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Abstract. We study Gibbs measures invariant under the flow of the NLS on
the unit disc of R2. For that purpose, we construct the dynamics on a phase

space of limited Sobolev regularity and a wighted Wiener measure invariant
by the NLS flow. The density of the measure is integrable with respect to
the Wiener measure for sub cubic nonlinear interactions. The existence of the
dynamics is obtained in Bourgain spaces of low regularity. The key ingredient
are bilinear Strichartz estimates for the free evolution. The bilinear effect in
our analysis results from simple properties of the Bessel functions and estimates
on series of Bessel functions.
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1. Introduction

This work fits in the line of research initiated in [3] aiming to study the possible
extensions of the work of Bourgain on nonlinear Schrödinger equation (NLS) posed
on the flat torus to other compact manifolds. We are concerned here with the long
time behavior of solutions of the nonlinear Schrödinger equation, posed on the unit
disc of R2. Our aim is to construct the dynamics on a phase space of limited Sobolev
regularity and a wighted Wiener measure invariant by the NLS flow. Consider the
Nonlinear Schrödinger equation

(1.1) iut + ∆u+ F (u) = 0,

where u(t) : Θ −→ C is a function defined on the unit disc

Θ = {(x1, x2) ∈ R2 : x2
1 + x2

2 < 1} .
The nonlinear interaction in (1.1) is induced by F (z), z ∈ C which is a smooth
(non linear) complex valued function. We also assume that F (0) = 0 and F = ∂̄V
with a real valued V satisfying the gauge invariance assumption

V (eiθz) = V (z), ∀ θ ∈ R, ∀ z ∈ C .

In addition, we suppose that for some α > 0,

(1.2)
∣∣∂k1 ∂̄k2V (z)

∣∣ ≤ Ck1,k2〈z〉2+α−k1−k2 .

The real number α involved in (1.2) corresponds to the “degree” of the nonlinear
interaction. A typical example for F (u) is

F (u) = ±
(
1 + |u|2

)α/2

u

or |u|αu when α is an even integer. In this paper, we assume that the nonlinearity
is sub-cubic which means that

(1.3) α < 2 .

Assumption (1.3) on α will be assumed from now on in the rest of this paper. No-
tice that we do not suppose the defocusing assumption which in the context of (1.1)
would be of type V ≤ 0. In the (easier) defocusing case, one can expect to cover a
larger set of possible values of α (see the final remarks at the end of the paper).

It is important that the problem (1.1) may, at last formally, be seen as the
Hamiltonian PDE

iut = ∂ūH(u, u)

in an infinite dimensional phase space, with Hamiltonian

(1.4) H(u, ū) =

∫

Θ

|∇u|2 −
∫

Θ

V (u)

and canonical coordinates (u, ū).

We are interested in the solutions of the initial boundary value problem asso-
ciated to (1.1). This means that we study (1.1) subject to an initial condition

(1.5) u(0, x1, x2) = u0(x1, x2),
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where u0 is a given function. In this paper, we will only consider initial data
of Sobolev regularity < 1/2 and thus we will not need to specify the boundary
conditions on R × ∂Θ, where

∂Θ = {(x1, x2) ∈ R2 : x2
1 + x2

2 = 1}
is the border of Θ (see also Remark 7.2 below). We will however use the Dirichlet
eigenfunctions of ∆ as basis of L2(Θ) and this will be convenient for our well-
posedness analysis of (1.1)-(1.5).

We will only consider radial solutions of (1.1), i.e. solutions depending only on
t and x2

1 + x2
2. Thus, we suppose that the data is radially symmetric, i.e.

(1.6) u0(x1, x2) = ũ0(r),

where

x1 = r cosϕ, x2 = r sinϕ, 0 ≤ r < 1, ϕ ∈ [0, 2π] .

Let J0 be the Bessel function of order zero (see e.g. [14]) and let z1, z2, . . . be the
zeros of J0. We have that

0 < z1 < z2 < . . . zn < . . .

and the zeroes are simple. We also have that J0(znr) are eigenfunctions of the
Dirichlet self adjoint realization of −∆, corresponding to eigenvalues z2

n. Moreover
any L2(Θ) radial function can be expanded with respect to J0(znr). Let us set

(1.7) en ≡ en(r) = ‖J0(zn·)‖−1
L2(Θ) J0(znr)

and

en,s = z−s
n en .

We can decompose the solutions of (1.1) with data of type (1.6) as

u(t) =
∑

n≥1

cn(t) en,s .

The initial data is thus given by

ũ0 =
∑

n≥1

cn(0)en,s ,

i.e the initial data is uniquely determined from the sequence (cn(0)), n ∈ N. Thus
the equation (1.1) can be written as

(1.8) iz−s
n ċn(t) − z2

n z
−s
n cn(t) + Πn

(
F

( ∑

m≥1

cm(t) em,s

))
= 0,

n ≥ 1, where Πn is the projection on the mode en. For instance if f ∈ L1(Θ)
(which will always be the case in this paper), we have

Πn(f) = 〈f, en〉 =

∫

Θ

f en .

Of course one can define the action of Πn on distributions but here we will not need
it. Notice that if f ∈ L2(Θ), Πn(f) is simply the L2(Θ) scalar product of f and
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en. Formally, equation (1.8) is in fact a Hamiltonian equation with with canonical
coordinates (c, c) and Hamiltonian

H(c, c) =
∑

n≥1

z2−2s
n |cn|2 −

∫ 1

0

V
( ∑

m≥1

cm em,s(r)
)
rdr ,

where c = (cn), n ∈ N. More precisely equation (1.8) can be written as

ict = J
δH

δc
, ict = −J δH

δc
,

where δ denotes the variational derivative and J = diag(z2s
n )n≥1 is the map induc-

ing the symplectic form in the coordinates (c, c). The only important consequence,
for our analysis, of this discussion is that H(c, c) is , at least formally, conserved by
the flow of (1.8).

Let us now describe the construction of Lebowitz-Rose-Speer (cf. [11]) of a
weighted Wiener measure which is at least formally invariant under under flow of
(1.1). The rigorous justification of the invariance of the measure will require, among
other things, a new well-posedness result for the initial value problem (1.1)-(1.5).
Let us fix a real number s such that

(1.9) 0 < s <
α

α+ 2
.

This number s will be fixed from now on in all the rest the paper. Notice that
thanks to the restriction (1.3) on the degree of the nonlinearity α,

α

α+ 2
<

1

2
.

For σ ∈ [0, 1/2[, let us denote by Hσ
rad(Θ) the Sobolev space of radial functions

on Θ, i.e. u ∈ Hσ
rad(Θ) if and only if

u =
∑

n≥1

cnen,s, cn ∈ C

with ∑

n≥1

z2(σ−s)
n |cn|2 <∞ .

The Sobolev space Hs
rad(Θ) is naturally a complex Hilbert space with orthonormal

basis en,s. Denote by (·, ·) the scalar product in Hs
rad(Θ). Our goal will be to con-

struct a well defined (at least local in time) dynamics on Hs
rad(Θ) and to construct

a bounded Borel measure on it, invariant by the flow of (1.1).

The free Hamiltonian is given by

H0(c, c) =
∑

n≥1

z2−2s
n |cn|2.

It turns out that a renormalization of the formal measure

e−H0(c,c)d2c =
∏

n≥1

e−z2−2s
n |cn|2d2cn
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is a Wiener measure. More precisely, we can give a sense of the formal measure

e−H0(c,c)d2c∫
e−H0(c,c)d2c

=
∏

n≥1

e−z2−2s
n |cn|2d2cn∫

C
e−z2−2s

n |cn|2d2cn

as a measure on the Hilbert space Hs
rad(Θ) (corresponding to a Gaussian distribu-

tion for each mode).
A set U ⊂ Hs

rad(Θ) is called cylindrical if there exists N ∈ N and a Borel set
V ⊂ CN such that

(1.10) U =
{
u ∈ Hs

rad(Θ) :
(
(u, e1,s), . . . , (u, eN,s)

)
∈ V

}
.

Let us denote by µ̃ the measure, defined on the cylindrical sets U determined by
(1.10) as

(1.11) µ̃(U) =

∫
V
e−

P

1≤n≤N z2−2s
n |cn|2d2c1 . . . d

2cN
∫

CN e−
P

1≤n≤N z2−2s
n |cn|2d2c1 . . . d2cN

= π−N
( ∏

1≤n≤N

z2−2s
n

) ∫

V

e−
P

1≤n≤N z2−2s
n |cn|2d2c1 . . . d

2cN .

The cylindrical sets form an algebra in Hs
rad(Θ). Moreover the minimal sigma

algebra containing all cylindrical sets is the Borel sigma algebra. Since (see (2.6)
below) zn ∼ n, we deduce that the series

∑

n≥1

z2s−2
n

converges. It implies that the linear map defined on Hs
rad(Θ) by

en,s 7−→ z2s−2
n en,s

is in the trace class. Therefore (see e.g. [12, 6, 16]) the measure µ̃ is countably ad-
ditive on the cylindrical sets of Hs

rad(Θ). We then denote by µ the Borel probability
measure on Hs

rad(Θ) which is the unique extension (Caratheodory theorem) of µ̃ to
the Borel sigma algebra of Hs

rad(Θ). For the sake of completeness, in Section 3 we
present the proof of the countable additivity µ̃ on the algebra of the cylindrical sets
of Hs

rad(Θ). As we will show in Proposition 3.3, for σ ∈ [s, 1/2[, µ(Hσ
rad(Θ)) = 1

and thus, we may consider µ as a measure on the space

(1.12) X =
⋂

s≤σ< 1
2

Hσ
rad(Θ) .

Thus one should not take the particular choice of s that we made too seriously.
Notice that since σ < 1/2 the boundary conditions are not of importance in the
definition of X . In addition, in (1.12) the intersection may be assumed countable.

One may hope that the expression exp(
∫
Θ V (u))dµ(u) which is a normalised

version of the formal Gibbs measure exp(−H(u, ū)) d2u is a well defined measure.
The expression exp(−H(u, ū)) d2u is formally invariant by the flow thanks to the
Hamiltonian conservation. If we were in finite dimensions the invariance would fol-
low from the invariance of the Lebesgue measure by the flow (Liouville’s theorem).
There is however a problem with the integrability of the above density with respect
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to µ. We will solve this problem by using the L2 cut-off idea of Lebowitz-Rose-
Speer [11].

This paper is devoted to the proof of the following statement.

Theorem 1. Fix R > 0. Let us denote by χ : R → {0, 1} the characteristic
function of the interval [0, R]. For u ∈ X , we define the functional f(u) by

f(u) = χ
(
‖u‖L2(Θ)

)
exp

( ∫

Θ

V (u)
)
.

Then for every q ∈ [1,+∞[,

(1.13) f(u) ∈ Lq(dµ(u)) .

Moreover, if we set dρ(u) = f(u)dµ(u) then there exists a set Σ of full ρ measure
such that for every u0 ∈ Σ the Cauchy problem (1.1)-(1.5) has a unique (in a
suitable functional framework) global in time solution. Finally, if we denote by Φ(t),
t ∈ R the flow of (1.1) acting on Σ then the measure ρ is invariant under the flow
of (1.1), i.e. for every ρ measurable set A ⊂ Σ, every t ∈ R, ρ(A) = ρ(Φ(t)(A)).

Remark 1.1. The uniqueness statement of Theorem 1 can be precised as fol-
lows : for every T > 0 there exists a Banach space XT continuously embedded in
C([−T, T ];Hs

rad(Θ)) such that the solution of (1.1) with data u0 ∈ Σ is unique in
XT .

Notice that thanks to the growth assumption (1.2) and the Sobolev embedding,
the functional f(u) is well-defined for u ∈ X .

As a consequence of Theorem 1, the Poincaré recurrence theorem implies that
almost surely on the support of dρ the solutions of (1.1) are stable according to
Poisson (see [16] and the references therein for more details).

Similar results to Theorem 1 in the case of the circle S1 are known thanks
to the works [1, 16]. Gibbs type invariant measures for a Wicked ordered cubic
defocusing NLS, posed on the two dimensional rational torus are constructed in [2].

Invariant measures for defocusing NLS of type (1.1) posed on an arbitrary
compact riemannian manifold are constructed in [10]. These measures are not of
Gibbs type (but still related to the conservation laws), and are living on functions
in the Sobolev space H2. Let us notice that Dirac measures concentrated on a
stationary (independent of t) solutions of (1.1) are clearly invariant. The measures
constructed in [10] are not of this trivial type since the defocusing nature of the
problem excludes the existence of stationary solutions.

The proof of Theorem 1 follows the ideas developed by Zhidkov (see [16] and
the references by the same author therein) and Bourgain [1]. The main difficulties
we should overcome are to prove a new local well-posedness results for (1.1), posed
on the unit disc as well as adapting some estimates on random Fourier series to the
case of functions on the unit disc of R2. In the local well-posedness analysis, we need
some bilinear Strichartz estimates. Starting from the work of Bourgain, estimates
in this spirit were already used by many authors in the context of dispersive PDE’s.
In the analysis here, the crucial bilinear effect results from simple properties of the
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Bessel functions and estimates on some series of Bessel functions. Notice that the
bilinear approach and the Bourgain spaces are needed to be employed here since
the well-posedness analysis of [3] based only on linear Strichartz inequalities and
Sobolev spaces requires the restriction σ > 1/2 (thus missing X ) coming from the
Sobolev embedding W σ,4 ⊂ L∞, σ > 1/2 in two dimensions.

The rest of the paper is organized as follows. The next section is devoted to
some properties of the Bessel functions needed for our analysis of NLS (1.1). In
Section 3, we collect some properties of Wiener type measures on Sobolev spaces
of radial functions on the disc. Section 4 is devoted to bilinear Strichartz type
inequalities which are the basic analytical tool in this paper. In Section 5, we in-
troduce the Bourgain spaces of radial functions on Θ. The main nonlinear estimate
are established in Section 6. As a first consequence of these estimates, in Section 7
we prove some local well-posedness results for NLS and its finite dimensional ap-
proximation. Next, in section 8, we improve the result for the finite dimensional
model. In Section 9, we transfer the result of Section 8 to the NLS. The proof of
Theorem 1, we will be completed in Section 10. The final section is devoted to some
straightforward extensions of Theorem 1 and open problems that seem of interest
to the author of the present paper.

Notation. Let us now introduce several notations that will be used in the pa-
per. For two positive real numbersN1 andN2, we denote byN1∧N2 ≡ min(N1, N2)
the smaller one. For x ∈ R, we set 〈x〉 ≡ 1 + |x|. We use the notations ∼ or ≈ for
the equivalence of two quantities, uniformly with respect to some parameters which
will be clear in each appearance of these two symbols. Several positive constants
uniform with respect to some parameters, which will be clear in each appearance,
will be denoted by C or c. The parameter set will always be a set of numbers or a
set of functions.

2. On the Bessel functions and their zeros

In this section, we collect several facts on the zero order Bessel function that
will be used in the sequel. These facts are essentially in the literature (see e.g.
[14, 15]) but, in order to keep the paper as self contained as possible, here we give
the proofs. We will be interested on J0(x) for x ≥ 0 and its zeros zn since J0(znr),
0 ≤ r < 1 form a basis for the radial L2 functions on the disc Θ. The Bessel
function J0(x) is defined by

J0(x) =

∞∑

j=0

(−1)j

(j!)2

(x
2

)2j

.

The function J0(x) solves the ordinary differential equation

J ′′
0 (x) +

1

x
J ′

0(x) + J0(x) = 0 .

The function J0(x) may be seen as the zero Fourier coefficient of the function
exp(ix sin θ), θ ∈ [−π, π] and thus

J0(x) =
1

2π

∫ π

−π

eix sin θdθ .
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Moreover, by the Lebesgue differentiation theorem,

J ′
0(x) =

1

2π

∫ π

−π

(i sin θ)eix sin θdθ .

Recall that en : Θ → R, defined by (1.7) form an orthonormal basis of the L2

radial functions on the disc Θ. Observe that en(r) are real valued. The next
lemma provides Lp(Θ) bounds for en in the regime n� 1.

Lemma 2.1. Let p ∈ [2,∞]. There exists C such that for every n ≥ 1,

(2.1) ‖en‖Lp(Θ) ≤ Cδ(n)‖en‖L2(Θ) = Cδ(n), ‖e′n‖Lp(Θ) ≤ Cδ(n)‖e′n‖L2(Θ) ,

where

δ(n) =





1 when 2 ≤ p < 4,

(log(1 + n))
1
4 when p = 4,

n− 2
p + 1

2 when p > 4 .

In particular for every ε > 0 there exists Cε such that for every n1, n2 ≥ 1,

(2.2) ‖en1en2‖L2(Θ) ≤ Cε(min(n1, n2))
ε‖en1‖L2(Θ)‖en2‖L2(Θ) = Cε(min(n1, n2))

ε

and

(2.3) ‖en1e
′
n2
‖L2(Θ) ≤ Cε(min(n1, n2))

ε‖en1‖L2(Θ)‖e′n2
‖L2(Θ) .

Finally, there exist two positive constants C1 and C2 such that for every n ∈ N,

(2.4) C1n = C1n‖en‖L2(Θ) ≤ ‖e′n‖L2(Θ) ≤ C2n‖en‖L2(Θ) = C2n.

Proof. The proof is based on the asymptotics for J0(x) and J ′
0(x) for large

values of x. These asymptotics may be found by applying the stationary phase
formula to the integrals defining J0(x) and J ′

0(x). Indeed, in both cases the phase
sin θ has two non-degenerate critical points ±π

2 on [−π, π]. Therefore, there exists
C > 0 and a function r1(x) defined on [1,+∞[ such that

J0(x) =

√
2

π

cos
(
x− π

4

)
√
x

+ r1(x), |r1(x)| ≤ Cx−
3
2

(the two critical points contribute with phases exp(i(±x ∓ π/4))). Similarly, we
have

J ′
0(x) = −

√
2

π

sin
(
x− π

4

)
√
x

+ r̃1(x), |r̃1(x)| ≤ Cx−
3
2 .

A first consequence of the above representations of J0(x) and J ′
0(x) is that the n’th

zero of J0(x) satisfy zn ∼ n. We can therefore write that for n� 1

‖J0(zn·)‖2
L2(Θ) =

∫ 1

0

|J0(znr)|2r dr

= z−2
n

∫ zn

0

|J0(ρ)|2ρdρ

≥ cn−2

∫ cn

0

|J0(ρ)|2ρdρ

≥ Cn−2

∫ cn

1

(1 + cos(2ρ− π/2)

2ρ
− C

ρ2

)
ρdρ

≥ cn−2(cn− C log(n)) ≥ cn−1 .
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Therefore

(2.5) ‖J0(zn·)‖L2(Θ) ≥ cn−1/2.

Similarly, we can show that

‖J ′
0(zn·)‖L2(Θ) ≥ cn−1/2.

On the other hand, using that |J0(x)| ≤ Cx−1/2, x ≥ 1, and, |J0(x)| ≤ C, x ≤ 1,
we obtain that for p ∈ [2,∞[,

‖J0(zn·)‖p
Lp(Θ) =

∫ 1

0

|J0(znr)|pr dr

= z−2
n

∫ zn

0

|J0(ρ)|pρ dρ

≤ Cn−2
(
C +

∫ cn

1

ρ−p/2 ρ dρ
)

which gives the bound (2.1) for en and p < +∞ by distinguishing the three regimes
for p involved in the definition of δ(n). The last estimate also implies that

‖J0(zn·)‖L2(Θ) ≤ Cn−1/2

and thus

‖J0(zn·)‖L2(Θ) ∼ n−1/2.

Estimate (2.1) for p = ∞ and en follows form the bound |J0(x)| ≤ C for all x ≥ 0
and the inequality (2.5). This completes the proof of (2.1) as far as en is concerned.
The bound for e′n in (2.1) can be established in a completely analogous way, once
we have the stationary phase approximation of J ′

0(x). We also have

‖J ′
0(zn·)‖L2(Θ) ≤ Cn−1/2

and thus

‖J ′
0(zn·)‖L2(Θ) ∼ n−1/2.

Since

e′n(r) = zn‖J0(zn·)‖−1
L2(Θ)J

′
0(znr)

we get estimate (2.4). Finally, the assertion of (2.2) results from (2.1) and Hölder
inequality

‖en1en2‖L2(Θ) ≤ ‖en1‖Lp(Θ)‖en2‖Lq(Θ),
1

p
+

1

q
=

1

2
,

with p, q close to 4 and according to the order of n1, n2, the bigger of p, q is attached
to the smaller of n1, n2. A similar argument yields (2.3). This completes the proof
of Lemma 2.1. �

The next lemma provides a more precise asymptotics for the zeros zn, n� 1.

Lemma 2.2. For every κ > 0 there exists C > 0 such that the zeros of J0(x)
can be written as

(2.6) zn = π
(
n− 1

4

)
+

1

8π
(
n− 1

4

) + r(n), |r(n)| ≤ Cn−(2−κ) .

Remark 2.3. In fact, much better bounds on r(n) may be proved. However,
estimate (2.6) will be sufficient for our applications.
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Proof of Proposition 2.2. Using the stationary phase formula at order 2
in the integral representation of J0(x) gives the existence of a constant C > 0 and
a function r2(x) defined on [1,+∞[ such that

J0(x) =

√
2

π

cos
(
x− π

4

)

x1/2
+

√
2

π

sin
(
x− π

4

)

8x3/2
+ r2(x), |r2(x)| ≤ Cx−

5
2 .

Therefore, for n� 1, the zero zn solves the equation F (zn) = 0, where F (x) (with
x− π/4 near the positive odd integer multiples of π/2) is a continuous function of
the form

F (x) =
1

tan
(
x− π

4

) +
1

8x
+ O(n−2).

Here O(n−2) denotes a quantity ≤ Cn−2 with C independent of n and x. For
κ > 0, we set

z±n = π
(
n− 1

4

)
+

1

8π
(
n− 1

4

) ± 1

n2−κ
.

Further, we set

ε±n =
1

8π
(
n− 1

4

) ± 1

n2−κ
.

Notice that cos(z±n − π/4) = (−1)n sin ε±n and sin(z±n − π/4) = (−1)n+1 cos ε±n .
Therefore, by expanding, we get

F (z±n ) = − tan(ε±n ) +
1

8π
(
n− 1

4

)
+ 8ε±n

+ O(n−2) = ∓ 1

n2−κ
+ O(n−2).

Therefore for n� 1 the zero zn lies between z−n and z+
n . This completes the proof

of Lemma 2.2. �

3. The measures µ and ρ

In this section, we prove (1.13) and we collect some properties of the measures
µ and ρ. Let us first observe that the minimal sigma algebra containing the algebra
of cylindrical sets (1.10) contains the closed balls of Hσ

rad(Θ), σ ∈ [s, 1/2[. Indeed,
if for r > 0 and v ∈ Hσ

rad(Θ), we set

Bσ(r, v) =
(
u ∈ Hs

rad(Θ) : u ∈ Hσ
rad(Θ) and ‖u− v‖Hσ(Θ) ≤ r

)

then

Bσ(r, v) =
⋂

N≥1

Uσ,N (r, v),

where the cylindrical sets Uσ,N(r, v) are defined by

Uσ,N(r, v) =
(
u ∈ Hs

rad(Θ) :
∑

1≤j≤N

zσ−s
n |(u− v, ej,s)|2 ≤ r2

)
.

Since Hs
rad(Θ) is separable, we obtain that the minimal sigma algebra containing

all cylindrical sets is the Borel sigma algebra.

As mentioned in the introduction, for a sake of completeness, we give the proof
of the countable additivity of the measure µ̃.
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Proposition 3.1. The measure µ̃, defined on the algebra of cylindrical sets
(1.10) by formula (1.11) is countably additive, i.e. for every sequence Un, n ∈ N

of cylindrical sets such that Un+1 ⊂ Un and

(3.1)
⋂

n∈N

Un = ∅,

one has

lim
n→∞

µ̃(Un) = 0 .

Thus µ̃ has a unique extension that we denote by µ to the Borel sigma algebra of
Hs

rad(Θ) which is a Borel probability measure on Hs
rad(Θ).

Proof. Let σ > 0 be such that s+ σ < 1/2. For R ≥ 1, we consider the set

KR =
{
u ∈ Hs

rad(Θ) : ‖u‖Hs+σ(Θ) ≤ R
}
.

Thanks to the compactness of the embedding Hs+σ
rad (Θ) into Hs

rad(Θ), we obtain
that KR is a compact set of Hs

rad(Θ). Since Un, n ∈ N are cylindrical sets, there
exists a function r : N → N such that for every n the set Un can be seen as a subset
of the finite dimensional space Er(n) defined by Er(n) = span(ej,s)1≤j≤r(n). More

precisely, there exists a Borel set Ũn of Er(n) such that

Un =
(
u ∈ Hs

rad(Θ) : (u, e1,s)e1,s + · · · + (u, er(n),s)er(n),s ∈ Ũn

)
.

Consider the cylindrical sets Fr(n) defined as

Fr(n) ≡
(
u ∈ Hs

rad(Θ) : (u, e1,s)e1,s + · · · + (u, er(n),s)er(n),s ∈ KR

)
.

Then

(3.2) µ̃(Fr(n)) ≥ 1 − CR−2,

where C is a constant independent of R and what is more important, independent
of n ∈ N. Set m = r(n). In order to prove (3.2), we observe that

1 − µ̃(Fr(n)) ≤ I,

where I is given by the integral

I = π−m
( m∏

j=1

z2−2s
j

)∫

V

e−
P

1≤j≤m z2−2s
j |cj |

2

d2c1 . . . d
2cm ,

where V is given by

V =
{
(c1, . . . , cm) ∈ Cm :

m∑

j=1

z2σ
j |cj |2 ≥ R2

}
.

Set θ ≡ s+ σ < 1/2. By the change of the variable cj → zσ
j cj , we obtain that

I = π−m
( m∏

j=1

z2−2θ
j

)∫

W

e−
P

1≤j≤m z2−2θ
j |cj |

2

d2c1 . . . d
2cm ,

where W is given by

W =
{
(c1, . . . , cm) ∈ Cm :

m∑

j=1

|cj |2 ≥ R2
}
.
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By introducing polar coordinates in each cj integration, we may estimate

R2 I ≤ π−m
( m∏

j=1

z2−2θ
j

) ∫

W

( m∑

j=1

|cj |2
)
e−

P

1≤j≤m z2−2θ
j |cj |

2

d2c1 . . . d
2cm

≤ π−m
( m∏

j=1

z2−2θ
j

) ∫

Cm

( m∑

j=1

|cj |2
)
e−

P

1≤j≤m z2−2θ
j |cj |

2

d2c1 . . . d
2cm

=

m∑

j=1

z2θ−2
j ≤ C

where C is a constant independent of m = r(n). This proves (3.2).

Let us fix ε > 0. By the regularity of the Lebesgue measure, using that Un+1 ⊂
Un one can construct closed sets Ṽn ⊂ Er(n) such that

(3.3) Vn =
(
u ∈ Hs

rad(Θ) : (u, e1,s)e1,s + · · · + (u, er(n),s)er(n),s ∈ Ṽn

)

satisfy

Vn ⊂ Un, Vn+1 ⊂ Vn, µ̃(Un\Vn) < ε/2 .

Indeed, one first constructs closed sets W̃n ⊂ Er(n) such that

Wn =
(
u ∈ Hs

rad(Θ) : (u, e1,s)e1,s + · · · + (u, er(n),s)er(n),s ∈ W̃n

)

satisfy

Wn ⊂ Un, µ̃(Un\Wn) < ε/2n+3 .

Then, we set

Vn ≡
n⋂

j=1

Wj

and one easily verifies that Vn satisfies (3.3).

We have that KR ∩ Vn is a compact set of Hs
rad(Θ) included in Un. Therefore

(3.1) yields ⋂

n∈N

(KR ∩ Vn) = ∅ .

Hence, there exists N ≥ 1 such that KR∩Vn = ∅ for n ≥ N . Moreover, Fr(n)∩Vn =
∅ for n ≥ N . Indeed, if u ∈ Fr(n) ∩ Vn then by setting

un ≡ (u, e1,s)e1,s + · · · + (u, er(n),s)er(n),s,

we observe that un ∈ KR and un ∈ Vn which is a contradiction. Thus Fr(n)∩Vn = ∅.
Therefore, using (3.2), we infer that

1 ≥ µ̃(Fr(n) ∪ Vn) = µ̃(Fr(n)) + µ̃(Vn) ≥ 1 − CR−2 + µ̃(Vn).

Hence µ̃(Vn) ≤ CR−2 and thus for R � 1 (independently of n),

µ̃(Un) ≤ µ̃(Vn) + µ̃(Un\Vn) < CR−2 + ε/2 < ε.

This completes the proof of Proposition 3.1. �

Remark 3.2. One may show that for s ≥ 1/2, the measure µ̃ is not countably
additive on the algebra of the cylindrical set on Hs

rad(Θ) (see e.g. [6]).
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If u ∈ Hs
rad(Θ) is given by

u =
∑

n≥1

cnen,s

then we can consider a Littlewood-Paley decomposition of u defined by

u =
∑

N−dyadic

∆N (u),

where N is running over the set of dyadic integers, i.e. the nonnegative powers of
2, and, the projector ∆N is defined by

∆N (u) =
∑

n : N≤〈zn〉<2N

cnen,s .

We next state a bound on the µ measure of functions containing only high frequen-
cies in their Littlewood-Paley decompositions.

Proposition 3.3. Let σ ∈ [s, 1/2[. There exist C > 0 and c > 0 such that for
every N0 ≥ 1, every λ ≥ 1,

µ
(
u ∈ Hs

rad(Θ) :
∥∥ ∑

N≥N0
N−dyadic

∆N (u)
∥∥

Hσ(Θ)
≤ λ

)
≥ 1 − Ce−cλ2N

2(1−σ)
0 .

In particular

(3.4) µ
(
u ∈ Hs

rad(Θ) : ‖u‖Hσ(Θ) ≤ λ
)
≥ 1 − Ce−cλ2

and
µ(Hσ

rad(Θ)) = 1 .

Therefore one can consider µ as a measure on the space X defined by (1.12).

Proof of Proposition 3.3. In view of (1.11), we obtain that the measure µ
is the distribution of the random series

(3.5) ϕω(r) =
∑

n≥1

gn(ω)

z1−s
n

en,s(r) =
∑

n≥1

gn(ω)

zn
en(r) ,

where gn(ω) is a sequence of normalised (N (0, 1/
√

2)) independent identically dis-
tributed (i.i.d.) complex Gaussian random variables, defined in a probability space
(Ω,F , p). More precisely, for U a µ-measurable set, we have

µ(U) = p(ω : ϕω ∈ U).

Consider a Littlewood-Paley decomposition of (3.5)

(3.6) ϕω(r) =
∑

N−dyadic

∆N

(
ϕω(r)

)

with
∆N

(
ϕω(r)

)
=

∑

n : N≤〈zn〉<2N

z−1
n gn(ω)en(r) .

We need therefore to establish the bound

p
(
ω ∈ Ω :

∥∥ ∑

N≥N0
N−dyadic

∆N (ϕω)
∥∥

Hσ(Θ)
> λ

)
≤ Ce−cλ2N

2(1−σ)
0 .

Let us next prove an inequality for Gaussians.
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Lemma 3.4. Let gn(ω) be a sequence of normalized i.i.d. complex Gaussian
random variables defined in a probability space (Ω,F , p). Then there exist positive
numbers c1, c2 such that for every finite set of indexes Λ ⊂ N, every λ > 0,

p
(
ω ∈ Ω :

∑

n∈Λ

|gn(ω)|2 > λ
)
≤ ec1|Λ|−c2λ .

Proof. For every ζ > 0,

(3.7) p
(
ω ∈ Ω :

∑

n∈Λ

|gn(ω)|2 > λ
)

= p
(
ω ∈ Ω :

∏

n∈Λ

eζ|gn(ω)|2 > eζλ
)
.

For ζ < 1, using the Tchebishev inequality and the independence of gn(ω), we
deduce that (3.7) is bounded by

e−ζλ
∏

n∈Λ

E
(
eζ|gn(ω)|2

)
= e−ζλ z|Λ|,

where the positive number z is given by

z = π−1
( ∫ ∞

−∞

e−(1−ζ)x2

dx
)2

=
1

1 − ζ
> 1 .

This completes the proof of Lemma 3.4. �

Let us now turn to the proof of Proposition 3.3. For N0 ≥ 1, we set

AN0 =
(
ω ∈ Ω :

∥∥ ∑

N≥N0
N−dyadic

∆N (ϕω)
∥∥

Hσ(Θ)
> λ

)
.

Let θ be a real number such that

(3.8) 0 < 2θ < 1 − 2σ .

For κ > 0 and N ≥ N0, N being a dyadic integer, we set

AN,κ =
(
ω ∈ Ω :

∥∥∆N (ϕω)
∥∥

Hσ(Θ)
> λκ(N−θ + (N−1N0)

1−σ)
)
.

Now, we observe that there exists κ sufficiently small depending on σ but indepen-
dent of N0 and N such that

(3.9) AN0 ⊂
⋃

N≥N0
N−dyadic

AN,κ .

The restriction
∥∥∆N (ϕω)

∥∥
Hσ(Θ)

> λκ(N−θ + (N−1N0)
1−σ)

implies that
∑

n : N≤〈zn〉<2N

z2σ
n z−2

n |gn(ω)|2 > λ2κ2(N−θ + (N−1N0)
1−σ)2

and therefore, in view of (2.6),
∑

n : N≤〈zn〉<2N

|gn(ω)|2 > cλ2κ2N2−2σ(N−2θ + (N−1N0)
2−2σ) .

Once again invoking (2.6), we infer that

#{n : N ≤ 〈zn〉 < 2N} ≤ CN
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and therefore Lemma 3.4 yields the bound

p(AN,κ) ≤ ec1N−c2λ2κ2N2−2σ
0 −c2λ2κ2N2−2σ−2θ

.

The assumption (3.8) implies that 1 < 2 − 2σ − 2θ and thus

p(AN,κ) ≤ Ce−cλ2N2−2σ
0 e−cN2−2σ−2θ

.

Using (3.9), a summation over N yields

p(AN0) ≤ Ce−cλ2N2−2σ
0

which completes the proof of Proposition 3.3. �

Remark 3.5. One can use the method of proof of Proposition 3.3 to improve
(3.2) to exponential bounds.

Let us now turn to the proof of (1.13) of Theorem 1. It is a consequence of the
following statement.

Proposition 3.6. Let gn(ω) be a sequence of normalised i.i.d. complex Gauss-
ian random variables, defined in a probability space (Ω,F , p). Let χ : R → {0, 1} be
the characteristic function of the interval [0, R], R > 0. Define the random series
ϕω by

ϕω(r) =
∑

n≥1

gn(ω)

zn
en(r) .

Then for every q > 0,

E

(
χ(‖φω‖L2(Θ)) exp(q

∫

Θ

|V (φω))|
)
<∞ .

Proof. Thanks to (1.2)
∫

Θ

|V (φω)| ≤ C + C‖φω‖α+2
Lα+2(Θ) .

Therefore, we have to show that

E

(
χ(‖φω‖L2(Θ)) exp(Cq‖φω‖α+2

Lα+2(Θ))
)
<∞ .

Observe that it suffices to show that
∫ ∞

1

f(λ)dλ <∞,

where

f(λ) = p
(
ω ∈ Ω : ‖φω‖Lα+2(Θ) ≥

( logλ

Cq

) 1
α+2

, ‖φω‖L2(Θ) ≤ R
)
.

Set

γ :=
( logλ

Cq

) 1
α+2

.

Let us now fix the real number σ according to the Sobolev embedding restriction

σ = 2
(1

2
− 1

α+ 2

)
.
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Notice that thanks to (1.3) and (1.9), 1/2 > σ ≥ s (of course the important point
here is that σ < 1/2). The Sobolev embedding Hσ(Θ) ⊂ Lα+2(Θ) thus yields the
bound

(3.10) ‖φω‖Lα+2(Θ) ≤ Csob‖φω‖Hσ(Θ) .

Therefore

f(λ) ≤ p
(
ω ∈ Ω : ‖φω‖Hσ(Θ) ≥ γ/Csob, ‖φω‖L2(Θ) ≤ R

)
.

Consider again the Littlewood-Paley decomposition (3.6). In the spirit of the
Brézis-Gallouet argument, we set

N0 = κγ
1
σ ,

where κ > 0 is a small number to be fixed later. Then
(
ω ∈ Ω : ‖φω‖Hσ(Θ) ≥ γ/Csob, ‖φω‖L2(Θ) ≤ R

)
⊂ A1 ∪ A2

with

A1 =
(
ω ∈ Ω :

∥∥∥
∑

N≤N0
N−dyadic

∆N (ϕω)
∥∥∥

Hσ(Θ)
≥ γ/(4Csob), ‖φω‖L2(Θ) ≤ R

)

and

A2 =
(
ω ∈ Ω :

∥∥∥
∑

N>N0
N−dyadic

∆N (ϕω)
∥∥∥

Hσ(Θ)
≥ γ/(4Csob)

)
.

On the other hand
∥∥∥

∑

N≤N0
N−dyadic

∆N (ϕω)
∥∥∥

Hσ(Θ)
≤ CNσ

0 ‖ϕω‖L2(Θ) ≤ CRκσγ .

Hence for κ � 1, the set A1 is empty. This fixes the parameter κ. On the other
hand, thanks to Proposition 3.3,

p(A2) ≤ Ce−cγ2N
2(1−σ)
0 .

Therefore

f(λ) ≤ Ce−c[log λ]
2

α+2 N
2(1−σ)
0 .

Coming back to the definitions of σ and N0, we get

[logλ]
2

α+2N
2(1−σ)
0 = c[logλ]

2
α .

The assumption α < 2 implies 2/α > 1 and therefore f(λ) is integrable on [1,+∞[.
This completes the proof of Proposition 3.6. �

We now state a corollary of Proposition 3.3 and Proposition 3.6.

Proposition 3.7. Let σ ∈ [s, 1/2[. Then there exist C > 0 and c > 0 such
that

ρ
(
u ∈ Hs

rad(Θ) : ‖u‖Hσ(Θ) > λ
)
≤ Ce−cλ2

.
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Proof. Set

Aλ =
(
u ∈ Hs

rad(Θ) : ‖u‖Hσ(Θ) > λ
)
.

Then using Proposition 3.3 and Proposition 3.6, we can write

ρ(Aλ) =

∫

Aλ

dρ =

∫

Aλ

f(u)dµ(u)

≤
(∫

Aλ

f2(u)dµ(u)
)1/2( ∫

Aλ

dµ(u)
)1/2

≤ C
(
µ(Aλ)

) 1
2 ≤ Ce−cλ2

.

This completes the proof of Proposition 3.7. �

Next, we define the finite dimensional sup-spaces of Hs
rad(Θ),

EN = span (e1,s, . . . , eN,s) .

We equip EN with the measures µN and ρN which are the natural restrictions to
EN of µ and ρ respectively. More precisely for a Borel set V ⊂ CN , we set

(3.11) Ṽ = {c1e1,s + · · · + cNeN,s, (c1, . . . , cN) ∈ V } .
We define the measures µN and ρN on the sigma algebra of sets of type (3.11) by

µN (Ṽ ) = π−N
( ∏

1≤n≤N

z2−2s
n

)∫

V

e−
P

1≤n≤N z2−2s
n |cn|2d2c1 . . . d

2cN

and

ρN (Ṽ ) = π−N
( ∏

1≤n≤N

z2−2s
n

)
×

×
∫

V

f(c1e1,s + · · · + cNeN,s) e
−

P

1≤n≤N z2−2s
n |cn|2d2c1 . . . d

2cN .

It is now clear that to every cylindrical set of Hs
rad(Θ) we may naturally associate

a µN and ρN measurable set on EN , provided N being sufficiently large. For
u ∈ Hs

rad(Θ), we define the projector SN ,

SN : Hs
rad(Θ) −→ EN

via the formula

(3.12) SN (u) =

N∑

n=1

(u, en,s)en,s .

We have the following statement.

Lemma 3.8. Let U be an open set of Hσ
rad(Θ), σ ∈ [s, 1/2[. Then

(3.13) ρ(U) ≤ lim inf
N→∞

ρN (U ∩ EN ).

Moreover, if F is a closed set of Hσ
rad(Θ), σ ∈ [s, 1/2[ then

(3.14) lim sup
N→∞

ρN (F ∩EN ) ≤ ρ(F ) .
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Proof. Define the sets

UN ≡
{
u ∈ Hs

rad(Θ) : SN (u) ∈ U
}
.

Observe that U ∩EN is ρN measurable and

ρN (U ∩EN ) = ρ(UN).

We have the inclusion

(3.15) U ⊂ lim inf
N

(UN ),

where

lim inf
N

(UN ) ≡
⋃

N≥1

⋂

N1≥N

UN1 .

Indeed, we have that for every u ∈ Hσ
rad(Θ),

(3.16) lim
N→∞

‖u− SN (u)‖Hσ(Θ) = 0 .

Therefore, using that U is an open set, we conclude that for every u ∈ U there
exists N0 ≥ 1 such that for N ≥ N0 one has u ∈ UN . Hence we have (3.15). If A
is a ρ-measurable set, we denote by χA the characteristic function of A. Define the
non negative functions fN by

fN (u) ≡ χUN (u)f(u) .

Notice that thanks to (3.15),

lim inf
N→∞

χUN ≥ χU .

Next, we set

F (u) ≡ lim inf
N→∞

fN (u).

Thus

F (u) ≥ χU (u)f(u) .

Since

ρN (U ∩ EN ) =

∫

Hs
rad(Θ)

fN (u)dµ(u),

using the Fatou lemma, we get

lim inf
N→∞

ρN (U ∩EN ) ≥
∫

Hs
rad(Θ)

F (u)dµ(u) ≥
∫

U

f(u)dµ(u) = ρ(U) .

Next, we define the sets

FN ≡
{
u ∈ Hs

rad(Θ) : SN (u) ∈ F
}
.

Thus

ρN (F ∩ EN ) = ρ(FN ).

We have that

(3.17) lim sup
N

(FN ) ⊂ F,

where

lim sup
N

(FN ) ≡
⋂

N≥1

⋃

N1≥N

FN1 .

Indeed, suppose that u ∈ lim supN (FN ). Thus there exists a sequence (Nk)k∈N

tending to infinity such that u ∈ FNk
which means that for every k one has SNk

(u) ∈
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F . Since F is closed, coming back to (3.16), we obtain that u ∈ F and therefore
we get (3.17). If we set

G(u) ≡ lim sup
N→∞

f̃N(u),

where

f̃N(u) ≡ χFN (u)f(u) .

then we have

G(u) ≤ χF (u)f(u)

and the Fatou lemma gives,

lim sup
N→∞

ρN (F ∩ EN ) = lim sup
N→∞

∫

Hs
rad

(Θ)

f̃N(u)dµ(u)

≤
∫

Hs
rad(Θ)

G(u)dµ(u)

≤
∫

F

f(u)dµ(u)

= ρ(F ) .

This completes the proof of Lemma 3.8. �

The next lemma shows that every ρ measurable set can be approximated by
subsets of compact sets in Hs

rad(Θ).

Lemma 3.9. Lets σ ∈]s, 1/2[ and denote by KR, R > 0 the ball

KR ≡ {u ∈ Hs
rad(Θ) : ‖u‖Hσ(Θ) ≤ R}.

Then, for every ρ measurable set A,

ρ(A) = lim
R→∞

ρ(A ∩KR) .

Proof. Since µ(Hs
rad(Θ)) = µ(Hσ

rad(Θ)) and since f(u) ∈ Lq(dµ(u)), 1 ≤ q <
∞, we obtain that ρ(Hs

rad(Θ)) = ρ(Hσ
rad(Θ)). Therefore, using Proposition 3.7, we

can write

0 ≤ ρ(A) − ρ(A ∩KR) = ρ(A ∪KR) − ρ(KR)

≤ ρ(Hs
rad(Θ)) − ρ(KR)

= ρ(Hσ
rad(Θ)) − ρ(KR)

≤ Ce−CR2

which completes the proof of Lemma 3.9. �

4. Bilinear Strichartz estimates

We now state a localized Strichartz type bilinear estimate associated to the
linear Schrödinger group on the unit disc.

Proposition 4.1. For every ε > 0, there exists β < 1/2, there exists C > 0
such that for every N1, N2 ≥ 1, every L1, L2 ≥ 1, every u1, u2 two functions on
R × Θ of the form

uj(t, r) =
∑

Nj≤〈zn〉<2Nj

cj(n, t) en(r), j = 1, 2
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where the Fourier transform of cj(n, t) with respect to t satisfies

supp ĉj(n, τ) ⊂ {τ ∈ R : Lj ≤ 〈τ + z2
n〉 ≤ 2Lj}, j = 1, 2

one has the bound

‖u1u2‖L2(R×Θ) ≤ C(N1 ∧N2)
ε(L1L2)

β‖u1‖L2(R×Θ)‖u2‖L2(R×Θ) .

Proof. Let us first notice that for j = 1, 2,

(4.1) ‖uj‖2
L2(R×Θ) = c

∑

Nj≤〈zn〉<2Nj

∫ ∞

−∞

|ĉj(n, τ)|2dτ .

Denote v(t, r) = u1(t, r)u2(t, r). Our purpose is thus to estimate ‖v‖L2(R×Θ).
Equivalently, we need to bound ‖v̂(τ, ·)‖L2(Rτ×Θ). Write

‖v̂(τ, r)‖2
L2(R×Θ) = c

∫ 1

0

∫ ∞

−∞

∣∣∣
∫ ∞

−∞

û1(τ1, r)û2(τ − τ1, r)dτ1

∣∣∣
2

rdτdr.

On the other hand û1(τ1, r)û2(τ − τ1, r) is equal to
∑

N1≤〈zn1〉<2N1

∑

N2≤〈zn2〉<2N2

ĉ1(n1, τ1)ĉ2(n2, τ − τ1)en1(r)en2 (r) .

Therefore, by invoking (2.2), we can write

∥∥∥
∫ ∞

−∞

û1(τ1, r)û2(τ − τ1, r)dτ1

∥∥∥
L2(Θ)

≤
∫ ∞

−∞

∥∥û1(τ1, r)û2(τ − τ1, r)
∥∥

L2(Θ)
dτ1

≤
∫ ∞

−∞

∑

N1≤〈zn1〉<2N1

∑

N2≤〈zn2〉<2N2

|ĉ1(n1, τ1)||ĉ2(n2, τ − τ1)|‖en1en2‖L2(Θ)dτ1

≤ Cε(N1 ∧N2)
ε

∫ ∞

−∞

∑

N1≤〈zn1〉<2N1

∑

N2≤〈zn2〉<2N2

|ĉ1(n1, τ1)||ĉ2(n2, τ − τ1)|dτ1 .

Our aim is estimate the L2(Rτ ) norm of the last expression. For this purpose, we
will of course make use of the support properties of ĉj(n, τ). Using the Cauchy-
Schwarz inequality in (τ1, n1, n2) gives the bound

∫ ∞

−∞

∑

N1≤〈zn1〉<2N1

∑

N2≤〈zn2〉<2N2

|ĉ1(n1, τ1)||ĉ2(n2, τ − τ1)|dτ1 ≤

≤
(∫ ∞

−∞

∑

N1≤〈zn1〉<2N1

∑

N2≤〈zn2〉<2N2

|ĉ1(n1, τ1)|2|ĉ2(n2, τ − τ1)|2dτ1
) 1

2

|Λ(τ, L1, L2, N1, N2)|
1
2 ,

where Λ(τ, L1, L2, N1, N2) is the following set of R × N × N,

(4.2) Λ(τ, L1, L2, N1, N2) = {(τ1, n1, n2) ∈ R × N × N : L1 ≤ 〈τ1 + z2
n1
〉 ≤ 2L1,

L2 ≤ 〈τ − τ1 + z2
n2
〉 ≤ 2L2, 〈zn1〉 ∈ [N1, 2N1], 〈zn2〉 ∈ [N2, 2N2]}.

The next lemma contains the main combinatorial ingredient of our analysis.

Lemma 4.2. For every ε > 0 there exists Cε > 0 such that for every τ ∈ R,
every N1, N2 ≥ 1, every L1, L2 ≥ 1,

|Λ(τ, L1, L2, N1, N2)| ≤ Cε(N1 ∧N2)
ε(L1L2).
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Proof. Consider the set Λ̃(τ, L1, L2, N1, N2) of N × N, defined by

Λ̃(τ, L1, L2, N1, N2) = {(n1, n2) ∈ N × N : 〈τ + z2
n1

+ z2
n2
〉 ≤ 2(L1 + L2),

〈zn1〉 ∈ [N1, 2N1], 〈zn2〉 ∈ [N2, 2N2]}.
Let (τ1, n1, n2) ∈ Λ(τ, L1, L2, N1, N2). Then the triangle inequality yields

〈τ1 + z2
n1

+ z2
n2
〉 ≤ 〈τ1 + z2

n1
〉 + 〈τ − τ1 + z2

n2
〉 ≤ 2(L1 + L2).

Therefore (τ1, n1, n2) ∈ Λ(τ, L1, L2, N1, N2) implies that (n1, n2) ∈ Λ̃(τ, L1, L2, N1, N2).

On the other hand for a fixed (n1, n2) ∈ Λ̃(τ, L1, L2, N1, N2) the Lebesgue mea-
sure of the possible τ1 such that (τ1, n1, n2) ∈ Λ(τ, L1, L2, N1, N2) is bounded by
C(L1 ∧ L2). Therefore

(4.3) |Λ(τ, L1, L2, N1, N2)| ≤ C(L1 ∧ L2)|Λ̃(τ, L1, L2, N1, N2)|.
We next estimate |Λ̃(τ, L1, L2, N1, N2)|. Observe that z2

n1
+z2

n2
ranges in an interval

of size ≤ C(L1 +L2). Hence, thanks to (2.6) the expression (4n1 − 1)2 +(4n2 − 1)2

also ranges in an interval of size C(L1 +L2), where the constant C is independent
of τ , L1, L2, N1, N2. Indeed, suppose that for some A ∈ R,

(4.4) A ≤ z2
n1

+ z2
n2

≤ A+ C(L1 + L2).

In (4.4), A is the parameter we have no control on. Using (2.6), we obtain that
(4.4) implies

(4.5)
16A

π2
≤ (4n1 − 1)2 + (4n2 − 1)2 +R(n1, n2) ≤

16A+ 16C(L1 + L2)

π2
,

where, thanks to the estimate on the remainder in (2.6), the function R(n1, n2) in
(4.5) satisfies

|R(n1, n2)| ≤ C̃ .

Therefore, (4.5) implies

16A

π2
− C̃ ≤ (4n1 − 1)2 + (4n2 − 1)2 ≤ 16A+ 16C(L1 + L2)

π2
+ C̃ .

Thus (4n1 − 1)2 + (4n2 − 1)2 ranges in an interval of size

16C(L1 + L2)

π2
+ 2C̃ ≤

(16C

π2
+ C̃

)
(L1 + L2)

exactly as we claimed. Denote the interval where (4n1 − 1)2 + (4n2 − 1)2 can range
by ∆. Another appeal to (2.6) yields that the restrictions 〈zn1〉 ∈ [N1, 2N1] and
〈zn2〉 ∈ [N2, 2N2] imply the bounds

0 ≤ n1 ≤ cN1, 0 ≤ n2 ≤ cN2 .

Let l be and integer in the interval ∆. Then we have the bound

(4.6) #
(
(n1, n2) ∈ N × N : l = (4n1 − 1)2 + (4n2 − 1)2,

0 ≤ n1 ≤ cN1, 0 ≤ n2 ≤ cN2

)
≤ Cε(N1 ∧N2)

ε

Indeed, if l ≤ 2c2(N1 ∧ N2)
2005 then the left hand-side of (4.6) is bounded by

Cε(min(N1, N2))
ε by the standard bound (see e.g. [8, 13]) on the number of

divisors in the ring of Gaussian integers Z[i]. Let us next suppose that

l ≥ 2c2(N1 ∧N2)
2005 + 1.
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By symmetry, we can suppose that N2 ≥ N1. We have that 4n2 − 1 ∈ I , where the
interval I is defined by

I =
[√

l− (4cN1 − 1)2,
√
l
]
.

But the size of I is bounded by

(4cN1 − 1)2√
l

≤ CN2
1√

c2N2005
1 + 1

≤ C.

Therefore the size of I is bounded by a constant uniform in N1, N2 and l. Thus
in the case l ≥ 2c23(N1 ∧ N2)

2005 + 1, we can get even better then (4.6), namely
we have a bound by a uniform constant. This completes the proof of (4.6). Using
(4.6) we infer that

|Λ̃(τ, L1, L2, N1, N2)| ≤ Cε|∆|(N1 ∧N2)
ε = Cε(L1 + L2)(N1 ∧N2)

ε .

Observe that (L1 ∧ L2)(L1 + L2) ≤ 2(L1L2). Therefore coming back to (4.3)
completes the proof of Lemma 4.2. �

Thanks to Lemma 4.2, we may write

∥∥∥
∫ ∞

−∞

û1(τ1, r)û2(τ − τ1, r)dτ1

∥∥∥
L2(Θ)

≤ Cε(N1 ∧N2)
ε(L1L2)

1
2

(∫ ∞

−∞

∑

N1≤〈zn1〉<2N1

∑

N2 ≤〈zn2〉<2N2

|ĉ1(n1, τ1)|2|ĉ2(n2, τ − τ1)|2dτ1
) 1

2

.

Squaring the above inequality, integration over τ ∈ R and using (4.1) gives the
bound

(4.7) ‖u1u2‖L2(R×Θ) ≤ Cε(N1 ∧N2)
ε(L1L2)

1
2 ‖u1‖L2(R×Θ)‖u2‖L2(R×Θ) .

We however claimed that the power of L1L2 can be smaller than 1/2. In order
to obtain this better bound with respect to the L1, L2 localization, we will get an
inequality which is better than (4.7) as far as (L1L2) is concerned but which is very
weak with respect to the N1, N2 localization. Using the formula for the inverse of
the Fourier transform, the support properties of the Fourier transform of cj(n, t),
and the Cauchy-Schwarz inequality, we obtain the bound

|cj(n, t)|2 ≤ CLj

∫ ∞

−∞

|ĉj(n, τ)|2dτ, j = 1, 2.

Hence, we infer that

‖uj(t, ·)‖2
L2(Θ) =

∑

Nj≤〈zn〉<2Nj

|cj(n, t)|2

≤ CLj

∑

Nj≤〈zn〉<2Nj

∫ ∞

−∞

|ĉj(n, τ)|2dτ

= CLj‖uj‖2
L2(R×Θ).

Therefore

(4.8) ‖uj‖L∞(R;L2(Θ)) ≤ CL
1
2

j ‖uj‖L2(R×Θ).

Interpolation (it is in fact simply the Hölder inequality) with the equality

‖uj‖L2(R;L2(Θ)) = ‖uj‖L2(R×Θ)
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gives the bound

(4.9) ‖uj‖L4(R;L2(Θ)) ≤ CL
1
4

j ‖uj‖L2(R×Θ), j = 1, 2.

Recall that (2.6) implies that

#(n ∈ N : N ≤ 〈zn〉 < 2N) ≤ CN.

Therefore, using (2.1) and the Cauchy-Schwarz inequality, we get

|uj(t, r)| ≤ CN
1
2

j

∑

Nj≤〈zn〉<2Nj

|cj(n, t)|

≤ CN
1
2

j N
1
2

j

( ∑

Nj≤〈zn〉<2Nj

|cj(n, t)|2
) 1

2

≤ CNjL
1
2
j ‖uj‖L2(R×Θ) .

Thus

(4.10) ‖uj‖L∞(R;L∞(Θ)) ≤ CNjL
1
2
j ‖uj‖L2(R×Θ).

Next, we can write

‖uj(t, ·)‖2
L∞(Θ) ≤ CNj

( ∑

Nj≤〈zn〉<2Nj

|cj(n, t)|
)2

≤ CN2
j

∑

Nj≤〈zn〉<2Nj

|cj(n, t)|2

= CN2
j ‖uj(t, ·)‖2

L2(Θ).

Integration of the last inequality over t ∈ R gives

(4.11) ‖uj‖L2(R;L∞(Θ)) ≤ CNj‖uj‖L2(R×Θ).

Interpolation between (4.10) and (4.11) now gives

(4.12) ‖uj‖L4(R;L∞(Θ)) ≤ CL
1
4
j Nj‖uj‖L2(R×Θ).

Suppose that N1 ≤ N2. Then using (4.9), (4.12) and the Hölder inequality, we
obtain

‖u1u2‖L2(R×Θ) ≤ ‖u1‖L4(R;L∞(Θ))‖u2‖L4(R;L2(Θ))

≤ C(L1L2)
1
4N1‖u1‖L2(R×Θ)‖u2‖L2(R×Θ) .

Therefore, we arrive at

(4.13) ‖u1u2‖L2(R×Θ) ≤ C(L1L2)
1
4 (N1 ∧N2)‖u1‖L2(R×Θ)‖u2‖L2(R×Θ) .

Interpolation between (4.7) and (4.13) completes the proof of Proposition 4.1. �

We will also need the following variant of Proposition 4.1.

Proposition 4.3. For every ε > 0, there exists β < 1/2, there exists C > 0
such that for every N1, N2 ≥ 1, every L1, L2 ≥ 1, every u1, u2 two functions on
R × Θ of the form

u1(t, r) =
∑

N1≤〈zn〉<2N1

c1(n, t) en(r)
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and

u2(t, r) =
∑

N2≤〈zn〉<2N2

c2(n, t) e
′
n(r)

where the Fourier transform of cj(n, t) with respect to t satisfies

supp ĉj(n, τ) ⊂ {τ ∈ R : Lj ≤ 〈τ + z2
n〉 ≤ 2Lj}, j = 1, 2

one has the bound

‖u1u2‖L2(R×Θ) ≤ C(N1 ∧N2)
ε(L1L2)

β‖u1‖L2(R×Θ)‖u2‖L2(R×Θ) .

Proof. Recall that the function en satisfies the equation

re′′n(r) + e′n(r) = −z2
nr en(r).

Therefore, using that for m 6= n, em and en are orthogonal in L2(Θ) and vanishing
at r = 1, an integration by parts gives for m 6= n,

∫ 1

0

e′m(r)e′n(r)rdr = −
∫ 1

0

em(r)(e′n(r)r)′dr +
[
em(r)e′n(r)r

]1

0

= −
∫ 1

0

em(r)(e′n(r) + re′′n(r))dr

= z2
n

∫ 1

0

em(r)en(r)rdr = 0 .

Therefore, we obtain that

(4.14) ‖u2‖2
L2(R×Θ) = c

∑

N2≤〈zn〉<2N2

‖e′n‖2
L2(Θ)

∫ ∞

−∞

|ĉ2(n, τ)|2dτ

and from now on the proof of Proposition 4.3 follows the lines of the proof of
Proposition 4.1. Indeed, using (2.3), we can write

∥∥∥
∫ ∞

−∞

û1(τ1, r)û2(τ − τ1, r)dτ1

∥∥∥
L2(Θ)

≤
∫ ∞

−∞

∥∥û1(τ1, r)û2(τ − τ1, r)
∥∥

L2(Θ)
dτ1

≤
∫ ∞

−∞

∑

N1≤〈zn1〉<2N1

∑

N2≤〈zn2〉<2N2

|ĉ1(n1, τ1)||ĉ2(n2, τ − τ1)|‖en1e
′
n2
‖L2(Θ)dτ1

≤ Cε(N1∧N2)
ε

∫ ∞

−∞

∑

N1≤〈zn1〉<2N1

∑

N2≤〈zn2〉<2N2

|ĉ1(n1, τ1)|‖e′n2
‖L2(Θ)|ĉ2(n2, τ−τ1)|dτ1 .

Again, our goal is to estimate the L2(Rτ ) norm of the last expression. Using the
Cauchy-Schwarz inequality in (τ1, n1, n2) yields

∫ ∞

−∞

∑

N1≤〈zn1〉<2N1

∑

N2≤〈zn2〉<2N2

|ĉ1(n1, τ1)| ‖e′n2
‖L2(Θ) |ĉ2(n2, τ − τ1)|dτ1 ≤

≤
(∫ ∞

−∞

∑

N1≤〈zn1〉<2N1

∑

N2≤〈zn2〉<2N2

|ĉ1(n1, τ1)|2‖e′n2
‖2

L2(Θ)|ĉ2(n2, τ − τ1)|2dτ1
) 1

2

× |Λ(τ, L1, L2, N1, N2)|
1
2 ,
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where Λ(τ, L1, L2, N1, N2) is defined by (4.2). A use of Lemma 4.2 now gives

∥∥∥
∫ ∞

−∞

û1(τ1, r)û2(τ − τ1, r)dτ1

∥∥∥
L2(Θ)

≤ Cε(N1 ∧N2)
ε(L1L2)

1
2

(∫ ∞

−∞

∑

N1≤〈zn1〉<2N1

∑

N2 ≤〈zn2〉<2N2

|ĉ1(n1, τ1)|2|‖e′n2
‖2

L2(Θ)ĉ2(n2, τ − τ1)|2dτ1
) 1

2

.

and therefore

‖u1u2‖L2(R×Θ) ≤ Cε(N1 ∧N2)
ε(L1L2)

1
2 ‖u1‖L2(R×Θ)‖u2‖L2(R×Θ) .

Next, using the localisation of the Fourier transforms of c1(n, t), as in the proof of
Proposition 4.1, we get the bound

‖u1‖L4(R;L2(Θ)) ≤ CL
1
4
1 ‖u1‖L2(R×Θ).

Next, we estimate u2 as follows

‖u2(t, ·)‖2
L2(Θ) =

∑

N2≤〈zn〉<2N2

|c2(n, t)|2‖e′n‖2
L2(Θ)

≤ C
∑

N2≤〈zn〉<2N2

(
L2

∫ ∞

−∞

|ĉ2(n, τ)|2dτ
)
‖e′n‖2

L2(Θ)

= CL2‖u2‖2
L2(R×Θ) .

Therefore

‖u2‖L∞(R;L2(Θ)) ≤ CL
1
2
2 ‖u2‖L2(R×Θ).

Interpolating with the equality

‖u2‖L2(R;L2(Θ)) = ‖u2‖L2(R×Θ).

gives

‖u2‖L4(R;L2(Θ)) ≤ CL
1
4
2 ‖u2‖L2(R×Θ).

Thus

‖uj‖L4(R;L2(Θ)) ≤ CL
1
4

j ‖uj‖L2(R×Θ), j = 1, 2.

Next, using (2.1), we get the bound

(4.15) ‖uj‖L∞(R;L∞(Θ)) ≤ CNjL
1
2
j ‖uj‖L2(R×Θ), j = 1, 2.

Indeed, for j = 1 such an inequality is already proved in Proposition 4.1. For j = 2,
we can write by using (2.1),

|u2(t, r)| ≤ CN
1
2
2

∑

N2≤〈zn〉<2N2

|c2(n, t)|‖e′n‖L2(Θ)

≤ CN2

( ∑

N2≤〈zn〉<2N2

|c2(n, t)|2‖e′n‖2
L2(Θ)

)

≤ CN2L
1
2
2 ‖u2‖L2(R×Θ)

and thus (4.15) for j = 2. Moreover,

(4.16) ‖uj‖L2(R;L∞(Θ)) ≤ CNj‖uj‖L2(R×Θ), j = 1, 2.
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Indeed, for j = 1 it is already proved in Proposition 4.1. For j = 2, by invoking
once again (2.1), and the Cauchy-Schwartz inequality, we obtain

‖u2(t, ·)‖2
L∞(Θ) ≤ CN2

( ∑

N2≤〈zn〉<2N2

|c2(n, t)|‖e′n‖L2(Θ)

)2

≤ CN2
2

∑

N2≤〈zn〉<2N2

|c2(n, t)|2‖e′n‖2
L2(Θ) .

Integration of the last inequality over t gives (4.16) for j = 2. An interpolation
gives

‖uj‖L4(R;L∞(Θ)) ≤ CL
1
4

j Nj‖uj‖L2(R×Θ), j = 1, 2.

Then the Hölder inequality gives

‖u1u2‖L2(R×Θ) ≤ C(L1L2)
1
4 (N1 ∧N2)‖u1‖L2(R×Θ)‖u2‖L2(R×Θ) .

A final interpolation completes the proof of Proposition 4.3. �

5. Bourgain spaces

We denote by L2
rad(Θ) the L2 radial functions on the unit disc. We endow

L2
rad(Θ) with the natural Hilbert space structure. Similarly, we denote by L2

rad(R×
Θ) the L2 functions on R × Θ, radial with respect to the second argument. For
σ < 1/2, the norm in Hσ

rad(Θ) of a radial function

v =
∑

n≥1

cnen

can be expressed as

‖v‖2
Hσ

rad(Θ) =
∑

n≥1

z2σ
n |cn|2 .

In this paper, we will only consider spaces of Sobolev regularity < 1/2 and thus
there is no need to specify the boundary conditions on ∂Θ (in our context it simply
means r = 1). More precisely the choice of the Dirichlet eigenfunctions en as basis
of L2

rad(Θ) is not of importance in the definition of Hσ
rad(Θ), σ < 1/2.

Next, we define the Bourgain spaces Xσ,b
rad(R×Θ) of functions on R×Θ which

are radial with respect to the second argument. These spaces are equipped with
the norm

‖u‖2
Xσ,b

rad(R×Θ)
=

∑

n≥1

z2σ
n ‖〈τ + z2

n〉bĉn(τ)‖2
L2(Rτ ) ,

where
u(t) =

∑

n≥1

cn(t)en .

Notice that

(5.1) ‖u‖Xσ,b
rad(R×Θ) = ‖ exp(−it∆)(u(t))‖Hb(R;Hσ

rad(Θ)) .

Indeed, using that

exp(−it∆)(u(t)) =
∑

n≥1

exp(itz2
n)cn(t)en

and since
̂exp(itz2

n)cn(t)(τ) = ĉn(τ − z2
n),
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we arrive at

‖ exp(−it∆)(u(t))‖2
Hb(R;Hσ

rad(Θ)) =
∑

n≥1

z2σ
n ‖ exp(itz2

n)cn(t)‖2
Hb(R)

=
∑

n≥1

z2σ
n ‖〈τ〉bĉn(τ − z2

n)‖2
L2(R)

= ‖u‖2
Xσ,b

rad(R×Θ)
.

This proves (5.1). Clearly Xσ,b
rad(R × Θ) have a Hilbert space structure and for

0 ≤ σ < 1/2 we can see X−σ,−b
rad (R × Θ) as its dual via the L2(R × Θ) pairing. A

one dimensional Sobolev embedding (for functions with values in Hσ
rad(Θ)) yields

the estimate

(5.2) ‖u‖L∞(R ; Hσ
rad(Θ)) ≤ Cb‖u‖Xσ,b

rad(R×Θ), b >
1

2
.

Next, for T > 0, we define the restriction spaces Xσ,b
rad([−T, T ]×Θ), equipped with

the natural norm

‖u‖Xσ,b
rad([−T,T ]×Θ) = inf{‖w‖Xσ,b

rad(R×Θ), w ∈ Xσ,b
rad(R × Θ) with w|]−T,T [ = u}.

Therefore (5.2) yields

‖u‖L∞([−T,T ] ; Hσ
rad(Θ)) ≤ Cb‖u‖Xσ,b

rad([−T,T ]×Θ), b >
1

2

which implies that for b > 1/2 the space Xσ,b
rad([−T, T ]×Θ) is continuously embed-

ded in C([−T, T ] ; Hσ
rad(Θ)). Similarly, for I ⊂ R an interval, we can define the the

restriction spaces Xσ,b
rad(I × Θ), equipped with the natural norm.

Following [5], our next purpose is to express the norm in Xσ,b
rad(R×Θ) in terms

of some basic localisation operators. Recall that for u =
∑

n≥1 cnen, the projector
∆N is defined by

∆N (u) =
∑

n : N≤〈zn〉<2N

cnen .

For N ≥ 2 a dyadic integer, we define the projector S̃N by

S̃N =
∑

N1≤N/2

N1−dyadic

∆N1 .

For a notational convenience, we assume that S̃1 is zero. Notice that S̃N is es-
sentially equivalent to SN , where the projector SN is defined in (3.12). For N,L
positive integers, we define ∆N,L by

(5.3) ∆N,L(u) =
1

2π

∑

n : N≤〈zn〉<2N

(∫

L≤〈τ+z2
n〉≤2L

ĉn(τ)eitτdτ
)
en,

where

u(t) =
∑

n≥1

cn(t)en .
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Then for u ∈ Xσ,b
rad(R × Θ) (with the natural interpretation of the τ integration in

(5.3) if b < 0), we can write the identity

u =
∑

L,N−dyadic

∆N,L(u)

in Xσ,b
rad(R×Θ). Next, we have that there exists a constant Cσ,b > 1 which depends

continuously on σ and b such that

C−1
σ,bL

bNσ‖∆N,L(u)‖L2(R×Θ) ≤ ‖∆N,L(u)‖Xσ,b
rad(R×Θ)

≤ Cσ,bL
bNσ‖∆N,L(u)‖L2(R×Θ)

and

C−1
σ,b‖u‖2

Xσ,b
rad(R×Θ)

≤
∑

L,N−dyadic

L2bN2σ‖∆N,L(u)‖2
L2(R×Θ)

≤ Cσ,b‖u‖2
Xσ,b

rad
(R×Θ)

.(5.4)

Moreover there exists Cb > 1, a continuous function of b such that

C−1
b ‖∆N(u)‖2

X0,b
rad(R×Θ)

≤
∑

L−dyadic

L2b‖∆N,L(u)‖2
L2(R×Θ)

≤ Cb‖∆N(u)‖2
X0,b

rad(R×Θ)
(5.5)

and there exists Cσ > 1, a continuous function of σ such that

C−1
σ ‖u‖2

Xσ,b
rad(R×Θ)

≤
∑

N−dyadic

N2σ‖∆N (u)‖2
X0,b

rad(R×Θ)

≤ Cσ‖u‖2
Xσ,b

rad(R×Θ)
.(5.6)

Proposition 4.1 now has a natural formulation in terms of the basic localization
projectors.

Proposition 5.1. For every ε > 0, there exist β < 1/2 and C > 0 such that
for every N1, N2, L1, L2 ≥ 1, every u1, u2 ∈ L2

rad(R × Θ),

‖∆N1,L1(u1)∆N2,L2(u2)‖L2(R×Θ) ≤
≤ C(L1L2)

β min(N1, N2)
ε‖∆N1,L1(u1)‖L2(R×Θ)‖∆N2,L2(u2)‖L2(R×Θ) .

Proof. It suffices to observe that ∆Nj ,Lj (u), j = 1, 2 satisfy the localisation
properties needed to apply Proposition 4.1. �

The following global linear Strichartz estimates is a direct consequence of
Proposition 5.1.

Proposition 5.2. Let us fix ε ∈]0, 1/2[ and b > 1/2. Then there exists C > 0

such that for every u ∈ Xε,b
rad(R × Θ),

‖u‖L4(R×Θ) ≤ C‖u‖Xε,b
rad(R×Θ).

Proof. It suffices to apply Proposition 5.1 with L1 = L2, N1 = N2 and sum
up over the dyadic values of these parameters by applying the Cauchy-Schwarz
inequality and (5.4). �
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6. Nonlinear estimates

The next statement contains the main analytical ingredient in the proof of
Theorem 1.

Proposition 6.1. Let 0 < σ1 ≤ σ < 1/2. Then there exist two positive
numbers b, b′ such that b + b′ < 1, b′ < 1/2 < b, there exists C > 0 such that for

every u, v ∈ Xσ,b
rad(R × Θ),

(6.1) ‖F (u)‖
Xσ,−b′

rad (R×Θ)
≤ C

(
1 + ‖u‖2

X
σ1,b

rad (R×Θ)

)
‖u‖Xσ,b

rad(R×Θ)

and

(6.2) ‖F (u) − F (v)‖
Xσ,−b′

rad (R×Θ)
≤

C
(
1 + ‖u‖2

Xσ,b
rad(R×Θ)

+ ‖v‖2
Xσ,b

rad(R×Θ)

)
‖u− v‖Xσ,b

rad(R×Θ) .

Proof. Using the gauge invariance of the nonlinearity F (u), we observe that
F (u)− (∂F )(0)u is vanishing at order 3 at u = 0. It therefore suffices to prove that

(6.3) ‖F (u)‖
Xσ,−b′

rad (R×Θ)
≤ C‖u‖2

X
σ1,b

rad (R×Θ)
‖u‖Xσ,b

rad(R×Θ),

under the additional assumption that F (u) is vanishing at order 3 at u = 0. Indeed,
by writing

‖F (u) − (∂F )(0)u‖
Xσ,−b′

rad
(R×Θ)

≥ ‖F (u)‖
Xσ,−b′

rad
(R×Θ)

− C‖u‖
Xσ,−b′

rad
(R×Θ)

,

we deduce that the claimed estimate (6.1) follows from (6.3) applied to F (u) −
(∂F )(0)u. By duality, in order to prove (6.3), it suffices to establish the bound

(6.4)
∣∣∣
∫

R×Θ

F (u)v̄
∣∣∣ ≤ C‖v‖

X−σ,b′

rad (R×Θ)
‖u‖2

X
σ1,b

rad
(R×Θ)

‖u‖Xσ,b
rad

(R×Θ).

Next, we have the decomposition

v =
∑

N0−dyadic

∆N0(v).

Moreover, using Proposition 5.2 and the sub-cubic nature of the nonlinearity, we

infer that for u ∈ Xσ,b
rad(R×Θ), σ ∈]0, 1/2[, b > 1/2, one has F (u) ∈ X−σ,−b

rad (R×Θ).
In addition, we can write

F (u) =
∑

N1−dyadic

(
F (S̃2N1(u)) − F (S̃N1(u))

)

in X−σ,−b
rad (R×Θ), with the convention that S̃1(u) = 0. Since ∆N = S̃2N − S̃N , we

can therefore write

F (u) =
∑

N1−dyadic

∆N1(u)G1(∆N1(u), S̃N1(u))+

∑

N1−dyadic

∆N1(u)G2(∆N1(u), S̃N1(u)) ≡ F1(u) + F2(u),

where G1(z1, z2) and G2(z1, z2) are smooth functions with a control on their growth
at infinity coming from (1.2). We are going only to show that

∣∣∣
∫

R×Θ

F1(u)v̄
∣∣∣ ≤ C‖v‖

X−σ,b′

rad (R×Θ)
‖u‖2

X
σ1,b

rad (R×Θ)
‖u‖Xσ,b

rad(R×Θ)
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since the argument for ∣∣∣
∫

R×Θ

F2(u)v̄
∣∣∣

is completely analogous. We can write

F1(u) =
∑

N1−dyadic

∆N1(u)G1(∆N1(u), S̃N1(u)).

Next, we set

I =
∣∣∣
∫

R×Θ

F1(u)v̄
∣∣∣

and

I(N0, N1) =
∣∣∣
∫

R×Θ

∆N1(u)∆N0(v)G1(∆N1(u), S̃N1(u))
∣∣∣.

Then I ≤ I1 + I2, where

I1 =
∑

N0≤N1
N0,N1−dyadic

I(N0, N1), I2 =
∑

N0≥N1
N0,N1−dyadic

I(N0, N1).

We estimate first I1. Similarly to the above expansion for F , using the vanishing
property at the origin of F , we now decompose G1(∆N1(u), S̃N1(u)) as follows,

∑

N2−dyadic

(
G1(S̃2N2∆N1(u), S̃2N2 S̃N1(u)) −G1(S̃N2∆N1(u), S̃N2 S̃N1(u))

)
.

Therefore, using that ∆N1∆N2 = ∆N1 , if N1 = N2 and zero elsewhere, we obtain
that

G1(∆N1(u), S̃N1(u)) =
∑

N2≤N1
N2−dyadic

∆N2(u)G
N2

11 (∆N2(u), S̃N2(u))+

∑

N2≤N1
N2−dyadic

∆N2(u)G
N2
12 (∆N2(u), S̃N2(u)).

Finally, we expand for j = 1, 2,

GN2

1j (∆N2(u), S̃N2(u)) =
∑

N3≤N2
N3−dyadic

∆N3(u)G
N3

1j1(∆N3(u), S̃N3(u))+

∑

N3≤N2
N3−dyadic

∆N3(u)G
N3

1j2(∆N3(u), S̃N3(u)),

where, thanks to the growth assumption on the nonlinearity F (u), we obtain that

the functions GN3

1j1j2
(z1, z2), j1, j2 = 1, 2 satisfy

|GN3

1j1j2
(z1, z2)| ≤ C.

We therefore have the bound

I1 ≤ C
∑

N0≤N1
N0,N1−dyadic

∑

N1≥N2≥N3
N2,N3−dyadic

∫

R×Θ

|∆N0(v)∆N1(u)∆N2(u)∆N3(u)|
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and moreover using the equality

∆N =
∑

L−dyadic

∆N,L,

we arrive at

I1 ≤ C
∑

L0,L1,L2,L3−dyadic

∑

N1≥N2≥N3,N1≥N0
N0,N1,N2,N3−dyadic

∫

R×Θ

|∆N0,L0(v)∆N1,L1(u)∆N2,L2(u)∆N3,L3(u)|.

Using Proposition 5.1 and the Cauchy-Schwarz inequality, we have that for every
ε > 0 there exist β < 1/2 and Cε such that

∫

R×Θ

|∆N0,L0(v)∆N1,L1(u)∆N2,L2(u)∆N3,L3(u)| ≤

≤ ‖∆N0,L0(v)∆N2,L2(u)‖L2(R×Θ)‖∆N1,L1(u)∆N3,L3(u)‖L2(R×Θ) ≤

≤ Cε(N2N3)
ε(L0L1L2L3)

β‖∆N0,L0(v)‖L2(R×Θ)

3∏

j=1

‖∆Nj ,Lj (u)‖L2(R×Θ).

Therefore, if we set

(6.5) Q ≡ Q(N0, N1, N2, N3, L0, L1, L2, L3) = CN−σ
0 Nσ

1 (N2N3)
σ1Lb′

0 (L1L2L3)
b

× ‖∆N0,L0(v)‖L2(R×Θ)

3∏

j=1

‖∆Nj ,Lj (u)‖L2(R×Θ),

we can write

I1 ≤
∑

L0,L1,L2,L3−dyadic

∑

N1≥N2≥N3,N1≥N0
N0,N1,N2,N3−dyadic

Lβ−b′

0 (L1L2L3)
β−b

(N0

N1

)σ

(N2N3)
ε−σ1Q

Let us take ε > 0 such that ε− σ1 < 0. This fixes β. Then we choose b′ such that
β < b′ < 1/2. We finally choose b > 1/2 such that b+ b′ < 1. With this choice of
the parameters, using (5.5) and after summing geometric series in L0, L1, L2, L3,
N2, N3, we can write that

I1 ≤ C‖u‖2

X
σ1,b

rad (R×Θ)

∑

N0≤N1
N0,N1−dyadic

(N0

N1

)σ

c(N0)d(N1),

where

(6.6) c(N0) = N−σ
0 ‖∆N0(v)‖X0,b′

rad (R×Θ)
, d(N1) = Nσ

1 ‖∆N1(u)‖X0,b
rad(R×Θ) .

We now make appeal to the following lemma which is a discreet variant of the Schur
test.

Lemma 6.2. For every σ > 0 there exists C > 0 such that for every couple of
functions cj(N), j = 1, 2, defined on the set of the dyadic integers such that

‖cj‖ ≡
∑

N−dyadic

|cj(N)|2 <∞, j = 1, 2
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one has

(6.7)
∣∣∣

∑

N0≤N1
N0,N1−dyadic

(N0

N1

)σ

c1(N0)c2(N1)
∣∣∣ ≤ C‖c1‖‖c2‖.

Proof. Write N1 = 2jN0 with j ≥ 0, j ∈ Z. Thus the left hand-side of (6.7)
can be rewritten as

∣∣∣
∞∑

j=0

∑

N0−dyadic

2−jσc1(N0)c2(2
jN0)

∣∣∣

which by the Cauchy-Schwartz inequality in N0 is bounded by C‖c1‖‖c2‖ with

C =

∞∑

j=0

2−jσ .

This completes the proof of Lemma 6.2. �

Next using (5.6) and Lemma 6.2, we deduce that

I1 ≤ C‖v‖
X−σ,b′

rad (R×Θ)
‖u‖2

X
σ1,b

rad (R×Θ)
‖u‖Xσ,b

rad(R×Θ).

This ends the analysis for I1. We next turn to the estimate for I2. The basic
idea is that after an integration by parts, the structure of I2 becomes very close
to the structure of I1, by simply exchanging the roles of N0 and N1. In this
context the Proposition 4.3 gives the relevant bound. We start by some preliminary
observations. For u ∈ L2

rad(R × Θ) we can write

∆N,L(u) =
∑

N≤〈zn〉<2N

c(n, t) en(r),

where

supp ĉ(n, τ) ⊂ {τ ∈ R : L ≤ 〈τ + z2
n〉 ≤ 2L}

and

‖∆N,L(u)‖2
L2(R×Θ) = c

∑

N≤〈zn〉<2N

∫ ∞

−∞

|ĉ(n, τ)|2dτ.

Moreover

∂r

(
∆N,L(u)

)
=

∑

N≤〈zn〉<2N

c(n, t) e′n(r).

Recall that for m 6= n, e′m and e′n are orthogonal in L2(Θ). Moreover, thanks to
(2.4),

‖e′n‖L2(Θ) ≈ n‖en‖L2(Θ)

and thus using that

∥∥∂r

(
∆N,L(u)

)∥∥2

L2(R×Θ)
= c

∑

N≤〈zn〉<2N

‖e′n‖2
L2(Θ)

∫ ∞

−∞

|ĉ(n, τ)|2dτ

we arrive at the crucial relation

(6.8)
∥∥∂r

(
∆N,L(u)

)∥∥
L2(R×Θ)

≈ N
∥∥∆N,L(u)

∥∥
L2(R×Θ)

.

Let us observe that

en(r) = − 1

z2
n

1

r
∂r(r∂ren(r)).
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Since ∆N1(u)G1(∆N1(u), S̃N1(u)) is vanishing on the boundary of Θ, an integration
by parts yields

∫ 1

0

en(r)∆N1 (u)G1(∆N1(u), S̃N1(u))rdr =

=
1

z2
n

∫ 1

0

e′n(r)∂r

(
∆N1(u)G1(∆N1(u), S̃N1(u))

)
rdr .

Write

(6.9) ∆N0,L0(v) =
∑

N0≤〈zn0〉<2N0

c(n0, t) en0(r),

where

supp ĉ(n0, τ) ⊂ {τ ∈ R : L0 ≤ 〈τ + z2
n0
〉 ≤ 2L0}.

Then, for n ∈ N such that 〈zn〉 ∈ [N0, 2N0[, we set

c̃(n, t) =
c(n, t)

z2
n

,

where c(n, t) are the coefficients involved in (6.9). Define ∆̃N0,L0 as

∆̃N0,L0(v) =
∑

N0≤〈zn0〉≤2N0

c̃(n0, t) e
′
n0

(r).

Clearly ∆̃N0,L0(v) is an object which fits in the scope of applicability of Proposi-
tion 4.3 and

(6.10) ‖∆̃N0,L0(v)‖L2(R×Θ) ≈ N−1
0 ‖∆N0,L0(v)‖L2(R×Θ).

Recall that en(r) are real valued. In view of the above discussion, we need to control
the expression

E =
∑

N0≥N1
L0,N0,N1−dyadic

∣∣∣
∫

R×Θ

∆̃N0,L0(v)∂r

(
∆N1(u)G1(∆N1(u), S̃N1(u))

)∣∣∣.

Now, we can write E ≤ E1 +E2, where

E1 =
∑

N0≥N1
L0,N0,N1−dyadic

∣∣∣
∫

R×Θ

∆̃N0,L0(v)∂r

(
∆N1(u)

)
G1(∆N1(u), S̃N1(u))

∣∣∣

and

E2 =
∑

N0≥N1
L0,N0,N1−dyadic

∣∣∣
∫

R×Θ

∆̃N0,L0(v)∆N1(u)∂r

(
G1(∆N1(u), S̃N1(u))

)∣∣∣.

By expanding G1(z1, z2) and using the growth and vanishing assumptions on the
nonlinear interaction F , we can write

E1 ≤ C
∑

L0,L1,L2,L3−dyadic

∑

N0≥N1≥N2≥N3
N0,N1,N2,N3−dyadic

∫

R×Θ

|∆̃N0,L0(v)∂r

(
∆N1,L1(u)

)
∆N2,L2(u)∆N3,L3(u)|.
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Using Proposition 5.1, Proposition 4.3, the Cauchy-Schwarz inequality, (6.8) and
(6.10), we have that for every ε > 0 there exist β < 1/2 and Cε such that

∫

R×Θ

|∆̃N0,L0(v)∂r

(
∆N1,L1(u)

)
∆N2,L2(u)∆N3,L3(u)| ≤

≤ ‖∆̃N0,L0(v)∆N2,L2(u)‖L2(R×Θ)‖∂r

(
∆N1,L1(u)

)
∆N3,L3(u)‖L2(R×Θ) ≤

≤ Cε(N2N3)
ε(L0L1L2L3)

β‖∆̃N0,L0(v)‖L2(R×Θ)

× ‖∂r

(
∆N1,L1(u)

)
‖L2(R×Θ)

3∏

j=2

‖∆Nj ,Lj (u)‖L2(R×Θ) ≤

≤ Cε(N2N3)
ε(L0L1L2L3)

βN1

N0
‖∆N0,L0(v)‖L2(R×Θ)

3∏

j=1

‖∆Nj ,Lj (u)‖L2(R×Θ).

Therefore, with Q defined by (6.5), we can write

(6.11) E1 ≤
∑

L0,L1,L2,L3−dyadic

∑

N0≥N1≥N2≥N3
N0,N1,N2,N3−dyadic

Lβ−b′

0 (L1L2L3)
β−b

(N0

N1

)σ−1

(N2N3)
ε−σ1Q

Let us take ε > 0 such that ε − σ1 < 0. Then as we did for the bound for I1, we
choose b′ such that β < b′ < 1/2. We finally choose b > 1/2 such that b+ b′ < 1.
Using (5.5) and after summing geometric series in L0, L1, L2, L3, N2, N3, we can
write that

E1 ≤ C‖u‖2

X
σ1,b

rad (R×Θ)

∑

N0≥N1
N0,N1−dyadic

(N1

N0

)1−σ

c(N0)d(N1),

where c(N0) and d(N1) are defined by (6.6). Therefore, using (5.6) and Lemma 6.2,
we arrive at the bound

E1 ≤ C‖v‖
X−σ,b′

rad (R×Θ)
‖u‖2

X
σ1,b

rad (R×Θ)
‖u‖Xσ,b

rad(R×Θ).

Let us now turn to the bound for E2. Using the formula

∂r

(
f(z(r))

)
= (∂rz)∂f + (∂r z̄)∂̄f,

we can write

∂r

(
G1(∆N1(u), S̃N1(u))

)
=

∑

N2≤N1
N2−dyadic

∂r

(
∆N2(u)

)
G̃N2

11 (∆N1(u), S̃N1(u))+

∑

N2≤N1
N2−dyadic

∂r

(
∆N2(u)

)
G̃N2

12 (∆N1(u), S̃N1(u)),

where thanks to the growth assumption on the nonlinearity, G̃N2

1j (z1, z2), j = 1, 2
satisfy

(6.12)

2∑

k=1

(
|∂zk

G̃N2

1j (z1, z2)| + |∂̄zk
G̃N2

1j (z1, z2)|
)
≤ C.
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By expanding G̃N2

1j (z1, z2), j = 1, 2 in a telescopic series and using (6.12), we get
the bound

E2 ≤ C
∑

L0,L1,L2,L3−dyadic

∑

N0≥N1≥N2,N1≥N3
N0,N1,N2,N3−dyadic

∫

R×Θ

|∆̃N0,L0(v)∆N1,L1(u)∂r

(
∆N2,L2(u)

)
∆N3,L3(u)|.

Using Proposition 5.1, Proposition 4.3, the Cauchy-Schwarz inequality, (6.8) and
(6.10), we have that for every ε > 0 there exist β < 1/2 and Cε such that

∫

R×Θ

|∆̃N0,L0(v)∂r

(
∆N1,L1(u)

)
∆N2,L2(u)∆N3,L3(u)| ≤

≤ ‖∆̃N0,L0(v)∆N3,L3(u)‖L2(R×Θ)‖∂r

(
∆N2,L2(u)

)
∆N1,L1(u)‖L2(R×Θ) ≤

≤ Cε(N2N3)
ε(L0L1L2L3)

β‖∆̃N0,L0(v)‖L2(R×Θ)

× ‖∂r

(
∆N2,L3(u)

)
‖L2(R×Θ)‖∆N1,L1(u)‖L2(R×Θ)‖∆N3,L3(u)‖L2(R×Θ) ≤

≤ Cε(N2N3)
ε(L0L1L2L3)

βN2

N0
‖∆N0,L0(v)‖L2(R×Θ)

3∏

j=1

‖∆Nj ,Lj (u)‖L2(R×Θ).

Next, for N2 ≤ N1, we can write,
(N0

N1

)σN2

N0
≤

(N0

N1

)σ−1

and therefore, with Q defined by (6.5), we can write

E2 ≤
∑

L0,L1,L2,L3−dyadic

∑

N0≥N1≥N2,N1≥N3
N0,N1,N2,N3−dyadic

Lβ−b′

0 (L1L2L3)
β−b

(N0

N1

)σ−1

(N2N3)
ε−σ1Q

But the right hand-side of the above inequality is exactly the same as the right
hand-side of of (6.11). Therefore

E2 ≤ C‖v‖
X−σ,b′

rad (R×Θ)
‖u‖2

X
σ1,b

rad (R×Θ)
‖u‖Xσ,b

rad(R×Θ).

This completes the proof of (6.1). In the proof of (6.1), we analysed the expression
‖F (u)‖

Xσ,−b′

rad

. The argument is based on successive expansions of F (u) in telescopic

series and thus it works equally well if we replace F (u) by uG(v, w) where G(z1, z2)
satisfies the growth assumption

(6.13)
∣∣∂k1

z1
∂̄k2

z1
∂l1

z2
∂̄l2

z2
G(z1, z2)

∣∣ ≤ Ck1,k2,l1,l2(1 + |z1| + |z2|)max(0,α−k1−k2−l1−l2) .

But this is exactly the situation that occurs in the analysis of (6.2). Indeed, one
can write

F (u) − F (v) = (u− v)G1(u, v) + (u− v)G2(u, v)

with Gj(z1, z2), j = 1, 2 satisfying (6.13). Since the analysis is very similar to the
proof of (6.1), we shall only outline the estimate for (u− v)G1(u, v). Again, we can
suppose that F (u) is vanishing at order 3 at u = 0. Let us set

w1 = u− v, w2 = u, w3 = v.
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One needs to bound ∣∣∣
∫

R×Θ

w1G1(w2, w3)w4

∣∣∣

by

C(1 + ‖w2‖Xσ,b
rad

(R×Θ) + ‖w3‖Xσ,b
rad

(R×Θ))
2‖w1‖Xσ,b

rad
(R×Θ)‖w4‖X−σ,b′

rad (R×Θ)
.

Next, we expand

w1 =
∑

N1−dyadic

∆N1(w1), w4 =
∑

N0−dyadic

∆N0(w4)

and

G1(w2, w3) =
∑

N2−dyadic

(
G1(S̃2N2(w2), S̃2N2(w3)) −G1(S̃N2(w2), S̃N2(w3))

)
.

Thus, modulo complex conjugations irrelevant in this discussion, one has to evaluate
quantities of type

(6.14)
∑

N0,N1,N2−dyadic

∣∣∣
∫

R×Θ

∆N0(w4)∆N1(w1)∆N2(wj)

HN2

j (∆N2(w2), S̃N2(w2),∆N2(w3), S̃N2(w3))
∣∣∣, j = 2, 3,

where HN2

j (z1, z2, z3, z4) are smooth functions satisfying growth restrictions at in-

finity coming from (1.2). In the analysis of (6.14), we distinguish two cases for N0,
N1, N2 in the sum defining (6.14). The first case is when N0 ≤ max(N1, N2), In this

case, we expand once more HN2

j which introduces a sum over N3−dyadic, N3 ≤ N2

of terms ∆N3(wj) (or complex conjugate) times a bounded function (thanks to the
sub cubic nature of the nonlinearity). The analysis is then exactly the same as for
that of I1 in the proof of (6.1). If N0 ≥ max(N1, N2), then we integrate by parts
by the aid of ∆N0(w4) and analysis is the same as in the bound for I2 in the proof
of (6.1). This completes the proof of Proposition 6.1. �

Let us now consider the integral equation corresponding to the problem (1.1)-
(1.5)

(6.15) u(t) = eit∆u0 + i

∫ t

0

ei(t−τ)∆F (u(τ))dτ .

With Proposition 6.1 in hand, we can deduce the following estimates for the terms
in the right hand-side of (6.15).

Proposition 6.3. Let 0 < σ1 ≤ σ < 1/2. Then there exist two positive
numbers b, b′ such that b + b′ < 1, b′ < 1/2 < b, there exists C > 0 such that for

every T ∈]0, 1], every u, v ∈ Xσ,b
rad([−T, T ]× Θ), every u0 ∈ Hσ

rad(Θ),

(6.16)
∥∥eit∆u0

∥∥
Xσ,b

rad([−T,T ]×Θ)
≤ C‖u0‖Hσ

rad(Θ) ,

(6.17)
∥∥∥

∫ t

0

ei(t−τ)∆F (u(τ))dτ
∥∥∥

Xσ,b
rad([−T,T ]×Θ)

≤

≤ CT 1−b−b′
(
1 + ‖u‖2

X
σ1,b

rad
([−T,T ]×Θ)

)
‖u‖Xσ,b

rad
([−T,T ]×Θ)
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and

(6.18)
∥∥∥

∫ t

0

ei(t−τ)∆(F (u(τ)) − F (v(τ)))dτ
∥∥∥

Xσ,b
rad([−T,T ]×Θ)

≤

≤ CT 1−b−b′
(
1 + ‖u‖2

Xσ,b
rad([−T,T ]×Θ)

+ ‖v‖2
Xσ,b

rad([−T,T ]×Θ)

)
‖u− v‖Xσ,b

rad([−T,T ]×Θ) .

Proof. Let ψ ∈ C∞
0 (R) such that ψ ≡ 1 on [−1, 1]. Then, using (5.1), we can

write
∥∥eit∆u0

∥∥
Xσ,b

rad([−T,T ]×Θ)
≤

∥∥ψ(t)eit∆u0

∥∥
Xσ,b

rad(R×Θ)
= ‖ψ‖Hb(R)‖u0‖Hσ

rad(Θ)

which proves (6.16). Let us remark that if ũ ∈ Xσ,b
rad(R×Θ) realises theXσ,b

rad([−T, T ]×
Θ) norm of u then the same ũ realises all Xσ′,b

rad ([−T, T ] × Θ), σ′ < σ norms of u.
With this remark in hand, now the proofs of (6.17) and (6.18) follow from (6.1)
and (6.2) respectively, (5.1) and the inequality

(6.19) ‖ψ(t/T )

∫ t

0

f(τ)dτ‖Hb(R) ≤ CT 1−b−b′‖f‖H−b′ (R) .

We refer to [7] for the proof of (6.19). This completes the proof of Proposition 6.3.
�

7. Basic local well-posedness results for NLS and the truncated NLS

Recall that we are interested in constructing solutions of the initial value prob-
lem

(7.1) iut + ∆u+ F (u) = 0, u|t=0 = u0 .

We will approximate the solutions of (7.1) by the solutions of the ODE

(7.2) iut + ∆u+ SN (F (u)) = 0, u|t=0 = u0 ∈ EN ,

for N � 1 (for the definition of the projector SN , see Section 3, (3.12) above).
Equation (7.2) can be seen as a Hamiltonian ODE for u = SN (u). More precisely,
if

u = SN (u) =

N∑

n=1

cn en,s,

then the Hamiltonian of the ODE (7.2) is given by

H(u, u) =

N∑

n=1

z2−2s
n |cn|2 −

∫ 1

0

V
( N∑

m=1

cm em,s(r)
)
rdr .

Multiplying (7.2) by u and integrating over Θ yields that the L2 norm is still a
conserved quantity for (7.2). Therefore, the Cauchy-Lipschitz theorem for ODE’s
implies the existence of global dynamics for (7.2) for every u0 ∈ L2(Θ). The L2

conservation provides the bound

N∑

n=1

z−2s
n |cn(t)|2 ≤ C

uniformly in t. However, bounds on the quantities

N∑

n=1

nσn−2s|cn(t)|2, σ > 0
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for long times are non trivial and go beyond the scope of the basic Cauchy-Lipschitz
theorem. We next state the basic local well-posedness result for (7.1), which unfor-
tunately misses the L2 theory.

Proposition 7.1. Let us fix 0 < σ1 ≤ σ < 1/2. Then there exist b > 1/2,

β > 0, C > 0, C̃ > 0, c ∈]0, 1] such that for every A > 0 if we set T = c(1 +A)−β

then for every u0 ∈ Hσ1

rad(Θ) satisfying ‖u0‖Hσ1 ≤ A there exists a unique solution

of (7.1) in Xσ1,b
rad ([−T, T ]× Θ). Moreover

‖u‖L∞([−T,T ];Hσ1 (Θ)) ≤ C‖u‖
X

σ1,b

rad ([−T,T ]×Θ)
≤ C̃‖u0‖Hσ1 (Θ) .

If in addition u0 ∈ Hσ
rad(Θ) then

‖u‖L∞([−T,T ];Hσ(Θ)) ≤ C‖u‖Xσ,b
rad([−T,T ]×Θ) ≤ C̃‖u0‖Hσ(Θ) .

Finally if u and v are two solutions with data u0, v0 respectively, satisfying

‖u0‖Hσ1 ≤ A, ‖v0‖Hσ1 ≤ A

then

‖u− v‖L∞([−T,T ];Hσ1 (Θ)) ≤ C‖u0 − v0‖Hσ1 (Θ) .

If in addition u0, v0 ∈ Hσ
rad(Θ) then

‖u− v‖L∞([−T,T ];Hσ(Θ)) ≤ C‖u0 − v0‖Hσ(Θ) .

Proof. It is a direct application of Proposition 6.3 and the contraction map-
ping principle to the map Φu0(u) defined by the right hand-side of (6.15). Indeed,

for shortness, let us denote by Xσ
T the Bourgain space Xσ,b

rad([−T, T ]× Θ), where b
is fixed in Proposition 6.3. Then there exists θ > 0 (θ ≡ 1 − b− b′ with b′ fixed by
Proposition 6.3) such that

(7.3) ‖Φu0(u)‖X
σ1
T

≤ C‖u0‖H
σ1
rad(Θ) + CT θ(1 + ‖u‖2

X
σ1
T

)‖u‖X
σ1
T

and

(7.4) ‖Φu0(u) − Φu0(v)‖X
σ1
T

≤ CT θ‖u− v‖X
σ1
T

(1 + ‖u‖2
X

σ1
T

+ ‖v‖2
X

σ1
T

) .

Using (7.3), we obtain that for every u0 such that ‖u0‖Hσ1 ≤ A if we take

T ∼ (1 +A)−θ/2

then the map Φu0 sends the ball of radius 2C‖u0‖Hσ1 of Xσ1

T into the same ball.
Thanks to (7.4), with the same restriction on T the map Φu0 is also a contraction
on the ball of radius 2C‖u0‖Hσ1 of Xσ1

T . The fixed point of this contraction is the
needed local solution of (7.1). Proposition 6.3 also yields the bound

‖Φu0(u)‖Xσ
T
≤ C‖u0‖Hσ

rad
(Θ) + CT θ(1 + ‖u‖2

X
σ1
T

)‖u‖Xσ
T

We obtain thus the propagation of higher regularity with the same restrictions on
T . Using Proposition 6.3, we get the bound

(7.5) ‖Φu0(u) − Φu0(v)‖Xσ
T
≤ CT θ‖u− v‖Xσ

T
(1 + ‖u‖2

Xσ
T

+ ‖v‖2
Xσ

T
) .

Applying Proposition 6.3, (7.4) and (7.5) to the difference of two solutions yields
the quoted Lipschitz bound. This completes the proof of Proposition 7.1. �
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Remark 7.2. If we are interested to prove propagation of higher Sobolev regu-
larity, with our methods we only can treat the domains of the powers of the Dirichlet
Laplacian. For example we may expect to get that H1

0 regularity is propagated by the
flow. Similar results for the Neumann Laplacian do not follow from our analysis.
As mention in the introduction, we do not pursue this here since the measure ρ
”lives” on functions of Sobolev regularity H1/2−.

We state the analog of Proposition 7.1 for (7.2).

Proposition 7.3. Let us fix 0 < σ1 ≤ σ < 1/2. Then there exist b > 1/2,

β > 0, C > 0, C̃ > 0, c ∈]0, 1] such that for every A > 0 if we set T = c(1 +A)−β

then for every N ≥ 1, every u0 ∈ Hσ1

rad(Θ) satisfying ‖u0‖Hσ1 ≤ A there exists a

unique solution u = SN (u) of (7.2) in Xσ1,b
rad ([−T, T ]× Θ). Moreover

‖u‖L∞([−T,T ];Hσ1 (Θ)) ≤ C‖u‖
X

σ1,b

rad ([−T,T ]×Θ)
≤ C̃‖u0‖Hσ1 (Θ) .

If in addition u0 ∈ Hσ
rad(Θ) then

‖u‖L∞([−T,T ];Hσ(Θ)) ≤ C‖u‖Xσ,b
rad([−T,T ]×Θ) ≤ C̃‖u0‖Hσ(Θ) .

Finally if u and v are two solutions with data u0, v0 respectively, satisfying

‖u0‖Hσ1 ≤ A, ‖v0‖Hσ1 ≤ A

then

‖u− v‖L∞([−T,T ];Hσ1 (Θ)) ≤ C‖u0 − v0‖Hσ1 (Θ) .

If in addition u0, v0 ∈ Hσ
rad(Θ) then

‖u− v‖L∞([−T,T ];Hσ(Θ)) ≤ C‖u0 − v0‖Hσ(Θ) .

Proof. The only new point compared to Proposition 7.1 is to observe that

SN is bounded, uniformly in N on the Bourgain spaces Xσ,b
rad([−T, T ]×Θ), namely

for every u ∈ Xσ,b
rad([−T, T ]× Θ),

‖SN(u)‖Xσ,b
rad([−T,T ]×Θ) ≤ ‖u‖Xσ,b

rad([−T,T ]×Θ) ,

a bound which is direct consequence of the definitions of Xσ,b
rad([−T, T ] × Θ) and

the projector SN . �

Remark 7.4. The main point in Proposition 7.3 is the uniformness of the
bounds with respect to N .

8. Improved bounds for the truncated NLS

In this sections, we improve the result of Proposition 7.3. More precisely, we
show bounds on the Hσ norm of the solutions of (7.2), uniform in N for initial data
of “large ρN measure”. Let us denote by ΦN (t) the smooth flow map of (7.2) which
is defined globally thanks to the L2 conservation for (7.2). The next statement
results from an application of Liouville’s theorem to (7.2).

Proposition 8.1. The measure ρN defined in Section 3 is invariant under the
flow of the (7.2).
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Proof. Set c(t) ≡ (cn(t))1≤n≤N , where

u(t) =

N∑

n=1

cn(t)en,s .

In the coordinates cn, the equation (7.2) can be written as

(8.1) iz−s
n ċn(t) − z2

n z
−s
n cn(t) +

∫

Θ

SN (F (u(t)))en = 0, 1 ≤ n ≤ N.

Next, equation (8.1) can be written in a Hamiltonian format as follows

∂tcn = −iz2s
n

∂H

∂cn
, ∂tcn = iz2s

n

∂H

∂cn
, 1 ≤ n ≤ N,

with

H(c, c) =

N∑

n=1

z2−2s
n |cn|2 −

∫ 1

0

V
( N∑

m=1

cm em,s(r)
)
rdr .

Since
N∑

n=1

( ∂

∂cn

(
− iz2s

n

∂H

∂cn

)
+

∂

∂cn

(
iz2s

n

∂H

∂cn

))
= 0,

we can apply the Liouville theorem for divergence free vector fields to conclude
that the measure dcdc is invariant under the flow of (7.2). Recall that we denote
by ΦN (t), the flow of (7.2) and that the quantities H(c, c) and

‖c‖2 ≡
N∑

n=1

|cn|2

are conserved under ΦN (t). Let A be a Borel set of EN . Recall that we denote by
χ the characteristic function of the interval [0, R], R > 0. Then

ρN (A) = κN

∫

A

e−H(c,c)χ(‖c‖)dcdc,

where

κN = π−N
( ∏

1≤n≤N

z2−2s
n

)
.

In addition

(8.2) ρN

(
ΦN (t)(A)

)
= κN

∫

ΦN (t)(A)

e−H(c,c)χ(‖c‖)dcdc.

We can write

ΦN (t)(A) =
{
(c, c) : (c, c) = ΦN (t)(b, b), (b, b) ∈ A

}
.

Let us perform the change of variables (c, c) = ΦN (t)(b, b) in the right hand-side of
(8.2). Since dcdc is invariant under ΦN (t) the Jacobian of this variable change is
one. Next by the conservation laws

H(ΦN (t)(b, b)) = H(b, b), ‖ΦN (t)(b)‖ = ‖b‖.
Therefore

ρN

(
ΦN (t)(A)

)
= κN

∫

A

e−H(b,b)χ(‖b‖)dbdb = ρN (A).

This completes the proof of Proposition 8.1. �
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Next, we state a bound for the solutions of (7.2) which gives a control, inde-
pendent of N on norms which are stronger then L2 but weaker then H1.

Proposition 8.2. For every integer i ≥ 1, σ ∈ [s, 1/2[ there exists a set

Σi
N,σ ⊂ EN

such that

(8.3) ρN (EN\Σi
N,σ) ≤ 2−i,

and for u0 ∈ Σi
N,σ one has the bound

(8.4) ‖ΦN (t)(u0)‖Hσ ≤ Cσ(i+ log(1 + |t|)) 1
2 .

Moreover, for N1 ≤ N2 we have the inclusion Σi
N1,σ ⊂ Σi

N2,σ.

Proof. We will consider only the positive values of t, the analysis for t < 0
being the same. For σ ∈ [s, 1/2[, i, j integers ≥ 1, we set

Bi,j
N,σ(Dσ) =

{
u ∈ EN : ‖u‖Hσ(Θ) ≤ Dσ(i+ j)

1
2 , ‖u‖L2(Θ) ≤ R

}
,

where the number Dσ � 1 (independent of i, j,N) will be fixed later. Thanks to
Proposition 7.3, there exists τ ∈]0, 1], τ ∼ D−β

σ (i+ j)−β/2 for some β > 0 and such
that for t ∈ [0, τ ],

(8.5) ΦN (t)
(
Bi,j

N,σ(Dσ)
)
⊂ Bi,j

N,σ(CDσ) ,

where Bi,j
N,σ(CDσ) is defined similarly to Bi,j

N,σ(Dσ) simply replacing Dσ by CDσ

in the Hσ bound for u. Next, we set

Σi,j
N,σ(Dσ) =

[2j/τ ]⋂

k=0

ΦN (−kτ)(Bi,j
N,σ(Dσ)) ,

where [2j/τ ] stays for the integer part of 2j/τ . Using Proposition 8.1, we can write

ρN (EN\Σi,j
N,σ(Dσ)) = ρN

( [2j/τ ]⋃

k=0

(EN\ΦN(−kτ)(Bi,j
N,σ(Dσ)))

)

≤ ([2j/τ ] + 1)ρN (EN\Bi,j
N,σ(Dσ))

≤ C2jDβ
σ(i+ j)β/2ρN (EN\Bi,j

N,σ(Dσ)) .

Let us now observe that

ρN (EN\Bi,j
N,σ(Dσ)) = ρ

(
u ∈ Hs

rad(Θ) : ‖SN(u)‖Hσ(Θ) > Dσ(i+ j)
1
2

)

≤ ρ
(
u ∈ Hs

rad(Θ) : ‖u‖Hσ(Θ) > Dσ(i+ j)
1
2

)
.

Therefore, using Proposition 3.7, we can write

(8.6) ρN (EN\Σi,j
N,σ(Dσ)) ≤ Cσ2jDβ

σ(i+ j)β/2e−cD2
σ(i+j) ≤ 2−(i+j),

provided Dσ � 1, depending on σ but independent of i, j,N . Thanks to (8.5), we

obtain that for u0 ∈ Σi,j
N,σ(Dσ), the solution u of (7.2) with data u0 satisfies

(8.7) ‖u(t)‖Hσ(Θ) ≤ CDσ(i+ j)
1
2 , 0 ≤ t ≤ 2j .
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Next, we set

Σi
N,σ =

⋂

j≥1

Σi,j
N,σ(Dσ) .

Thanks (8.6),

(8.8) ρN (EN\Σi
N,σ) ≤ 2−i .

Next, using (8.7), we get (8.4). Observe that for N1 ≤ N2, we have the inclusion

Bi,j
N1,σ(Dσ) ⊂ Bi,j

N2,σ(Dσ) which implies that Σi,j
N1,σ(Dσ) ⊂ Σi,j

N2,σ(Dσ). This in

turn implies that for N1 ≤ N2, Σi
N1,σ ⊂ Σi

N2,σ . This completes the proof of
Proposition 8.2. �

Next, we prove an invariance property of the sets Σi
N,σ constructed in Propo-

sition 8.2.

Proposition 8.3. For every σ ∈]s, 1/2[ every σ1 ∈ [s, σ[ every t ∈ R every
integer i ≥ 1 there exists i1 such that for every N ≥ 1, if u0 ∈ Σi

N,σ then one has

ΦN (t)(u0) ∈ Σi+i1
N,σ1

.

Proof. Again, we can suppose that t > 0. Set u(t) ≡ ΦN (t)(u0). If u0 ∈ Σi
N,σ

then for every integer j ≥ 1, we have the bound

‖ΦN (t1)(u0)‖Hσ ≤ Cσ(i+ j)
1
2 , 0 ≤ t1 ≤ 2j .

Let j0 ∈ N (depending on t) be such that for every j ≥ 1, 2j + t ≤ 2j+j0 . Therefore,
we have that

‖ΦN (t1)(u(t))‖Hσ = ‖ΦN(t+ t1)(u0)‖Hσ ≤ Cσ(i+ j + j0)
1
2 , 0 ≤ t1 ≤ 2j .

The crucial observation is that thanks to the L2 conservation law, interpolating
between the last bound and the L2 conservation provides the existence of θ ∈]0, 1[
(depending on σ and σ1) such that

‖ΦN(t1)(u(t))‖Hσ1 ≤ c
[
Cσ(i+ j + j0)

] θ
2

, 0 ≤ t1 ≤ 2j .

Next, we observe that since θ < 1, for j0 � 1,

c
[
Cσ(i+ j + j0)

] θ
2 ≤ Dσ1(i+ j + j0)

1
2 .

Thus

‖ΦN(t1)(u(t))‖Hσ1 ≤ Dσ1(i+ j + j0)
1
2 , 0 ≤ t1 ≤ 2j .

We can now conclude that u(t) ∈ Σi+j0,j
N,σ1

(Dσ) for every j ≥ 1. Therefore

u(t) ∈ Σi+j0
N,σ1

.

This completes the proof of Proposition 8.3. �

Remark 8.4. The number i1 is the same for every i, i.e. it depends only on
t, σ, σ1. This fact is however not of importance for the sequel.
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9. Global existence for NLS on a set of full ρ measure

The goal of this section is to compare the flows of (7.1) and (7.2) on a set of
full ρ measure. For an integer i ≥ 1 and σ ∈ [s, 1/2[, we set

Σi
σ ≡

⋃

N≥1

Σi
N,σ.

where Σi
N,σ are defined in Proposition 8.2. Let us denote by Σi

σ the closure of Σi
σ

in Hσ
rad(Θ). Thus Σi

σ is a closed set of Hσ
rad(Θ). Then thanks to Lemma 3.8 and

Proposition 8.2, we can write

(9.1) ρ(Σi
σ) ≥ lim sup

N→∞
ρN (Σi

N,σ) ≥ lim sup
N→∞

(
ρN (EN ) − 2−i

)
= ρ

(
Hs

rad(Θ)
)
− 2−i.

Next, we set

Σσ ≡
⋃

i≥1

Σi
σ .

In view of (9.1), we obtain that Σσ is of full ρ measure.

Let l = (lj)j∈N be a increasing sequence of real numbers such that l0 = s,
lj < 1/2 and

lim
j→∞

lj = 1/2.

Then, we set

(9.2) Σ =
⋂

σ∈l

Σσ

The set Σ is of full ρ measure since every Σσ is of full ρ measure and the intersection
in (9.2) is countable. The set Σ is the statistical ensemble for the problem (7.1) and
the solutions of (7.1) with data in Σ are globally defined. We have the following
statement.

Proposition 9.1. For every u0 ∈ Σ, the local solution of (7.1) given by Propo-
sition 7.1 is globally defined. Moreover for every t ∈ R, if we denote by Φ(t) the
flow map of (7.1) acting on Σ then Φ(t)(Σ) = Σ.

Proof. Let us fix u0 ∈ Σi
σ , σ ∈ l, σ1 ∈]0, σ[ and T > 0. Thus there exists a

sequence u0,k ∈ Σi
Nk,σ, where Nk is tending to infinity, such that u0,k converges to

u0 in Hσ(Θ). Thanks to Proposition 8.2

(9.3) ‖ΦNk
(t)(u0,k)‖Hσ ≤ Cσ(i+ log(1 + |t|)) 1

2 .

Set

uNk
(t) ≡ ΦNk

(t)(u0,k) .

Thanks to (9.3), there exists Λ > 1, independent of Nk, such that

(9.4) ‖uNk
(t)‖Hσ ≤ Λ, |t| ≤ T.

Let us observe that (9.4), applied for t = 0 implies that ‖u0‖Hσ ≤ Λ (after passing
to the limit Nk → ∞). Let τ > 0 be the local existence time for (7.1), provided by
Proposition 7.1 for A = Λ+1. Recall that we can assume τ ∼ Λ−β for some β > 0.
Denote by u(t) the solution of (7.1) with data u0 on the time interval [−τ, τ ]. Set

v ≡ u− uNk
.
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Then v solves the equation

(9.5) ivt + ∆v + F (u) − SNk
(F (uNk

)) = 0, v|t=0 = u0 − u0,k .

Next we write

F (u) − SNk
(F (uNk

)) = SNk

(
F (u) − F (uNk

)
)

+ (1 − SNk
)F (u).

Observe that the map 1 − SN sends Hσ
rad(Θ) to Hσ1

rad(Θ) with norm ≤ CNσ1−σ.

Similarly, for I ⊂ R an interval, the map 1−SN sends Xσ,b
rad(I×Θ) to Xσ1,b

rad (I×Θ)
with norm ≤ CNσ1−σ . Moreover SN acts as a bounded operator (with norm ≤ 1)

on the Bourgain spaces Xσ,b
rad. Therefore, using Proposition 6.3, we can write the

Duhamel formula associated to (9.5) and we obtain that there exists b > 1/2 and
θ > 0 (depending only on σ, σ1) such that one has the bound

‖v‖
X

σ1,b

rad ([−τ,τ ]×Θ)
≤ C‖u0 − u0,k‖Hσ1 (Θ)

+Cτθ‖v‖
X

σ1,b

rad ([−τ,τ ]×Θ)

(
1 + ‖u‖2

X
σ1,b

rad ([−τ,τ ]×Θ)
+

+‖uNk
‖2

X
σ1,b

rad ([−τ,τ ]×Θ)

)

+CτθNσ1−σ
k ‖u‖Xσ,b

rad([−τ,τ ]×Θ)

(
1 + ‖u‖2

X
σ1,b

rad ([−τ,τ ]×Θ)

)
.

Using Proposition 7.1 and Proposition 7.3, we get

‖v‖
X

σ1,b

rad ([−τ,τ ]×Θ)
≤ C‖u0 − u0,k‖Hσ1 (Θ)

+Cτθ‖v‖
X

σ1,b

rad ([−τ,τ ]×Θ)
(1 + C‖u0‖2

Hσ1 (Θ) + C‖u0,k‖2
Hσ1 (Θ))

+CτθNσ1−σ
k ‖u0‖Hσ(Θ)(1 + C‖u0‖2

Hσ1 (Θ))

≤ C‖u0 − u0,k‖Hσ1 (Θ) + CτθΛ2Nσ1−σ
k ‖u0‖Hσ(Θ)

+CτθΛ2‖v‖
X

σ1,b

rad ([−τ,τ ]×Θ)
.

Therefore, assuming in addition that τ ∼ Λ−θ/2, we obtain

‖v‖
X

σ1,b

rad ([−τ,τ ]×Θ)
≤ C‖u0 − u0,k‖Hσ1 (Θ) + CNσ1−σ

k ‖u0‖Hσ(Θ), τ ∼ Λ−β ,

for some fixed positive real number β and where the constant C is independent of
Nk. Since b > 1/2, the last inequality implies

(9.6) ‖v(t)‖Hσ1 (Θ) ≤ C‖u0 − u0,k‖Hσ1 (Θ) + CNσ1−σ
k ‖u0‖Hσ(Θ),

where |t| ≤ τ ∼ Λ−β , β > 0. By taking Nk � 1 and using the triangle inequality,
we get

(9.7) ‖u(t)‖Hσ1 (Θ) ≤ Λ + 1, |t| ≤ τ.

The key quantity in this discussion is

‖v(t)‖Hσ1 (Θ) +Nσ1−σ
k ‖u(t)‖Hσ(Θ) .

We can iterate the argument for obtaining (9.6) on [τ, 2τ ] thanks to the definition
of τ and the bounds (9.4) and (9.7). We obtain

‖v(t)‖Hσ1 (Θ) ≤ C‖v(τ)‖Hσ1 (Θ) + CNσ1−σ
k ‖u(τ)‖Hσ(Θ),

where t ∈ [τ, 2τ ] and τ ∼ Λ−β. Moreover, by taking Nk � 1,

‖u(t)‖Hσ1 (Θ) ≤ Λ + 1, τ ≤ t ≤ 2τ.
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Then, we can continue by covering the interval [−T, T ] with intervals of size τ ,
which yields the existence of u(t) on [−T, T ]. Moreover v satisfies the bound

‖v(t)‖Hσ1 (Θ) ≤ C1+T
(
Nσ1−σ

k ‖u0‖Hσ(Θ) + ‖u0 − u0,k‖Hσ1 (Θ)

)
, |t| ≤ T.

Therefore by taking Nk � 1 (depending in particular on T ), we obtain that for
every ε > 0 there exists N0 such that for Nk ≥ N0 one has the inequality

sup
|t|≤T

‖u(t) − ΦNk
(t)(u0,k)‖Hσ1 (Θ) < ε .

Hence for every t ∈ [−T, T ],

(9.8) lim
k→∞

‖u(t) − ΦNk
(t)(u0,k)‖Hσ1 (Θ) = 0 .

Since T > 0 was chosen arbitrary, we obtain that for every u0 ∈ Σi
σ the local

solution of (7.1) is globally defined. Since i and σ ∈ l are also arbitrary, we obtain
that for every u0 ∈ Σ, the the local solution of (7.1) is globally defined. Let us
denote by Φ(t) the flow of (7.1) acting on Σ. Let us show the inclusion

(9.9) Φ(t)(Σ) ⊂ Σ.

Fix u0 ∈ Σ. It suffices to show that for every σ1 ∈ l, we have

Φ(t)(u0) ∈ Σσ1 .

Let us take σ ∈]σ1, 1/2[, σ ∈ l. Since u0 ∈ Σ, we have that u0 ∈ Σσ . Therefore

there exists i such that u0 ∈ Σi
σ. Let again u0,k ∈ Σi

Nk,σ be a sequence which tends

to u0 in Hσ(Θ). Thanks to Proposition 8.3 there exists i1 such that

ΦNk
(t)(u0,k) ∈ Σi+i1

Nk,σ1
.

Therefore using (9.8), we obtain that

Φ(t)(u0) ∈ Σi+i1
σ1 .

Thus Φ(t)(u0) ∈ Σσ1 which proves (9.9). Moreover the flow Φ(t) is reversible which
implies that Φ(t)(Σ) = Σ. Indeed, if u ∈ Σ and t ∈ R, we set u0 ≡ Φ(−t)u ∈ Σ
(which is well-defined thanks to the previous analysis) and thus u = Φ(t)u0, i.e.
Σ ⊂ Φ(t)(Σ). This completes the proof of Proposition 9.1. �

We complete this section by getting a continuity property of Φ(t).

Proposition 9.2. Let u ∈ Σ and un ∈ Σ be a sequence such that un → u in
Hs(Θ). Then for every t ∈ R, Φ(t)(un) → Φ(t)(u) in Hs(Θ). In particular, for
every A, a closed set in Hs

rad(Θ) one has

Φ(t)(A ∩ Σ) = Φ(t)(A ∩ Σ) ∩ Σ,

where Φ(t)(A ∩ Σ) denotes the closure in Hs
rad(Θ) of Φ(t)(A ∩ Σ).

Proof. Since u ∈ Σ there exists Λ ≥ 1 such that

sup
|τ |≤|t|

‖Φ(τ)(u)‖Hs(Θ) ≤ Λ.

Let us denote by τ0 the local existence time in Proposition 7.1, associated to A =
2Λ. Then, by the continuity of the flow Φ(τ0)(un) → Φ(τ0)(u) in Hs(Θ). Next,
we cover the interval [0, t] by intervals of size τ0 and we apply the continuity of
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the flow established in Proposition 7.1 at each step. Therefore, we obtain that
Φ(t)(un) → Φ(t)(u) in Hs(Θ). Since Φ(t)(Σ) ⊂ Σ, it is clear that

(9.10) Φ(t)(A ∩ Σ) ⊂ Φ(t)(A ∩ Σ) ∩ Σ.

Next, let us fix u ∈ Φ(t)(A ∩ Σ) ∩ Σ. Thus there exists vn ∈ A ∩ Σ such that
un ≡ Φ(t)(vn) converges to u in Hs(Θ). Since vn ∈ Σ and u ∈ Σ, we obtain
that un ∈ Σ and Φ(−t)(u) ∈ Σ. Therefore, using the continuity property we
have just established, we obtain that vn = Φ(−t)(un) converges to Φ(−t)(u) in
Hs(Θ). Since the set A is assumed closed, we obtain that Φ(−t)(u) ∈ A. Thus
u ∈ Φ(t)(A ∩ Σ) which gives the opposite to (9.10) inclusion. This completes the
proof of Proposition 9.2. �

10. Invariance of the measure ρ

In this section, we complete the proof of Theorem 1. Recall that we denote by
Φ(t), t ∈ R the flow of (7.1) acting on Σ, defined in (9.2). Thanks to the continuity
properties of Φ(t) displayed by Proposition 9.2, we have that if A ⊂ Σ is a ρ
measurable set then so is Φ(t)(A). Let us observe that thanks to the reversibility
of the flow Φ(t), it suffices to prove that for every t ∈ R and every ρ measurable
set A ⊂ Σ one has the inequality

(10.1) ρ
(
Φ(t)(A)

)
≥ ρ(A).

Let us show that it suffice to prove (10.1) only for closed sets of Hs
rad(Θ). Indeed,

by the regularity of the bounded Borel measures for every ρ measurable set A ⊂ Σ,
we can find a sequence of closed sets Fn ⊂ A such that

ρ(A) = lim
n→∞

ρ(Fn) .

Hence if we can prove (10.1) for the sets Fn then we can write

ρ(A) = lim
n→∞

ρ(Fn) ≤ lim sup
n→∞

ρ
(
Φ(t)(Fn)

)
≤ ρ

(
Φ(t)(A)

)
.

Therefore, it suffices to prove (10.1) for closed sets of Hs
rad(Θ) which are included

in Σ.

Fix σ ∈]s, 1/2[, σ ∈ l. Let us next show that it suffices to prove (10.1) for subsets
of Σ which are compacts of Hs

rad(Θ) which are bounded in Hσ
rad(Θ). Indeed, using

Lemma 3.9, we can write that for every closed in Hs
rad(Θ) set A ⊂ Σ, one has

ρ(A) = lim
R→∞

ρ(A ∩KR),

where KR is the closed ball of radius R in Hσ
rad(Θ), σ ∈]s, 1/2[. Thus A ∩KR is a

compact in Hs
rad(Θ) and if we can prove (10.1) for compacts which are bounded in

Hσ
rad(Θ) then

ρ(A) ≤ lim sup
R→∞

ρ
(
Φ(t)(A ∩KR)

)
≤ ρ(Φ(t)(A)).

Thus, it suffices to prove (10.1) for subsets of Σ which are compacts in Hs
rad(Θ)

and bounded in Hσ
rad(Θ).

Let us now fix t ∈ R and K ⊂ Σ, a bounded set of Hσ
rad(Θ) which is a compact

in Hs
rad(Θ). Then we have the following lemma.
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Lemma 10.1. There exists a ball B, centered at the origin of H s
rad(Θ) containing

all Φ(τ)(K), |τ | ≤ |t|.

Proof. The sets Φ(τ)(K) are contained in a ball of Hs
rad(Θ) for |τ | small

enough, given by Proposition 7.1. We then argue by contradiction by supposing
that there exists T and a sequence un ∈ K such that

(10.2) lim
n→∞

‖Φ(T )(un)‖Hs(Θ) = ∞ .

SinceK is a compact, there exists a subsequence still denoted by un and u ∈ K such
that un → u in Hs

rad(Θ). Since u ∈ Σ, we can apply Proposition 9.2 and we obtain
that Φ(T )(un) → Φ(T )(u) in Hs(Θ) which contradicts (10.2). This completes the
proof of Lemma 10.1. �

Let us denote by R1 the radius of B. Set

τ1 ≡ c(1 +R1)
−M ,

where 0 < c� 1 and M � 1 are two parameters to be fixed later. A first restriction
on c and M is to chose them so that τ1 is smaller than the time existence provided
by Propositions 7.1,7.3 associated to A = R1 (and σ1 = s). It is then sufficient to
prove that

(10.3) ρ(K) ≤ ρ
(
Φ(τ)(K)

)
, |τ | ≤ τ1 .

Indeed, once (10.3) is established, it suffices to cover [0, t] by intervals of size ∼ τ1
and to apply (10.3) at each step. Such an iteration is possible since at each step
the image under Φ(τ) of the corresponding set remains in B and is included in Σ.

Let us now prove (10.3). Fix ε > 0. Denote by Bε the open ball centered at
the origin and of radius ε of Hs

rad(Θ). Recall that we denote by ΦN (t), t ∈ R the
flow of (7.2). Then using Proposition 7.3, we infer that there exists c > 0 such that

(10.4) ΦN (τ)
((
K +Bε

)
∩ EN

)
⊂ ΦN (τ)(SN (K)) +Bcε, N � 1.

We now make appeal to the following lemma.

Lemma 10.2. For N � 1 one has the inclusion

ΦN (τ)(SN (K)) +Bcε ⊂ Φ(τ)(K) +B2cε .

Proof. The argument is similar to the proof of Proposition 9.1. For u0 ∈ K,
we denote by u the solution of (7.1) with data u0 and by uN the solution of (7.2)
with data SN (u0). Next, we set v ≡ u− uN . Then v is a solution of

(10.5) ivt + ∆v + F (u) − SN (F (uN )) = 0, v|t=0 = (1 − SN )u0 .

By writing

F (u) − SN (F (uN )) = SN

(
F (u) − F (uN )

)
+ (1 − SN )F (u)
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and using Proposition 6.3, we obtain that there exists b > 1/2 and θ > 0 such that
one has

‖v‖Xs,b
rad([−τ,τ ]×Θ) ≤ CNs−σ‖u0‖Hσ(Θ)

+Cτθ‖v‖Xs,b
rad([−τ,τ ]×Θ)

(
1 + ‖u‖2

Xs,b
rad([−τ,τ ]×Θ)

+‖uN‖2
Xs,b

rad([−τ,τ ]×Θ)

)

+CτθNs−σ‖u‖Xσ,b
rad([−τ,τ ]×Θ)

(
1 + ‖u‖2

Xs,b
rad

([−τ,τ ]×Θ)

)
.

Using Proposition 7.1 and Proposition 7.3, we get

‖v‖Xs,b
rad([−τ,τ ]×Θ) ≤ CNs−σ‖u0‖Hσ(Θ)

+Cτθ‖v‖Xs,b
rad([−τ,τ ]×Θ)(1 + C‖u0‖2

Hs(Θ))

+CτθNs−σ‖u0‖Hσ(Θ)(1 + C‖u0‖2
Hs(Θ)) .

Coming back to the definition of τ1, by taking c� 1 and M � 1, we infer that

‖v‖Xs,b
rad([−τ,τ ]×Θ) ≤ CNs−σ‖u0‖Hσ(Θ).

Using that u0 is in a bounded set of Hσ
rad(Θ) and since b > 1/2, the last inequality

implies
‖v(t)‖Hs(Θ) ≤ CNs−σ‖u0‖Hσ(Θ) ≤ C̃Ns−σ , |t| ≤ τ.

This completes the proof of Lemma 10.2. �

Using (10.4), Lemma 10.2, Lemma 3.8 and Proposition 8.1, we can write

ρ
(
Φ(τ)(K) +B2cε

)
≥ lim sup

N→∞
ρN

((
Φ(τ)(K) +B2cε

)
∩EN

)

≥ lim inf
N→∞

ρN

(
ΦN (τ)

((
K +Bε

)
∩ EN

))

= lim inf
N→∞

ρN

((
K +Bε

)
∩ EN

)

≥ ρ
(
K +Bε

)
≥ ρ(K).

By letting ε→ 0, we obtain that ρ(Φ(τ)(K)) ≥ ρ(K). This completes the proof of
(10.3) which in turn completes the proof of (10.1).

This completes the proof of Theorem 1. �

Remark 10.3. Let us notice that in the proof of Theorem 1, we did not make
appeal to the conservation laws of (7.1). We only used the conservation laws of (7.2)
and thus the propagation of higher Sobolev regularity for (7.1) was not needed.

11. Final remarks

The result of Theorem 1 is obtained under the assumption α < 2. Let us recall
that if α = 2 with F (u) = |u|2u then one can construct initial data for (7.1) such
that the local solutions constructed in Proposition 7.1 develop singularities in finite
time (see [9, 4]). Observe that the data giving blow-up solutions in [9] has to be
sufficiently smooth (at least H1) in order to give sense of the quantities involved
in the well-known viriel identity. But one can show that for ϕω defined by (3.5)
we have that ‖ϕω‖H1(Θ) is infinity almost surely. It would be interesting to decide
whether the obstruction to make work the proof of Theorem 1 is related to a blow



englishNLS AND INVARIANT MEASURES 159

up phenomenon, i.e. can one prove a blow up of the solutions of (7.1) with data on
a set A such that ρ(A) > 0 ? A related and probably simpler question is whether
one can construct a blow up solution of NLS with data which is in Hs, s < 1 but
not in H1 ?

If we suppose the defocusing assumption V (z) ≤ 0 then there is no problem
with the integrability of f(u) and the L2 cut-off is not needed.

Let us notice that the restriction α < 2 is too strong for the well-posedness
analysis of (1.1) with data in X . Indeed this analysis seems to hold true for α < 4.
Here is a rough explanation. Essentially speaking, in order to make work the
nonlinear estimates with data of Sobolev regularity < 1/2, after k ∈ N expansions
of the nonlinearity, for

N2 ≥ N3 ≥ · · · ≥ Nk

one should control the expression

(11.1) (N2N3)
εN4 · · ·Nk

by

C(N2N3 · · ·Nk)σ

for some σ < 1/2. This leads to the restriction k − 3 < 1
2 (k − 1), i.e. k < 5 which

corresponds to α < 4. In (11.1) the factor N4 · · ·Nk appear from Sobolev embed-
dings which in 2d costs d

2 = 1 derivatives (see [5] for a similar discussion). However

for α ≥ 2, the Sobolev inequality is no longer available to give sense of
∫
Θ V (u) for

u ∈ X . On the other hand one only needs to show that
∫
Θ V (u) is finite µ almost

surely. This seems to be tractable by some Gaussian estimates and the bounds of
Lemma 2.1. We plan to pursue this issue elsewhere.

The measure µ constructed in Theorem 1 is obtained for functions on the disc
of radius r = 1. Similar measures can be constructed for any finite radius r and the
limiting behaviour of these measures as r → ∞ seems to be an interesting problem.

One can also ask the question about ergodicity properties of the measure ρ, i.e.
the existence of “non trivial” ρ measurable sets invariant under the flow.

Let us finally mention an extension of Theorem 1. One can construct invariant
measures leaving on functions invariant by the rotations of the disc (see [4]). In
this case, in the polar coordinates (r, ϕ) on Θ, the measure “lives” on the set of
functions

(11.2) einϕ
∑

k≥1

gk(ω)

znk

Jnk(znkr)

‖Jnk(znk·)‖L2(Θ)
,

where Jn, n ≥ 0, n ∈ Z is the Bessel function of order n and znk are its zeros (The-
orem 1 corresponds to n = 0). In (11.2), gk(ω) is again a sequence of normalized
i.i.d. complex random variables.
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