
Dynamics of PDE, Vol.4, No.1, 55-86, 2007
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Abstract. We study a PDE modelling a compressed beam with small friction
and subjected to a periodic forcing of small amplitude. We assume that the
load of the beam is resonant to the i-th eigenvalue of the associated unper-
turbed problem and prove that, when both forcing and damping are sufficiently
small the equation exhibits chaotic behaviour.
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1. Introduction

This paper is devoted to the study of a system modelling a compressed beam
with friction subjected to a small periodic forcing. In particular we want to indi-
viduate the existence of chaotic patterns. The model is described by the following
PDE

(1) utt + uxxxx + γuxx − κuxxf(

∫ π

0

u2
x(ξ, t)dξ) = ε(νh(x,

√
εt) − δut),

(2) u(0, t) = u(π, t) = 0 = uxx(0, t) = uxx(π, t)

where u(x, t) ∈ R is the transverse deflection of the axis of the beam; γ ≥ 0 is
an external load, κ > 0 is a ratio indicating the external rigidity and δ > 0 is
the damping, ε and ν are small parameters, the function h(x, t) represents the
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periodic (in time) forcing that is distributed along the whole beam. We assume
that h ∈ L∞(R, L2([0, π])) is a 1−periodic function of t with

∥∥∫ π

0 h(x, t)2 dx
∥∥
∞ = 1.

Therefore εν represents the strength of the forcing.
The first work on oscillations of an elastic beam subject to an axial compression

was done by Holmes and Marsden [5]. More recent works on the full equation are
due to Rodrigues and Silveira [14] and Berti and Carminati [2]. An undamped
buckled beam is investigated by Yagasaki [19] to show Arnold diffusion type mo-
tions.

The above papers discuss equation (1) when the external load γ is not resonant
and κ ∈ R is fixed. Here we discuss the complementary case. Precisely we assume
that γ is slightly larger than the i-th eigenvalue of the unperturbed problem: γ =
i2 + εσ2, where i ∈ N is fixed, ε > 0 and σ ∈ (0, 1]. Therefore we will also assume
that κ = εk, so that the contribution given from the stress due to the external
rigidity, does not drive the system too far away from the resonance.

Next we briefly summarize the status on chaos in partial differential equa-
tions. For the complex Ginzburg-Landau equation in the near nonlinear Schrödinger
regime (i.e. perturbed nonlinear Schrödinger equation), existence of homoclinic or-
bits was proved by Li, McLaughlin, Shatah and Wiggins [6, 12, 13], and existence
of chaos was proved by Li [7, 8] under generic conditions. For perturbed sine-
Gordon equation, existence of chaos and chaos cascade around a homoclinic tube
was proved by Li [9, 10, 11]. For the reaction-diffusion equation, entropy study
on the complexity of attractor was conducted by Zelik [15, 16, 17]. Chaotic oscil-
lations of a linear wave equation with nonlinear boundary conditions are shown by
Chen, Hsu and Zhou [3]. The development on chaos and its controlling for PDEs
is summarized by Zhao [18].

The plan of our paper is as follows. In Section 2, we formulate weak solutions
to (1). Then in Section 3 we prove the main result Theorem 3 of this paper by
using some ideas of [1].

2. Formulation of weak solutions

It is easily observed that the unperturbed problem

uxxxx + γuxx = 0,

u(0, t) = u(π, t) = 0 = uxx(0, t) = uxx(π, t),

admits {j2 | j ∈ N} as set of eigenvalues and that the corresponding eigenfunctions√
2
π sin(jx), where j ∈ N, form an orthonormal system in L2([0, π]) which generates

the space W = H2
0 ([0, π]).

First of all we make the linear scale t↔ √
εt. Then equations (1), (2) read:

utt +
1

ε
[uxxxx + (i2 + εσ2)uxx] − kf

(∫ π

0

u2
x(ξ, t)dξ

)
uxx = νh(x, t) −√

εδut,

u(0, t) = u(π, t) = 0 = uxx(0, t) = uxx(π, t).

(3)
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We want to solve (3) in a weak form, that is we look for a function u ∈ Ũ :=
L∞(R,W ) ⊂ L∞([0, π] × R) such that

∫ +∞

−∞

∫ π

0

u(x, t)
{

Ψtt +
1

ε
[Ψxxxx + (i2 + εσ2)Ψxx] − kf

(∫ π

0

u2
x(ξ, t)dξ

)
Ψxx+

−√
εδΨt − νΨ(x, t)h(x, t)

}
dxdt = 0

(4)

for any Ψ(x, t) ∈ C∞([0, π] × R) with compact support and such that

Ψ(0, t) = Ψ(π, t) = Ψxx(0, t) = Ψxx(π, t) = 0.

3. Chaotic Solutions

In this section we prove the existence of chaotic solutions for (1). The plan is
as follows: first by using a Galerkin method, we rewrite (4) as an infinite system
of differential equations (5)–(7). Then following [1], we apply a Ljapunov-Schmidt
reduction method for this system to derive a Melnikov function. The existence of
its simple roots predicts chaos for (1) (see Theorem 3).

To start with, note that we can expand the function u(x, t) ∈ Ũ as follows

u(x, t) =

√
2

π

[ ∑

0<l<i

φl(t) sin(lx) + y(t) sin(ix) +
∑

j>i

zj(t) sin(jx)
]
,

where φl(t), y(t), zj(t) ∈ L∞(R), the expansion holding in H2
0 ([0, π]). Similarly we

write:

Ψ(x, t) =

√
2

π

[ i−1∑

l=1

ψl(t) sin(lx) + ψi(t) sin(ix) +

∞∑

j=i+1

ψj(t) sin(jx)
]
,

where, for any k ≥ 1, ψk(t) ∈ C∞
0 (R), the space of C∞−functions on R having

compact supports. Plugging the above expression for u(x, t) and Ψ(x, t) into (4) and
using the orthonormality, we arrive at the system of equations for the components
(φl(t), y(t), zj(t)) of u(x, t)

(5)
φ̈l(t) − i2−l2+εσ2

ε l2φl(t) + kl2f
( ∑

0<l<i

l2φl(t)
2 + i2y2(t) +

∑
j>i

j2zj(t)
2
)
φl(t)

+
√
εδφ̇l(t) − ν

√
2
π

∫ π

0 h(x, t) sin(lx) dx = 0

(6)

ÿ(t) − σ2i2y(t) + ki2f
( ∑

0<l<i

l2φ2
l (t) + i2y2(t) +

∑
j>i j

2z2
j (t)

)
y(t) +

√
εδẏ(t)

−ν
√

2
π

∫ π

0
h(x, t) sin(ix) dx = 0

(7)

z̈j(t) + j2−i2−εσ2

ε j2zj(t) + kj2f
( ∑

0<l<i

l2φl(t)
2 + i2y2(t) +

∑
j>i

j2zj(t)
2
)
zj(t)

+
√
εδżj(t) − ν

√
2
π

∫ π

0 h(x, t) sin(jx) dx = 0

where 0 < l < i < j. This way we have decomposed the problem along three
submanifolds: a strongly hyperbolic second order problem in R

i−1, a hyperbolic
second order problem in R, and a second order problem in an infinite dimensional
center manifold.



58 FLAVIANO BATTELLI, MICHAL FEČKAN, AND MATTEO FRANCA

To simplify matter we replace (φl(t), y(t), zj(t)) with (iφl(t/i), iy(t/i), izj(t/i)).
Then, writing again (φl(t), y(t), zj(t)) for (iφl(t/i), iy(t/i), izj(t/i)) equations (5)–
(7) read:

(8)

φ̈l(t) − i2−l2+εσ2

ε

(
l
i

)2
φl(t)

+k
(

l
i

)2
f
( ∑

0<l<i

(
l
i

)2
φl(t)

2 + y2(t) +
∑
j>i

(
j
i

)2
zj(t)

2
)
φl(t)

+
√
εδi−1φ̇l(t) − νi−1

√
2
π

∫ π

0 h(x, t/i) sin(lx) dx = 0

(9)
ÿ(t) − σ2y(t) + kf

( ∑
0<l<i

(
l
i

)2
φ2

l (t) + y2(t) +
∑

j>i

(
j
i

)2
z2

j (t)
)
y(t)

+
√
εδi−1ẏ(t) − νi−1

√
2
π

∫ π

0 h(x, t/i) sin(ix) dx = 0

(10)

z̈j(t) − i2−j2+εσ2

ε

(
j
i

)2
zj(t)

+k
(

j
i

)2
f
( ∑

0<l<i

(
l
i

)2
φl(t)

2 + y2(t) +
∑
j>i

(
j
i

)2
zj(t)

2
)
zj(t)

+
√
εδi−1żj(t) − νi−1

√
2
π

∫ π

0
h(x, t/i) sin(jx) dx = 0

Let C1
b (I) be the Banach space of C1−functions on the interval I ⊂ R that are

bounded together with their first derivative with the norm

‖f‖C1
b
(I) := ‖f‖∞ + ‖ḟ‖∞.

Let k be a positive integer and set m = ki. In the following we will need to
consider the Banach space of piecewise C1 functions on R with possible jumps (of
the function or its derivative) at the points (2j − 1)m, j ∈ Z and such that the
sup
j∈Z

{‖y‖C1
b
([(2j−1)m,(2j+1)m])} <∞. We use the shorthand

Y := ∩j∈ZC
1
b ([(2j − 1)m, (2j + 1)m])

to denote this Banach space with the norm

‖y‖Y := sup
j∈Z

{‖y‖C1
b ([(2j−1)m,(2j+1)m])}

We also introduce the following Banach spaces:

Z :=
{
z(t) =

{
zj(t)

}
j>i

| zj ∈ C0
b (R),

∥∥∥∥∥∥

∑

j>i

j4z2
j (t)

∥∥∥∥∥∥
∞

<∞
}
,

Φ :=
{
φ(t) =

{
φl(t)

}
0<l<i

| φl(t) ∈ C1
b (R)},

U := {u(t) = (φ(t), y(t), z(t)) | φ(t) ∈ Φ, y(t) ∈ Y and z(t) ∈ Z}
endowed respectively with the norm

‖z‖Z :=

∥∥∥∥∥∥

√∑

j>i

j4z2
j (t)

∥∥∥∥∥∥
∞

, ‖φ‖Φ :=

√ ∑

0<l<i

‖φl‖2
C1

b

, and

‖u‖U := ‖φ‖Φ + ‖y‖Y + ‖z‖Z

where obviously u(t) = (φ(t), y(t), z(t)). Observe that U ⊂ Ũ therefore we will in
fact work in U .
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We assume that f(x) satisfies the following:

Hypotheses

F1: The function f : R
+
0 → R

+
0 ∈ C([0,∞)) ∩ C2((0,∞)). Moreover we

assume the following conditions hold: f(0) = 0, lim sup
x→0+

|xf ′(x2)| < ∞

and lim sup
x→0+

|x3f ′′(x2)| <∞.

F2: The equation

(11) ÿ − σ2y + kf(y2)y = 0

has a positive homoclinic solution that is a C2−solution γ(t) > 0 such
that lim

|t|→∞
γ(t) = lim

|t|→∞
γ̇(t) = 0.

1. Remark. i) Observe that γi(t) = γ(it)/i solves the equation

(12) ÿ − i2σ2y + ki2f(i2y2)y = 0

for any i ∈ N \ {0}. That is γi(t) is a solution of the equation obtained from (6)
taking φl(t) = 0, zj(t) = 0 and ε = ν = 0. We will refer to equation (12) as the
unperturbed problem.

ii) Equation (11) has the energy function

E(y, ẏ) = ẏ2 +

∫ y2

0

(
kf(s) − σ2

)
ds

which is even in both y and ẏ. Since lim
t→∞

γ(t) = 0, we see that γ̇(t) = 0 has a

solution t0. It can be proved (see [4]) that this solution is unique. Hence we can
assume t0 = 0 and then γ(t) = γ(−t) because of uniqueness. Thus either γ(t) has
a positive maximum or it has a negative minimum at the point t = 0. Since −γ(t)
satisfies equation (11) when γ(t) does, we see that the assumption γ(t) > 0 is not
restrictive. Then, γ(t) is increasing on (−∞, 0] and decreasing on [0,∞). As a
consequence 0 ≤ γ(t) ≤ M := γ(0). Since the energy function E(y, ẏ) is constant
along (γ(t), γ̇(t)) and γ̇(0) = 0 we get

∫ M2

0

(
kf(s) − σ2

)
ds = 0

(note that lim
t→∞

E(γ(t), γ̇(t)) = E(0, 0) = 0) and

∫ x2

0

(
kf(s) − σ2

)
ds < 0

for 0 < x < M . Finally kf(M2) 6= σ2, since, otherwise x = M would be a fixed
point of equation (11). As a matter of fact we have kf(M 2) > σ2, since the function

∫ x2

0

(
kf(s) − σ2

)
ds

passes from negative values to 0 when x → M− and then its derivative at x = M
must be non negative. As a consequence assumption F2 implies that the following
condition holds:



60 FLAVIANO BATTELLI, MICHAL FEČKAN, AND MATTEO FRANCA

F2’: There existsM > 0 such that

∫ x2

0

[kf(s)−σ2]ds < 0 for any 0 < x < M

and

∫ M2

0

[kf(s) − σ2]ds = 0. Moreover kf(M 2) > σ2.

On the other hand if condition F2’ holds then the solution γ(t) of (11) such that
γ(0) = M and γ̇(0) = 0 satisfies 0 < γ(t) < M for any t 6= 0, and is homoclinic to
the (hyperbolic) fixed point x = 0, ẋ = 0 of (11). Thus the two conditions F2 and
F2’ are equivalent.

Finally we observe that the curve (γ(t), γ̇(t)) is contained in the sector {(y, ẏ) | y ≥
0 and |ẏ| ≤ σy}, that is:

(13) |γ̇(t)| ≤ σγ(t)

for any t ∈ R.

iii) Since we look for solutions which are close to the homoclinic orbit, in fact
it is enough that f is defined just for 0 ≤ x ≤M 2 + 1.

iv) Assumption F1 is satisfied in particular if we take any function f(x) of
the form f(x) = g(xα), where α ≥ 1

2 and g(x) ∈ C2
(
[0,∞), [0,∞)

)
is a positive

function such that g(0) = 0.

v) From F1 it follows that:

lim
x→0+

xf ′(x) = lim
x→0

x2f ′(x2) = 0

and similarly

lim
x→0+

x2f ′′(x) = lim
x→0

x4f ′′(x2) = 0.

Hence the function xf(x2) is C1 on R and its second derivative is bounded on
K \ {0}, K being any fixed compact subset of R. In fact, for x 6= 0, we have

d

dx
[xf(x2)] = 2x2f ′(x2) + f(x2) → 0 =

d

dx
[xf(x2)]|x=0

as x→ 0 (see point v)). Thus d
dx [xf(x2)] is continuous in R. Next

d2

dx2
[xf(x2)] = 6xf ′(x2) + 4x3f ′′(x2)

is bounded on K \{0} for any, given, compact subset K of R because of assumption
F1.

It follows from Remark 1-v) that the functions f(x), xf ′(x), x2f ′′(x) are uni-
formly continuous in any compact interval [0,M0]. We set

N := max{f(x2) |x ∈ [0,
√
M2 + 1]},

N ′ := sup{2|xf ′(x2)| |x ∈ (0,
√
M2 + 1]},

N ′′ := sup{|x3f ′′(x2)| |x ∈ (0,
√
M2 + 1]}.

where, we recall, M = γ(0), and:

(14) F (η, ζ) = f(η2 + ζ2)η.
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Then the following result hold:

1. Lemma. We have F (η, ζ) ∈ C1(R2)∩C2(R2 \{(0, 0)}) and, for any compact
subset K ⊂ R

2, the second derivatives of F (η, ζ) are bounded on K \ {(0, 0)}.
Moreover Fζ(η, 0) = Fζ(0, ζ) = Fη(0, 0) = 0. More precisely

|Fη(η, ζ)| ≤ N ′
(
|η| +

√
η2 + ζ2

)

, and |Fζ(η, ζ)| ≤ N ′ min{|η|, |ζ|} for any (η, ζ) such that η2 + ζ2 ≤M2 + 1.

Proof. Only the estimate |Fη(η, ζ)| ≤ N ′
(
|η| +

√
η2 + ζ2

)
needs to be proved.

For any 0 < x ≤
√
M2 + 1 we have:

(15) f(x2) = f(x2) − f(0) =

∫ x

0

2tf ′(t2)dt ≤ N ′x.

Then

|Fη(η, ζ)| ≤ |2ηf ′(η2 + ζ2)| |η| + |f(η2 + ζ2)| ≤ N ′
(
|η| +

√
η2 + ζ2

)
.

�

In the following we will make use of the following constants:

k1 =sup{|Fζζ(η, ζ)| : 0 < η2 + ζ2 ≤M2 + 1} ,
k2 =sup{|Fηη(η, ζ)| : 0 < η2 + ζ2 ≤M2 + 1} ,
k3 =sup{|Fηζ(η, ζ)| : 0 < η2 + ζ2 ≤M2 + 1}} .

It is easy to check that the constants k1, k2 and k3 can be estimated in term of N ,
N ′ and N ′′. We leave these computations to the reader.

We begin by solving (6) for any fixed φ, z such that ‖φ‖Φ < ρ, ‖z‖Z < ρ,
through the Banach Fixed Point Theorem. We will adapt to this setting the ar-
gument given in [1]. Let m ≥ [ε−3/4] + 1, [ε−3/4] being the integer part of ε−3/4.
From now on we assume that 0 < ε ≤ (1/2)4/3 so that m ≥ 3. We look for chaotic
patterns close to the homoclinic solution γi(t) sin(ix) of the unperturbed problem.
Thus writing

√
π

2
iu(x, t/i) =

i−1∑

l=1

φl(t) sin(lx) + y(t) sin(ix) +

∞∑

j=i+1

zj(t) sin(jx)

we see that the components (φl(t), y(t), zj(t)) solve (8)–(10) and iu(x, t/i) is close
to γ(t) sin(ix). Hence we introduce the following metric spaces. Let E = {0, 1}Z

be the space of doubly infinite sequences of 0’s and 1’s. Thus E ∈ E if and only if
E = {ej}j∈Z, with either ej = 0 or ej = 1. In E we take the norm

‖{ej}j∈Z‖ =
∑

j∈Z

ej

2|j|
,

moreover for any E = {ej}j∈Z ∈ E , we put

`∞E =
{
α := {αj}j∈Z ∈ `∞(R) | αj ∈ R and αj = 0 if ej = 0

}
,
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`∞(R) being the Banach space of bounded, doubly infinity sequences of real num-
bers, endowed with the sup-norm. We will also consider the closed and bounded
subset of E × `∞(R):

X = {(E,α) ∈ E × `∞(R) | α ∈ `∞E and ‖α‖ ≤ 2}.
In [1, p. 178] it has been proved that X is closed.

For any ξ = (E,α) ∈ X we take the function γξ = γ(E,α) ∈ L∞(R) defined as

γξ(t) =

{
γ(t− 2jm− αj) if (2j − 1)m < t ≤ (2j + 1)m and ej = 1
0 if (2j − 1)m < t ≤ (2j + 1)m and ej = 0 .

For sake of simplicity we will silently include, in the above definitions, also the end
points of the intervals [(2j − 1)m, (2j + 1)m], j ∈ Z. From [1, p. 178] it follows
that γξ(t) has the following properties

(i): γξ(t) is a bounded, piecewise C2-function, with bounded derivatives and
possible jumps at the points (2j − 1)m, j ∈ Z, and satisfies, in any of the
intervals ((2j − 1)m, (2j + 1)m) the equation

(16) ÿ + [kf(y2) − σ2]y = 0.

Moreover γξ(t), γ̇ξ(t), γ̈ξ(t) and are bounded uniformly with respect to
(ξ,m) and the following estimates hold:

‖γξ‖∞ ≤M, ‖γ̇ξ‖∞ ≤ σM, ‖γ̈ξ‖∞ ≤M [σ2 + kN ].

(ii): γξ(t), γ̇ξ(t), γ̈ξ(t) are Lipschitz continuous in α ∈ `∞E uniformly with
respect to (E,m). Actually we have:

(17)

‖γξ′ − γξ′′ ‖∞ ≤ σM‖α′ − α′′‖
‖γ̇ξ′ − γ̇ξ′′ ‖∞ ≤M [σ2 + kN ]‖α′ − α′′‖
‖γ̈ξ′ − γ̈ξ′′ ‖∞ ≤ (σ2 + kN ′)σM‖α′ − α′′‖.

Since γ(t) is a solution of (11) that tends to y = 0 as |t| → ∞, it follows from
standard theory that there is a constant A1 > 0 such that

(18) |γξ(t)| ≤ A1e
−σ|t−2jm−αj |, t ∈ ((2j − 1)m, (2j + 1)m] .

From F1 it follows that γ̇(t) is a bounded solution of the variational problem
associated to ÿ + [kf(y2) − σ2]y = 0. More precisely all bounded solutions of

(19) ÿ + [2kf ′(γ2(t))γ2(t) + kf(γ2(t)) − σ2]y = 0

take the form cγ̇(t) where c ∈ R. We now study the problem of existence of solutions
y(t) ∈W 2,∞(R) of the following linear non-homogeneous equation

(20)

ÿ + [2kf ′(γ2
ξ (t))γ2

ξ (t) + kf(γ2
ξ (t)) − σ2]y = h(t) ,

y((2j + 1)m+) − y((2j + 1)m−) = Γj

ẏ((2j + 1)m+) − ẏ((2j + 1)m−) = Γ′
j

ẏ(2jm+ αj) = 0, for any j ∈ Z such that ej = 1

where h ∈ L∞(R), and the ordinary differential equation in (20) holds almost
everywhere.

We note that

[kf(y2) − σ2]y ∈ C1(R)
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and d
dy

[
kf(y2) − σ2

]
y
∣∣∣
y=0

= −σ2 < 0 (see Remark 1-v)). Thus, adapting to this

setting the argument given in [1, Lemma 1] with few small changes, we obtain the
following result:

2. Lemma. There exist positive constants A,B,C ∈ R and m0 ∈ N such that
for any ξ = (E,α) ∈ X, m ≥ m0, and j ∈ Z, there exist linear functionals Lm,ξ,j :
L∞(R)×`∞(R)×`∞(R) → R, such that ‖Lm,ξ,j‖ ≤ Aeje

−σm, and with the property
that if h ∈ L∞(R), Γ = {Γj}j∈Z,Γ

′ = {Γ′
j}j∈Z ∈ `∞(R) then (20) has a unique

solution y(t, ξ) which is bounded on R and C1 in any interval ((2j−1)m, (2j+1)m)
if and only if

(21) Lm,ξ,jh+

∫ (2j+1)m

(2j−1)m

γ̇ξ(t)h(t) dt = 0

for any j ∈ Z. Moreover, the following properties hold:

: i)

(22) ‖y1(·, ξ)‖∞ + ‖ẏ1(·, ξ)‖∞ ≤ B[‖h‖∞ + ‖Γ‖+ σ−1‖Γ′‖]
: ii) let yp(t) be the unique bounded solution, C1 on ((2j − 1)m, (2j + 1)m),

of the equation

(23)
ÿ − σ2y = h(t) ,
y((2j + 1)m+) − y((2j + 1)m−) = Γj

ẏ((2j + 1)m+) − ẏ((2j + 1)m−) = Γ′
j

then there exists a constant C such that

|y(t, ξ) − yp(t)| ≤ C(e−σm/2 + e−σ(t−2jm−αj )/2)‖h‖∞
for any t ∈ ((2j − 1)m, (2j + 1)m) and j ∈ Z;

: iii) let ξ′ = (E,α′), ξ′′ = (E,α′′) with α′, α′′ ∈ `∞E (R) and ξ be either ξ′

or ξ′′. Assume that h(t, ξ) ∈ L∞(R) satisfies (21). Then there exists a
constant c1 independent of ξ such that the following holds:

(24)
max{‖y(·, ξ′) − y(·, ξ′′)‖∞, ‖ẏ(·, ξ′) − ẏ(·, ξ′′)‖∞}
≤ B‖h(t, ξ′) − h(t, ξ′′)‖∞ + c1‖h(t, ξ′′)‖∞‖α′ − α′′‖.

Finally, for any m ≥ m0, the map Lm : X×L∞(R) → `∞(R) defined as Lm(ξ, h) =
{Lm,ξ,jh}j∈Z is Lipschitz in α ∈ `∞E uniformly with respect to (E,m).

In order to apply Lemma 2, we consider the set

Sm,ξ :=
{
h ∈ L∞(R) | Lm,ξ,jh+

∫ (2j+1)m

(2j−1)m

γ̇ξ(t)h(t) dt = 0 for any j ∈ Z

}
.

Note that when ξ = 0 (i.e. (E,α) = (0, 0)) we have Sm,ξ = L∞(R).
Following [1] we obtain this result

1. Proposition. There exists a projection Qm,ξ : L∞(R) → L∞(R) onto Sm,ξ

which is uniformly bounded with respect to (m, ξ) and Lipschitz in α ∈ `∞E uniformly
with respect to (m,E), that is constants A2, L, independent of (m,E), exist such
that

(25) ‖Qm,ξ‖ ≤ A2
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and

(26) ‖Qm,(E,α) −Qm,(E,α′)‖ ≤ L‖α− α′‖
for any m ≥ m̄ and (E,α), (E,α′) ∈ X.

According to Lemma 2 we define a linear bounded operator Vm,ξ : Sm,ξ ×
`∞(R) × `∞(R) → Y , with ‖Vm,ξ‖ ≤ B, where the norm on `∞(R) × `∞(R) is
defined as ‖Γ1‖ + σ−1‖Γ2‖, such that Vm,ξ(h,Γ,Γ

′)(t) is the unique weak solution
of (20). Note that, from (22) and (24) we obtain the following. Given h(t) ∈ Sm,ξ,
h1(t) ∈ Sm,ξ1 , h2(t) ∈ Sm,ξ2 , Γ,Γ1,Γ2 ∈ `∞(R), then:

‖Vm,ξ2(h2,Γ,Γ
′) − Vm,ξ1(h1,Γ,Γ

′)‖Y ≤ B‖h2 − h1‖∞ + c1‖h2‖∞‖α2 − α1‖
‖Vm,ξ(h,Γ2,Γ

′
2) − Vm,ξ(h,Γ1,Γ

′
1)‖Y ≤ B[‖Γ2 − Γ1‖ + σ−1‖Γ′

2 − Γ′
1‖]

(27)

since Vm,ξ(h,Γ2,Γ
′
2) − Vm,ξ(h,Γ1,Γ

′
1) is a bounded solution of

ÿ + [2kf ′(γ2
ξ (t))γ2

ξ (t) + kf(γ2
ξ (t)) − σ2]y = 0 ,

y((2j + 1)m+) − y((2j + 1)m−) = Γ2,j − Γ1,j

ẏ((2j + 1)m+) − ẏ((2j + 1)m−) = Γ′
2,j − Γ′

1,j

Note that, for the same reason,

(28) Vm,ξ(h,Γ2,Γ
′
2) − Vm,ξ(h,Γ1,Γ

′
1) = Vm,ξ(0,Γ2 − Γ1,Γ

′
2 − Γ′

1).

We are looking for solutions of equations (8)–(10) such that the sup-norm of y1(t)−
γξ(t), φl(t) and zj(t) are small. Hence we replace y(t) by y(t) + γξ(t) and project
the right hand side of (9) obtained for the new y(t) onto Sm,ξ.

We set δi = δi−1, νi = νi−1 and

F(ξ, u, t) = F(ξ, φ, y, z, t)

:= f
[
i−2

i−1∑

l=1

l2φ2
l (t) + (γξ(t) + y(t))2 + i−2

∞∑

j=i+1

j2z2
j (t)

]
.

(29)

Then, recalling that γ̇(t) satisfies (19) and that Qm,ξγ̇ξ = 0, we obtain the following
system

ÿ(t) − σ2y(t) + k
[
2f ′ (γξ(t)

2)γξ(t)
2 + f(γξ(t)

2
) ]
y

= −Qm,ξ

{
kF(ξ, u, t)[y(t) + γξ(t)] − kf(γξ(t)

2)γξ(t)

− k
[
2f ′ (γξ(t)

2)γξ(t)
2 + f(γξ(t)

2
) ]
y(t) +

√
εδiẏ(t)

− νi

√
2

π

∫ π

0

h(x, t/i) sin(ix) dx
}

(30)

φ̈l(t) −
i2 − l2 + εσ2

ε

(
l

i

)2

φl(t) + k

(
l

i

)2

F(ξ, u, t)φl(t)

+
√
εδiφ̇l(t) = νi

√
2

π

∫ π

0

h(x, t/i) sin(lx)dx, 0 < l < i

(31)

z̈j(t) +
j2 − i2 − εσ2

ε

(
j

i

)2

zj(t) + k

(
j

i

)2

F(ξ, u, t)zj(t)

+
√
εδiżj(t) = νi

√
2

π

∫ π

0

h(x, t/i) sin(jx)dx, j > i

(32)
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together with the jumping conditions

y((2k + 1)m+) − y((2k + 1)m−) = Γξ,k := γξ((2k + 1)m−) − γξ((2k + 1)m+)

ẏ((2k + 1)m+) − ẏ((2k + 1)m−) = Γ′
ξ,k := γ̇ξ((2k + 1)m−) − γ̇ξ((2k + 1)m+)

(33)

for any k ∈ Z. Of course, if i = 1 the set of equations (31) is empty. To solve
equation (30), (32) we want to use the Banach Fixed Point Theorem.

Let Nm0 := {m ∈ N : m > m0}. We define the operator T 2(u, ξ,m, ε) :
U ×X × Nm0 × R+ → Y as follows

T 2(u, ξ,m, ε) = Vm,ξ(h(u, ξ,m, ε; t), {Γξ,k}k∈Z, {Γ′
ξ,k}k∈Z)

where h is the right hand side of (30), Γξ,k,Γ
′
ξ,k are defined in (33) and Vm,ξ

is the linear map which associates to an element of Sm,ξ × `∞(R) × `∞(R) the
corresponding solution of (20). In the whole paper we will denote by Φρ, Yρ and Zρ

the balls of radius ρ > 0 centered at the origin, in the space Φ, Y and Z respectively.
We also set

Uρ = Φρ × Yρ × Zρ.

Then we will define the operators T 1(u, ξ,m, ε) and T 3(u, ξ,m, ε) mapping Uρ×
X × Nm0 × R+ into Φρ and Zρ respectively, in such a way that the fixed points
of the map T (u, ξ,m, ε) := (T 1(u, ξ,m, ε), T 2(u, ξ,m, ε), T 3(u, ξ,m, ε)) : Uρ × X ×
Nm0 × (0, ε0) → Uρ are solutions of (30)–(32) and we show that T is a contraction
in Uρ with contraction factor that tends to 0 when ε+ ρ+ 1/m tends to 0.

We begin by proving that T 2 is well defined, that maps Uρ into Yρ, and that
it is a contraction in u ∈ Uρ uniformly with respect to (ξ,m, ε). To reach this goal
we write T 2 as the sum of two operators. Let:

h1(y; t) =
√
εδiẏ(t) − νi

√
2

π

∫ π

0

h(x, t/i) sin(ix) dx

h2(ξ, u; t) = F(ξ, u, t)[γξ(t) + y(t)] − f
(
γξ(t)

2
)
[γξ(t) + y(t)]

− 2f ′(γξ(t)
2
)
γξ(t)

2y(t)

= F (γξ(t) + y(t), c(t)) − F (γξ(t), 0) − Fη(γξ(t), 0)y(t)

(34)

where

(35) c(t) = i−1




i−1∑

l=1

l2φ2
l (t) +

∞∑

j=i+1

j2z2
j (t)




1/2

(see also (14), (29)). Note that

(36) ‖c‖2
∞ ≤ ‖φ‖2

Φ + i−4‖z‖2
Z.

Now we define the operators

T 2
a (ξ; y) := −Vm,ξ(Qm,ξh1(y; ·), {Γξ,k}k∈Z, {Γ′

ξ,k}k∈Z),

T 2
b (ξ;u) := −Vm,ξ(Qm,ξh2(ξ, u; ·), 0, 0)

and note that T 2(u, ξ) = T 2
a (ξ; y) + kT 2

b (ξ;u).
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3. Lemma. There are constants k̂1 > 0, k̂2 > 0 such that for any ξ ∈ X and
y, ŷ, ȳ ∈ Yρ it results:

‖T 2
a (ξ; y)‖Y ≤ B{A2[|νi| +

√
εδi‖y‖Y ] + 4A1e

2e−mσ},

‖T 2
a (ξ̂; ŷ) − T 2

a (ξ̄; ȳ)‖Y ≤
[
k̂1(|νi| + δi

√
ε‖ȳ‖Y ) + k̂2e

−mσ
]
‖α̂− ᾱ‖

+A2B
√
εδi‖ŷ − ȳ‖Y .

(37)

Proof. We begin by giving an estimate of h1(y; t) and of Γk, Γ′
k. ¿From

Hölder inequality we get that∣∣∣∣∣

√
2

π

∫ π

0

h(x, t/i) sin(ix) dx

∣∣∣∣∣ ≤ sup
t∈R

‖h(·, t/i)‖2 ≤ 1,

therefore
‖h1(y; ·)‖∞ ≤ |νi| + δi

√
ε‖y‖Y .

Next, since (13) and (18) hold we get

|Γk| ≤ 2A1e
2e−mσ, |Γ′

k| ≤ 2σA1e
2e−mσ.

Then the first inequality in (37) follows from Lemma 2 and (25). Next

‖T 2
a (ξ; ŷ) − T 2

a (ξ; ȳ)‖Y = ‖√εδiVm,ξ(Qm,ξ̂[
˙̂y − ˙̄y], 0, 0)‖Y

≤ A2B
√
εδi‖ŷ − ȳ‖Y .

(38)

Finally, recalling (25)–(28), we get

‖T 2
a (ξ̂; y) − T 2

a (ξ̄; y)‖Y ≤
≤ ‖Vm,ξ̂(Qm,ξ̂h1(y; ·),Γξ̂,Γ

′
ξ̂
) − Vm,ξ̄(Qm,ξ̄h1(y; ·),Γξ̂,Γ

′
ξ̂
)‖Y +

+ ‖Vm,ξ̂(0,Γξ̂ − Γξ̄,Γ
′
ξ̂
− Γ′

ξ̄)‖Y ≤
≤ B‖Qm,ξ̂ −Qm,ξ̄‖‖h1(y; ·)‖∞ + c1‖Qm,ξ̄h1(y; ·)‖∞‖α̂− ᾱ‖+
+B[‖Γξ̂ − Γξ̄‖ + σ−1‖Γ′

ξ̂
− Γ′

ξ̄‖] ≤
≤ [BL+ c1A2][|νi| + δi

√
ε‖y‖Y ]‖α̂− ᾱ‖ +B[‖Γξ̂ − Γξ̄‖+ σ−1‖Γ′

ξ̂
− Γ′

ξ̄‖].

(39)

Now, if ek = ek+1 = 1 we have:

|Γξ̂,k − Γξ̄,k| ≤
∫ α̂k

ᾱk

|γ̇(m− θ)| + |γ̇(−m− θ)|dθ ≤ 2σA1e
2σe−mσ|α̂k − ᾱk|

and similarly

|Γ′
ξ̂,k

− Γ′
ξ̄,k| ≤

∫ α̂k

ᾱk

|γ̈(m− θ)| + |γ̈(−m− θ)|dθ ≤ 2(σ2 + kN)A1e
2σe−mσ|α̂k − ᾱk|

Since similar estimates hold also in the other cases (i.e. when (ek, ek+1) = (0, 1),
or (ek, ek+1) = (1, 0) or ek = ek+1 = 0) we obtain

‖Γξ̂ − Γξ̄‖ ≤ 2σA1e
2σe−mσ‖α̂− ᾱ‖

‖Γ′
ξ̂
− Γ′

ξ̄‖ ≤ 2(σ2 + kN)A1e
2σe−mσ‖α̂− ᾱ‖.

Hence using (38), (39) and the triangular inequality, the second estimate in (37)
follows with

k̂1 = BL+A2c1
k̂2 = 2A1Be

2σ(2σ + σ−1kN).
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This concludes the proof. �

From Lemma 3 it follows that T 2
a is a contraction on Yρ provided ε and ν are

sufficiently small. We now prove a similar result for T 2
b .

4. Lemma. There exist ρ0 > 0 and a continuous increasing function ∆̃(ρ)

defined for 0 ≤ ρ ≤ ρ0 and such that ∆̃(0) = 0, such that, for any 0 < ρ < ρ0 the
following hold

‖T 2
b (ξ;u)‖Y ≤ 1

2
A2Bmax{k1, k2, N

′}‖u‖2

‖T 2
b (ξ̂; û) − T 2

b (ξ̄; ū)‖Y ≤ 3A2Bmax{k1, k2, N
′}ρ‖û− ū‖U

+ 2A2Bρ∆̃(ρ)‖α̂− ᾱ‖

(40)

for any u = (φ, y, z), û = (φ̂, ŷ, ẑ), ū = (φ̄, ȳ, z̄) ∈ Uρ and any ξ̂, ξ̄ ∈ X with

ξ̂ = (E, α̂), ξ̄ = (E, ᾱ).

Proof. We begin with an estimate of ‖h2(ξ, u; ·)‖∞. Using the second equality
in (34) we get:

|h2(ξ, u; t)| ≤|F (γξ(t) + y(t), c(t)) − F (γξ(t), 0) − Fη(γξ(t), 0)y(t)|
∣∣∣∣
∫ 1

0

Fη(γξ(t) + θy(t), θc(t)) − Fη(γξ(t), 0)dθy(t)

∣∣∣∣

+

∣∣∣∣
∫ 1

0

Fζ(γξ(t) + θy(t), θc(t))dθc(t)

∣∣∣∣ .

Now, from Lemma 1 we obtain

∫ 1

0

|Fζ(γξ(t) + θy(t), θc(t))| dθ|c(t)| ≤ N ′
∫ 1

0

θdθ|c(t)|2 ≤ 1

2
N ′|c(t)|2.

Next we have, using again Lemma 1,

∫ 1

0

|Fη(γξ(t) + θy(t), θc(t)) − Fη(γξ(t), 0)|dθ|y(t)|

≤
∫ 1

0

lim sup
λ→0+

∫ 1

0

|Fηη(γξ(t) + σθy(t), σθc(t) + λ)|θdσdθ|y(t)|2

+

∫ 1

0

lim sup
λ→0+

∫ 1

0

|Fηζ(γξ(t) + σθy(t), σθc(t) + λ)|θdσdθ|c(t)| |y(t)|

≤1

2
k2|y(t)|2 +

1

2
k3|y(t)| |c(t)| ≤

1

2
max{k2, k3}|y(t)|(|y(t)| + |c(t)|)

and then, using (36):

(41) ‖h2(ξ, u; ·)‖∞ ≤ 1

2
max{k2, k3, N

′}(‖φ‖Φ + ‖y‖Y + ‖z‖Z)2.

Then the first estimate in (40) follows from ‖Vm,ξ‖ ≤ B and ‖Qm,ξ‖ ≤ A2.
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Next, we observe that
√∑∞

k=1 k
2a2

k defines a norm in the set of sequences {ak}k

such that
∑∞

k=1 k
2a2

k <∞. Therefore, for any fixed t, the triangular inequality gives

i|ĉ(t) − c̄(t)| ≤

∣∣∣∣∣∣∣




i−1∑

l=1

l2φ̂2
l (t) +

∞∑

j=i+1

j2ẑ2
j (t)




1/2

−




i−1∑

l=1

l2φ̄2
l (t) +

∞∑

j=i+1

j2z̄2
j (t)2




1/2
∣∣∣∣∣∣∣

≤




i−1∑

l=1

l2|φ̂l(t) − φ̄l(t)|2 +

∞∑

j=i+1

j2|ẑj(t) − z̄j(t)|2



1/2

(here ĉj(t) and c̄j(t) are defined as in (35) with φ̂l, φ̄l instead of φl etc.). Hence

(42) ‖ĉ− c̄‖2
∞ ≤ ‖φ̂− φ̄‖2

Φ + i−4‖ẑ − z̄‖2
Z .

Now we prove the second estimate in (40). First we take û, ū,∈ Uρ with the same

y component, that is û = (φ̂, y, ẑ), ū = (φ̄, y, z̄). Then, using also (42) we get

|h2(ξ, φ̂, y, ẑ; t) − h2(ξ, φ̄, y, z̄; t)| ≤
= |F (γξ(t) + y(t), ĉ(t)) − F (γξ(t) + y(t), c̄(t))| ≤
≤ N ′ max{‖ĉ‖∞, ‖c̄‖∞}‖ĉ− c̄‖∞

Thus using also (36) and (42) we obtain, for any (φ̂, y, ẑ), (φ̄, y, z̄) ∈ Uρ,

(43) ‖h2(ξ, φ̂, y, ẑ; ·) − h2(ξ, φ̄, y, z̄; ·)‖∞ ≤ N ′ρ
√

2[‖φ̂− φ̄‖Φ + i−2‖ẑ − z̄‖Z ].

Next we fix φ ∈ Φρ, z ∈ Zρ and take ŷ, ȳ ∈ Yρ. We have:

|h2(ξ, φ, ŷ, z; t) − h2(ξ, φ, ȳ, z; t|

≤
∫ 1

0

|Fη(γξ + θŷ + (1 − θ)ȳ, c) − Fη(γξ, 0)|dθ|ŷ(t) − ȳ(t)|

≤
{∫ 1

0

lim sup
λ→0+

∫ 1

0

|Fηη(γξ + σθŷ + σ(1 − θ)ȳ, σc+ λ)| |θŷ + (1 − θ)ȳ|dσdθ

+

∫ 1

0

lim sup
λ→0+

∫ 1

0

|Fηζ(γξ + σθŷ + σ(1 − θ)ȳ, σc+ λ)||c|dσdθ
}
|ŷ(t) − ȳ(t)|

≤{k2 max{|ŷ(t)|, |ȳ(t)|} + k3|c(t)|}|ŷ(t) − ȳ(t)| ≤ 3ρmax{k2, k3}|ŷ(t) − ȳ(t)|
having also used (36). As a consequence for any (φ, ȳ, z), (φ, ŷ, z) ∈ Uρ, we have:

(44) ‖h2(ξ, φ, ŷ, z; ·) − h2(ξ, φ, ȳ, z), ·)‖∞ ≤ 3 max{k2, k3}ρ‖ŷ − ŷ‖∞
Now putting together the estimates (43), (44) and using ‖Vm,ξ‖ ≤ B and ‖Qm,ξ‖ ≤
A2 we see that

(45) ‖T 2
b (ξ, û) − T 2

b (ξ, ū)‖Y ≤ 3A2Bmax{k2, k3, N
′}ρ‖û− ū‖U

where û = (φ̂, ŷ, ẑ), ū = (φ̄, ȳ, z̄) ∈ Uρ. This proves (40) when ξ̂ = ξ̄ = ξ.

Now we prove (40) when û = ū = u ∈ Uρ and ξ̂ = (E, α̂), ξ̄ = (E, ᾱ), with
α̂, ᾱ ∈ `∞E . We have:

h2(ξ̂, u; t) − h2(ξ̄, u; t) = F (γξ̂(t) + y(t), c(t)) − F (γξ̄(t) + y(t), c(t))

− F (γξ̂(t), 0) + F (γξ̄(t), 0) − [Fη(γξ̂(t), 0) − F (γξ̄(t), 0)]y(t).
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Suppose that t ∈ ((2j − 1)m, (2j + 1)m]. Then, if ej = 0 we have

h2(ξ̂, u; t) − h2(ξ̄, u; t) = 0

since, in this case, γξ̂(t) = γξ̄(t) = 0. If, instead, ej = 1 we have γξ̂(t) = γ(t−2jm−
α̂j) and similarly γξ̄(t) = γ(t− 2jm− ᾱj). Assume, to fix ideas, that ᾱj ≥ α̂j and
set Ij(t) := [t − 2jm − ᾱj , t − 2jm − α̂j ]. Then we have, neglecting for simplicity
dependence on t in y, c:

|h2(ξ̂, u; t) − h2(ξ̄, u; t)| ≤

lim sup
λ→0+

∫

Ij(t)

∫ 1

0

{
|Fηη(γ(s) + θy, θc+ λ) − Fηη(γ(s), λ)| |y|

+ |Fηζ(γ(s) + θy, θc+ λ)c|
}
|γ̇(s)|dθ ds

(46)

We have to distinguish two cases.
First case. If γ(s) ≥ 3ρ then from (13) and σ ≤ 1 we get, for any θ ∈ [0, 1]:

|γ̇(s)| ≤ γ(s) < 2(γ(s) − ρ) ≤ 2(γ(s) + θy).

Write, for simplicity, a(s) = γ(s) + θy, b = θc + λ and note that a(s) ≥ 2ρ,

0 ≤ b ≤ ρ
√

2 + λ. Then

|γ̇(s)Fηζ(a(s), b)| ≤ 2|a(s)Fηζ(a(s), b)|
= 2b|4a(s)3f ′′(a(s)2 + b2) + 2a(s)f ′(a(s)2 + b2)| ≤
≤ 2b(N ′ + 4N ′′) ≤ 2(N ′ + 4N ′′)(ρ

√
2 + λ).

(47)

Next:
ηFηη(η, ζ) = 6η2f ′(η2 + ζ2) + 4η4f ′′(η2 + ζ2)

is continuous in R
2, and hence uniformly continuous in compact subsets of R

2,
since so are xf ′(x) and x2f ′′(x) (see Remark 1-v). A a consequence, for |η0| ≤M ,
|ζ0| ≤ 1 and |η − η0|, |ζ − ζ0| ≤ ρ we have:

|ηFηη(η, ζ) − ηFηη(η0, ζ0)| ≤ |ηFηη(η, ζ) − η0Fηη(η0, ζ0)| + |Fηη(η0, ζ0)| |η − η0|
≤ ∆(|η − η0| + |ζ − ζ0|) + k2|η − η0|

where ∆(ρ) is an increasing function of ρ such that ∆(ρ) → 0 as ρ→ 0. Taking

η0 = γ(s), ζ0 = λ, η = γ(s) + θy, ζ = θc+ λ

we see that:

(48) |Fηη(γ(s) + θy, θc+ λ) − Fηη(γ(s), λ)| |γ̇(s)| ≤ 2∆(|y| + |c|) + 2k2|y|

Second case. If γ(s) < 3ρ then |γ̇(s)| ≤ γ(s) < 3ρ and

(49) |Fηζ(γ(s) + θy, θc+ λ)c| γ̇(s) ≤ 6k3ρ
2

and

(50)
∣∣[Fηη(γ(s) + θy, θc+ λ) − Fηη(γ(s), λ)

]
yγ̇(s))

∣∣ ≤ 6k2ρ
2

Summarizing, from (46), (47)–(50), we get

|h2(ξ̂, u; t) − h2(ξ̄, u; t)| ≤ 2ρ
{
∆(‖u‖) + 2(N ′ + 4N ′′)ρ+ 3(k2 + k3)ρ

}
|α̂j − ᾱj |

and hence

(51) ‖h2(ξ̂, u; ·) − h2(ξ̄, u; ·)‖∞ ≤ 2ρ∆̃(ρ)‖α̂− ᾱ‖
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where ∆̃(ρ) = ∆(3ρ) + 2(N ′ + 4N ′′)ρ+ 3(k2 + k3)ρ. Thus (40) with û = ū follows
from ‖Vm,ξ‖ ≤ B and ‖Qm,ξ‖ ≤ A2. The second estimate in (40) follows now easily
from (45) and (51). The proof is complete. �

Note that the second estimate in (40) implies that T 2
b is a contraction with

respect to the u variable (provided 3A2Bmax{k1, k2, N
′}ρ < 1) with factor of

contraction 3A2Bmax{k1, k2, N
′}ρ. Thus putting the results of Lemmas 3 and 4

together we find the following.

2. Proposition. Consider the operator T 2 : Uρ ×X ×Nm0 ×R+ → Y . There
are constants k4 > 0, and ρ0 > 0 so that, for any 0 < ρ < ρ0, ν ∈ R, m > m0 and
ε > 0, we have the following:
(52)

‖T 2(u, ξ,m, ε)‖Y ≤ k4[|νi| + e−mσ] +A2B
{

max{k1, k2, N
′}‖u‖U

2
+
√
εδi

}
‖u‖U .

Therefore if 0 < ρ < ρ0 and 0 < ε < ε0 where ρ0 and ε0 satisfy:

3A2B[max{k1, k2, N
′}ρ0 + 2

√
ε0δi] < 2

and |ν| < ν̄(ρ), m̄(ρ) < m ∈ N are chosen so that

2k4[i
−1ν̄(ρ) + e−m̄(ρ)σ ] < ρ ,

then T 2 maps Uρ in Yρ. Moreover if û := (φ̂, ŷ, ẑ), ū := (φ̄, ȳ, z̄) ∈ Uρ and ξ̂ =
(E, α̂), ξ̄ = (E, ᾱ) ∈ X, we have

‖T 2(û, ξ̂,m, ε) − T 2(ū, ξ̄,m, ε)‖Y ≤ 3A2B[max{k1, k2, N
′}ρ+

√
εδi]‖û− ū‖U

+
[
k̂1(|νi| +

√
εδiρ) + k̂2e

−mσ + 2A2B∆̃(ρ)ρ
]
‖α̂− ᾱ‖.

In analogy to what we have done for the y−component, we construct an op-
erator T 1, whose fixed points are the bounded solutions of equation (5). This
corresponds to looking for the unique bounded solution in the i − 1 dimensional
hyperbolic manifold. Observe that, when the load γ is close to the first eigenvalue
of the unperturbed problem (that is i = 1), the hyperbolic manifold reduce to a
point: the origin. However when i > 1 the hyperbolic manifold is not trivial; it fol-
lows that, in these cases, the chaotic phenomenon which will be described below is
highly unstable, even if it may influence the actual dynamics of the real phenomena.
Also observe that the number i equals the number of humps that can be observed
in the beam (spatially), when the solution is close to the unperturbed homoclinic.

Consider the linear inhomogeneous problem associated to (8):

(53) φ̈l(t) +
√
εδiφ̇l(t) −

l2

i2
i2 − l2 + εσ2

ε
φl(t) = hl(t) ,

where 0 < l < i. Note that this part is needed only if i ≥ 2 and then i2 − l2 ≥ 3.

We set Xl(t) =

(
φl(t)

φ̇l(t)

)
and rewrite (53) as

(54) Ẋl(t) = AlXl(t) + bl(t),

where

Al :=

(
0 1

l2

i2
i2−l2+εσ2

ε −√
εδi

)
bl(t) =

(
0

hl(t)

)
.
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The eigenvalues of Al are

λ± =
1

2i
√
ε

(
−δε±

√
δ2ε2 + 4l2(i2 − l2 + εσ2)

)

and hence are real and have opposite sign. Moreover 0 < λ+ ≤ |λ−| and

|λ±| ≥ ι :=
1

i
√
ε
,

provided δε < i2 − 2, since
√
δ2ε2 + 4l2(i2 − l2 + εσ2) ≥

√
δ2ε2 + 4l2(i2 − l2) >

2 + δε.
As a consequence equation (54) with bl(t) = 0 admits an exponential dichotomy

on R with projection

P =
1

λ+ − λ−

(
λ+ −1
λ−λ+ −λ−

)

and exponent ι, if εδ < i2 − 2. However the constants of the dichotomy depend on
ε. To study this dependence we observe the following. The eigenvectors of λ± are,
respectively:

v+ =

(
1
λ+

)
v− =

(
1
λ−

)

(v+ spans the unstable space and v− the stable space). Let

V =

(
1 1
λ+ λ−

)
.

Then the fundamental matrix eAlt of (54) is

eAlt = V

(
eλ+t 0

0 eλ−t

)
V −1 ,

from which we obtain:

eAltP = eλ−tP, eAlt(I −P) = eλ+t(I−P).

Next, since i
√
ε(λ+ − λ−) =

√
δ2ε2 + 4l2(i2 − l2 + εσ2), i(λ+ + λ−) = −√

εδ, and
i2λ+λ− = −l2(i2 − l2 + εσ2)ε−1, we have

Al =

(
0 1

−λ+λ− λ+ + λ−

)
.

Hence it is easily checked that AlP = PAl and eAltPe−Als = eAl(t−s)P. So:

‖eAltPe−Als‖ ≤ ‖P‖eλ−(t−s) ≤ ‖P‖e−ι(t−s), for s ≤ t
‖eAlt(I −P)e−Als‖ ≤ ‖I−P‖eλ+(t−s) ≤ ‖I−P‖e−ι(s−t), for t ≤ s.

Finally, it is a simple computation to verify that

‖I−P‖2 = ‖P‖2 =
(λ2

+ + 1)(λ2
− + 1)

(λ+ − λ−)2
=

1

4ε

16`4(i2 − `2)2 + o(1)

4`2(i2 − `2) + o(1)

where o(1) → 0 as ε → 0. Thus there are ε0 > 0 and K = 1
2

√
i4 + 4 > 1 such that

for 0 < ε < ε0 it results

‖I −P‖ = ‖P‖ ≤ Kε−1/2.
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As a consequence (54) has an exponential dichotomy on R with projection P,
exponent 1

i
√

ε
and constant Kε−1/2. Hence, for any bounded function hl(t) ∈

L∞(R), system (54) has the unique bounded (weak) solution:

X̂l(t) =

(
φ̂l(t)
˙̂
φl(t)

)
:=

∫ t

−∞
eAl(t−s)P

(
0

hl(s)

)
ds

−
∫ +∞

t

eAl(t−s)(I −P)

(
0

hl(s)

)
ds

=

∫ t

−∞
eλ−(t−s)P

(
0

hl(s)

)
ds−

∫ +∞

t

eλ+(t−s)(I −P)

(
0

hl(s)

)
ds

(55)

We construct the linear operator Lφ
l : L∞(R) → C1

b (R) that associates to hl(t) the

function φ̂l(t) ∈ C1
b (R) defined by (55). Then we define the operator T 1

a (u, ξ,m, ε) :
Uρ ×X × Nm0 × R+ → Φ and T 1

b (h,m, ε) : L∞(R) × Nm0 × R+ → Φ as follows:

T 1
a (u, ξ,m, ε) = {Φa

l }l=1,...,i−1 , T 1
b (h,m, ε) =

{
Φb

l

}
l=1,...,i−1

,(56)

where

Φa
l := −Lφ

l

[
kF(ξ, u, t)

l2

i2
φl

]
, Φb

l := Lφ
l

[
νi

∫ π

0

h(x, t/i)

√
2

π
sin(lx)dx

]

Finally we introduce the operator T 1(u, ξ,m, ε) = T 1
a (u, ξ,m, ε)+T 1

b (h,m, ε) where
h is the forcing term of (1). We will need the following result.

5. Lemma. Consider a function h ∈ L∞(R). Then Lφ
l (h) ∈ C1

b (R) and

(57) ‖Lφ
l (h)‖C1

b
≤ 2i

√
ε‖h‖∞

provided ε > 0 is sufficiently small.

Proof. The fact that Lφ
l (h) ∈ C1

b (R) is a trivial consequence of the definition
of the operator. To show (57) we first observe that

lim
ε→0

1 + λ2
−

(λ+ − λ−)2
= lim

ε→0

1 + λ2
+

(λ+ − λ−)2
=

1

4
.

Then we get ∥∥∥∥P
(

0
h

)∥∥∥∥ =

∥∥∥∥
1

λ− − λ+

(
1
λ−

)
h

∥∥∥∥ ≤ ‖h‖∞
provided ε is sufficiently small. Similarly,

∥∥∥∥(I −P)

(
0
h

)∥∥∥∥ =

∥∥∥∥
1

λ+ − λ−

(
1
λ+

)
h

∥∥∥∥ ≤ ‖h‖∞.

Then, from (55) we get

|Lφ
l (h)(t)| ≤

[∫ +∞

0

eλ−sds+

∫ 0

−∞
e−λ+sds

]
‖h‖∞

≤
(

1

λ+
− 1

λ−

)
‖h‖∞ ≤ 2i

√
ε‖h‖∞

for ε > 0 sufficiently small, and (57) follows. �

Now we are ready to state and prove the following result.
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3. Proposition. There exist positive numbers ε0, ρ0 < 1 and m0 > 1 such
that if 0 < ρ < ρ0, 0 < ε < ε0 and m > m0, u ∈ Uρ we have

(58) ‖T 1(u, ξ,m, ε)‖Φ ≤ 2
√
ε[ν + kNi‖φ‖Φ].

Hence T 1 maps Φρ into Φρ provided 0 < ε < ε0 where

4kNi
√
ε0 < 1 and 0 < ν < ν(ρ) = kNiρ.

Furthermore T 1 is a contraction in the u and ξ variables. More precisely, for any

û, ū ∈ Uρ and any ξ̂, ξ̄ ∈ X we have

‖T 1(û, ξ̂,m, ε) − T 1(ū, ξ̄,m, ε)‖Φ

≤ 2kN ′(M + 1)i
√
i− 1

√
ε [2‖û− ū‖U + ρ‖α̂− ᾱ‖]

(59)

Proof. We recall that T 1(u, ξ,m, ε) = T 1
a (u, ξ,m, ε) + T 1

b (h,m, ε) where T 1
a

and T 1
b , have been defined in (56). We set, for simplicity

(60) cl(t) :=


i−2

i−1∑

p=1,p6=l

p2φ2
p(t) + (γξ(t) + y(t))2 + i−2

∑

j>i

j2z2
j (t)




1/2

.

Note that, for any t ∈ R

cl(t) =

∥∥∥∥∥∥




{(p/i)φp(t)}l6=p<i

γξ(t) + y(t)
{(j/i)zj(t)}j>i



∥∥∥∥∥∥
.

Then, since (see (29), (14)) F(ξ, u, t) l
iφl(t) = F

(
l
iφl(t), cl(t)

)
, |F (η, ζ)| ≤ N |η|

when η2 +ζ2 ≤M2 +1, and cl(t)
2 +
(

l
iφl

)2 ≤ ‖φ‖2
Φ +(‖γξ‖∞+‖y‖∞)2 + i−4‖z‖2

Z ≤
2ρ2 + (M + ρ)2, we see that (if 0 < ρ ≤ (

√
M2 + 3 −M)/3)

‖Φa
l ‖C1

b (R) ≤ 2ki
√
ε (l/i)

2
N‖φl‖C1

b (R)

having used (57). As a consequence we obtain

(61) ‖T 1
a (u, ξ,m, ε)‖Φ ≤ 2kNi

√
ε‖φ‖Φ

Similarly, using again Lemma 5 we get

(62) ‖T 1
b (h,m, ε)‖Φ ≤ 2ν

√
ε.

Putting (61), (62) together we obtain (58) and

‖T 2(u, ξ,m, ε)‖Φ < ρ

for any φ ∈ Φρ provided

4kNi
√
ε < 1 and ν < ν(ρ) = kNiρ.

Next we prove (59). Let φ̂, φ̄ ∈ Φρ, ŷ, ȳ ∈ Yρ, ẑ, z̄ ∈ Zρ and write ĉ(t), c̄(t) for the

functions defined as in (60) with (φ̂, ŷ, ẑ), resp. (φ̄, ȳ, z̄), instead of (φ, y, z). Then
we obtain using Lemma 1:∣∣∣F

(
l
i φ̂l(t), ĉl(t)

)
− F

(
l
i φ̄l(t), c̄l(t)

)∣∣∣
≤ N ′ (ρ+

√
M2 + 1

) [
l
i |φ̂l(t) − φ̄l(t)| + |ĉl(t) − c̄l(t)|

]

≤ N ′ (ρ+
√
M2 + 1

)
[
√

2‖φ̂− φ̄‖Φ + ‖ŷ − ȳ‖Y + ‖ẑ − z̄‖Z ]
≤ 2N ′(M + 1)‖û− ū‖U ,

provided 0 < ρ < ρ0 with ρ0 > 0 is sufficiently small.
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Thus, since T 1
b does not depend on u, we see that (59) is satisfied when ξ̂ = ξ̄.

Finally we prove (59) when û = ū and ξ̂, ξ̄ are possibly different. Again it is enough
to prove it for the operator T 1

a , since T 1
b does not depend on ξ. From Lemma 1 we

get:
∣∣F
(

l
iφl(t), ĉl(t)

)
− F

(
l
iφl(t), c̄l(t)

)∣∣ ≤ N ′ l
i |φl(t)| |ĉl(t) − c̄l(t)|

≤ N ′ρ|γξ̂(t) − γξ̄(t)| ≤ N ′Mσρ‖α̂− ᾱ‖ ≤ N ′Mρ‖α̂− ᾱ‖
and then (59) with û = ū easily follows from Lemma 5. This concludes the proof
of the Proposition. �

Now we study equation (32) that is the restriction of the original problem to
the center manifold. Thus we construct an operator T 3(u, ξ,m, ε) : Uρ×X×Nm0 ×
R+ → Zρ whose fixed points solve (32). We consider, first, the following linear
problems associated to (32):

(63) z̈j(t) +
√
εδiżj(t) +

j2 − i2 − εσ2

ε

j2

i2
zj(t) = hj(t), j > i.

Assume εδi ≤ 2 and εσ2 < 2. Then the only bounded solutions of (63) is given by

(64) zj(t) = Lz
j (hj(t)) :=

2
√
ε

ωj,ε

∫ t

−∞
e−

√
εδi(t−s)

2 sin
(ωj,ε(t− s)

2
√
ε

)
× hj(s)ds

where ωj,ε =
√

4 j2

i2 (j2 − i2 − εσ2) − ε2δ2i ≥ 2
√

j2

i2 (j2 − i2 − 2) − 1 ≥ 1
2

j2

i2 and de-

fine the operator T 3(u, ξ,m, ε) : Uρ×X×Nm0×R+ → Z, as follows: T 3(u, ξ,m, ε)(t) =
z̆(t) = {z̆j(t)}j>i where

z̆j(t) := Lz
j

[
−kj

2

i2
F(ξ, φ, y, z, t)zj + νi

∫ π

0

h(x, t/i)

√
2

π
sin(jx)dx

]

To give a good estimate of T 3, when γξ is periodic or anyway ξ has an infinite
subsequence of 1 we need the following technical Lemma.

6. Lemma. Let g : R+ → R+ be a continuous increasing function such that
g(0) = 0 and a ≥ 0 be a non negative number. Then there exists ε0 > 0 such that
for 0 < ε < ε0 and for any t ∈ R and j ∈ N we have

∫ ∞

0

e−
√

εδsg(aρ2+(γξ(t− s) + ρ)2)ds ≤ 4
g(aρ2 + (M + ρ)2)

ε1/4(1 − e−2m
√

εδ)

+
g(aρ2 + (ρ+ ε)2)√

εδ
.

(65)

Proof. For any k ∈ Z we set tk = t− 2km and note that

tk−1 −m = tk +m.

Then, for any fixed t ∈ R and j ∈ N, there is a unique integer ` (i.e. ` =[
t−(2j+1)m

2m

]
) such that t − 2(j + 1)m ≤ (2` − 1)m < t − 2jm or, in other words,

(2`− 1)m < tj ≤ (2`+ 1)m. Note that γξ(tj − s) is a C1−function of s in any of
the two intervals [0, tj+` +m] and [tj+` +m, 2m] (here continuity at the end points
means that the limits exist in R). As a first step we estimate

∫ 2m

0

e−
√

εδsg(aρ2 + (γξ(tj − s) + ρ)2)ds
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To this end we write [0, 2m] = [0, tj+` +m] ∪ [tj+` +m, 2m] and split the intervals
[0, tj+` +m], [tj+` +m, 2m] as:

[0, tj+` +m] = Ij
1 ∪ Ij

2 ∪ Ij
3

[tj+` +m, 2m] = J j
1 ∪ Jj

2 ∪ Jj
3

where

Ij
1 = [0, tj+` − ε−1/4], Ij

2 = [tj+` − ε−1/4, tj+` + ε−1/4],

Ij
3 = [tj+` + ε−1/4, tj+` +m], J j

1 = [tj+`−1 −m, tj+`−1 − ε−1/4],

Jj
2 = [tj+`−1 − ε−1/4, tj+`−1 + ε−1/4], Jj

3 = [tj+`−1 + ε−1/4, 2m].

Note that we only need to consider four of the above intervals. For example [0, tj+`−
ε−1/4] needs to be considered only if tj+` > ε−1/4. But in this case tj+`−1−ε−1/4 >

2m and then we will take J j
2 = Jj

3 = ∅ and replace J j
1 with [tj+`−1 − m, 2m].

Similarly if −ε−1/4 < tj+` ≤ ε−1/4 we can take Ij
1 = Jj

3 = ∅, Ij
2 = [0, tj+` + ε−1/4]

and J j
2 = [tj+`−1 − ε−1/4, 2m]. Finally, if tj+` + ε−1/4 ≤ 0 we can take Ij

1 = Ij
2 = ∅,

Ij
3 = [0, tj+` +m].

Next we observe that

s ∈ Ij
1 ⇒ 2`m+ ε−1/4 ≤ tj − s ≤ tj < (2`+ 1)m

s ∈ Ij
3 ⇒ (2`− 1)m ≤ tj − s ≤ 2`m− ε−1/4

s ∈ J j
1 ⇒ 2(`− 1)m+ ε−1/4 ≤ tj − s ≤ (2`− 1)m

s ∈ J j
3 ⇒ (2`− 3)m ≤ tj − s ≤ 2(`− 1)m− ε−1/4.

Using (18) we see that:

sup
s∈Ij

1∪Ij
3∪Jj

1∪Jj
3

|γξ(tj − s)| ≤ A1e
−σ(ε−1/4−2).

Next,

meas(Ij
2) ≤ 2ε−1/4, meas(J j

2 ) ≤ 2ε−1/4

thus:

(66)

∫

Ij
2

e−
√

εδsg(aρ2 + (γξ(tj − s) + ρ)2)ds ≤ 2g(aρ2 + (M + ρ)2)ε−1/4.

where Ij
2 is either Ij

2 or J j
2 . Next let ε̄0 > 0 be such that A1e

−σ(ε−1/4−2) ≤ ε for

0 < ε ≤ ε̄0. Then, noting that γξ(t) ≥ 0, we get, for s ∈ Ij
1 ∪ Ij

3 ∪ Jj
1 ∪ Jj

3 and
0 < ε ≤ ε̄0:

g(aρ2 + (γξ(tj − s) + ρ)2) ≤ g(aρ2 + (ε+ ρ)2).

Hence:
(67)∫

Ij
1∪Ij

3∪Jj
1∪Jj

3

e−
√

εδsg(aρ2 + (γξ(tj − s) + ρ)2)ds ≤ g(aρ2 + (ε+ ρ)2)√
εδ

[1 − e−2m
√

εδ]

Putting (66), (67) together we get
∫ 2m

0

e−
√

εδsg(aρ2+(γξ(tj − s) + ρ)2)ds ≤ 4
g(aρ2 + (M + ρ)2)

ε1/4

+
g(aρ2 + (ρ+ ε)2)√

εδ
(1 − e−2m

√
εδ)

(68)
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To conclude the proof we simply have to observe that
∫ ∞

0

e−
√

εδsg(aρ2 + (γξ(t− s) + ρ)2)ds =

∞∑

j=0

∫ 2(j+1)m

2jm

e−
√

εδsg(aρ2 + (γξ(t− s) + ρ)2)ds =

∞∑

j=0

e−2
√

εδjm

∫ 2m

0

e−
√

εδsg(aρ2 + (γξ(tj − s) + ρ)2)ds

and use (68). The proof is complete �

Now we can state the following result.

4. Proposition. There exist ν0, ρ0, ε0 and m0 such that for any ν < ν0, ρ < ρ0,
ε < ε0 and m > m0 we have

(69) ‖T 3(u, ξ,m, ε)‖Z ≤ 8iν

δi
+

8k

δi

[
2N
√
δiε

1/8 +N ′(3ρ+ ε)
]
‖z‖Z .

Hence, in particular, we can assume that T 3 maps Uρ in Zρ.

Furthermore for any û, ū ∈ Uρ and ξ̂ = (E, α̂), ξ̄ = (E, ᾱ), one has:

‖T 3(û, ξ̂,m, ε) − T 3(ū, ξ̄,m, ε)‖Z ≤ 8kN ′

δi
×

[
2
(
3ρ+ ε+ 2

√
δiε

1/8(3ρ+M)
)
‖û− ū‖U +Mρσ‖α̂− ᾱ‖

]
.

(70)

Proof. Let zj(t) be the function defined in (64). First we observe that, for
any hj ∈ L∞(R) we have, using Hölder inequality:

j2

4i2
|zj(t)| ≤

√
ε

∫ ∞

0

e−
√

εδis/2|hj(t− s)|ds

≤ √
ε

(∫ ∞

0

e−
√

εδis/2ds

)1/2(∫ ∞

0

e−
√

εδis/2hj(t− s)2ds

)1/2

≤
(

2
√
ε

δi

)1/2(∫ ∞

0

e−
√

εδis/2hj(t− s)2ds

)1/2

Hence,

j4|zj(t)|2 ≤ 32i5
√
ε

δ

∫ ∞

0

e−
√

εδis/2hj(t− s)2ds.

Assuming that

‖h‖2 :=

∥∥∥∥∥∥

∑

j>i

h2
j (·)

∥∥∥∥∥∥
∞

<∞,

from the Monotone Convergence Theorem we obtain:

‖{Lz
j (hj)}j>i‖2

Z ≤

∥∥∥∥∥∥

∑

j>i

j4z2
j

∥∥∥∥∥∥
∞

≤
(

8i3

δ

)2

‖h‖2.

Now, taking

hj(t) =

∫ π

0

h(x, t/i)

√
2

π
sin(jx)dx
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we have from Parseval equality:

∑

j>i

|hj(t)|2 ≤
∫ π

0

h(x, t)2dx ≤ 1.

Hence ∥∥∥∥∥∥

{
Lz

j

[
νi

∫ π

0

h(x, t/i)

√
2

π
sin(jx)dx

]}

j>i

∥∥∥∥∥∥
Z

≤ 8i2νδ−1.

Next we estimate

∥∥∥∥
{
Lz

j

[
F(ξ, u, t) j2

i2 zj(t)
]}

j>i

∥∥∥∥
Z

. To this end we observe that

F(ξ, u, t)
j2

i2
zj(t) =

j

i
F (
j

i
zj(t), cj(t))

where

cj(t) =


i−2

∑

l<i

l2φ2
l (t) + (γξ(t) + y(t))2 + i−2

∑

p>i
p6=j

p2z2
p(t)




1/2

.

Hence we have to estimate

(71) sup
t∈R

∑

j>i

j4
4ε

ω2
j,ε

(∫ ∞

0

e−
√

εδis/2 j

i
F

(
j

i
zj(t− s), cj(t− s)

)
ds

)2

.

First we estimate the above quantity replacing F with |F |. Then, from Hölder
inequality we get

(∫ ∞

0

e−
√

εδis/2

∣∣∣∣F
(
j

i
zj(t− s), cj(t− s)

)∣∣∣∣ ds
)2

≤
∫ ∞

0

e−
√

εδis/2ds ·
∫ ∞

0

e−
√

εδis/2F

(
j

i
zj(t− s), cj(t− s)

)2

ds

=
2

δi
√
ε

∫ ∞

0

e−
√

εδis/2F

(
j

i
zj(t− s), cj(t− s)

)2

ds

Thus plugging this into (71) and using ωj,ε ≥ j2

2i2 we see that we need to estimate:

32i
√
ε

δ
sup
t∈R

∑

j>i

i2j2
∫ ∞

0

e−
√

εδis/2F

(
j

i
zj(t− s), cj(t− s)

)2

ds.

Now, setting fmax(x) = sup{f(t) | 0 ≤ t ≤ x}, and noting that c2j (t) +
j2

i2 zj(t)
2 ≤ 2ρ2 + (γξ(t) + ρ)2, we see that

∑

j>i

i2j2
∫ ∞

0

e−
√

εδis/2F

(
j

i
zj(t− s), cj(t− s)

)2

ds ≤

∑

j>i

i2j2
∫ ∞

0

e−
√

εδis/2f2
max(2ρ

2 + (γξ(t− s) + ρ)2)
j2

i2
z2

j (t− s)ds

≤
∫ ∞

0

e−
√

εδis/2f2
max(2ρ

2 + (γξ(t− s) + ρ)2)ds‖z‖2
Z
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having used the Monotone Convergence Theorem. But since fmax is positive and
increasing, so is f2

max and hence Lemma 6 gives:
∫ ∞

0

e−
√

εδis/2f2
max(2ρ

2 + (γξ(t− s) + ρ)2)ds

≤ 4
f2
max(2ρ

2 + (M + ρ)2)

ε1/4(1 − e−mδi
√

ε)
+ 2

f2
max(2ρ

2 + (ε+ ρ)2)√
εδi

≤ 4
N2

ε1/4(1 − e−mδi
√

ε)
+ 2

N ′2[2ρ2 + (ε+ ρ)2]√
εδi

since from 0 ≤ f(x2) ≤ N ′|x| (see (15)) we get f2
max(x

2) ≤ N ′2x2. Then (69)

follows from e−mδi
√

ε < e−δiε
−1/4 ≤ 1

2 (provided we take 0 < ε ≤ ( δi

ln 2 )4) and the

inequality
√
a2 + b2 ≤ |a| + |b|.

Now we prove (70). To this end we need to estimate
{
Lz

j

[
F(ξ̂, û, t)

j2

i2
ẑj(t) − F(ξ̄, ū, t)

j2

i2
z̄j(t)

]}

j>i

.

We have

F(ξ̂, û, t)
j2

i2
ẑj(t) − F(ξ̄, ū, t)

j2

i2
z̄j(t) =

j

i

[
F

(
j

i
ẑj(t), ĉj(t)

)
− F

(
j

i
ẑj(t), c̄j(t)

)]

+
j

i

[
F

(
j

i
ẑj(t), c̄j(t)

)
− F

(
j

i
z̄j(t), c̄j(t)

)]
.

Next, using again Hölder inequality, |Fζ(η, ζ)| ≤ N ′|η| and the Monotone Conver-
gence Theorem:

∑

j>i

j4
[
Lz

j

{
j

i

[
F

(
j

i
ẑj , ĉj(t)

)
− F

(
j

i
ẑj , c̄j(t)

)]}]2
≤

≤
∑

j>i

32
√
εi2j2

δi

∫ ∞

0

e−
√

εδis/2

[
N ′ j

i
|ẑj(t− s)| |ĉj(t− s) − c̄j(t− s)|

]2

ds

≤ 32N ′2√ε
δi

∫ ∞

0

e−
√

εδis/2
∑

j>i

j4|ẑj(t− s)|2ds[‖û− ū‖U + ‖γξ̂ − γξ̄‖∞]2

≤ 64N ′2

δ2i
‖ẑ‖2 [‖û− ū‖U + ‖γξ̂ − γξ̄‖∞]2.

As a consequence
∥∥∥∥∥

{
Lz

j

{
j

i

[
F

(
j

i
ẑj , ĉj(t)

)
− F

(
j

i
ẑj , c̄j(t)

)]}}

j>i

∥∥∥∥∥
Z

≤ 8N ′

δi
ρ[‖û− ū‖U + ‖γξ̂ − γξ̄‖∞].

(72)

Next, we look at

∑

j>i

j4
[
Lz

j

{
j

i

(
F

(
j

i
ẑj , c̄j(t)

)
− F

(
j

i
z̄j , c̄j(t)

))}]2
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First we observe that from Lemma 1 and j2‖zj‖∞ ≤ ‖z‖ ≤ ρ, it follows:
∣∣∣∣F
(
j

i
ẑj(t), c̄j(t)

)
− F

(
j

i
z̄j(t), c̄j(t)

)∣∣∣∣

≤
∫ 1

0

∣∣∣∣Fη

(
j

i
[θẑj(t) + (1 − θ)z̄j(t), c̄j(t)

)∣∣∣∣ dθ
j

i
|ẑj(t) − z̄j(t)|

≤ N ′
∫ 1

0

[
1

ij
ρ+

√
1

i2j2
ρ2 + c̄2j (t)

]
dθ
j

i
|ẑj(t) − z̄j(t)|

≤ N ′[ρ+
√
ρ2 + c̄2j (t)]

j

i
|ẑj(t) − z̄j(t)|

≤ N ′[ρ+
√

5ρ2 + 2γ2
ξ (t)]

j

i
|ẑj(t) − z̄j(t)|

since

c2j (t) ≤
∑

l<i

φl(t)
2 + 2y(t)2 + 2γ2

ξ (t) +
∑

j>i

j4z2
j (t) ≤ 4ρ2 + 2γ2

ξ (t).

Then, again from Hölder inequality and the Monotone Convergence Theorem:

∑

j>i

j4
[
Lz

j

{
j

i

(
F

(
j

i
ẑj(t), c̄j(t)

)
− F

(
j

i
z̄j(t), c̄j(t)

))}]2

≤ 32
√
ε

δi

∑

j>i

i2j2×

∫ ∞

0

e−
√

εδis/2

[
F

(
j

i
ẑj(t− s), c̄j(t− s)

)
− F

(
j

i
z̄j(t− s), c̄j(t− s)

)]2
ds

≤ 32N ′2√ε
δi

∑

j>i

∫ ∞

0

e−
√

εδis/2×

[
ρ+

√
5ρ2 + 2γ2

ξ̄
(t− s)

]2
j4|ẑj(t− s) − z̄j(t− s)|2ds

≤ 32N ′2√ε
δi

∫ ∞

0

e−
√

εδis/2
[
ρ+

√
5ρ2 + 2γ2

ξ̄
(t− s)

]2
ds‖ẑ − z̄‖2

Z

≤ 128N ′2√ε
δi

∫ ∞

0

e−
√

εδis/2[2ρ2 + (γξ̄(t− s) + ρ)2]ds‖ẑ − z̄‖2
Z

since [ρ +
√

5ρ2 + 2γ2
ξ̄
(t)]2 ≤ 4(3ρ2 + γ2

ξ̄
(t)) < 4(2ρ2 + (γξ̄(t) + ρ)2). Then from

Lemma 6 we obtain
∥∥∥∥∥

{
Lz

j

{
j

i

[
F

(
j

i
ẑj(t), c̄j(t)

)
− F

(
j

i
z̄j(t), c̄j(t)

)]}}

j>i

∥∥∥∥∥
Z

≤ 16N ′

δi

[
4δi(2ρ

2 + (M + ρ)2)ε1/4 + 2ρ2 + (ρ+ ε)2)
]1/2

‖ẑ − z̄‖Z

(73)

Putting (72) and (73) together and recalling (17) and the fact that
√
a2 + b2 ≤

|a| + |b| we obtain (70). The proof is complete. �
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Now putting together Propositions 2, 3 and 4 we find that, if ρ, ε, ν and 1
m are

small enough, the operator

T (u, ξ,m, ε) = (T 1(u, ξ,m, ε), T 2(u, ξ,m, ε), T 3(u, ξ,m, ε))

maps Uρ ×X × Nm0 × R+ into Uρ. Furthermore T is a contraction in Uρ and the
contraction factor tends to 0 as ε+ ν + ρ→ 0.

So we can apply Banach Fixed Point Theorem to get the following

2. Theorem. Assume that the conditions (F1)-(F2) hold and fix δ > 0. Then
there exist positive numbers ρ0 > 0, ε0 > 0, and ν0 > 0 such that for any ξ ∈ X,
0 < ε < ε0, |ν| < ν0, m > ε−3/4, the integro-differential system (30)–(32) has a
unique bounded solution

u(ξ, ν, ε,m; t) = (φ(ξ, ν, ε,m; t), y(ξ, ν, ε,m; t), z(ξ, ν, ε,m; t)) ∈ Uρ0 .

Moreover

(74) ‖u(ξ, ν, ε,m; ·)‖U ≤ C(|ν| + ε)

for a suitable constant C independent of (ν, ε, ξ). Finally, φ(ξ, ν, ε,m; ·), y(ξ, ν, ε,m; ·),
z(ξ, ν, ε,m; ·) are Lipschitz–continuous in α uniformly with respect to (E,m). More
precisely there exists a positive constant c̄ such that

(75) ‖u(ξ̂, ν, ε,m; ·)− u(ξ̄, ν, ε,m; ·)‖U ≤ c̄(|ν| + ε)‖α̂− ᾱ‖.

Proof. As we have already observed, from Propositions 2, 3 and 4 it follows
immediately that ρ0 > 0,ε0 > 0 and ν0 > 0 exist such that T = (T 1, T 2, T 3) :
Uρ ×X × Nm0 × R+ → Uρ (with m0 > ε−3/4) is a contraction in u ∈ Uρ uniform
with respect to (ξ,m, ε). Moreover if ρ0 > 0,ε0 > 0 and ν0 > 0 are sufficiently
small, from Propositions 2, 3 and 4 we see that we can write:

‖y(ξ, . . .)‖Y ≤ 1

4
‖u(ξ, . . .)‖U + k4(|ν| + ε)

‖φ(ξ, . . .)‖Φ ≤ 1

4
‖φ(ξ, . . .)‖Φ + 2|ν|√ε

‖z(ξ, . . .)‖Y ≤ 1

4
‖z(ξ, . . .)‖Z + 8i2|ν|δ−1.

Thus we get, immediately:

‖φ(ξ, . . .)‖Φ ≤ 8

3
|ν|√ε and ‖z(ξ, . . .)‖Z ≤ 32

3
i2|ν|δ−1.

Then:

3

4
‖y(ξ, . . .)‖Y ≤ 1

4
[‖φ(ξ, . . .)‖Φ + ‖z(ξ, . . .)‖Z ] + k4(|ν| + ε)

≤ 2

3
|ν|√ε+

8

3
i2|ν|δ−1 + k4(|ν| + ε)

that is

‖y(ξ, . . .)‖Y ≤ 8

9
|ν|√ε+

32

9
i2|ν|δ−1 +

4

3
k4(|ν| + ε).
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Plugging everything together we obtain (74). Then, again from Propositions 2, 3
and 4, we get

‖y(ξ̂, . . .) − y(ξ̂, . . .)‖Y ≤ 1

4
‖u(ξ̂, . . .) − u(ξ̄, . . .)‖U

+ [O(|ν| + ε+ ρ
√
ε) + ρ∆(ρ)]‖α̂− ᾱ‖

‖φ(ξ̂, . . .) − φ(ξ̄, . . .)‖Φ ≤ 1

4
‖u(ξ̂, . . .) − u(ξ̄, . . .)‖U + c̃1ρ

√
ε‖α̂− ᾱ‖

‖z(ξ̂, . . .) − z(ξ̄, . . .)‖Z ≤ 1

4
‖u(ξ̂, . . .) − u(ξ̄, . . .)‖U + c̃2ρ‖α̂− ᾱ‖

where ρ = max{‖u(ξ̂, . . .)‖U , ‖u(ξ̄, . . .)‖U} ≤ C(|ν| + ε). Then (75) easily follows.
�

Let us denote by

G(ξ,m, ν, ε) := (I −Qm,ξ)
{√

εδiγ̇ξ(t)

− 2√
π
νi

∫ π

0

h(x, t/i) sin(ix) dx+ r(ξ, ε, ν, δ,m; t)
}

where
r(ξ, ε, ν, δ,m; t) := −k

[
2f ′ (γξ(t)

2)γξ(t)
2 + f(γξ(t)

2
) ]
y(t)+

+kF(ξ, u, t)[γξ(t) + y(t)] − kf(γξ(t)
2)γξ(t) −

√
εδiẏ(t)

= kh2(ξ, u(ξ, ν, ε,m; t); t) −√
εδiẏ(t).

h2(ξ, u; t) being the function defined in (34). Now following [1] we see that in
order to find a bounded solution near γξ of the original equations (8)–(10) we need
to show that the equation G(ξ,m, ν, ε) = 0 can be solved for some values of the
parameters. From (41) we find then

‖r(ξ, ε, ν, δ,m; ·)‖∞ ≤ k

2
max{k2, k3, N

′}‖u(ξ, ν, ε,m; ·)‖2
U +

√
εδi‖y(ξ, ν, ε,m; ·)‖Y

Setting ν =
√
εµ we see, according to (74), that

(76) ‖r(ξ, ε,√εµ, δ,m; ·)‖∞ = O(ε)

as ε → 0 uniformly with respect to (ξ,m, µ, δ) provided (µ, δ) belongs to a fixed
compact subset of R

2 and m ≥ m0.

Next, let ξ̂ = (E, α̂), ξ̄ = (E, ᾱ) ∈ X . Then:

|r(ξ̂, ε, ν, δ,m; t)− r(ξ̄, ε, ν, δ,m; t)|
≤ k|h2(ξ̂, u(ξ̂, ν, ε,m; t); t) − h2(ξ̂, u(ξ̄, ν, ε,m; t); t)|
+ k|h2(ξ̂, u(ξ̄, ν, ε,m; t); t) − h2(ξ̄, u(ξ̄, ν, ε,m; t); t)|
+
√
εδi|ẏ(ξ̂, ν, ε,m; t) − ẏ(ξ̄, ν, ε,m; t)|.

Now, from (43), (44) with ρ = max{‖u(ξ̂, ν, ε,m; ·)‖U , ‖u(ξ̄, ν, ε,m; ·)‖U} we get:

|h2(ξ̂, u(ξ̂, ν, ε,m; t); t) − h2(ξ̂, u(ξ̄, ν, ε,m; t); t)| ≤ 3 max{k2, k3, N
′}×

max{‖u(ξ̂, ν, ε,m; ·)‖U , ‖u(ξ̄, ν, ε,m; ·)‖U}‖u(ξ̂, ν, ε,m; ·) − u(ξ̄, ν, ε,m; ·)‖U

and, from (51) with ρ = ‖u(ξ̄, ν, ε,m; ·)‖U :

|h2(ξ̂, u(ξ̄, ν, ε,m; t); t)− h2(ξ̄, u(ξ̄, ν, ε,m; t); t)| ≤ 2‖u(ξ̄, ν, ε,m; ·)‖U×
∆̃(‖u(ξ̄, ν, ε,m; ·)‖U )‖α̂− ᾱ‖.
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Thus from (74), (75) we finally obtain:

(77) ‖r(ξ̂, ε,√εµ, δ,m; ·)− r(ξ̄, ε,
√
εµ, δ,m; ·, )‖∞ ≤ √

εo(1)‖α̂− ᾱ‖
where o(1) → 0 as ε → 0, uniformly with respect to (µ, δ, E,m) provided (µ, δ)
belongs to a fixed compact subset of R

2, m > m0.

Next, as it has been proved in [1, Proposition 2], the equation G(ξ,m,
√

εµ,ε)√
ε

= 0

is equivalent to G̃(ξ,m, µ, ε) = 0, where

G̃(ξ,m, µ, ε) :=

[Lm,ξ +Nm,ξ]

{
δγ̇ξ(t) − µi

√
2

π

∫ π

0

h(x, t/i) sin(ix) dx +
1√
ε
r(ξ, ε,

√
εµ, δ,m; t)

}

where µi = µ/i and Lm,ξ : L∞(R) → `∞E is a linear operator such that

‖Lm,ξ‖ ≤ Ae−mσ

‖Lm,ξ′′ −Lm,ξ′‖ ≤ Ae−mσ‖α′′ − α′‖
(78)

for a suitable positive constant A and Nm,ξ : L∞(R) → `∞E is a nonlinear operator
that satisfies

‖Nm,ξ‖ ≤ cN

‖Nm,ξ′′ −Nm,ξ′‖ ≤ cN‖α′′ − α′‖(79)

for some positive constant cN . Then, from (76), (77), (78), (79) we see that, for
m > ε−3/4,

G̃(ξ,m, µ, ε) = Nm,ξ

{
δiγ̇ξ(t) − µi

√
2

π

∫ π

0

h(x, t/i) sin(ix) dx

}
+O(

√
ε)

and, using also (17),

G̃(ξ′′,m, µ, ε) − G̃(ξ′,m, µ, ε) = Nm,ξ′′

{
δiγ̇ξ′′(t) − µi

√
2

π

∫ π

0

h(x, t/i) sin(ix) dx

}

−Nm,ξ′

{
δiγ̇ξ′(t) − µi

√
2

π

∫ π

0

h(x, t/i) sin(ix) dx

}
+ o(1)‖α′′ − α′‖

as ε→ 0, where o(1) is uniform with respect to (ξ,m, µ). Now, let α = {αj}j∈Z, α
′ =

{α′
j}j∈Z, α

′′ = {α′′
j }j∈Z ∈ `∞E and set ξ = (E,α), ξ′ = (E,α′), ξ′′ = (E,α′′). We

define the following Melnikov–like function of τ ∈ R:

Mµ(τ) = δi

∫ ∞

−∞
γ̇(t)2dt− µi

√
2

π

∫ ∞

−∞

∫ π

0

γ̇(t)2h(x, (t+ τ)/i) sin(ix) dx dt

and set

M̃(α) = {ejMµ(αj)}j∈Z

Now we prove that the function of α ∈ `∞E

D(E,α,m, µ, δ, ε) := Nm,ξ

{
δiγ̇ξ(t) − µi

√
2

π

∫ π

0

h(x, t/i) sin(ix) dx

}
− M̃(α)

satisfies

(80) D(E,α,m, µ, δ, ε) = O(ε)
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and

(81) ‖D(E, α̂,m, µ, δ, ε) −D(E, ᾱ,m, µ, δ, ε)‖ = O(ε)‖α̂− ᾱ‖
as ε → 0 uniformly with respect to (E,m, µ, δ) provided (µ, δ) belongs to a fixed
compact subset of R

2.
In fact it is easily seen (see [1, p. 195]) that the jth component of the above

map consists of the sum of the following two terms:

− ej

∫ −m−αj

−∞
γ̇(t)

[
δiγ̇(t) − µi

√
2

π

∫ π

0

h(x, (t+ αj)/i) sin(ix)dx

]
dt

= −ej

∫ −m

−∞
γ̇(t− αj)

[
δiγ̇(t− αj) − µi

√
2

π

∫ π

0

h(x, t/i) sin(ix)dx

]
dt

and

− ej

∫ ∞

m+αj

γ̇(t)

[
δiγ̇(t) − µi

√
2

π

∫ π

0

h(x, (t+ αj)/i) sin(ix)dx

]
dt

= −ej

∫ ∞

m

γ̇(t+ αj)

[
δiγ̇(t+ αj) − µi

√
2

π

∫ π

0

h(x, t/i) sin(ix)dx

]
dt

Now, from Hölder inequality, |αj | ≤ 2 and |γ̇(t)| ≤ σγ(t) ≤ γ(t) ≤ A1e
−σ|t|, we

obtain: ∣∣∣∣
∫ ∞

m

γ̇(t+ αj)dt

∣∣∣∣ ≤
∫ ∞

m

γ(t+ αj)dt ≤
A1

σ
e2σe−σm

and similarly:
∣∣∣∣
∫ ∞

m

γ̇2(t+ αj)dt

∣∣∣∣ ≤
∫ ∞

m

A2
1e

−2σ(t+αj )dt ≤ A2
1

2σ
e4σe−2σm

Since similar estimates hold for the other two terms we see that (80) follows since
m ≥ ε−3/4. As for the Lipschitz continuity of D(E,α,m, µ, δ, ε) we observe that
from the fact that γ(t) satisfies equation (16) it follows |γ̈(t)| ≤ (kN + σ2)γ(t) and
hence ∣∣∣∣

∫ ∞

m

[γ̇(t+ α̂j) − γ̇(t+ ᾱj)]dt

∣∣∣∣

≤
∫ ∞

m

∣∣∣∣∣

∫ t+α̂j

t+ᾱj

|γ̈(τ)|dτ
∣∣∣∣∣ dt ≤ (kN + σ2)

A1

σ2
e2σe−σm|α̂j − ᾱj |

since:
∫ ∞

m

∣∣∣∣∣

∫ t+α̂j

t+ᾱj

γ(τ)dτ

∣∣∣∣∣ dt ≤
A1

σ

∫ ∞

m

|e−σ(t+α̂j) − e−σ(t+ᾱj)|dt

≤ A1

σ2
e−σm|e−σα̂j − e−σᾱj |

having used t ≥ m ≥ 3 > |α̂j |, |ᾱj |. Similarly,
∣∣∣∣
∫ ∞

m

γ̇2(t+ α̂j) − γ̇2(t+ ᾱj)dt

∣∣∣∣ ≤ 2M

∫ ∞

m

∣∣∣∣∣

∫ t+α̂j

t+ᾱj

|γ̈(τ)|dτ
∣∣∣∣∣ dt

≤ 2M(kN + σ2)
A1

σ2
e2σe−σm|α̂j − ᾱj |
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Since similar estimates hold for the other two terms (81) follows.
Thus:

(82) G̃(ξ,m, µ, ε) = M̃(α) + o(1)

and

(83) G̃(ξ′′,m, µ, ε) − G̃(ξ′,m, µ, ε) = [M̃(α′′) − M̃(α′)] + o(1)‖α′′ − α′‖
Finally, again from [1] we know that M̃(α) is C1 and

(84) M̃′(α) = {ejM
′
µ(αj)}j∈Z.

This being said we can now prove the following

3. Theorem. Assume the conditions F1) and F2) are satisfied, and that h ∈
L∞(R, L2([0, π])) is 1−periodic with respect to t and

∥∥∥∥
∫ π

0

h(x, t)2 dx

∥∥∥∥
∞

= 1.

Assume, further, that µ0 ∈ R exists such that the function

M̄(τ) := δ

∫ ∞

−∞
γ̇(t)2dt− µ0

√
2

π

∫ ∞

−∞

∫ π

0

γ̇(t)2h(x, (t+ τ)/i) sin(ix) dx dt

has a simple zero at τ = τ0 ∈ [0, 1] (that is M̄(τ0) = 0 and M̄ ′(τ0) 6= 0).
Then there exist ρ̄ > 0, ε̄ > 0 and µ̄ > 0 such that for any 0 < ε < ε̄,

|µ−µ0| ≤ µ̄ and m > ε−3/4, with m = ki and k ∈ N, there is a continuous function
α : E×Nm×(µ0, µ0)×(0, ε̄) → `∞(R) such that α(E,m, µ, ε) ∈ `∞E and a continuous
map Π : E × (0, ε̄) → L∞(R, H2

0 ([0, π])) such that

uE(x, t, ε) := i−1Π(E, ε)(x, i
√
εt)

is a weak solution of (1) that satisfies

(85) ess supt∈R

∥∥∥∥∥iuE(x, t, ε) −
√

2

π
γ(E,α(E,m,µ,ε))(i

√
εt) sin(ix)

∥∥∥∥∥
W

≤ ρ̄ ,

where ‖ · ‖W is the norm in W = H2
0 ([0, π]).

Moreover, for any fixed ε the map Π : E → Π(E) is a homeomorphism satisfying

(86) Π(Σ(E))(x, t) = Π(E)(x, t + 2mε−1/2)

Σ : E → E being the Bernouilli shift.

Proof. The proof is similar to that of Theorem 2 in [1] thus we only sketch it.
As we have observed it is enough to prove that the equationG((E,α),m,

√
εµ, ε) = 0

has a unique solution α = α(E,m, µ, ε) in a neighborghood of α0 = {ejτ0}j∈Z. Then
setting
(87)

Π(E, ε)(x, t) =

√
2

π




i−1∑

l=1

φl(t) sin(lx) + [y(t) + γξ(t)] sin(ix) +
∑

j>i

zj(t) sin(jx)




(with φl(t) = φl((E,α(E,m, µ, ε)),
√
εµ, ε,m; t) etc.) we see that

uE(x, t, ε) := i−1Π(E, ε)(x, i
√
εt)

satisfies equation (1) and it is the unique solution that satisfies (85). Now, we have

seen that equation G((E,α),m,
√
εµ, ε) = 0 is equivalent to G̃((E,α),m, µ, ε) = 0
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but, arguing as in [1], and using (82), (83), (84) we obtain the existence of a unique
α(E,m, µ, ε) with the properties stated in this Theorem. Thus we only have to
prove that uE(x, t, ε) satisfies (86) and that Π is continuous. The proof of (86) is
the same as in [1, Theorem 2] and depends on the uniqueness of uE(x, t, ε). As for
the continuity of Π we observe that writing as in (87) we have

∑

j>i

j4‖zj‖2
∞ <∞.

As in [1, Theorem 2] we see that given a sequence {E}n∈N ∈ E there exists a
subsequence {E}nk

∈ E such that zj,Enk
(t) converges uniformly on any compact

interval of R to a function zj(t) ∈ L∞(R). Then, for any N ∈ N and t ∈ R we have:

N∑

j=i+1

j4z2
j (t) = lim

k→∞

N∑

j=i+1

j4z2
j,Enk

(t) ≤ ρ2

and hence z(x, t) =
∑

j>i zj(t) sin(jx) ∈ Zρ. This being said the proof of the

continuity of Π goes as in [1]. The proof is complete. �
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