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Large Time Behavior of the Zero Dispersion Limit of the

Fifth Order KdV Equation
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Abstract. We study the zero dispersion limit of the fifth order KdV equations
when time is sufficiently large. In general, the weak limit may be described by
an arbitrary odd number of hyperbolic equations. Unlike the KdV case, these
are non-strictly hyperbolic equations. However, we show that the weak limit
is governed by three hyperbolic equations in a domain in the space-time for all
times bigger than a large time. Outside this domain, the weak limit satisfies
a single hyperbolic equation.
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1. Introduction

It is well known that the solution of the KdV equation

(1.1) ut + 6uux + ε2uxxx = 0

has a weak limit as ε→ 0 while the initial values

(1.2) u(x, 0; ε) = u0(x)

are fixed [7, 15]. This weak limit satisfies the Burgers equation

(1.3) ut + (3u2)x = 0
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until its solution develops shocks. Immediately after, the weak limit is governed by
the Whitham equations [2, 7, 15, 17]

(1.4) uit + λi(u1, u2, u3)uix = 0 , i = 1, 2, 3,

where the λi’s are given by formulae (2.30). After the breaking of the solution of
(1.4), the weak limit is described by systems of at least five hyperbolic equations
similar to (1.4).

The KdV equation (1.1) is just the first member of an infinite sequence of
equations, the second of which is the so-called fifth order KdV equation

(1.5) ut + 30u2ux + 20ε2uxuxx + 10ε2uuxxx + ε4uxxxxx = 0 .

The solution of the fifth order KdV equation (1.5) also has a weak limit as ε → 0
[8]. As in the KdV case, this weak limit satisfies the Burgers type equation

(1.6) ut + (10u3)x = 0

until the solution of (1.6) forms a shock. Later, the limit is governed by equations
similar to (1.4), namely,

(1.7) uit + µi(u1, u2, u3)uix = 0 , i = 1, 2, 3,

where µi’s are given in (2.29). They will be also be called the Whitham equations
[10].

In this paper, we are interested in the large time behavior of the weak limit of
the fifth order KdV equation (1.5).

For simplicity, we consider u0(x) of (1.2) which is a decreasing function and is
bounded at x = ±∞:

(1.8) lim
x→−∞

u0(x) = 1 , lim
x→+∞

u0(x) = 0 .

The large time behavior of the weak limit of the KdV equation (1.1) has been
studied [13]. For generic initial data of (1.8), the weak limit is governed by the
Whitham equations (1.4) in a domain in the space-time when t is sufficiently large.
Outside this domain, the weak limit satisfies the Burgers equation (1.3). We note
that the weak limit may be described by an arbitrary odd number of hyperbolic
equations in the intermedia times.

The strong hyperbolicity of the Whitham equations (1.4) for the KdV plays
an important role in the paper of [13]. It is well known that equations (1.4) are
strictly hyperbolic:

λi(u1, u2, u3) 6= λj(u1, u2, u3) , i, j = 1, 2, 3; i 6= j,

and genuinely nonlinear:

∂

∂ui
λi(u1, u2, u3) 6= 0 , i = 1, 2, 3,

for u1 > u2 > u3 [9].
However, in the case of fifth order KdV equation (1.5), the Whitham equations

(1.7) are neither strictly hyperbolic nor genuinely nonlinear [10].
In this paper, we use the method developed in [3] and [4] to study the weak

limit of the fifth order KdV (1.5) for sufficiently large time t. Our approach does
not require the Whitham equations to be strongly hyperbolic. Our result is quite
similar to the KdV result. Namely, For generic initial data of (1.8), the weak limit
is governed by the Whitham equations (1.7) in a domain x−(t) < x < x+(t) in the
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space time when t is sufficiently large (see Figure 1.). Outside this domain, the
weak limit satisfies the Burgers type equation (1.6).

We also find some difference between the KdV case and the fifth order KdV
case. In the latter case, the trailing edge is “lifted”, i.e.,

u1 ≈ 1 , u2 = u3 ≈ 1

4
for large t > 0

at the trailing edge x = x−(t) (see Figure 1.). In the KdV case, instead we have

u1 ≈ 1 , u2 = u3 ≈ 0 for large t > 0

at the trailing edge [5, 7].
This phenomenon of “lifted” trailing edge has also been observed in the weak

limit of the fifth order KdV equation when the initial values u0(x) of (1.2) are given
by a step-like function

u0(x) =

{

1 x < 0
0 x > 0

.

In this case, we have

u1 = 1 , u2 = u3 =
1

4
at the trailing edge x = −15t [10].

The organization of this paper is as follows. In Section 2, we will summarize
the method of [3]. In Section 3, we will describe our main theorem. In Section
4, we will study the trailing and leading edges, which separate the Burgers type
solutions and the Whitham solutions, when t is large. In Section 5, we will study
the Whitham solutions that live between the trailing and leading edges.

2. A Minimization Problem

As in the KdV case, the weak limit of the fifth order KdV equation (1.5) is
determined by a minimization problem with constraints [8].

The minimization problem is

(2.1) Minimize
{ψ≥0, ψ∈L1}

{− 1

2π

∫ 1

0

∫ 1

0

log
∣

∣

∣

η − µ

η + µ

∣

∣

∣
ψ(η)ψ(µ)dηdµ +

∫ 1

0

a(η, x, t)ψ(η)dη} .

Function a(η, x, t) is given by

a(η, x, t) = ηx− 16η5t− θ(η) ,(2.2)

θ(η) = ηf(η2) +

∫ +∞

f(η2)

[η −
√

η2 − u0(x)]dx ,

where f(u) is the inverse function of the initial data u0(x). We note that in the
KdV case, we have a(η, x, t) = ηx− 4η3t− θ(η) instead of (2.2) [3, 7, 15].

We now give a brief summary of our approach to the minimization problem
(2.1).

We first follow Lax & Levermore [7] and Venakides [15, 16] to make the ansatz
that the support of ψ consists of a finite union of disjoint intervals

(2.3) S = [0,
√
u2g+1] ∪ [

√
u2g,

√
u2g−1] ∪ · · · ∪ [

√
u2,

√
u1] ,

where 0 < u2g+1 < · · · < u2 < u1 < 1. Hence, g is the number of gaps in the
support S.
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We then introduce

(2.4) P (ξ, ~u) = 2R2(ξ, ~u)Φg(ξ, ~u) +Q(ξ, ~u) ,

where ~u denotes (u1, u2, · · · , u2g+1) and R(ξ, ~u) =
√

(ξ − u1) · · · (ξ − u2g+1) with

the sign given by
√

1 = 1 [3].
The function Φg(ξ, ~u) is the unique solution of the boundary value problem for

the Euler-Poisson-Darboux equations

2(ui − uj)
∂2Φg
∂ui∂uj

=
∂Φg
∂ui

− ∂Φg
∂uj

, i, j = 1, 2, · · · , 2g + 1,(2.5)

2(ξ − ui)
∂2Φg
∂ξ∂ui

=
∂Φg
∂ξ

− 2
∂Φg
∂ui

, i = 1, 2, · · · , 2g + 1,(2.6)

Φg(u, u, · · · , u) =
2g

(2g + 1)!!

dg+1

dug+1
[x− 30tu2 − f(u)] .(2.7)

The function Q(ξ, ~u) is a polynomial of degree 2g in ξ:

(1) for g = 0, Q(ξ, u1) = x− 30u2
1t− f(u1);

(2) for g > 0,

Q(ξ, ~u) = 2

2g+1
∑

i=1

[

2g+1
∏

l=1,l6=i
(ξ − ul)]

∂qg,g(~u)

∂ui

+

g
∑

k=1

[(2k − 1)

g−k
∑

l=0

Γl(~u)qg,k+l(~u)]Pg,k−1(ξ, ~u) .

Here Γl(~u) are the coefficients of the expansion at ξ = ∞

R(ξ, ~u) = ξg+
1
2 [Γ0(~u) +

Γ1(~u)

ξ
+

Γ2(~u)

ξ2
+ · · · ]

and qg,k(~u) is the solution of the boundary value problem for another version of the
Euler-Poisson-Darboux equations

2(ui − uj)
∂2qg,k
∂ui∂uj

=
∂qg,k
∂ui

− ∂qg,k
∂uj

, i, j = 1, · · · , 2g + 1 ,(2.8)

qg,k(u, · · · , u) =
2g−1

(2g − 1)!!
u−k+

1
2
dg−k

dug−k
{ug− 1

2 [
dk−1

duk−1

(

x− 30tu2 − f(u)
)

]}.(2.9)

The polynomial

(2.10) Pg,n(ξ, ~u) = ξg+n + ag,1ξ
g+n−1 + · · · + ag,g+n

is defined such that

(2.11)
Pg,n(ξ, ~u)

R(ξ, ~u)
= ξn−

1
2 +O(ξ−

3
2 ) for large |ξ| ,

and

(2.12)

∫ u2k

u2k+1

Pg,n(ξ, ~u)

R(ξ, ~u)
dξ = 0 , k = 1, 2, · · · , g ,

where ~u = (u1, u2, · · · , u2g+1).
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Solutions of the boundary value problem for the Euler-Poisson-Darboux equa-
tions can be constructed using those of the following simpler problem as building
blocks [11]

2(x1 − x2)
∂2v

∂x1∂x2
=

∂v

∂x1
− ρ

∂v

∂x2
, ρ > 0 is a constant ,(2.13)

v(x1, x1) = g(x1) .(2.14)

The boundary value problem (2.13-2.14) has one and only one solution for smooth
boundary data g(x) [11]. A simple calculation shows that the solution is given by
the formula

v(x1, x2) = C

∫ 1

−1

g( 1+µ
2 x1 + 1−µ

2 x2)
√

1 − µ2
(1 + µ)

ρ−1

2 dµ ,

where

C =
1

∫ 1

−1
(1+µ)

ρ−1

2√
1−µ2

dµ

.

A change of integration variable gives another expression for the solution

(2.15) v(x1, x2) = C

[

2

x1 − x2

]

ρ−1

2
∫ x1

x2

g(x)
(x− x2)

ρ−2

2

(x1 − x)
1
2

dx ,

where the square root is set to be positive for x between x1 and x2. In particular,
when g = 0, the solution of the boundary value problem (2.5-2.7) is

(2.16) Φ0(ξ, u1) =
1

2
√

2

∫ 1

−1

H ′( 1+µ
2 ξ + 1−µ

2 u1)√
1 − µ

dµ ,

where H(u) = x− 30tu2 − f(u). More generally, the solution of equations (2.5-2.7)
can be solved explicitly

Φg(ξ, ~u) = M ×
∫ 1

−1

· · ·
∫ 1

−1

H(g+1)(
1+µ2g+1

2 (· · · ( 1+µ2

2 ( 1+µ1

2 ξ + 1−µ1

2 u1) + · · · ) +
1−µ2g+1

2 u2g+1)
√

(1 − µ1)(1 − µ2) · · · (1 − µ2g+1)

×(1 + µ2)
1
2 (1 + µ3)

2
2 · · · (1 + µ2g+1)

2g
2 dµ1dµ2 · · · dµ2g+1 ,(2.17)

where the constant M is chosen so that the boundary condition (2.7) is satisfied
[3].

The solution qg,k(~u) of another boundary value problem (2.8), (2.9) is also given
by a multiple integral formula similar to (2.17).

We now list some identities of Φg and qg,k. They will be useful in the subsequent
calculations.
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Lemma 2.1. [3]

2(ξ − ui)
∂

∂ui
Φg(ξ, ~u) = Φg(ξ, ~u) − Φg(ui, ~u) ,(2.18)

Φg(ξ, ~u)|ul=ul+1=u∗ =
Φg−1(ξ, ~̃u) − Φg−1(u

∗, ~̃u)

ξ − u∗
,(2.19)

Φg(u
∗, ~u)|ul=ul+1=u∗ =

∂Φg−1(ξ, ~̃u)

∂ξ
|ξ=u∗ ,(2.20)

Φg−1(ξ, ~̃u) =

(

2g+1
∑

i=1

∂

∂ui
qg,g(~u)

)

|ul=ul+1=ξ ,(2.21)

where ~u = (u1, . . . , , u2g+1), ~̃u = (u1, . . . , ul−1, ul+2, . . . , u2g+1) and 1 ≤ l ≤ 2g.

Our method of solution to the minimization problem is summarized in the
following theorem.

Theorem 2.2. [3] If x, t and ~u are connected by the equations

(2.22) P (ui, ~u) = 0 for i = 1, 2, · · · , 2g + 1,

where P is defined by (2.4), and if the inequalities for k = 0, 1, · · · , g, u0 = 1 and
u2g+2 = 0

Re{
√
−1R(ξ, ~u)}Φg(ξ, ~u) < 0 for u2k+2 < ξ < u2k+1 ,(2.23)

∫ ξ

u2k+1

R(µ, ~u)Φg(µ, ~u)dµ > 0 for u2k+1 < ξ < u2k ,(2.24)

are satisfied, the function

(2.25) ψ(η) = −2ηRe{
√
−1R(η2, ~u)}Φg(η2, ~u)

is the minimizer of (2.1). Its support is given by (2.3).

We now analyze equations (2.22). The boundary conditions (2.7) and (2.9) are
linear in x and t, as is the function P (ξ, ~u). We then use formulae (2.4-2.9) to write

(2.26) P (ξ, ~u) = xPg,0(ξ, ~u) − 80tPg,2(ξ, ~u) − Pf (ξ, ~u) ,

where Pg,0 and Pg,2 are defined by (2.10-2.12), and Pf is also determined by equa-
tions (2.4-2.9) with boundary data (2.7) and (2.9) depending only on f and its
derivatives.

Equations (2.22) can then be written as

(2.27) x = λg,i(~u)t+ wg,i(~u) , i = 1, 2, · · · , 2g + 1 ,

where

λg,i = 80
Pg,2(ui, ~u)

Pg,0(ui, ~u)
, wg,i(~u) =

Pf (ui, ~u)

Pg,0(ui, ~u)
.

It is well known that the solutions u1, u2, · · · , u2g+1 of (2.27) or equivalently
(2.22), as functions of x and t, satisfy an odd number of hyperbolic partial differ-
ential equations [1, 3, 6, 12, 14]

(2.28) uit + λg,i(u1, u2, · · · , u2g+1)uix = 0 , i = 1, 2, · · · , 2g + 1 .

In other words, the square roots of the end points of the support (2.3) of the
minimizer of the variational problem (2.1) satisfy the PDE (2.28).
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The coefficients λg,i of (2.28) involve complete hyperelliptic integrals of genus
g because Pg,n’s do so in view of (2.10-2.12). Equations (2.28) are then called the
g-phase Whitham equations and its solution a g-phase solution.

In particular, when g = 0, we have λ0,1(u1) = 30u2
1 and equation (2.28) becomes

the Burgers type equation (1.6).
When g = 1, equations (2.28) turn out to be the Whitham equations (1.7),

where

(2.29) µi(u1, u2, u3) = λ1,i(u1, u2, u3) = 80
P1,2(ui, u1, u2, u3)

P1,0(ui, u1, u2, u3)
, i = 1, 2, 3 .

We note that, for the KdV equation, λi’s of (1.4) are given by

(2.30) λi(u1, u2, u3) = 12
P1,1(ui, u1, u2, u3)

P1,0(ui, u1, u2, u3)
, i = 1, 2, 3 .

To solve the system of algebraic equations (2.22), we rely on the Implicit Func-
tion Theorem. Although the system is complicated, its Jacobian matrix is diagonal
and its determinant is easily calculated.

Theorem 2.3. [3] On the solution ~u of (2.22),

(1) the Jacobian matrix of the hodograph transform (2.22) is diagonal, i.e.,

∂P (ui, ~u)

∂uj
= 0 , i, j = 1, 2, · · · , 2g + 1 ; i 6= j ,

(2) the Jacobian is

det

(

∂P (ui, ~u)

∂uj

)

= (−1)g
∏

i>j

(ui − uj)
2

2g+1
∏

i=1

Φg(ui, ~u) .

Violation of inequalities (2.23-2.24) gives rise to phase changes. Indeed, when
(2.23) first fails, function Φg(ξ, ~u) must have a double ξ-zero for

√
ξ in the interior

of S of (2.3), say, the zero u∗ where
√
u∗ ∈ S. The resulting equations are

Φg(u
∗, ~u) = 0 ,(2.31)

∂

∂ξ
Φg(ξ, ~u)|ξ=u∗ = 0 ,(2.32)

P (ui, ~u) = 0 , i = 1, 2, · · · , 2g + 1 .(2.33)

They govern the so-called trailing edge separating g and g + 1 phases. Similarly,
when (2.24) is first violated, the indefinite integral must also have a double ξ-zero
for

√
ξ in the complement of S, say, the zero u∗ ∈ (u2k+1, u2k). The resulting

equations are

Φg(u
∗, ~̃u) = 0 ,(2.34)

∫ u∗

u2k+1

Φg(ξ, ~u)R(ξ, ~u)dξ = 0 ,(2.35)

P (ui, ~u) = 0 , i = 1, 2, · · · , 2g + 1 ,(2.36)

which govern the so-called leading edge separating g and g + 1 phases.
We close this section with a remark on the other higher order KdV equations.

All the zero dispersion limits of the equations in the KdV hierarchy are determined
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by the minimization problem (2.1) with a(η, x, t) of (2.2) replaced by [8]

(2.37) a(η, x, t) = ηx − 4mη2m+1t− θ(η)

for m = 1 , 2 , · · · . The function x− 30tu2 − f(u) in the boundary conditions (2.7)
and (2.9) must then be replaced by x− Cmtu

m − f(u), where [3]

Cm =
(2m+ 1)22m+1

π

∫ 1

0

t2m√
1 − t2

dt .

In particular, m = 1 corresponds to the KdV case and m = 2 to the fifth order
KdV case. All the analysis of Section 3 can be carried over from the fifth order
KdV (m = 2) case to all the other equations (m 6= 2) in the KdV hierarchy.

In the subsequent sections, we will only study the fifth order KdV (m = 2) case.
The KdV (m = 1) case has been well understood [13]. We will indicate why the
m > 2 case is technically more difficult than the m = 2 case when the opportunity
presents itself.

3. Main Theorem

We first make assumption on the initial data u0(x) or its inverse f(u). Since
u0(x) has the limits (1.8) as x goes to the infinity, its inverse f(u) behaves as

(3.1) lim
u→0

f(u) = +∞ , lim
u→1

f(u) = −∞ .

We further assume that

(3.2) f ′′′(u) < 0 in the neighborhood of u = 0 and u = 1 .

Conditions (3.1-3.2) immediately imply [13]

(3.3) lim
u→0

f ′(u) = lim
u→1

f ′(u) = −∞ , lim
u→0

f ′′(u) = +∞ , lim
u→1

f ′′(u) = −∞ .

Theorem 3.1. (see Figure 1.) Under the conditions (3.1) and (3.2), there
exists a T > 0 so that when t > T , the weak limit of the fifth order KdV equation is
governed by the Whitham equations (1.7) for x−(t) < x < x+(t), where x−(t) and
x+(t) are some functions of t. The weak limit satisfies the Burgers type equation
(1.6) for x < x−(t) and x > x+(t).

This theorem is a consequence of Theorems 5.1 and 5.5, which will be proved
in the subsequent sections.

4. Trailing and Leading Edges

In this section, we will study the trailing and leading edges of a single phase
solution when t is sufficiently large.

§ 4.1 The trailing edge

We first analyze the tail of a single phase solution at which u2 = u3 (see Figure
1.). It is a phase transition boundary between zero and single phases; it corresponds
to g = 0 in equations (2.31-2.33):

W1(u1, u3, t) := Φ0(u3, u1) = 0 ,(4.1)

W2(u1, u3, t) :=
∂

∂ξ
Φ0(ξ, u1)|ξ=u3

= 0 ,(4.2)

x− 30tu2
1 − f(u1) = 0 .(4.3)
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x (t)− x (t)+

u1

u2

u3

u

1

x

1/4

Figure 1. Large time behavior of the weak limit of the fifth or-
der KdV for generic initial data. The limit is governed by the
Whitham equations (1.7) for x−(t) < x < x+(t) and by the Burg-
ers type equation (1.6) otherwise. The trailing edge x = x−(t) is
characterized by u1 ≈ 1 , u2 = u3 ≈ 1/4.

We split Φ0(ξ, u1) into

(4.4) Φ0(ξ, u1) = −30tU0(ξ, u1) − F0(ξ, u1) ,

where U0 and F0 are the solutions of the Euler-Poisson-Darboux equations (2.5-2.7)
with boundary data 2u and f ′(u), respectively. In view of formula (2.16), we have

F0(ξ, u1) =
1

2
√

2

∫ 1

−1

f ′( 1+µ
2 ξ + 1−µ

2 u1)√
1 − µ

dµ ,(4.5)

U0(ξ, u1) =
1

2
√

2

∫ 1

−1

2( 1+µ
2 ξ + 1−µ

2 u1)√
1 − µ

dµ =
4

3
ξ +

2

3
u1 .(4.6)

Equations (4.1) and (4.2) are then equivalent to

F0

U0
+ 30t = 0 ,(4.7)

∂

∂ξ
[
F0

U0
+ 30t]ξ=u3

= 0 .(4.8)

Equation (4.8) suggests that the point ξ = u3 is a critical point of the function
[F0/U0 + 30t]. We therefore consider an auxiliary minimum problem

(4.9) Min0<ξ<1

[

−F0(ξ, u1)

U0(ξ, u1)

]

for each u1 close to 1.
To study the minimization problem (4.9), we need the following lemma.
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Lemma 4.1. (1)

(4.10) lim
ξ→0

F0(ξ, u1) = lim
ξ→1

F0(ξ, u1) = −∞

for each u1 ∈ (0, 1).
(2) There exists a δ > 0 such that

(4.11)
∂2

∂ξ2
F0(ξ, u1) < 0 for 0 < ξ < 1 and 1 − δ < u1 < 1 .

(3)

(4.12) lim
u1→1

∂F0(ξ,u1)
∂ξ

F0(ξ, u1)
=

1

1 − ξ

uniformly for ξ on every compact subset of the interval (0, 1).

Proof: To prove the first limit of (4.10), we use (4.5) to rewrite F0(ξ, u1) as

F0(ξ, u1) =
1

2
√
ξ − u1

∫ ξ

u1

f ′(u)√
ξ − u

du when ξ > u1 .

Since f ′(u) < 0, we estimate the integral when ξ is close to 1:

F0(ξ, u1) ≤
1

2(ξ − u1)

∫ ξ

u1

f ′(u)du =
1

2(ξ − u1)
[f(ξ) − f(u1)] .

This together with (3.1) proves the second limit of (4.10). The first limit can be
shown in the same way.

To prove inequality (4.11), in view of condition (3.2) we assume f ′′′(u) < 0
for u outside the interval (δ1, 1 − δ1) where δ1 is a small positive number. Since
f ′′′(u) < 0 for u > 1 − δ1, it follows from formula (4.5) that it suffices to prove
(4.11) for ξ ≤ 1 − δ1.

We use formula (4.5) to write for u1 > 1 − δ1
2 ≥ ξ,

∂2

∂ξ2
F0(ξ, u1) =

1

2(u1 − ξ)
5
2

∫ u1

ξ

f ′′′(u)
(u1 − u)2√

u− ξ
du

=
1

2(u1 − ξ)
5
2

[

∫ u1

1− δ1
2

+

∫ 1− δ1
2

ξ

] .(4.13)

Since f ′′′(u) < 0 for u < δ1/2, the second integral in the parenthesis of (4.13) is
smaller than

∫ 1− δ1
2

δ1

|f ′′′(u)|√
u− ξ

du ,

which, since f ′′′(u) is bounded on the closed interval [δ1, 1 − δ1/2], is uniformly
bounded for ξ ≤ 1− δ1/2.

Since f ′′′(u) < 0 for u > 1 − δ1, the first integral of (4.13) is less than
∫ u1

1− δ1
2

f ′′′(u)(u1 − u)2du

= 2f(u1) − f ′′(1 − δ1
2

)(u1 − 1 +
δ1
2

)2 − 2f ′(1 − δ1
2

)(u1 − 1 +
δ1
2

) − 2f(1− δ1
2

) ,

which, in view of (3.1), goes to −∞ as u1 → 1. This proves inequality (4.11).
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To prove (4.12), we use formula (4.5) to write for u1 > ξ,

F0(ξ, u1) =
1

2
√
u1 − ξ

∫ u1

ξ

f ′(u)√
u− ξ

du ,(4.14)

∂

∂ξ
F0(ξ, u1) =

1

2(u1 − ξ)
3
2

∫ u1

ξ

f ′′(u)
u1 − u√
u− ξ

du .(4.15)

We first observe that

(4.16) lim
u1→1

∫ u1

ξ

f ′(u)√
u− ξ

du = −∞

uniformly for ξ on every compact subset of the interval (0, 1). Since f ′(u) < 0, we
estimate for u1 > ξ,

∫ u1

ξ

f ′(u)√
u− ξ

du ≤
∫ u1

ξ

f ′(u)du = f(u1) − f(ξ) .

As u1 → 1, the right hand side goes to −∞ uniformly for ξ on every compact subset
of the interval (0, 1) because f(u1) → −∞ in view of (3.1) and f(u) is bounded on
every compact subset. This proves the limit (4.16).

To calculate the limit (4.12), we turn to the following lemma on the uniform
convergence version of L’Hospital’s rule. The proof of Lemma 4.2 is simply a
modification of the standard proof of the classical L’Hospital’s rule.

Lemma 4.2. Let g1(x, y) and g2(x, y) be defined on (0, 1) × Y , where Y is a
subset of <. If g1(x, y) and g2(x, y) satisfy the conditions

(1) for each x ∈ (0, 1), g1(x, y) and g2(x, y) are uniformly bounded for y on
Y ,

(2) the partial derivatives g1x(x, y) and g2x(x, y) exist for each (x, y) ∈ (0, 1)×
Y ,

(3) limx→1 g2(x, y) = ∞ uniformly for y on Y ,
(4) limx→1[g1x(x, y)/g2x(x, y)] = L(y) uniformly for y on Y ,
(5) L(y) is uniformly bounded on Y .

then limx→1[g1(x, y)/g2(x, y)] = L(y) uniformly for y on Y .

Using formulae (4.14) and (4.15), we apply Lemma 4.2 twice to calculate the
limit

lim
u1→1

∂F0(ξ,u1)
∂ξ

F0(ξ, u1)
= lim

u1→1

1

u1 − ξ

∫ u1

ξ

f ′′(u)√
u−ξ (u1 − u)du
∫ u1

ξ

f ′(u)√
u−ξ du

=
1

1 − ξ
lim
u1→1

∫ u1

ξ

f ′′(u)√
u−ξdu

f ′(u1)√
u1−ξ

=
1√

1 − ξ
lim
u1→1

f ′′(u1)√
u1−ξ

f ′′(u1)

=
1

1 − ξ
,

uniformly for ξ on every compact subset of (0, 1). Here, the limit (4.16) and the
second limit of (3.3) guarantee that Lemma 4.2 applies. This proves the limit (4.12).

The proof of Lemma 4.1 is now complete.
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We now use Lemma 4.1 to study the minimum problem (4.9). Because of
(4.10), [−F0(ξ, u1)/U0(ξ, u1)] goes to +∞ as ξ → 0, 1. Hence, the minimum is
reached somewhere in the interval (0, 1).

We next show that the minimum problem (4.9) has only one critical point when
u1 is close to 1. To see this, we calculate the second derivatives of [−F0/U0] at any
of its critical points

(4.17)
∂2

∂ξ2
[−F0(ξ, u1)

U0(ξ, u1)
] = −F0ξξU0 − F0U0ξξ

U2
0

.

Since U0ξξ ≡ 0 in view of (4.6), it follows from inequality (4.11) that the right hand
side is positive if u1 is close to 1. Hence, all the critical points of [−F0/U0] must be
local minimizing points. For any two minimizing points, some point between them
must be a local maximizing point; an impossibility. This proves the uniqueness of
the critical point and hence of the minimizing point in the minimum problem (4.9)
when u1 is close to 1.
Remark: This is the first place where m = 2 in (2.37) is important. It is because
of m = 2 that we have U0ξξ ≡ 0 which makes it possible to conclude from formula
(4.17) the uniqueness of the critical point in the the minimum problem (4.9).

We also want to determine the asymptotics of the critical point when t is large.
To do this, we write

(4.18)
∂

∂ξ
[−F0(ξ, u1)

U0(ξ, u1)
] = −F0

U0
[

∂F0

∂ξ

F0
−

∂U0

∂ξ

U0
] .

Since F0 and U0 are non-zero when 0 < ξ < 1 and 0 < u1 < 1, [−F0/U0] has
a unique critical point within the interval (0, 1) if and only if the quantity in the
parenthesis on the right hand side does so. We now consider a compact set [ε0, 1−ε0],
where ε0 is a small positive number. According to (4.12), the quantity in the
parenthesis of (4.18) has the uniform limit

(4.19)
1

1 − ξ
−

∂U0(ξ,1)
∂ξ

U0(ξ, 1)

on this compact set as u1 → 1. In view of formula (4.6) for U0, we deduce that
the function (4.19) has only one zero ξ = 1/4 in the interval 0 < ξ < 1, counting
multiplicities. Hence, the quantity in the parenthesis of (4.18) will have a zero near
ξ = 1/4 when u1 is close to 1. This zero is exactly the unique critical point of the
minimum problem (4.9).

We summarize the above result as a lemma.

Lemma 4.3. The minimum problem (4.9) has one and only one critical point
when u1 is close to 1. Furthermore, the critical point approaches 1/4 as u1 goes to
1 .

We are now ready to solve equations (4.1-4.3). By Lemma 4.3, equation (4.8)
has a unique solution ξ = u3 for each u1 close to 1. We then use (4.7) to determine
t. Hence, equations (4.7-4.8) can be solved to give u3 and t as functions of u1.
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We then calculate the Jacobian of equations (4.1-4.2) with respect to u1 and
u3 on the solution of (4.7-4.8):

∂W1

∂u1
=

Φ0(u1, u1)

2(u1 − u3)
> 0 ,(4.20)

∂W1

∂u3
= 0 ,(4.21)

∂W2

∂u1
=

Φ0(u1, u1)

2(u1 − u3)2
> 0 ,(4.22)

∂W2

∂u3
= − ∂2

∂ξ2
F0(ξ, u1)|ξ=u3

> 0 .(4.23)

To prove the equality of (4.20), we use the special case of identity (2.18)

2(ξ − u1)
∂

∂u1
Φ0(ξ, u1) = Φ0(ξ, u1) − Φ0(u1, u1) .

This together with equation (4.1) proves the equality of (4.20).
Equation (4.21) is the result of (4.2).
The equality of (4.22) follows from (2.6), (4.2) and (4.20).
The equality of (4.23) is the result of the split (4.4) and U0ξξ ≡ 0.
The sign in (4.23) comes from (4.11).
To determine the signs in (4.20) and (4.22), we split Φ0(u1, u1) according to

(4.4),

Φ0(u1, u1) = −30tU0(u1, u1) − F0(u1, u1)

= U0(u1, u1)[
F0(u3, u1)

U0(u3, u1)
− F0(u1, u1)

U0(u1, u1)
] > 0 .

Here, we have used (4.7) in the second equality. The inequality follows from the
fact that u3 is the only minimizing point of the minimum problem (4.9).

It now follows from the Implicit Function Theorem that equations (4.1-4.2) can
be solved to give u1 and u3 as functions of t, respectively, for t larger than a finite
time. We have therefore established the following theorem.

Theorem 4.4. Under the conditions (3.1) and (3.2), there exists a constant
T− > 0 such that for t > T−, equations (4.1-4.3) have a unique solution u−1 (t),
u−3 (t) and x−(t). Function u−1 (t) is an increasing function of t. Furthermore,

lim
t→+∞

u−1 (t) = 1 , lim
t→+∞

u−3 (t) =
1

4
.

§ 4.2 The leading edge

We now turn to the leading edge at which u1 = u2. It is the head of a single
phase solution (see Figure 1.). It is governed by equations (2.34-2.36) for g = 0:

W3(u1, u3, t) =: Φ0(u1, u3) = 0 ,(4.24)

W4(u1, u3, t) =:

∫ u1

u3

Φ0(ξ, u3)
√

ξ − u3dξ = 0 ,(4.25)

x− 30tu2
3 − f(u3) = 0 .(4.26)
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We again use the split Φ0(ξ, u3) = −30tU0(ξ, u3) − F0(ξ, u3), which is similar
to (4.4), to rewrite (4.24-4.25) as

∫ u1

u3
F0(u, u3)

√
u− u3du

∫ u1

u3
U0(u, u3)

√
u− u3du

+ 30t = 0 ,(4.27)

∂

∂u1

[
∫ u1

u3
F0(u, u3)

√
u− u3du

∫ u1

u3
U0(u, u3)

√
u− u3du

+ 30t

]

= 0 .(4.28)

We first simplify equations (4.27-4.28).

Lemma 4.5.

1

2(u1 − u3)
3
2

∫ u1

u3

F0(u, u3)
√
u− u3du =

1

4
√

2

∫ 1

−1

f ′(
1 − µ

2
u3+

1 + µ

2
u1)
√

1 − µdµ .

Proof:

∂

∂u1

∫ u1

u3

F0(u, u3)
√
u− u3du

= F0(u1, u3)
√
u1 − u3

=
1

2

∫ u1

u3

f ′(u)√
u1 − u

du

=
∂

∂u1

∫ u1

u3

f ′(u)
√
u1 − udu

=
∂

∂u1
[
(u1 − u3)

3
2

2
√

2

∫ 1

−1

f ′(
1 − µ

2
u3 +

1 + µ

2
u1)
√

1 − µdµ] ,

which proves the lemma.
Let

G0(ξ, u3) =
1

4
√

2

∫ 1

−1

f ′(
1 − µ

2
u3 +

1 + µ

2
ξ)
√

1 − µdµ ,(4.29)

V0(ξ, u3) =
1

4
√

2

∫ 1

−1

2(
1 − µ

2
u3 +

1 + µ

2
ξ)
√

1 − µdµ =
4

15
ξ +

2

5
u3 .(4.30)

We use Lemma 4.5 to rewrite equations (4.27-4.28) as

G0(ξ, u3)

V0(ξ, u3)
+ 30t = 0 ,(4.31)

∂

∂ξ
[
G0(ξ, u3)

V0(ξ, u3)
+ 30t]ξ=u1

= 0 .(4.32)

As before, equation (4.32) motivates us to consider another auxiliary minimum
problem

(4.33) Min0<ξ<1

[

−G0(ξ, u3)

V0(ξ, u3)

]

for each u3 close to 0.

Lemma 4.6. (1) For each u3 ∈ (0, 1),

(4.34) limξ→1
∂

∂ξ

[

−G0(ξ, u3)

V0(ξ, u3)

]

= +∞ .
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(2) For any small ε1 > 0, there exists a δ∗ > 0 such that

(4.35)
∂

∂ξ

[

−G0(ξ, u3)

V0(ξ, u3)

]

< 0

for 0 < ξ < 1 − ε1 and 0 < u3 < δ∗.
(3)

(4.36)
∂2

∂ξ2
G0(ξ, u3) < 0 uniformly for 0 < ξ < 1

when u3 is close to 0.

Proof: We omit the proof of (4.36) since it is similar to the proof of (4.11).
To prove (4.34), we write

(4.37)
∂

∂ξ
[−G0(ξ, u3)

V0(ξ, u3)
] = −

∂G0

∂ξ
V0 −G0

∂V0

∂ξ

V 2
0

.

We use formula (4.29) to calculate ∂ξG0 and integrate by parts to obtain

(4.38)
∂G0

∂ξ
=
F0(ξ, u3) − 3G0(ξ, u3)

2(ξ − u3)
,

where F0 is previously defined by (4.5).
Using (4.29) again, we write

G0(ξ, u3) =
1

2(ξ − u3)
3
2

∫ ξ

u3

f ′(u)
√

ξ − u du .

Since the integral is a decreasing function of ξ because f ′(u) < 0, G0(ξ, u3) goes to
either a finite negative number or −∞ as ξ → 1.

For those initial functions f(u) such that G0(ξ, u3) converges as ξ → 1, the
right hand side of (4.38) goes to −∞ because F0(ξ, u3) does so by Lemma 4.1; so
G0ξ(ξ, u3) → −∞. This together with (4.37) gives the limit (4.34).

For those initial functions f(u) such that G0(ξ, u3) → −∞ as ξ → 1, we
estimate

F0(ξ, u3)

G0(ξ, u3)
=

∫ ξ

u3

f ′(u)√
ξ−udu

(ξ − u3)
∫ ξ

u3
f ′(u)

√
ξ − udu

≥
∫ ξ

u3

f ′(u)√
1−udu

∫ ξ

u3
f ′(u)

√
1 − udu

.

Using L’Hospital’s rule, it is easy to see that the right hand side goes to +∞ as
ξ → 1. This limit, when combined with (4.38), gives

lim
ξ→1

∂G0(ξ,u3)
∂ξ

G0(ξ, u3)
= +∞ ,

which, in view of (4.37), proves (4.34).
The proof of the first part of Lemma 4.6 is completed.
To prove (4.35), we use (4.37) again. Since V0 and ∂ξV0 are positive functions

and G0 is negative, it suffices to show that

(4.39)
∂G0(ξ, u3)

∂ξ
> 0

for 0 < ξ < 1 − ε1 and 0 < u3 < δ.
In view of the third limit of (3.3), there exists a δ2 > 0 such that

(4.40) f ′′(u) > 0 for 0 < u < δ2 .
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It then follows from formula (4.29) forG0 that inequality (4.39) is true for 0 < ξ < δ2
and 0 < u3 < δ2.

For δ2 ≤ ξ < 1 − ε1 and 0 < u3 < δ2/2, we use formula (4.29) again to write

∂G0(ξ, u3)

∂ξ
=

1

2(ξ − u3)
5
2

∫ ξ

u3

f ′′(u)
√

ξ − u(u− u3)du

=
1

2(ξ − u3)
5
2

∫

δ2
2

u3

f ′′(u)
√

ξ − u(u− u3)du

+
1

2(ξ − u3)
5
2

∫ ξ

δ2
2

f ′′(u)
√

ξ − u(u− u3)du .

The second term is bounded from below by

− 2
3
2

δ
5
2

2

∫ 1−ε1

δ2
2

|f ′′(u)|du ,

which is a constant. Since f ′′ > 0 for 0 < u < δ2, the first term is bigger than

√
δ2

2
√

2

∫

δ2
2

u3

f ′′(u)(u− u3)du =

√
δ2

2
√

2
[(
δ2
2

− u3)f
′(
δ2
2

) − f(
δ2
2

) + f(u3)] ,

which goes to +∞ as u3 → 0 because of (3.1). We have therefore proved (4.39) and
hence (4.35).

The proof of Lemma 4.6 is complete.
We now use Lemma 4.6 to study the minimization problem (4.33). For each

small u3, the function [−G0(ξ, u3)/V0(ξ, u3)] is decreasing when ξ < 1− ε1 in view
of (4.35) and tending to +∞ as ξ → 1 in view of (4.34). Hence, the minimum is
reached somewhere in the interval (0, 1).

We next show that the minimum problem (4.33) has only one critical point
when u3 is close to 0. To see this, we calculate the second derivatives of [−G0/V0]
at any of its critical points

(4.41)
∂2

∂ξ2
[−G0(ξ, u3)

V0(ξ, u3)
] = −G0ξξV0 −G0V0ξξ

V 2
0

.

Since V0ξξ ≡ 0 from (4.30), the right hand side of (4.41) is positive if u3 is close
to 0, in view of (4.36). Hence, all the critical points of [−G0/V0] must be local
minimizing points. For any two minimizing points, some point between them must
be a local maximizing point; an impossibility. This proves the uniqueness of the
critical point and hence of the minimizing point in the minimum problem (4.33)
when u3 is close to 0.
Remark: This is the second place where m = 2 in (2.37) plays an important role.
Since m = 2, V of (4.30) is a linear function. It then becomes possible to conclude
from formula (4.41) that the minimum problem (4.33) has a unique critical point.

The critical point approaches 1 as u3 goes to 0. This follows from (4.35).
We summarize the above result as a lemma.

Lemma 4.7. The minimum problem (4.33) has one and only one critical point
and hence minimizing point when u3 is close to 0. Furthermore, the critical point
tends to 1 as u3 goes to 0.
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We are now ready to solve equations (4.24-4.26). By Lemma 4.7, equation
(4.32) has a unique solution ξ = u1 for each u3 close to 0. We then use (4.31) to
determine t. Hence, equations (4.31-4.32) or equivalently equations (4.24-4.26) can
be solved to give u3 and t as functions of u1.

We then calculate the Jacobian of equations (4.24-4.25) with respect to u1 and
u3 on the solution of (4.31-4.32):

∂W3

∂u1
=

∂Φ0(ξ, u3)

∂ξ
|ξ=u1

> 0 ,(4.42)

∂W3

∂u3
= −Φ0(u3, u3)

2(u1 − u3)
< 0 ,(4.43)

∂W4

∂u1
= 0 ,(4.44)

∂W4

∂u3
= −Φ0(u3, u3)

√
u1 − u3 < 0 .(4.45)

The equalities in (4.43) and (4.45) follow from the related identity (2.18) for
Φ0(ξ, u3).

Equation (4.44) is the result of (4.2).
The signs in (4.43) and (4.45) are determined as follows. Since the minimum

problem (4.33) has only one minimizing point at ξ = u1, we must have

−G0(u3, u3)

V0(u3, u3)
> −G0(u1, u3)

V0(u1, u3)
.

The right hand side is equal to 30t in view of (4.31). Hence, −30tV0(u3, u3) −
G0(u3, u3) > 0 , which by formulae (4.29-4.30), reduces to

−60tu3 − f ′(u3) > 0 .

In view of the boundary condition (2.7) for Φ0, this is exactly Φ0(u3, u3) > 0, which
proves the inequalities in (4.43) and (4.45).

To determine the sign in (4.42), since ξ = u1 is the minimizing point in the
minimum problem (4.33), we have

∂2

∂ξ2
[−G0(ξ, u3)

V0(ξ, u3)
]|ξ=u1

> 0 ,

which, in view of Lemma 4.5, is equivalent to

∂2

∂ξ2

[

−
∫ ξ

u3
F0(u, u3)

√
u− u3du

∫ ξ

u3
U0(u, u3)

√
u− u3du

]

|ξ=u1
> 0 .

This together with (4.27-4.28)) gives

∂2

∂ξ2

∫ ξ

u3

[−30tU0(u, u3) − F0(u, u3)]
√
u− u3du > 0

at ξ = u1. Since Φ0 = −30tU0−F0, the last inequality together with (4.24) implies
that

∂Φ0(ξ, u3)

∂ξ
|ξ=u1

> 0 ,

which proves the inequality in (4.42).
We have therefore established the following theorem.
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Theorem 4.8. Under the conditions (3.1) and (3.2), there exists a constant
T+ > 0 such that equations (4.24-4.26) have a unique solution u+

1 (t), u+
3 (t) and

x+(t) for t > T+. Functions u+
1 (t) and u+

3 (t) are increasing and decreasing func-
tions of t, respectively. They have the limits:

lim
t→+∞

u+
1 (t) = 1 , lim

t→+∞
u+

3 (t) = 0 .

Furthermore,

1 − δ < u+
1 (t) < 1 , 0 < u+

3 (t) < δ2 for t > T+ ,

where δ and δ2 are defined in (4.11) and (4.40), respectively.

The second part of Theorem 4.8 is only for technical purpose. It will be needed
in the next section.

5. Analysis of Zero and Single Phase Solutions

In this section, we shall show that the hodograph transform (2.22) g = 0, 1,
can be inverted to give solutions u1(x, t), · · · , u2g+1(x, t) for −∞ < x <∞ and t >
max{T−, T+}, where T− and T+ are given in Theorems 4.4 and 4.8, respectively.
We will also verify inequalities (2.23-2.24). By theorem 2.2, the function ψ of (2.25)
will be the minimizer of (2.1).

For each t > max{T−, T+}, we split the space into three pieces (−∞, x−(t)],
[x−(t), x+(t)] and [x+(t),+∞). Here, x−(t) and x+(t) are given in Theorems 4.4
and 4.8, respectively.
§ 5.1 Zero phases: x ≤ x−(t) and x ≥ x+(t)

We shall focus on the zero phase over the interval x ≥ x+(t). The other zero
phase over x ≤ x−(t) can be handled in the same way.

For x ≥ x+(t), we shall use the auxiliary minimum problem (4.33) to show
that the minimizer of the minimization problem (2.1) has a compact support

[0,
√

u3(x, t)]. The function u3(x, t) is governed by equation (2.22), which, when
g = 0, becomes

(5.1) x− 30tu2
3 − f(u3) = 0 .

For each 0 < u3 < u+
3 (t) where u+

3 (t) is given in Theorem 4.8, since u+
3 (t) is

a continuous function of t and u+
3 (t) → 0 as t → +∞, there is a t∗ > t such that

u3 = u+
3 (t∗). In view of the minimum problem (4.33), we have for 0 < ξ < 1,

−G0(ξ, u3)

V0(ξ, u3)
≥ −G0(u

+
1 (t∗), u3)

V0(u
+
1 (t∗), u3)

= 30t∗ > 30t ,

where the equality follows from equation (4.31). Hence,

(5.2) −30tV0(ξ, u3) −G0(ξ, u3) > 0

for all 0 < ξ < 1. In particular, when ξ = u3, inequality (5.2) reduces to −60tu3 −
f ′(u3) > 0 in view of formulae (4.29) and (4.30). This shows that equation (5.1)
can be inverted to give u3 as a decreasing function of x for x > x+(t).

We next verify inequalities (2.23-2.24), which now take the form

Re{
√
−1
√

ξ − u3}Φ0(ξ, u3) < 0 for 0 < ξ < u3 ,(5.3)
∫ ξ

u3

√
u− u3Φ0(u, u3)du > 0 for ξ > u3 .(5.4)
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Inequality (5.4) follows easily from (5.2) and Lemma 4.5.
To prove (5.3), we use u3 < u+

3 (t) again. Since u+
3 (t) < δ2 according to

Theorem 4.8, we have u3 < δ2. We then use (4.40) in formula (4.5) for F0 to obtain
that

∂F0(ξ, u3)

∂ξ
> 0

for ξ ≤ u3 < δ2. Hence,

∂Φ0(ξ, u3)

∂ξ
= −30t

∂U0(ξ, u3)

∂ξ
− ∂F0(ξ, u3)

∂ξ
< 0

for all ξ ≤ u3. This together with Φ0(u3, u3) = −60tu3 − f ′(u3) > 0 proves
Φ0(ξ, u3) > 0 for ξ ≤ u3 and hence inequality (5.3).

Theorem 5.1. Under the conditions (3.1) and (3.2), for each t > max{T−, T+},
the minimizer of the minimization problem (2.1) is supported on a single interval
when x ≤ x−(t) and x ≥ x+(t).

§ 5.2 Single phase: x−(t) < x < x+(t)
For t > max{T−, T+} and x−(t) < x < x+(t), we shall show that the minimizer

of (2.1) is supported on two disjoint intervals [0,
√

u3(x, t)] and [
√

u2(x, t),
√

u1(x, t)],
where u1(x, t), u2(x, t) and u3(x, t) are governed by equations (2.22) when g = 1

(5.5) P (u1, u1, u2, u3) = 0 , P (u2, u1, u2, u3) = 0 , P (u3, u1, u2, u3) = 0 .

We will first solve equations (5.5) near the leading edge x = x+(t). We will
then extend the solution over the whole interval x−(t) < x < x+(t).

The first two equations of (5.5) are degenerate near the leading edge at which
u1 = u2. We replace them by

W5(u1, u2, u3, t) =:
∂q1,1
∂u1

+
∂q1,1
∂u2

+
∂q1,1
∂u3

= 0,(5.6)

W6(u1, u2, u3, t) =:

∫ u2

u3

√

(u1 − ξ)(u2 − ξ)(ξ − u3)Φ1(ξ, u1, u2, u3)dξ = 0,(5.7)

where Φ1 and q1,1 are given by (2.5-2.7) and (2.8-2.9), respectively. It can be
shown that equations (5.6) and (5.7) together with P (u3, ~u) = 0 are equivalent to
equations (5.5) when u1 > u2 > u3 [3].

It is also known that equations (5.6) and (5.7) transform into equations (4.24-
4.25) when u1 = u2 and that equation P (u3, ~u) = 0 into (4.26) [3].

For each fixed t, we now solve equations (5.6) and (5.7) for u1 and u3 in terms
of u2 near the leading edge. We use the identities of Lemma 2.1 to calculate the
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derivatives of W5 and W6 at the point (u+
1 (t), u+

1 (t), u+
3 (t)):

∂W5

∂u1
=

∂W5

∂u2
=

1

2

∂Φ0(ξ, u3)

∂ξ
|ξ=u1

> 0 ,(5.8)

∂W5

∂u3
=

Φ0(u1, u3) − Φ0(u3, u3)

2(u1 − u3)
= −Φ0(u3, u3)

2(u1 − u3)
< 0 ,(5.9)

∂W6

∂u1
=

∂W6

∂u2
=

1

2

∫ u2

u3

√

ξ − u3[2(u1 − ξ)
∂Φ1(ξ, ~u)

∂u1
+ Φ1(ξ, ~u)]dξ

=
(u1 − u3)

3
2

3
Φ1(u1, ~u) =

(u1 − u3)
3
2

3

∂Φ0(ξ, u3)

∂ξ
|ξ=u1

> 0 ,(5.10)

∂W6

∂u3
= −

∫ u2

u3

u1 − ξ

2
√
ξ − u3

[2(u3 − ξ)
∂Φ1(ξ, ~u)

∂u3
+ Φ1(ξ, ~u)]dξ

= −
∫ u2

u3

u1 − ξ

2
√
ξ − u3

Φ1(u3, ~u)dξ

= −2(u1 − u3)
3
2

3
[
Φ0(u3, u3) − Φ0(u1, u3)

u3 − u1
]

=
2
√
u1 − u3

3
Φ0(u3, u3) > 0 ,(5.11)

where ~u = (u1, u2, u3).
The second equality of (5.8) follows from identity (2.21).
The first equality of (5.9) is a consequence of (2.18) and (2.21). The second

equality follows from equation (4.24).
The third and last equalities of (5.10) follows from identities (2.18) and (2.20),

respectively.
The second, third and last equalities of (5.11) follows from (2.18), (2.19) and

(4.24), respectively.
All the signs are easily determined according to (4.42-4.45).
Therefore, equations (5.6) and (5.7) can be inverted to give u1 and u3 as func-

tions of u2 when u2 is close to and less than u+
1 (t). Moreover, u1 decreases as u2

increases. We then use the last equation of (5.5) to give x as a function of u2. We
summarize these result in the lemma.

Lemma 5.2. For each t > T , equations (5.5) can be inverted to give x, u1 and
u3 as functions of u2 when u2 is close to and less than u+

1 (t).

Having solved equations (5.5) for x, u1 and u3 as functions of u2 near the leading
edge u2 = u+

2 (t), we now extend the solution by decreasing u2. To calculate the
Jacobian of (5.5), we turn to Lemma 2.3, which says that the zeros of the Jacobian
are determined by the ξ-zeros of Φ1(ξ, u1, u2, u3). We again split

(5.12) Φ1(ξ, u1, u2, u3) = −30tU1(ξ, u1, u2, u3) − F1(ξ, u1, u2, u3) ,

where U1 and F1 satisfy the Euler-Poisson-Darboux equations (2.5-2.7) with the
boundary values 4/3 and 2f ′′(u)/3, respectively. Hence, U1 is a constant; indeed,
U1 = 4/3.

Lemma 5.3. For each t, u1 > u2 > u3,

limξ→0Φ1(ξ, u1, u2, u3) = −∞ , limξ→1Φ1(ξ, u1, u2, u3) = +∞ .
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Proof: Since U1 is a constant, we see from (5.12) that it suffices to prove that

(5.13) limξ→0F1(ξ, u1, u2, u3) = +∞ , limξ→1F1(ξ, u1, u2, u3) = −∞ .

We first write F1(ξ, u1, u2, u3) in terms of F0(ξ, u1). We see from (2.5) that F1

satisfies

2(u2 − u3)
∂2F1

∂u2∂u3
=
∂F1

∂u2
− ∂F1

∂u3

and that it has the boundary values F1(ξ, u1, u, u) = F0(ξ,u1)−F0(u,u1)
ξ−u on account

of (2.19). It then follows from formula (2.15) at ρ = 1 that

F1(ξ, u1, u2, u3) =
1

π

∫ u2

u3

F0(ξ, u1) − F0(u, u1)

(ξ − u)
√

(u2 − u)(u− u3)
du ,

which together with (4.10) gives (5.13). This proves Lemma 5.3.

Lemma 5.4. Under the conditions (3.1) and (3.2), Φ1(ξ, u1, u2, u3) has at most
one ξ-zero for all t, u1, u2 and u3 whenever 1 − δ < u1 < 1, where δ is given by
Theorem 4.8.

Proof: We first observe that

(5.14)
∂

∂ξ
F1(ξ, u1, u2, u3) < 0

for all ξ, u1, u2 and u3 whenever 1 − δ < u1 < 1. To see this, we will derive a
new formula for F1 in terms of F0. For each fixed u1, we view F1(ξ, u1, u2, u3) as a
function of ξ, u2 and u3 only. Hence, equations (2.5) and (2.6) for F1 reduce to

(5.15) 2(u2−u3)
∂2F1

∂u2∂u3
=
∂F1

∂u2
− ∂F1

∂u3
, 2(ξ−ui)

∂2F1

∂ξ∂ui
=
∂F1

∂ξ
−2

∂F1

∂ui
, i = 2, 3 .

The new boundary condition is

(5.16) F1(u, u1, u, u) =
∂F0(ξ, u1)

∂ξ
|ξ=u

on account of (2.20). One can then use the method of Section 2 to derive a double
integral formula, similar to (2.17), for the solution of equations (5.15-5.16). Indeed,
we have

F1(ξ, u1, u2, u3)

=
1

2
√

2π

∫ 1

−1

∫ 1

−1

F0ξ(
1+µ

2
1+ν
2 ξ + 1+µ

2
1−ν

2 u2 + 1−µ
2 u3, u1)

√

(1 − µ)(1 − ν)

√

1 + µ dµdν ,

which, when combined with (4.11), gives (5.14).
Since U1 is a constant, we deduce from the split (5.12) that

(5.17)
∂

∂ξ
Φ1(ξ, u1, u2, u3) = − ∂

∂ξ
F1(ξ, u1, u2, u3) > 0 for 1 − δ < u1 < 1 ,

where the inequality follows from (5.14). This proves the uniqueness of the ξ-zero
of Φ1(ξ, u1, u2, u3) and hence Lemma 5.4.
Remark: This is the third and also the last place where m = 2 is important. If
m > 2, (5.17) is not true.

We now continue to extend the solution of equations (5.5) by decreasing u2.



108 VIRGIL PIERCE AND FEI-RAN TIAN

By Lemma 5.3, the function Φ1(ξ, u1, u2, u3) must have at least a ξ-zero. In-
deed, it has a zero, denoted by u∗, between u3 and u2 in view of equation (5.7).
According to Lemma 5.4, u∗ is the only zero of Φ1. Hence,

(5.18) Φ1(ξ, u1, u2, u3) > 0 for ξ > u∗ and Φ1(ξ, u1, u2, u3) < 0 for ξ < u∗ .

Since u3 < u2 < u1 and u3 < u∗ < u2, we have

(5.19) Φ1(u1, u1, u2, u3) > 0 , Φ1(u2, u1, u2, u3) > 0 , Φ1(u3, u1, u2, u3) < 0 .

For P1,0 of (2.10-2.12), we also have

(5.20) P1,0(u1, u1, u2, u3) > 0 , P1,0(u2, u1, u2, u3) > 0 , P1,0(u3, u1, u2, u3) < 0 .

To see this, we observe from (2.10) that P1,0 is a linear function of ξ and that it
thus has only one ξ-zero. This zero is between u3 and u2 on account of equation
(2.12). Inequalities (5.20) are then justified.

By Lemma 2.3, we deduce from inequalities (5.19) that the Jacobian of (5.5) is
always non-zero. It then follows from the decomposition (2.26) for P and inequali-
ties (5.20) that equations (5.5) can be inverted to give x, u1, and u3 as increasing,
decreasing, and decreasing functions of u2, respectively, provided that u3 < u2 < u1

and 1 − δ < u1 < 1. We now extend the solution as far as possible by decreasing
u2; so u1 always stays in the interval (1−δ, 1) because u1 increases as u2 decreases.
Since both u1 and u3 increase as u2 decreases, the solution will stop at u2 = u3.
At this point, x, u1, u2 = u3 satisfy the trailing edge equations (4.1-4.3). Accord-
ing to Lemma 4.1, the equations have a unique solution for t > T . We thus have
x = x−(t), u1 = u−1 (t), u2 = u3 = u−3 (t).

We have therefore proved that equations (5.5) can be inverted to give u1, u2

and u3 as functions of x for x−(t) < x < x+(t).
Inequalities (2.23-2.24) are immediate consequences of (5.7) and (5.18). We

have therefore established the following theorem.

Theorem 5.5. Under the conditions (3.1) and (3.2), for each t > max{T−, T+},
the minimizer of the minimization problem (2.1) is supported on two disjoint inter-
vals when x−(t) < x < x+(t).

The main theorem of this paper, Theorem 3.1, follows from Theorems 5.1 and
5.5.
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