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Stability of Spectral Eigenspaces in Nonlinear Schrödinger
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Abstract. We consider the time-dependent non linear Schrödinger equations
with a double well potential. We prove, in the semiclassical limit, that the
finite dimensional eigenspace associated to the lowest two eigenvalues of the
linear operator is almost invariant for any time.
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1. Introduction

Here we consider the time-dependent nonlinear Schrödinger equation (hereafter
NLS)

{

i~ψ̇t = H0ψ
t + εWψt, ε ∈ R, ψ̇t = ∂ψt

∂t ,
ψt(x)|t=0 = ψ0(x) ∈ L2(Rd), ‖ψ0‖L2 = 1,

(1)
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130 DARIO BAMBUSI AND ANDREA SACCHETTI

where

H0 = − ~
2

2m
∆ + V, ∆ =

d
∑

j=1

∂2

∂x2
j

, d = 1, 2, . . . , 2m = 1(2)

is the linear Hamiltonian operator with symmetric double-well potential V (x), and
where

W = W (|ψ|2) = |ψ|2σ(3)

is a nonlinear perturbation, here σ is a positive real number such that

0 < σ <∞ if d = 1, 2 and 0 < σ <
2

d− 2
if d > 2.(4)

We recall that a double well potential is a positive potential symmetric with re-
spect to the reflection through a hyperplane, and having two nondegenerate distinct
absolute minima. When the nonlinear term is absent, the linear Hamiltonian H0

has the two eigenfunctions corresponding to the two lowest eigenvalues which have
either even or odd-parity. Given an initial datum which is a linear combination
of such lowest eigenfunctions, then the corresponding solution performs a beating
motion, namely the probability density oscillates periodically from a state almost
concentrated on one minimum to a state almost concentrated on the other one.
The beating period usually plays the role of unit of time. When the nonlinear term
is restored, a symmetry breaking phenomenon occurs: that is, if the strength ε of
the nonlinear term is larger than a threshold value then new asymmetric stationary
states appears [1], [4], [12]. Furthermore, for higher strength ε of the nonlinear
term, the beating motion is generically forbidden [5], [7], [9]. These results can be
heuristically obtained by reducing the NLS equation to a 2–dimensional dynami-
cal system, namely the restriction of (1) to the space generated by the lowest two
eigenvectors. Mathematically the difficulty consists in proving that the dynamics
of the complete NLS is close to the dynamics of the 2–dimensional reduced system.
In [8], making use of semiclassical estimates and refined existence results for NLS
this stability result has been obtained for times of the order of the beating period
in dimensions d = 1, 2 and any σ ∈ R

+.
In the present paper we concentrate on the case of local nonlinearity (3) in

any dimension d and for σ satisfying (4), in this framework we extend the previous
result by [8] proving that, in the semiclassical limit, the 2-dimensional eigenspace is
almost invariant for any time (Theorem 1). However, due to the possible presence
of positive Lyapunof exponents, our result does not allow to show that the 2-
dimensional system describes the dynamics over time scales larger than ε−1.

Our result is obtained here making use of variational methods and by introduc-

ing the scale of Hilbert spaces Xs = D(H
s/2
0 ), s ≥ 0, constituted by the domains of

the powers of H0, endowed by the graph norm; in fact, we make use of the energy
space X1.

We close this section by introducing some notations:

- The notation y = O(e−Γ/~) means that there exist ~
? > 0 and a positive

constant C > 0, independent of ~, such that

|y| ≤ Ce−Γ/~, ∀~ ∈ (0, ~?)
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- The notation y = Õ(e−Γ/~) means that for any Γ′, 0 < Γ′ < Γ, then

y = O(e−Γ′/~); that is, there exist ~
? > 0 and a positive constant C =

CΓ′ > 0, independent of ~, such that

|y| ≤ Ce−Γ′/~, ∀~ ∈ (0, ~?).

- As usual, ‖·‖Lp usually denotes the norm of the space Lp(Rd); ‖·‖s denotes
the norm of the Hilbert spaces Xs, in such a notation X0 = L2(Rd) and
‖ · ‖0 = ‖ · ‖L2 .

- As usual, R denotes the set of real numbers, R
+ denotes the set of positive

real numbers, N denotes the set of positive integer numbers, C denotes
any positive constant independent of ~ and t, and 〈x〉 =

√

1 + |x|2, |x|2 =
∑d

j=1 x
2
j , where x = (x1, . . . , xd) ∈ R

d.

2. The model: preliminary assumptions and main result

2.1. Double well potentials.

Hypothesis 1. The double-well potential V (x) ∈ C∞(Rd) is a symmetric real
valued function such that:

i. V (x) admits two minima at x = x±, x− 6= x+, such that

V (x) > Vmin = V (x±), ∀x ∈ R
d, x 6= x±;

for the sake of definitess let us assume

Vmin = 1.

ii. There exists 0 < m ≤ 2 such that, for large |x| one has

C〈x〉m ≤ V (x) ≤ C−1〈x〉m

for some constant 0 < C < 1;
iii. For any multi-index α ∈ N

d there exists a positive constant Cα such that
∣

∣∂α1

x1
∂α2

x2
· · ·∂αd

xd
V (x)

∣

∣ ≤ Cα〈x〉m−|α|

Remark 1. For the sake of definiteness, we assume that the symmetric poten-
tial is such that

V (−x1, x2, . . . , xd) = V (x1, x2, . . . , xd) .

Furthermore, for the sake of simplicity we assume also that

∇V (x±) = 0 and Hess V (x±) > 0;

the case of degenerate minima, that is det[HessV (x±)] = 0, could be treated in a
similar way; however, we don’t develop here the details.

Remark 2. As an example one can consider the following double-well potential

V (x) = 1 +

d
∑

j=1

ω2
jx

2
j + V1(x)

where V1 ∈ L∞(Rd) is a symmetric function

V1(−x1, x2, . . . , xd) = V1(x1, x2, . . . , xd).
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2.2. Well-posedness of the Cauchy problem. Under Hyp. 1 the Cauchy
problem (1)–(3) is locally well posed.

In fact, in the quadratic (i.e. m = 2) and sub-quadratic (i.e. m < 2) cases if
ψ0 ∈ H1 is such that

∫

Rd

V (x)|ψ0(x)|2ddx <∞

then (see [11] and §9.2 in [3]) the Cauchy problem admits a unique bounded local
solution ψt ∈ H1 such that

∫

Rd

V (x)|ψt(x)|2ddx <∞

for any t ∈ [0, δ), for some δ > 0.
Moreover, ψt satisfies the following conservation norm

N (ψt) = N (ψ0) ,(5)

where

N (ψ) = ‖ψ‖L2 =

[
∫

Rd

|ψ0(x)|2ddx
]

1
2

and

Eε(ψt) = Eε(ψ0)

where the energy functional is defined as

Eε(ψ) = E0(ψ) + εP (ψ) ,(6)

where

E0(ψ) = 〈ψ,H0ψ〉L2 and P (ψ) =
1

1 + σ
‖ψσ+1‖2

L2 .

Furthermore, the solution ψt continuously depends on t and on the initial
condition ψ0.

Remark 3. Notice that when ε > 0 then the conservation of the energy implies
that ‖∇ψ‖ ≤ C for any time, hence the solution is global, i.e. δ = +∞. For
ε < 0, in the sub-critical case dσ < 2 then the conservation of the energy still give
the same estimate on ‖∇ψ‖ and the global existence of the solution. In fact, for
ε < 0 small enough, by energy conservation and bootstrap arguments (see [8]) any
solution is global in the critical dσ = 2 and super-critical dσ > 2 cases too.

Remark 4. In fact, it could be also possible to consider the case of super-
quadratic potentials where m > 2. Indeed, in such a case the Cauchy problem
admits an unique solution ψt for any t ∈ [0, δ) when ψ0 ∈ Xs (see Theorem 1.5 in
[10]), where δ continously depends on ‖ψ0‖s. However, it is not clear whether the
conservation and the continuity of the energy hold; thus, we don’t dwell here of the
case of super-quadratic potentials.

Remark 5. The choice m > 0 was done only in order to simplify the notations.
Indeed our result holds also in the case m = 0, but, due to the appearence of
continuous spectrum, in order to deal explicitely with such a case all the notations
should be modifyed.
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2.3. Linear beats. The operator H0 formally defined by (2) admits a self-
adjoint realization (still denoted by H0) on L2(Rd) (Theorem III.1.1 in [2]) with
purely discrete spectrum σ(H0) = σd(H0), where σd(H0) denotes the discrete spec-
trum. Let λk, k ∈ N, be the eigenvalues of H0

λ1 < λ2 < λ3 ≤ λ4 ≤ . . . ≤ λk ≤ . . .

with associated normalized (in L2) eigenvectors ϕk(x). In particular, the lowest
two eigenvalues of H0 are non-degenerate and there exists 0 < C < 1, independent
of ~, such that

1 + C~ < λ1,2 < 1 + C−1
~ and inf

λ∈σ(H0)−{λ1, λ2}
[λ− λ1,2] ≥ C~

and

λ− λ2 ≥ Cλ~, ∀λ ∈ σ(H0) − {λ1, λ2} .(7)

It is well known that the splitting between the two lowest eigenvalues

ω =
1

2
(λ2 − λ1)(8)

vanishes as ~ goes to zero. In order to give a precise estimate of the splitting ω let

Γ = inf
γ

∫

γ

√

V (x) − Vmindx > 0

be the Agmon distance between the two wells; where γ is any path connecting the
two wells, that is γ ∈ AC([0, 1],Rd) such that γ(0) = x− and γ(1) = x+. From
standard WKB arguments (see [6]) it follows that the splitting is exponentially
small, precisely that

ω = Õ(e−Γ/~).(9)

The normalized eigenvectors ϕ1,2 associated to λ1,2 can be chosen to be real-
valued functions such that ϕ1 and ϕ2 are respectively of even and odd-parity:

ϕj(−x1, x2, . . . , xd) = (−1)j+1ϕj(x1, x2, . . . , xd), j = 1, 2;

We define now the single well states

ϕR =
1√
2

[ϕ1 + ϕ2] and ϕL =
1√
2

[ϕ1 − ϕ2]

such that

ϕR(−x1, x2, . . . , xd) = ϕL(x1, x2, . . . , xd)

They are localized on one well in the sense that for any r > 0 there exists Cr > 0
such that

∫

Dr(x+)

|ϕR(x)|2dx = 1 + O(e−Cr/~)

and
∫

Dr(x−)

|ϕL(x)|2dx = 1 + O(e−Cr/~)

where Dr(x±) is the ball with center x± and radius r. For such a reason we call
them single-well (normalized) states. In particular

‖ϕRϕL‖L∞ = Õ(e−Γ/~)
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Let

Π = 〈ϕ1, ·〉L2ϕ1 + 〈ϕ2, ·〉L2ϕ2 and Πc = I − Π

be the projection operator onto the eigenspace orthogonal to the bi-dimensional
space associated to the doublet {λ1,2}. We will study the dynamics of equation (1)
with initial data almost exactly concentrated on Φ0 :=Span(ϕ1, ϕ2).

Remark 6. If one takes initial data ψ0 in Φ0, i.e. of the form

ψ0 = ζ1ϕ1 + ζ2ϕ2 = ζRϕR + ζLϕL, ζR =
ζ1 + ζ2√

2
, ζL =

ζ1 − ζ2√
2

then the linear Schrödinger equation
{

i~ψ̇t = H0ψ
t,

ψt(x)|t=0 = ψ0(x) ∈ L2(Rd), Πcψ
0 = 0,

has an explicit solution given by

ψt(x) = e−iΩt/~ [(ζRϕR + ζLϕL) cos(ωt/~) + i (ζLϕR + ζRϕL) sin(ωt/~)]

where

Ω =
λ1 + λ2

2
, ω =

λ2 − λ1

2
(10)

That is ψt(x) performs a beating motion with beating period

T =
2π~

ω

Such a period usually plays the role of unit of time.

2.4. The nonlinear system. To introduce the analytic framework in which
we will work we first give the following

Definition 1. For any integer number s ≥ 0 we define the Hilbert space Xs :=

D(H
s/2
0 ) equipped with the norm

‖ψ‖2
s := ‖Hs/2

0 ψ‖2
L2 ≡ 〈Hs

0ψ, ψ〉L2

Remark 7. Here we will use the energy space X1. In particular, the Gagliardo-
Niremberg inequality yields the following

‖ψ‖L2σ+2 ≤ C

~eσ
‖(−~

2∆)1/2ψ‖eσ

L2 · ‖ψ‖1−eσ

L2

where ‖ψ‖L2 = 1 and eσ = σd/(2σ + 2). Hence, we can conclude that

‖ψ‖L2σ+2 ≤ C

~eσ
‖ψ‖eσ

1

since
∥

∥

∥

(

−~
2∆

)
1
2 ψ

∥

∥

∥

2

L2
= 〈ψ,−~

2∆ψ〉 ≤ 〈ψ,H0ψ〉 = ‖ψ‖2
1.
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3. Main Results

Let ω be the splitting (8) (which satisfies the asymptotic estimate (9)), and let
ε be the strength of the non-linear term. The norm ‖ϕσ+1

1,2 ‖2
L2 of the unperturbed

eigenvectors ϕ1,2 is of order ~
−dσ/2 [8].

Hypothesis 2. We assume that the non linear pertutbation is of the order of
the splitting; that is we assume that the real-valued parameter ε depends on ~ in
such a way

|ε|~−dσ/2

ω
≤ C, ∀~ ∈ (0, ~?)(11)

for some positive constant C, independent of ~, and for some ~
?.

Remark 8. The ratio

η =
ε~−dσ/2

ω
plays the role of effective nonlinearity parameter. The above assumption implies
that |η| ≤ C.

The main result of this section is the following

Theorem 1. Assume Hypotheses 1,2, and consider the Cauchy problem (1)–
(3). Then there exist positive constants 0 < C < 1 and γ such that, if ~ is small
enough and the initial datum ψ0 fulfills

‖Πcψ
0‖1 ≤ C|ε|1/2 ,(12)

then one has

‖Πcψ
t‖1 ≤ |ε|1/2

C~γ
, ∀t ∈ R .(13)

Hence the 2-dimensional space Φ0 := Π
[

L2(Rd)
]

is almost invariant. Thus
one expects that corresponding to initial data satisfying (12) the dynamics is well
described by the restriction of the equations of motion to Φ0. Actually such a re-
stricted dynamical system coincides, up to (formal) order ε2, with the 2-dimensional
dynamical systems

{

i~ċR = −ωcL + ΩcR + εCσ |cR|2σcR
i~ċL = ΩcL − ωcR + εCσ |cL|2σcL ,(14)

where

Cσ = ‖ϕR‖2σ+2
L2σ+2 = ‖ϕL‖2σ+2

L2σ+2 = O(~−dσ/2),

which has the integral of motion

I(cR, cL) = Ω(|cR|2 + |cL|2) − ω (c̄RcL + c̄LcR) + Cσ
ε

σ + 1

(

|cR|2(σ+1) + |cL|2(σ+1)
)

.

Moreover, such an Hamiltonian system has an independent integral of motion (the
quadratic part of the Hamiltonian), and thus it is integrable. The 2–dimensional
system was studied in detail in [5] obtaining that when the nonlinearity parame-

ter η = ~
−dσ/2ε
ω is large enough almost all its solution do not posses the beating

property, i.e. the probability density remains concentrated in one well.
Concerning the relation between the solution of the two dimensional system

and the solution of the complete system we have the following
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Corollary 1. Let ϕa(t) = CRϕR +CLϕL, where CR and CL are the solution
of the 2–dimensional system (14) with initial datum ϕa(0) with of norm 1, i.e.
|cR|2 + |cL|2 = 1. Denote ϕ(t) := Πψ(t), where ψ(t) is the solution of the complete
system (1) with the same initial datum. Then there exist a positive C and a positive
α such that the following estimate holds:

‖ϕa(t) − ϕ(t)‖L2 ≤ C
ε3/2

~α
|t| .

4. Proof of the main results

Let

ψt(x) =

∞
∑

k=1

ζk(t)ϕk(x),

and define the Hilbert spaces `2s of the complex sequences ζ = {ζk}k∈N
such that

‖ζ‖2
s :=

∑

k≥1

λsk|ζk |2 <∞

and remark that in such a way we have defined the correspondence

ψ ∈ Xs ↔ ζ = U(ψ) ∈ `2s

which is a unitary isomorphism.
In terms of these variables the norm and quadratic part E0 of the Hamiltonian

are given by

N =
∑

k≥1

|ζk|2 = ‖ζ‖2
0 and E0 =

∑

k≥1

λk |ζk|2 = ‖ζ‖2
1.

Remark 9. In order to simplify the notations, we rescale time by the

transformation t 7→ t/~. With such a notation the beating period is now given
by

T =
2π

ω

4.1. Variational results. We recall that we work here in the energy space
X1. Thus, in this section, norms and distances will always be in this space.

To exploit the fact that both Eε and N are conserved along the flow we have
to introduce a few geometrical lemmas.

Denote

H0(ψ) := Ω(|ζ1|2 + |ζ2|2) +
∑

k≥3

λk |ζk|2 =
∑

k≥1

νk|ζk |2

and

Pε(ψ) := ω(|ζ2|2 − |ζ1|2) + εP (ψ) ,

where ν1 = ν2 = Ω, νk = λk for k ≥ 3 and Ω and ω are defined in (10), so that
Eε = H0 + Pε.

In this section we will almost always use real coordinates pj , qj defined by

ζj =
qj + ipj√

2
,
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so all the functions will be considered as functions of ψ, (p, q), or ζj according to
convenience.

Define the (smooth) surface

S := {ψ ∈ X1 : N (ψ) = 1} ,

and consider the function h0 := H0

∣

∣

S
.

Lemma 1. The manifold

N := S ∩ Π
(

L2(Rd)
)

=

=

{

ψ ∈ X1 : ψ = ζ1ϕ1 + ζ2ϕ2 , |ζ1|2 + |ζ2|2 =
p2
1 + q21 + p2

2 + q22
2

= 1

}

is an absolute minimum of h0. Furthermore, for any point ψ ∈ N decompose the
tangent space TψS as

TψS = TψN ⊕ (TψN)⊥.

Then, the second differential d2
ψh0 of h0 at a point ψ ∈ N is such that

d2
ψh0(X,X) ≥ C~‖X‖2

1 , ∀X ∈ (TψN)⊥(15)

Remark 10. Since the function h0 is smooth one also has

(16) d2
ψh0(X,X) ≤ C‖X‖2

1 , ∀X ∈ (TψN)⊥

with a suitable C.

Proof. It is a trivial application of the method of the Lagrange multipliers.
Consider H0 + λN ; the critical points of h0 are obtained by finding the zeros (on
S) of the equations

∂(H0 + λN )

∂pj
=

1

2
(νj + λ)pj ,(17)

where νj = Ω for j = 1, 2 and νj = λj for j ≥ 3, and of the analogous equation for
qj . Thus a solution of (17) is given by λ = −Ω and ψ ∈ N . It follows that N is
constituted by critical points of h0. It follows that the second differential of h0 at
such points is well defined. Moreover, we recall that, given a vector

Y =
∑

j≥1

(Qj + iPj)ϕj ∈ TψS,

one has

d2
ψh0(Y, Y )

=
∑

j,l

(

PjPl
∂2(H0 + λN )

∂Pj∂Pl
+ 2PjQl

∂2(H0 + λN )

∂Pj∂Ql
+QjQl

∂2(H0 + λN )

∂Qj∂Ql

)

=
∑

j≥1

(νj + λ)
(

P 2
j +Q2

j

)

where λ = −Ω is the Lagrange multiplier determined from the criticality condition.
By the condition Y ∈ (TψN)⊥ one has Pj = Qj = 0 for j = 1, 2 and thus one has

d2
ψh0(Y, Y ) ≥

∑

j≥3

C~
(

P 2
j +Q2

j

)

= C~‖Y ‖2
1 , ∀Y ∈ (TψN)⊥
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since (7), and therefore the claim on the second differential follows. In particular
N is a minimum of h0. In a similar way one can show that all the other critical
points of h0 are saddle points. �

Remark 11. By definition it follows that

h0|N ≡ Ω.

Lemma 2. There exists a positive C such that, provided

h0(ψ) − Ω <
1

C
~
β, for some β > 3,(18)

then one has
~

C
[d(ψ,N)]

2 ≤ h0(ψ) − Ω ≤ C [d(ψ,N)]
2
.(19)

Proof. This is a standard result in differential geometry; we give here its
simple proof for the sake of completeness. Actually it is based on the use of
the exponential coordinates (see appendix A for their construction), which are
coordinates

ψ → (n,w) ∈ N × (T(n,0)N)⊥

in which the intersection of N with the domain of definition of the coordinates
coincides with w = 0; moreover for any ψ = (n,w) one has

d(ψ,N) := d ((n,w);N) = ‖w‖1 .

where the distance is as usual defined as the length of the shortest geodesic from ψ
to N . Using these coordinates, consider the Taylor expansion in w, at a point of
N , of the function

h0(n,w) − h0(n, 0) = d2
(n,0)h0(w,w) + O(‖w‖3

1) ,(20)

where h0(n,w) = h0(ψ) and h0(n, 0) ≡ Ω ≡ h0|N . From this fact and from
(15) and (18) then the left hand side inequality (19) follows. The right hand side
inequality of (19) follow from (16) and (20). �

Corollary 2. Let ψ ∈ S such that ‖Πcψ‖1 = µ = O(~β/2) for some β > 3,
then

C~
1
2 µ ≤ d(ψ,N) ≤ C~

− 1
2 µ(21)

for some C > 0.

Proof. Indeed, since

h0(ψ) = Ω
(

|ζ1|2 + |ζ2|2
)

+
∑

k≥3

λk|ζk|2

= Ω
(

|ζ1|2 + |ζ2|2
)

+ ‖Πcψ‖2
1

= Ω − Ω ‖Πcψ‖2
0 + ‖Πcψ‖2

1

then

h0(ψ) − Ω = ‖Πcψ‖2
1 − Ω‖Πcψ‖2

0 ≤ ‖Πcψ‖2
1 = µ2 .

From this fact and from Lemma 2 the right hand side inequality (21) follows.
Similarly

h0(ψ) − Ω =
∑

j≥3

(λj − Ω)|ζj |2 ≥ C~

∑

j≥3

λj |ζj |2 ≥ C~‖Πcψ‖2
1
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from which the left hand side inequality (21) follows. �

Proof of theorem 1. First remark that ψ0 ∈ S and ‖Πcψ
0‖1 = µ = O(ε1/2)

implies (see Corollary 2) d(ψ0, N) < C~
−1/2µ = Õ(ε1/2). Then, remark that from

(11) then

E(ψ0) = ‖ψ0‖2
1 +

ε

1 + σ
‖ψσ+1

0 ‖2
L2

= ‖Πψ0‖2
1 + O(ε1/2) = Ω + O(ε1/2)

and that, by conservation of energy and Remark 7 one has ‖ψ(t)‖1 ≤ 2Ω for all
times. From this fact and from Remark 7 one also has the following a priori
estimate

|Pε(ψ(t))| ≤ C
ε

~β

for some β; thus, using (19) one has the chain of inequalities

[d(ψ(t), N)]
2 ≤ C

~
[h0(ψ(t)) − Ω]

≤ C

~

[(

h0(ψ
0) − Ω

)

+
(

Eε(ψ(t)) − Eε(ψ0)
)

+
(

Pε(ψ0) −Pε(ψ(t))
)]

≤ C

~

[(

h0(ψ
0) − Ω

)

+
(

Pε(ψ0) −Pε(ψ(t))
)]

≤ C

~β+1
ε .

From this fact and from (21) then the claim follows. �

Finally, Corollary 1 immediately follows by comparing the two-level approxima-
tion (14) with (1) and by means of estimate (13) and standard Gronwall’s Lemma
arguments (see e.g. [8]).

Appendix A. Construction of exponential coordinates

Let M and N be Riemannian manifolds modeled on Hilbert spaces H and K,
with norms ‖ · ‖H and ‖ · ‖K ; denote by g the metric of M ; let i : N → M be a
smooth isometric embedding. In the following, for the sake of simplicity, we will
identify N and with i(N), and similarly for related objects and spaces (as TN).

Lemma 3. Let x0 be a point of N and let W = (T(x0)N)⊥, then there exists a
coordinate system of M defined in a neighborhood U ⊂ M of x0 with the following
properties:

i. U 3 x 7→ (n,w) ∈ N ×W ;
ii. let d(x,N) be the distance usually defined as the length of the shortest

geodesic from x ∈ N to N ; then d((n,w);N) = ‖w‖K .

Proof. We proceed in some steps. To start with we choose a coordinate
system (n,w1) with origin x0 ∈ N such that, if (n,w1) ∈ V1 ⊂ N ×W , where V1 is
a neighborhood of x0; then the intersection of N with the domain of definition of
the coordinate system coincides with the set (n, 0). Let

Πn : V1 ⊂ N ×W →
(

T(n,0)N
)⊥

be the orthogonal projector with respect to the scalar product g(n,0). Define the
map

V1 3 (n,w1) 7→ (n,Πnw1) ∈ V .
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If V1 is small enough, then such a map is an isomorphism on its image, since its
differential at the origin is invertible. Thus it defines a new coordinate system.
Let (n, 0) ∈ V1, then in these coordinates one has

T(n,0)N = {(X1, X2) ∈ N ×W : X2 = 0}
(T(n,0)N)⊥ = {(X1, X2) ∈ N ×W : X1 = 0}

We use such a coordinate system in order to define the needed coordinate system.
Take (n,w) ∈ N ×W small enough, and consider the geodesic γ(n,w)(s) starting
from (n, 0) with initial velocity w. Consider the (exponential) map

(n,w) 7→ γ(n,w)(1) ,

by implicit function theorem it is locally invertible (its differential at the origin is
the identity), and thus any point x of a neighborhood U of x0 can be represented
uniquely by the points (n,w) such that γ(n,w)(1) = x0. Remark that moreover one
has

`(γ) :=

∫ 1

0

√

g(γ̇(s), γ̇(s))ds = ‖w‖K(22)

since γ̇(0) = ‖w‖K and g(γ̇(s), γ̇(s)) is independent of s along geodesic lines.
In the coordinate system just introduced, let x = (n,w) then its distance from

N is the length of the shortest geodesic joining x to N . In turn such a geodesic is
perpendicular to N . Thus (n, 0) is the point where it starts and w is the tangent
vector at such a point. Then property ii. follows from (22). �

References
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