K0 ≥ 0, F (s) =

∫ s

0

f(z)dz, ∀s ∈ R,(2.2)

for some δ > 0 and K0 > 0 with the following growth condition:

|f(x) − f(y)| ≤ K1(1 + |x|µ−1 + |y|µ−1)|x− y|, ∀x, y ∈ R,(2.3)

for some K1 > 0 and µ ≥ 1 such that (n− 2)µ ≤ n.

Hyp.M The function M ∈ C1([0,∞)) satisfy

M(λ) ≥ m0 > 0, M(λ)λ ≥ M̂(λ), ∀λ ≥ 0,(2.4)

where M̂(λ) =
∫ λ

0
M(s)ds.

Hyp.g The function g ∈W 1,∞(0,∞) ∩W 1,1(0,∞); g(t) ≥ 0, ∀t ≥ 0 such that
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−a0g(t) ≤ g′(t) ≤ −a1g(t), ∀t ≥ t0,

g(0) = 0, |g′(t)| ≤ a2g(t), t ∈ [0, t0],

1 −

∫ ∞

0

g(s)ds > 0.

(2.5)

for some constants a0, a1, a2 > 0.

We define the energy e(t) of problems (1.1)-(1.4):

e(t) =
1

2
‖ut(t)‖

2 +
α

2
‖∇ut(t)‖

2 +
1

2
M̂(‖∇u(t)‖2)

+

∫

Ω

F (u(t))dx +
1

2
‖u(t)‖2

Γ1
.(2.6)

Applying almost the same argument as that used to in [1, 2, 3, 17] we can show
the well-posedness of problems (1.1)-(1.4):

Lemma 2.1. Assume that conditions (2.1)-(2.5) hold, if (u0, u1) ∈ H1(Ω) ×
H1(Ω) and ρ ≥ γ, then there is only one solution u of system (1.1)-(1.4) satis-
fying

u ∈ C(0,∞;H1(Ω)), ut ∈ C(0,∞;H1(Ω)).(2.7)

Lemma 2.1 allows us to define the semigroup St. For every t ≥ 0, we define the
operator St mapping H0 into itself by

St : (u0, u1) → (u(t), ut(t)).

Now we are in position to state our main result:

Theorem 2.2. Under the hypotheses of Lemma 2.1, if ρ = γ, then the semigroup
St associated with problem (1.1)-(1.4) possesses a global attractor A in H0.

Our paper is organized as follows: in section 3, we shall show the existence of
absorbing set in H0, and in section 4, we shall show the asymptotic compactness
for the semigroup St.

3. Absorbing set in H0

In this section we shall show that the semigroup St has a bounded absorbing
set, i.e., a bounded set B ⊂ H0 satisfying the following condition: for any bounded
A ⊂ H0 there exists t(A) > 0 such that StA ⊂ B for all t ≥ t(A).

Theorem 3.1 There exists a bounded absorbing set B for the semigroup St in
H0.
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To this end, let us make some preliminaries. Firstly, let us denote by

(g�u)(t) :=

∫ t

0

g(t− s)
∥∥∥|u(s)|γu(s) − u(t)

∥∥∥
2

Γ1

ds,(3.1)

a simple computation gives us

(g�u)′(t) : =

∫ t

0

g′(t− s)
∥∥∥|u(s)|γu(s) − u(t)

∥∥∥
2

Γ1

ds

+
( d

dt
‖u(t)‖2

Γ1

) ∫ t

0

g(s)ds

−2

∫ t

0

g(t− s)
(
|u(s)|γu(s), ut(t)

)
Γ1

ds

= (g′�u)(t) +
d

dt

(
‖u(t)‖2

Γ1

∫ t

0

g(s)ds
)
− g(t)‖u(t)‖2

Γ1

−2

∫ t

0

g(t− s)
(
|u(s)|γu(s), ut(t)

)
Γ1

ds.

Thus we get
∫ t

0

g(t− s)
(
|u(s)|γu(s), ut(t)

)
Γ1

ds

= −
1

2
(g�u)′(t) +

1

2
(g′�u)(t)

+
1

2

d

dt

(
‖u(t)‖2

Γ1

∫ t

0

g(s)ds
)
−

1

2
g(t)‖u(t)‖2

Γ1
.

(3.2)

Next we introduce the following modified energy:

E(t) =
1

2
‖ut(t)‖

2 +
α

2
‖∇ut(t)‖

2 +
1

2
M̂(‖∇u(t)‖2)

+

∫

Ω

F (u(t))dx +
1

2

(
1 −

∫ t

0

g(s)ds
)
‖u(t)‖2

Γ1

+
1

γ + 2
g(t)‖u(t)‖γ+2

γ+2,Γ1
+

1

2
(g�u)(t),

(3.3)

and let us define the perturbed modified energy, for every ε > 0,

Eε(t) = E(t) + εψ(t),(3.4)

where

ψ(t) =
1

2
‖∇u(t)‖2 +

∫

Ω

u(t)ut(t)dx + α

∫

Ω

∇u(t) · ∇ut(t)dx.(3.5)
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Applying Cauchy-Schwarz inequality and assumption (2.4), we get

|ψ(t)| ≤
1

2
‖∇u(t)‖2 +

1

2
λΩ(‖∇u(t)‖2 + ‖ut(t)‖

2)

+
α

2
‖∇u(t)‖2 +

α

2
‖∇ut(t)‖

2

≤
1

2
λΩ‖ut(t)‖

2 +
α

2
‖∇ut(t)‖

2

+
1 + λΩ + α

2m0
M̂(‖∇u(t)‖2)

≤ λ0E(t),

where λ0 = max{λΩ,
1+λΩ+α

m0
, α}. Thus we get

|Eε(t) −E(t)| ≤ λ0εE(t), ∀ε > 0, t ≥ 0.(3.6)

Lemma 3.2 If ρ = γ, then there exist C1, C2 > 0 and ε1 > 0 such that for
ε ∈ (0, ε1],

d

dt
Eε(t) ≤ −εC1E(t) + C2‖h‖

2.(3.7)

Proof Multiplying equation (1.1) by ut we get

d

dt
E(t) =

∫

Ω

h(x)ut(t)dx − ‖∇ut(t)‖
2 − g(t)‖ut(t)‖

ρ+2
ρ+2,Γ1

+
1

γ + 2
g′(t)‖u(t)‖γ+2

γ+2,Γ1
+ g(t)

(
|u(t)|γu(t), ut(t)

)
Γ1

−
1

2
g(t)‖u(t)‖2

Γ1
− ‖ut(t)‖

2
Γ1

+
1

2
(g′�u)(t).

(3.8)

Differentiating the equation (3.5) with respect to t and from equation (1.1)-(1.3)
we get

d

dt
ψ(t) =

1

2

d

dt
‖∇u(t)‖2 + α‖∇ut(t)‖

2 + ‖ut(t)‖
2

+

∫

Ω

u(t)
(
α∆utt(t) +M(‖∇u(t)‖2)∆u(t)

+∆ut(t) − f(u(t)) + h(x)
)
dx + α

∫

Ω

∇u(t) · ∇u(t)dx

= ‖ut(t)‖
2 + α‖∇ut(t)‖

2 −

∫

Ω

u(t)f(u(t))dx

−M(‖∇u(t)‖2)‖∇u(t)‖2 − ‖u(t)‖2
Γ1

− (ut(t), u(t))Γ1

−
(
g(t)|ut(t)|

ρut(t), u(t)
)

Γ1

+

∫

Ω

h(x)u(t)dx

+

∫ t

0

g(t− s)
(
|u(s)|γu(s), u(t)

)
Γ1

ds.

(3.9)

From (3.4), (3.8) and (3.9) it follows that
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d

dt
Eε(t) = (αε− 1)‖∇ut(t)‖

2 +
1

γ + 2
g′(t)‖u(t)‖γ+2

γ+2,Γ1

−g(t)‖ut(t)‖
ρ+2
ρ+2,Γ1

+ g(t)
(
|u(t)|γu(t), ut(t)

)
Γ1

−
1

2
g(t)‖u(t)‖2

Γ1
− ‖ut(t)‖

2
Γ1

+
1

2
(g′�u)(t)

+

∫

Ω

h(x)ut(t)dx − ε

∫

Ω

u(t)f(u(t))dx

−εM(‖∇u(t)‖2)‖∇u(t)‖2 + ε

∫

Ω

h(x)u(t)dx

+ε‖ut(t)‖
2 − ε

(
g(t)|ut(t)|

ρut(t), u(t)
)

Γ1

+ε

∫ t

0

g(t− s)
(
|u(s)|γu(s), u(t)

)
Γ1

ds

−ε‖u(t)‖2
Γ1

− ε(ut(t), u(t))Γ1
.

(3.10)

We now majorize the right-hand side of (3.10). Firstly, using Schwarz’s inequality
and Young’s inequality, we get the following five inequalities:

g(t)
(
|u(t)|γu(t), ut(t)

)
Γ1

≤ g(t)
(∫

Γ1

|u(t)|γ+2dΓ
)γ+1

γ+2
( ∫

Γ1

|ut(t)|
γ+2dΓ

) 1
γ+2

≤ ηg(t)‖ut(t)‖
γ+2
γ+2,Γ1

+ η−
1

γ+1 g(t)‖u(t)‖γ+2
γ+2,Γ1

,

(3.11)

−ε
(
g(t)|ut(t)|

ρut(t), u(t)
)

Γ1

≤ εθ(η)g(t)‖ut(t)‖
ρ+2
ρ+2,Γ1

+ εηg(t)‖u(t)‖ρ+2
ρ+2,Γ1

,

(3.12)

∫

Ω

h(x)ut(t)dx ≤ λΩ‖∇ut‖‖h‖

≤ αε‖∇ut‖
2 +

λ2
Ω

4αε
‖h‖2,

(3.13)

ε

∫

Ω

h(x)u(t)dx ≤ εm0η‖∇u‖
2 +

ελ2
Ω

4m0η
‖h‖2,

≤ εηM(‖∇u‖2)‖∇u‖2 +
ελ2

Ω

4m0η
‖h‖2,
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(3.14)

and

−ε(ut(t), u(t))Γ1
≤ εm0η‖∇u‖

2 +
ελ2

Γ

4m0η
‖ut‖

2
Γ1
,

≤ εηM(‖∇u‖2)‖∇u‖2 +
ελ2

Γ

4m0η
‖ut‖

2
Γ1
.

(3.15)

On the other hand, applying Young’s inequality and (3.2), we get

ε

∫ t

0

g(t− s)
(
|u(s)|γu(s), u(t)

)
Γ1

ds

= ε

∫ t

0

g(t− s)
(
|u(s)|γu(s) − u(t), u(t)

)
Γ1

ds

+ε

∫ t

0

g(t− s)ds‖u(t)‖2
Γ1

≤
ε

2

∫ t

0

g(t− s)
∥∥∥|u(s)|γu(s) − u(t)

∥∥∥
2

Γ1

ds

+
3ε

2
‖u(t)‖2

Γ1

∫ t

0

g(s)ds

=
ε

2
(g�u)(t) +

3ε

2
‖u(t)‖2

Γ1

∫ t

0

g(s)ds.

(3.16)

Thus, from (3.10)-(3.16) and considering ρ = γ we get

d

dt
Eε(t) ≤ G1(u),(3.17)

where

G1(u) = (2αε+ ελ2
Ω − 1)‖∇ut(t)‖

2 + (
ελ2

Γ

4m0η
− 1)‖ut‖

2
Γ1

−ε

∫

Ω

u(t)f(u(t))dx + (
λ2

Ω

4αε
+

ελ2
Ω

4m0η
)‖h‖2

+(2η − 1)εM(‖∇u(t)‖2)‖∇u(t)‖2

+(η + εθ(η) − 1)g(t)‖ut(t)‖
γ+2
γ+2,Γ1

+(εη + η−
1

γ+1 −
a1

γ + 2
)g(t)‖u(t)‖γ+2

γ+2,Γ1

+(
ε

2
−
a1

2
)(g�u)(t) −

1

2
g(t)‖u(t)‖2

Γ1

−ε‖u(t)‖2
Γ1

+
3ε

2

∫ t

0

g(s)ds‖u(t)‖2
Γ1
.

(3.18)
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On the other hand, for C1 = 2(1 − 2η), η = 2−
1

γ+1 , we have

G1(u) + C1εE(t) = (
λ2

Ω

4αε
+

ελ2
Ω

4m0η
)‖h‖2 + (

ελ2
Γ

4m0η
− 1)‖ut‖

2
Γ1

+(3αε+ 2ελ2
Ω − 2αεη − 2λ2

Ωηε− 1)‖∇ut(t)‖
2

+ε

∫

Ω

(
2(1 − 2η)F (u(t)) − u(t)f(u(t))

)
dx

+ε(1 − 2η)M̂(‖∇u(t)‖2)

+(2η − 1)εM(‖∇u(t)‖2)‖∇u(t)‖2

+(η + εθ(η) − 1)g(t)‖ut(t)‖
γ+2
γ+2,Γ1

+(εη + η−
1

γ+1 +
2ε− 4εη − a1

γ + 2
)g(t)‖u(t)‖γ+2

γ+2,Γ1

+(
3ε

2
−
a1

2
− 2εη)(g�u)(t) −

1

2
g(t)‖u(t)‖2

Γ1

−2εη‖u(t)‖2
Γ1

+ (
ε

2
+ 2εη)

∫ t

0

g(s)ds‖u(t)‖2
Γ1
.

(3.19)

Noting that

ε

∫

Ω

(
2(1 − 2η)F (u(t)) − u(t)f(u(t))

)
dx ≤ 0,

ε(1 − 2η)M̂(‖∇u(t)‖2) + (2η − 1)εM(‖∇u(t)‖2)‖∇u(t)‖2 ≤ 0,

and

−2εη‖u(t)‖2
Γ1

+ (
ε

2
+ 2εη)

∫ t

0

g(s)ds‖u(t)‖2
Γ1

≤ 0,

we obtain

G1(u) + C1εE(t) ≤ (
λ2

Ω

4αε
+

ελ2
Ω

4m0η
)‖h‖2 + (

ελ2
Γ

4m0η
− 1)‖ut‖

2
Γ1

+(3αε+ 2ελ2
Ω − 2αεη − 2λ2

Ωηε− 1)‖∇ut(t)‖
2

+(η + εθ(η) − 1)g(t)‖ut(t)‖
γ+2
γ+2,Γ1

+(εη + η−
1

γ+1 +
2ε− 4εη − a1

γ + 2
)g(t)‖u(t)‖γ+2

γ+2,Γ1

+(
3ε

2
−
a1

2
− 2εη)(g�u)(t).

(3.20)

Let

(3.21) ε1 = min

{
4m0η

λ2
Γ

,
1

α(3 − 2η) + 2λ2
Ω(1 − η)

,
1 − η

θ(η)
,
a1 − 2γ − 4

2 − 2η + γη
,

a1

3 − 4η

}
.

For each 0 < ε ≤ ε1, then (3.20) implies that

(3.22) G1(u) + C1εE(t) ≤ (
λ2

Ω

4αε
+

ελ2
Ω

4m0η
)‖h‖2.
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Thus by (3.17) and (3.22) we get

d

dt
Eε(t) ≤ −C1εE(t) + (

λ2
Ω

4αε
+

ελ2
Ω

4m0η
)‖h‖2.(3.23)

The proof of Lemma 3.2 is completed.

Proof of Theorem 3.1 Let ε0 = min{ 1
2λ0

, ε1} and let us consider ε ∈ (0, ε0].

As we have ε < 1
2λ0

, we conclude from (3.6)

(1 − ελ0)E(t) < Eε(t) < (1 + ελ0)E(t)

and so

1

2
E(t) < Eε(t) <

3

2
E(t).(3.24)

From (3.7) and (3.24) it follows that

d

dt
Eε(t) < −

2

3
C1εEε(t) + C2‖h‖

2.

By Gronwall’s inequality we get

Eε(t) ≤ Eε(0)e−
2
3
C1εt + C3(1 − e−

2
3
C1εt).(3.25)

Inequality (3.25) implies

(3.26) ‖ut(t)‖
2 + ‖∇ut(t)‖

2 + M̂(‖∇u(t)‖2) ≤ C4e
− 2

3
C1εt + C5(1 − e−

2
3
C1εt).

The proof of Theorem 3.1 is completed.

4. Asymptotic compactness

By definition, the semigroup St is asymptotically compact if for any bounded
A ⊂ H0 and any ε > 0 there exists a precompact set K ⊂ H0 and a time t such
that dist(StA,K) < ε.

To establish the asymptotic compactness of the semigroup generated by prob-
lem (1.1)-(1.4) we adopt the general scheme([11, 21]). The idea is to decompose
the solution operator into two parts:

St(u0, u1) = Vt(u0, u1) +Wt(u0, u1),

where Vt is a contraction in the sense that Vt(u0, u1) → 0 as t→ +∞ uniformly in
(u0, u1) ∈ A, and Wt is a compact mapping for all t. Then choosing t sufficiently
large so that ‖Vt(u0, u1)‖ < ε for all (u0, u1) ∈ A, we have dist(StA,WtA) < ε,
which proves the asymptotic compactness.

However, there are additional difficulties when proving asymptotically compact
because M(‖∇u‖2) is nonlinear. To overcome the difficulty, we utilize a especial
method of decompose to verity the asymptotic compactness of problems (1.1)-(1.4).

Firstly, let us define Vt as the solution operator of the following problems:

vtt − ∆v − α∆vtt − ∆vt = 0 in Ω × (0,∞),(4.1)

v = 0 on Γ0 × (0,∞),(4.2)

∂v

∂ν
+ α

∂vtt

∂ν
+
∂vt

∂ν
= 0, on Γ1 × (0,∞),(4.3)

v(x, 0) = u0(x), vt(x, 0) = u1(x) in x ∈ Ω.(4.4)
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Proposition 4.1 Assume that (u0, u1) ∈ H0, then the problem (4.1)-(4.4) admits
a unique global solution v satisfying

v ∈ C(0,+∞;H1(Ω)), vt ∈ C(0,+∞;L2(Ω)).

Moreover, for each bounded A ⊂ H0,

sup
(u0,u1)∈A

‖Vt(u0, u1)‖H0
→ 0, as t→ +∞.(4.5)

Proof For

θ ∈ (0, θ0], θ0 = min{θ0

∣∣∣1 − αθ − θλ2
Ω −

θ2λ2
Ω

2
> 0, 1 + αθ2 − θ −

θλ2
Ω

2
> 0},(4.6)

it is easy to obtain,

(vt + θv)t + (αθ − 1)∆(vt + θv) − θ(vt + θv)

+(θ − αθ2 − 1)∆v − α∆(vt + θv)t + θ2v = 0.

Multiplying above equation by vt + θv we get

1

2

d

dt
G2(v) + (1 − αθ)‖∇(vt + θv)‖2 − θ‖vt + θv‖2

+θ(1 + αθ2 − θ)‖∇v‖2 + θ2(v, vt + θv) = 0,

(4.7)

where

G2(v) = ‖vt + θv‖2 + (1 + αθ2 − θ)‖∇v‖2 + α‖∇(vt + θv)‖2.(4.8)

Here we note that

(1 − αθ)‖∇(vt + θv)‖2 − θ‖vt + θv‖2

+θ(1 + αθ2 − θ)‖∇v‖2 + θ2(v, vt + θv)

≥ (1 − αθ)‖∇(vt + θv)‖2 − θλ2
Ω‖∇(vt + θv)‖2

+θ(1 + αθ2 − θ)‖∇v‖2 −
θ2λ2

Ω

2
‖∇v‖2

−
θ2λ2

Ω

2
‖∇(vt + θv)‖2

≥ (1 − αθ − θλ2
Ω −

θ2λ2
Ω

2
)‖∇(vt + θv)‖2

+θ(1 + αθ2 − θ −
θλ2

Ω

2
)‖∇v‖2.

(4.9)

From (4.6)-(4.9), there is a constant K > 0 such that

d

dt
G2(v) +KG2(v) ≤ 0(4.10)

By Gronwall’s inequality we can get

G2(v(t)) ≤ G2(v(0))e−Kt.(4.11)
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On the other hand, we have

‖vt(t)‖
2 = ‖vt(t) + θv(t) − θv(t)‖2

≤ ‖vt(t) + θv(t)‖2 + θ2‖v(t)‖2

≤ ‖vt(t) + θv(t)‖2 + θ2λ2
Ω‖∇v(t)‖

2,

(4.12)

and

‖∇vt(t)‖
2 = ‖∇(vt(t) + θv(t)) − θ∇v(t)‖2

≤ ‖∇(vt(t) + θv(t))‖2 + θ2‖∇v(t)‖2.

(4.13)

From (4.11)-(4.13) we get, for some constant C > 0

‖vt(t)‖
2 + ‖∇vt(t)‖

2 + ‖∇v(t)‖2 ≤ Ce−Kt.(4.14)

The proof of Proposition 4.1 is completed.

Secondly, we now pass to the proof of the compactness of mappingWt = St−Vt.
Clearly, if w is the first component of Wt(u0, u1), then its second component is wt

and the function w satisfies the following problems:

wtt − ∆w − α∆wtt − ∆wt = M(‖∇u‖2)∆u

−∆u− f(u) + h(x) in Ω × (0,∞),

(4.15)

w = 0 on Γ0 × (0,∞),(4.16)

∂w

∂ν
+ α

∂wtt

∂ν
+
∂wt

∂ν
= −M(‖∇u‖2)

∂u

∂ν
+
∂u

∂ν
−u− ut − g(t)|ut|

ρut + g ∗ |u|γu on Γ1 × (0,∞),

(4.17)

w(x, 0) = 0, wt(x, 0) = 0 in Ω.(4.18)

Proposition 4.2 For each t ∈ R+ the mapping Wt: H0 → H0 is compact.

Proof Fix an arbitrary bounded sequence (uk
0 , u

k
1) ∈ H0. Let uk(x, t), vk(x, t),

wk(x, t) denote the first components of St(u
k
0 , u

k
1), Vt(u

k
0 , u

k
1), and Wt(u

k
0 , u

k
1) re-

spectively.
The first step is to show that for any p, 1 < p < q ≡ 2n

n−2 (in the case n = 1, 2

choose any finite q > 2µ+ 2), the sequences uk is precompact in C((0,∞), Lp(Ω)).
The energy equation e(t) for (1.1)-(1.4) implies that uk and uk

t are bounded in
L∞(0,∞;H1(Ω)). By the Sobolev Embedding Theorem in particular we have uk

is bounded in L∞(0,∞;Lq(Ω)), and uk(t, ·) is precompact in Lp(Ω) for almost all
t ∈ (0,∞). By the interpolation inequality for almost all t, s ∈ (0,∞) we have
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‖uk(·, t) − uk(·, s)‖Lp

≤ ‖uk(·, t) − uk(·, s)‖θ
L2‖uk(·, t) − uk(·, s)‖1−θ

Lq

≤
(∫ s

t

‖uk
t (·, z)‖L2dz

)θ(
‖uk(·, t)‖Lq + ‖uk(·, s)‖Lq

)1−θ

,

(4.19)

where θ = q/p−1
q/2−1 ∈ (0, 1). The second factor at the right-hand side of (4.19) is

bounded, and the first one vanishes as |t− s| → 0 uniformly in k. Thus (4.19) show
that the functions uk are equicontinuous in C(0,∞;Lp(Ω)). So the sequence uk is
precompactness in C(0,∞;Lp(Ω)). Fix two different integers i, j and observe that
the function U = wki − wkj satisfies

Utt − ∆U − α∆Utt − ∆Ut = M(‖∇uki‖2)∆uki

−M(‖∇ukj‖2)∆ukj + ∆ukj − ∆uki

+f(ukj ) − f(uki), in Ω × (0,∞),

U = 0 on Γ0 × (0,∞),(4.20)

∂U

∂ν
+ α

∂Utt

∂ν
+
∂Ut

∂ν
= −M(‖∇uki‖2)

∂uki

∂ν

+M(‖∇ukj‖2)
∂ukj

∂ν
+
∂uki

∂ν
−
∂ukj

∂ν

+(ukj − uki) + (u
kj

t − uki

t )

+g(t)(|u
kj

t |ρu
kj

t − |uki

t |ρuki

t )

+g ∗ (|uki |γuki − |ukj |γukj ), on Γ1 × (0,∞),

U(x, 0) = 0, Ut(x, 0) = 0, in Ω.(4.21)

Multiplying (4.20) by Ut we get

1

2

d

dt
{‖Ut‖

2 + α‖∇Ut‖
2 + ‖∇U‖2}

= −‖∇Ut‖
2 −M(‖∇uki‖2)

∫

Ω

∇uki · ∇Utdx

+M(‖∇ukj‖2)

∫

Ω

∇ukj · ∇Utdx

+

∫

Ω

(f(ukj ) − f(uki))Utdx

+

∫

Ω

∇(uki − ukj ) · ∇Utdx

+

∫

Γ1

(ukj − uki)UtdΓ +

∫

Γ1

(u
kj

t − uki

t )UtdΓ

+

∫

Γ1

g(t)(|u
kj

t |ρu
kj

t − |uki

t |ρuki

t )UtdΓ

+

∫

Γ1

g ∗ (|uki |γuki − |ukj |γukj )UtdΓ.
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We now majorize the right-hand side of (4.24). Firstly, using Schwarz’s inequality
and Young’s inequality, we get the following four inequalities:

−M(‖∇uki‖2)

∫

Ω

∇uki · ∇Utdx

+M(‖∇ukj‖2)

∫

Ω

∇ukj · ∇Utdx

=
(
M(‖∇ukj‖2) −M(‖∇uki‖2)

) ∫

Ω

∇ukj · ∇Utdx

+M(‖∇uki‖2)

∫

Ω

∇(ukj − uki) · ∇Utdx

≤ K(η)
(
M(‖∇ukj‖2) −M(‖∇uki‖2)

)2

+K(η)
∥∥∥∇(ukj − uki)

∥∥∥
2

+ η‖∇Ut‖
2,

∫

Ω

(f(ukj ) − f(uki))Utdx

≤ K(η)
∥∥∥f(ukj ) − f(uki)

∥∥∥
2

+ η‖∇Ut‖
2,

∫

Ω

∇(uki − ukj ) · ∇Utdx+

∫

Γ1

(ukj − uki)UtdΓ

≤ K(η)
∥∥∥∇(ukj − uki)

∥∥∥
2

+ η‖∇Ut‖
2,

and ∫

Γ1

g(t)(|u
kj

t |ρu
kj

t − |uki

t |ρuki

t )UtdΓ

≤ K(η)g2(t)
∥∥∥|ukj

t |ρu
kj

t − |uki

t |ρuki

t

∥∥∥
2

Γ1

+ η‖∇Ut‖
2.

On the other hand, by a simple computation, and taking (2.5) into account, we get
∫

Γ1

g ∗ (|uki |γuki − |ukj |γukj )UtdΓ

=

∫ t

0

g(t− s)
(
|uki(s)|γuki(s) − |ukj (s)|γukj (s), Ut(t)

)
Γ1

ds

= −
1

2

d

dt

∫ t

0

g(t− s)
∥∥∥|uki(s)|γuki(s) − |ukj (s)|γukj (s) − U(t)

∥∥∥
2

Γ1

ds

+
1

2

∫ t

0

g′(t− s)
∥∥∥|uki(s)|γuki(s) − |ukj (s)|γukj (s) − U(t)

∥∥∥
2

Γ1

ds

+
1

2

d

dt

(
‖U(t)‖2

Γ1

∫ t

0

g(s)ds
)
−

1

2
g(t)‖U(t)‖2

Γ1

≤ −
1

2

d

dt

∫ t

0

g(t− s)
∥∥∥|uki(s)|γuki(s) − |ukj (s)|γukj (s) − U(t)

∥∥∥
2

Γ1

ds

+
1

2

d

dt

(
‖U(t)‖2

Γ1

∫ t

0

g(s)ds
)
.
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From (4.24)-(4.29), choosing η > 0 sufficiently small we can get

d

dt

{
‖Ut‖

2 + α‖∇Ut‖
2 + ‖∇U‖2 − ‖U(t)‖2

Γ1

∫ t

0

g(s)ds

+

∫ t

0

g(t− s)
∥∥∥|uki(s)|γuki(s) − |ukj (s)|γukj (s) − U(t)

∥∥∥
2

Γ1

ds
}

≤ K
{∣∣∣M(‖∇ukj‖2) −M(‖∇uki‖2)

∣∣∣
2

+
∥∥∥∇(uki − ukj )

∥∥∥
2

+
∥∥∥ukj

t − uki

t

∥∥∥
2

Γ1

+
∥∥∥f(ukj ) − f(uki)

∥∥∥
2

+g2(t)
∥∥∥|ukj

t |ρu
kj

t − |uki

t |ρuki

t

∥∥∥
2

Γ1

}
.

Integrating (4.30) over (0,t) and taking (4.23) and (2.5) into account, we obtain

‖Ut(t)‖
2 + α‖∇Ut(t)‖

2 + ‖∇U(t)‖2

≤ K

∫ t

0

{∣∣∣M(‖∇ukj (s)‖2) −M(‖∇uki(s)‖2)
∣∣∣
2

+
∥∥∥∇(uki(s) − ukj (s))

∥∥∥
2

+
∥∥∥ukj

t (s) − uki

t (s)
∥∥∥

2

Γ1

+
∥∥∥f(ukj (s)) − f(uki(s))

∥∥∥
2

+g2(s)
∥∥∥|ukj

t (s)|ρu
kj

t (s) − |uki

t (s)|ρuki

t (s)
∥∥∥

2

Γ1

}
ds.

From (4.31) and (3.26), and noting that V ↪→ L2ρ+2(Γ1) we get

‖Wt(u
ki

0 , u
ki

1 ) −Wt(u
kj

0 , u
kj

1 )‖2
H0

≤ K

∫ t

0

{∣∣∣M(‖∇ukj (s)‖2) −M(‖∇uki(s)‖2)
∣∣∣
2

+
∥∥∥∇(uki(s) − ukj (s))

∥∥∥
2

+
∥∥∥ukj

t (s) − uki

t (s)
∥∥∥

2

Γ1

+
∥∥∥f(ukj (s)) − f(uki(s))

∥∥∥
2

+g2(s)
∥∥∥|ukj

t (s)|ρu
kj

t (s) − |uki

t (s)|ρuki

t (s)
∥∥∥

2

Γ1

}
ds

→ 0, i, j → ∞.

Thus the sequence Wt(u
k
0 , u

k
1) contains a convergent subsequence, which completes

the proof of the Proposition 4.2.
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