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Denoising Deterministic Time Series

Steven P. Lalley and A. B. Nobel

Communicated by Y. Charles Li, received May 5, 2006.

Abstract. This paper is concerned with the problem of recovering a finite,
deterministic time series from observations that are corrupted by additive,
independent noise. A distinctive feature of this problem is that the available
data exhibit long-range dependence and, as a consequence, existing statistical
theory and methods are not readily applicable. This paper gives an analysis
of the denoising problem that extends recent work of Lalley, but begins from
first principles. Both positive and negative results are established. The positive
results show that denoising is possible under somewhat restrictive conditions
on the additive noise. The negative results show that, under more general
conditions on the noise, no procedure can recover the underlying deterministic
series.

1. Introduction

Recent interest in chaos has drawn the attention of statisticians to deterministic
phenomena that exhibit random behavior. While there is no universally accepted
definition of chaos, phenomena termed “chaotic” have generally been studied in
the context of dynamical systems, which provide mathematical models of physical
systems that evolve deterministically in time. (Good introductions to dynamical
systems and chaos for non-specialists can be found in the texts of Devaney [15] and
Alligood et al. [5].) In what follows we will consider a standard model for dynamical
systems, in which the relevant states of the system form a compact subset Λ of R

d.
The time evolution of the system is described by an invertible map F : Λ → Λ. If
at time i the system is in state x ∈ Λ, then at time i+ 1 it is in state Fx, and at
time i− 1 it is in state F−1x. That descriptions of this sort are, in a precise sense,
generic follows from Takens’s embedding theorem [34, 4, 33]. We do not assume
that F (or F−1) is continuous. Starting from an initial state x ∈ Λ at time zero,
the complete time evolution of the system is described by the bi-infinite trajectory

state . . . F−2x F−1x x Fx F 2x . . .
time . . . −2 −1 0 1 2 . . .
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Here F i is the i-fold composition of F with itself and F−i is the i-fold composition
of F−1. This model is deterministic: from exact knowledge of the state of the
system at any point in time, one may reconstruct all the past and future states of
the system by repeated application of F and F−1. To simplify notation in what
follows, let xi = F ix, i ∈ Z, so that the initial state x of the system is denoted by
x0.

To date, most statistical analyses of dynamical systems have been carried out
in the context of dynamical noise models. In a dynamical noise model, the available
observations are assumed to be generated according to a nonlinear autoregressive
scheme of the form xi+1 = Fxi +ηi, where {ηi} are independent, mean zero random
vectors. In this model, random noise is “folded” into the dynamics at each step, and
the resulting sequence of states xi is not purely deterministic. In the presence of
dynamical noise, the observed states form a discrete time, continuous state Markov
Chain, and estimating interesting features of the dynamics (e.g. the map F ) can
often be accomplished in part by an appeal to traditional time series techniques.
Representative work can be found in references [37, 19, 11, 12, 23, 31, 26, 35].
An alternative approach to the map estimation problem is described in [30].

Of interest here is the so-called observational noise model, in which the available
data are observations (or measurements) of an underlying deterministic system
that are corrupted by additive noise. In this model our observations take the
form yi = xi + εi, where {εi} are independent, mean zero random vectors. In
contrast with the dynamical noise model, the noise does not interact with the
dynamics: the deterministic character of the system, and its long range dependence,
are preserved beneath the noise. Due in part to this dependence, estimation in the
observational noise model has not been broadly addressed by statisticians, though
the model captures important features of many experimental situations. Here we
are interested in the problem of how to recover the underlying time series {xi} from
the observations {yi}.

Denoising problem: Reconstruct the successive states x0, . . . , xn of the deter-
ministic system from observations of the form

(1) yi = xi + εi = F ix0 + εi 0 ≤ i ≤ n

where ε0, . . . , εn ∈ R
d are independent random vectors with mean zero.

Several versions of the denoising problem, and associated methods, have previ-
ously been considered by a number of authors, including Kostelich and Yorke [23],
Davies [14], Sauer [32], Kostelich and Schreiber [22]. The methods and results
described here are motivated by recent work of Lalley [24, 25]. MacEachern and
Berliner [27] studied the problem of distinguishing trajectories in the observational
noise model when the noise distribution comes from a suitable exponential family
and established the asymptotic normality of relevant likelihood ratios.

Though some features of denoising can be found in more traditional statistical
problems such as errors in variables regression, deconvolution, and measurement
error modeling (c.f. [10]), other features distinguish it from these problems and
require new methods of analysis. For example, in the denoising problem the co-
variates xi are deterministically related (not i.i.d. or mixing), the noise εi is often
bounded (not Gaussian), and the noise distribution is usually unknown.



DENOISING 261

In the denoising problem the underlying states of the observed deterministic
system are of primary interest. Denoising methods can also provide useful prepro-
cessing for other statistical analyses. In the absence of noise, and under appropriate
regularity conditions, x0, x1, . . . can be used to estimate the map F [7, 3, 30], its
invariant measure, entropy, and Lyapunov exponents [18], or the fractal dimension
of its attractor (see [13]). When observational noise is present, consistent recon-
structions x̂0, . . . , x̂n can sometimes act as surrogates for the unobserved states in
estimation problems of this sort. The surveys [17, 6, 20, 21] give an account of
statistical problems in the study of dynamical systems. Formal limits to statistical
inference from dependent processes can be found in [2, 1, 29]. From the viewpoint
of statistical practice and theory, it is interesting to ask whether estimation is still
possible when noise removal is not, but we will not address such issues here.

2. Summary

The next section contains several preliminary definitions and results that will
be used throughout the paper. Section 4 describes two denoising procedures. The
consistency of these procedures is established in Theorems 1 and 2 under a bound-
edness assumption on the noise. It is shown in Section 5 that, in a variety of
settings, consistent denoising is not possible when this assumption is significantly
relaxed. Proofs of the positive (consistency) results are given in Section 6; proofs
of the negative results are given in Section 7.

3. Preliminaries

Throughout this paper we assume that F : Λ → Λ is an invertible map of a
compact set Λ ⊆ R

d. Of primary interest are maps that possess an elementary form
of sensitive dependence on initial conditions. Recall that F is said to be expansive
if there exists ∆ > 0 such that for every pair of vectors x, x′ ∈ Λ with x 6= x′,

sup
s∈Z

|F sx− F sx′| > ∆.

The constant ∆ is called a separation threshold for F . If F is expansive then, begin-
ning from any two distinct initial states, the corresponding bi-infinite trajectories
of F will, at some (possibly negative) time i be at least ∆ apart. Note that the
separation threshold ∆ does not depend on x or x′.

Definition: Let F be an expansive map with separation threshold ∆ > 0. The
separation time for x 6= x′ is

s(x, x′) = min{|s| : |F sx− F sx′| > ∆}.

For each α > 0 define the separation horizon

H(α) = sup{ s(x, x′) : |x− x′| ≥ α }.

Note that α ≤ α′ implies H(α) ≥ H(α′). If H(α) < ∞ for every α > 0, then then
F will be said to have finite separation horizon.

Proposition 1. If F has finite separation horizon then the inverse function

(2) H−1(k) = inf{α > 0 : H(α) ≤ k}

tends monotonically to zero as k → ∞.
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Proof: The monotonicity of H−1 follows from that of H . If H−1(k) ≥ α0 > 0 for
every k, then H(α) = +∞ for α < α0.

If F : Λ → Λ is invertible and continuous, then F−1 is continuous and F
is a homeomorphism (see, e.g. [36]). An elementary argument shows that every
expansive homeomorphism has finite separation horizon.

Lemma 1. If F : Λ → Λ is an expansive homeomorphism, then F has finite
separation horizon.

Proof: Let ∆ > 0 be a separation threshold for F . If H(α) = +∞ for some α > 0
then there exist pairs of states (xn, x

′
n) ∈ Λ×Λ, n ≥ 1, such that |xn −x′n| ≥ α for

each n and s(xn, x
′
n) → ∞. As Λ is compact, there exist integers n1 < n2 < · · · and

points x, x′ ∈ Λ such that xnk
→ x and x′nk

→ x′. Clearly |x− x′| ≥ α. Moreover,
as F is continuous and s(xnk

, x′nk
) → ∞, for each m ≥ 1,

max
|s|≤m

|F sx− F sx′| = lim
k→∞

max
|s|≤m

|F sxnk
− F sx′nk

| ≤ ∆.

It follows that H(α) ≥ s(x, x′) = ∞, which is a contradiction.

3.1. Ergodic Transformations. Ergodic Transformation: Let µ be a
probability measure on the Borel subsets of Λ. A map F : Λ → Λ is said to
preserve µ if µ(F−1B) = µ(B) for each Borel set B ⊆ Λ. A µ-preserving map F
is said to be ergodic if F−1B = B implies µ(B) ∈ {0, 1}, i.e. every F -invariant set
has µ-measure zero or one.

The ergodic theorem generalizes the ordinary law of large numbers and is an
important tool in understanding the asymptotic behavior of dynamical systems. It
states that the time average of a real-valued measurement along the trajectory of
an ergodic map F will converge to the space average of that measurement.

Theorem A (Ergodic Theorem). If F : Λ → Λ is µ-preserving and ergodic,

and f : Λ → R is such that
∫

|f | dµ < ∞, then n−1
∑n−1

i=0 f(F ix) →
∫

f dµ with
probability one and in mean.

4. Consistent Denoising

In this section we describe two consistent denoising methods for deterministic
time series, and provide a preliminary analysis of their theoretical performance.

4.1. Smoothing Algorithm D. We first describe a denoising method orig-
inally proposed by Lalley [24], called Smoothing Algorithm D. Let the available
data be a sequence of vectors y0, . . . , yn defined as in (1), and let k be a positive
integer less than logn. For each l = k, . . . , n− k define the index set

(3) An(l, k) = { j : |yj+r − yl+r| ≤ 3∆/5 for |r| ≤ k }.

Note that l ∈ An(l, k) so that An(l, k) is always non-empty. For l = k, . . . , n − k
define the denoising estimate

(4) x̂l,n =
1

|An(l, k)|

∑

j∈An(l,k)

yj

of xl: set x̂l,n = 0 for other values of l. To see how the estimate is constructed, let
w(j, k) = (yj−k, . . . , yj+k) contain the observations in a window of length 2k + 1
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centered at yj . The estimate x̂l,n of xl is obtained by averaging all those values yj

for which w(j, k) is close, on a term by term basis, to w(l, k).

Theorem 1. Let F be an expansive map with separation threshold ∆ > 0 and
finite separation horizon. Suppose that |εi| ≤ ∆/5 for each i ≥ 0. If k → ∞ and
k/ logn→ 0 then

1

n− 2k

n−k
∑

i=k

|x̂i,n − xi| → 0 as n→ ∞

with probability one for every initial vector x ∈ Λ.

The in-probablity consistency of Smoothing Algorithm D was first established
in Theorem 1 of [24] under the condition that F is a C2-diffeomorphism and Λ is
a hyperbolic attractor (or the basin of attraction of such a set). A more general
result for expansive homeomorphisms is stated in Theorem 2 of [25]. Here these
conditions are replaced by the weaker assumption of finite separation horizon, and
in-probability convergence is strengthened to convergence with probability one. The
proof of Theorem 1 is given in Section 6.

4.2. Implementation. A naive implementation of smoothing algorithm D
has running time O(n2), where n denotes the number of available observations.
More efficient, approximate, versions of the algorithm with running time O(n logn)
are investigated in [25]. In simulations, Algorithm D and its approximations have
been used to successfully remove noise from trajectories of the logistic map, the
Hénon attractor, and Smale’s solenoid. Informal studies have illustrated the fail-
ure of the algorithm to remove uniform noise whose support is comparable to the
diameter of the associated attractor. These simulations lend empirical support to
Theorem 1 and the negative results discussed below.

4.3. Preliminary Analysis. Smoothing Algorithm D removes observation
noise from the trajectory of an expansive map by judicious averaging. To under-
stand why Theorem 1 holds, fix l between k and n− k. Together (1) and (4) imply
that

(5) |xl − x̂l,n| ≤

∑

j∈An(l,k) |xl − xj |

|An(l, k)|
+

|
∑

j∈An(l,k) εj |

|An(l, k)|
.

The first term on the right hand side of (5) controls the bias of the estimate x̂l, and
the second controls its stochastic variation. Regarding the bias, note that

j ∈ An(l, k) ⇒ |yj+r − yl+r| ≤ 3∆/5 for 1 ≤ |r| ≤ k

⇒ |xj+r − xl+r | ≤ ∆ for 1 ≤ |r| ≤ k

⇒ k ≤ H(|xl − xj |) ⇒ |xl − xj | ≤ H−1(k).

Thus (5) implies that

(6) |xl − x̂l,n| ≤ H−1(k) +
|
∑

j∈An(l,k) εj |

|An(l, k)|
.

This yields the following bound on the average denoising error:

(7)
1

n− 2k

n−k
∑

l=k

|xl − x̂l,n| ≤ H−1(k) +
1

n− 2k

n−k
∑

l=k

|
∑

j∈An(l,k) εj |

|An(l, k)|
.
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The upper bound H−1(k) on the average bias depends on the map F and the win-
dow width k, but is independent of n and l. Moreover, H−1(k) → 0 by Proposition
1, as F has finite separation horizon and k → ∞. Analysis of the stochastic vari-
ation is complicated by the fact that the εi are not independent when summed
over the random index set An(l, k). The details are given in the appendix (see in
particular inequality (24) and Lemma 4).

The analysis above suggests a more adaptive version of Smoothing Algorithm
D that offers improved performance under somewhat stronger conditions. Fix l for
the moment and consider inequality (6). It can be seen that the window width k
plays a role analogous to inverse bandwidth in kernel type estimators. Monotonicity
of H−1 ensures that the bias of x̂l,n decreases as k increases. On the other hand, as
k increases, the index set An(l, k) gets smaller, and the variability of the estimate
will increase as one averages over fewer noise variables εj . One modification of
Smoothing Algorithm D, analogous to local bandwidth selection, is to adaptively
select a window width for each location l. This is considered in more detail below.

4.4. Denoising with a Variable Length Window. Here new denoising
estimates x̃l,n are described. Let the index sets An(l, k) be defined as in (3). The
new estimates are based on windows whose widths are chosen adaptively to ensure
that |An(l, k)| is sufficiently large. For l = logn, . . . , n− logn define

(8) kl,n = max{1 ≤ k ≤ logn : |An(l, k)| ≥ n/ logn},

and set kl,n = 0 if |An(l, 1)| < n/ logn. For the same values of l, define denoising
estimates

(9) x̃l,n =

∑

j∈An(l,kl,n) yj

|An(l, kl,n)|
.

Set x̃l,n = 0 if kl,n = 0. Strong consistency of the estimates x̃l,n requires that the
trajectory under study exhibit a natural recurrence property.

Definition: A point x ∈ Λ with trajectory xi = F ix will be called strongly
recurrent if there is a finite cover O of Λ such that (i) every O ∈ O has diameter
less than ∆/5, and (ii) for each r ≥ 1 and each choice of sets O1, . . . , Or ∈ O either

(10)

∞
∑

i=0

I{xi ∈ O1, . . . , xi+r−1 ∈ Or} < ∞

or

(11) lim inf
n→∞

1

n

n−1
∑

i=0

I{xi ∈ O1, . . . , xi+r−1 ∈ Or} > 0.

Conditions (10) and (11) ensure that if the forward trajectory of F starting from x
visits the product set O1 ×· · ·×Or infinitely often, then it does so a non-negligible
fraction of the time.

Recall that F is said to preserve a probability measure µ on the Borel subsets
of Λ if µ(F−1B) = µ(B) for each Borel set B ⊆ Λ, and that µ-preserving map
F is said to be ergodic if F−1B = B implies µ(B) ∈ {0, 1}, i.e. every F -invariant
set has µ-measure zero or one. Strongly recurrent points are the norm in measure
preserving systems.
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Proposition 2. If F preserves a measure ν on Λ and is ergodic then ν-almost
every x ∈ Λ is strongly recurrent.

Proof: Let O be any finite open cover of Λ by sets having diameter less than
∆/5. Fix sets O1, . . . , Or ∈ O. Note that xi ∈ O1, . . . , xi+r−1 ∈ Or if and only
if xi = F ix ∈ O′ where O′ = ∩r

j=1F
−j+1Oj . If ν(O′) > 0, the ergodic theorem

ensures that

lim
n→∞

1

n

n−1
∑

i=0

I{xi ∈ O1, . . . , xi+r−1 ∈ Or} = lim
n→∞

1

n

n−1
∑

i=0

I{F ix ∈ O′} = ν(O′) > 0

with ν-probability one. On the other hand, if ν(O′) = 0 then
∑∞

i=1 ν(F
−iO′) =

0 and consequently ν{F ix ∈ O′ infinitely often} = 0 by the first Borel Cantelli
lemma.

Theorem 2. Let F be an expansive map with separation threshold ∆ > 0 and
finite separation horizon. If |εi| ≤ ∆/5 for each i ≥ 0, then for every strongly
recurrent initial vector x ∈ X,

max{ |x̃l,n − xl| : logn ≤ l ≤ n− logn } → 0

with probability one as n tends to infinity.

Performance bounds of this sort for Smoothing Algorithm D are established in
[24] under the stronger assumption that F is a C2-diffeomorphism and that Λ is
an Axiom A basic set.

5. Negative Results

One distinctive (and restrictive) feature of Theorems 1 and 2 is the assump-
tion that the noise εi is bounded in absolute value by a fraction of the separation
threshold ∆. In light of the popularity and widespread study of Gaussian noise,
it is natural to ask if denoising is possible when the εi are normally distributed,
perhaps under some constraints on the component-wise variances. Surprisingly, the
answer is often ”no”. Lalley [24] shows that for many smooth dynamical systems no
scheme can successfully remove Gaussian noise, even in the weak sense of Theorem
1. In this section we extend and generalize this result. Our proof covers the Gauss-
ian case, generalizations of the Gaussian case to noise distributions supported on
all of R

d (stated in [25]), and the case of noise distributions with bounded support.
Suppose, as in the previous section, that {xi = F ix : i ∈ Z} is the trajectory

of a fixed initial vector x ∈ Λ, and that observations of xi are subject to additive
noise, and can be modeled as random vectors

(12) yi = xi + εi i ∈ Z

where . . . , ε−1, ε0, ε1, . . . ∈ R
d are independent, mean-zero random vectors having

a common distribution η on R
d. We assume in what follows that the εi are defined

on a common underlying probability space (Ω,F , P ). Of interest here are several
related problems, which may be informally expressed as follows.

Problem 1: Identify the initial state x ∈ Λ from observation of
the infinite sequence {yi : i ∈ Z}.

Problem 2: Consistently identify the initial state x ∈ Λ from
observations y−n, . . . , yn, in the limit as n→ ∞.
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Problem 3: Estimate the states x1, . . . , xn ∈ Λ from observa-
tion of y1, . . . , yn.

It is evident that Problem 1 is easier than Problem 2, as in the former we have
access to all the available data at the outset. It is also clear that an answer to
Problem 2 might be used, in conjunction with shifts of the observations, to answer
Problem 3. Problem 3 is just the denoising problem considered in the previous
section.

It is shown in Theorem 3 below that for distinguished states x and noise distri-
butions η, neither Problem 1 nor Problem 2 has a solution. This negative result is
then used to establish Theorem 4, which states that, for suitable dynamical maps
F and noise distributions η, consistent denoising is impossible.

5.1. Distributional Assumptons. The negative results in Theorems 3 and
4 require that the distribution η of εi’s be smooth and has sufficiently large support.
Here we give a precise statement of these conditions.

Suppose first that η is absolutely continuous, having a density f with respect
to d-dimensional Lebesgue measure λ. Recall that if A is a Borel subset of R

d,
u ∈ R

d is any vector and r > 0, then

A+ u = {v + u : v ∈ A} and Ar = {u : |u− v| < r for some v ∈ A}

are also Borel subsets of R
d. For v ∈ R

d and r > 0, let B(v, r) = {u : |u−v| < r} be
the Euclidean ball of radius r centered at v. Let S = {v : f(v) > 0} be the support
of the density f of η. Let S and So denote the closure and interior of S, respectively,
and let ∂S = S \ So be its boundary. Finally, let ρ = max{|u − v| : u, v ∈ Λ} be
the diameter of Λ. Note that ρ is finite as Λ is compact. We make the following
assumptions concerning η:

(13) lim sup
|z|→0

1

|z|

∫

S∩(S−z)

∣

∣

∣

∣

log
f(w + z)

f(w)

∣

∣

∣

∣

f(w) dw < ∞,

(14) lim sup
r↘0

1

r
η((∂S)r) < ∞, and

(15) S ⊇ B(0, 3ρ/2).

Assumption (13) states that log f is Lipschitz continuous on the average. Assump-
tion (14) says that the measure of those points within distance r of ∂S decreases at
least linearly with r. Assumption (15) states that S contains a sphere whose radius
is significantly larger than the diameter ρ of Λ. It is enough that assumptions (14)
and (15) hold for some version f of dη/dλ. Note that (14) and (15) are trivially
satisfied if S = R

d.

Example 1: If η is multivariate Gaussian and has a covariance matrix of full rank,
then assumptions (14) and (15) are immediate, and one may readily verify that
assumption (13) holds.

Example 2: Suppose that η has a density f with compact support S satisfying
(15), and suppose further that f is Lipschitz continuous on S. Then f is bounded
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away from zero and infinity on S and one may verify that (13) holds. Satisfaction
of (14) requires, in addition, that the boundary of S be regular. To quantify this,
let N(∂S, r) denote the least number of Euclidean balls of radius r > 0 needed to
cover ∂S. If N(∂S, r) ≤ c (1/r)d−1 for some c <∞ and each 0 < r < r0, then

η((∂S)r) ≤ c′ sup
x∈S

|f(x)|N(∂S, r) · rd ≤ c′c sup
x∈S

|f(x)| · r

for a suitable normalizing constant c′, and (14) follows. The bound N(∂S, r) ≤
c (1/r)d−1 implies, in particular, that the box counting dimension of ∂S is d −
1. Assumption (14) is satisfied, for example, if η is the uniform distribution on
B(0, 3ρ/2), or the uniform distribution on a cube of side length 3ρ/2 centered at
the origin.

5.2. Homoclinic Pairs. Let x and x′ be distinct initial states in Λ, with
corresponding trajectories {xi = F ix : i ∈ Z} and {x′i = F ix′ : i ∈ Z}. Suppose
that we wish to distinguish x and x′ on the basis of their trajectories. In the absence
of noise, and with knowledge of F , this is always possible: from observation of any xi

one can recover x, and from observation of any x′j one can recover x′. However, when
observation noise is present, this simple inversion process is no longer applicable.
Recall that yi = xi + εi, i ∈ Z, are noisy observations of the trajectory of x. Let

(16) y′i = x′i + εi i ∈ Z

be observations of the trajectory of x′, corrupted by the same additive noise se-
quence. Define X to be the set of all bi-infinite sequences v = . . . , v−1, v0, v1, . . .
with vi ∈ R

d, and let S be the product sigma field for X generated by the finite
dimensional Borel cylinder sets. For fixed x, x′ the sequences

y = (. . . , y−1, y0, y1, . . .) and y′ = (. . . , y′−1, y
′
0, y

′
1, . . .)

are random elements of (X ,S), defined on the underlying probability space (Ω,F , P ).
Consider the following special case of Problem 1 above.

Question 1: Is there a measurable function φ : X → R
d such

that φ(y) = x and φ(y′) = x′ with probability one?

Intuitively, it will be more difficult to identify x and x′ in the presence of noise
if their trajectories stay close to each other across time. The notion of a strongly
homoclinic pair is one way of making this precise.

Definition: A pair (x, x′) of distinct states in Λ is said to be strongly homoclinic
for F if their bi-infinite trajectories are such that

(17)
∑

i∈Z

|F ix− F ix′| < ∞

As noted in [24], homoclinic pairs exist and are common in many smooth
dynamical systems. It is worth noting that the existence of a separation threshold
does not preclude the existence of homoclinic pairs, as the separation of F ix and
F ix′ need only occur for one value of i. Theorem 7 below shows that the answer
to Question 1 is ”no” when x and x′ are strongly homoclinic. The proof is given in
Section 7.
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Theorem 3. Suppose that the distribution η of εi satisfies conditions (13)–(15).
If x and x′ are strongly homoclinic, then for every measurable function φ : X → R

d,

E[ |φ(y) − x | + |φ(y′) − x′ | ] > 0.

Remark: Among the functions φ included in the theorem are those that incor-
porate knowledge of the dynamical map and the two possible initial states. Thus
even with knowledge of {x, x′} and F , and even with access to the entire noisy
trajectory, one cannot recover the initial state of the system with certainty.

5.3. Negative Results for Denoising. Suppose now that F : Λ → Λ pre-
serves a Borel measure µ on Λ and is ergodic. Let X ∼ µ be independent of {εi}
and define

(18) Xi = F iX, Yi = Xi + εi i ∈ Z

where the εi are i.i.d. with distribution η. Then {(Xi, Yi) : i ∈ Z} is a stationary
ergodic process taking values in R

d ×R
d. Our principal negative result applies to

dynamical systems that admit a homoclinic coupling.

Definition: A µ preserving transformation F : Λ → Λ admits a homoclinic cou-
pling if on some probability space one may define random vectors X and X ′ such
that

(1) X and X ′ take values in Λ
(2) X and X ′ have distribution µ
(3) (X,X ′) is strongly homoclinic for F with positive probability.

For systems admitting a homoclinic coupling, strongly homoclinic pairs are
relatively common. When a homoclinic coupling exists we may ensure, by means
of a standard product construction, that the pair (X,X ′) is defined on the same
probability space as, and is independent of, the noise variables εi. It is shown in [24]
that many common models of smooth dynamical systems, for example uniformly
hyperbolic (and Axiom A) C2-diffeomorphisms, admit homoclinic couplings.

Definition: A denoising procedure is a collection of measurable maps ψn,i :
(Rd)n → R

d, with n ≥ 1, and i = 1, . . . , n. The procedure {ψn,i} is weakly
consistent for a process {(Xi, Yi)} if

E

[

1

n

n
∑

i=1

|ψn,i(Y1, . . . , Yn) −Xi|

]

→ 0

as n tends to infinity.

Theorem 4. Suppose that F : Λ → Λ is a µ-preserving ergodic transformation
that admits a homoclinic coupling (X,X ′). If the distribution η of εi satisfies con-
ditions (13) - (15) then no denoising procedure is weakly consistent for the process
{(Xi, Yi)} defined in (18).

Proof: Assume, without loss of generality, that X is the first component of a
homoclinic coupling (X,X ′) for F . Let X ′

i = F iX ′ and Y ′
i = X ′

i + εi for i ∈ Z. Fix
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a denoising scheme {ψn,i} and assume by way of contradiction that

(19) E

[

1

n

n
∑

i=1

|ψn,i(Y1, . . . , Yn) −Xi|

]

→ 0.

The joint distribution of {(Xi, Yi)} is the same as that of {(X ′
i, Y

′
i )} and, therefore

(19) implies that

(20) E

[

1

n

n
∑

i=1

|ψn,i(Y
′
1 , . . . , Y

′
n) −X ′

i |

]

→ 0.

For each n ≥ 1 define

φn(v−n, . . . , vn) =
1

n

n
∑

i=1

ψn,i(v1−i, . . . , vn−i).

The stationarity of {(Xi, Yi)} implies that

E|φn(Y−n, . . . , Yn) − X | = E

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ψn,i(Y1−i, . . . , Yn−i) − X

∣

∣

∣

∣

∣

≤
1

n

n
∑

i=1

E|ψn,i(Y1−i, . . . , Yn−i) − X |

=
1

n

n
∑

i=1

E|ψn,i(Y1, . . . , Yn) − Xi |,

which tends to zero by (19). An analogous argument using (20) shows that

E|φn(Y ′
−n, . . . , Y

′
n) − X ′ | → 0.

If H is the event that (X,X ′) is strongly homoclinic for F then, letting vj
i =

vi, . . . , vj ,

0 = lim
n→∞

E
[

|φn(Y n
−n) − X | + |φn(Y

′n
−n) − X ′|

]

≥ lim inf
n→∞

E
[

( |φn(Y n
−n) − X | + |φn(Y

′n
−n) − X ′| ) · IH

]

.

It follows from Theorem 3 and the assumption that P (H) > 0 that the last term
above is positive. As this leads to an evident contradiction, (19) cannot hold, and
the proof is complete.

5.4. Some Refinements. The proof of Theorem 4 shows that the values
of X1, X2, . . . are not estimable, even if one is given access to the entire sequence
. . . , Y−1, Y0, Y1, . . . generated by X and the noise. In particular, there is no function
ψ : X → R

d such that

E

[

1

n

n
∑

i=1

|ψ(. . . , Yi−1, Yi, Yi+1, . . .) − Xi |

]

→ 0

as n tends to infinity.
Another question that arises is how Theorem 4 bears on the problem of denois-

ing a trajectory arising from a fixed (non-random) initial vector x ∈ Λ. It follows
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immediately that if xi = F ix and yi = xi + εi, then there is no denoising procedure
such that

E

[

1

n

n
∑

i=1

|ψn,i(y1, . . . , yn) − xi |

]

→ 0

for µ-almost every initial state x ∈ Λ. For denoising procedures satisfying a natural
fading-memory property, this conclusion may be strengthened. Let us say that a
procedure {ψn,i} has fading memory if, with Yi defined as in (18), for each k ≥ 1,

lim
n→∞

E

[

1

n− k

n
∑

i=k+1

|ψn−k,i−k(Yk+1, . . . , Yn) − ψn,i(Y1, . . . , Yn) |

]

= 0

Averaging methods such as Smoothing Algorithm D posess the fading memory
property. Under the conditions of Theorem 4, it can be shown that if {ψn,i} has
fading memory, then

lim sup
n→∞

E

[

1

n

n
∑

i=1

|ψn,i(y1, . . . , yn) − xi |

]

> 0

for µ-almost every initial state x ∈ Λ. Thus successful denoising is not possible
starting from almost any initial state.

6. Proof of Theorems 1 and 2

6.1. McDiarmid’s Inequality. McDiarmid’s inequality is a special case of
what is known as the concentration of measure phenomena. The basic idea is the
following. If f(x1, . . . , xn) be a function that does not depend too strongly on the
value of any single argument, and if X1, . . . , Xn are independent random variables,
then f(X1, . . . , Xn) will be close to Ef(X1, . . . , Xn) with high probability. Put
another way, the distribution of f(Xn

1 ) will be concentrated around its mean. For
a proof and discussion of the following result, see [28, 16].

Theorem B (McDiarmid). Let X1, . . . , Xn be independent random variables
taking values in a set A ⊆ R and let f : An → R. For i = 1, . . . , n define

(21) vi = sup |f(xn
1 ) − f(xi−1

1 , x′i, x
n
i+1)|,

where the supremum is over all numbers x1, . . . , xn, x
′
i ∈ A. Then for every t > 0

(22) P{|f(Xn
1 ) −Ef(Xn

1 )| > t} ≤ 2 exp

{

−2t2
∑n

i=1 v
2
i

}

.

6.2. Analysis of Stochastic Variability. Here we derive exponential in-
equalities for the final term in (6), which governs the stochastic variability of the
estimate x̂l,n. Define Un(l, k) =

∑

j∈An(l,k) εj .

Lemma 2. If H(∆/5) ≤ k < n/2 and k ≤ l ≤ n− k then

Un(l, k) =

n−k
∑

j=k

εj I{|xl − xj | ≤ ∆/5}
∏

1≤|s|≤k

I{|yl+s − yj+s| ≤ 3∆/5}

Proof: Note that Un(l, k) can be written in the form

Un(l, k) =

n−k
∑

j=k

εj

∏

|s|≤k

I{|yl+s − yj+s| ≤ 3∆/5}
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Fix j and define the quantities

W0 =
∏

|s|≤k

I{|yl+s − yj+s| ≤ 3∆/5}

and

W1 = I{|xl − xj | ≤ ∆/5}
∏

1≤|s|≤k

I{|yl+s − yj+s| ≤ 3∆/5}.

It suffices to show that W0 = W1. If |xl −xj | ≤ ∆/5 then |yl − yj | ≤ 3∆/5 and the
desired equality is immediate. Suppose then that |xl − xj | > ∆/5, in which case
W1 = 0. If in addition W0 = 1, then |xl+s − xj+s| ≤ ∆ for |s| ≤ k, which implies
that |xl − xj | ≤ H−1(k) ≤ ∆/5. As this is a contradiction, W0 must be zero, and
the lemma is established.

Lemma 3. Let L = ∆/5 be an upper bound on |εi|. Fix n ≥ 1 and integers l, k
satisfying the conditions of Lemma 2. Then for every t > 0,

P{|Un(l, k)| > t} ≤ 2 exp

{

−2t2

nL2(2k + 1)2
+

4t

nL(2k + 1)

}

,

and in particular

P{|Un(l, k)| > t} ≤ 2 exp

{

−t2

2nL2(2k + 1)2

}

for t ≥ 2L(2k + 1).

Proof: Define Ũ by excluding indices j = l − k, . . . , l + k from the sum defining
Un(l, k), more precisely

Ũ =





l−k−1
∑

j=k

+

n−k
∑

j=l+k+1



 εj I{|xl − xj | ≤ ∆/5}
∏

1≤|s|≤k

I{|yl+s − yj+s| ≤ 3∆/5},

with the understanding that the first sum is zero if l ≤ 2k, and the second sum is
zero if l ≥ n − 2k. Then |Un(l, k) − Ũ | ≤ (2k + 1)L, and as εj is independent of

the other products in the j’th summand, EŨ = 0. Suppose for the moment that
the values of εl−k, . . . , εl+k have been fixed. In this case yl−k, . . . , yl+k are fixed,

and Ũ is a function of n − (2k + 1) independent random variables Θ = {εj : j =

1, . . . , l−k−1, l+k+1, . . . , n}. Let f be such that Ũ = f(Θ). Changing any εj ∈ Θ

will change yj , and can affect at most 2k + 1 terms in the sum defining Ũ ; thus

the coefficient vj defined in (21) is at most (2k + 1)L. As E(Ũ | εl+k
l−k) = EŨ = 0,

McDiarmid’s inequality implies that

P (|Ũ | > t | εl+k
l−k) ≤ 2 exp







−2t2
(

∑l−k−1
j=k +

∑n−k
j=l+k+1

)

((2k + 1)L)2







≤ 2 exp

{

−2t2

n (2k + 1)2 L2

}

.

Taking expectations, the same inequality holds for P{|Ũ | > t}. The first of the

stated inequalities follows from the fact that |Un(l, k) − Ũ | ≤ (2k + 1)L, and the
second follows from the first by a straightforward calculation.
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Definition: Let Vn(l, k) = |An(l, k)|−1
∑

j∈An(l,k) εj be the stochastic term ap-

pearing in (6). For each m ≥ 1 and 1 ≤ k ≤ n/2 define

Ln(m, k) = {l : |An(l, k)| ≥ m and k ≤ l ≤ n− k}

to be the set of indices l for which at least m length-k matches are found.

As an immediate corollary of Lemma 3 we may derive bounds on the probability
that one of the terms Vn(l, k) with |An(j, k)| ≥ m exceeds a given constant δ > 0.
In particular, treating a maximum over the empty set as zero, we find that

P

{

max
l∈Ln(m,k)

|Vn(l, k)| > δ

}

= P

{

max
l∈Ln(m,k)

|Un(l, k)|

|An(l, k)|
> δ

}

≤ P

{

max
l∈Ln(m,k)

|Un(l, k)| > δm

}

≤ n · max
l
P{|Un(l, k)| > δm}

≤ 2n exp

{

−2δ2m2

nL2(2k + 1)2
+

4δm

nL(2k + 1)

}

(23)

≤ 2n exp

{

−δ2m2

2nL2(2k + 1)2

}

if δm ≥ 2L(2k + 1).(24)

Inequality (24) is used below, in conjunction with the Borel Cantelli Lemma, to
establish the almost sure consistency of the estimates x̂l,n and x̃l,n. Neither result
makes full use of the inequality, which shows, for example, that for each α ∈ (0, 1/2),

(25) nα · max
l∈Ln(m,k)

|
∑

j∈An(l,k) εj |

|An(l, k)|
→ 0

with probability one, provided that k = O(log n) and m ≥ nβ with β ∈ (α+1/2, 1).
The next lemma appears in ([24]); we include the proof for completeness.

Lemma 4. If k = o(logn) then for every ε > 0,

1

n

n
∑

j=0

I{|An(j, k)| ≤ n1−ε} → 0 as n→ ∞.

Proof: As Λ is compact, there exists a finite set set S ⊆ Λ, such that

max
u∈Λ

min
v∈S

|u− v| ≤
4

10
.

Let S2k+1 be the collection of sequences s = (s−k, · · · , sk) with si ∈ S. For each
x ∈ Λ there is some s ∈ S2k+1, such that max|i|≤k |si − F ix| < 4/10. Thus if we
define

Jn(s) =

{

j : 0 ≤ j ≤ n and max
|i|≤k

|si − F i+jx| ≤
4

10

}

s ∈ S2k+1

then each integer j = k, . . . , n−k is in contained in at least one set Jn(s). Moreover,
if j1, j2 ∈ Jn(s) then

max
|i|≤k

|xj1+i − xj2+i| <
4

5
and max

|i|≤k
|yj1+i − yj2+i| <

34

5
,
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and therefore j1 ∈ An(j2, k) and j2 ∈ An(j1, k). It follows from this last observation
that |An(j, k)| ≤ N and j ∈ Jn(s) imply |Jn(s)| ≤ N . Fix 0 < ε < 1. As
k = o(log n), |S2k+1| = |S|2k+1 = o(nε/2). Let

∑

s denote the sum over S2k+1.

When n sufficiently large,
n

∑

j=0

I{|An(j, k)| ≤ n1−ε} ≤

n
∑

j=0

∑

s

I{|An(j, k)| ≤ n1−ε}I{j ∈ Jn(s)}

≤
∑

s

n
∑

j=0

I{|Jn(s)| ≤ n1−ε}I{j ∈ Jn(s)}

=
∑

s

|Jn(s)| I{|Jn(s)| ≤ n1−ε}

≤
∑

s

|Jn(s)|I
{

|Jn(v)| ≤ n1−ε/2 · |S|−2k−1
}

≤ n1− ε
2 .

As the last term above is o(n) the result follows.

Proof of Theorem 1: Fix β ∈ (1/2, 1). The stochastic term in inequality (7) can
be bounded as follows:

1

n− 2k

n−k
∑

i=k

|
∑

j∈An(l,k) εj |

|An(l, k)|
≤ max

l∈Ln(nβ ,k)

|
∑

j∈An(l,k) εj |

|An(l, k)|

+
∆

5(n− 2k)

n−k
∑

i=k

I{|An(i, k)| ≤ nβ}

Inequality (24) ensures that the first term on the right hand side tends to zero with
probability one. The second term tends to zero by Lemma 4.

Proposition 3. Let the window widths kl be defined as in (8). If x is strongly
recurrent then min{kj,n : logn ≤ j ≤ n− logn} → ∞ as n→ ∞.

Proof: Let O be a given finite cover of Λ by sets having diameter less than ∆/5.
Fix K ≥ 1 and define γ to be the set of all Cartesian products O−k ×· · ·×Ok with
1 ≤ k ≤ K and such that each Oi ∈ O. Let Ck denote any product of 2k + 1 sets
from O. As x is assumed to be strongly recurrent, γ = γ0 ∪ γ1 where

γ0 =
K
⋃

k=1

{

Ck :
∞
∑

i=k

I{xi+k
i−k ∈ Ck} <∞

}

γ1

=
K
⋃

k=1

{

Ck : lim inf
n

1

n

n
∑

i=k

I{xi+k
i−k ∈ Ck} > 0

}

As γ0 is finite, there exists an integer N < ∞ such that xj+k
j−k ∈ Ck ∈ γ1 for every

k ≤ K and every j ≥ logN . Moreover, if xi+k
i−k and xj+k

j−k lie in the same set Ck ∈ γ1

and logn ≤ i, j ≤ n− logn then it is clear that i ∈ An(j, k). Thus when n ≥ N ,

|An(j, k)| ≥ min
Ck∈γ1

n−k
∑

i=k

I{xi+k
i−k ∈ Ck} for k ≤ K and j = logn, . . . , n− logn.
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The definition of γ1 ensures that |An(j, k)| ≥ n/ logn for n sufficiently large and
k, j as above. Therefore lim infn minj kj,n ≥ K and the result follows as K was
arbitrary.

Proof of Theorem 2: Let κ = logn and m = n/ logn. It follows from inequality
(6) and the definition of kl,n that

max
κ≤l≤n−κ

|xl − x̂l,n| ≤ max
κ≤l≤n−κ

H−1(kl,n) + max
κ≤l≤n−κ

|
∑

j∈An(l,kl,n) εj |

|An(l, kl,n)|

≤ H−1

(

min
κ≤l≤n−κ

kl,n

)

+ max
1≤k≤κ

max
l∈Ln(m,k)

|
∑

j∈An(l,k) εj |

|An(l, k)|

If x is strongly recurrent then the first term on the right hand side tends to zero by
an application of Proposition 1 and Proposition 3. Inequality (24) and a standard
Borel-Cantelli argument show that the second term tends to zero with probability
one.

7. Proof of Theorem 3

Throughout this section (x, x′) is a fixed strongly homoclinic pair for F . Define
xi = F ix, x′i = F ix′, yi = xi + εi and y′i = x′i + εi as above. As (x, x′) is strongly
homoclinic,

(26)
∑

i∈Z

|xi − x′i| < ∞.

Lemma 5. If conditions (14) and (15) hold, then there exist sets A∗
i ⊆ R

d,
i ∈ Z, such that

a. A∗
i ⊆ (S + xi) ∩ (S + x′i) for each i, and

b. P{yi ∈ A∗
i and y′i ∈ A∗

i for all i ∈ Z} > 0.

Proof: For each i ∈ Z define Ai = (S + xi) ∩ (S + x′i). Note that

P{yi 6∈ Ai or y′i 6∈ Ai} ≤ P{yi 6∈ Ai} + P{y′i 6∈ Ai}

= P{εi 6∈ (S + (x′i − xi))} + P{εi 6∈ (S + (xi − x′i))}

= η(S \ (S + (x′i − xi)) ) + η(S \ (S + (xi − x′i)) )

≤ 2 η( (∂S)|xi−x′

i| )

Assumption (14) implies that η( (∂S)|xi−x′

i| ) ≤ c |xi −x
′
i| for some constant c <∞,

and it then follows from (26) that
∑

i∈Z

P{yi 6∈ Ai or y′i 6∈ Ai} < ∞.

By an application of the Borel Cantelli Lemma, there exists an integer N such that

(27) P{yi ∈ Ai and y′i ∈ Ai for all |i| > N} ≥ 1/2.

Define A∗
i = Ai for |i| > N . Clearly (a) holds for each |i| > N .

It remains to select sets A∗
i for |i| ≤ N . To this end, let v∗ ∈ R

d be any vector
such that for some δ > 0

sup
v∈Λ

|v − v∗| ≤ ρ− δ
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and define A∗
i = B(v∗, (ρ+ δ)/2) for |i| ≤ N . Then for each v ∈ Λ,

sup
u∈(A∗

i
−v)

|u| ≤
ρ+ δ

2
+ |v∗ − v| <

3

2
ρ,

which implies that (A∗
i − v) ⊆ B(0, 3ρ/2) ⊆ S. Thus (a) holds for |i| ≤ N .

Moreover, for each such i,

P{yi ∈ A∗
i and y′i ∈ A∗

i } = P{εi ∈ (A∗
i − xi) ∩ (A∗

i − x′i)}

= η((A∗
i − xi) ∩ (A∗

i − x′i)).

The inequality | |v∗−xi|−|v∗−x′i| | ≤ |xi−x
′
i| ≤ ρ implies that (A∗

i −ui)∩(A∗
i −vi)

has positive Lebesgue measure. As the intersection is also contained in S, the last
probability above is greater than zero. Conclusion (b) of the lemma follows from
this observation and (27), as the εi’s are independent.

Let Q and Q′ be probability measures on (X ,S) equal to the respective prob-
ability distributions of the random elements y and y′. Using the sets A∗

i from
Lemma 5, define the Cartesian product

(28) Γ =
∏

i∈Z

A∗
i ∈ S.

It follows from part (b) of Lemma 5 that Q(Γ), Q′(Γ) > 0.

Lemma 6. The measures Q and Q′ are mutually absolutely continuous on Γ:
for each B ∈ S contained in Γ, Q(B) = 0 if and only if Q′(B) = 0.

Proof: Let Sn ⊆ S denote the sigma field generated by the coordinate functions
πi(x) = xi, with |i| ≤ n. Let Qn and Q′

n be the restrictions of Q and Q′ to Sn,
respectively. Then clearly

dQn(v) =
n

∏

i=−n

f(vi−xi) dv−n · · · dvn and dQ′
n(v) =

n
∏

i=−n

f(vi−x
′
i) dv−n · · · dvn.

Furthermore, Lemma 5 ensures that Qn and Q′
n are mutually absolutely continuous

on Γ, with derivative

dQn

dQ′
n

(v) =
n

∏

i=−n

f(vi − xi)

f(vi − x′i)
v ∈ Γ.

For each n ≥ 1 let Γn = {v : vi ∈ A∗
i for |i| ≤ n}, and define the Sn-measurable

function

Rn(v) =
dQn

dQ′
n

(v) · I{v ∈ Γn}.

Suppose that B ∈ Sn. Then clearly B ∩ Γn+1 ∈ Sn+1 and B ∩ Γn ∈ Sn, and
therefore

∫

B

Rn+1 dQ
′ =

∫

B∩Γn+1

dQn+1

dQ′
n+1

dQ′ = Qn+1(B ∩ Γn+1)

= Q(B ∩ Γn+1) ≤ Q(B ∩ Γn) =

∫

B

Rn dQ
′.
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Thus (Rn,Sn) is a non-negative super-martingale. By the martingale convergence
theorem, Rn converges with Q′-probability one to a non-negative random variable
R∗.

We now wish to establish the following relation, which will imply that Q′ << Q
on Γ (see the argument below):

(29) Q′{v ∈ Γ : R∗(v) = 0} = 0.

By condition (13) there exists numbers δ0 > 0 and c <∞ such that

(30)

∫

S∩(S−z)

∣

∣

∣

∣

log
f(w + z)

f(w)

∣

∣

∣

∣

f(w) dw ≤ c |z|

whenever |z| ≤ δ0. By (26) there is an integer m such that |ui−vi| ≤ δ0 for |i| ≥ m.
As Rm(v) > 0 for each v ∈ Γ, the equality (29) will follow from

(31)

∫

Γ

∣

∣

∣

∣

log
R∗

Rm

∣

∣

∣

∣

dQ′ < ∞.

To establish (31), note that by Fatou’s lemma
∫

Γ

∣

∣

∣

∣

log
R∗

Rm

∣

∣

∣

∣

dQ′ =

∫

Γ

lim inf
n→∞

∣

∣

∣

∣

log
Rn

Rm

∣

∣

∣

∣

dQ′ ≤ lim inf
n→∞

∫

Γ

∣

∣

∣

∣

log
Rn

Rm

∣

∣

∣

∣

dQ′

≤ lim inf
n→∞

∫

Γn

∣

∣

∣

∣

log
Rn

Rm

∣

∣

∣

∣

dQ′ = lim inf
n→∞

∫

Γn

∣

∣

∣

∣

log
Rn

Rm

∣

∣

∣

∣

dQ′
n.

Moreover, for each n > m,

∫

Γn

∣

∣

∣

∣

log
Rn

Rm

∣

∣

∣

∣

dQ′
n =

∫

Γn

∣

∣

∣

∣

∣

∣

∑

m≤|i|≤n

log
f(vi − xi)

f(vi − x′i)

∣

∣

∣

∣

∣

∣

n
∏

j=−n

f(vj − x′j) dv−n · · · dvn

≤
∑

m≤|i|≤n

∫

A∗

i

∣

∣

∣

∣

log
f(vi − xi)

f(vi − x′i)

∣

∣

∣

∣

f(vi − x′i) dvi.

By an elementary change of variables, our choice of m and the inequality (30) imply
that

∫

A∗

i

∣

∣

∣

∣

log
f(vi − xi)

f(vi − x′i)

∣

∣

∣

∣

f(vi − x′i) dvi ≤ c |xi − x′i|.

Combining the results of the last three displays, it follows that
∫

Γ

∣

∣

∣

∣

log
R∗

Rm

∣

∣

∣

∣

dQ′ ≤

∞
∑

i=−∞

|xi − x′i|.

The sum is finite by (26), which establishes (31) and the relation (29).
Suppose now that B ∈ S is such that B ⊆ Γ and Q′(B) > 0. For n ≥ 1 define

events Bn = {v : ∃v′ ∈ B s.t. vi = v′i for |i| ≤ n} ⊇ B. By another application of
Fatou’s Lemma,

Q(B) = lim
n→∞

Q(Bn) = lim inf
n→∞

Qn(Bn) = lim inf
n→∞

∫

dQn

dQ′
n

IBn
dQ′

≥

∫

lim inf
n→∞

dQn

dQ′
n

IBn
dQ′ ≥

∫

B

R∗ dQ′.

The last inequality above follows from the definition of R∗ and the fact that Bn ⊇ B.
As Q′(B) > 0, the relation (29) implies that the last integral and Q(B) are positive.
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Thus Q′ � Q on Γ. An identical argument, exchanging the roles of Q and Q′, shows
that Q� Q′ on Γ as well.

Lemma 7. If (x, x′) is homoclinic and conditions (13)–(15) hold, then for every
measurable function φ : X → R

d,

(32) E[ |φ(y) − x | + |φ(y′) − x′ | ] ≥ |x− x′|

∫

Γ

min

[

dQ′

dQ
, 1

]

dQ > 0

where Γ ⊆ X is defined as in (28).

Proof: Lemma 6 shows that Q′ � Q on Γ. Let (dQ′/dQ)(v) be the associated
derivative, which is defined for each v ∈ Γ. The expectation above can be written
equivalently as

∫

|φ− x| dQ +

∫

|φ− x′| dQ′ ≥

∫

Γ

|φ− x| dQ +

∫

Γ

|φ− x′| dQ′

=

∫

Γ

[

|φ− x| + |φ− x′|
dQ′

dQ

]

dQ

≥ |x− x′|

∫

Γ

min

[

dQ′

dQ
, 1

]

dQ.

As (dQ′/dQ)(v) is positive for Q-almost every v ∈ Γ, and Q(Γ) > 0, the last
integral is positive.

The lower bound in Lemma 7 bears further discussion. Suppose for the moment
that the distribution η of the noise satisfies (13) and is supported on all of R

d, which
is the case if the εi are Gaussian. Then we may take A∗

i = R
d for each i, so that

Γ = X . In this case, further evaluation leads to a simplification of the integral in
(32):

∫

min

[

dQ′

dQ
, 1

]

dQ = Q

{

dQ′

dQ
≥ 1

}

+ Q′

{

dQ′

dQ
< 1

}

= 1 − Q

{

dQ′

dQ
< 1

}

+ Q′

{

dQ′

dQ
< 1

}

= 1 − ||Q−Q′||.

Here ||Q−Q′|| = supB∈S |Q(B) −Q′(B)| is the total variation distance between
Q and Q′. As Q and Q′ are mutually absolutely continuous, ||Q − Q′|| < 1 and
we see again that the lower bound in Lemma 7 is positive. When Γ 6= X one may
derive a similar, but more complicated, expression for the integral in (32).

Although no scheme can reliably distinguish between the elements of a strongly
homoclinic pair (x, x′) from noisy observations of their trajectories, we may say that
a scheme φ is optimal for this pair if it achieves the lower bound above. One may
readily check that the maximum likelihood scheme

φ(v) =

{

x if dQ′

dQ (v) ≤ 1

x′ otherwise

is optimal in this sense.
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