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ABSTRACT. It is proved that for a € (0,1), Qa(R"™), not only as an interme-

diate space of W1 (R") and BMO(R") but also as a homothetic variant of
. 2n

Sobolev space L2 (R™) which is sharply imbedded in L7-2a (R™), is isomor-

phic to a quadratic Morrey space under fractional differentiation. At the same

time, the dot product V-(Qa(R™))™ is applied to derive the well-posedness of

the scaling invariant mild solutions of the incompressible Navier-Stokes system
in Rrr” = (0,00) X R"™.

CONTENTS
1. Introduction and Summary 227
2. Proof of Theorem 1.2 233
3. Proof of Theorem 1.4 239
References 244

1. Introduction and Summary

We begin by the square form of John-Nirenberg’s BMO space (cf. [13]) which
plays an important role in harmonic analysis and applications to partial differen-
tial equations. For a locally integrable complex-valued function f defined on the

Euclidean space R™, n > 2, with respect to the Lebesgue measure dx, we say that
f is of BMO class, denoted f € BMO = BMO(R™), provided

I/ lBrro = (sgp (E(I))‘"/J‘f(m) _f1‘2dx)7 < o0,
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Here and elsewhere sup; means that the supremum ranges over all cubes I C R”
with edges parallel to the coordinate axes; £(I) is the sidelength of I; and f; =
( ) f ; f(z)dx stands for the mean value of f over I.

On the ba81s of the semi-norm || - ||pmo, a large scale of function spaces has
been introduced in [11], as defined below.

DEFINITION 1.1. For o € (—00,00), let Q. be the space of all measurable
complex-valued functions f on R™ obeying

I1JI

2 — 2 3
I, =su (o)™ [ [HE=T0 aaay ) <o

This @, is a natural extension of BMO according to the following result
(proved in [11] and [30]):

BMO, a € (—00,0),
Qo = { New space between W™ and BMO, a€10,1),
C, a € [1,00).

Here W1 = WHn(R") is the homothetic energy space of all C'! complex-valued
functions f on R™ with

I fllwin = (/Rn |Vf(x)|"dz> " <.

More importantly, Q., a € (0, 1), can be regarded as the homothetically invariant
counterpart of the homogeneous Sobolev space L2 = L2 (R™) which consists of all
complex-valued functions f on R™ with the a-energy

s N1
1z = (/ / ) |"+2i| d:cdy> < .

The reason for saying this is at least that || - ||g, and || - [|;. enjoy the following
property:
1f o ¢llo. = lIfllQ. and [[fodllzz =A% £l

for any homothetic map  — ¢(x) = Az + zg; A > 0,29 € R™.

In the six year period since the paper [11] appeared, it has been found that
Q. is a useful and interesting concept; see also [1], [2], [24], [8], [9], [16], [23],
[7] and [10]. This means that the study of this new space has not yet ended
up — in fact, there are many unexplored problems related to @,. In this paper,
although not attacking one of those open problems in Section 8 in [11], we go well
beyond the previous results by studying the relation between this space and the
quadratic Morrey space, but also giving an application of the induced facts to the
incompressible Navier-Stokes system.

To deal with the former, it is necessary to consider the following variant of [8,
Theorem 3.3] that expands Fefferman-Stein’s basic result for BMO in [12]: Given
a C* real-valued function v on R™ with

perl, W@IS+E) N, [ g)de=0 and g) =G
R’n
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Then for a measurable complex-valued function f on R"”,

T
(1.1) feQy<—= sup T2a_"/ / |f s ()Pt~ 20 dydt < oo.
z€R™,re(0,00) ly—z|<r

Here and henceforth, LP = LP(R™) represents the complex Lebesgue space equipped
with p-norm || - ||L»; * stands for the convolution operating on the space variable;
and U <V means that there exists a constant ¢ > 0 such that U < ¢V.

Two particular choices of 9 in (1.1) yield two characterizations of @, involving
the Poisson and heat semi-groups. As for this aspect, denote by e‘tm(, -) and
em(-, -) are the Poisson and heat kernels respectively; that is,

1 n
Y B () = () a el — g+ )

and

a2
A (x,y) = (4mt) " Fexp ( - %)

Of course, for § € R, the notation (—A)g is the 8/2-th power of the Laplacian

operator
- YE=-Y g
6:10
j=1
determined by the partial derlvatwes {Bj = 0/0z;}"_, and the Fourier transform

B
(—A)7 f(z) = (2n]z])® f(2).
On the one hand, if

n+1

1+ |z = (n+ )T (2) e "=
(L + o)

Yo(z) =

)

then
(%o)e(x) = tdhe V=2 (z,0)

and hence for @ € (0,1) and a measurable complex-valued function f on R™,
(1.2)

T
fEQy = sup 7“20‘7"/ /
z€R™,re(0,00) 0 Jy—z|<r
On the other hand, if

2
Oretv 7Af(y)‘ t' 2 dydt < oco.

|z

Yi(z) = —(4m)" % (%) exp ( - T) for j=1,..,n
then ,
(0)e(x) = ;" 2 (x,0)
and so, for @ € (0,1) and a measurable complex-valued function f on R™,
(1.3) feQq <= sup 7“2“_”/ / |Vet2Af(y)|2tl_20‘dydt < 0.
z€R™,re(0,00) ly—z|<T

With the help of the above-mentioned facts, we can establish the following
result.

THEOREM 1.2. Let « € (0,1). Then
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(i) Qo = (=A)"2 L2204 — BMO is proper with

n+2a

sup  WfllBro - Jn =

1flo.>0 I1fllQ. 2

where a measurable complez-valued function f on R™ belongs to Lo n—2q if and only

= Su 2o X)) — 2 X ’ 0.
||f||£2,n—2a SIp ((6(1)) /]|f( ) f[| d > <

(i) L2 = (~A) 2 L2 — L% is sharp with

[e3%

1 =2
. Hf”LnEga F("}QQ) 2 L(n) \" </ |6727ry-(1,0,...,0)_1|2d > 3
up = n+2a n 120 Y .
71z >0 1112z r(=g2)) \r@) " Jy[+2

(il)) Qo = V- (Qa)", where a tempered distribution f on R™ belongs to QLY. if
and only if

r? 2
[fllgz1, = sup <r2“‘"/ / |emf(y)|2t_o‘dydt> < 0.
' z€R™,r€(0,00) 0 ly—z|<r

Note that L3,_24 is the so-called Morrey space of square form (cf. [3] and
[22]) and L3, = BMO. So Theorem 1.2 (i) keeps true for & = 0 in the sense
of (~A)°BMO = BMO. Quite surprisingly, this part corresponds nicely to
Strichartz’s (—A)~ % BM O-equivalence [26, Theorem 3.3]:

2 3
f€(=A)"2BMO <= sup ((6([))"/ Mdmdy) < 0.
I rJr e =yt

The imbedding without best constant in Theorem 1.2 (ii) is well-known (see for
example [21, Theorem 1] and the related references therein) and very useful in the
study of the semi-linear wave equations (cf. [20]). A close look at both (i) and (ii)
reveals that @), behaves like a homothetic Sobolev space. In addition, Theorem 1.2
(iii) extends [15, Theorem 1]: BMO~! = V- (BMO)" that just says: f € BMO~!
if and only if there are f; € BMO such that f = Y7, 0;f;.

As with the latter, we recall that the Cauchy problem for the incompressible
Navier-Stokes system on the half-space R} = (0, 00) x R™:

ou—Au+ (u-Viu—Vp=0, in R
(1.4) Vou=0, in RY™

ut=o =a, in R
is to establish the existence of a solution (velocity)
u=u(t,z) = (ui(t, ), ..., un(t, z))

with a pressure p = p(t,x) of the fluid at time ¢ € [0,00) and position z € R"
that assumes the given data (initial velocity) a = a(x) = (a1(z), ..., an(x)). If the
solution exists, is unique, and depends continuously on the initial data (with respect
to a given topology), then we say that the Cauchy problem is well-posed in that
topology.
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Of particularly significant is the invariance of (1.4) under the scaling changes:

u(t, z) — ux(t, ) = Mu(\%t, \z);

p(t,x) — pa(t, x) = N2p(A\2t, \x);

a(z) — ax(z) = da(Ax).
So if (u(t,x),p(t,x),a(x)) satisfies (1.4) then (ux(t,z), pxr(t, x),ax(x)) is a solution
of (1.4) for any A > 0. This leads to a consideration of the well-posedness for (1.4)
with a Cauchy data being of the scaling invariance. Through the scale invariance

n n n
laxll s =Y an)llee =D Ma)allen =D lajlion = llall gz,
i=1 j=1 j=1

Kato proved in [14] that (1.4) has mild solutions locally in time if a € (L™)" and
globally if [|a||(zny» is small enough (for some generalizations of Kato’s result, see
e.g. [28] and [31]). Furthermore, in [15], Koch-Tataru found, among other results,
that (1.4) still has mild solutions locally in time if a € (VMO~1)™ and globally
once

n n 2 ;
Slaslsor =% suwp (5 / / ey (y) Pdydt
j=1 0 ly—z|<r

=1 w€R™,r€(0,00)

is sufficiently small. Here and henceforward, by a mild solution u(t, z) of (1.4) we
mean that u(t, z) solves the integral equation

t
u(t,z) = e®a(x) — / e=IAPY - (u @ u)ds,
0

where e'®a(z) = (e'?a1(x), ..., e"*an,(z)) and P is the Helmboltz-Weyl projection:
P ={Pjt}jk=1,..n ={0jx + RjRi};j k=1

with §;; being the Kronecker symbol and R; = Bj(—A)’% being the Riesz trans-
form.
Observe that ||| paro-1 and ||| o-1_ are also invariant under the scale transform

oo

vvvvv n

a(x) — Aa(Ax). So it is a natural thing to extend the results of Kato and Koch-
Tataru to the Q-setting. To do this, we introduce the following concept.

DEFINITION 1.3. Let o € (0,1) and T € (0, 00]. Then we say:
(i) A tempered distribution f on R™ belongs to the space Q;‘IT provided

1
r? 2
||f||Q*1T = sup <T2a_n/ / |emf(y)|2t_°‘dydt> < o0
i z€R™,r€(0,T) 0 ly—z|<r

ii) A tempered distribution f on R™ belongs to VQga ' provided limy_,q -1 =
QLT
0; ’
iii) A function g on RY™ belongs to the space X4.7 provided
g + g ;

I9llx0r = sup Vilg(t, )|z~
te(0,T)

1
T2 2
+ sup 7“20‘_"/ / lg(t,y)|*tdydt | < .
z€R™,72€(0,T) 0 ly—z|<r
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In particular, we write
Qo = BMO7', VQy'=VMO~T and Xor = Xr.
Two immediate comments are given below: If
@) =Af(0z) and ga(t,z) = A\g(\*t,A\x) for A\t>0 and z€R",
then
I\l = Ifllgzr. and llgallxae = [19]1xa.u
that is, || - [[o-1_ and || || x,... are scaling invariant. Second, we have
L" C Q.1 € BMOT' and Xaq C X
To see this, note that || f||zyo-1 = ||f||Q(;ic < [[fllgz1, - Additionally, recall that
n—p

fe Bi},:;, p > n if and only if ||e!® f||z» <t 2 for t € (0,1]; see also [4]. Using
Hélder’s inequality, we obtain that if f € B;i:g, p>nandr € (0,1), then

’I"2 ”’2
[ e rwre e s oo [ e eea g o
0 ly—z|<r 0

and hence f € Q;;ll. This, together with the well-known inclusion (see e.g. [15]):

n

-1+ . . . .
L™ C By ", p>n, yields the desired inclusion.
Below is our result on the well-posedness for the incompressible Navier-Stokes
system.

THEOREM 1.4. Let « € (0,1). Then
(i) The Navier-Stokes system (1.4) has a unique small global mild solution in
(Xaioo)™ for all initial data a with V- a =0 and |al| -1 ). being small.
(ii) For any T € (0,00) there is an € > 0 such that the Navier-Stokes system (1.4)
has a unique small mild solution in (Xa1)™ on (0,T) x R™ when the initial data

a satisfies V-a =0 and ”a”(QflT)" < e. In particular for all a € (VQ:"')" with

V -a =0 there exists a unique small local mild solution in (Xar)™ on (0,T) x R™.

In the case of @ = 0, Theorem 1.4 goes back to Theorems 2-3 of Koch-Tataru
in [15]. However, it is perhaps worth pointing out that their Theorems 2-3 do
not deduce our Theorem 1.4 even though (Q;}T)” and (VQ; 1)" are subspaces of
(BMOZ')™ and (VMO*l)n respectively, since the (X,,7)™ is contained properly
in (X7)” when 0 < o < 1.

In the forthcoming two sections, we provide the proofs of the above-stated
theorems. The argument of Theorem 1.2 (i) follows from a chain of integral es-
timates for singular integral operators (see e.g. [5] and [6]) with being partially
inspired by Wu-Xie’s work [29], while in the demonstration of Theorem 1.2 (ii)
we formulate the integral involved in the Sobolev space as weighted integral of
the Fourier transform of the given function and take Lieb’s sharp estimate for the
Hardy-Littlewood-Sobolev inequality into account. The justification of Theorem
1.2 (iii) is an extension of Koch-Tataru’s argument for the BM O-setting in [15].
In showing Theorem 1.4 (i)-(ii), we improve Lemarié-Rieusset’s treatment (cf. [17,
Chapter 16]) of Koch-Tataru’s proof of settling the case a = 0 (see again [15, The-
orems 2 and 3]) in order to handle any value a € (0,1). More precisely, our proof
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rests on two technical lemmas of which Lemma 3.1 brings Schur’s lemma into play
and so makes a difference.

2. Proof of Theorem 1.2

To verify Theorem 1.2 (i), we must understand the quadratic Morrey space in
spirit of (1.2).

LEMMA 2.1. Given o € (0,1). Let f be a measurable complez-valued function
on R™. Then
(2.1)

T
feLon2q = sup 7“20‘_"/ /
z€R™,7€(0,00) 0 Jjy—z|<r

PROOF. Assume f € L9 2. Recall

2
e VAL (y)| tdydt < .

2 _ ntly —2H
pow) = L Z A DPEITT F 4 o) = t0ie=Y "5 (a,0).
TENPEDEE

For any ball B={y € R": |y —z| <r} in R™, let 2B be the double ball of B and
f2B = [2B|7! [,5 f be the mean value of f on 2B. Note that |E| stands for the
Lebesgue measure of a set E. Let also

fi=(f—fe)lap, fo=(f— fep)lgmop and f3 = fop,

where 1g stands for the characteristic function of a set E. Since f]R" Yo(x)dx = 0,
we conclude

t0e VB f(y) = (Wo)e * F(y) = (Wo)e * F1(y) + (Yo)e * f2(y)-

Concerning the first term (1g): * f1(y), we have the following estimates

|(tho)e * f(y)*t ' dydt < [(tho)e * f1(y) |t~ dtdy
[ Ll
< [ ([ s Pt ay
S [ 1) = ol

S TN,

where we have used the L2-boundedness: ||G(f1)|/z2 < || f1]|z2 for the Littlewood-
Paley G-function of f;

G(f)y) = (/Ooo ‘tatetmfl(y)rtldt)% .

At the same time, if (¢,y) € (0,7) x B and By, is the ball with center z and
radius 27, then we take the Cauchy-Schwarz inequality into account, and obtain
the following inequalities for (¢g); * f2(y):
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1)~ fosl .

map (E+ [z —z[)" !

(o) * o) < /

¢ [ g
~ Jrmep (7 + | — 2[)n Tt
— t|f(z) — fasl
< — dz
= t%/Bk (r—|—|x—2|)"+1d
< 030 [ 5~ faplds

S trainil Hf||£2,n72cx .

Consequently,

/0 /B (o) * Fo)|Pt dydt < 2 F2,

The above-established estimates yield that the supremum in (2.1) is finite.
To handle the converse part, denote by

S(I) = {(t,:c) eRY™: e (0,4(1)] and z€ z}.

the Carleson box based on a given cube I C R™.
Suppose the supremum condition in (2.1) is satisfied. Then

(2.2) sup (£(1))** ™" / |98 f(y) [P tdydt < oo.
I S(I)

In order to verify f € L3 ,,—24, we consider the projection operator

W P@) = [ Flta)o)(a - dydt.

and prove that if

M

2a—n
IPlc, = s ((é(f)) /

|F(t,y)|*t dydt | < oo
S(1)

then for any cube J C R™,

(2.3) / My, Fa) — (g, F) e < (607))" 2| |13,

Given a cube J C R™ and A > 0, define \J as the cube concentric with J and with
sidelength £(AJ) = M(J). Let 'y = F|g(25) and F, = F — F. Then by a result of
Coifman-Mayer-Stein [6, p. 328-329],
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IN

/J T, F ()P / L, F ()P

[ 1FpPe g
R+

A

< / |F(t,y)|*t " dydt
(2.7

< IFIE (e)"

On the other hand, from the definition of IIy,, the boundedness of 1y and the
Cauchy-Schwarz inequality it follows that

[ I, Fafa) s
J

/
2
/ ( [ |<¢o>t<:c—y>||F2<t,y>|t-1dydt> s
RIt™\S(2J)

JES
(&
(&

2
dx

/Rw (to)e(x — y)Fa(t,y)t ™ dydt

IN

IN

|(v0)¢(x — y)||F2(t,y)|t_1dydt> dx

S(2k+1J)\S(2k.J)

(2%¢(7)) " /
S(2k+1)\S(2kJ)

2
—(n+1) / \Fy(t,y)|dydt | dz
S(2kt1\S(2kJ)

2

oz — )1t y)|dydt> "

AN
—_— =

g EM%

2
(2Fe(J)) "= / | By (t, y) |2t dydt dx
f Sk S (2% )

< IIFIE, (e()
Thus

/J\H%F(x)—(nwoF)Jyzdx < /JynwoF(x)fdx
/JynwoFl(x)ﬁder/]\H%F2(x)\2dx

< FIE ()",

namely, (2.3) holds. Applying (2.3) to Iy, ((t0)¢ * f) which equals f under (2.2),
we achieve f € L3 p—24. O

A
T

>
Il

A

Proor oF THEOREM 1.2 (i). Since the imbedding with that constant can be
derived from a routine computation, it suffices to show Qn = (—A)~2 L2, 24.
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For f € Lo 24, let F(t,y) = t'7*0,e"*V~2 f(y). Then by Lemma 2.1 we get
sup e [ PPy S R,
0 ly—z|<r

z€R™,r€(0,00)
and consequently, Il F € Q. thanks to [8, Theorem 7.0 (i)]. Note however that
F(t,-)(x) = —t***|a] f(2) exp(~t]z]).
So a calculation infers
My, F(z) = 2~ @02 + a)|a] = f(x) = 2720°T(2 + ) (—A)~ % f(x).

Therefore, (—A)~ % f belongs to Q.

Conversely, suppose g € Q. Setting G(t,y) = tl’o‘ate’tmg(y), we deduce
IGllc. S llgllg. by using (1.2). Thus (2.3) is valid for this G(-,-). From the
argument of Lemma 2.1 it is easily derived that II,,G € L2 ,,—24. Since

—

MMy, G(x) = 27277 °T(2 — a)(~A) 5 g(x),
)

we conclude that f = (=A)2g € L2,,_24 and g = (—=A)~% f. This completes the
proof.

Proor oF THEOREM 1.2 (ii). According to [27, p. 175], we use Fubini’s theo-
rem, Plancherel’s formula, the change of variables y = |z| 7!z and an orthonormal
transform to obtain

11z = / ) </ ) |f<x+y>—f<x>|2dz> [yl =2 dy

- ( / |e2”y'f—1|2|y|<"+2a>dy> (@) Pda
_ (/ |ef27rz~(1,0 ..... O)_1|2|Z|(n+20¢)dz)/]R |f($)|2|$|2adl'

Accordingly, L2 = (—A)~% L2. Note that f(z) = Jgn [ (y) exp(—2miz - y)dy and
V) = [ Fwresn (= 2nliy- o+ lylt)ds
So, by differentiation and integration (cf. [25, p. 83]), we find
Ve VB e =8 [ Jaf?|f (@) exp(~dnlelt)da,
RTL

Consequently,

> e oa 82T (2(1 — «) o
Q1) [ VeV a2 - ) JRCRIOR
0 (477) Rn

Moreover, the preceding consideration actually tells us that proving the desired
sharp imbedding amounts to verifying the following best inequality

(2.5) 112 2 < T / (Ve 2,120,
0

n—2a

where

Tn,oc =

2 (22) (F(n) ) B
j .

7ol (2(1 - )0 (222 ) \T(3)
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To this end, we use (f,g) as [p. f(z)g(x)dz, and then get

(o =1k < ([ laPli@pa) ([ e gpe).

Because (cf. [19, Corollary 5.10])

) ) 20(*21—1 n—=2a«a 2a
2|2 (a) Pdr = T2 ) / / &9 4y,
/Rn T @) JenJen |:c— |n -

it follows from Lieb’s sharp version [18] of the Hardy-Littlewood-Sobolev inequality
that

() (1o
< T (rfg)

In the last inequality we take g = f|f|n % for f e La, and use (2.4) to achieve
(2.5) whose equality can be checked for f(z) = (1 + |2|?)(2*=™)/2 through a direct
calculation.

The proof of Theorem 1.2 (iii) depends on the following lemma.

/ (22| f () 2d.
Rn

LEMMA 2.2. Given a € (0,1). For j,k =1,..,n let fjr = 0;0,(—A)"1f. If
fEQal, then fx € Qal

PROOF. Assume that ¢ is a C'°° real-valued function on R™ with compact

support suppg C B(0,1) = {z € R" : |z] < 1} and [, #(z)dz = 1. Recall
¢or(x) =17 "P(x/r), and write g, (¢, ) = gbr * 0;0k(—A)"LetA f(x ) Then

' fin(@) = 0;01(=A) ' f(z) = fr(t, @) + 9. (t, 7).

If B% 1 stands for the predual of the homogeneous Besov space Bfl > then f €
QL vields f € BMO™' C B> (see also [Le, p. 160, Lemma 16.1]) and

lgr(t, Mz < vl oo |0500(~2) e | V] P

N
Blcc

Consequently,

eo [ / o) Py S e S
y—x|<r ’

Next, we estimate f.. Take another C*° real-valued function ¢ with compact
support in R™ such that ¢ = 1 on B(0,10) = {& € R"™ : |z| < 10}. Define
Yy = 1/1(%) and write f, = Fy ; + G, 5 where

Gr,m - ajak(_A)_lwr,xetAf - ¢T‘ * ajak(_A)_l1/}T,metAf'
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Thus, we employ the Plancherel formula for the space variable to get

w dt
J A R N P

T2 — dt
SO N (G XC S

e dt
S [ (L b2 e N wlay)
2 dt
S [ el
0
r dt
S A e
0

And, by Minkowski’s inequality (for ¢,) as well as the Plancherel formula again,
we have

r dt dt
/0 H¢7‘ * ajak(_A)_ldjr,metAinz o~ / ||w7‘1 tAf”% ta

The last two estimates imply

2 dt r 2 dt
[ 6l s [ e

To control F, ., we bring the following estimate (proved in [17, p. 161])

/ |Fr,x(t7y)|2dy 5 pntl / |€tAf(’LU)|2|ZZ? _ w|7(n+1)dw
ly—z|<r

|w—z|>10r

into play, and get

2
" dt
[ ([ ipawra)s
0 ly—z|<r

2
" dt
s i [ e e ([ e PR ) du
|lw—z|>10r 0 t
> r dt
s iy o=l ([ e )P ) du
=1 Y 10tr<Jw—az| <1001y 0 e

fe'e) 2

" dt
< lO_l(”+1)/ / e fw)? = )dw
- ; :D|§1Ol+1r( 0 €7l fa)

|w—

ST

The integral estimates on F, , and G, , give

T2
(2.7) / / ot )Pt dydt S 22 20
0 ly—z|<r ’

Combining (2.6) and (2.7) gives fjr € Qa:h, as required. O
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Proor oF THEOREM 1.2 (iii). If f € V- (Q4)", then there are f1,..., frn € Qu
such that f =377, 9;f;. So the Minkowski inequality derives

n

1floe. < S 1058l < 155l
j=1

7j=1
This means f € Q..
Conversely, let f € QL. If fjr = 9;0(—A)"'f, j,k=1,..,n, then f;j €
oo by Lemma 2.2, and hence fr, = —0k(—A)"'f € Qq. This leads to

Zakfk = —ka\k = f,
k=1 k=1
completing the proof.
3. Proof of Theorem 1.4

To prove Theorem 1.4 we need two lemmas.

LEMMA 3.1. Let o € (0,1). Given a number T € (0,00] and a function f(-,-)
on R}f". Let Af(t,x) = fot et=)ANAf(s,z)ds. Then

T T
2 dt 2 dt
3.1) | laseoling < [ el
0 0
PrROOF. It suffices to justify (3.1) for T = co. This is because: If T' < oo, then
one may extend f by putting f =0 on (T, 00), since Af counts only on the values
of f on (0,t) x R™. Moreover, we may define f =0 = Af for ¢t € (—o0,0).
. 2
Recall €2 (x,0) = (47t)~% exp(—%). Define
Aet?(z,0 t>0
Qft,zy= | 2600 >
0, t<0.
Then we read that
Af(t,x) = / Q(t — s,z —y) f(s,y)dyds,
R JR?
and hence A becomes a convolution operator over R'*" = R x R™. Since
Q(t,)(¢) = Q(t, z) exp(—2miz - ()dz = —(2m)%[([* exp ( — (2m)2¢[¢[?), ¢ >0,
Rn
we conclude

—

Af(t,-)(C)
= /Run (/n Q(t — s,z —y)f(s,y) exp(—2miz - Q)dm) dyds

Lo s ([0t s exp-2iCu+ ) - Q) dyas

[ [ s rexpl-2riy- O = rploP e (- @mP( - 9)ICP) )dyds
0o Jrr

~ (2 / ¢ exp (— (2m)2(t — )[C2) F(5 ) (C)ds.
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This formula, together with the Fubini theorem and the Plancherel formula, implies
° dt
| Aol
o — d
= [ ([ i) &
0 R™
> ' ¢ — 2\ dt
| (fnpéemw@m%ﬁ—gma”“’xoma(“>w
2 * ! ¢[? 3 2dt
(27) /n<A (| i e 0) & ) «
2 e [SHITEBIs] 2dt
(2r) / </0 (/0 (1{0§s§t}) 5 (@ 1) ds) 7&) dc.

This tells us that if one can prove

— 2
[ 112 f(s,)(Q) di 2 dt
(3.2) /O (/0 (1{o<s<t})md8> t_a'g/o (&) OF

then the Plancherel formula can be used again to yield

> 2 dt o dt
| lareolig < [ e

IN

as desired.
To verify (3.2), we rewrite its left side as

Lw<AwK@wF@¢m§2@

where
F(s,¢)=s"2|f(s,-)(¢)| and K(S>t):(1{0559})(§) W'
Clearly,

Af°K<&wds:|<2zf(;)%expth_sncﬁdsg]._emx—ucﬁ>g1
and

| wod=1c [7(5)" exni- - siicPrar <1

Therefore, by Schur’s lemma we get

/OOO </OOO K(Sat)F(SyC)dS>2dt < /OOO (F(t,0)) dt,

reaching (3.2). O

LEMMA 3.2. Given a € (0,1). For a function f on (0,1) x R™ let

clfia)= _swp s [ gyl edtay,
0 ly—z|<r

z€R™,re(0,1)
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Then

! dt
(3.3) /0 taN C(f;a /Hf o[

PROOF. In the sequel, (-, -) stands for the inner product in L? with respect to
the space variable z € R™. So

t 2
)2, = Aet? ,y)d
O ol LT

- <mem / " Flo s, VR / tf(s,y)ds>

_ / / VERE f(s,), V=R f(h, ) ) dsdh,

a([[.. (e [ ) oa)

AetA

This gives

/ I B

: //<h<s<1<'f< I, (€% = € 2)|£(h,)]) dsdh
< /<|f |/ €22 f(h, )Idh>s_ads
& (/ 175 lzrsd S) S / e[ (h, )| dh .

As estimated in [17, p. 163], it follows that

s r?
swp [ @ phaing s o [ sy,
z€R",5€(0,1] JO z€eR”,re(0,1) 0 ly—z|<r

This estimate in turn implies

sup / 625A|f(h7z)|dh§ sup 7“20‘7"/ / |f(s,y)|s™“dsdy
z€R”,5€(0,1] JO z€R™,re(0,1) 0 ly—z|<r

and
[ <o ([ 176 s eas)

giving (3.3). O

Proor oF THEOREM 1.4 (i)-(ii). In accordance with the Picard contraction
principle (cf. [17, p. 145, Theorem 15.1]), we find that proving Theorem 1.4
amounts to demonstrating that the bilinear operator

t
B(u,v) = / e=IAPY - (u @ v)ds
0

is bounded from (Xq;7)" X (Xa;7)" to (Xa7)™. Naturally, u € (Xo7)" and a €
(Q;IT)" are respectively equipped with the norms

n n
lll o = 3 gl and llall oty = 3 ol
=1

Jj=1
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Step 1. L*°-bound. We are about to prove that if ¢ € (0,7) then

1
(3.4) |B(u, v)| St 2 ||lull (xo.r)m 101l (X air)m -
If % < s <t then

—s [ull < flv]l 2= 1
=2 PY - (u@v)|[pe S = (8= 8) 72 Hull (i 191l (-

~ /—t_s ~

If0<s<%then

let=*)APV . (u® )|

s, )05, )
S o rtle e

< S (V1L + k)0 / fu(s, )| [0(5, )]y

kezn z—yeVi(k+[0,1]")

An application of the Cauchy-Schwarz inequality yields

t
I/ [u(s, )llv(s, )\dyds
0 Jx—yevit(k+[0,1]n)
1
t 2 2
< @ // 7|u(s,ay)| dyds
0 Jxz—yei(k+[0,1]7) S
1
t 2 2
X // 7|v(s,a)| dyds
0 Jz—yevi(k+[0,1]7) S

Sl 10l iy

From the foregoing inequalities it follows that

|B(u, v)|
t t
hS /2 APV . (u@v)|ds+ [ |e"HAPV . (u®wv)|ds
0 3
1 ¢ 1 -1
S T ull e 0l (taryn + {87 (= 8)72ds | [Jullayn 191 (tair)n
3

AN

1
S 2 ull Xy 10l (taryns

establishing (3.4).
Step 2. L2-bound. We are about to show that if z € R™ and 72 € (0,T) then

T2
(35)  r2en / /| 1B dyds £ ol e
y—x|<r

To do so, let 1, ,(y) = L{jy—a|<10r}(y), i.e., the characteristic function on the ball
{y e R": |y — x| < 107}, and set B(u,v) = By(u,v) — Ba(u,v) — Bs(u,v), where

Bu(u,v) = / eSMAPY . (1 - 1,,)u® v)dh,
0
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Bauv) = (=8) 5PV [N ((-a) 31— 1w )i,
0
and
Bs(u,v) = (~A) 2PV - (—A)%eSA(/O (Lre)u® v)dh).

Here and henceafter, I stands for the identity operator.
When 0 < s < 72 and |y — x| < r, the Cauchy-Schwarz inequality produces

| B1(u, v)
= / ulh. 2ol
|z— x|>10r VS — _|_|y_z|)n+1
</ / OSTECC
|z—z|>10r ‘T - Z|n+
2 3 r? 2 3
~ |z—z|>10r |I - Z|n+1 0 ly—x|>10r |I - Z|n+1
S 1||u||(x(,<;T)n||v||(xa;T)"-
Therefore,

’I"2
/0 /y aler | By (u,v)|?t™“dydt < T"—2“|‘“||%XQ;T)” HUH%XQ;T)"'

For By(u,v), put
M(h,y) = 17“,:!:(“ ®v) = 17“,:6(9) (u(h, Y)® v(h,y)).

By the L2-boundedness of the Riesz transform and Lemma 3.1 we achieve
2 2 s 2

/T ||Bz(u,v)||isz,if N / ‘/ e“*h)AA((—A)*%(I—ehA)M(h,-))dh g
0 0 0 L2
< [ (Earsa-esmen)|, =
~ 0 ’ L2 Sa'

Owing to SUPs¢(g,00) 5~ (1 —exp(—s?)) < oo, we conclude that (=A)"2(I —esD) is
bounded on L? with operator norm < /s. This, plus the Cauchy-Schwarz inequal-
ity, gives

2
dt
/0 | Bati )35 S 72 Nl o 0l e

Similarly for Bs(u,v), we obtain

2

" 2 dt 1 dt
/ HBS(U7U)HL2t_a 5 / ‘ tA/ M t_o‘
0 0
4+n 20 TA dr
< ( 26 |M 20, r- )|d0 —
0
Now, making a use of Lemma 3.2 we achieve
! LA [T 2 o
/ (—A)ze” / |M(r20,7)|df|| — < D(M;« / HM 20,7 6‘0"
0 0 L2
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where
D(M;a) = sup p~ / / (r20, rw) |7~ dwdr
p€(0,1) |w— ac\<p
< P ull Xy 190 (X

Observe also that

So,

do
/ 1M (720, - )IILz— S 12 ull oy 101l -

it follows that

2

r dt
/O B3, 0) 3 o S 72 [l e 0l oy

Adding the previous estimates on B;(u,v), j = 1,2, 3 together gives (3.5).

Clearly, the boundedness of B(:,-) : (Xa7)" X (Xay7)" — (Xa,7)" follows

from (3.4) and (3.5). Furthermore, the case T = oo produces (i); and the other
case T € (0,00) yields (ii). The proof is complete.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

References

. D. R. Adams and J. L. Lewis, On Morrey-Besov inequalities, Studia Math. 74 (1982), 169—

182.

. M. Andersson and H. Carlsson, Q, spaces in strictly pseudoconvex domains, J Anal. Math.,

84 (2001), 335-359.

. S. Campanato, Proprietd di inclusione per spazi di Morrey, Ricerche Mat., 12 (1963), 67-86.
. M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-

Stokes in R?, Exposé n. VIII, Séminaire X-EDP, Ecole Polytechnique, 1963.

. M. Christ, Lectures on Singular Integral Operators, CBMS Regional Conference Series in

Mathematics, vol. 77, Amer. Math. Soc., Providence, RI, 1990.

. R. R. Coifman, Y. Meyer and E. M. Stein, Some new function spaces and their applications

to harmonic analysis, J. Funct. Anal., 62 (1985), 304-335.

. L. Cui and Q. Yang, On the generalized Morrey spaces, Siberian Math. J., 46 (2005), 123-141.
. G. Dafni and J. Xiao, Some new tent spaces and duality theorems for fractional Carleson

measures and Qo (R™), J. Funct. Anal., 208 (2004), 377-422.

. G. Dafni and J. Xiao, The dyadic structure and atomic decomposition of Q spaces in several

variables, Tohoku Math. J., 57 (2005), 119-145.

M. Englis, Qp-spaces: generalizations to bounded symmetric domains, Proceedings of the
13th International Conference on Finite or Infinite Dimensional Complex Analysis and Ap-
plications, World Scientific Publishing Co. Pte. Ltd., 2005, pp. 53-71.

M. Essén, S. Janson, L. Peng and J. Xiao, Q spaces of several real variables, Indiana Univ.
Math. J., 49 (2000), 575-615.

C. Fefferman and E. Stein, HP spaces of several variables, Acta Math., 129 (1972), 137-193.
F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl.
Math., 18 (1965), 415-426.

T. Kato, Strong LP-solutions of the Navier-Stokes equation in R™, with applications to weak
solutions, Math. Z., 187 (1984), 471-480.

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157
(2001), 22-35.

V. Latvala, On subclasses of BMO(B) for solutions of quasilinear elliptic equations, Analysis,
19 (1999), 103-116.

P. G. Lemari-Rieusset, Recent Developments in the Navier-Stokes Problem, Boca Raton, Fla.:
Chapman and Hall/CRC , 2002.

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math.,
118 (1983), 349-374.

E. Lieb and M. Loss, Analysis, 2nd ed. Graduate Studies in Mathematics, vol. 14, Amer.
Math. Soc., Providence, RI, 2001.



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

ST.

HOMOTHETIC FRACTIONAL SOBOLEV SPACE WITH APPLICATION TO NS SYSTEM245

H. Lindblad and C. D. Sogge, On existence and scattering with minimal reqularity for semi-
linear wave equations, J. Funct. Anal. 130 (1995), 357-426.

V. Mazya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning
limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 195 (2002), 230-238.

J. Peetre, On the theory of L, x, J. Funct. Anal., 4 (1969), 71-87.

L. Peng and Q. Yang, Predual spaces for @ spaces, Preprint, 2005.

S. Pott and M. Smith, Paraproducts and Hankel operators of Schatten class via p-John-
Nirenberg theorem, J. Funct. Anal., 217 (2004), 37-78.

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Uni-
versity Press, Princeton, N.J., 1970.

R. S. Strichartz, Bounded mean oscillation and Sobolev spaces, Indiana Univ. Math. J., 29
(1980), 539-558.

R. S. Strichartz, A Guide to Distribution Theory and Fourier Transforms, World Scientific,
2003.

M. E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolu-
tion equations, Comm. Partial Differential Equations, 17 (1992), 1407-1456.

Z. Wu and C. Xie, Q spaces and Morrey spaces, J. Funct. Anal., 201 (2003), 282-297.

J. Xiao, A sharp Sobolev trace inequality for the fractional-order derivatives, Bull. Sci. Math.,
130 (2006), 87-96.

M. Yamazaki, The Navier-Stokes equation in various function spaces, Amer. Math. Soc.
Transl., 204 (2001), 111-132.

DEPARTMENT OF MATHEMATICS AND STATISTICS, MEMORIAL UNIVERSITY OF NEWFOUNDLAND,
JoHN’s, NLL A1C 5S7, CANADA
E-mail address: jxiao@math.mun.ca



