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Invariant measures for the Nonlinear Schrodinger equation
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ABSTRACT. We study Gibbs measures invariant under the flow of the NLS on
the unit disc of R2. For that purpose, we construct the dynamics on a phase
space of limited Sobolev regularity and a wighted Wiener measure invariant
by the NLS flow. The density of the measure is integrable with respect to
the Wiener measure for sub cubic nonlinear interactions. The existence of the
dynamics is obtained in Bourgain spaces of low regularity. The key ingredient
are bilinear Strichartz estimates for the free evolution. The bilinear effect in
our analysis results from simple properties of the Bessel functions and estimates
on series of Bessel functions.
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1. Introduction

This work fits in the line of research initiated in [3] aiming to study the possible
extensions of the work of Bourgain on nonlinear Schrédinger equation (NLS) posed
on the flat torus to other compact manifolds. We are concerned here with the long
time behavior of solutions of the nonlinear Schrédinger equation, posed on the unit
disc of R?. Our aim is to construct the dynamics on a phase space of limited Sobolev
regularity and a wighted Wiener measure invariant by the NLS flow. Consider the
Nonlinear Schrédinger equation

(1.1) iug + Au+ F(u) =0,
where u(t) : © — C is a function defined on the unit disc
O = {(v1,72) € R? : 2 + 23 < 1}.

The nonlinear interaction in (1.1) is induced by F(z), 2 € C which is a smooth
(non linear) complex valued function. We also assume that F'(0) =0 and F = 0V
with a real valued V satisfying the gauge invariance assumption

V(e2)=V(z), VOER, Vz€C.
In addition, we suppose that for some o > 0,
(1.2) \8’“15’“2V(z)| < Ckl,kg <Z>2+a_k1_k2 .

The real number « involved in (1.2) corresponds to the “degree” of the nonlinear
interaction. A typical example for F'(u) is

a/2
F(u) = j:(l n |u|2) u
or |u|*u when « is an even integer. In this paper, we assume that the nonlinearity
is sub-cubic which means that
(1.3) a<?.

Assumption (1.3) on « will be assumed from now on in the rest of this paper. No-
tice that we do not suppose the defocusing assumption which in the context of (1.1)
would be of type V < 0. In the (easier) defocusing case, one can expect to cover a
larger set of possible values of « (see the final remarks at the end of the paper).

It is important that the problem (1.1) may, at last formally, be seen as the
Hamiltonian PDE

iuy = 0g H (u, )

in an infinite dimensional phase space, with Hamiltonian

(1.4) H(u,u) = / |Vul? — / V(u)
) )

and canonical coordinates (u, u).

We are interested in the solutions of the initial boundary value problem asso-
ciated to (1.1). This means that we study (1.1) subject to an initial condition

(1.5) w(0, z1, x2) = uo(z1, 22),
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where ug is a given function. In this paper, we will only consider initial data
of Sobolev regularity < 1/2 and thus we will not need to specify the boundary
conditions on R x 0O, where

00 = {(z1,22) €R? : 2% + 23 =1}

is the border of © (see also Remark 7.2 below). We will however use the Dirichlet
eigenfunctions of A as basis of L?(0) and this will be convenient for our well-
posedness analysis of (1.1)-(1.5).

We will only consider radial solutions of (1.1), i.e. solutions depending only on
t and #? 4+ x3. Thus, we suppose that the data is radially symmetric, i.e.

(1.6) uo(w1, 2) = 1o (r),
where
T1 =TCOSp, To = rsinp, 0<r<1, pe€|0,2n].

Let Jy be the Bessel function of order zero (see e.g. [14]) and let z1, 22,... be the
zeros of Jy. We have that

O<zni <2< ...2p < ...

and the zeroes are simple. We also have that Jy(z,r) are eigenfunctions of the
Dirichlet self adjoint realization of —A, corresponding to eigenvalues z2. Moreover
any L?(©) radial function can be expanded with respect to Jo(z,7). Let us set

(1.7) en =epn(r) = ||J0(zn-)||221(®) Jo(znT)
and
en,s = 2, €n .
We can decompose the solutions of (1.1) with data of type (1.6) as
u(t) = calt) ens.
n>1
The initial data is thus given by
Ug = Z Cn(o)en,s ,
n>1

i.e the initial data is uniquely determined from the sequence (¢, (0)), n € N. Thus
the equation (1.1) can be written as

(1.8) iz, 5C, (1) — 22 2, %cn(t) + 11, (F( Z em(t) emﬁs)) =0,

m>1
n > 1, where II,, is the projection on the mode e,. For instance if f € L(0)
(whi ch will always be the case in this paper), we have

T(f) = (f,en) = /fen

Of course one can define the action of II,, on distributions but here we will not need
it. Notice that if f € L*(0), IL,(f) is simply the L?(©) scalar product of f and
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en. Formally, equation (1.8) is in fact a Hamiltonian equation with with canonical
coordinates (¢, ¢) and Hamiltonian

H(c,e) = 2212;25 |Cn|2 _ /01 V( Z Cm emys(r))rdr,

n>1 m>1
where ¢ = (¢y,), n € N. More precisely equation (1.8) can be written as

0H  _ J5H

Te— w0t = —J—,

oc K oc

where § denotes the variational derivative and J = diag(22%),,>1 is the map induc-
ing the symplectic form in the coordinates (¢, ¢). The only important consequence,
for our analysis, of this discussion is that H(c,¢) is , at least formally, conserved by

the flow of (1.8).

iCt:J

Let us now describe the construction of Lebowitz-Rose-Speer (cf. [11]) of a
weighted Wiener measure which is at least formally invariant under under flow of
(1.1). The rigorous justification of the invariance of the measure will require, among
other things, a new well-posedness result for the initial value problem (1.1)-(1.5).
Let us fix a real number s such that

e
1.9 0<s< ——.
(1.9) $< o3
This number s will be fixed from now on in all the rest the paper. Notice that
thanks to the restriction (1.3) on the degree of the nonlinearity «,

o < 1
a+2 2
For o € [0,1/2], let us denote by HZ, ,(©) the Sobolev space of radial functions
on O, i.e. u € H? ,(0) if and only if

rad
uzg Cnén,s, ¢n €C

n>1

with
Z 22079 ¢, 2 < 0.

n>1

The Sobolev space H?,;(0©) is naturally a complex Hilbert space with orthonormal
basis e, 5. Denote by (-,-) the scalar product in H? ,(©). Our goal will be to con-
struct a well defined (at least local in time) dynamics on H?, ,(©) and to construct
a bounded Borel measure on it, invariant by the flow of (1.1).

The free Hamiltonian is given by

Hy(e,) = Z 22725 ¢, |2

n>1

It turns out that a renormalization of the formal measure

— = _,2—2s 2
e Hg(c,c)dQC: He 227 %% en| d20n

n>1
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is a Wiener measure. More precisely, we can give a sense of the formal measure

efHO(Cvz)dzc 7Z72172$‘Cn‘2d20n

e
J"e—Ho(c,E)dzc - H f(C efzfl*%\cnwd%n

n>1

as a measure on the Hilbert space H? ,(0) (corresponding to a Gaussian distribu-
tion for each mode).

A set U C H,;(0) is called cylindrical if there exists N € N and a Borel set
V C C¥ such that

(1.10) U= {u € H2,u(0) : ((e14), ..., (uens)) € V}.

Let us denote by fi the measure, defined on the cylindrical sets U determined by
(1.10) as

—2s‘cn‘2

_ 2
fv e 21<nSN Fn d?cy ... dPey

_ 225, . |2
ch e 2asnsn A lenlP g2 2oy

_ _-N 2-2s — S cnen 227 en? 12 2
= ( H z )/e 1<n<N mdcy ... deN .
1<n<N v

(L11) A(U) =

The cylindrical sets form an algebra in H? ,(©). Moreover the minimal sigma
algebra containing all cylindrical sets is the Borel sigma algebra. Since (see (2.6)

below) z,, ~ n, we deduce that the series

25—2
> %

n>1

converges. It implies that the linear map defined on H? ,(©) by

en,s — 20 ens

is in the trace class. Therefore (see e.g. [12, 6, 16]) the measure [ is countably ad-
ditive on the cylindrical sets of H?, ;(©). We then denote by i the Borel probability
measure on H? ,(©) which is the unique extension (Caratheodory theorem) of & to
the Borel sigma algebra of H? ,(©). For the sake of completeness, in Section 3 we
present the proof of the countable additivity ji on the algebra of the cylindrical sets
of H?,,(©). As we will show in Proposition 3.3, for o € [s,1/2[, u(HZ,,(0)) =1
and thus, we may consider y as a measure on the space

(112) x= [ H.O).

s§o<%

Thus one should not take the particular choice of s that we made too seriously.
Notice that since ¢ < 1/2 the boundary conditions are not of importance in the
definition of X. In addition, in (1.12) the intersection may be assumed countable.

One may hope that the expression exp( [ V(u))du(u) which is a normalised
version of the formal Gibbs measure exp(—H (u, %)) d?u is a well defined measure.
The expression exp(—H (u, i)) d?u is formally invariant by the flow thanks to the
Hamiltonian conservation. If we were in finite dimensions the invariance would fol-
low from the invariance of the Lebesgue measure by the flow (Liouville’s theorem).
There is however a problem with the integrability of the above density with respect



116 englishNIKOLAY TZVETKOV

to p. We will solve this problem by using the L? cut-off idea of Lebowitz-Rose-
Speer [11].

This paper is devoted to the proof of the following statement.

THEOREM 1. Fiz R > 0. Let us denote by x : R — {0,1} the characteristic
function of the interval [0, R]. For u € X, we define the functional f(u) by

) = x(lul o) exo ([ V).
Then for every q € [1,+00],

(1.13) F(w) € L9(du(w)).

Moreover, if we set dp(u) = f(u)du(u) then there exists a set ¥ of full p measure
such that for every ug € ¥ the Cauchy problem (1.1)-(1.5) has a unique (in a
sugtable functional framework) global in time solution. Finally, if we denote by ®(t),

t € R the flow of (1.1) acting on X then the measure p is invariant under the flow
of (1.1), i.e. for every p measurable set A C X, every t € R, p(A) = p(P(t)(A)).

REMARK 1.1. The uniqueness statement of Theorem 1 can be precised as fol-
lows : for every T > 0 there exists a Banach space X1 continuously embedded in
C([-T,T); H,4(0)) such that the solution of (1.1) with data ug € ¥ is unique in
Xr.

Notice that thanks to the growth assumption (1.2) and the Sobolev embedding,
the functional f(u) is well-defined for u € X.

As a consequence of Theorem 1, the Poincaré recurrence theorem implies that
almost surely on the support of dp the solutions of (1.1) are stable according to
Poisson (see [16] and the references therein for more details).

Similar results to Theorem 1 in the case of the circle S! are known thanks
to the works [1, 16]. Gibbs type invariant measures for a Wicked ordered cubic
defocusing NLS, posed on the two dimensional rational torus are constructed in [2].

Invariant measures for defocusing NLS of type (1.1) posed on an arbitrary
compact riemannian manifold are constructed in [10]. These measures are not of
Gibbs type (but still related to the conservation laws), and are living on functions
in the Sobolev space H?. Let us notice that Dirac measures concentrated on a
stationary (independent of t) solutions of (1.1) are clearly invariant. The measures
constructed in [10] are not of this trivial type since the defocusing nature of the
problem excludes the existence of stationary solutions.

The proof of Theorem 1 follows the ideas developed by Zhidkov (see [16] and
the references by the same author therein) and Bourgain [1]. The main difficulties
we should overcome are to prove a new local well-posedness results for (1.1), posed
on the unit disc as well as adapting some estimates on random Fourier series to the
case of functions on the unit disc of R2. In the local well-posedness analysis, we need
some bilinear Strichartz estimates. Starting from the work of Bourgain, estimates
in this spirit were already used by many authors in the context of dispersive PDE’s.
In the analysis here, the crucial bilinear effect results from simple properties of the
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Bessel functions and estimates on some series of Bessel functions. Notice that the
bilinear approach and the Bourgain spaces are needed to be employed here since
the well-posedness analysis of [3] based only on linear Strichartz inequalities and
Sobolev spaces requires the restriction o > 1/2 (thus missing X) coming from the
Sobolev embedding W7* C L™, ¢ > 1/2 in two dimensions.

The rest of the paper is organized as follows. The next section is devoted to
some properties of the Bessel functions needed for our analysis of NLS (1.1). In
Section 3, we collect some properties of Wiener type measures on Sobolev spaces
of radial functions on the disc. Section 4 is devoted to bilinear Strichartz type
inequalities which are the basic analytical tool in this paper. In Section 5, we in-
troduce the Bourgain spaces of radial functions on ©. The main nonlinear estimate
are established in Section 6. As a first consequence of these estimates, in Section 7
we prove some local well-posedness results for NLS and its finite dimensional ap-
proximation. Next, in section 8, we improve the result for the finite dimensional
model. In Section 9, we transfer the result of Section 8 to the NLS. The proof of
Theorem 1, we will be completed in Section 10. The final section is devoted to some
straightforward extensions of Theorem 1 and open problems that seem of interest
to the author of the present paper.

Notation. Let us now introduce several notations that will be used in the pa-
per. For two positive real numbers N; and N2, we denote by N3 ANy = min(Ny, No)
the smaller one. For z € R, we set (z) = 1+ |z|. We use the notations ~ or ~ for
the equivalence of two quantities, uniformly with respect to some parameters which
will be clear in each appearance of these two symbols. Several positive constants
uniform with respect to some parameters, which will be clear in each appearance,
will be denoted by C or c. The parameter set will always be a set of numbers or a
set of functions.

2. On the Bessel functions and their zeros

In this section, we collect several facts on the zero order Bessel function that
will be used in the sequel. These facts are essentially in the literature (see e.g.
[14, 15]) but, in order to keep the paper as self contained as possible, here we give
the proofs. We will be interested on Jy(x) for > 0 and its zeros z, since Jo(z,7),
0 < r < 1 form a basis for the radial L? functions on the disc ©. The Bessel
function Jy(x) is defined by

()"
5 .

we) =3 G

Jj=0

The function Jy(x) solves the ordinary differential equation
1
JY (z) + ;J{)(I) + Jo(xz) =0.
The function Jo(r) may be seen as the zero Fourier coefficient of the function
exp(ixzsinf), 6 € [—m, 7] and thus
1 " iz sin 0
Jo(z) = — e de .

2 J_,
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Moreover, by the Lebesgue differentiation theorem,

1 ™ L
J)(x) = 5 / (isin@)e'=sn0q0 .

—T

Recall that e, : © — R, defined by (1.7) form an orthonormal basis of the L?
radial functions on the disc ©. Observe that e, (r) are real valued. The next
lemma provides LP(©) bounds for e, in the regime n > 1.

LEMMA 2.1. Let p € [2,00]. There exists C such that for every n > 1,
2.1)  lenllze(e) < Co(n)llenllz2e) = Co(n),  lenllzre) < Co(n)llenllzce)

where

1 when 2 <p <4,
5(n) =< (log(1+ n))i when p=4,
nrte when p>4.

In particular for every € > 0 there exists C. such that for every ni,ne > 1,

(2:2) e, ensllz2(e) < Ce(min(ny, n2))°[len, [|L2(e) llens | 22 (0) = Ce(min(n1, n9))"

and

23)  lem el llzxe) < Celmin(n,ng)len, 2o e l12(o) -

Finally, there exist two positive constants C1 and Co such that for every n € N,
(24) C’ln = Cln||en||L2(@) < ||€;||L2(@) < CQTLHenHLz(@) = an.

PRrROOF. The proof is based on the asymptotics for Jo(z) and Jj(z) for large
values of x. These asymptotics may be found by applying the stationary phase
formula to the integrals defining Jo(x) and Jj(z). Indeed, in both cases the phase
sin @ has two non-degenerate critical points &% on [—7, 7]. Therefore, there exists
C > 0 and a function r1(z) defined on [1, +o00[ such that

Jo(x) = \Ew (), |m(@)|<Ce?

(the two critical points contribute with phases exp(i(£x F 7/4))). Similarly, we
have
) = — gsin(a:—%)
GIRET
A first consequence of the above representations of Jy(z) and Jj(z) is that the n’th
zero of Jo(x) satisfy z, ~ n. We can therefore write that for n > 1

+71(x), |Fi(z)] < Oz~ 2.

1
1o(zn) ooy = / Jo(zur)Prdr

= 252/ [ Jo(p)|*pdp
0

> o [ hlo)ds
o [ /1+cos(2p—7/2) C
> 2 - =
> Cn /1 ( o pQ)pdp
> cn2(en — Clog(n)) > en™?t.
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Therefore
(2.5) [ Jo(2n) || 20y = en™ /2.
Similarly, we can show that

14 (2n) || 2oy = en™ /2.

On the other hand, using that |Jo(z)| < Cz~Y2 > 1, and, |Jo(z)] < C, z < 1,
we obtain that for p € [2, o0,

1
/ |Jo(znr) [P dr
0

= =2 [ oPeds
0

Cn_2(C+/1C p_p/zpdp)

which gives the bound (2.1) for e,, and p < 400 by distinguishing the three regimes
for p involved in the definition of d(n). The last estimate also implies that

[ Jo(2n) || 120y < Cn /2

19o(za) 2 o

IN

and thus

1J0(zn) | L2(0) ~ M2
Estimate (2.1) for p = co and e,, follows form the bound |Jy(z)| < C for all z > 0
and the inequality (2.5). This completes the proof of (2.1) as far as e, is concerned.
The bound for e}, in (2.1) can be established in a completely analogous way, once

we have the stationary phase approximation of Jj(z). We also have
|75 (2n) || £2(0) < Cn /2

and thus

||J(/)(Zn')||L2((~)) ~n12,

Since
621(7”) = ZnHJO(ZH')HZ'}(@)J(S(ZnT)
we get estimate (2.4). Finally, the assertion of (2.2) results from (2.1) and Holder

inequality
1 1 1

— _l’_ — ,
P oq 2
with p, ¢ close to 4 and according to the order of n1, na, the bigger of p, ¢ is attached
to the smaller of ny, no. A similar argument yields (2.3). This completes the proof
of Lemma 2.1. O

||enlen2 ||L2(@) < ||e711 HLP(@) ||€n2 HL‘?(@)7

The next lemma provides a more precise asymptotics for the zeros z,, n > 1.

LEMMA 2.2. For every r > 0 there exists C > 0 such that the zeros of Jo(x)
can be written as
1 1

i

(2.6) Zn =m(n — +r(n), |r(n)] < Cn=G=%),

REMARK 2.3. In fact, much better bounds on r(n) may be proved. However,
estimate (2.6) will be sufficient for our applications.
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PRrROOF OF PROPOSITION 2.2. Using the stationary phase formula at order 2
in the integral representation of Jy(z) gives the existence of a constant C' > 0 and
a function r9(x) defined on [1,4o00[ such that

2 cos(zx—% 2 sin (x — & s
Jo(z) = \/;%‘F\/;% +ra(z), |re(x)] < Cx™2.

Therefore, for n > 1, the zero z, solves the equation F(z,) = 0, where F'(z) (with
x — /4 near the positive odd integer multiples of 7/2) is a continuous function of

the form

1 1 _

Here O(n~2) denotes a quantity < Cn~2 with C independent of n and x. For
K > 0, we set

Further, we set

T o

1

1
Notice that cos(zf — 7/4) = (—1)"sinel and sin(zF — 7/4) = (=1)"*!coser.
Therefore, by expanding, we get

|| =

F(zF) = —tan(el) +

n n

1
On=2) = O(n=32).
87T(n — 4) + 8 +0(m™) :Fn2_" +0(n™)

Therefore for n > 1 the zero z,, lies between z;, and z;. This completes the proof
of Lemma 2.2. g

3. The measures p and p

In this section, we prove (1.13) and we collect some properties of the measures
wand p. Let us first observe that the minimal sigma algebra containing the algebra
of cylindrical sets (1.10) contains the closed balls of HZ, ,(©), o € [s,1/2[. Indeed,
if for r > 0 and v € HZ ,(O), we set

B, (r,v) = (u € H3,q(©) : ue H7,4(©) and |u—v|g-@o) <)

T
then

B, (r,v) = m Uy n(r,v),
N>1

where the cylindrical sets Uy n(r,v) are defined by
Up n(r,v) = (u € H:,,(0) : Z 2575 (u — v, ej4)]* < r2).
1<j<N

Since H?,,(©) is separable, we obtain that the minimal sigma algebra containing

all cylindrical sets is the Borel sigma algebra.

As mentioned in the introduction, for a sake of completeness, we give the proof
of the countable additivity of the measure f.
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PRrROPOSITION 3.1. The measure i, defined on the algebra of cylindrical sets
(1.10) by formula (1.11) is countably additive, i.e. for every sequence Uy, n € N
of cylindrical sets such that Uy41 C U, and

(3.1) () Un =9,
neN
one has
lim a(U,)=0.
Thus i has a unique extension that we denote by u to the Borel sigma algebra of

H?,(©) which is a Borel probability measure on HE, ,(©).

rad

PROOF. Let o > 0 be such that s + 0 < 1/2. For R > 1, we consider the set
KR = {U S Hfud(G) : ||U||Hs+o(@) S R}

Thanks to the compactness of the embedding H®7(0) into HS,,(©), we obtain

that K is a compact set of H ,(©). Since U, n € N are cylindrical sets, there
exists a function r : N — N such that for every n the set U,, can be seen as a subset
of the finite dimensional space E,(,) defined by E,(,) = span(e; s)i<j<r(n). More

precisely, there exists a Borel set U, of E,(,) such that

U, = (u € H74(©) : (u,ers)ers + -4 (U, er(n),s)erin),s € [7”>

Consider the cylindrical sets F).(,) defined as

Fyn) = (“ € H;0q(©) : (uers)ers + -+ (U eriny,s)er(n),s € KR)'
Then

where C' is a constant independent of R and what is more important, independent
of n € N. Set m = r(n). In order to prove (3.2), we observe that

1- ﬂ(Fr(n)) S Iu
where I is given by the integral

m
_ _—m 2—2s — ) 2272812 2 2
I=n (Ilz] )/621S1Sm1 |Jldcl...dcm,
" 1%
J=1

where V is given by

m

V={(c1,...,cm) €C™ : ZZJZU|CJ'|2 > R?}.

j=1

Set 6 = s+ ¢ < 1/2. By the change of the variable ¢; — 27c;, we obtain that

m
-~ _ 2-20) |2
I= 7T_m( | | ZJ2 29)/ e Xasism %1l @2y dPe,,
‘ w
Jj=1

where W is given by

W={(c1,...,cn) €C™ : Z|cj|2 > R?}.

Jj=1



122 englishNIKOLAY TZVETKOV

By introducing polar coordinates in each c; integration, we may estimate

m m
o ([142) [ (S mmn s ot e,
j=1 W ti=1
m m
¢ e ([5) [ (Sl Boen d
j=1 e =1

m

- Saec

j=1

R’T

IN

where C'is a constant independent of m = r(n). This proves (3.2).

Let us fix € > 0. By the regularity of the Lebesgue measure, using that U,,+1 C
Uy, one can construct closed sets V,, C E,.(,) such that

(33) Vi = (u € Hﬁad(g) : (’LL, 61,8)6175 et (’LL7 er(n),s)er(n),s € ‘711)

satisty
Vo CUpy Vay1 CVo, (U \V,) <e/2.

Indeed, one first constructs closed sets Wn C E,(n) such that
Wn = (u € Hﬁad(e)) : (’LL7 el,s)el,s + -+ (’LL, er(n),s)er(n),s € Wn)

satisty
W, C U, (U \Wy) < /2773,

Then, we set

Va

w;
j=1
and one easily verifies that V,, satisfies (3.3).

We have that Kr NV, is a compact set of H? ,(©) included in U,,. Therefore
(3.1) yields

(VErNV,) =0.

neN
Hence, there exists N > 1 such that KzrNV,, = 0 for n > N. Moreover, FomyNVp =
0 for n > N. Indeed, if u € F,(;;) N'V;, then by setting

Un = (u7 6175)61;8 e (’LL, er(n),s)er(n),sa

we observe that u, € Kg and u, € V;, which is a contradiction. Thus F}.,)NV,, = .
Therefore, using (3.2), we infer that

1> il(Frgny U Vi) = il(Fpmy) + (V) > 1= CR™ 4 1(Vy,).
Hence f1(V,,) < CR™? and thus for R > 1 (independently of n),
WU) < (V) + (U \Vi) < CR™2 +¢/2 < e.
This completes the proof of Proposition 3.1. O

REMARK 3.2. One may show that for s > 1/2, the measure fi is not countably
additive on the algebra of the cylindrical set on H?,,(©) (see e.g. [6]).
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If we HS, ,(©) is given by
u = Z Cnln,s
n>1
then we can consider a Littlewood-Paley decomposition of u defined by
u= Z An(u)
N —dyadic

where N is running over the set of dyadic integers, i.e. the nonnegative powers of
2, and, the projector Ay is defined by

An(u) = Z Cnén,s -
n: N<(z,)<2N
We next state a bound on the p measure of functions containing only high frequen-

cies in their Littlewood-Paley decompositions.

PROPOSITION 3.3. Let o € [s,1/2[. There exist C > 0 and ¢ > 0 such that for
every No > 1, every A > 1,

(ueHmd(G)) Y AN e <)\> >1-Ce
Nﬁg}i\gﬁhc

—C>\2 2(1 o)

In particular
2
(3.4) p(u € Hig(©) : [lullgeo) <A) >1—Ce™

and
n(H7,q(0)) =1.
Therefore one can consider p as a measure on the space X defined by (1.12).

PROOF OF PROPOSITION 3.3. In view of (1.11), we obtain that the measure y
is the distribution of the random series

(3.5) pu(r) = 92" =y = gnlw

n>1 T n>1

where g, (w) is a sequence of normalised (A(0,1/+/2)) independent identically dis-
tributed (i.i.d.) complex Gaussian random variables, defined in a probability space
(Q, F,p). More precisely, for U a py-measurable set, we have

n(U) =p(w : v, €U).
Consider a Littlewood-Paley decomposition of (3.5)
(36) Pw (T) = Z AN (‘pw (T))
N —dyadic
with
An (@w (T)) = Z 2y gn(w)en(r) .
n: N<(zn)<2N

We need therefore to establish the bound

pwe || Y Avea)lyoe >A) <Ce

N>Ng
N —dyadic

Let us next prove an inequality for Gaussians.
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LEMMA 3.4. Let gn(w) be a sequence of normalized i.i.d. complex Gaussian
random variables defined in a probability space (2, F,p). Then there exist positive
numbers c1, ce such that for every finite set of indexes A C N, every A > 0,

p(w e : Z |gn(W)|2 > /\) < 601\A|—02)\.
nen
ProoF. For every ¢ > 0,
(3.7) p(w €N Z |gn(w)|* > )\) zp(w €N H eSlon@)I® 5 ec)‘) .
neA neA

For { < 1, using the Tchebishev inequality and the independence of g,(w), we
deduce that (3.7) is bounded by

e~ H E(edg"(“)'z) =e AL
neA
where the positive number z is given by

oo 2 1
o 7771(/700 67<174)x2d$) =1¢> 1.

This completes the proof of Lemma 3.4. O
Let us now turn to the proof of Proposition 3.3. For Ny > 1, we set
Avy=(we@ || Y An@ollgee > A)-
N>Ng
N —dyadic

Let 6 be a real number such that
(3.8) 0<20<1—20.
For kK > 0 and N > Ny, N being a dyadic integer, we set

ANk = (w €N HAN(S‘%)HHU(@) > Ae(N70 + (N—lNO)l—o')) '

Now, we observe that there exists x sufficiently small depending on ¢ but indepen-
dent of Ny and N such that

(3.9) Ay, C |J Ans.

N>Ng
N —dyadic

The restriction
HAN(@UJ)HHU ©) > )\K,(N_e —+ (N_lNO)l—U)
implies that
Z Zﬁ”z;2|gn(w)|2 > )\2,%2(N“9 + (N—1N0)1—0)2
n: N<(zn)<2N
and therefore, in view of (2.6),
Z gn(w)]? > AZRENZT27(N 720 4 (N71Np)?229)
n: N<(zn)<2N
Once again invoking (2.6), we infer that

#{n : N <(z,) <2N} <CN
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and therefore Lemma 3.4 yields the bound

p(AN K) < 661N762A2K2N§72”762)\2K2N2720729

The assumption (3.8) implies that 1 < 2 — 20 — 26 and thus
p(AN ) < 06*6A2N3720 676N2720729
Using (3.9), a summation over N yields

p(An,) < Cem NN

which completes the proof of Proposition 3.3. 0

REMARK 3.5. One can use the method of proof of Proposition 3.3 to improve
(3.2) to exponential bounds.

Let us now turn to the proof of (1.13) of Theorem 1. It is a consequence of the
following statement.

PROPOSITION 3.6. Let g,,(w) be a sequence of normalised i.i.d. complex Gauss-
ian random variables, defined in a probability space (Q, F,p). Let x : R — {0,1} be
the characteristic function of the interval [0, R], R > 0. Define the random series
P by

pulr) = 32 28 .

n>1

Then for every q > 0,

E w 2(6e V w N
(x(loulzz@) exola | V(0)]) <o
Proor. Thanks to (1.2)

[ Vel ¢+ Cloiie.

Therefore, we have to show that

E(x(I6lz2(0)) exp(Calltull3iEae))) < oo

Observe that it suffices to show that

/ F(N)dA < o0,
1
where
log \\ 5=
TN =p(w e Ioloe > (F) ™ ol < R).
Set

- (log )\) ==
=74 .
Let us now fix the real number o according to the Sobolev embedding restriction

1 1
:2(—— )
7 2 a+2
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Notice that thanks to (1.3) and (1.9), 1/2 > o > s (of course the important point
here is that o < 1/2). The Sobolev embedding H?(0) C L*™2(0) thus yields the
bound

(3.10) Pulla+20) < Csobl|Pwll o (o) -
Therefore

f()\) < P(w €N : ||¢(—JHH"((~)) > V/Csobu ||¢w||L2((~)) < R)

Consider again the Littlewood-Paley decomposition (3.6). In the spirit of the
Brézis-Gallouet argument, we set

NO = H’Y%v
where xk > 0 is a small number to be fixed later. Then

(W € Q: |oullar©) = 7/Csobs  owllr2@) < R) C A UA,

with
A = (w eN: H Z AN(%)HHa((—)) >7/(4Csob);  Ndwllz(0) < R)
N dyaic
and
A= (wea:| 3 AN(%)HHG(@) > 7/(4C00))
N dyadic

On the other hand

| X av],,, o < OM el < ORATy.
N<Ng
N —dyadic

Hence for k£ < 1, the set Ay is empty. This fixes the parameter . On the other
hand, thanks to Proposition 3.3,

p(Ag) < Ceer N

Therefore
25 A2(1-0)
F(3) < Ce<losN T2 N
Coming back to the definitions of ¢ and Ny, we get
log A]752 N2~ = c[log A& .
The assumption « < 2 implies 2/« > 1 and therefore f(\) is integrable on [1, 4+o00].
This completes the proof of Proposition 3.6. g

We now state a corollary of Proposition 3.3 and Proposition 3.6.

PROPOSITION 3.7. Let o € [s,1/2[. Then there exist C > 0 and ¢ > 0 such
that

p(u € H3y(O) ¢ ||ull ooy > A) < CemN.
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PROOF. Set
Ay = (u€ H}q(O) : |ullgeo) > A).

Then using Proposition 3.3 and Proposition 3.6, we can write

o= [ o = [ rdn

Ax

(/ Fwdntn) " ( / au(w) "

< O(u(Ay)? < CemN |

IN

This completes the proof of Proposition 3.7. O

Next, we define the finite dimensional sup-spaces of H}_,(©),

Ey =span(e1s,...,6Ns) -

We equip Eny with the measures pux and py which are the natural restrictions to
Ey of i and p respectively. More precisely for a Borel set V C CV, we set

(3.11) V={cers+ -+ecyens, (c1,...,cn)EV}.
We define the measures py and py on the sigma algebra of sets of type (3.11) by

~ _ 2-2s 2
pn (V) :”_N( II 2121_25>/ e Zasnan Fn Tl @Pey L dPey
1<n<N v

s
2
<t
|
:]\
2
—
N
S
o
~—
X

1<n<N
- 2-2s 2
X / flerer s+ -+ cenen,s) e Zrsnsn Zn el @20 ey
%

It is now clear that to every cylindrical set of H?, ;(©) we may naturally associate
a puy and py measurable set on Epn, provided N being sufficiently large. For
uwe HE ,(0), we define the projector Sy,

Sy : H:,4(0) — En
via the formula
N
(3.12) Sn(u) = Z(u, €n,s)€n,s -

n=1

We have the following statement.

LEMMA 3.8. Let U be an open set of H? ,(©), o € [s,1/2[. Then

rad

(3.13) p(U) Sl}\rfninpr(UﬂEN).

Moreover, if F is a closed set of H®

rad

(©), o € [s,1/2[ then
(3.14) limsup py(FNEN) < p(F).
N—o00
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PROOF. Define the sets
Un = {u € H},4(©) : Sn(u) e U}.
Observe that U N Ey is py measurable and
pn(UNEN) = p(Un).
We have the inclusion

(3.15) Uc limNinf(UN),

where

hmlnf (Un) = U ﬂ Un, .

N>1Ni>N
Indeed, we have that for every u € HZ, ,(©),

(3.16) i ju =Sy (u)l[mee) = 0.

Therefore, using that U is an open set, we conclude that for every u € U there
exists Ny > 1 such that for N > Ny one has u € Uy. Hence we have (3.15). If A
is a p-measurable set, we denote by x4 the characteristic function of A. Define the
non negative functions fy by

In(u) = xuy (u) f(u).
Notice that thanks to (3.15),
liminfxuy = xv .
Next, we set
Fu) = l}\rfninffN(u).
Thus
F(u) > xv(u)f(u).
Since

s N = [ o)

using the Fatou lemma, we get

liminf p5 (U N EN) > /
N—oo ﬁad(@)

wzﬁﬂmww—mm.

Next, we define the sets
Fy={u€ H:4(©) : Sn(u) € F}.
Thus
~N(FNEN) = p(Fn).
We have that
(3.17) lim;up(FN) C F,

where
limsup(Fy) = ﬂ U Fn, .
N N>1N;>N
Indeed, suppose that u € limsupy(Fyn). Thus there exists a sequence (Nj)ren
tending to infinity such that v € Fy, which means that for every k one has Sy, (u) €
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F. Since F is closed, coming back to (3.16), we obtain that v € F and therefore
we get (3.17). If we set

G(u) = limsup fn(u),

N —o0

where
In(u) = Xpy (u) f(u) .
then we have
G(u) < xr(u)f(u)
and the Fatou lemma gives,

limsup py(FNEN) = limsup/ f(u)dp(w)
raa(©)

N—oo N—o0

/ G(w)dps(u)
(©)

racl

g/f du(u

IN

This completes the proof of Lemma 3.8. 0

The next lemma shows that every p measurable set can be approximated by
subsets of compact sets in H? ,(0).

LEMMA 3.9. Lets o €]s,1/2[ and denote by Kr, R > 0 the ball
Kr={u€ H7(0) : |ullgoe) < R}
Then, for every p measurable set A,

p(A) = lim p(ANKR).

PROOF. Since pu(HE, (0)) = u(HZ,,(0)) and since f(u) € LI(du(u)), 1 < g <

rad
00, we obtain that p(H?, ,(©)) = p(HZ, ;(©)). Therefore, using Proposition 3.7, we
can write
0<p(A)=p(ANKg) = p(AUKR) - p(Kg)

< p( rad( )) p(KR)

= p( Tad( )) p(KR)

< Ce CR2
which completes the proof of Lemma 3.9. 0

4. Bilinear Strichartz estimates

We now state a localized Strichartz type bilinear estimate associated to the
linear Schrodinger group on the unit disc.

PROPOSITION 4.1. For every ¢ > 0, there exists § < 1/2, there exists C > 0
such that for every Ni,No > 1, every Li,Ls > 1, every uy, us two functions on
R x © of the form

U,j(t,T) = Z Cj(nvt) en(T)7 j=12

N;<(z,)<2N;



130 englishNIKOLAY TZVETKOV

where the Fourier transform of c;(n,t) with respect to t satisfies
suppéj(n,7) C{r € R : L; < (r+22)<2L;}, j=1,2
one has the bound
luruz]| L2 @xey < C(Ni A N2)*(L1L2)’|lurl| 2 xe) [zl 12 exo) -
PROOF. Let us first notice that for j = 1,2,
(4.1 lleme =c > [ g0,
N;<(z,,)<2N;

Denote v(t,7) = ui(t,r)ua(t,r). Our purpose is thus to estimate ||v][z2rxe)-
Equivalently, we need to bound [|v(7, )|/ z2(r, xe). Write

2
[o(, 7")||L2(Rx@) —C/ / ’/ 1(m1,7)uz(r — 71, r)dr| rdrdr.

On the other hand @y (1, 7)uz (7 — 71, 7) is equal to

> Y A, m)@&me, T — 11)en, (e, (r) .

N1<(2n,)<2N1 N2<(2n,)<2N2

Therefore, by invoking (2.2), we can write

H/ Tl, ’LLQ(T—Tl,T‘)dTl‘
/ > &1(ny, m)l|e2(n2, 7 — 71 l[€n, en, [l L2(0)dT1

OON1<(zn1)<2N1 N2<(2ny ) <2N2

Nl/\Ng / Z |C/1(n1,T1)||C/§(’rL2,T—Tl)ldTl.

OON1<(zn1 <2N1 N2<(zpn,)<2N2

poey = [ LT = 71,0y

Our aim is estimate the L2(R,) norm of the last expression. For this purpose, we
will of course make use of the support properties of ¢;(n, 7). Using the Cauchy-
Schwarz inequality in (71, n1,n2) gives the bound

| Sl n)l|Gne. T — n)ldn <

 N1<(zn,) <2N1 N2<(2ny)<2N2
1
/ > a0 m)PlEmer —m)Pdn )’
° N1<(zn1)<2N1 N2<(zn,)<2Ns
|A(7, L, Lo, Ni, Np)| 2,
where A(7, L1, Ly, N1, No) is the following set of R x N x N,

(42) A(T,Ll,Lg,Nl,Nz) = {(Tl,’nl,’ng) ERXNxN:L; < <T1 +Z7211> < 2L,
Ly < <T —T1+ 2727,2> < 2L, <Zn1> € [N1;2N1]7 <Zn2> € [N272N2]}

The next lemma contains the main combinatorial ingredient of our analysis.

LEMMA 4.2. For every € > 0 there exists Ce > 0 such that for every 7 € R,
every N1, No > 1, every L1,Ly > 1,

|A(T, L1, L, N1, Na)| < C(N1 A N2)*(L1Lo).
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ProoF. Consider the set K(T, Ly, Ly, N1, N3) of N x N; defined by

A(T, L1, Lo, N1, No) = {(n1,n2) € NX N : (7422 +22) <2(L1 + La),
<Zn1> € [N1a2N1]7 <Zn2> € [N272N2]}'
Let (71,m1,n2) € A(T, L1, L2, N1, N3). Then the triangle inequality yields
(m+z2 +22)<(n+22)+(t—7m+22,) <2(L1 + Lo).
Therefore (7'1, ni, 7’L2) S A(T7 Ll, LQ, Nl, NQ) implies that (’I’Ll, 712) S K(T, Ll, LQ, Nl, NQ)
On the other hand for a fixed (n1,n2) € A(r, L1, La, N1, N2) the Lebesgue mea-
sure of the possible 7 such that (71,n1,n2) € A(7, L1, L2, N1, N3) is bounded by
C(L1 A Lg). Therefore
(4.3) |A(T, L1, Ly, N1, No)| < C(Ly A Lo)|A(r, Ly, Ly, Ny, No)|.

We next estimate |A(7, L1, Lo, N1, Na)|. Observe that 22 422, ranges in an interval
of size < C(Ly + La). Hence, thanks to (2.6) the expression (4n; —1)% 4 (4ngy —1)2
also ranges in an interval of size C'(L; 4+ Ls), where the constant C is independent
of 7, L1, Lo, N1, N3. Indeed, suppose that for some A € R,

(4.4) A<zl +22 <A+ C(Li+ Ly).

In (4.4), A is the parameter we have no control on. Using (2.6), we obtain that
(4.4) implies
16A4 16A+ 16C (L1 + Lo)

2

2 9

(45) < (4711 - 1)2 + (4%2 — 1)2 + R(?’Ll,ng) <

™

where, thanks to the estimate on the remainder in (2.6), the function R(ni,nz) in
(4.5) satisfies

|R(7’L1,7’Lg)| < C.
Therefore, (4.5) implies
164

?—5§(4n1—1)2+(4n2—1)2§ -

16A + 16C(L L ~
+ 2( 1+ 2)+C.

Thus (4n1 — 1)2 + (4ng — 1)? ranges in an interval of size
16C(Ly + L ~ 16C°  ~
60U+ La) 4 oe < (= +C) L1+ Lo)

™

exactly as we claimed. Denote the interval where (4n; — 1)? + (4ny — 1)? can range
by A. Another appeal to (2.6) yields that the restrictions (z,,) € [N1,2N;] and
(Zny) € [N2,2N3] imply the bounds

0§7’L1§CN1, OSTLQSCNQ.

Let [ be and integer in the interval A. Then we have the bound
(4.6) #((nl,ng) ENxN:l=(dn; —1)2+ (dny — 1)2,
0<n; <cNy, 0<ng< CNQ) < Ce(N1 A No)*

Indeed, if I < 2¢2(Ny A N2)?9%5 then the left hand-side of (4.6) is bounded by
C.(min(Ny, N2))¢ by the standard bound (see e.g. [8, 13]) on the number of
divisors in the ring of Gaussian integers Z[i]. Let us next suppose that

1> 2¢%(Ny A Ng)?0% 1.



132 englishNIKOLAY TZVETKOV

By symmetry, we can suppose that No > N;. We have that 4n, — 1 € I, where the

interval I is defined by
I=[\1-(4cN, —1)2,V1].
But the size of I is bounded by
(4eNy —1)? < CN} <c
Vi JENTE 1

Therefore the size of I is bounded by a constant uniform in N;, N2 and [. Thus
in the case [ > 2c3(N;y A N2)?0% 4 1, we can get even better then (4.6), namely
we have a bound by a uniform constant. This completes the proof of (4.6). Using
(4.6) we infer that

|K(T7L1,L2,N1,N2)| < CE|A|(N1 A\ ]\72)‘E = CE(Ll + Lg)(Nl A\ J\/vg)‘E .

Observe that (Ly A Lo)(Ly1 + La) < 2(L1Ls). Therefore coming back to (4.3)
completes the proof of Lemma 4.2. O

Thanks to Lemma 4.2, we may write

H/ Tl, UQ(T—Tl,T‘)dTl‘ 2(@)

1
(/] S PG - n)Pdn )’

> N1<(zn1 Y<2N1 N2 <(zn,)<2Na

<C. (Nl /\NQ) (LlLQ)%

Squaring the above inequality, integration over 7 € R and using (4.1) gives the
bound

1
(4.7) [uruz||L2®xe) < Ce(N1 A N2)(L1L2)? [|uil| 2 rxe) luzll L2k x0) -

We however claimed that the power of LiLs can be smaller than 1/2. In order
to obtain this better bound with respect to the L, Lo localization, we will get an
inequality which is better than (4.7) as far as (L1 L2) is concerned but which is very
weak with respect to the Ny, Ny localization. Using the formula for the inverse of
the Fourier transform, the support properties of the Fourier transform of ¢;(n,t),
and the Cauchy-Schwarz inequality, we obtain the bound

o (m, )2 < CLj/ & (n, ) 2dr, G =1,2.

— 00

Hence, we infer that

luj (8, )20 = Y eyl

N;<(2n)<2N;
< CL, Z / &5 (n, 7)|?dr
N;<(zn)<2Nj;
= OLJ‘HUJ'HLz(Rx(—))-
Therefore
1
(4.8) ;]| oo ;22 (0)) < OLZ [[ullL2®x0)-

Interpolation (it is in fact simply the Holder inequality) with the equality

llujll2 sz o)) = llwjllL2mxo)
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gives the bound
1 .
(4.9) lujlla@szze)) < CLj ujllr2wxe), J=1,2.
Recall that (2.6) implies that
#meN: N < (z,) <2N)<CN.
Therefore, using (2.1) and the Cauchy-Schwarz inequality, we get
1
ui(t,r)] < ONF Y e t)]

NjS<zn><2Nj

1
< CNJ%NJ%( > lemP)’
N;<(zn)<2N,
1
< CNJL;||uj||L2(R><(~))-
Thus
1
(4.10) sl Lo ;o (@)) < CN;L? [[ujl L2 (rxo)-

Next, we can write

2
it M@y < CNj( Z |cj(n,t)|>
N;<(2n)<2N;
< ONF Y ()
N;<(2n)<2N;

= CN7|lu;(t,)|Z2(0):
Integration of the last inequality over ¢ € R gives
(4.11) lujllL2@;L>@)) < CNjllujllL2mxe)-
Interpolation between (4.10) and (4.11) now gives
1
(4.12) il 2w @)y < OL} NyllujllL2rxe)-

Suppose that N7 < Ny. Then using (4.9), (4.12) and the Holder inequality, we
obtain

luruz||L2mxe)y < luillparszo o)) lluallLa@®:L2 o))
1
< C(L1L2)? NiflurllL2rxe)lluallL2rxo) -
Therefore, we arrive at
1
(4.13) |lurual|L2rxe) < C(L1L2)* (N1 A No)l|ut|| 2 rxe)lluall L2 rxo) -

Interpolation between (4.7) and (4.13) completes the proof of Proposition 4.1. O
We will also need the following variant of Proposition 4.1.

PROPOSITION 4.3. For every € > 0, there exists 3 < 1/2, there exists C > 0

such that for every Ni,No > 1, every Li,Ls > 1, every uy, us two functions on
R x © of the form

u(t,r) = Z c1(n,t) en(r)

N1<(20)<2N;
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and

wit)= Y et

No<(zy)<2Ns

where the Fourier transform of c;(n,t) with respect to t satisfies
supp(n,7) C{r € R : L; <(r+22) <2L;}, j=1,2
one has the bound
urus| L2@xe) < C(N1 A Na)*(L1La)? lutll 22 @xe) Uzl L2 rxe) -
PROOF. Recall that the function e,, satisfies the equation
rell (r) + el (r) = —z2r e, (r).

Therefore, using that for m # n, e,, and e, are orthogonal in L?(©) and vanishing
at r = 1, an integration by parts gives for m # n,

0

/o el (ren, (r)rdr = —/01 em(r)(el, (r)r) dr + {em(r)e;(r)r}
= [ en)er) + re i
0
= 2721/ em(r)en(r)rdr =0.
0
Therefore, we obtain that

@) el —c Y Ilie [P

No<(zy)<2N3

and from now on the proof of Proposition 4.3 follows the lines of the proof of
Proposition 4.1. Indeed, using (2.3), we can write

H/ (1,7 UZ(T_TlaT)dﬁ’

L2(©) < / Ha(Tl’ T)@(T - T1, T)HLQ(@)dTl

— 00

/ Yo latm)ll@me, T —1)llen e,z e)dn

OON1<(zn1)<2N1 N2<(zn,)<2Ns

C.(NIAN, ¢ / S 1@ )l ey |G na, T—r)ldn
Ny <( znl Y<2N1 N2<(zn,)<2Na

Again, our goal is to estimate the L?(R,) norm of the last expression. Using the
Cauchy-Schwarz inequality in (71,711, n2) yields

[ >l n)llen, e Gne. - mldn <

© N1<(2n,) <2N1 N2<(zny)<2N2

/ Z |CA1("17Tl)|2||€;12||%2(@)|€2(n2=T—Tl)|2d71)

 N1<( znl Y<2N1 N2<(2n,)<2N2

=

X |A(TaLlaL27N15N2)|%a
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where A(7, L1, Lo, N1, N3) is defined by (4.2). A use of Lemma 4.2 now gives

H/ 7'17 UQ(T—Tl,’I”)dTl‘ C (Nl /\NQ) (LlLQ)%

L2(©)
%
(/] Sl m)Plleh, o), —m)Pdn)

N < zn1)<2N1 N2 <(2ny)<2N2

and therefore
1
luruz|lL2@®xe) < Ce(N1 A N2)*(L1L2)? [Juil 2 rxe) luzll L2mxeo) -
Next, using the localisation of the Fourier transforms of ¢1(n,t), as in the proof of
Proposition 4.1, we get the bound
1
[uillLa®;z20)) < CL{ |JuallL2®xe)-

Next, we estimate ug as follows

lua(t, Z20) = Yo lem Pl

N2S<Z7L><2N2

¢ Y () 1amnPar)iclie

No<(z,)<2N> -

IN

CLslus|?2®xe) -
Therefore
1
uallLo &;z2(0)) < CL3 |JuallL2®xo)-
Interpolating with the equality
||U2||L2(JR;L2((—))) = ||U2||L2(R><(—))-
gives
1
uzllLa®;z2(0)) < CL3 |[uallL2®xo)-
Thus
1 .
lwillze®;r20)) < CLj |ujllz2®xe), J=1,2.
Next, using (2.1), we get the bound
l .
(4.15) l[ujll oo @iz @) < ON; L |lujllL2@ne),  J=1,2.

Indeed, for 7 = 1 such an inequality is already proved in Proposition 4.1. For j = 2,
we can write by using (2.1),

1
us(t,r)] < ONF D ea(nit)lllen o)

N2S<zn><2N2

< om( X lem )Pl e
N2S<zn><2N2
1

< CNoL3 ||uzllL2rxe)

and thus (4.15) for j = 2. Moreover,

(4.16) lujllLzes=e)) < CNjllujllL2rxe), J=1,2.
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Indeed, for j = 1 it is already proved in Proposition 4.1. For j = 2, by invoking
once again (2.1), and the Cauchy-Schwartz inequality, we obtain

2
lua(t M) < CNo( D leamt)llellzae) )
N2<(zn)<2N2
< oNF Y e Dl le 3 -

N2S<Zn><2N2

Integration of the last inequality over ¢ gives (4.16) for j = 2. An interpolation
gives

l .
lujlla@;z= (@) < CLj Njllujllr2rxey, J=1,2.
Then the Holder inequality gives

1
|urus|l L2gxe)y < C(Li1La)T (N1 A No)lluil r2mxe)lluzll L2 @xo) -
A final interpolation completes the proof of Proposition 4.3. O

5. Bourgain spaces

We denote by L?,,(0) the L? radial functions on the unit disc. We endow
L2, ,(©) with the natural Hilbert space structure. Similarly, we denote by L2_,(R x
©) the L? functions on R x O, radial with respect to the second argument. For

o < 1/2, the norm in HZ, ;(©) of a radial function

rad
V= g Cnén

n>1

can be expressed as
ollrs @) = D 2 leal®.
n>1
In this paper, we will only consider spaces of Sobolev regularity < 1/2 and thus
there is no need to specify the boundary conditions on 90 (in our context it simply
means r = 1). More precisely the choice of the Dirichlet eigenfunctions e,, as basis
of L? ,(©) is not of importance in the definition of HZ ,(0), 0 < 1/2.

rad

Next, we define the Bourgain spaces X (’ZZ(R x ©) of functions on R x © which
are radial with respect to the second argument. These spaces are equipped with

the norm
||u||§<f;Z(Rxe) =Y allllr+ 2 ez,

n>1
where
u(t) = calt)en .
n>1
Notice that
(5.1) ol o ey = | exp(—it) (D) s e, o) -

Indeed, using that
exp(—itA)(u(t)) = exp(itz])en(t)en
n>1

and since

—

exp(itz3)en(t)(7) = éu(T — 27,),
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we arrive at

||GXP(—itA)(U(t))||12Hb(R;Hgad(e)) = ZzigneXP(itZZ)Cn(tﬂhQHb(R)
n>1
= D A lin)alr —a)liew
n>1
= Nl mxe)-
This proves (5.1). Clearly faZ(R x ©) have a Hilbert space structure and for

0 <o <1/2wecansee X, 7~ (R x ©) as its dual via the L2(R x ©) pairing. A
one dimensional Sobolev embedding (for functions with values in HZ ;(©)) yields
the estimate

1
(5.2) lull 2 ®; 7z, ,(0)) < Collull xot mxoy 0> 35

Next, for 7' > 0, we define the restriction spaces X d([ T,T] x ©), equipped with
the natural norm

. ob .
”u”X:(;Z([—T,T]x@) = mf{llw”x;ﬁ;ﬂ(ﬂ%x@)’ we X7 (Rx0) with w_rp = u}.

Therefore (5.2) yields

1
lull oo (-7,77; 17, 000 < Colltll xot (rmyney 0> 5

which 1mp11es that for b > 1/2 the space X7 ([~T, T] x ©) is continuously embed-

ded in C([-T,T]; HZ,,(©)). Similarly, for I C R an interval, we can define the the
o,b

restriction spaces X

(I x ©), equipped with the natural norm.

Following [5], our next purpose is to express the norm in X7 d(R x O) in terms
of some basic localisation operators. Recall that for u = En21 Cnén, the projector
Ay is defined by

An(u) = Z Cnén -

n: N<(zn)<2N

For N > 2 a dyadic integer, we define the projector Sn by

Sv= > A

Ni<N/2
N7 —dyadic
For a notational convenience, we assume that 5’1 is zero. Notice that S N is es-
sentially equivalent to Sy, where the projector Sy is defined in (3.12). For N, L
positive integers, we define Ay, by

1 .
(5.3) Anp(u) = — / n(T)ede) en,
2 L<(t+22)<2L

™
n: N< n)<2N

where
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Then for u € X7" (R x ©) (with the natural interpretation of the 7 integration in

rad

(5.3) if b < 0), we can write the identity

u = Z ANyL(’U,)

L,N—dyadic

in X7 (R x ©). Next, we have that there exists a constant C,, > 1 which depends

rad
continuously on ¢ and b such that

CopL"N7NAN L (W r2@xe) < NANLW]xot @y
< CopL’N7|| AN ()] 22®xo)
and
C;;H“Hi;&bd(m@) < Z L*N* AN ()72 x0)
L,N—dyadic
(5.4) < Coﬁ”“”icm(me)'

Moreover there exists C, > 1, a continuous function of b such that

Oln_lHAN(u”@(“’lji(Rx@) < Z Lzb”AN,L(U)H%%Rx@)
L—dyadic

CollAn (w)lI3

(5:5) X%P (Rx©)

IN

and there exists C, > 1, a continuous function of ¢ such that

C"_lHu”i&Z(Rxe) < Z N20||AN(U)||§<?(;Z(RX®>

N —dyadic
(5.6) < CUHUH?X:(;Z(RXG) :

Proposition 4.1 now has a natural formulation in terms of the basic localization
projectors.

PROPOSITION 5.1. For every € > 0, there exist § < 1/2 and C > 0 such that
for every N1, No, L1, Ly > 1, every uy,us € L2, (R x ©),

rad

”ANl,Ll(ul)AN2,L2(u2)||L2(R><®) <
< C(L1Ly)? min(Ny, N2)* [ A, 1, (u1) | L2z x0) [ AN, L, (U2) ] 2R x6) -

Proor. It suffices to observe that Ay, 1, (u), j = 1,2 satisfy the localisation
properties needed to apply Proposition 4.1. O

The following global linear Strichartz estimates is a direct consequence of
Proposition 5.1.

PROPOSITION 5.2. Let us fix € €]0,1/2[ and b > 1/2. Then there exists C > 0
such, that for every u € X=° (R x ©),

rad
||u||L4(R><®) < OHuHXf;f;(Rx@)'
PRrROOF. It suffices to apply Proposition 5.1 with L1 = La, N; = N3 and sum

up over the dyadic values of these parameters by applying the Cauchy-Schwarz
inequality and (5.4). O
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6. Nonlinear estimates

The next statement contains the main analytical ingredient in the proof of
Theorem 1.

PROPOSITION 6.1. Let 0 < o1 < o < 1/2. Then there exist two positive
numbers b,b such that b+ b0 < 1,V < 1/2 < b, there exists C > 0 such that for
every u,v € X7P (R x ©),

rad

6.1 @]y o) < O g0 Tlxes @)

and
(6:2) [F(u) = F)l yo v/ (g o) <

(14 1020 ey + 108 o )18 = ot oy

PRrROOF. Using the gauge invariance of the nonlinearity F(u), we observe that
F(u) — (OF)(0)u is vanishing at order 3 at u = 0. It therefore suffices to prove that

(6'3) ||F( )H U*b'(RXQ) C||u||2 o1 b(]R ®)||u||X“b(R><@)7

under the additional assumption that F'(u) is vanishing at order 3 at u = 0. Indeed,
by writing

HF(U) - (aF)(O)U”X;;(;;b/(RX@) 2 ||F(u)||X:'(;;b/(RXQ) CHUHXU 7b/(]R><O)’

we deduce that the claimed estimate (6.1) follows from (6.3) applied to F(u) —
(0F)(0)u. By duality, in order to prove (6.3), it suffices to establish the bound

- 2
(04 }/Rx(a F0] < ol ey 14y ey 10z e
Next, we have the decomposition
v = Z An, (v).
No—dyadic

Moreover, using Proposition 5.2 and the sub-cubic nature of the nonlinearity, we
infer that for u € X7%(Rx0), o €]0,1/2[, b > 1/2, one has F(u) € X7 "(Rx O).
In addition, we can write

F) = Y (F(San () = F(Sy, ()

N;—dyadic

in X_ %~ (R x ©), with the convention that S (u) =0. Since Ay = Son — Sn, we

rad
can therefore write

N;—dyadic
Y An(W)Ga(An, (u), S, (u) = Fi(u) + Fa(u),
N;—dyadic

where G1(z1, 22) and Ga(z1, 22) are smooth functions with a control on their growth
at infinity coming from (1.2). We are going only to show that

FARECLE

e sy 181 g 1l 8



140 englishNIKOLAY TZVETKOV

since the argument for

‘/RX@FQ(u)@‘

is completely analogous. We can write

Filu) = > Ax(w)Gi(Ay, (), Sy, (u)).

N7 —dyadic
Next, we set
I= ‘ / Fi(u)
Rx©
and
INo. N = | [ A (0B (0)G1 (A, (w), Sy ().
Rx©

Then I < I + I3, where
L= Y INoN), L= >  I(No,M)

No<N: No> N,
No,N1—dyadic No,N1—dyadic

We estimate first I;. Similarly to the above expansion for F, using the vanishing
property at the origin of F, we now decompose G1(Ap, (u), Sy, (u)) as follows,

> (01 (San, A, (1), San, S, (1)) = G1(Sn, An, (1), S, S, (U)))'
Ny—dyadic

Therefore, using that Ay, An, = Apn,, if N1 = Nz and zero elsewhere, we obtain
that

Gl(ANl (u)’gNl (u)) = Z ANz (u)Gﬁz(AN2(u)agN2(u))+
NgN—ztigldic

Z ANz(u)Gi\%(ANQ (u)7‘§’N2(u))
Na<Np
Na—dyadic

Finally, we expand for j =1, 2,
G (AN, (), Sn (W) = Y Ang ()G (A, (), Sn (w)+

N3<Ng
N3 —dyadic

Z ANS(U‘)G%Z(ANS (u)75’N3(u)),
N3<N
N3z—dyadic

where, thanks to the growth assumption on the nonlinearity F(u), we obtain that
the functions Gﬁib (21,22), j1,j2 = 1,2 satisfy
N
|G1j31j2 (2’1, Zg)l < C.
We therefore have the bound

n<c Y S A @A Ax @Ay, )

No<N N1>Ny>Ng
N(),Nl —dyadic Ng,Ng—dyadic
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and moreover using the equality
Ay = Z AN, L,
L—dyadic

we arrive at

L <C >

Lo,L1,L2,L3—dyadic

S 1Aven @8y AN, LAy, 1)
Rx©

N1>Ny>N3,N1>Ng
N07N17N2,N3—dyadic

Using Proposition 5.1 and the Cauchy-Schwarz inequality, we have that for every
€ > 0 there exist § < 1/2 and C, such that

/ |AN0,L0(U)AN17L1 (U)ANQ,Lz(u)ANS,Ls(u)l <
Rx©

< [ ANg, 2o (V) ANy, Lo (W) | L2 R x0) | ANy, L1 (W ANy, s (W) || L2 (R 0) <
3
< Ce(NaN3)* (Lo L1 LaL3) [ Ang, 1o (v)l| 2 @xe) [ [ I1AN; 2, (W)l L2 xo)-

Jj=1

Therefore, if we set

(6.5) Q= Q(No, N1, N, Ns, Lo, Ly, Ly, L) = CNy °NY (N3N3)?* LY (Ly Ly Ls )

3
X ||AN01L0(’U)||L2(R><®) H ||AquLj (u)||L2(R><®)a

Jj=1

we can write

’ No\ o
B—b B—b (Y0 e—0
I < > ‘ > Ly " (L1LaLs) (N1) (N2N3)*™7'Q
Lo,Li,L2,Lz—dyadic Nj>Ny>Ng,Ni>Ng
N07N17N2,N3—dyadic
Let us take € > 0 such that € — oy < 0. This fixes 8. Then we choose b’ such that
B < b < 1/2. We finally choose b > 1/2 such that b+ b’ < 1. With this choice of
the parameters, using (5.5) and after summing geometric series in Lo, L1, La, L3,
N3, N3, we can write that

No\©°
I < CHUH.QXUld’b(RX@) Z (F?) C(NO)d(Nl)v

No<Nj
No,Nl—dyadic

where

(6.6)  c(No) = Ny “[|An,(v) d(N1) = N7 |An, (u)

lxos @xe) Ixos, xe)

We now make appeal to the following lemma which is a discreet variant of the Schur
test.

LEMMA 6.2. For every o > 0 there exists C > 0 such that for every couple of
functions c;(N), j = 1,2, defined on the set of the dyadic integers such that

lejll= D7 (NP <oo, j=1,2
N —dyadic
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one has

(6.7 Y () atemn)] < clallel

No<Ny
No,N1—dyadic

PROOF. Write N7 = 29Ny with j > 0, j € Z. Thus the left hand-side of (6.7)
can be rewritten as

YT s ramoeen)
7j=0 No—dyadic

which by the Cauchy-Schwartz inequality in Ny is bounded by Cc1||||cz|| with

C=>Y 277
§=0
This completes the proof of Lemma 6.2. O

Next using (5.6) and Lemma 6.2, we deduce that

2
Il S C”/U“X;add’b,(RX@) ||u||X:;éb(R><@) ||u||X:;Z(R><@)

This ends the analysis for I;. We next turn to the estimate for Is. The basic
idea is that after an integration by parts, the structure of Iy becomes very close
to the structure of I;, by simply exchanging the roles of Ny and N;. In this
context the Proposition 4.3 gives the relevant bound. We start by some preliminary
observations. For u € L?,,(R x ©) we can write

Anpw)= > cnt)en(r),

N<(z,)<2N
where
suppe(n,7) C {T € R : L < (r+22) <2L}
and
Ax @y = Y[ fetn P
N<(zn)<2N
Moreover

8T(AN7L(u)): S elnit)e(r).

N<(z,)<2N
Recall that for m # n, e/, and e/, are orthogonal in L?(©). Moreover, thanks to
(2.4),
lenllzz2(e) = nllenllr2(e)
and thus using that

10 (A 2) ooy = 3= NehlBae [ ot r)Par

N<(zn)<2N
we arrive at the crucial relation

(6.8) [|0r (An,L(u) ~N|AnL(u

)HL2(R><O) HL2 (Rx©) *

Let us observe that 1
en(r) = —— =0 (roren(r)).

ZT
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Since Ap, (u)G1(An, (1), Sy, (1)) is vanishing on the boundary of ©, an integration
by parts yields

1
/0 en(r)Aw, ()G (A, (), Sy, (w)yrdr =

z
Write
(6.9) Ay (V) = > c(ng, t) eny (1),
No<(zny)<2No
where

suppc(ng,7) C{T €R : Ly < (T + 22 ) < 2L}
Then, for n € N such that (z,) € [Ny, 2Ng[, we set

. t) = Cigt)

)

where ¢(n, t) are the coefficients involved in (6.9). Define KN(MLO as

£N07L0 (’U) = Z E(?’Lo,t) e;m (T)

No<(znq)<2No

Clearly A No,Lo (V) is an object which fits in the scope of applicability of Proposi-
tion 4.3 and

(6.10) 1ANo, Lo (0) |22 x0) = Ng ANy, Lo (V) 222 x @)

Recall that e, (1) are real valued. In view of the above discussion, we need to control
the expression

>

No=>Ny
L(),N(),N1—dyadic

’ RxO m&« (ANl ()G1(An, (), S, (u))) ‘

Now, we can write £ < Fy + F5, where

BE= Y A0 (B, (1)) Gr (A, (), S, (u)

No=>Ny
L(),N(),Nl —dyadic

’ Rx©

and

By = >

No=>Nj
L(),N(),N1—dyadic

| [ R 0 (G (A (1), S () |

By expanding G1(z1, 22) and using the growth and vanishing assumptions on the
nonlinear interaction F', we can write

E1<C >

Lo,L1,L2,L3—dyadic

3 / B (000 (B (1) A 1 (1) A 1, 1)

Ng>N1>Na>N3
No,Nl,Nz,N:;*dyadiC
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Using Proposition 5.1, Proposition 4.3, the Cauchy-Schwarz inequality, (6.8) and
(6.10), we have that for every € > 0 there exist 8 < 1/2 and C. such that

[ B 09, (B () B s (1) A 2 0] <
Rx©

< ”ENO,LO(D)ANz,IQ( ||L2(]R><G))||a (AN1 L1 )AN3 L%( )||L2(R><@) <
< C=(N2N3)*(LoL1L2Ls)? || Any.1o (0)l| L2 (R o)

3

< 10 (AN, .2, (W) | z2@xe) [ ] I1AN, 2, (W)l L2 @xe) <
=2

3
N
< Ce(NaNa)* (LoLnLaLo) ' [ Ao ()2 ) [T 1180, 2, (@) 22x0)-
j=1
Therefore, with @ defined by (6.5), we can write

(6.11) E; < >

Lg,Ll,Lg,L37dyadic

Y _ N, o—1 Y
Z Ly " (L1LoLs)” b(ﬁo) (N2N3)*™ 7' Q
No>N;>Ng>Nj !

No,N1,N2,N3—dyadic

Let us take € > 0 such that € — 01 < 0. Then as we did for the bound for Iy, we
choose b’ such that § < b’ < 1/2. We finally choose b > 1/2 such that b+ b < 1.
Using (5.5) and after summing geometric series in Lg, L1, La, L3, Na, N3, we can
write that

]\]1 1—0o
B S Ol O (30)  cVo)d(V),
rad No> Ny 0
No,Nl—dyadic

where ¢(Ny) and d(N7) are defined by (6.6). Therefore, using (5.6) and Lemma 6.2,
we arrive at the bound

Ey < OHUHX;:;H(RX@) ||u||§(:aléb(R><@) ||u||X:;Z(R><(~))'

Let us now turn to the bound for E5. Using the formula
0, (F(2(r))) = (9:2)0f + (9,2)01,
we can write

o (G, (). Sw () = D 0 (Awa(w) G (A (1), Sy, () +

Na<Ny

N3 —dyadic
> o (ANQ (U)) G2 (AN, (u), Sy, (u)),
N2 <Ny
Na—dyadic

where thanks to the growth assumption on the nonlinearity, Gﬁ (21,22), 7 = 1,2
satisfy

2
(6.12) > (10:0G (21, 20)] + 10, G2 (21, 22)]) < €.

k=1
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By expanding éﬁz (21,22), J = 1,2 in a telescopic series and using (6.12), we get
the bound

Ey<C >

Lo,L1,L2,L3—dyadic

Z ~/]R o |£N07L0(U)AN17L1 (u)aT (ANz,Lz (u))ANs,Ls (u)|

No=2N1>N3z,N12N3
No,Nl,Nz,N:;*dyadiC

Using Proposition 5.1, Proposition 4.3, the Cauchy-Schwarz inequality, (6.8) and
(6.10), we have that for every € > 0 there exist 8 < 1/2 and C. such that

[ B 09, (B () B s (1) A 1) <
Rx©

< ||5N01L0(D)AN31L3(U)||L2(RX®)||a’r‘(AN21L2(U))AN1>L1(u)||L2(RX@) <
< Ce(NaN3)*(LoL1 Lo Ls)’ || Ang, o (v) | 2R x0)

X ||8T (ANz,Ls (u)) HL2(R><®) HANl,Ll (u)||L2(R><@) HANs,Ls (u)||L2(R><®) <
3

N.
< Cs(Nst)E(L0L1L2L3)ﬁﬁz||AN0,L0(U)||L2(Rxe) [T 1AN, L, (Wl2@xe)-

j=1

Next, for Ny < N, we can write,

ARG
Ny No = \Vy
and therefore, with @ defined by (6.5), we can write
_y (N
By < 3 3 LY (L1 LoLs)? b(ﬁo

Lo,L1,L2,L3—dyadic No>N;>Ng,N;>Ng
No,N1,N2,N3—dyadic

o—1
Y)(NaNs)

But the right hand-side of the above inequality is exactly the same as the right
hand-side of of (6.11). Therefore
By < Clloll e gl gl 7

rad

(RxO)"

This completes the proof of (6.1). In the proof of (6.1), we analysed the expression

[ £'(w)| yo.-v - The argument is based on successive expansions of F'(u) in telescopic
rad

series and thus it works equally well if we replace F'(u) by u G (v, w) where G(z1, z2)

satisfies the growth assumption

(6.13) |0105200,02G (21, 22)| < Oy gty ta (14 [21] 4 |zo]) (@ ambamhamtizte),

But this is exactly the situation that occurs in the analysis of (6.2). Indeed, one
can write

F(u) — F(v) = (u—v)Gy(u,v) + (T — 7)G2(u,v)

with G;(z1, 22), j = 1,2 satisfying (6.13). Since the analysis is very similar to the
proof of (6.1), we shall only outline the estimate for (v — v)G1(u,v). Again, we can
suppose that F'(u) is vanishing at order 3 at u = 0. Let us set

w; =u—0v, w2 = u, w3 = V.
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One needs to bound
‘/ w1 G (wa, w3) Wy
Rx©
by
2
c1+ ”w2”X:éZ(RX@) + HwSHX:éZ(RX@)) ”wl”Xf{;Z(Rx@)Hw4”x;ﬂ‘;b’(R><®) :

Next, we expand

wy = Z ANl (wl)v Wq = Z ANo(w4)

N7 —dyadic No—dyadic
and
Gi(wz,wg) = Y (Gl(g2N2(w2)7§2N2(w3))_Gl(gNz(w2)7gN2(w3)))'
Ny—dyadic

Thus, modulo complex conjugations irrelevant in this discussion, one has to evaluate
quantities of type

(6.14) > A, (wa) Ay, (w1) An, (w;)
No,N1,Na—dyadic 7 R*©

HY (AN, (w2), Sy, (w2), A, (ws), Sn, (ws))|,  j=2,3,

where H JN (21, 22, 23, 24) are smooth functions satisfying growth restrictions at in-
finity coming from (1.2). In the analysis of (6.14), we distinguish two cases for Ny,
Ny, N3 in the sum defining (6.14). The first case is when Ny < max(Np, N2), In this
case, we expand once more H JN 2 which introduces a sum over N3 —dyadic, N3 < Ny
of terms Ay, (w;) (or complex conjugate) times a bounded function (thanks to the
sub cubic nature of the nonlinearity). The analysis is then exactly the same as for
that of I in the proof of (6.1). If Ny > max(Ny, N3), then we integrate by parts
by the aid of Ay, (w4) and analysis is the same as in the bound for I3 in the proof
of (6.1). This completes the proof of Proposition 6.1. O

Let us now consider the integral equation corresponding to the problem (1.1)-
(1.5)

t
(6.15) u(t) = e"Pug + i / A F (u(r))dr .
0

With Proposition 6.1 in hand, we can deduce the following estimates for the terms
in the right hand-side of (6.15).

PROPOSITION 6.3. Let 0 < 01 < o < 1/2. Then there exist two positive
numbers b, b’ such that b+ b < 1, b < 1/2 < b, there exists C > 0 such that for
every T €]0,1], every u,v € X2 (=T, T] x ©), every ug € H? .(©),

rad

(6.16) HeitAuoHXf;Z([fT,T]xG)) < Clluollmg, (o) »

t
6.17 H/ (="M R (u(r))d H <
(6.17) | C (u(r))dr X7 (LT T]xE) =
1-b—0b' 2
=T (1 + ”“”X;’;ﬂ[—T,T]x@)) lellxzt —r.1100)
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and

(6.18) H/OteiuT)A(F(u(T))—F(v(T)))dTHXUYZ([_T)T]X@ <

ra

1-b—b' 2 2
=CT (1 Hlulxes crmxe) + ”“”X:j;([—T,TJx@)) lu = vl o -r71x0) -
PROOF. Let ¢ € C§°(R) such that ¢» =1 on [—1,1]. Then, using (5.1), we can
write
itA itA
e UOHX"’Z([—T,T]xe) < lv®)e UOHX;’(’IZ(RXG) = ¥l lluoll a2, o)

ra rad

which proves (6.16). Let us remark that if & € X7 (Rx©) realises the X% (=T, T| x

rad rad

©) norm of u then the same @ realises all Xfl;;ib([—T, T] x ©), ¢/ < o norms of u.

With this remark in hand, now the proofs of (6.17) and (6.18) follow from (6.1)
and (6.2) respectively, (5.1) and the inequality

t
(6.19) o (¢/T) / )@ < CT 1 Ly -

We refer to [7] for the proof of (6.19). This completes the proof of Proposition 6.3.
O

7. Basic local well-posedness results for NLS and the truncated NLS

Recall that we are interested in constructing solutions of the initial value prob-
lem

(71) iut + Au + F(’LL) = O, u|t:0 = UuqQ -
We will approximate the solutions of (7.1) by the solutions of the ODE
(72) iut—l—Au—!—SN(F(u)) =0, u‘t:() =ug € En,

for N > 1 (for the definition of the projector Sy, see Section 3, (3.12) above).
Equation (7.2) can be seen as a Hamiltonian ODE for u = Sy (u). More precisely,
if

N
u= Sn(u) = Z Cn n,s)
n=1

then the Hamiltonian of the ODE (7.2) is given by
N 1 N
H(u,7) = 2272;25 leal? — / V( Z Cm emﬁs(r))rdr.
n=1 m=1
Multiplying (7.2) by @ and integrating over © yields that the L? norm is still a
conserved quantity for (7.2). Therefore, the Cauchy-Lipschitz theorem for ODE’s
implies the existence of global dynamics for (7.2) for every ug € L?(©). The L?
conservation provides the bound
N
>zl <C
n=1

uniformly in ¢. However, bounds on the quantities

N
> 0 lea ), >0
n=1
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for long times are non trivial and go beyond the scope of the basic Cauchy-Lipschitz
theorem. We next state the basic local well-posedness result for (7.1), which unfor-
tunately misses the L? theory.

PROPOSITION 7.1. Let us fix 0 < 01 < o < 1/2. Then there exist b > 1/2,
B>0,C>0,C>0,c€l0,1] such that for every A >0 if we set T = c(1 + A)~F"
then for every ug € H',(©) satisfying ||uo||g-n < A there exists a unique solution

of (7.1) in X°HP([~T,T] x ©). Moreover

rad
||u||L°°([_T7T]§H01 (©)) < CHUHX:QId’b([—T,T]X@) < CMv”“’OHH"l () -

If in addition uo € H

rad

(©) then
lull o -, 73 187 0)) < Cllull ot 1 7yx0) < Clluollzre o) -
Finally if uw and v are two solutions with data ug, vy respectively, satisfying
[uollger < A, vollge < A

then

||u — U||Loo([7T1T];H01 (@)) S CH’LLQ — ’UQ||Ha1(@) .
If in addition ug,vo € HZ, ,(O) then

lu — || oo (=7, 177 (0)) < Clluo — voll - (o) -

PROOF. It is a direct application of Proposition 6.3 and the contraction map-
ping principle to the map @, (u) defined by the right hand-side of (6.15). Indeed,
for shortness, let us denote by X2 the Bourgain space Xf(;l;([—ﬂ T] x ©), where b
is fixed in Proposition 6.3. Then there exists § >0 (§ =1 — b — b’ with ¥’ fixed by
Proposition 6.3) such that

(7.3) @00 @)lxzs < Clluoll s, o) + CT*(1 + llullis el oo
and
(7.4) 1@ () = Pug (v) [ x50 < CT?Ju = vl xon (1 [l on + [[0l5zn) -

Using (7.3), we obtain that for every ug such that ||ug|/ge1 < A if we take
T~ (14 A)~%?2

then the map ®,, sends the ball of radius 2C||ug||ge1 of X7! into the same ball.
Thanks to (7.4), with the same restriction on T the map ®,,, is also a contraction
on the ball of radius 2C||ug||go1 of X7'. The fixed point of this contraction is the
needed local solution of (7.1). Proposition 6.3 also yields the bound

1@, (w)llxz < Clluollag, ,(0) + CT? (1 + ul 3o llull xg

We obtain thus the propagation of higher regularity with the same restrictions on
T. Using Proposition 6.3, we get the bound

(7.5) 1@, () = Pug (v) |05 < CT u = vllxg (1 + [lull kg + lvl%s) -

Applying Proposition 6.3, (7.4) and (7.5) to the difference of two solutions yields
the quoted Lipschitz bound. This completes the proof of Proposition 7.1. ([
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REMARK 7.2. If we are interested to prove propagation of higher Sobolev regu-
larity, with our methods we only can treat the domains of the powers of the Dirichlet
Laplacian. For example we may expect to get that H} regularity is propagated by the
flow. Similar results for the Neumann Laplacian do not follow from our analysis.
As mention in the introduction, we do not pursue this here since the measure p
"lives” on functions of Sobolev reqularity HY/?~.

We state the analog of Proposition 7.1 for (7.2).

PROPOSITION 7.3. Let us fir 0 < 01 < 0 < 1/2. Then there exist b > 1/2,
B>0,C>0,C >0, cecl0,1] such that for every A > 0 if we set T = c(1 + A)~P
then for every N > 1, every ug € H;!,(©) satisfying ||uo|| g1 < A there exists a

unique solution u = Sy (u) of (7.2) in X' ([=T,T] x ©). Moreover

rad
lullze-rapmrosen < Cllellyorsrryeey < Clluollims o

If in addition ug € H?,

rad

(©) then
el —rr1sm= o) < Cllull o .77y < Cllwollze(oy -
Finally if u and v are two solutions with data ug, vy respectively, satisfying
[uollzror < A, lvofl o < A
then
lu — vl oo (=1, 131571 (©)) < Clluo — vollge1 (o) -

If in addition ug,vo € HZ ,(©) then

rad
llu — || oo (=7, 177 (0)) < Clluo — voll o (o) -

PROOF. The only new point compared to Proposition 7.1 is to observe that
Sn is bounded, uniformly in N on the Bourgain spaces X éZ([_T ,T| x ©), namely
for every u € X2 (=T, T] x ©),

rad

1Sn (Wl xe, (-r.r1xey < MUl xep(-rir1xe) -

rad

a bound which is direct consequence of the definitions of X (;Z([—T7 T] x ©) and
the projector Sn. O

REMARK 7.4. The main point in Proposition 7.3 is the uniformness of the
bounds with respect to N.

8. Improved bounds for the truncated NLS

In this sections, we improve the result of Proposition 7.3. More precisely, we
show bounds on the H? norm of the solutions of (7.2), uniform in N for initial data
of “large py measure”. Let us denote by ®n(t) the smooth flow map of (7.2) which
is defined globally thanks to the L? conservation for (7.2). The next statement
results from an application of Liouville’s theorem to (7.2).

PROPOSITION 8.1. The measure pn defined in Section 8 is invariant under the
flow of the (7.2).
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PROOF. Set ¢(t) = (en(t))1<n<n, where

E t)en,s -

n=1

In the coordinates ¢, the equation (7.2) can be written as
(8.1) iz, 5 (t) — 22 2, 5cn(t) + / SN(F(u(t)))e, =0, 1<n<N.
e

Next, equation (8.1) can be written in a Hamiltonian format as follows

8H oH
Oren = —iz2*—, 0, =iz2*——, 1<n<N,

¢, Jcp
with

N 1 N

H(C,E) :szl*25|cn|2_/ V(Zcmem,s(r))rdr-

n=1 0 m=1

Since
N

9 LOH. &, . 0H
Zl(a_cn( iz =) T g (i 5 )):0’

we can apply the Liouville theorem for divergence free vector fields to conclude
that the measure dede is invariant under the flow of (7.2). Recall that we denote
by ®x(t), the flow of (7.2) and that the quantities H(c,¢) and

N
lel? =D Jenl?
n=1

are conserved under ®y(t). Let A be a Borel set of Ey. Recall that we denote by
X the characteristic function of the interval [0, R], R > 0. Then

px(A) = iy /A HER) y (|le]dede,

where

In addition

(5.2 o (Ox(OD) = [ e MBI el dode,
DN ()(A)

We can write

Dy (t)(A) = {(c,0) : (c,T) = Pn(t)(b,D), (b,b) € A}.

Let us perform the change of variables (c,¢) = ®x(t)(b,b) in the right hand-side of
(8.2). Since dede is invariant under @y (t) the Jacobian of this variable change is
one. Next by the conservation laws

H(®n(t) (b)) = H(b,b), [[@n(®)(®)] = [bl.
Therefore

o (@x(0)(4)) = hx /A e~ OB ([bl])dbdb = prv (A).

This completes the proof of Proposition 8.1. 0
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Next, we state a bound for the solutions of (7.2) which gives a control, inde-

pendent of N on norms which are stronger then L? but weaker then H!.
PROPOSITION 8.2. For every integer i > 1, o € [s,1/2[ there exists a set

o CEN

such that

(8.3) PN (EN\Z,,) <277,

and for ug € E}:V,U one has the bound

(8.4) @ () (o)l < Cor i+ log(1+ [t]))

Moreover, for N1 < Ny we have the inclusion 23\7170 C 23\7270.

ProoF. We will consider only the positive values of ¢, the analysis for ¢ < 0
being the same. For o € [s,1/2], 4, j integers > 1, we set

i, . NS
By, (Do) = {u € Ex : ullaoo) < Doli+ ), llullzze) < R},

where the number D, > 1 (independent of 4,5, N) will be fixed later. Thanks to
Proposition 7.3, there exists 7 €]0, 1], 7 ~ D; (i + j)7%/2 for some 3 > 0 and such
that for ¢ € [0, 7],

(8.5) o (1) (By,(Ds)) C By ,(CDy),

where Bj\’,];a (CD,) is defined similarly to B%{U(Dg) simply replacing D, by CD,
in the H? bound for u. Next, we set

27 /7]
S¥o(Do) = (] @n(=kn)(BY, (D)),
k=0

where [27 /7] stays for the integer part of 27 /7. Using Proposition 8.1, we can write

[27/7]
N (BT, (Do) = pn( | (Bx\On(=k7)(BY,(D,))))
k=0
< ([27/7] + Dpn(En\BY (D))
< C2DL(i+ )" pn(EN\BY ,(Dy)).

Let us now observe that
pn(EN\BY (Do) = p(u€ H:a(®) ¢ [1Sx(w)lue(o) > Doli+)*)
< p(we Hual®) : llulaeo) > Doli+ ) ).
Therefore, using Proposition 3.7, we can write
(8.6) pn(EN\2Y (Do) < C,2/ DA (i + §)P/2emeDs(i1d) < 9= (itd)

provided D, > 1, depending on o but independent of 7, j, N. Thanks to (8.5), we
obtain that for ug € X3/ (D), the solution u of (7.2) with data ug satisfies

(8.7) [u(t)|| o) < CDo (i +5)2, 0<t<27.
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Next, we set
3\7,0’ = ﬂ ERIJ;U(DG’) .
j=1
Thanks (8.6),
(8.8) pN(En\EN,,) <277,

Next, using (8.7), we get (8.4). Observe that for N1 < N, we have the inclusion
By, ,(Ds) C By, ,(Dy) which implies that .EX,JLU(DU) C X%, ,(Dy). This in
turn implies that for N1 < Np, Xj . C XYy, ;. This completes the proof of
Proposition 8.2. |

Next, we prove an invariance property of the sets 23\,10 constructed in Propo-
sition 8.2.

PROPOSITION 8.3. For every o €|s,1/2[ every o1 € [s,0[ every t € R every
integer i > 1 there exists i1 such that for every N > 1, if ug € XY, then one has

Oy (t)(ug) € SHL .

PROOF. Again, we can suppose that ¢ > 0. Set u(t) = ®n(t)(uo). If ug € Xy,
then for every integer j > 1, we have the bound

1@ (t1) (o)l e < Coli+4)2, 0<ty <27,

Let jo € N (depending on t) be such that for every j > 1, 27 +¢ < 277, Therefore,
we have that

1P (t1) (w(t)) | e =[x (E+ 1) (uo) | < Coli 4 +jo)2, 0<ty <2,

The crucial observation is that thanks to the L? conservation law, interpolating
between the last bound and the L? conservation provides the existence of  €]0,1]
(depending on o and o1) such that

[SIES

len(t)@®)lam < e|Coli+j+jo)]", 0t <2,

Next, we observe that since 8 < 1, for jo > 1,

SIS
[SE

e[Colitj+jo)]" < Dovli+j+jo)?
Thus
1@ x (t) @) < Doy (i 45+ jo)2, 0<t <2,
We can now conclude that u(t) € Z?g’lj (D) for every j > 1. Therefore
i+j
u(t) € ENQ )
This completes the proof of Proposition 8.3. g

REMARK 8.4. The number i1 is the same for every i, i.e. it depends only on
t,o,01. This fact is however not of importance for the sequel.
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9. Global existence for NLS on a set of full p measure

The goal of this section is to compare the flows of (7.1) and (7.2) on a set of
full p measure. For an integer ¢ > 1 and o € [s,1/2], we set

[ %
= S,
N>1

where X%  are defined in Proposition 8.2. Let us denote by 7 the closure of 3¢,
in H? ,(©). Thus X¢ is a closed set of H?, ,(©). Then thanks to Lemma 3.8 and

rad
Proposition 8.2, we can write

(91) p(ZE) = limsup py (S ) > limsup (ox (Ex) = 277) = p(HEa(©)) —27°.

N—o0 N —o0
Next, we set
Se =k,
i>1

In view of (9.1), we obtain that X, is of full p measure.

Let | = (Ij)jen be a increasing sequence of real numbers such that iy = s,
lj < 1/2 and
lim [; =1/2.
j—o0
Then, we set
(9.2) Y= m Y,
o€l

The set X is of full p measure since every %, is of full p measure and the intersection
in (9.2) is countable. The set X is the statistical ensemble for the problem (7.1) and
the solutions of (7.1) with data in ¥ are globally defined. We have the following
statement.

PROPOSITION 9.1. For every ug € X, the local solution of (7.1) given by Propo-
sition 7.1 1is globally defined. Moreover for every t € R, if we denote by ®(t) the
flow map of (7.1) acting on X then ®(t)(X) = X.

PROOF. Let us fix ug € E_}'T, o €1, 01 €]0,0[ and T > 0. Thus there exists a

sequence ug i € Zﬁvk)a, where NV, is tending to infinity, such that wug j converges to
ug in H?(©). Thanks to Proposition 8.2

(93) 1 3, (1) (wo,0) 717 < Cir (i + log (1 + [#])) .
Set

un, () = O, (£) (uo,k) -
Thanks to (9.3), there exists A > 1, independent of Ny, such that
(9.4) lun, ()l e <A, [t <T.

Let us observe that (9.4), applied for t = 0 implies that |Jug||g- < A (after passing
to the limit Ny — o00). Let 7 > 0 be the local existence time for (7.1), provided by
Proposition 7.1 for A = A + 1. Recall that we can assume 7 ~ A~ for some 3 > 0.
Denote by u(t) the solution of (7.1) with data ug on the time interval [—7,7]. Set

VEU—UN,-
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Then v solves the equation
(9.5) vy + Av + F(u) — Sy, (F(un,)) =0, v|i=o =uo — uo i -
Next we write

F(u) — Sy, (F(un,)) = Sy, (F(u) — F(un,)) + (1 — Sy, ) F ().

Observe that the map 1 — Sy sends H? ,(©) to H?!,(©) with norm < CN7177.

rad rad
Similarly, for I C R an interval, the map 1 — Sy sends X7%(I x ) to X1 (I x ©)

a
with norm < CN9179. Moreover Sy acts as a bounded operator (with norm < 1)

on the Bourgain spaces XZ’IZ. Therefore, using Proposition 6.3, we can write the
Duhamel formula associated to (9.5) and we obtain that there exists b > 1/2 and
6 > 0 (depending only on o, o1) such that one has the bound

lollxes v mixey = Clluo = ol o)

0 2
e L P T e e L

2
FHluneleons (rrive))
0 nrO1—0O 2
FOTONE ullxo (—rrixey (U Tullyrir 2 o))
Using Proposition 7.1 and Proposition 7.3, we get
HU”Xf(}f([—r,ﬂx@) < Clluo — Uo,k”Hcrl(@)

+C7—9”UHX:;dvb([_T)T]X@)(l + CHUOH%(‘H (©) + CHUOJCH?{‘H(@))
+OT N7~ ol o o) (1 + ClluollFe: (o))

IN

Clluo — uo k|l gor (@) + CTA*NZ* =7 |luo|| (o)
042

+C7°A HU”ijf([fﬂT]X@'

Therefore, assuming in addition that 7 ~ A=%/2, we obtain
10l o1 rir ey < Cliuo = w0kl s @) + CNT ™ lluoll o), 7~ AT,

for some fixed positive real number 5 and where the constant C' is independent of
Ni. Since b > 1/2, the last inequality implies

(9.6) vl o1 @) < Clluo — wo ka1 (o) + CNZ' ™7 |luoll o (o),

where [t| <7 ~ A%, 3 > 0. By taking N} > 1 and using the triangle inequality,
we get

(9.7) lu@llzo @) <A+L, ] <.
The key quantity in this discussion is
lo@l o1 @) + N7 llu() | o o) -

We can iterate the argument for obtaining (9.6) on [7, 27] thanks to the definition
of 7 and the bounds (9.4) and (9.7). We obtain

[l 0) < Cllv(T)ll e (@) + ONF 7 llu(7)l| = 6),
where t € [7,27] and 7 ~ A8, Moreover, by taking Ny > 1,
l[u@®|ger@) < A+1, T<t<2r
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Then, we can continue by covering the interval [—T,T| with intervals of size T,
which yields the existence of u(t) on [-T,T]. Moreover v satisfies the bound

[v(t)|| e @) < CMFT (ngligHUOHHf’((—)) + [luo — wo k|| o (@)), It <T.

Therefore by taking Nj > 1 (depending in particular on T), we obtain that for
every € > ( there exists Ny such that for Ny > Ny one has the inequality

sup [|u(t) — @, (t)(vo,k) | Hor () < €-
It <T

Hence for every t € [-T,T),
(9.8) i [[u(t) = @ (8) (o k) || s 0) = 0

Since T > 0 was chosen arbitrary, we obtain that for every ug € i the local
solution of (7.1) is globally defined. Since ¢ and o € [ are also arbitrary, we obtain
that for every ug € X, the the local solution of (7.1) is globally defined. Let us
denote by ®(t) the flow of (7.1) acting on X. Let us show the inclusion
(9.9) o(t)(X) C X.
Fix ug € X. It suffices to show that for every o1 € [, we have

D(t)(ug) € Lo, -

Let us take o €]o1,1/2[, o € I. Since up € %, we have that ug € X,. Therefore
there exists ¢ such that ug € X¢. Let again ug , € E?Vk,a be a sequence which tends
to ug in H?(©). Thanks to Proposition 8.3 there exists i; such that

(I)Nk (t)(UQJC) S EiJril

Ng,01°

Therefore using (9.8), we obtain that

D(t)(ug) € X5,

Thus ®(t)(ug) € Xy, which proves (9.9). Moreover the flow ®(t) is reversible which
implies that ®(¢)(X) = X. Indeed, if u € ¥ and t € R, we set ug = ®(—t)u € &
(which is well-defined thanks to the previous analysis) and thus u = ®(¢)uo, i.e.
¥ C ®(¢)(X). This completes the proof of Proposition 9.1. O

We complete this section by getting a continuity property of ®(t).

PROPOSITION 9.2. Let u € 3 and u,, € ¥ be a sequence such that u, — u in
H#®(©). Then for every t € R, ®(t)(un) — P(¢)(u) in H*(©). In particular, for
every A, a closed set in H?, ,(©) one has

D) ANE) =) (ANE)NX,

where ®(t)(ANX) denotes the closure in H? (©) of ®(t)(ANX).

rad

PROOF. Since u € X there exists A > 1 such that
sup [|@(7) ()| ms0) < A

ImI<It]

Let us denote by 79 the local existence time in Proposition 7.1, associated to A =
2A. Then, by the continuity of the flow ®(79)(u,) — P(79)(u) in H*(O©). Next,
we cover the interval [0,¢] by intervals of size 79 and we apply the continuity of
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the flow established in Proposition 7.1 at each step. Therefore, we obtain that
D(t)(up) — D(t)(u) in H*(O). Since ®(¢)(X) C X, it is clear that

(9.10) BU)(ANYE) CIO(AND) N,

Next, let us fix u € ®(¢t)(ANX)NX. Thus there exists v, € AN X such that
up, = P(t)(v,) converges to v in H*(0). Since v, € ¥ and u € 3, we obtain
that u, € ¥ and ®(—t)(u) € X. Therefore, using the continuity property we
have just established, we obtain that v, = ®(—t)(u,) converges to ®(—t)(u) in
H#(©). Since the set A is assumed closed, we obtain that ®(—t)(u) € A. Thus
u € ®(t)(ANX) which gives the opposite to (9.10) inclusion. This completes the
proof of Proposition 9.2. |

10. Invariance of the measure p

In this section, we complete the proof of Theorem 1. Recall that we denote by
®(t), t € R the flow of (7.1) acting on X, defined in (9.2). Thanks to the continuity
properties of ®(t) displayed by Proposition 9.2, we have that if A C ¥ is a p
measurable set then so is ®(¢)(A). Let us observe that thanks to the reversibility
of the flow ®(t), it suffices to prove that for every ¢t € R and every p measurable
set A C ¥ one has the inequality

(10.1) p(()(A)) > p(A).
Let us show that it suffice to prove (10.1) only for closed sets of H? ,(0). Indeed,

rad
by the regularity of the bounded Borel measures for every p measurable set A C 3,

we can find a sequence of closed sets F;, C A such that
p(A) = Tim p(Fy).
Hence if we can prove (10.1) for the sets F), then we can write

p(A) = lim p(Fy) < lim sup p((t)(Fn)) < p(@(1)(A4)).

Therefore, it suffices to prove (10.1) for closed sets of H? ,(©) which are included
in 3.

Fix o €]s,1/2[, 0 € l. Let us next show that it suffices to prove (10.1) for subsets
of ¥ which are compacts of H?, ,(0) which are bounded in HZ ,(©). Indeed, using

rad
Lemma 3.9, we can write that for every closed in H? ,(©) set A C X, one has

p(A) = lim p(AN Kg),

where K is the closed ball of radius R in HZ, ,(©), o €]s,1/2[. Thus AN KR is a
compact in H?, ;(©) and if we can prove (10.1) for compacts which are bounded in
H? (©) then

rad
p(A) < Timsup p(@()(A N Kr)) < p(@(1)(4)).
R—oo

Thus, it suffices to prove (10.1) for subsets of ¥ which are compacts in H?, ,(©)
and bounded in HZ ,(0).

Let us now fix ¢ € R and K C ¥, a bounded set of HZ, ,(©) which is a compact
in H? ,(©). Then we have the following lemma.

rad
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LEMMA 10.1. There exists a ball B, centered at the origin of H?

2 4(©) containing
all ®(7)(K), |7] < [t].

PROOF. The sets ®(7)(K) are contained in a ball of H? ,(©) for |7| small

enough, given by Proposition 7.1. We then argue by contradiction by supposing
that there exists T and a sequence u,, € K such that

(10.2) i [ B(T) (un) 110y = o0

Since K is a compact, there exists a subsequence still denoted by u,, and © € K such
that w, — win H? ,(©). Since u € ¥, we can apply Proposition 9.2 and we obtain

rad

that ®(T)(u,) — ®(T)(u) in H*(O) which contradicts (10.2). This completes the
proof of Lemma 10.1. O

Let us denote by R; the radius of B. Set
m=c(1+R)™M,

where 0 < ¢ < 1 and M > 1 are two parameters to be fixed later. A first restriction
on ¢ and M is to chose them so that 7, is smaller than the time existence provided
by Propositions 7.1,7.3 associated to A = Ry (and o1 = s). It is then sufficient to
prove that

(10.3) p(K) < p(®(1)(K)), |7] <.

Indeed, once (10.3) is established, it suffices to cover [0, ] by intervals of size ~ 71
and to apply (10.3) at each step. Such an iteration is possible since at each step
the image under ®(7) of the corresponding set remains in B and is included in X.

Let us now prove (10.3). Fix £ > 0. Denote by B, the open ball centered at
the origin and of radius ¢ of H? ,(0). Recall that we denote by ®n(t), t € R the
flow of (7.2). Then using Proposition 7.3, we infer that there exists ¢ > 0 such that

(10.4) @N(r)((K +B)N EN) C On(r)(Sn(K)) + Beey N> 1.
We now make appeal to the following lemma.
LEMMA 10.2. For N > 1 one has the inclusion

SN (T)(SN(K)) + Bee C ®(7)(K) + Bace -

PROOF. The argument is similar to the proof of Proposition 9.1. For ug € K,
we denote by w the solution of (7.1) with data ug and by uy the solution of (7.2)
with data Sy (ug). Next, we set v = u —uy. Then v is a solution of

(10.5) vy + Av+ F(u) — Sy(F(un)) =0, v|i=o = (1 — Sn)uo -
By writing

F(u) — SN(F(’U,N)) = SN(F(U) — F(UN)) + (1 — SN)F(’LL)
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and using Proposition 6.3, we obtain that there exists b > 1/2 and 6 > 0 such that
one has

[ollxsp (orrixey < ON*lluollr=(e)
+C7° ||U||Xsb( TT]X@)(1+||U||Xsb ([=7,7]x©)

+||UN||XSb TT]XO))

0 nTs—o
+CTN Hu”X" aall TT]XO)(1+ ”u”X“’([—TT]xa))
Using Proposition 7.1 and Proposition 7.3, we get

Wollxetrrixey < ON*7luollz=(e)

FOoll ot 1y Cllu o)
+CTN*"7||ug| o) (1 + Clluol| 7+ (o) -
Coming back to the definition of 71, by taking ¢ < 1 and M > 1, we infer that

||U||X ' ([—7,7]x©) <CNS?U||UO||H<’((~))-

Using that ug is in a bounded set of HZ ,(©) and since b > 1/2, the last inequality
implies 3
lo@llr=) < ON*"7|uol[-(e) < CN*77, |t <.

This completes the proof of Lemma 10.2. O

Using (10.4), Lemma 10.2, Lemma 3.8 and Proposition 8.1, we can write
p(@(T)(K) + Bgca) > limsuppy ((q’(T)(K) + Bace) N EN)

> liminf pn(Pn(7 K—i—B)ﬂEN))

jpint o (2 (
= hmmf ((K ﬂEN)
B:)

> ( p(K

2
By letting € — 0, we obtain that p(®(r )( ) > K) ThlS completes the proof of
0.

p(
(10.3) which in turn completes the proof of (10.1).
This completes the proof of Theorem 1. O

REMARK 10.3. Let us notice that in the proof of Theorem 1, we did not make
appeal to the conservation laws of (7.1). We only used the conservation laws of (7.2)
and thus the propagation of higher Sobolev regularity for (7.1) was not needed.

11. Final remarks

The result of Theorem 1 is obtained under the assumption o < 2. Let us recall
that if o = 2 with F(u) = |u|/*>u then one can construct initial data for (7.1) such
that the local solutions constructed in Proposition 7.1 develop singularities in finite
time (see [9, 4]). Observe that the data giving blow-up solutions in [9] has to be
sufficiently smooth (at least H') in order to give sense of the quantities involved
in the well-known viriel identity. But one can show that for ¢, defined by (3.5)
we have that ||, 1 (e) is infinity almost surely. It would be interesting to decide
whether the obstruction to make work the proof of Theorem 1 is related to a blow
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up phenomenon, i.e. can one prove a blow up of the solutions of (7.1) with data on
a set A such that p(A) > 0 ? A related and probably simpler question is whether
one can construct a blow up solution of NLS with data which is in H®, s < 1 but
not in H' ?

If we suppose the defocusing assumption V(z) < 0 then there is no problem
with the integrability of f(u) and the L? cut-off is not needed.

Let us notice that the restriction o < 2 is too strong for the well-posedness
analysis of (1.1) with data in X'. Indeed this analysis seems to hold true for a < 4.
Here is a rough explanation. FEssentially speaking, in order to make work the
nonlinear estimates with data of Sobolev regularity < 1/2, after k € N expansions
of the nonlinearity, for

Ny >Ny >--- > Ny

one should control the expression
(11.1) (NaN3)*Ny -+ - N,

by
C(NyNs - - - Np)°

for some o < 1/2. This leads to the restriction k — 3 < $(k — 1), i.e. k <5 which
corresponds to a < 4. In (11.1) the factor Ny --- Ni appear from Sobolev embed-
dings which in 2d costs 4 = 1 derivatives (see [5] for a similar discussion). However
for a@ > 2, the Sobolev inequality is no longer available to give sense of f@ V(u) for
u € X. On the other hand one only needs to show that [ V(u) is finite 1 almost
surely. This seems to be tractable by some Gaussian estimates and the bounds of
Lemma 2.1. We plan to pursue this issue elsewhere.

The measure p constructed in Theorem 1 is obtained for functions on the disc
of radius » = 1. Similar measures can be constructed for any finite radius r and the
limiting behaviour of these measures as r — 0o seems to be an interesting problem.

One can also ask the question about ergodicity properties of the measure p, i.e.
the existence of “non trivial” p measurable sets invariant under the flow.

Let us finally mention an extension of Theorem 1. One can construct invariant
measures leaving on functions invariant by the rotations of the disc (see [4]). In
this case, in the polar coordinates (r, ) on ©, the measure “lives” on the set of
functions

(11.2) = 9:() tlenir)
k>1 Znk ”Jnk(znk')”L?(@)

where J,,, n > 0, n € Z is the Bessel function of order n and z,y, are its zeros (The-

orem 1 corresponds to n = 0). In (11.2), g(w) is again a sequence of normalized

i.i.d. complex random variables.
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