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Rooted trees for 3D Navier-Stokes equation

Massimiliano Gubinelli

Communicated by Charles Li, received November 22, 2005.

ABSTRACT. We establish a representation of a class of solutions of 3d Navier-
Stokes equations in R using sums over rooted trees. We study the conver-
gence properties of this series recovering in a simplified manner some results
obtained recently by Sinai and other known results for solutions in spaces
of pseudo-measures introduced initially by Le Jan and Sznitman. The series
representation make sense also in the critical case where there exists global
solutions for small initial data and it allows the study of their long-time or
small-distance behavior.
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1. Introduction
We consider the NS equation in the form
t
(1) v(k) = e FFlyg (k) + z/ e—lkl2<f—8>/ k! (k,vs(k — k')) Pyvs (K') ds
0 R3

where v, € C(R3; C3) is the Fourier transform of the velocity field, (-, -) is the scalar
product in C? and P, : C? — C3 is the projection on the directions orthogonal to
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162 MASSIMILIANO GUBINELLI

the vector k € R3, i.e. Pya =a— (k,a)k|k|~t. Eq. (1) will be studied in the spaces
®(a, ), a € [2,3) and where v € ®(a, a) if v € C(R3?;C3) with k- v(k) =0 and

[vlla = sup |k|*[v(k)| < oo
keR3

We will write o = 2+ ¢ with € € [0,1).

The spaces (v, ) are interesting because, in general, they contain solutions
with infinite energy and enstrophy so classical results about existence and unique-
ness of solutions do not apply.

In a series of papers, Sinai [8, 9, 10], studies eq. (1) in these spaces giving
elementary proofs that in ®(«,«) with o > 2, there is existence of unique local
solutions and that these solutions survive for arbitrary large time if the initial
condition is small enough.

Moreover in the “critical” space ®(2,2) there is existence and uniqueness of
global solutions for small initial data. This latter global result was initially proven
by Le Jan and Sznitman [11] using a probabilistic representation (under the name
of stochastic cascades) and afterwards reproved by Cannone and Planchon [5] in a
more standard functional-analytic fashion.

The analysis of the equation (1) in various function spaces similar to ®(a, «)
is summarized in the work of Bhattacharya et al. in [1]. A more recent review of
the current status of the stochastic cascades approach has been recently given by
Waymire in [12].

We are interested in explicit series representations for these (local or global)
solutions. When « > 2 Sinai [9] proved that the local solution can be represented
by a absolutely convergent series and in [10] he analyzed this series with the aim
of understanding better the growth of the various terms. A different series repre-
sentation appears also in the book of Gallavotti [7].

Our contribution will be to prove yet another series representation for the
solutions in ®(«, ) including the critical case o = 2 which was left open by the
analysis of Sinai. This series representation is indexed by rooted trees.

Rooted trees appear naturally in the series expansion of solutions to ODEs.
They possess remarkable algebraic properties which were masterfully exploited by
Butcher [4] to provide a general theory of Runge-Kutta (R-K) methods for numer-
ical integration. Afterwards rooted trees appeared also in the work of Connes and
Kreimer [6] on the mathematical structure of renormalization in quantum field the-
ory. The work of Brouder [2, 3] gives a short overview of the algebraic properties
of rooted trees and explore some connections between R-K methods and renormal-
ization.

These widespread applications of rooted trees were the initial motivations for
this work. In the following we show that rooted trees are a natural language in
which the known results (and some new ones) about the eq. (1) in the spaces
®(a, ) can be proven rather easily. Moreover the representation with a series
indexed by rooted-trees can be controlled in a straightforward way and provide
informations on the solutions themselves, like the behavior for large times or for
large wave-vectors.

The plan of the paper is as follows. In Sec. 2 we introduce rooted trees which
will be used in Sec. 3 to prove the series representation for the solutions of NS
equation. Next in Sec. 3.1 we make some observations on the different nature of
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some classes of terms which contribute to the series and which appeared originally
in the work of Sinai [10]. In App. A we review briefly, for sake of completeness,
the question of existence and uniqueness problem for the equation (1) in the spaces
®(a,w). At the end, App. B collects some proofs.

2. Trees

A rooted tree is a graph with a special vertex called root such that there is a
unique path from the root to any other vertex of the tree. Here some examples of

rooted trees:
Lrov Y

We draw the root at the bottom with the tree growing upwards (as real trees). In a
rooted tree the order of the branches at any vertex is ignored so the following two
are representations of the same tree:

oy

Given k rooted trees 71,--- , 7, we define 7 = [r1,--- , 7] as the tree obtained by
attaching the k roots of 71, - -+ , 7% to a new vertex which will be the root of 7. Any
tree can be constructed using the simple tree e and the operation [---], e.g.

o] =1 [-,[-H:KI, etc. ..

On trees we will define various functions. Denote 7 the set of all rooted trees and
let |-]: 7 — N the map which counts the number of vertices of the tree and which
can be defined recursively as

o] =1, 71, i)l =1+ |7+ + |7
moreover we define the tree factorial v:7 — N as

o) =1, Al ml) = M mlly(n) -y (Te).

Last, we define the symmetry factor ¢ : 7 — N: this is defined recursively as
o(e) =1and o([r1 - 7)) = s(71,...,7n)o(m1) - - o(7) where s(1,...,7,) is the
order of the permutation group of the (ordered) n-uple (71,...,7,) € 7" In the
sequel we will only need to consider the subset B7 C 7 which contains rooted
trees with at most two sons for each vertex, this is due to the bilinear nature of the
non-linear term in the NS equation.

3. Series representation
If we let ¢ (k) = |k|*vi(k) the eq. (1) above takes the form
(k,cs(k — k') Prcs(K)

t
2 ) = e ek +i [ eI [
(2) cak)=e co(k) +i ; e || g R

for function ¢ € C(R3;C3) such that sup, |ct||o < oo, (k,c(k)) =0 and ¢(0) = 0.
For simplicity write the above equation in the abstract form

t
(3) c; = Sico +/ Si—sB(cs, cs) ds.
0
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where S is a bounded semigroup and B is the symmetrized bilinear operator
B(e,d) = (Bi(c,d) + Bi(d, ¢))/2 with

, Ky c(k — k) Pud(k)
Bi(c,d) = i|k|® dk/< ’
Ry =

Let V = {c € C(R3;C3) : ¢(0) = 0, (k,c(k)) = 0 and ||c||o < oo} and for any

T > 0 define the Banach space Wr = Cy([0,T],V) endowed with the sup norm.
Define the bilinear operator B : Wpr @ Wr — Wr as

t
Bt(c,d):/ Si—sB(cs, ds) ds.
0

LEMMA 3.1. For any a > 2 and any T > 0, the operator B is well defined and
there exists an increasing function N : Ry — Ry such that

(4) [Bi(e, d)| < Nelellolldllo

where Ny tends to zero ast — 0 for any o > 2. Moreover when o = 2 we have a
uniform bound sup;o Nt < N, < oo independent of T

PROOF. The proof can be found in the paper of Sinai [8] and consists in a direct

estimate of the integral. Some general considerations on the bilinear operator are
summarized in App. A. a

Now define the operator ¢ : BT x V — Wrp by recurrence as

(5) p(e;h) = B(S.h,S.h) o([7]; h) = 2B(S.h, ¢(1; h))
and
(6) P([r172]; h) = 2B(p(71; h), (725 h))

for any h € V,7, 71,70 € BT where we let (S.h); = S¢h.
To find solutions of eq. (3) in Wy with initial condition h € V we set up Picard

iterations {u(™ € Wr}, as uEO) = Sth and uE"H) = Sih + By(u™, u™).

LEMMA 3.2. The functions u'™ have the representation

M) W =Sht S ——g(rih)

T€EBT ,,_1 U(T)

where BT ,, C BT is the set of rooted trees for which the leaves are at distance at
most n_from the root and where we conventionally let BT _1 = 0.
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PROOF. It is clear that the formula holds for n = 0 (the sum does not contain
any terms). Assume it holds for any & < n and let us prove it for n + 1:

u") = S b+ Bu™, u™)

1
= S.h+ B(S.h, S.h) + 276;71 U—T)B(S-h, o(7; 1))

Y o B o)
1. 72eBT 1
= Shtowh) = 3~
TEBT y—1
1

——o([r'77; _ 1 T7];
+ Z 20(tY)o (T )¢([ liR)+ Z 20(7’)0(7’)¢<[ I R)

TV r2€BT 1,7 H£T?
1
=Sh+ Y. ——=a¢(r;h)
T7€BT U(T)
since o([77]) = 20(7)? and o([r]) = o (7). O
The norm convergence of the series
1
(8) u=Sh+ Z ——¢(1; h)
TEBT U(T)
in Wy implies convergence of the Picard iterates (™) to the element u € Wy which
satisfy eq. (3) in [0, 7] with initial condition ug = h.
Define the following function 6 : BT — R:
) =2,  O(r)=1+0(r),  O(nr)) =0(r") +0(r%)

and note that h — ¢s(7;h) is an homogeneous function of order 6(r). Always
holds

9) (Irl+1)/2<6(r) < || +1

as easily proven by induction on |7|.

The following control of the coefficients of the series (8) is the main result of
this note.

THEOREM 3.3. For any ¢ € [0,1) the following estimate is true
[60(73 ) (k)| < Ce™ e/ T DIrler2) )

where the constants Cr satisfy:

A A
WCTlcTz, O[T] =—7C C. =A

for some constant A depending only on a.

C[T1T2] =

The proof of this theorem is reported in App. B.
REMARK 3.4. The constants C. can be chosen as follows:
Cr = Almly(r)=¢/2,
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Now we can prove the following result about existence and series representation
of solutions of eq. (1) in the spaces ®(a, o) (o = 2 included).

COROLLARY 3.5. The series (8) has the following properties:
a) for e € (0,1) and fized ||h|lo it converges in norm for small t. and solve
the problem (2) in Wy, ;
b) for e € (0,1) and fized T it converges in norm in Wy for ||hllo small
enough;
¢) fore =0 (i.e. a«=2) and for ||h|lo small enough it converges in norm in
Weo and define a global solution of the problem (2).

ProOF. Using Thm. 3.3 and Remark 3.4 we find that there exists a constant

B such that
fue(k) = [Schl(B)] < D7 Bl (r) = y(r) ==/ 2 AT glrler2 ) 5
(10) k2 n41)/2 nt1)/2
< 37 Z, e WD e 2y D72 (1 ) 02
n>1
where Z, is the number of rooted trees in B7 with n vertices. The following
recursive relations can be used to bound the Z,,’s:
Zi=1,  Zno1SZnt Y ZnZn,
ni+n2=n

From this relation it is not difficult to prove that Z,, grows at most exponentially,
i.e. there exists a constant D such that

(11) Zn < D™M(n+1)7%2,

(see for example [9], Sec.3).

Next, by induction we can prove that ~v(7) > 2/7I=1. This bound is optimal
since it is saturated by the binary trees for which every path from the root to the
leaves has the same length. Using this bound, eq. (9) and eq. (11) in eq. (10) we
get

wr(k)| < [[Seh)(B)] + 3 Z, Bre™ W (et gne /2| | HD/2 (4 |y S/
0 0

n>1

" - n+1)/2 n+1)/2
< bl + S (DB (4 )22 (10 a2

n>1

(12)

so the series (8) converges in norm whenever the geometric series
n n+1)/2 n+1)/2

S (DBERY R (1A RIHY?)

n>1
converges. This gives directly a),b), ¢). Indeed note that for ¢ = 0 the dependence
on t disappear in this last series. 0

Now, lets come back to the original variables. It is clear that the function

v (k) = |k|72uy(k) satisfy eq. (1) in [0, 7] when the series defining u converges in
Wr. Here we are interested in the behavior of the global solutions when a = 2:

COROLLARY 3.6. In the case o = 2 and when ||h||2 is sufficiently small the
global solution v of eq. (1) with initial condition h has the following two properties:

a) for fized k € R3\{0}, lim; .o |v¢(k)| = 0;
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b) for fized t > 0, there exists two constants Cs,Cy such that |vi (k)| <
Cye=CilkVE g k| — 0.

PROOF. By the same bounds performed in Cor. 3.5 we see that the function
ve(k) = |k|2us (k) satisfy the inequality

(k)] < e B8 R(k)| + 3 O (n + 1) 32 M/ b S D2 g 20

n>1

for ||h||2 small enough to guarantee the convergence of the series
> Cpn+ )7

n>1

Then fixed k € R3\{0} we have lim,_o, e~ 1¥*/("+1) = 0 for cach n and we obtain
that v (k)] — 0 as t — oo.

Next, we want to estimate the series at fixed ¢ and for |k| — oo by Laplace
method. Write

D Of (n 4 1) e D 2 < 52 T e W e os @G

n>1 n>1

The exponent in the sum of the r.h.s has a maximum for n ~ |k|v/t/1/|log(Cy Hh||é/2)|
and so, when |k| — oo we have

3 ¢~ K2t/ (nt1) +nlog(Callhlly*) < (e =CalkIVE

n>1
where Cy = 2/4/]log(C4 Hh||;/2)| and Cj is some finite constant. O

3.1. Remarks on particular subsets of trees. In the series (8) different
classes of trees give different contributions. We define simple trees the trees with at
most one branch at each vertex, i.e. of the form [---[e]---]. Short trees are instead
trees for which at each vertex we have two branches, each of which carries a fixed
proportion (« or 1—«) of the vertices. Of course this will not be possible in general,
so we allow the proportion to oscillate around « in the interval [« — Ao, a+ Aal, for
some fixed 0 < Aa < min(a, 1 —a). Since rooted trees does not distinguish between
branches at a vertex, we take here the convention that the branches are ordered by
the number of vertices in the corresponding subtree. With this convention we can
consider, without loosing generality, values of o € (0,1/2).

We will denote B7 the set of simple trees and B7, the set of short trees
corresponding to the proportion a.

We have a first simple lemma:

LEMMA 3.7. For 7 € BTy we have (1) = |7|!. For any o € (0,1/2) there
exists constants D1, Do, D3, Dy such that, for any T € BT o, we have

Ds|r| "Dy < ~(r) < Dy|r| DY,

PROOF. The proof of the first claim is trivial. For the second, note that we
can choose the constants D1, Ds, D3, D4 such that the inequalities are true for all
the trees 7 € BT, with |7| <7 for some fixed @ and moreover they satisfy

D D;? DsD; !
<1 d >1
@—Aa)l-a-Aa—n D)~ "M T-atra)artia) -~
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Then we proceed by induction on n > 7. Assume the inequality is true for
trees with |7| < n and observe that, for 7 € BT ,, || = n we have 7 = [r72] with

|71]

(a — Aa) < I < (a+ Aca)
T
and
1—a—Aa—|r|™") < % <(l-a+Aa—|7™h
T
Then
D‘Tl|+‘72‘ D2p:1t D|"'|
_ < 2t < it 2
’Y(T) |T|7(Tl)7(72)— 1 |7'1||T2| = (a—Aa)(l—a—Aa—\T\—l) |T|
_ D2D;! pl! _ Dlp‘;‘
T (a—Ad)(l—a—Aa—-7"t) |7| ~ 7]
and similarly we obtain v(7) > D3le‘ |7|~1, proving the claim. O

This different behavior of the two classes of trees is responsible for different
convergence properties of the sum (8) when restricted to simple or short trees.
Define 1
w= Y amn
TEBT o U(T)
then as consequence of Lemma 3.7 and Theorem 3.3 we have the following result:

COROLLARY 3.8. Fore > 0, the series w; converges in V for every t and every

initial condition h € V and
> B" 2
’ —|k|“t/(n+1)ne/2 n+1
] < B'Y e 0+ o)™
e
PROOF. The estimates on the series are similar to those in Cor. 3.5, but now
the coefficient y(7) = |7|! goes to infinity fast enough to guarantee the convergence

of the series for any time. O

In [10], Sinai studied different classes of contributions to his series representa-
tion of NS. He calls the various contributions diagrams and then introduces short
and simple diagrams which are analogous to short and simple trees (even if diagrams
does not exactly corresponds to our trees). He then shows that the contribution of
the simple diagrams cannot cause the divergence of the overall series. Corollary 3.8
is the analogous of this result in our setting.

For short trees the function v behaves exponentially with the size of the tree
and this is not enough to make the series restricted to short trees converge for
arbitrary time (when ¢ > 0). A similar phenomenon is observed in [10] for short
diagrams.
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Appendix A. Remarks on the spaces ®(a,w)

Without going in detailed proofs we would like to note some remarks about
the natural functional spaces in which solutions of eq. (1) live. Following Sinai [8]
define the space ®(a,w) (o, w > 0) as the space of continuous functions v : R® — C3
such that

[0]layw = sup ¢ (k)" o(k)| < oo
kER3

where (k) = k|~ for |k| < 1, ¥(k) = |k|~* for |k| > 1. Functions in this space
can be bounded above by |k|~* for small k and by |k|~ for large k. Consider the
the bilinear integral operator

(13)

B(v,v)(t, k) _i/te|k|2(ts)/ dk (k,vs(k — k")) Pyvs(K') ds

0 R3

appearing in the r.h.s of eq. (1). For this operator we have the bound

(14)

|B(v,0)(t, k)] < sup Jvs|2 BT (1 — e *)I(k)
0<s<t

where I(k) = [ps dk'(k — k')p(k). For k # 0 the integral I(k) converges when
w > 3/2 and a < 3 and we prove easily that, when |k| <1

1 for o < 3/2
I(k) < Cqo < |log k|| for a=3/2
|k[372> for3/2<a<3
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while when |k| > 1

k|3~ for3/2<w <3
|k|7«  forw >3

This behavior translates in the following estimates for the r.h.s. of eq. (14). So
when |k| < 1:

|k|~ot(1=2)/2 for a < 1
k"Y1 — e O I(k) < Co S [k (LA L)  forl<a <2
|k|~|t](@=2/2 for2<a <3

and when |k| > 1

k|22 (1 — e F*t)  for 3/2 < w < 2
k"Y1 — e PO I(k) < Cu S K7 (LA [E)@D/2 for 2 <w < 3
- At or 3 <w
k|7 (1A e for 3

These bounds imply that 8 maps C([0, T], ®(a, w)) in itself whenever w > 2 for any
a € [0,3) and in this case the norm N of B is given by

Ny = supsup[th(k) k|7 (1 = M) 1 (k)
t<T k
and become small with T' allowing a direct proof of existence and uniqueness of
solutions to eq. (1) for small time. Moreover when « € [1,2] the norm Nrp is
uniformly bounded in T" and this implies existence and uniqueness of global solutions
with small enough initial condition.

Note moreover that the same bounds are true on the torus (only wave-vectors
|k|] > 1 are important in this case) and that they always imply uniform control
in time of the norm Np for any w > 2. In this case we have the existence and
uniqueness of global solutions with small initial conditions whose decay at infinity
is not worse than |k|™*. Details can be found in [8].

Appendix B. Proofs
B.1. Theorem 3.3.
PRrROOF. We will prove the statement by induction on |7| = n. Let us assume

that the estimate is true for any tree 7" with |7/| < n and let us prove it for trees
7 with |7| = n. Consider the case 7 = [r172] with |7!| = p, |7?| = ¢:

|¢e([ra72]; h)(R)| < 2/ W=D By (715 h), du(r2; 7)) du

0

<2/tdue—k2(t—u)|/€|a+l/ g 1u (T ) (k= K[ 6 (25 1) (K)]
—Jo R? |k = K|k

t
< 20 Coa ]| / du e W02 20T D ot

; e Bk Pu/ (ot ) =K P/ (a+1)
./R3 |k = K[|k
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The exponent in the integral has a maximum as a function of £’ and
|k —K'u  |K)u S |k|?u
p+1 g+1 “ p+q+2

for any k' € R3. So
|6¢([ri72]; B) (k)| < 2C71Cra]|R[J7

t
oKt/ (0 a+2) / du o~ K20 a1/ (p+at2)
0
/217 +172)) o+
(u) ||

15
(15) / e 1
re |k — K| K>

< ACCra||h)|ST e IRt/ (pta+2)

t
. / du e~ ¥1?(t=w) (p+a+1)/ (p+q+2) (u)E/Q(‘TIHITQD ||t
0

where, if e is a unit vector in R3 we let

1
A =2 dif ————— .
/ e— ke =

Consider the term on this last line of eq. (15):

t
/ du e~ FP =0 a1/ (ra+2) (/2017 [+17]) | a-o
0
1 -
:t(lfll+\72|+1)s/2/ A= IR0 (a1 (pha+2) /200 7)) g,
0

with k = (t —s)/2k. Let a = (p+q+1)/(p+ q+2). We have the following bound,
proved in lemma B.1 below:

1 : 5 —1
/ e~ IEI?(1—wa, (p+0)e/2 g, < (a|k|2 +(p+ q)5/2)
0

Gathering all together we get
|]~€|2—a

il h) (k)| < ACaC.2||h 0(7)6—|;;|2/(|T|+1)t\r\a/2 _
|pe([ra72]s h)(R)| < lI71lo TR

When ¢ € (0,1) we have

|k[*—* —¢/2
Sup —= <Klp+al©
iers alk|2+ (p+ q)e/2

where K is a constant not depending on ¢, so in this case

flrle/2

772

(e ([ 7] ) ()| < A”Coa Cra 1| 7 e~ IF2/ 71 +)

When € = 0 we have instead the bound
|$e([rima]; h) (k)| < A"Cra Cra || I/ IrlD

Proving the claim in this case. The other cases can be treated similarly. (Il
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LEMMA B.1. .
/ e 0 =Wybdy < 1A (a+b)7?
0

Proor. Easy:

1 1 1
/ e~ =W ybdy = / e (1 - u)bdu/ e~ =gy
0 0 0

< / 67(a+b)udu — (a+ b)fl
0
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