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On 3D Domain Walls for the Landau Lifshitz Equations
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Abstract. We show that the Landau-Lifshitz equations of micromagnetics
admit solutions with large variations as the exchange coefficient ε2 tends to
zero, corresponding to a large gradient (∼ ε−1) of the magnetic moment. These
solutions are described by an asymptotic expansion involving internal layers of
width O(ε) and amplitude O(1) located in a neighborhood of a smooth fixed
hypersurface contained in the domain. The magnetic moment varies fastly
accross this hypersurface, called a wall in micromagnetism. The evolution of
the transition layer is governed by a nonlinear PDE and our results apply
for interval of times of lenght O(1). As ε → 0 the solution converges to a
discontinuous solution of the ”hyperbolic” model, with no exchange term.

Contents

1. Introduction 143
2. Geometry setting 144
3. Domain wall in the absence of the exchange field 145
4. Transition layer in the presence of the exchange field 146
5. On wall Motion 149
6. Proof of Theorem 4.2 150
References 164

1. Introduction

In this paper we are interested in some special materials called since Weiss
(1907) ferromagnets. For such materials -which have nowadays a huge interest in
magnetic storage industry- magnetization is not a linear answer to the magnetic
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field. Landau and Lifshitz (cf. [19]) proposed in 1935 the equation:

∂tM = µ0

(

γM ∧ Heff − α

|M |M ∧ (M ∧ Heff)
)

,(1.1)

where the magnetic moment M is valued in R
3 and saturated, which means of

constant length, µ0 is the magnetic permeability of the vacuum, γ is the Larmor
precession factor, α a Gilbert damping constant, Heff denotes the effective magnetic
field containing contributions from several terms as a Zeeman field (or exterior field),
an anisotropy field (which models the crystalline anisotropies of the material), the
demagnetizing (or stray-field) field (which is satisfies the static Maxwell equations
in the quasi-stationary regime i.e. when the demagnetizing field relaxes to steady
state on a time scale short compared to the time scale for the motion of the local
magnetic moments, see [7], [17], [29], [30]) and the exchange field (which models
the tendency towards parallel alignment of neighboring magnetization vectors in
the underlying atomic lattice) see for example [16]. The second term in the right
hand side of (1.1) have been introduced phenomenologically into the equation in
order to modelize the macroscopic effects of various kinds of microscopic relaxation
processes (cf. [27], [18]). Equation (1.1) benefits from deep structure (cf. [1], [20]).

A well-known ferromagnetic pattern formation is the decomposition of the ferro-
magnet into almost uniformly magnetized regions (the so-called magnetic domains)
separated by thin transition layers, called domain walls. Some explicit one dimen-
sional domain walls are even known as Bloch walls (named after Felix Bloch who
first conceived a continuous wall transition but first proposed and calculated by
Landau and Lifshitz cf. [19]) and Néel walls cf. [21]. They are sometimes called
180 degree wall since they describe the transition between two domains which have
magnetic moment of opposite direction. Let us also mention some recent results in
thick films in [23], in thin films by [24] and in nanowires by [9].

Our purpose here is to begin a study of such patterns in three dimensions. One
difficulty is the non local character of the demagnetizing field. In order to simplify
the presentation (and because this does not change our analysis) we will set all the
other constants to 1 and we will omit the anisotropy field and the Zeeman field.

2. Geometry setting

The piece of ferromagnet occupies a regular bounded open set Ω in R
3 with

a C∞ boundary Γ := ∂Ω, the set Ω being locally on one side of Γ. Let Σ be a
smooth compact embedded hypersurface contained in Ω (thus the hypersurfaces Γ
and Σ do not intersect). We assume that there exist a function Φ (respectively Ψ)
in C∞(R3, R) such that Ω = {Φ > 0}, Γ = {Φ = 0} (resp. Σ = {Ψ = 0}) and
|∇Φ(x)| = 1 (resp. |∇Ψ(x)| = 1) for x in an open neighborhood VΓ (resp. VΣ)
of Γ (resp. Σ). We assume that the neighborhoods VΓ and VΣ have been fixed
small enough in order that VΓ ∩ VΣ = ∅. We denote Ω± := Ω ∩ {±Ψ > 0}. We
consider a C∞ vector field ∂n which coincides on VΓ with −∇xΦ · ∇x and on VΣ

with −∇xΨ · ∇x.
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Φ > 0

Ψ > 0

Ferromagnetic medium

Φ < 0
Ψ < 0

Γ: Φ = 0
Ω

Ω −

+

Ψ < 0

Σ: Ψ = 0

For 0 ≤ s < ∞ call Hs
Σ(Ω) the set of functions u ∈ L2(Ω) such that u|Ω±

∈ Hs(Ω±)

where Hs(Ω±) is the usual Sobolev space on L2. We endow Hs
Σ(Ω) with the norm

‖u‖Hs
Σ

:= ‖u|Ω−
‖Hs(Ω−) + ‖u|Ω+

‖Hs(Ω+)

This definition extends to the case when s = ∞: the space H∞
Σ (Ω) is the natural

Fréchet space.

3. Domain wall in the absence of the exchange field

In this section we also omit the exchange field and look for functions u(t, x)
valued in the unit sphere of R

3, solutions in Ω of the simplified version of (1.1):

(3.1)







∂tu
0 = u0 ∧H(u0) − u0 ∧ (u0 ∧ H(u0)) in R+ × Ω

u0
|t=0 = u0 ,

where no boundary condition is needed. The operator H ∈ L
(

L2(Ω)
)

(linear con-

tinuous mapping from L2(Ω) to L2(Ω)), is defined by H(u) := H|Ω where the

demagnetizing field H ∈ L2(R3) solves the static Maxwell equations:

(3.2) curl H = 0 and div (H + u) = 0, in R
3

where u means the extension of u ∈ L2(Ω) by 0 outside of the set Ω. The action
of H on the function u0(t, x) in (3.1) is extended by treating t as a parameter:
H

(

u0
)

(t, x) = H
(

u0(t, .)
)

(x).

Since H ∈ L
(

L2(Ω)
)

for any initial data u0 ∈ L2(Ω) such that a.e. |u0| =
1, there exists one corresponding global solution u to the Cauchy problem (3.1)
in C∞(R, L2(Ω)). Moreover Starynkévitch proved in [29], Theorem 1.6 that this
solution is unique.

On the other hand Carbou, Fabrie and Guès proved (cf. [6] Theorem 2.1)
that for any initial data u0 in the Sobolev space H2(Ω) such that a.e. |u0| = 1,
there exists an unique corresponding global solution u to the equations (3.1) in
C(R, H2(Ω)).

We fill in the gap between these two results by claiming the following result of
global existence of solution of (3.1) discontinuous through the hypersurface Σ.

Theorem 3.1. Let s ∈ ] 32 ,∞] and u0 ∈ Hs
Σ(Ω). Then there exists a unique

u0 ∈ C∞
(

R, Hs
Σ(Ω)

)

solution of the Cauchy problem (3.1).
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Proof. Let us quote that in the closer setting of semilinear symmetric hyper-
bolic systems, it is well known since the works of Rauch and Reed, and Métivier
([26], [25]) that there exist local piecewise regular solutions discontinuous across a
smooth characteristic hypersurface of constant multiplicity. In the present setting,
the proof is in fact simpler since the principal part of the hyperbolic operator is
simply ∂t.

However, the zero-order part of the operator contains the operator H which is
a non local operator which does not act in L∞. Hence the classical proofs do not
apply and need to be modified.

Let us consider the homogeneous symbol p(ξ) := (−ξiξj/|ξ|2)i,j in Hormander’s
class S0

1,0 with values in 3 × 3 real matrices and let us denote P the associated
operator. The key argument is that the P is a pseudo-differential operator which
satisfies the transmission property (see [2], [3], [11] and [12]). Since H(u) := H|Ω

where H , as defined in (3.2), satisfies H = Pu, it follows that H ∈ L
(

Hs
Σ(Ω)

)

, for
all s ∈ R.

Hence, when s > 3/2, the equation (3.1) is of the form v′ = F (v), v(0) = u0 ∈
Hs

Σ(Ω) where F is C∞ mapping from Hs
Σ(Ω) to itself, and the local existence of

the unique solution follows from the Cauchy-Lipschitz theorem.
The global existence is a consequence of the following Yudovitch type inequality

as in paper [6]:

‖H(u)‖L∞(Ω) ≤ c log(1 + ‖u‖Hs
Σ(Ω)).(3.3)

Let us prove the estimate (3.3) above, for completeness. We begin to recall the
classical logarithmic estimate (cf. for example [4] Proposition 2.3.5 ):

‖f‖L∞(R3) ≤ c‖f‖C0
∗(R3) log(1 +

‖f‖
C

s−3/2
∗ (R3)

‖f‖C0
∗(R3)

),

where Cs
∗ denotes the Holder space of index s.

By Sobolev imbedding (cf. for example [4] Proposition 2.3.3 ) we infer that

‖f‖L∞(R3) ≤ c‖f‖C0
∗(R3) log(1 +

‖f‖Hs(R3)

‖f‖C0
∗(R3)

).

By using the universal extension operators associated to Ω± (cf. [32]) we get:

‖H‖L∞(Ω±) ≤ c‖H‖C0
∗(Ω±) log(1 +

‖H‖Hs(Ω±)

‖H‖C0
∗(Ω±)

).

Then we use that P ∈ L
(

C0
∗

)

and that L∞ ⊂ C0
∗ to bound H = Pu in C0

∗ .

Since the function x 7→ x log(1 + C/x) is increasing and since H ∈ L
(

Hs
Σ(Ω)

)

we get (3.3).
�

This shows that when the initial data is in H∞
Σ , the solution of (3.1) is in

C∞
(

[0, +∞[, H∞
Σ (Ω)

)

.

4. Transition layer in the presence of the exchange field

We now look for functions u(t, x) valued in R
3, which belongs to the unit sphere

of R
3, solutions in Ω of the more realistic equations:

(4.1) ∂tu
ε = uε ∧ (H(uε) + ε2∆uε) − uε ∧

(

uε ∧ (H(uε) + ε2∆uε)
)

in R × Ω,
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where ε > 0 is the exchange coefficient. The equations (4.1) appear as a singular
perturbation of (3.1). Equations (4.1) have to supplemented by a boundary condi-
tion. We consider here the homogeneous Neumann boundary condition, which are
physically meaningful and usual in this context:

∂nuε = 0 in R × Γ,(4.2)

where n is the unit outward normal at the boundary Γ. We also add an initial
condition:

uε
|t=0 = u0.(4.3)

In the paper [6] it is proved that, for smooth enough solutions the system (3.1)
is a ”good approximation” of the full system (4.1)-(4.2)-(4.3) in the sense that the
solution u0 of (3.1) is indeed the limit in L2([0, T ]×Ω) of solutions uε of (4.1)-(4.2)-
(4.3) as ε → 0. However, this result holds under the assumption that u0 belongs to
the space C

(

[0, T ], H5(Ω)
)

where H5(Ω) is the usual Sobolev space. In particular

this assumption excludes the present case where u0 is discontinuous across an
hypersurface contained in Ω. The following theorem extends the results of [6] to
this case.

Theorem 4.1. Let u0 ∈ C∞
(

R, H∞
Σ (Ω)

)

be a solution of (3.1). There exist

T > 0, ε0 > 0 and a family of solutions uε ∈ W 1,∞(]0, T [×Ω) for ε ∈]0, ε0], of the
equation (4.1) on [0, T ]× Ω and of the equation (4.2) on [0, T ]× Γ, such that

||uε − u0||L2([0,T ]×Ω) = O(ε
1
2 ),

as ε → 0.

Let us add several comments to this result.
1/ In the main result of paper [6] the choice of the time T > 0 is arbitrary: it

is proved that for all T > 0 the solution of the Landau-Lifshitz equation exists on
[0, T ] if ε > 0 is sufficiently small, and converges in L2([0, T ] × Ω) as ε → 0. Here,
the result obtained in theorem 4.1 is different since we only show the existence
and the convergence of uε for a suitable choice of a small enough T > 0. We
don’t know if the result still holds for all T arbitrarily large and ε0 small enough,
depending on T . This is due to the rapid variations of uε accross Σ: the profile
equation describing the evolution of the large amplitude boundary layers around
Σ is nonlinear (equation (6.6)), and we have only been able to prove the local
existence of regular solutions for it (in Theorem 6.1).

2/ Let us stress that in Theorem 4.1 none initial data (4.3) for the uε are
prescribed: the traces of the uε at t = 0 are not equal in general to the trace of u0

at t = 0.
3/ In Theorem 4.1 the space W 1,∞ is the usual Sobolev space of bounded

functions with bounded first derivatives. However, a stronger version of the theorem
4.1 could be proved, where uε ∈ C∞([0, T ]×Ω). Indeed, it is sufficient to show that
one can built an initial data uε

|t=0 satisfying an infinity of compatibility conditions.

This has already been done in the paper [31] in the case of general semilinear
hyperbolic systems, and the proof can be adapted to the present case, but we have
not developped this aspect of the analysis.

In fact, we will claim a more accurate result in Theorem 4.2 by showing that uε

can be described with a WKB expansion which involves boundary layers profiles.
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This expansion contains two kinds of boundary layers. On one hand, a boundary
layer appears near the boundary to compensate the loss of the Neumann condition
from the complete model (4.1)-(4.2)-(4.3) to the limit model (3.1) (ε = 0). Such
a boundary layer was already studied in paper [6]. The amplitude of this layer is
∼ ε and its behaviour is linear. On another hand, and this is the main point of the
paper, there are large amplitude boundary layers on each side of the hypersurface Σ,
whose evolutions are governed by a nonlinear PDEs. Their task is to compensate
the loss of transmission conditions across Σ from the complete model (4.1)-(4.2)-
(4.3) to the limit model (3.1) (ε = 0).

We define the boundary layer profile spaces

N±(T ) := H∞([0, T ] × Ω,S(R±)),

where the letter S denotes the Schwartz space of rapidly decreasing functions. In
the easier case where u0 is continuous across the hypersurface Σ, paper [6] shows
the existence of solutions uε, ε ∈]0, 1], of the equation (4.1) in Ω, of the equation
(4.2) on Γ, of the form

uε(t, x) := u0(t, x) + ε
(

U(t, x,
Φ(x)

ε
) + wε(t, x)

)

where the function U is in N+(∞) and satisfies U(t, x, z) = 0 for x /∈ VΓ. The func-
tion U describes a boundary layer which appears near the boundary to compensate
the loss of the Neumann condition from the complete model (4.1)-(4.2)-(4.3) to
the limit model (3.1) (ε = 0). The amplitude of this boundary is weak and its
behaviour is linear. We will state this in section 6.2. The functions wε can be seen
as remainders.

Here since we deal with a ground state u0 which is discontinuous across the
hypersurface Σ, we look for solutions uε, ε ∈]0, 1], of the equation (4.1) in Ω, of the
equation (4.2) on Γ, of the form

uε(t, x) := U(t, x,
Ψ(x)

ε
) + ε

(

U(t, x,
Φ(x)

ε
) + wε(t, x)

)

.(4.4)

The function U describes a large amplitude internal layer profile i.e. a sharp tran-
sition in the neighborhood of the hypersurface Σ of width ∼ ε. More precisely the
function U is C∞ and satisfies

lim
y→±∞

U(t, x, y) = u0(t, x) for x ∈ VΣ ∩ Ω±(4.5)

U(t, x, y) = u0(t, x) for x /∈ VΣ and y ∈ R(4.6)

The profile U, as we have already said above, was constructed in [6]. The functions
wε can still be seen as remainders. Let us explain this time more precisely what
we mean by remainders. Let us fix a finite set of smooth vectors fields T0 =
{Zi(x; ∂x); i = 1, · · · , µ} on R

3, tangent to the surfaces Γ and Σ (that is satisfying
Zi(x; ∂x)Φ = 0 on Γ and Zi(x; ∂x)Ψ = 0 on Σ, for all i ∈ {1, · · · , µ}), and generating
the algebra of smooth vector fields tangent to Γ ∪ Σ. These vector fields can be
viewed as vector fields on R

4 tangent to R × Γ and to R × Σ. By adding the
vector field ∂t to the family, one gets the set T := {∂t} ∪ T0 which generates
the set of smooth vector fields in R

4 tangent to (R × Γ) ∪ (R × Σ). We denote
Z0 := ∂t. For all multi-index α ∈ N

1+µ we denote Zα = ∂α0
t Zα1

1 . · · · .Zαµ
µ , with
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α = (α0, α1, · · · , αµ). Let us introduce the usual norm:

‖u‖m :=
∑

|α|≤m , α∈N1+µ

|Zαu‖L2(]0,T [×Ω),

and denote Hm
co(]0, T [×Ω) the space of u ∈ L2(]0, T [×Ω) such that this norm is

finite. We will also note
|u|∞ := ‖u‖L∞(]0,[×Ω).

We introduce the set E of the families (wε)0<ε61) of functions in L2(]0, T [×Ω)
such that for all m ∈ N, there exists ε0 > 0 such that

sup0<ε6ε0
||wε||m + ||ε∂n wε||m + ε(|wε|∞ + |Zwε|∞ + |ε∂n wε|∞) < ∞.(4.7)

In fact Theorem 4.1 is the straightforward consequence of the following result.

Theorem 4.2. Let u0 ∈ C∞
(

R, H∞
Σ (Ω)

)

be a solution of (3.1). There exist
T > 0, a profile U in C∞((0, T )×Ω × R) which satisfies (4.5)− (4.6) and a family
(wε) in E such that the function uε given by the formula (4.4) are solutions of the
equation (4.1) on [0, T ]× Ω, and of the equation (4.2) on [0, T ]× Γ.

Theorem 4.2 exhibits large variation solutions of the Landau-Lifshitz equations
as the exchange coefficient ε2 tends to zero, by means of the asymptotic expansions
(4.4).

Remark 4.1. Such an analysis is inspired by the paper [31] where we show
that discontinuous solutions of multidimensional semilinear symmetric hyperbolic
systems, which are regular outside of a smooth hypersurface characteristic of con-
stant multiplicity, are limits, when ε → 0, of solutions (uε)ε∈]0,1] of the system
perturbated by a viscosity of size ε. In this paper, we adapt the method to the
ferromagnetism quasi-static model, where in particular the non local operator H
occurs. We point out that as the principal part of the ”hyperbolic” limit opera-
tor (ε = 0) is simply ∂t, the analysis involves only characteristic boundary layers.
In contrast [31] stresses the occurrence of characteristic and non characteristic
boundary layers. It would be also possible -as in [31]- to study the case where
the singularity is weaker than a jump of the function u0 as a jump of a derivative
of the function u0. Then we can take T as large as we want and the quality of
the approximation is better. We also refer to papers [15], [14], [31] for the use of
boundary layers in transmission strategy.

Remark 4.2. It would be interesting to know if it is possible to obtain such
a result in the non static case for which the Landau-Lifshitz equation is coupled
with the Maxwell system of electromagnetism. For such a model an analysis of the
boundary layer induced by the Neumann boundary condition on Γ is performed in
[8].

Remark 4.3. Again, by adapting the analysis developed in the paper [31] it
is possible to take wε in C∞([0, T ]× Ω) in Theorem 4.2.

5. On wall Motion

In this section we briefly deal with 3D wall motion. First it is worth recalling
here that the hypersurface Σ = {Ψ = 0} involved in the asymptotic expansion (4.4)
describing the transition layer does not depend on time. As it is said at the end of
the introduction a Zeeman field or an anisotropy field -with convenient smoothness



150 OLIVIER GUÈS AND FRANCK SUEUR

assumptions- would not change this fact. However the profile U involved in the
asymptotic expansion (4.4) does depend on time such that it may hide slow motion.
Let us illustrate this by an explicit example in which we assume here that Ω = R

3

so that there is no boundary. We look for solutions of the equation:

∂tu
ε = uε ∧ Heff − uε ∧

(

uε ∧ Hε
eff

)

,(5.1)

with Hε
eff := H(uε) + ε2∆uε + Hε

a + He where Hε
a denotes the uniaxial anisotropy

along the unit vector e1: Hε
a := 2(uε

1e1 − uε) and He the Zeeman field: He = ce1.
Let R be a rotation solution of ∂tR = He ∧ R i.e. such that (∂tR)u = He ∧ Ru for
any u ∈ R

3. In the following example -inspired by the papers [10] and [22]- the
explicit transition layer profile U reveals that the wall moves with the slow velocity
εc along the axis e1.

Lemma 5.1. The function uε(t, x) = U(t, x1

ε ) with

U(t, y) := R(t)
(

th(y + ct), 0, sech(y + ct)
)

,(5.2)

is an exact solution in R
4 of the equation (5.1).

Proof. Plugging the expression into the equation (5.1) yields the exact profile
equation: ∂tU = B(U ,H(U)) where B denotes B(u, v) := u ∧ v − u ∧ (u ∧ v) and
H(U) := −U1e1 + ∂2

yU + 2(U1e1 −U) + ce1. Let us prove that the profile U defined
by (5.2) verifies this profile equation. We first split B(U ,H(U)) into two pieces

B(U ,H(U)) = B(U ,H(U) − ce1) + B(U , ce1).(5.3)

Let us denote by V(y) :=
(

th(y), 0, sech(y)
)

. Then we notice that H(V)(y)− ce1 =

(2th2(y) − 3)V(y). Since U(t, y) = R(t)V(y + ct) we infer that H(U)(y) − ce1 =

(2th2(y) − 3)U(y) hence the first term in (5.3) vanishes. Moreover the second one
can be split into

B(U , ce1) = cRV ∧ e1 − cRV ∧ (V ∧ e1) = (∂tR)V + cRV ′ = ∂tU .

�

In view of this example an interesting question would be to extend Theorem
4.1 for times ∼ O(1/ε) in order to study the wall motion under a Zeeman field, and
extend the 1d explicit wall motions of Walker ([28], [33]) and Slonczewskii [22].

6. Proof of Theorem 4.2

As in [6], since the magnetic moment u is unimodular, the equation (4.1) is
equivalent for smooth solutions to the following one:

Lε(uε, ∂) uε = F
(

uε, ε∂xuε,H(uε)
)

(6.1)

where we have denoted

Lε(v, ∂) := ∂t − ε2∆x − ε2v ∧ ∆x,

and
F(u, V, H) := |V |2u + u ∧ H − u ∧ (u ∧ H),

for all u ∈ R
3, V ∈ M(R3, R3), H ∈ R

3. From now on we will deal with equation
(6.1) rather than (4.1). We will proceed in three steps. In subsection 6.1 we will
define the profile U as a local in time solution of a pair of nonlinear equations in
Ω × R± coupled by some transmissions conditions on {y = 0}. In subsection 6.2
we will recall the results of [6] about the profile U. In subsection 6.3 we will prove
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the existence of some remainders wε till the lifetime T of the profile U . Finally we
will show that the remainders wε satisfy the uniform estimates (4.7).

6.1. Construction of the internal layers. Even though ±Ψ(x)
ε > 0 when

x ∈ Ω± we will define U for all (x, z) ∈ Ω × R± since this will not cause any
additional difficulty. An Uryshon argument yields the existence of two functions
u0
± in H∞((0,∞)×Ω) such that u0

± = u0 for all x ∈ Ω± ∪ (Ω∓ −VΣ). We look for
a viscous internal layer profile U of the form

U(t, x, y) :=

{

u0
+(t, x) + U+(t, x, y) if y > 0,

u0
−(t, x) + U−(t, x, y) if y < 0.

(6.2)

The functions U± are in N±(T ). These functions describe internal large am-
plitude boundary layers, on each side of the hypersurface Σ. To insure that the
function U is in C1((0, T ) × Ω × R) it is necessary to impose the transmission
conditions:

U+ − U− = −u0
+ + u0

−,
∂yU+ − ∂yU− = 0

}

when (t, x, y) ∈ (0, T ) × Ω × {0}.(6.3)

In Theorem 6.1 we will define the profiles U± as local solutions of nonlin-
ear equations in Ω × R± coupled by some transmission conditions on {y = 0}.
Let us look for convenient equations. We will plug the functions uε,0 defined by

uε,0(t, x) := U(t, x, Ψ(x)
ε ) instead of uε in (6.1). In general it is not possible to verify

(6.1) but we will try to choose the functions U± such that the error term is as small
as possible. Let us begin to look at the left side of (6.1). With (6.2) we get in L∞

Lε(uε,0, ∂)uε,0 = ∂t u0
± +

(

L(U , ∂t, ∂
2
y)U±

)

| + O(ε) for x ∈ Ω±,(6.4)

where the vertical bar | means that y is evaluated in y = Ψ(x)
ε and

L(U, ∂t, ∂
2
y) := ∂t − ∂2

y − U ∧ ∂2
y .

We now turn to the right side of (6.1). First

H(uε,0) = H(u0
±) − (U±.n)|n + O(ε).

Then

F
(

uε, ε∂xuε,H(uε)
)

:= F
(

u0
±, 0,H(u0

±)
)

+ F±(U±, ∂yU±)|
+O(ε) for x ∈ Ω±,(6.5)

with for all U ∈ R
3, V ∈ M(R3, R3),

F±(U, V ) := |V |2 (u0
± + U) + U ∧H(u0

±) − (U.n)(u0
± + U) ∧ n

+U ∧
(

(u0
± + U) ∧ (H(u0

±) − (U.n)n)
)

+u0
± ∧

(

U ∧ (H(u0
±) − (U.n)n)

)

−(U.n)u0
± ∧ (u0

± ∧ n)

Thanks to (6.4) and (6.5) we get by looking at the terms at order 0

∂t u0
± + L(U , ∂t, ∂

2
y)U± = F

(

u0
±, 0,H(u0

±)
)

+ F±(U±, ∂yU±).
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Since for x ∈ Ω±, the functions u0
± satisfies (3.1) we could simplify and we get the

nonlinear equations

L(u0
± + U±, ∂t, ∂

2
y)U± = F±(U±, ∂yU±).(6.6)

The equations (6.6) are parabolic with respect to t, y, with x as a parameter.
The following theorem claims that it is possible to find some solutions U± ∈ N±(T )
of these equations even for all x ∈ Ω.

Theorem 6.1. There exists T > 0 and there exist some functions U± ∈ N±(T )
which verify the equations (6.6) when (t, x, y) ∈ (0, T )×Ω×R± and the transmission
conditions (6.3). Moreover for all x /∈ VΣ and y ∈ R± there holds U±(t, x, y) = 0.

Proof. We will proceed in four steps.

Step 1. We begin to reduce the problem to homogeneous boundary conditions.

We introduce the functions V± and U± given by the formula

V±(t, x, y) := (1 − e∓y

2
)u0

±(t, x) +
e∓y

2
u0
∓(t, x),

W±(t, x, y) := U±(t, x, y) ± 1

2
(u0

+(t, x) − u0
−(t, x))e∓y .

Let us introduce the notation [W ] = W+ −W− for a couple of functions W±. Thus
the transmission conditions (6.3) reads:

[W] = [∂yW] = 0 when (t, x, y) ∈ (0, T )× Ω × {0}.(6.7)

Moreover the equations (6.6)-(6.3) read for (t, x, y) ∈ (0, T )× Ω × R±:

L(V± + W±, ∂t, ∂
2
y)W± = F̂±(t, x, y,W±, ∂yW±),(6.8)

where F̂± are C∞ functions such that the functions F̂±(t, x, y, 0, 0) are rapidly
decreasing with respect to y.

Step 2. We prove the existence of compatible initial data.

Let us to explain why the initial values W0,+ must satisfy some compatibility
conditions at the corner {t = y = 0} in order to obtain smooth solutions W± of
the problem (6.8)-(6.7) with W±|t=0 := W0,±. First set t = 0 in the transmission
conditions (6.7) to see that W0,+ must satisfy the relation

[W0] = [∂yW0] = 0 when (x, y) ∈ Ω × {0}.(6.9)

Now, for each k > 1, apply the derivative ∂k
t to the transmission conditions (6.3).

We get

[∂k
t W] = [∂y∂k

t W] = 0 when (t, x, y) ∈ (0, T ) × Ω × {0}.
Now remark that, by iteration, we can estimate ∂k

t W± by the interior equations
(6.6) in terms of derivatives with respect to y. More precisely there exists some
smooth functions Ck

± such that

∂k
t W± = C2k

± ((∂l
yW±)l62k) and ∂y∂k

t W± = C2k+1
± ((∂l

yW±)l62k+1).

Thus the following compatibility condition must hold for k > 2:

[Ck((∂l
yW0)l6k)] = 0. when (x, y) ∈ Ω × {0}.(6.10)

Lemma 6.1. There exist some initial values W0,± in H∞(Ω,S(R±)) which
satisfy the relation (6.9) and (6.10) for all k > 2.
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Proof. As we will follow the method of [31], we only sketch the proof. We
start by analyzing more accurately the compatibility conditions and more especially
the way the functions Ck

± depend on the derivatives with respect to y. Indeed there

exists some functions C̃k
± such that

Ck
±((∂l

yW±)l6k) = C̃k
±((∂l

yW±)l6k−1) + T±∂k
yW±

where T± denote the automorphisms of H∞(Ω):

T± : W± 7→ W± + (V± + W
(0)
± ) ∧ W±.

We deduce by iteration that there exists a family (W
(k)
± )k∈N in H∞(Ω) such that

[C̃k((W(l))l6k−1) + T±W(k)] = 0.

Like in paper [31], the lemma by Borel on Taylor series implies that there exist

functions W0,± in H∞(Ω,S(R±)) such that for all k > 0, ∂k
yW0,± = W

(k)
± . �

As a consequence, we will assume in the rest of the proof that the functions
W± vanish for t 6 0.

Step 3. We look for linear estimates.

In order to use an iterative scheme, we look at the linear problem

L(W±, ∂t, ∂
2
y)W± = f± when (t, x, y) ∈ (0, T )× Ω × R±,(6.11)

[W] = [∂yW] = 0 when (t, x, y) ∈ (0, T )× Ω × {0}.(6.12)

For all real λ > 1, the space L2((0, T )×Ω×R±) is endowed with the scalar product
associated to the Euclidean norm

||W±||0,λ,T := ||e−λt W±||L2((0,T )×Ω×R±)

In order to avoid heavy notations, we will denote W := (W+,W−), f :=
(f+, f−) and W := (W+, W−). We endow the space L2((0, T )×Ω×R+)×L2((0, T )×
Ω × R−) with the scalar product associated to the Euclidean norm

||W ||0,λ,T := ||W+||+,0,λ,T + ||W−||−,0,λ,T .

For m ∈ N, we introduce the following weighted norms:

||W ||m,λ,T :=
∑

|α|6m

||∂α
t,x W ||0,λ,T and |W |m,λ,T :=

∑

|α|6m

||∂α
t,x ∂α4

y W ||0,λ,T ,

where α := (α0, ..., α3) ∈ N
4 and ∂α

t,x := ∂α0
t ∂α1

1 ∂α2
2 ∂α3

3 .

Proposition 6.1. Let R > 0. If W± verify the following estimates

||W+||Lip((0,T )×Ω×R+) + ||W+||Lip((0,T )×Ω×R+) + |W|m,λ,T < R,

and the following boundary conditions

[W] = [∂yW] = 0 when (t, x, y) ∈ (0, T ) × Ω × {0},(6.13)

then there exist λm > 0 and for all k ∈ N, µk,m > 0, such that for all λ > λm,

|W |m,λ,T 6
λm

λ
|f |m,λ,T(6.14)
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and for all µ > µk,m,

|yk W |m,λ,T 6
µk,m

µ

k
∑

j=0

|yj f |m,µ,T .(6.15)

Proof. We multiply the equation (6.11) by W± and integrate for (x, y) ∈
Ω × R±. Hence

(1/2)∂t

∫

Ω×R±

|W±|2 − J1,± − J2,± =

∫

Ω×R±

f±.W±(6.16)

where J1,± :=

∫

Ω×R±

W±.∂2
yW± and J2,± :=

∫

Ω×R±

W±.(W± ∧ ∂2
y)W±.

Integrating by parts, we get

J1,± =

−
∫

Ω×R±

|∂yW±|2 − I1,±, and J2,± = −
∫

Ω×R±

W±.(∂yW± ∧ ∂y)W± − I2,±,

where

I1,± :=

∫

Ω

(W±.∂yW±)|y=0, and I2,± :=

∫

Ω

(W±.(W± ∧ ∂yW±))|y=0.

Using the boundary conditions (6.12) and (6.13), we get [I1] = [I2] = 0. Taking
that into account we add the two estimates in (6.16). Then we multiply by e−2λt

and integrate in time. By a Gronwall lemma we get that there exists c > 0 such
that for all λ > c,

|∂yW |20,λ,T + λ|W |20,λ,T 6 c| < f, W >λ,T |.(6.17)

We go on with estimates tangential to {y = 0}. To do this we apply the
derivative ∂α

t,x to the equations (6.11)-(6.12). So we get that ∂α
t,x W± verify

L(W±, ∂t, ∂
2
y)∂α

t,x W± = f̃± when (t, x, y) ∈ (0, T )× Ω × R±,(6.18)

[∂α
t,x W] = [∂y∂α

t,x W] = 0 when (t, x, y) ∈ (0, T ) × Ω × {0},(6.19)

where

f̃± := ∂α
t,x f± +

∑

|α1|+|α2|=|α|,|α2|<|α|

∂α1
t,x W± ∧ ∂2

y ∂α2
t,x W±.(6.20)

We apply the tangential derivative ∂α
t,x to the boundary conditions (6.13) and get

[∂α
t,x W] = [∂y∂α

t,x W] = 0 when (t, x, y) ∈ (0, T )× Ω × {0},(6.21)

Using the estimate (6.17), we get, for all λ > c,

|∂y∂α
t,x W |20,λ,T + λ|∂α

t,x W |20,λ,T 6 c| < f̃, ∂α
t,x W >λ,T |.

Thanks to (6.20), we get

(6.22) < f̃, ∂α
t,x W >λ,T =< ∂α

t,x f, ∂α
t,x W >λ,T +

∑

|α1|+|α2|=|α|,|α2|<|α|

Iα1,α2 ,

where Iα1,α2 := I+,α1,α2 + I−,α1,α2 with

I±,α1,α2 :=< ∂α1
t,x W± ∧ ∂2

y ∂α2
t,x W±, ∂α2

t,x W± >λ,T .
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Using Cauchy-Schwarz inequality, we get

| < ∂α
t,x f, ∂α

t,x W >λ,T | 6 |f |0,λ,T .|W |0,λ,T .

We are going to estimate, for all α1, α2 such that |α1| + |α2| = |α|, |α2| < |α|, the

term Iα1,α2 . Integrating by parts, we get I±,α1,α2 :=
∑3

l=1 I l
±,α1,α2

, with

I1
±,α1,α2

:= − < ∂α1
t,x ∂yW± ∧ ∂y ∂α2

t,x W±, ∂α
t,x W± >λ,T ,

I2
±,α1,α2

:= − < ∂α1
t,x W± ∧ ∂y ∂α2

t,x W±, ∂α
t,x ∂yW± >λ,T ,

I3
±,α1,α2

:= ∓ << {(∂α1
t,x W± ∧ ∂y ∂α2

t,x W±)}|y=0, {∂α
t,x ∂yW±}|y=0 >>λ,T ,

where << ., . >>λ,T denotes the scalar product of L2((0, T ) × Ω) associated to
the mesure e−λtdtdx. Thanks to the boundary conditions (6.19)-(6.21), we get
I3
+,α1,α2

− I3
−,α1,α2

= 0. Using Cauchy-Schwarz inequality, we get

|I1
±,α1,α2

| 6 |∂α1
t,x ∂yW± ∧ ∂y ∂α2

t,x W±|0,λ,T .||W±||m,λ,T ,

|I2
±,α1,α2

| 6 |∂α1
t,x W± ∧ ∂y ∂α2

t,x W±|0,λ,T .||∂yW±||m,λ,T ,

Using Gargliardo-Nirenberg inequalities, we get

|I1
±,α1,α2

| 6

c(||∂yW±||m,λ,T .||W±||Lip + ||W±||Lip.||∂yW±||m,λ,T ).||W±||m,λ,T ,

|I2
±,α1,α2

| 6

c(||W±||m−1,λ,T .||W±||Lip + |W±|Lip.||∂yW±||m−1,λ,T ).||∂yW±||m,λ,T .

Hence we get

|Iα1,α2 | 6
1

2
||∂yW±||2m,λ,T + C(||W±||2m,λ,T + ||∂yW±||2m−1,λ,T ).

We deduce that there exists λm > 0 such that for all λ > λm, there holds
||W ||m,λ,T 6 λm

λ ||f ||m,λ,T .
To prove the estimates (6.14), it remains to get normal estimates. The cases

α4 = 0 or 1 are already treated in the tangential estimates. If α4 > 2, we proceed
by iteration, estimating ∂2

yW± from the equations.
It remains to get the estimates (6.15). First we notice that for p > 1 the

function yp W± verify the initial boundary value problem

L(W±, ∂t, ∂
2
y)W

[p]
± = f

[p]
± when (t, x, y) ∈ (0, T ) × Ω × R±,

[W[p]] = [∂yW
[p]] = 0 when (t, x, y) ∈ (0, T )× Ω × {0},

W
[p]
± = 0 when (t, x, y) ∈ {0} × Ω × R±,

where

f
[p]
± = yp f± +

p−1
∑

j=0

(q1
j ∂yW

[j]
± + q2

j W± ∧ ∂yW
[j]
± ),

where the q1
j and the q2

j are in N. Thus we prove, by iteration on p and thanks to

the inequality (6.14), the estimate

√
µ||∂y(yp W )||m,µ,T + µ||yp W ||m,µ,T 6

p
∑

j=0

||yj f ||m,µ,T

which implies the estimate (6.15).
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�

Step 4. We use an iterative scheme.

We define the iterative scheme (Wν
±)ν∈N by setting W0

± equal to zero and, by

iteration, when Wν
± is defined, we take Wν+1

± as solution of

L(V± + Wν
±, ∂t, ∂

2
y)Wν+1

± = F̂ (t, x, y,Wν
±, ∂yW

ν
±)

when (t, x, y) ∈ (0,∞) × Ω × R±,

[Wν+1] = [∂yW
ν+1] = 0 when (t, x, y) ∈ (0, T ) × Ω × {0},

Wν+1
± = 0 when (t, x, y) ∈ {0} × Ω × R±.

Thanks to the linear estimates, to a Sobolev embedding and to some Gargliardo-
Nirenberg inequalities, we show that the iterative scheme (Wν

±)ν∈N converge, when
ν → +∞ toward some solutions W± ∈ N±(T ) of the problem (6.8)-(6.7). By going
back to the original problem (6.6)-(6.3), the first sentence of Theorem 6.1 is now
proved. When x /∈ VΣ, the function u0

+−u0
− in the right hand side of (6.6) vanishes

and so do the functions U±.
�

Remark 6.1. Notice that the possibility of a blow-up can be controlled with
Lipschitz norm in a very classical way. However we do not know whether the
solutions U actually blow-up or exist globally.

6.2. Construction of U. In this section we define the boundary layer profile
U as a solution of a linear boundary value problem. Let us recall that this function
describes a boundary layer which appears near the boundary to compensate the
loss of the Neumann condition from the complete model (4.1)-(4.2)-(4.3) to the
limit model (3.1) (ε = 0). Such a boundary layer was already mentioned in paper
[6]. Let Θ be a C∞ function on Ω such that Θ = 1 in a neighborhood WΓ of Γ
such that WΓ ⊂⊂ VΓ and Θ = 0 in Ω − VΓ.

Theorem 6.2. There exists U ∈ N+(T ) which verifies

L(u0, ∂t, ∂
2
z)U = −(U.n)u0 ∧ n + U ∧ H(u0)

+U ∧ (u0 ∧ H(u0)) − (U.n)u0 ∧ (u0 ∧ n) + u0 ∧ (U ∧ H(u0),

when (t, x, z) ∈ (0, T ) × Ω × R+,

∂zU = Θ(x)∂nu0 when (t, x, z) ∈ (0, T ) × Ω × {0}.(6.23)

Moreover there holds U(t, x, z) = 0 for x /∈ VΣ.

Proof. Proceeding as in the proof of Theorem 6.1, we prove the existence of
compatible initial data. Then we follow the proof of Proposition 4.2 of [6]. �

6.3. Construction of wε. In this section, we look at the remainder wε. We
will proceed in four steps. First in section 6.3.1 we will reduce the initial problem
(4.1)-(4.2)-(4.3) for the unknown uε to a problem for wε. Indeed in order to get
a homogeneous boundary problem, we will add a corrector to wε and rather work
with the resulting term wε. Like in paper [31], the lemma by Borel on Taylor series
insure the existence of convenient initial data for the resulting reduced problem
which means that compatibility conditions either on Γ and on Σ are satisfied. We
will prove that the solutions of this nonlinear problems exist not only for a common
non trivial time, in fact till the time T of the profiles U . Moreover these solutions
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satisfy some estimates uniform with respect to ε. The method relies on a simple
Picard iterative scheme (cf. section 6.3.2) and on linear estimates (cf. section 6.3.3).
More precisely we will use L2-type conormal estimates of only the two first normal
derivatives, and some Lipschitz estimates. A bit of care reveals that the presence
of the operator H does not cause any loss of factor ε or any loss of derivatives.

6.3.1. A reduced problem. Since we look for solutions uε of (4.1)-(4.2)-(4.3) of
the form (4.4) where the functions

aε(t, x) := U(t, x,
Ψ(x)

ε
) + εU(t, x,

Φ(x)

ε
)

have been constructed above, we look for a problem in term of the remainder wε.
In fact, in order to get a homogeneous boundary problem, we choose a function
ρ(t, x) ∈ H∞ such that

∂nρ |Γ = −∂nU(t, x, 0)|Γ.(6.24)

and will look for remainders wε of the form wε = ρ + wε. Let us explain why. On
the boundary Γ, the function aε satisfies:

(6.25) ∂naε|Γ = ε ∂nU(t, x, 0)|Γ,

Hence in general aε does not satisfy the homogeneous Neumann boundary condition
on Γ. We define the function ãε := aε + ερ. Thus we look for solutions uε of (4.1)-
(4.2)-(4.3) of the form uε = aε +εwε = ãε +ε wε. Combine (4.2), (6.24) and (6.25)
to find a homogeneous Neumann boundary condition on Γ for wε:

∂nwε = 0 on ]0, T [×Γ.(6.26)

We now look for an equation on the unknown wε. The function ãε belongs to
C1((0, T ) × Ω) and to H∞

Σ (Ω). Moreover, ãε satisfies the equation

(6.27) Lε(ãε, ∂) ãε = F
(

ãε, ε∂xãε,H(ãε)
)

+ εrε

where the family (rε)ε lies in the set E (defined above Theorem 4.2). The system
for the unknown wε(t, x) writes

Lε(ãε + εwε, ∂)wε =

K(ε, ãε, ε∂xãε,H(ãε), wε, ε∂xwε,H(wε)) + rε in ]0, T [×Ω(6.28)

where K is a smooth function of its arguments. Let us use more concise notations,
and denote

Aε :=
(

ãε, ε∂xãε,H(ãε)
)

and W ε :=
(

wε, ε∂xwε,H(wε)
)

.(6.29)

Then Taylor’s formula shows that the function K has the following form:

K(ε, Aε, W ε) = G(ε, Aε, εW ε)W ε

where G depends smoothly on its arguments (including ε), which will be useful in
the sequel.

Following [31] there exist a family (wε
init)ε of compatible initial conditions for

the problem (6.28)-(6.26) which verifies suitable uniform estimates with respect to
ε. We choose such a family.
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6.3.2. The iterative scheme. We want to solve the problem (6.28),(6.26). We
use a simple Picard(-Banach-Caccioppoli) iterative scheme defining a sequence wε,ν

which will converge to the solution of the problem. For clarity, we adopt the
following more concise notations

Aε :=
(

ãε, ε∂xãε,H(ãε)
)

and W ε,ν :=
(

wε,ν , ε∂xwε,ν ,H(wε,ν)
)

.

With these notations, the iterative scheme writes

(6.30) Lε(ãε + εwε,ν , ∂)wε,ν+1 = fε,ν in ]0, T [×Ω

where

(6.31) f ε,ν := G(ε, Aε, εW ε,ν)W ε,ν + rε

This equation is coupled with the initial and boundary conditions:

∂nwε,ν+1 = 0 on ]0, T [×Γ(6.32)

wε,ν+1|t=0 = wε
init.(6.33)

The iterative scheme is initialized with wε,0(t, x) := wε
init(x).

6.3.3. Estimates for a linear parabolic system. Consider the linear problem

Lε(ãε + εb, ∂)u = f on ]0, T [×Ω(6.34)

∂nu = 0 on ]0, T [×Γ,(6.35)

We endow the space Hm
co(]0, T [×Ω) with the usual weighted norm with λ ≥ 1:

‖u‖m,λ :=
∑

|α|≤m , α∈N1+µ

λm−|α|‖e−λtZαu‖L2(]0,T [×Ω).

In order to estimate the initial data, we introduce the similar norms built with the
set T0 instead of T , integrating on Ω instead of [0, T ]× Ω:

|u|m,λ :=
∑

|α|≤m , α0=0 , α∈N1+µ

λm−|α|‖Zαu‖L2(Ω).

We will use the following classical Gagliardo-Moser-Nirenberg estimates for conor-
mal derivatives (see [13]).

Lemma 6.2. Let m ∈ N. There is cm > 0 such that, for any a1, . . . , ak ∈
Hm

co(]0, T [×Ω)∩L∞(]0, T [×Ω), for all multi-index α1 ∈ N
µ+1, . . . , αk ∈ N

µ+1, with
|α1| + · · · + |αk| ≤ m, for all λ ≥ 1:

(6.36) ‖Zα1a1 . . .Zαkak‖0,λ ≤ cm

∑

1≤j≤k

(

‖aj‖m,λ

∏

i6=j

|ai|∞
)

.

The following proposition gives some ε-conormal estimates for the two first
normal derivatives of the solutions of the problem (6.34)-(6.35).

Proposition 6.2. Let R > 0 be an arbitrary constant and m > 3. There exist
Cm(R) > 0 and λm > 0 such that for σ fixed constant large enough, depending only
on the choices of the vector fields Zj , the following holds true. Assume that

(6.37) ε ( |b|∞ +
∑

0≤j≤µ

|Zjb|∞ + |ε∂xb|∞ ) ≤ R,

then, for all λ ≥ λm, the following estimates hold:

(6.38)
‖ε∂xu‖m,λ + λ‖u‖m,λ ≤ Cm(R)

[

λ−1 ‖f‖m,λ + Im,λ(u)

+ ε ( ‖ε∂xb‖m,λ + ‖b‖m,λ ) ( |u|∞ + |ε∂xu|∞ )
]

,
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where

Im,λ(u) :=
∑

0≤k≤m

|(∂k
t u)|t=0|m−k,λ.

and

(6.39)

‖(ε∂n)2u‖m,λ ≤ Cm(R)
[

‖f‖m,λ

+‖u‖m+1,λ + ε‖b‖m+1,λ (|u|∞ + |f |∞)

+ε‖ε∂nu‖m+1,λ + ε2‖u‖m+2,λ

]

.

Proof. Step 1. Let us denote v := e−λt u, which satisfies

Lε(ãε
app + εb, ∂)v + λv = e−λtf on ]0, T [×Ω(6.40)

∂nv = 0 on ]0, T [×Γ.(6.41)

v = wε
init on t = 0.(6.42)

Let us denote ‖.‖L2 the L2 norm in [0, T ]×Ω, and |.|L2 the L2 norm in Ω. Multiply-
ing (6.40) by v and integrating on ]0, T [×Ω gives the following estimate, integrating
by parts the ε2∆x with Green’s formula in Ω:

(6.43) ε2‖∇xv‖2
L2 + λ‖v‖2

L2 ≤ 2 |((e−λtf,v))L2 | + |v(0)|L2 ,

for all λ ≥ λ0 if λ0 is fixed large enough, and for all ε > 0. In terms of u it writes

(6.44) ε2‖∇xu‖2
0,λ + λ‖u‖2

0,λ ≤ 2 |((f,u))L2
λ
| + |u(0)|L2 ,

where L2
λ is the Hilbert space L2(]0, T [×Ω, dµ) with the measure dµ := e−2λtdtdx.

Using now the Cauchy-Schwarz inequality in the right hand side, and absorbing
in the left hand side the term in ‖v‖2

L2 yields the desired estimate for m = 0 and
some constant c0 > 0.

Step 2. We show the inequality by induction on m. Assume it for m − 1. We
apply a tangential operator Zα with fields Zi ∈ T to the system, and |α| = m.
The function Zαu satisfies the same boundary conditions. The L2 estimate (6.44)
gives, for λ ≥ λ0:

(6.45)
ε2‖∇xZαu‖2

L2 + λ‖Zαu‖2
L2 ≤ 2 |((e−λtZαf

+ [(ãε
app + εb)ε2∆x,Zα] ∧ u,Zαu))L2

λ
| + Im,λ(u)2.

where [., .] denotes the commutator. Using Cauchy-Schwarz inequality and 2ab ≤
2λ−1 a2 + λb2/2 yields:

(6.46)
ε2‖∇xZαu‖2

L2 +
λ

2
‖Zαu‖2

L2 ≤ 2

λ
‖e−λtZαf‖2

L2

+ 2 |(([(ãε
app + εb)ε2∆x,Zα] ∧ u,Zαu))L2

λ
| + Im,λ(u)2.

We need to control the second term in the right hand side of (6.46). The commutator
[ ãε

app ε2∆x,Zα] writes as a finite sum

(6.47) ε2
∑

|β|≤m+1

aε
β(t, x)Zβ + ε

∑

|γ|≤m

bε
γ(t, x)ε∂nZγ +

∑

|δ|≤m−1

cε
δ(t, x)(ε∂n)2Zδ

where the coefficients aε
β , bε

γ , cε
δ are bounded functions satisfying

(6.48) sup
ε∈]0,1]

‖ε∂naε
β‖L∞([0,T ]×Ω) + ‖ε∂nbε

γ‖L∞([0,T ]×Ω) + ‖ε∂ncε
δ‖L∞([0,T ]×Ω) < ∞
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for all β, γ, δ, because (6.48) holds clearly if we replace L∞([0, T ]×Ω) by L∞([0, T ]×
Ω+) or by L∞([0, T ] × Ω−), and because ãε

app is in H1(Ω) for all ε > 0. Hence we
are led to control the corresponding three sort of terms:

ε2(( aε
βZβu , Zαu ))L2

λ
, ε(( bε

γ(ε∂n)Zγu , Zαu ))L2
λ
,

(6.49)

(( cε
δ(ε∂n)2Zδu , Zαu ))L2

λ
,

where |β| ≤ m + 1, |γ| ≤ m, |δ| ≤ m − 1. The first two terms in (6.49) are simply
controlled by δ‖ε∇xu‖2

m,λ + Cδ δ−1 ‖u‖2
m,λ for δ arbitrarily small, and Cδ being a

constant depending on δ, but independent of ε. For the third term one uses an
integration by parts (by Green’s formula) of the field ∂n to show that this term
writes as a sum of terms of the form

dε ε2−j−j′ (((ε∂n)jZδu, (ε∂n)j′Zαu))L2
λ

where |δ| ≤ m−1, j, j′ ∈ {0, 1}, and dε is a bounded function (uniformly in ε) since
all the boundary terms terms vanishes: ∂nZαu|∂Ω = 0, for all α ∈ R

µ. It follows
that the third term in (6.49) is controlled by Cλ−1‖ε∇xu‖2

m,λ + C‖u‖2
m,λ for a

constant C independent of ε, and all λ ≥ 1. Hence, by choosing a δ > 0 arbitrarily
small, and λ1 > 0 large enough, there holds

| (( [ãε
appε

2∆x,Zα] ∧ u , Zαu ))L2
λ
| ≤ δ‖ε∇xu‖2

m,λ + cm‖u‖2
m,λ

for all λ ≥ λ1, and for all ε ∈]0, 1], with a constant cm independent of ε.
We need now to estimate the term

(6.50) (([ εb ε2∆x,Zα] ∧ u,Zαu))L2
λ
.

The commutator [ b ε2∆x,Zα] writes as a finite sum

ε2
∑

|β|≤m,|β′|≤m+1,|β|+|β′|≤m+2

aβ,β′(Zβb)Zβ′

+ ε
∑

|γ|≤m,|γ′|≤m,|γ|+|γ′|≤m+1

bγ,γ′(Zγb)(ε∂n)Zγ′

+
∑

|δ|≤m,|δ′|≤m−1,|δ|+|δ′|≤m

cδ,δ′(Zδb)(ε∂n)2Zδ′

where aβ,β′ , bγ,γ′, cδ,δ′ are smooth fonctions on Ω. Hence to control the term (6.50)
we are led to estimate tri-linear terms in (b,u,u) of the following form (where
dµ := e−2λtdtdx):

ε2

∫

]0,T [×Ω

aβ,β′Zβb.Zβ′

ui.Zαuj dµ,

|β| ≤ m, |β′| ≤ m + 1, |β| + |β′| ≤ m + 2(6.51)

ε

∫

]0,T [×Ω

bγ,γ′ Zγb . ε∂nZγ′

ui . Zαuj dµ,

|γ| ≤ m, |γ′| ≤ m, |γ| + |γ′| ≤ m + 1(6.52)
∫

]0,T [×Ω

cδ,δ′ Zδb. (ε∂n)2Zδ′

ui .Zαuj dµ,

|δ| ≤ m, |δ′| ≤ m − 1, |δ| + |δ′| ≤ m,(6.53)
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where the ui are the components of the vector u. Let us treat the term (6.53). By
Green’s formula, the integral can be written as a sum of integrals of the form

∫

]0,T [×Ω

cδ,δ′ Zδε∂nb.Zδ′

ε∂nui.Zαuj dµ(6.54)

∫

]0,T [×Ω

cδ,δ′ Zδb.Zδ′

ε∂nui.Zαε∂nuj dµ,(6.55)

ε

∫

]0,T [×Ω

dδ,δ′ Zδb.Zδ′

ε∂nui .Zαuj dµ,(6.56)

and other terms involving lower order derivatives easy to control. The term (6.54)
is controlled by

c‖ε∂nZδbε∂nZδ′

ui‖0,λ ‖uj‖m,λ,

which is bounded by using the Gagliargo-Nirenberg-Moser estimate by

c
(

‖ε∂nb‖m,λ|ε∂nu|∞ + ‖ε∂nu‖m,λ|ε∂nb|∞
)

‖u‖m,λ

and hence by

c(1 + R)
(

‖ε∂nb‖m,λ|ε∂nu|∞ + ‖ε∂nu‖m,λ

)

‖u‖m,λ.

For the term (6.55) there are two cases. The first case is when δ = 0. In that
case the integral is bounded by

c ‖ε∂nui‖m−1,λ ‖uj‖m,λ ≤ λ−1‖ε∂nu‖2
m,λ.

The second case is when |δ| ≥ 1. In that case we write Zδb = Zδ”Zkb and apply
the Gagliardo-Nirenberg-Moser inequality with Zb in L∞. The term in bounded
by

c
(

‖Zb‖m−1,λ|ε∂nu|∞ + ‖ε∂nu‖m−1,λ|Zb|∞
)

‖ε∂nu‖m,λ

and hence by

c ‖b‖m,λ|ε∂nu|∞‖ε∂nu‖m,λ + cRλ−1‖ε∂nu‖2
m,λ

The next terms like (6.56) are easier to treat in the same way, and are bounded
by the same terms. The term (6.53) was the more delicate to estimate. The terms
(6.52) and (6.51) are simpler and can be treated in a similar way. Replacing in the
right hand side of (6.45) and summing over all the possible operators Zα gives the
desired estimate, and the proposition is proved. �

6.3.4. Iteration. Now classical arguments show the convergence of the iterative
scheme if ε ∈]0, ε0] and ε0 is small enough. We describe the main lines (see [31]).
Let us fix an integer m > 4, and let us denote

R := 1 + sup
0<ε<1

{ε ( |wε,0|∞ +
∑

0≤j≤µ

|Zjw
ε,0|∞ + |ε∂xwε,0|∞ )}.

Proposition 6.3. Let be given an integer m ≥ 5 and λ > 1. Then there exists
h > 1 such that for ε0 > 0 small enough, for all ν ∈ N, for all ε ∈]0, ε0], there hold

(6.57) |wε,ν |∞ +
∑

0≤j≤µ

|Zjw
ε,ν |∞ + |ε∂xwε,ν |∞ < Rε−1

and

(6.58) ‖wε,ν‖m,λ + ‖ε∂nwε,ν‖m,λ < h.
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Proof. For h large enough, the inequalities (6.57) and (6.58) are satisfied for
ν = 0. Now suppose that wε,ν satisfies (6.57), (6.58). We want to prove that wε,ν+1

also satisfies (6.57), (6.58). The proposition 6.2 gives a constant Cm(R) and the
inequality (6.38) holds with u = wε,ν+1, b = wε,ν , and f = f ε,ν defined in (6.31).
In order to control the right hand side of (6.30), we need a control of ‖H(wε,ν)‖∞
and of ‖H(wε,ν)‖m,λ, which is a consequence of the following lemma.

Lemma 6.3. Let m ∈ N. There exists c > 0 such that for all λ ≥ 1,

(6.59) ‖H(v)‖m,λ + ‖ε∂nH(v)‖m−1,λ ≤ c(‖v‖m,λ + ‖ε∂nv‖m−1,λ).

Proof. We denote E(∂) := (div , curl ) the operator from [S ′(R3)]3 to [S ′(R3)]4.
The range of E(∂) is the space R of all f = (a, b) ∈ S ′(R3) × [S ′(R3)]3 such
that div b = 0. We denote by E−1(∂) the inverse operator from R to [S ′(R3)]3.

Then u = E−1(∂)f , is defined by û(ξ) = −i|ξ|−2
(

â(ξ)ξ − ξ ∧ b̂(ξ)
)

where f̂(ξ) =

(â(ξ), b̂(ξ)) ∈ R×R
3. We also extend the action of this operator to the whole space

[S ′(R3)]4 by using the same formula, and we still denote by E−1(∂) this extension.

Thus û(ξ) = M(ξ)f̂(ξ), where M(ξ) is a 3 × 4 matrix whose entries are rational
functions of ξ homogeneous of degree −1.

Let us fix χ ∈ C∞
0 (R3, R) such that χ(ξ) = 0 when |ξ| ≤ 1 and χ(ξ) = 1 when

|ξ| ≥ 2, and call P (D) and R(D) the operators from [S ′(R3)]4 to [S ′(R3)]3 defined

by P (D)f := F−1
(

χMf̂
)

and R(D)f := F−1
(

(1 − χ)f̂
)

where F−1 means the

inverse Fourier transform. In the sequel we will simply denote S ′(R3) and L2(Ω̃)

instead of
[

S ′(R3)
]4

and
[

L2(Ω̃)
]4

, meaning that we talk about the components of
the vector valued functions, the (finite) number of components being understood.
We have E−1(∂) = P (D) + R(D). The operator P (D) is a special case of classical
pseudo-differential operator of class S−1

1,0(R3×R
3), elliptic, and R(D) is a smoothing

operator of class S−∞
1,0 (R3 × R

3). The operator P (D) satisfies the transmission

property (introduced by Boutet de Monvel [2], [3]) on Ω and on R
3 \ Ω because

its symbol is a rational function of ξ, which is a sufficient condition to satisfy the
transmission condition. The transmission property has been also studied and used
by Grubb, and we also refer to papers [11] and [12]. To avoid many repetitions,
we will denote in what follows Ω1 := Ω and Ω2 = R

3 \ Ω. Since P (D) is elliptic
of order 1, the transmission property implies (see [11] and [12]) that if v ∈ Hs(Ω)
then for j = 1, 2,

(

P (D)v
)

|Ωj
∈ Hs+1(Ωj).

Let us now take into account the t coordinate. Let us denote Ω̃ =]0, T [×Ω,

Γ̃ =]0, T [×Γ and Σ̃ =]0, T [×Σ. We extend the actions of P and R to the spaces of

functions or distributions which depend also on t like L2(Ω̃) or C
(

[0, T ],S ′(R3)
)

,
by considering t as a parameter so that Pu(t, x) := P (D)u(t, .)(x).

Let v ∈ Hm
co(Ω̃; R4) such that ∂nv ∈ Hm−1

co (Ω̃; R4). Then v ∈ H1(Ω̃), and using

local coordinates patches one sees that g := (v.n)|Γ̃ ∈ Hm− 1
2 (Γ̃), the usual Sobolev

spaces. Let us denote f := E(∂)v, which is in Hm−1
co (]0, T [×R

3). Then H(v) = u|Ω̃

where u ∈ L2([0, T ]×R
3) is defined by E(∂)u = f +(g⊗ δΓ̃, 0), where the notation

V means the extension of V by 0 to [0, T ] × R
3.

Let us denote u(j) = u|Ω̃j
, for j = 1, 2, so that H(v) = u(1) ∈ L2(Ω̃). Using the

notations of [2], [11], [12],

(6.60) u(j) =
(

E−1(D)v
)

|Ω̃(j)
= P (D)(j)f + K

(j)
Γ (g) + R(D)(j)E(∂)v,
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where P (D)(j)f = (P (D)f)|Ω̃(j)
, R(D)(j)v = (R(D)v)|Ω̃(j)

and where K
(j)
Γ (g) =

(

P (D)
(

g ⊗ δΓ)
)

|Ω̃(j)
is the ”Poisson operator”:

(6.61) K
(j)
Γ : Hs(Γ) → Hs+1/2(Ω(j)),

(linear continuous), extended to functions depending on t as a parameter (See
theorems 2.4 and 2.5 of [12]).

Let us now prove the lemma. First of all, ∂m
t H(v) = H(∂m

t v) is in L2(Ω̃) be-

cause ∂m
t v ∈ L2(Ω̃) and H acts on L2(Ω̃). It is also easy to show that ∂m−1

t H(v) ∈
H1(Ω̃): by assumption, for any t ∈ [0, T ], ∂m−1

t v(t, .) ∈ H1(Ω), hence H(∂m−1
t v)(t, .) ∈

H1(Ω) because ∂m−1
t v(t, .) is piecewise-H1 and because of the properties of H.

Hence ∂x∂m−1
t H(v) ∈ L2(Ω̃) and since we already know that ∂m

t H(v) ∈ L2(Ω̃) we

have proved that ∂m−1
t H(v) ∈ H1(Ω̃).

Let us show now that Zj∂
m−2
t H(v) ∈ H1(Ω̃) for j = 1, . . . , µ. Since E(∂) is

elliptic (as an operator in S ′(R3), but not in S ′(R4)), we can express the normal
derivatives of u in term of tangential derivatives and of E(∂)u, and this implies
that the commutator [E(∂),Zj ]u writes

(6.62) [E(∂),Zj ]u =

µ
∑

1

AjZju + A0f + Bg ⊗ δΓ

where Aj , B are matrices with C∞
b entries (depending on the fields Zj). It follows

that

E(∂)Zju =
∑

|α|≤1

MαZαf +
∑

|α|≤1

Nα(Zαg) ⊗ δΓ

with C∞
b (R3) matrices Mα, Nα, and applying ∂m−2

t gives:

(6.63) E(∂)Zj∂
m−2
t u =

∑

|α|≤1

Mα.Zα∂m−2
t f +

∑

|α|≤1

Nα.(Zα∂m−2
t g) ⊗ δΓ

Now Zα∂m−2
t f ∈ L2(Ω̃), because f = E(∂)v, and the transmission property implies

that for every t ∈ [0, T ], the function P (D)(j)
(

Zα∂m−2
t f

)

(t, .) is in H1
(

Ω(j)

)

.

This implies that ∂xP (D)(j)
(

Zα∂m−2
t f

)

∈ L2(Ω̃) and since we already know that

∂tP (D)(j)
(

Zα∂m−2
t f

)

∈ L2(Ω̃) from the previous case, we deduce that for j = 1, 2

the function P (D)(j)
(

Zα∂m−2
t f

)

is in H1
(

Ω̃(j)

)

.

Concerning the boundary term in (6.63), since g ∈ Hm− 1
2 (Γ̃) we know that

Zα∂m−2
t g ∈ H1/2(Γ) and the property (6.61) implies that, for all t ∈ [0, T ], the

function K
(j)
Γ

(

Zα∂m−2
t g

)

(t, .) is in H1
(

Ω(j)

)

. By the same way as before we deduce

that for j = 1, 2 the function K
(j)
Γ

(

Zα∂m−2
t g

)

is in H1
(

Ω̃(j)

)

.

Now, applying E(∂)−1 = P (D)+R(D) to the equation (6.63) givesZj∂
m−2
t u(j) ∈

H1
(

Ω̃(j)

)

as claimed. Then, the proof can be continued by induction in the same
way. �

The lemma 6.3, together with the Gagliardo-Nirenberg-Moser estimates and
the induction assumption, implies that (like the majoration of the term (5.25) in
paper [31]):

(6.64) ‖f ε,ν‖m,λ ≤ c(R)(‖wε,ν‖m,λ + ‖ε∂xwε,ν‖m,λ) < c(R)ρ(λ).
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Hence, the proposition 6.2 implies that

(6.65)
‖ε∂xwε,ν+1‖m,λ + λ‖wε,ν+1‖m,λ ≤ Cm(R)

[

λ−1c(R)ρ(λ)

+ R(|wε,ν+1|∞ + |ε∂xwε,ν+1|∞) + Im,λ(wε,λ)
]

.

We now use the following Sobolev inequalities ([31]):

ε1/2|u|∞ ≤ eσλ(‖u‖m,λ + ‖ε∂nu‖m,λ),

ε1/2|ε∂nu|∞ ≤ eσλ(‖ε∂nu‖m,λ + ‖(ε∂n)2u‖m,λ).

By taking λ large enough and ε > 0 small enough the inequality (6.57) is also
satisfied for wε,ν+1 and the proof by induction is complete. �

Now by extracting a convergent subsequence it is a classical argument to show
the convergence in L2(]0, T [×Ω) of wε,ν to a solution wε of the non linear prob-
lem which satisfies the same estimates (6.57), (6.58). This concludes the proof of
Theorem 4.2. �
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