
Dynamics of PDE, Vol.3, No.1, 71-92, 2006

Dispersion for Schrödinger Operators with One-gap Periodic

Potentials on R1

Kaihua Cai

Communicated by Terence Tao, received September 12, 2005.

Abstract. We prove t
− 1

4 -decay for the solutions of the 1-dim Schrodinger
equation with a one-gap periodic potential as t → +∞. Generically, one has

t
− 1

3 -decay and this decay is optimal. Our approach is to analyze the stationary
phase in the Schrödinger evolution as an integral operator.
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1. Introduction

The dispersive property of the Schrödinger equation with time-independent
potentials

(1.1)
1

i
∂tψ = −∆ψ + V (x)ψ

has played an important role in the recent development of the NLS equations. It
usually takes the following form:
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(1.2) ‖eiHtPa.c.(H)ϕ‖∞ < Ct−
n
2 ‖ϕ‖L1(Rn)

where H = −∆+V (x), n is the space dimension and Pa.c.(H) is the projection onto
the absolutely continuous spectral subspace. Pa.c.(H) is necessary here since the
bound states do not disperse over time. To obtain (1.2), two kinds of conditions
on H are usually assumed. The first condition is spectrum assumption at zero
energy: H has neither an eigenvalue nor a resonance at zero energy. If H has an
eigenvalue or a resonace at zero energy, analogy of (1.2) can be obtained with the
decay factor t−

n
2 −1. The second condition is an integrability condition on V ; i.e.,

V lies in some Lp(Rn) space or |V (x)| ≤ C(1 + |x|)−σ for some positive σ. For the
detail results of this aspect, among all we just list the following papers: [R], [JK],
[JSS], [Ya],[RS],[GS], [We2] and [Go].

In this article, we explore the dispersive property of H under the assumption
that V (x) is real-valued, periodic and defined on the real line. In this case, the
differential equation

(1.3) −y′′(x) + V (x)y(x) = Ey(x)

defined on the real line is known as Hill’s equation.
One of our motivations to study this case comes from the research of the random

Schrödinger operators. Let

Hω = − d2

dx2
+

∑

n∈Z

qn(ω)f(x− n),

where the single-site potential f ∈ L1 is real-valued, supported in [−1/2, 1/2].
The coupling constants qn are i.i.d. random variables on a complete probability
space. We assume that the support of their common distribution contains at least
two points. Note otherwise the potential is deterministic and periodic. Under
these assumptions, almost surely Hω has pure point spectrum and all eigenfunc-
tions decay exponentially at ±∞. The philosophy behind is that when the waves
pass through each period, there are reflection and transmission taking place. The
randomness of the potential over each period guarantees that reflection is strong
enough for each wave packet to localize in space. This scenario is quite differ-
ent from the case of the period potential. With fixed reflection and transmis-
sion coefficients, no eigenfunction can be localized in space. It is well-known that
the spectrum of H = −(d2/dx2) + V (x) is purely absolutely continuous, where
V (x) is periodic. Therefore, it is natural to ask what kind of dispersive property
H = −(d2/dx2) + V may have. In [DSS], Anderson localization was also estab-

lished almost surely for the operator Hω = − d2

dx2 +Vper+Vω, where Vper has period
1 and Vω =

∑

n∈Z
qn(ω)f(x− n). For details and related results, see the reference

of [DSS].
Suppose V (x) = V (x + 2ω). The spectrum of the Schrödinger operator H =

−(d2/dx2)+V (x) acting on L2(R1) is a union of intervals carrying purely absolutely
continuous spectrum. The absence of point and singular spectrum suggests the
dispersion of the solution.

Dispersive properties of the wave equation with periodic potentials have been
studied. Suppose U(t)ψ0 = ψ(t, x) is the solution of ∂2

t ψ = −Hψ, satisfying
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ψ(0, x) = 0 and ∂tψ(0, x) = ψ0. Denote Pn(H) is the spectral projection onto
the n-th interval in the spectrum of H . In [Ko], the asymptotic behavior of the
evolution operator U(t)Pn(H)(x, x′) is obtained as t → 0 when (x − x′, t) is away
from the n-th light cone. The disadvantage of working with general periodic po-
tentials is losing control of the degeneracy in critical region. Also it is delicate to
sum up over all the spectral intervals to get an estimate for the evolution U(t).

To avoid these difficulties with the general potentials, we will illustrate the
dispersive phenomenon of (1.1) for a special analytic potential, whose spectrum
is a union of two intervals (bands); namely, all gaps but one are degenerate. It
is known that one-gap potentials must be elliptic functions ([Ho]). With such a
potential, we rewrite Eq.(1.3) as

(1.4) y′′(x) − 2℘(x+ ω3)y(x) = −Ey(x),
where ℘(z) is the Weierstrass elliptic function with periods 2ω1, 2ω3, satisfying the
following differential equations:

℘′(a)2 = 4℘3(a) − g2℘(a) − g3,(1.5)

℘′′(a) = 6℘2(a) − g2
2
.(1.6)

where g2, g3 are the invariants of ℘(z) defined by (6.1). Eq.(1.4), known as Lamé’s
equation, arises from the theory of the potential of an ellipsoid ([WW],[Er]). We
assume ω1 = ω > 0, ω3 = iω′ and ω′ > 0 to guarantee that ℘(x+ω3) is real-valued
for x ∈ R. If we choose the potential in (1.4) to be n(n + 1)℘, instead of 2℘ (n
any positive integer), then the spectrum of Lamé’s equation consists of n+1 bands
([MW]).

Eigenfunctions of (1.4) are expressed in terms of the Weierstrass σ-function
and ζ-function ([KM], [GSS]) as follows:

(1.7) fa(x) =
σ(x + iω′ + a)

σ(x + iω′)
e−ζ(a)x−ζ(iω

′)a,

where the energy

E = −℘(a).

Some basic properties of Weierstrass functions are listed in the appendix. (1.7)
can be verified by noticing that ([WW])

(1.8) f ′
a(x) = (ζ(x + ω3 + a) − ζ(x + ω3) − ζ(a))fa(x),

and

(ζ(x + y) − ζ(x) − ζ(y))2 = ℘(x+ y) + ℘(x) + ℘(y).

fa is periodic when a is one of the half periods ω1, ω2 = ω1 + ω3 or ω3. f−a
and fa are the two Floquet-type solutions of (1.4). We write

fa(x) = ma(x)e
ik(a)x,

where

(1.9) ma(x) =
σ(x+ iω′ + a)

σ(x + iω′)
e−aζ(iω

′)−a x
ω
ζ(ω)

is periodic with period 2ω. Denote
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Σ = [−℘(ω1),−℘(ω2)] ∪ [−℘(ω3),+∞),

and the quasimomentum

k(a) = iω−1(ωζ(a) − aζ(ω))

is real-valued for E ∈ Σ. fa is bounded when E ∈ Σ and is unbounded otherwise,
which implies that Σ is the spectrum of (1.4) ([MW]).

Our goal is to give a dispersive estimate similar to (1.2) for the following

1

i
∂tψ(x, t) = − d2

dx2
ψ(x, t) + 2℘(x+ ω3)ψ(x, t),(1.10)

ψ(x, 0) = ψ0(x).

We assume that ψ0 ∈ L1(R) and denote the solution at time t as U(t)ψ0.

Theorem 1.1. Generically, for almost all ω, ω′ ∈ R, there exists a constant

C > 0 such that for t > 1

(1.11) ‖U(t)ψ0‖L∞(R) < C t−
1
3 ‖ψ0‖L1(R).

Moreover, for all nonzero ω, ω′ ∈ R, there exists a constant C > 0 such that for

t > 1

(1.12) ‖U(t)ψ0‖L∞(R) < C t−
1
4 ‖ψ0‖L1(R).

(1.11) is optimal in the sense that for any nonzero ω, ω′ ∈ R, there exist constants

c > 0 and T > 0, depending only on ω, ω′ such that for t > T

(1.13) sup
ψ0:‖ψ0‖L1(R)=1

‖U(t)ψ0‖L∞(R) > c t−
1
3 .

Corollary 1.2. Suppose that (ζ(ω)/ω)2 ≤ g2/12. Then for t > 1,

‖U(t)ψ0‖L∞ < Ct−
1
3 ‖ψ0‖L1(R).

We require t > 1 only to exclude t → 0. The decay rates t−
1
3 and t−

1
4 are

different from t−
1
2 in (1.2) because phase function is non-quadratic, which is a

natural outcome of the periodic potential. The decay factor t−
1
3 as t → ∞ has

appeared in the analysis of the Modified KdV equation ([DZ]), where the nonlinear
phase of the main term is cubic. In our case, the analytic phase function, roughly
speaking, satisfies a cubic relation up to a change of variables. This cubic relation
comes from the differential equations satisfied by the Weierstrass ℘ function . We
denote P (x) to be the real-coefficient cubic polynomial

(1.14) 2x3 +
6ζ(ω)

ω
x2 +

g2
2
x+ g3 −

g2ζ(ω)

2ω
.

We shall prove (1.11) under the assumption that

(1.15) P (x) has no double root in (−∞, ℘(ω3)].
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If (1.15) does not hold, then we shall prove (1.12). In this case, by Lemma 2.4,
P (x) has no root of degree 3. Our proof implies that (1.12) is optimal in the sense
stated in Theorem 1.1. However, we are unable to give an explicit example such
that P (x) does have a double root in (−∞, ℘(ω3)].

Finally, we prove that assumption (1.15) holds for almost all ω, ω′ ∈ R.

2. Preliminaries

The evolution operator U(t) = eitH can be written out via the generalised
Fourier transform ([We], [We2]) or via the spectral measure ([GS]). Since the
spectrum is purely absolutely continuous, we will use the latter one and write the
kernel of U(t) as

K(t, x, x′) =

∫

Σ

eitEPa.c.(E, x, x
′)dE.

Namely,

ψ(x, t) =

∫

Σ

∫

R

eitEPa.c.(E, x, x
′)ψ0(x

′)dx′dE.

The absolutely continuous spectral projection is

Pa.c.(E, x, x
′) =

1

2πi
[(H − (E + i0))−1(x, x′) − (H − (E − i0))−1(x, x′)],

and by definition

(H − (E ± i0))−1 = lim
ε→0+

(H − (E ± iε))−1,

which can be expressed by fa and f−a. Hence, we obtain for x > x′

K(t, x, x′) =

∫

Σ

eitE(f−a(x
′)fa(x) + f−a(x)fa(x

′))
dE

W (E)

=

∫

Σ

eitE(eik(a)(x−x
′)m−a(x

′)ma(x) + e−ik(a)(x−x
′)m−a(x)ma(x

′))
dE

W (E)
,(2.1)

where W (E) = W (a) = W (fa, f−a) = faf
′
−a − f ′

af−a, called the Wronskian of
fa, f−a, is independent of x.

Because the spectral projection Pa.c. is self-adjoint, Pa.c.(E, x, x
′) = Pa.c.(E, x′, x).

Therefore, when x < x′

(2.2) K(t, x, x′) =

∫

Σ

eitE(f−a(x
′)fa(x) + f−a(x)fa(x

′))
dE

W (E)
.

The proof of (1.11) and (1.12) shall be reduced to proving

sup
x,x′

|K(t, x, x′)| < Ct−
1
3 and Ct−

1
4 .

Lemma 2.1.

(2.3)
dE

W (E)
= −σ

2(iω′)(℘(iω′) − ℘(a))

σ(iω′ + a)σ(iω′ − a)
da.
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Proof. It follows from Eq. (1.8) that

W (fa, f−a) = fa(x)f−a(x)(ζ(x + ω3 − a) + 2ζ(a) − ζ(x+ ω3 + a)).

Since W (fa, f−a) is independent of x, we set x = 0 and obtain

W (fa, f−a) = fa(0)f−a(0)(ζ(ω3 − a) + 2ζ(a) − ζ(ω3 + a)).

By the addition formula for Weierstrass functions ([Ak], §15)

ζ(u+ v) − ζ(u− v) − 2ζ(v) = − ℘′(v)

℘(u) − ℘(v)
,

we have

(2.4) W (E) =
σ(iω′ + a)σ(iω′ − a)

σ2(iω′)

℘′(a)

℘(iω′) − ℘(a)
.

Therefore, (2.3) follows from E = −℘(a) . �

Remark 2.2. Because ℘′(iω′) = 0 and zeroes of σ are the lattice points

{n12ω1+n22ω3 : n1, n2 ∈ Z}, all of which are of degree 1, it follows that ℘(iω′)−℘(a)
σ(iω′+a)σ(iω′−a)

is bounded and smooth when a→ iω′.
Also, it is clear that ℘(iω′)−℘(a)

σ(iω′+a)σ(iω′−a) = O(a−2) when a→ 0, and that ℘(iω′)−℘(a)
σ(iω′+a)σ(iω′−a)

and its ∂a-derivatives are bounded on [ω1, ω2], where [ω1, ω2] denotes the set

{λω1 + (1 − λ)ω2 : λ ∈ [0, 1]}.
By (1.9), ma, m−a and their ∂a-derivatives are bounded uniformly for a ∈ [ω1, ω2]∪
[0, ω3], x ∈ R.

Since Σ is a union of two intervals, we shall decompose the integral ofK(t, x, x′)
into two parts. Namely,

K(t, x, x′) = K1(t, x, x
′) +K2(t, x, x

′),

where

K1(t, x, x
′) =

∫ −℘(ω2)

−℘(ω1)

eitEPa.c.(E, x, x
′)dE,

K2(t, x, x
′) =

∫ +∞

−℘(ω3)

eitEPa.c.(E, x, x
′)dE.

Before we proceed to analyze K1(t, x, x
′) and K2(t, x, x

′), we prove two techni-
cal lemmas.

Lemma 2.3. Let F (x) be a real-valued and smooth function on (a, b),

(1) Suppose |F ′(x)| ≥ ε, |F ′′(x)| ≤M for all x ∈ (a, b), then

∣

∣

∣

∫ b

a

e−itF (x)ψ(x)dx
∣

∣

∣
≤ c |t|−1

[

|ψ(b)| +
∫ b

a

(|ψ′(x)| + |ψ(x)|)dx
]

,

where c depends on M and ε.
(2) Suppose k ≥ 2, k ∈ Z and |F (k)(x)| ≥ ε for all x ∈ (a, b), then

∣

∣

∣

∫ b

a

e−itF (x)ψ(x)dx
∣

∣

∣
≤ c ε−

1
k |t|− 1

k

[

|ψ(b)| +
∫ b

a

|ψ′(x)|dx
]

,

where c depends on k.
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The first part of Lemma 2.3 follows from integration by parts. The second part
is proved in [St] (p. 334).

Lemma 2.4. Let ej = ℘(ωj), j = 1, 2, 3. Then P (x) has a unique simple root

in [e2, e1], and P (ej), j = 1, 2, 3, are nonzero. Also P (x) has no root of degree 3 in

R. Moreover, − ζ(ω)
ω

∈ (e3, e2).

Proof. P (x) = 0 if and only if 4x3 − g2x− g3 = (6x2 − g2
2 )(x+ ζ(ω)

ω
). Denote

p1(x) = 4x3 − g2x − g3 and p2(x) = (6x2 − g2
2 )(x + ζ(ω)

ω
). We shall examine the

roots of p1(x) and p2(x) on the real line.
It follows from Eq.(6.2) that p1(x) = 4(x−e1)(x−e2)(x−e3), where ej = ℘(ωj),

j = 1, 2, 3. Because there is no quadratic term in p1(x), e1 + e2 + e3 = 0. Since
e3 < e2 < e1, we have e3 < 0 < e1.

Observe that ℘′′(ω1) > 0, ℘′′(ω2) < 0 and ℘′′(ω3) > 0, and by Eq (1.6), we
obtain

℘(ω2)
2 <

g2
12

< min{℘(ω1)
2, ℘(ω3)

2}.

Now we shall prove ζ(ω)
ω

∈ (−e2,−e3). Indeed, let y1(x,E) and y2(x,E) be the
solutions of (1.4) which satisfy

y1(0, E) = y′2(0, E) = 1, y′1(0, E) = y2(0, E) = 0.

And we introduce the discriminant ∆(E) = y1(2ω,E) + y′2(2ω,E).
Recall a and E are related by E = −℘(a), and as E → +∞ on the real line,

a → 0 on the positive imaginary axis. Therefore iζ(a) and k(a) go to +∞ on the
real line when E → +∞ .

By Lemma 2.1 of [GT], ∆(E) = 2 cosk(a) and k(E) = k(a(E)) is the conformal
map from the upper half plane to a slit quarter plane Ω = {<z > 0,=z > 0}\T ,
with the slit T = { π

2ω + iy : 0 < y ≤ h}, where h is some positive real number.
Moreover, k(−e1) = 0 and k(−e2) = k(−e3) = π

2ω .
Denote Q0 to be the pre-image of the tip π

2ω + ih of the slit T under the map
k(E). Then −℘(ω2) < Q0 < −℘(ω3), and k(E) sends [−℘(ω2), Q0] to [ π2ω ,

π
2ω + ih],

and [Q0,−℘(ω3)] to [ π2ω + ih, π2ω ] respectively. Thus when E ∈ (−℘(ω2), Q0),
1
i
∂Ek(E) ≥ 0. We observe that

∂Ek(E) =
1

−℘′(a)
∂ak(a) =

i

℘′(a)

(ζ(ω)

ω
+ ℘(a)

)

,

which implies that

℘(a) + ζ(ω)/ω

℘′(a)
≥ 0.

Since ℘′(a) > 0 when a ∈ (ω3, ω2), we conclude that E = −℘(a) ≤ ζ(ω)/ω for
any E ∈ (−℘(ω2), Q0). Hence, Q0 ≤ ζ(ω)/ω. On the other hand, 1

i
∂Ek(E) ≤ 0

when E ∈ (Q0,−℘(ω3)). Following the similar argument, Q0 ≥ ζ(ω)/ω. Therefore
ζ(ω)/ω = Q0 ∈ (−℘(ω2),−℘(ω3)).

In fact, k(E) maps E = ζ(ω)
ω

to the tip π
2ω + ih of the slit T and ∆(E) reaches

its minimum at E = ζ(ω)
ω

.
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The three roots of p2(x) are ±
√

g2
12 and − ζ(ω)

ω
. From the above analysis, we

have that
√

g2
12 ∈ (e2, e1) and −

√

g2
12 ,−

ζ(ω)
ω

∈ (e3, e2), which implies p2(e1) > 0
and p2(e2) < 0. Hence P (x) has either one or three zeroes in (e2, e1) and clearly
P (ej), j = 1, 2, 3, are nonzero.

To verify that P (x) has no root of degree 3, we consider

P ′(x) = 6x2 + 12
ζ(ω)

ω
x+

g2
2
.

The minimum of P ′(x) is reached at x = − ζ(ω)
ω

∈ (e3, e2) and is equal to g2
2 −

6( ζ(ω)
ω

)2. Notice that − ζ(ω)
ω

< e2 <
√

g2
12 always holds.

If − ζ(ω)
ω

> −
√

g2
12 , then P ′(x) > 0 holds for all x ∈ R. P (x) has no root of

degree greater or equal to 2.

If − ζ(ω)
ω

= −
√

g2
12 , then P ′(x) has a double root − ζ(ω)

ω
∈ (e3, e2). Since P (x)

has a root in (e2, e1), we conclude that P (x) has no root of degree 3.

If − ζ(ω)
ω

< −
√

g2
12 , then P ′(x) has no double root. Hence P (x) has no root of

degree 3 on the whole real line.
If P (x) has three zeroes in (e2, e1), then P ′(x) has two roots in (e2, e1), which

is impossible because − ζ(ω)
ω

< e2. Therefore, P (x) has unique simple root in
(e2, e1). �

3. Analysis of K1(t, x, x
′)

We first consider K1(t, x, x
′). We proceed by making the following observation:

Lemma 3.1. Let b = 2ω2−a for a ∈ [ω1, ω2]. Write W (a) = W (fa, f−a). Then

for x, x′ ∈ R

(3.1)
fa(x

′)f−a(x)

W (a)
= −fb(x)f−b(x

′)

W (b)
.

Proof. It is clear that ℘(a) = ℘(b) and ℘′(a) = −℘′(b). We prove (3.1) by
direct calculation. By definition,

fa(x
′)f−a(x) =

σ(x′ + ω3 + a)σ(x+ ω3 − a)

σ(x+ ω3)σ(x′ + ω3)
eζ(a)(x−x

′).

By Eq.(6.4) and (6.5), this equals

σ(x′ + ω3 − b)σ(x+ ω3 + b)

σ(x+ ω3)σ(x′ + ω3)
eζ(b)(x

′−x)e4η3(ω3−b) = fb(x)f−b(x
′)e4η3(ω3−b).

Also by Eq.(2.4) and (6.5),

W (a) =
σ(iω′ − b)σ(iω′ + b) exp (4η3(ω3 − b))

σ2(iω′)

−℘′(b)

℘(ω3) − ℘(b)
= −W (b)e4η3(ω3−b).

Combining them, (3.1) follows. �

It follows from Lemma 3.1 that
∫ ω2

ω1

e−it℘(a) fa(x
′)f−a(x)

W (a)
d℘(a) =

∫ ω2+iω
′

ω2

e−it℘(b) fb(x)f−b(x
′)

W (b)
d℘(b).
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Hence we have that for x > x′

K1(t, x, x
′) =

∫ −℘(ω2)

−℘(ω1)

eitE(f−a(x
′)fa(x) + f−a(x)fa(x

′))
dE

W (E)

=

∫ ω1+i2ω
′

ω1

e−it℘(a) fa(x)f−a(x
′)

W (a)
d(−℘(a))

=

∫ ω1+i2ω
′

ω1

e−it℘(a)+i(x−x′)k(a)ma(x)m−a(x
′)
−℘′(a)da

W (a)
.(3.2)

Note k(a) is real-valued and by Eq.(2.2), we have that for x < x′

K1(t, x, x
′) =

∫ ω1+i2ω
′

ω1

e−it℘(a)+i(x−x′)k(a)ma(x
′)m−a(x)

−℘′(a)da

W (a)
.

To simplify notation, we set τ = x−x′

t
∈ R and

Fτ (a) = ℘(a) − iτ(ζ(a) − a

ω
ζ(ω)).

Moreover, we write

(3.3) K1(t, x, x
′) =

∫ ω1+i2ω
′

ω1

e−itFτ (a)ϕ(a, x, x′)da,

where ϕ(a, x, x′) = ma(x)m−a(x
′)−℘

′(a)
W (a) when x > x′, and ϕ(a, x, x′) = ϕ(a, x′, x)

when x < x′. Without losing clarity, ϕ(a, x, x′) will be written simply as ϕ(a).
By Remark 2.2, ϕ(a, x, x′) and its ∂a-derivatives are bounded uniformly for

a ∈ [ω1, ω2] and x, x′ ∈ R. To apply Lemma 2.3 to (3.3), we analyze the ∂a-
derivatives of Fτ (a). Our plan is to decompose the integral in (3.3) into several
regions and on each region, Lemma 2.3 for some exponent k will be applied. We
observe

∂aFτ (a) = ℘′(a) + τi(ζ(ω)/ω + ℘(a)),(3.4)

∂2
aFτ (a) = ℘′′(a) + τi℘′(a),(3.5)

∂3
aFτ (a) = ∂3

a℘(a) + τi℘′′(a).(3.6)

Let

c1 = min{ζ(ω)/ω + ℘(a) : a ∈ [ω1, ω1 + 2iω′]}.
Then c1 = ζ(ω)/ω + ℘(ω2) and by Lemma 2.4, c1 > 0. Also we denote

(3.7) M1 = 1 + max{|℘′(a)|, |℘′′(a)|, ζ(ω)/ω + ℘(a) : a ∈ [ω1, ω1 + 2iω′]}.
When |τ | > 2M1

c1
, we have for a ∈ [ω1, ω1 + 2iω′]

|∂aFτ (a)| > |τ |c1 −M1 >
1

2
|τ |c1,

and

|∂2
aFτ (a)| < M1(|τ | + 1).
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Integrating by parts and recalling ϕ(a) and its derivatives are uniformly bounded,
we obtain

|K1(t, x, x
′)| =

1

t

∣

∣

∣

∫ ω1+i2ω
′

ω1

ϕ(a)

∂aFτ (a)
d e−itFτ (a)

∣

∣

∣

≤ 4‖ϕ(a)‖L∞[ω1,ω2]

t|τ |c1
+

1

t

∣

∣

∣

∫ ω1+i2ω′

ω1

e−itFτ (a)
( ϕ′(a)

F ′
τ (a)

− ϕ(a)F ′′
τ (a)

(F ′
τ (a))

2

)

da
∣

∣

∣
(3.8)

≤ Ct−1.

We now estimate K1(t, x, x
′) when |τ | ≤ 2M1

c1
. Suppose both (3.4) and (3.5)

vanish for a = a0 ∈ [ω1, ω2] and τ = τ0 ∈ [− 2M1

c1
, 2M1

c1
]. Then

℘′(a0)
2 = ℘′′(a0)(

ζ(ω)

ω
+ ℘(a0)).

By Eq.(1.5) and (1.6), this is equivalent to

2℘(a0)
3 +

6ζ(ω)

ω
℘(a0)

2 +
g2
2
℘(a0) + g3 −

g2ζ(ω)

2ω
= 0.

Thus ℘(a0) is the simple root of P (x) in [℘(ω2), ℘(ω1)] and ℘′(a0) 6= 0 by Lemma 2.4.
Observe that (3.4) and (3.5) also vanish when (a, τ) = (2ω2 − a0,−τ0). The

analysis of (2ω2 − a0,−τ0) is the same as that of (a0, τ0) and we will focus on
(a0, τ0). Also we observe that ∂3

aFτ (a) vanishes at (a0, τ0) if and only if

det

(

℘′(a0)
ζ(ω)
ω

+ ℘(a0)
∂3
a℘(a0) ℘′′(a0)

)

= 0;

namely,

∂a det

(

℘′(a) ζ(ω)
ω

+ ℘(a)
℘′′(a) ℘′(a)

)

a=a0

= 0.

Since ℘′(a0) 6= 0, that ∂3
aFτ0(a0) = 0 is equivalent to the fact that ℘(a0) is a double

root of P (x). By Lemma 2.4, P (x) has no double root in [℘(ω2), ℘(ω1)]. Hence,
∂3
aFτ0(a0) 6= 0 and there exists ε > 0 such that

min{Σ3
j=1|∂jaFτ (a)| : a ∈ [ω1, ω1 + 2iω′], τ ∈ [−2M1/c1, 2M1/c1]} > ε > 0.

Let χ3(a, τ) be a smooth function defined on [ω1, ω1 +2iω′]× [− 2M1

c1
, 2M1

c1
] such

that 0 ≤ χ3 ≤ 1, χ3(a, τ) = 1 when |∂aFτ (a)| + |∂2
aFτ (a)| ≤ 1

3ε, and χ3(a, τ) = 0

when |∂aFτ (a)| + |∂2
aFτ (a)| ≥ 2

3ε. Similarly, let χ2(a, τ) to be a smooth function

defined on [ω1, ω1 + 2iω′] × [− 2M1

c1
, 2M1

c1
], such that 0 ≤ χ2 ≤ 1, χ2(a, τ) = 1 when

|∂2
aFτ (a)| ≥ 1

6ε, and χ2(a, τ) = 0 when |∂2
aFτ (a)| ≤ 1

9ε.

On the support of χ3, |∂3
aFτ (a)| ≥ 1

3ε. It follows from Lemma 2.3 that

(3.9)
∣

∣

∣

∫ ω1+i2ω
′

ω1

e−itFτ (a)χ3(a, τ)ϕ(a)da
∣

∣

∣
≤ C3(τ)t

− 1
3 .

On the support of χ2(1 − χ3), |∂2
aFτ (a)| ≥ 1

9ε. And similarly
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(3.10)
∣

∣

∣

∫ ω1+i2ω
′

ω1

e−itFτ (a)χ2(a, τ)(1 − χ3(a, τ))ϕ(a)da
∣

∣

∣
≤ C2(τ)t

− 1
2 .

On the support of (1 − χ2)(1 − χ3), |∂2
aFτ (a)| ≤ 1

6ε and |∂aFτ (a)| ≥ 1
6ε.

Lemma 2.3 yields

(3.11)
∣

∣

∣

∫ ω1+i2ω
′

ω1

e−itFτ (a)(1 − χ2(a, τ))(1 − χ3(a, τ))ϕ(a)da
∣

∣

∣
≤ C1(τ)t

−1.

Note Cj(τ), j = 1, 2, 3, are continuous functions of τ ∈ [−2M1/c1, 2M1/c1]. Let

C = Σ3
j=1 max{Cj(τ) : τ ∈ [−2M1/c1, 2M1/c1]}.

Then |K1(t, x, x
′)| ≤ Ct−

1
3 for large t, because

χ3 + χ2(1 − χ3) + (1 − χ2)(1 − χ3) = 1.

Consequently, we have proved that for large t

(3.12) sup
x,x′

∣

∣K1(t, x, x
′)

∣

∣ < Ct−
1
3 ,

where C only depends on ω, ω′.

4. Analysis of K2(t, x, x
′)

We now consider K2(t, x, x
′). Let b = 2ω3 − a for a ∈ (0, ω3), and the proof of

Lemma 3.1 gives

fa(x
′)f−a(x)

W (a)
= −fb(x)f−b(x

′)

W (b)
.

Then for x > x′

K2(t, x, x
′) =

∫ +∞

−℘(ω3)

eitE(f−a(x
′)fa(x) + f−a(x)fa(x

′))
dE

W (E)

=

∫ +∞

−℘(ω3)

e−it℘(a) fa(x)f−a(x
′)

W (a)
d(−℘(a))

=

∫ i2ω′

0

e−itFτ (a)ma(x)m−a(x
′)
−℘′(a)

W (a)
da,

where τ = x−x′

t
. For x < x′, K2(t, x, x

′) can be written in a similar form. Therefore

K2(t, x, x
′) =

∫ i2ω′

0

e−itFτ (a)ϕ(a, x, x′)da,

where ϕ(a, x, x′) was defined in the previous section.

Step 1. The analysis of the nonlinear phase in K2(t, x, x
′) is similar to that of

K1(t, x, x
′). However, by Remark 2.2, ϕ(a, x, x′) in K2(t, x, x

′) is unbounded when
a → 0 and a → 2iω′, contrary to the case of K1(t, x, x

′). Our strategy then is to
change variables to remove this singularity.
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Define λ2 = ℘(ω3) − ℘(a) such that λ > 0 when a ∈ (0, ω3) and λ < 0 when
a ∈ (ω3, 2ω3). Then the map a → λ is one-to-one, onto and analytic from (0, 2ω3)
to R. Note that λ(2iω′ − a) = −λ(a) and the behavior of λ(a) as a → 2iω′ is the
same as that when a→ 0.

We claim that ∂a
∂λ

= 2λ
−℘′(a) is never zero when a ∈ (0, 2ω3). In fact, the claim

is obvious for a 6= ω3. When a = ω3, by L’Hopital’s Rule,

∂a

∂λ
(0) = lim

λ→0

2λ

−℘′(a)
= lim

λ→0

2

−℘′′(a) ∂a
∂λ

,

which implies that

∣

∣

∣

∂a

∂λ
(0)

∣

∣

∣
=

√

2

℘′′(ω3)
> 0.

Observe that when λ→ ±∞, λϕ(λ) = λ3 · O(1) and | − ℘′(a)| = |λ|3 +O(λ2).

Hence, λϕ(λ)
−℘′(a) and its λ-derivatives are bounded uniformly for x, x′, λ ∈ R.

After changing the variables, we obtain

(4.1)

∫ i2ω′

0

e−itFτ (a)ϕ(a)da =

∫

R

e−itFτ (λ)ϕ(λ)
∂a

∂λ
dλ,

where Fτ (λ) = Fτ (a(λ)) and ϕ(λ) = ϕ(a(λ)).
We will decompose (4.1) into different integral regions and estimate them sepa-

rately. Define χ(·) to be a smooth function supported in (−2, 2) such that χ(x) = 1
when x ∈ [−1, 1], and let M be a large number to be specified.

Step 2. we claim

(4.2)
∣

∣

∣

∫

R

e−itFτ (λ)ϕ(λ)
2λ

−℘′(a)
χ(λ/M)dλ

∣

∣

∣
< CM t−

1
4 or CM t

− 1
3 ,

depending on whether P (x) has a double root in (−∞, ℘(ω3)] or not.
The proof of (4.2) will follow the lines of the proof of (3.12). Recall that the

map λ → a is one-to-one from R onto (0, 2ω3), and satisfies λ2 = ℘(ω3) − ℘(a).
Also, we observe

∂λFτ (λ) =
∂a

∂λ
(℘′(a) + τi(ζ(ω)/ω + ℘(a))),(4.3)

∂2
λFτ (λ) =

∂2a

∂λ2
(℘′(a) + τi(ζ(ω)/ω + ℘(a))) +

(∂a

∂λ

)2

(℘′′(a) + τi℘′(a)).(4.4)

By Lemma 2.4,

inf{|ζ(ω)/ω + ℘(a)| : a ∈ (0, ω3)} = |ζ(ω)/ω + ℘(ω3)| = c2 > 0.

Denote

M2 = max{|℘′(a)| + |℘′′(a)| + |ζ(ω)/ω + ℘(a)| : λ(a) ∈ [−2M, 2M ]}.
Since ∂a

∂λ
is smooth and never zero, there exist c3 and M3 such that 0 < c3 < | ∂a

∂λ
| <√

M3 for all λ ∈ [−2M, 2M ]. Moreover, suppose | ∂2a
∂λ2 | < M3 for λ ∈ [−2M, 2M ].

Then for λ ∈ [−2M, 2M ] and |τ | ≥ 2M2/c2



DISPERSION FOR SCHRÖDINGER OPERATORS 83

|∂λFτ (λ)| >
1

2
c2c3|τ |, |∂2

λFτ (λ)| < 2M3M2(1 + |τ |).
Integrating by parts, an argument similar to (3.8) shows that for |τ | ≥ 2M2/c2

∣

∣

∣

∫

R

e−itFτ (λ)ϕ(λ)
2λ

−℘′(a)
χ(λ/M)dλ

∣

∣

∣
< CM t

−1.

To prove (4.2) for |τ | ≤ 2M2/c2, we first suppose that P (x) has no double root

in (−∞, ℘(ω3)]. Since ∂Fτ (λ)
∂λ

= ∂a
∂λ

∂Fτ (a)
∂a

and ∂a
∂λ

6= 0 for a ∈ (0, 2ω3), it follows

from (4.3) and (4.4) that ∂Fτ (λ)
∂λ

and ∂2Fτ (λ)
∂λ2 vanish at (λ0, τ0) if and only if (3.4)

and (3.5) vanish at (a0, τ0), where λ2
0 = ℘(ω3) − ℘(a0). Therefore, the fact that

P (x) has no double root implies that there exists ε such that

min
{

3
∑

j=1

|∂jλFτ (λ)| : |λ| ≤ 2λ|τ | < 2M2/c2

}

> ε > 0.

Just as in the case of K1(t, x, x
′), we define χ2(λ, τ), χ3(λ, τ) on [−2M, 2M ]×

[−2M2/c2, 2M2/c2]. Namely, χ2(λ, τ) = 1 when |∂2
λFτ (λ)| > 1

6 ε, and χ2(λ, τ) = 0

when |∂2
λFτ (λ)| < 1

9ε. χ3(λ, τ) = 1 when |∂λFτ (λ)|+|∂2
λFτ (λ)| < 1

3ε, and χ3(λ, τ) =

0 when |∂λFτ (λ)| + |∂2
λFτ (λ)| > 2

3ε.
Decompose the integral in (4.2) according to

1 = χ3 + χ2(1 − χ3) + (1 − χ2)(1 − χ3).

The same arguments as that in (3.9), (3.10) and (3.11) yield for |τ | ≤ 2M2/c2

∣

∣

∣

∫

R

e−itFτ (λ)ϕ(λ)
2λ

−℘′(a)
χ(λ/M)dλ

∣

∣

∣
< CM t

− 1
3 .

In the case that P (x) has a double root ℘(a0) ∈ (−∞, ℘(ω3)], there is τ0 ∈ R,

such that ∂jλFτ (λ), j = 1, 2, 3 vanish at (λ0, τ0), where λ2
0 = ℘(ω3) − ℘(a0). The

fact that P (x) has no root of degree 3 implies that ∂4
λFτ0(λ0) 6= 0. Therefore, there

exists ε such that

min
{

4
∑

j=1

|∂jλFτ (λ)| : λ ∈ [−2M, 2M ], τ ∈ [−2M2/c2, 2M2/c2]
}

> 2ε > 0.

Define smooth function χ4(λ, τ) : [−2M, 2M ] × [−2M2/c2, 2M2/c2] → [0, 1],

such that χ4 = 1 when Σ3
j=1|∂jλFτ (λ)| ≤ ε, and χ4 = 0 when Σ3

j=1|∂jλFτ (λ)| ≥ 3
2ε.

Hence on the support of χ4, |∂4
λFτ (λ)| ≥ 1

2ε. It follows from Lemma 2.3 that

∣

∣

∣

∫

R

e−itFτ (λ)ϕ(λ)
2λ

−℘′(a)
χ(λ/M)χ4(λ, τ)dλ

∣

∣

∣
< C4(τ)t

− 1
4 .

We decompose the integral in (4.2) by using

χ4 + (1 − χ4)χ3 + χ2(1 − χ3)(1 − χ4) + (1 − χ2)(1 − χ3)(1 − χ4) = 1.

The analysis of the terms containing (1 − χ4)χ3, χ2(1 − χ3)(1 − χ4) and (1 −
χ2)(1 − χ3)(1 − χ4) is similar to (3.9), (3.10) and (3.11) respectively. Therefore,
under the assumption that P (x) has a double root in (−∞, ℘(ω3)], we have proved
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∣

∣

∣

∫

R

e−itFτ (λ)ϕ(λ)
2λ

−℘′(a)
χ(λ/M)dλ

∣

∣

∣
< CM t

− 1
4 .

Step 3. It now remains to estimate

∫

R

e−itFτ (λ)ϕ(λ)
2λ

−℘′(a)
(1 − χ(λ/M))dλ,

which by definition equals

(4.5) lim
N→+∞

∫

R

e−itFτ (λ)ϕ(λ)
2λ

−℘′(a)
(χ(λ/N) − χ(λ/M))dλ.

Since 2λϕ(λ)
−℘′(a) are not integrable on the support of 1 − χ(λ/M), Lemma 2.3 cannot

be applied to (4.5) directly. We shall explore the oscillation of the phase e−itFτ (λ)

and perform integration by parts to bound (4.5), which requires us to exclude the
zeroes of ∂λFτ (λ).

By definition, ℘(a) = a−2 + 1
20g2a

2 +O(a4), and ℘(a) = ℘(iω′) − λ2, hence

λ(a) =
i

a
+ α1a+O(a3) as a→ 0, a ∈ (0, ω3),

which is an meromorphic function of a. It follows that ζ(a) = −iλ + O(λ−1) as
a→ 0, a ∈ (0, ω3). Consequently

Fτ (λ) = −λ2 − τλ + ℘(iω′) +O(
τ

λ
), λ→ ±∞;(4.6)

∂λFτ (λ) = −2λ− τ +O(τλ−2), λ→ ±∞;(4.7)

∂2
λFτ (λ) = −2 +O(τλ−3), λ → ±∞.(4.8)

We require M large enough such that

M > 1 + max
{

|λ0| :
∂Fτ (λ)

∂λ
,
∂2Fτ (λ)

∂λ2
both vanish at (τ0, λ0)

}

.

Therefore, if |λ| > M , ∂Fτ (λ)
∂λ

and ∂2Fτ (λ)
∂λ2 cannot vanish at the same (τ, λ).

When |λ| > M and |λ+ τ
2 | > 1, we claim

(4.9) |∂λFτ (λ)| > |λ+
τ

2
| − 1

2
.

In fact, by (4.7)

|∂λFτ (λ)| > 2|λ+
τ

2
| −O(τλ−2).

We choose M large enough such that O(τλ−2) < |τ |
100|λ| . If |λ + τ

2 | >
|τ |
100 , (4.9)

clearly holds. If |λ+ τ
2 | ≤

|τ |
100 , then |τ |

100|λ| <
1
2 and (4.9) also follows.

When (− τ
2 − 1,− τ

2 + 1) is not contained in (−M,M), by (4.8), |∂2
λFτ (λ)| > 1

for λ ∈ (− τ
2 − 2,− τ

2 + 2) as long as M is large enough. By Lemma 2.3, we have

∫

R

e−itFτ (λ)ϕ(λ)
2λ

−℘′(a)
χ(λ+ τ/2)dλ < Ct−

1
2 ,

where χ(x) = 1 when |x| < 1, and χ(x) = 0 when |x| > 2.
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To estimate (4.5), we first consider the case when |τ |
10 > M and estimate

∫

R

e−itFτ (λ) 2λϕ(λ)

−℘′(a)
(χ(10λ/|τ |) − χ(λ/M))dλ,

which equals

(4.10)
1

it

∫

R

e−itFτ (λ) d

dλ

(2λϕ(λ)

−℘′(a)

χ(10λ/|τ |) − χ(λ/M)

∂λF (λ)

)

dλ.

It follows from Eq.(4.7) that on the support of χ(10λ/|τ |) − χ(λ/M)

|∂λFτ (λ)| > |τ | − 2|λ| −O(τλ−2) > |τ |/2,
and

|∂2
λFτ (λ)| < |τ |/4,

as long as M is large enough. Hence

(4.11) |∂λ(∂λFτ (λ))−1| < 1

|τ | .

Since (χ(10λ/|τ |)−χ(λ/M)), 2λϕ(λ)
−℘′(a) and their λ-derivatives are uniformly bounded,

we have

∣

∣

∣

d

dλ

(2λϕ(λ)

−℘′(a)

χ(10λ/|τ |) − χ(λ/M)

∂λF (λ)

)∣

∣

∣
<

C

|τ | ,

from which it follows that |(4.10)| < Ct−1.
To complete the estimate on (4.5) when |τ |/10 > M , it remains to bound

∫

R

e−itFτ (λ)ϕ(λ)
2λ

−℘′(a)
(χ(λ/N) − χ(10λ/|τ |) − χ(λ+ τ/2))dλ.

Integrating by parts, this equals

2

it

∫

R

e−itFτ (λ) d

dλ

( λϕ(λ)

−℘′(a)

(χ(λ/N) − χ(10λ/τ) − χ(λ+ τ/2))

∂λFτ (λ)

)

dλ := J1 + J2,

where

J1 =
2

it

∫

R

e−itFτ (λ) (χ(λ/N) − χ(10λ/|τ |) − χ(λ+ τ/2))

∂λFτ (λ)

d

dλ

λϕ(λ)

−℘′(a)
dλ,

and

J2 =
2

it

∫

R

e−itFτ (λ) λϕ(λ)

−℘′(a)

d

dλ

(χ(λ/N) − χ(10λ/|τ |) − χ(λ + τ/2))

∂λFτ (λ)
dλ.

In J2,
(4.12)

∂λ(χ(λ/N)−χ(10λ/|τ |)−χ(λ+ τ/2)) =
1

N
χ′(λ/N)− 10

|τ |χ
′(10λ/|τ |)−χ′(λ+ τ/2).

On the support of (4.12), we have |λ+τ/2| > 1 and |λ| > M . Thus |(∂λFτ (λ))−1| <
C by (4.9). Consequently,

∣

∣

∣

2

it

∫

R

e−itFτ (λ) λϕ(λ)

−℘′(a)∂λFτ (λ)

( 1

N
χ′(λ/N)− 10

|τ |χ
′(10λ/|τ |)−χ′(λ+τ/2)

)

dλ
∣

∣

∣
< Ct−1.
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On the support of χ(λ/N) − χ(10λ/|τ |) − χ(λ+ τ/2) we have |λ| > |τ/10|. It
follows from (4.8) that |∂2

λFτ (λ)| < 3. Combining it with (4.9), we obtain

∂λ(∂λFτ (λ))
−1 < C(λ+

τ

2
)−2,

which is integrable. Therefore

∣

∣

∣

2

it

∫

R

e−itFτ (λ) λϕ(λ)

−℘′(a)

(

∂λ
1

∂λFτ (λ)

)

(χ(λ/N)−χ(10λ/|τ |)−χ(λ+τ/2))dλ
∣

∣

∣
< Ct−1.

This completes the estimate on J2.
As for J1, integrating by parts again, we obtain

J1 = − 4

t2

∫

R

e−itFτ (λ) d

dλ

((χ(λ/N) − χ(10λ/|τ |) − χ(λ+ τ/2))

(∂λFτ (λ))2
d

dλ

λϕ(λ)

−℘′(a)

)

dλ.

Applying the Leibnitz’s rule, we are left with three terms. Two terms come from
d
dλ

hitting χ(λ/N)−χ(10λ/|τ |)−χ(λ+ τ/2) and (∂λFτ (λ))
−2, and the analysis is

analogous to that of J2. When d
dλ

hits d
dλ

λϕ(λ)
−℘′(a) , we obtain the third term

− 4

t2

∫

R

e−itFτ (λ)χ(λ/N) − χ(10λ/|τ |) − χ(λ+ τ/2)

(∂λFτ (λ))2
d2

dλ2

λϕ(λ)

−℘′(a)
dλ.

Because |(∂λFτ (λ))2| > |λ+τ/2|2/4 on the support of χ(λ/N)−χ(10λ/|τ |)−χ(λ+

τ/2) and d2

dλ2

λϕ(λ)
−℘′(a) is uniformly bounded, the above term is dominated by Ct−2,

where the constant C is independent of N .
This completes the estimate of (4.5) when |τ |/10 > M . The analysis is similar

and even simpler when |τ |/10 ≤ M . Therefore, when P (x) has no double root in
(−∞, ℘(ω3)], we have

sup
x,x′

|K2(t, x, x
′)| < Ct−

1
3 .

The decay factor t−
1
3 is replaced by t−

1
4 when P (x) has a double root in (−∞, ℘(ω3)].

2

Combining the estimates on K1(t, x, x
′) and K2(t, x, x

′), we have proved (1.11)
under the assumption (1.15). We have also proved (1.12) for all nonzero ω, ω′ ∈ R.

It remains to prove (1.15) holds for almost all ω, ω′ ∈ R.
Suppose P (x) has a double root x0 ∈ (−∞, ℘(ω3)]. Then x0 is a root of P ′(x).

Recall

P ′(x) = 6x2 +
12ζ(ω)

ω
x+

g2
2
,

with its roots

r+, r− = −ζ(ω)

ω
±

√

(ζ(ω)

ω

)2

− g2
12

.

That P (x) has a double root in (−∞, ℘(ω3)] implies that (ζ(ω)/ω)2−g2/12 > 0
and P (r−) = 0. By (6.1), g2 and g3 are real analytic for ω, ω′ ∈ R+. By (6.3), ζ(ω)
is also real analytic for ω, ω′ ∈ R+. Therefore, r+, r− are analytic when ω, ω′ ∈ R+,

with branches at
(

ζ(ω)
ω

)2

− g2
12 = 0. To prove (1.15) is true for almost all ω, ω′ ∈ R+,
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it suffices to show that P (r−) is nonzero at one point. This can be done by direct
numerical calculation.

For example, take ω = 5.5 and ω′ = 2. Then we have

g2 = 0.507343, g3 = −0.0695438,

r+, r− = 0.0628169± 0.195787i,

P (r+), P (r−) = −0.0386656± 0.0300201i.

This indicates that P (r−) is nonzero for almost all ω, ω′ ∈ R. Therefore, (1.15)
holds for almost all ω, ω′ ∈ R.

5. Optimality of the decay factor

So far we have proved the first part of Theorem 1.1. To verify (1.13), we first
reduce it to showing that there exist constants c > 0 and T > 0 such that for t > T

(5.1) ‖K(t, x, x′)‖L∞ > c t−
1
3 .

Accepting (5.1) temporarily, we obtain that for any given large t, there exist

(x0, x
′
0) such that x0 6= x′0 and |K(t, x0, x

′
0)| > ct−

1
3 . Without loss of generality,

suppose that

<(K(t, x0, x
′
0)) >

c

2
t−

1
3 .

As K(t, x, x′) is smooth away from x = x′, there exists δ > 0 such that for any
(x, x′) ∈ (x0 − δ, x0 + δ) × (x′0 − δ, x′0 + δ)

<(K(t, x, x′)) >
c

4
t−

1
3 .

Take the initial data ψ0(x
′) = 1

2δχ(x′

0−δ,x
′

0+δ)
(x′). Then ‖ψ0‖L1 = 1 and for any

x ∈ (x0 − δ, x0 + δ)

|ψ(t, x)| =
∣

∣

∣

∫

K(t, x, x′)ψ0(x
′)dx′

∣

∣

∣
>
c

4
t−

1
3 .

To prove (5.1), we need the following lemma (Prop.3 Chap.8 [St]):

Lemma 5.1. Suppose k ≥ 2, and

φ(x0) = φ′(x0) = · · · = φ(k−1)(x0) = 0,

while φ(k)(x0) 6= 0. If ψ is supported on a sufficiently small neighborhood of x0 and

ψ(x0) 6= 0, then

∫

R

eiλφ(x)ψ(x)dx = akψ(x0)(φ
(k)(x0))

− 1
k λ−

1
k +O(λ−

1
k
−1),

where ak 6= 0 only depends on k. The implicit constant in O(λ− 1
k
−1) depends on

only finitely many derivatives of φ and ψ at x0.
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By Lemma 2.4, P (a) has a unique simple root in (℘(ω2), ℘(ω1)), thus we can
choose a0 ∈ (ω1, ω2) and a corresponding τ0 such that both ∂aFτ (a) and ∂2

aFτ (a)
vanish at (a0, τ0).

First, we denote I = [0, i2ω′] ∪ [ω1, ω1 + i2ω′] and assume that for any a ∈ I ,
a 6= a0, at least one of ∂aFτ0(a) and ∂2

aFτ0(a) does not vanish. Then we take δ > 0
small enough such that for a /∈ (a0−δ, a0+δ) ⊂ I , |∂aFτ0(a)|+ |∂2

aFτ0(a)| is greater
than some positive constant.

Given any large t, take (x, x′) such that x−x′

t
= τ0 and

K(t, x, x′) =
(

∫ i2ω′

0

+

∫ ω1+i2ω
′

ω1

)

e−itFτ0 (a)ma(x)m−a(x
′)
−℘′(a)da

W (a)
.

The
∫ i2ω′

0
-term is bounded by C t−

1
2 using an argument analogous to that in Section

4, because |∂aFτ0(a)|+ |∂2
aFτ0(a)| is uniformly greater than some positive constant

for a ∈ (0, i2ω′).

We decompose the
∫ ω1+i2ω

′

ω1
-term as follows

∫ ω1+i2ω
′

ω1

e−itFτ0 (a)ma(x)m−a(x
′)
−℘′(a)da

W (a)
:= J3 + J4,

where

J3 =

∫ ω1+i2ω′

ω1

e−itFτ0 (a)ρ(a)ma(x)m−a(x
′)
−℘′(a)da

W (a)
,

and

J4 =

∫ ω1+i2ω′

ω1

e−itFτ0 (a)ρ̃(a)ma(x)m−a(x
′)
−℘′(a)da

W (a)
.

Here ρ(a) is a smooth cut-off function supported on (a0 − δ, a0 + δ) and ρ̃(a) =
1 − ρ(a).

Under our assumption, |J4| < C t−
1
2 , following the same reasoning as that in

Section 3.
Considering J3, the phase function Fτ0(a) satisfies ∂aFτ0(a0) = ∂2

aFτ0(a0) = 0
and ∂3

aFτ0(a0) 6= 0. ma(x) and m−a(x
′) do not vanish when a ∈ (ω1, ω2) by

Eq.(1.9). −℘′(a)
W (a) is nonzero when a ∈ (ω1, ω2). Therefore ma0(x)m−a0(x

′)−℘
′(a0)

W (a0) is
nonzero.

Since ρ(a) is supported in a sufficiently small neighborhood of a0, by Lemma 5.1,
there exist c1 > 0 and T > 0 such that for t > T

|J3| > c1t
− 1

3 ,

where c1 is independent of t.
Combining these estimates, we have |K(t, x, x′)| > c1t

− 1
3 − 2Ct−

1
2 > c1/2 t

− 1
3

for any (x, x′) satisfying (x− x′)/t = τ0 , which implies (5.1).
Second, suppose there are other a1, a2 ∈ I such that a1, a2, a0 are distinct

and ∂aFτ0(a), ∂
2
aFτ0(a) both vanish at a = a1, a2. Then P (x) vanishes at ℘(aj),

j = 0, 1, 2.
Since a0 ∈ (ω1, ω2), we have that −i℘′(a0) > 0 and ζ(ω)/ω + ℘(a0) > 0

by Lemma 2.4. Thus τ0 < 0 by (3.4). Similar analysis shows that when a ∈
(ω2, ω2 + iω′) ∪ (iω′, 2iω′), ∂aFτ0(a) 6= 0. Therefore, a1, a2 ∈ (0, iω′).
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Thus ℘(aj), j = 0, 1, 2 are distinct and are the three roots of P (x). This implies
that there is no other a ∈ I such that ∂aFτ0(a) = ∂2

aFτ0(a) = 0.

We again set δ > 0 small enough such that for a /∈ ⋃3
j=0(aj − δ, aj + δ) ⊂ I ,

|∂aFτ0(a)|+ |∂2
aFτ0(a)| is uniformly greater than some positive constant. Given any

large t, take (x, x′) such that x−x′

t
= τ0. The earlier argument implies

K(t, x, x′) =
2

∑

j=0

∫

I

e−itFτ0 (a)ρj(a)ma(x)m−a(x
′)
−℘′(a)da

W (a)
+O(t−

1
2 ),

where ρj(a) = 1 when |a− aj | < δ and ρj(a) = 0 when |a− aj | > 2δ.
By Lemma 5.1,

K(t, x, x′) = a3t
− 1

3

2
∑

j=0

(F (3)
τ0

(ai))
− 1

3maj
(x)m−aj

(x′)
−℘′(aj)

W (aj)
+O(t−

1
2 ).

Recall that x and x′ are related by (x−x′)/t = τ0. maj
(x)m−aj

(x′), j = 0, 1, 2, are
linearly independent as functions of x ∈ R and their nontrivial linear combination
is a nonzero function. Therefore, there exist x0 and x′0, satisfying (x0 − x′0)/t = τ0
and

K(t, x0, x
′
0) = c t−

1
3 +O(t−

1
2 ),

where c is nonzero. Thus there exists T such that for t > T

|K(t, x0, x
′
0)| >

c

2
t−

1
3 .

Finally, suppose that a1 = a2 in the second case, which is equivalent to that ℘(a1)
is a double root of P (x) in (−∞, ℘(ω3)). Similarly, we have for t > T

K(t, x, x′) =

1
∑

j=0

∫

I

e−itFτ0 (a)ρj(a)ma(x)m−a(x
′)
−℘′(a)da

W (a)
+O(t−

1
2 )

= a3t
− 1

3 (F (3)
τ0

(a0))
− 1

3ma0(x)m−a0(x
′)
−℘′(a0)

W (a0)
+

a4t
− 1

4 (F (4)
τ1

(a1))
− 1

4ma1(x)m−a1(x
′)
−℘′(a1)

W (a1)
+O(t−

1
2 ).

Therefore, there exists (x0, x
′
0) such that |K(t, x, x′)| > c t−

1
4 > c t−

1
3 . This com-

pletes the proof of (5.1).
Our proof also gives the optimality of (1.12) in the case that P (x) has a double

root in (−∞, ℘(ω3)].
By the proof of Lemma 2.4, we see that when g2/12 ≥ (ζ(ω)/ω)2, P (x) has no

double root in (−∞, ℘(ω3)]. Therefore, Corollary 1.2 holds.
Set ω = 1; it follows from Eq.(6.1) and (6.3) that g2

12−(ζ(ω)/ω)2, as a function of
ω′ > 0, is analytic and ω′ = 0 is its essential singular point. Numerical experiment
indicates that g2/12− (ζ(ω)/ω)2 ≈ 0.966104 when ω = 1 and ω′ > 5. When ω = 1
and ω′ → 0+, g2/12− (ζ(ω)/ω)2 assumes each real number infinitely many times.
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6. Appendix

Here we list some elementary properties of Weierstrass functions ([WW], [Ch],
[Ak], [GH]). A doubly-periodic function which is meromorphic is called an elliptic
function. Suppose that 2ω1 and 2ω3 are two periods of an elliptic function f(z)
and =(ω3/ω1) 6= 0. Join in succession the points 0, 2ω1, 2ω1 + 2ω3, 2ω3, 0 and we
obtain a parallelogram. If there is no point ω inside or on the boundary of this
parallelogram (the vertices excepted) such that f(z + ω) = f(z) for all values of
z, this parallelogram is called a fundamental period-parallelogram for an elliptic
function with periods 2ω1 and 2ω3. As a set, we assume this parallelogram only
includes one of four vertices and two edges adjacent to it. In this way, the z-plane
can be covered with the translations of this parallelogram without any overlap. It
can be shown that for any c ∈ C, the number of roots (counting multiplicity) of the
equation

f(z) = c

which lie in the fundamental period-parallelogram does not depend on c. This
number is called the order of the elliptic function f(z) and it equals the number of
poles of f inside a fundamental period-parallelogram.

Given ω1, ω3 ∈ C with =(ω3/ω1) 6= 0, the Weierstrass elliptic function is defined
as

℘(z) =
1

z2
+

∑

(m,n)6=(0,0)

{

(z − 2mω1 − 2nω3)
−2 − (2mω1 + 2nω3)

−2
}

.

The summation extends over all integer values of m and n, simultaneous zero values
of m and n excepted. ℘(z) is doubly-periodic, namely

℘(z) = ℘(z + 2ω1) = ℘(z + 2ω3).

℘(z) is an elliptic function of order 2, with poles Ωm,n = 2mω1 + 2nω3. Each
pole Ωm,n is of degree 2. ℘(z) is an even function, ℘(z) = ℘(−z). The Laurent’s
expansion of ℘(z) at z = 0 is written as

℘(z) = z−2 +
1

20
g2z

2 +
1

28
g3z

4 +O(z6),

where g2, g3 are the constants in Eq.(1.5) and (1.6). Explicitly, we have

(6.1) g2 = 60
∑

(m,n)6=(0,0)

Ω−4
m,n, g3 = 140

∑

(m,n)6=(0,0)

Ω−6
m,n.

Here g2 and g3 are called the invariants of ℘ and they uniquely characterize ℘.
Since ℘′ is odd and elliptic of order 3, it has three zeroes in its fundamental

period-parallelogram. It is clear that these zeroes are the half periods ω1, ω2 =
ω1 + ω3 and ω3. Denote ej = ℘(ωj), j = 1, 2, 3. The fact that ℘(z) is of order 2
implies that e1, e2, e3 are distinct and that ℘′′ does not vanish at ωj , j = 1, 2, 3.
Furthermore, Eq.(1.5) implies that e1, e2, e3 are the roots of the cubic polynomial

(6.2) 4x3 − g2x− g3 = 0.

The function ζ(z) is defined by the equation
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d

dz
ζ(z) = −℘(z),

coupled with the condition limz→0(ζ(z) − z−1) = 0. ζ(z) may also be represented
as

(6.3)

ζ(z) =
1

z
+

∑

(m,n)6=(0,0)

{ 1

z − 2mω1 − 2nω3
+

1

2mω1 + 2nω3
+

z

(2mω1 + 2nω3)2

}

.

ζ(z) is an odd meromorphic function of z over the whole complex plane except at
simple poles Ωm,n. The residue at each pole is 1.

Write ζ(ω1) = η1 and ζ(ω3) = η3; then

η1ω3 − η3ω1 =
1

2
πi.

ζ(z) is not doubly-periodic, however, it satisfies the following equations

(6.4) ζ(z + 2ω1) = ζ(z) + 2η1, ζ(z + 2ω3) = ζ(z) + 2η3.

Next we define σ(z) by the equation

d

dz
logσ(z) = ζ(z),

coupled with the condition limz→0 σ(z)/z = 1. σ(z) is an odd entire function with
simple zeroes at Ωm,n. Just like ζ(z), σ(z) satisfies

(6.5) σ(z + 2ω1) = −σ(z)e2η1(z+ω1), σ(z + 2ω3) = −σ(z)e2η1(z+ω3).

If we assume that ω1 = ω, ω3 = iω′ and ω, ω′ ∈ R, then by symmetry ℘(z)
is real valued when <z ∈ {0, ω1} or =z ∈ {0, iω3}. ζ(z) is real valued on the real
line and is pure imaginary when <z = 0. Let D to be the rectangle with vertices
0, ω, ω+ iω′ and iω′. Then ℘(z) sends D to the upper half plane conformally. As z
moves clockwise on the boundary of D both starting and ending at 0, ℘(z) varies
from −∞ to ∞. This implies that ℘(iω′) < ℘(ω + iω′) < ℘(ω).
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