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Abstract. Reported here are results concerning the initial boundary value
problem (IBVP) for the Korteweg-de Vries equation in a quarter plane, viz.

(0.1)

8

<

:

ut + ux + uu + uxxx = 0, for x, t ≥ 0,

u(x, 0) = φ(x), u(0, t) = h(t).

The present study commences with a representation of solutions of (0.1) de-
rived in our earlier paper [Trans. American Math. Soc. 354 (2001), 427–490].
The problem (0.1) arises naturally in the modeling of various types of wave
phenomena, but the focus here will be on two mathematical points, namely a
type of boundary smoothing and its impact upon the well-posedness of (0.1)
in the L2−based Sobolev spaces Hs(R+).

It has been known for some time that the KdV equation posed on the
quarter plane possesses the Kato smoothing property just as do solutions on
the whole plane of the pure initial value problem; that is to say

φ ∈ Hs(R+) and h ∈ H
s+1
3

loc (R+) implies u ∈ L2(0, T ;Hs+1
loc (R+)) for

any finite value of T for which the solution exists on [0, T ].
It is shown here that the linear IBVP obtained by dropping the nonlinear

term uux in (0.1) has the following somewhat startling smoothing property:

if φ = 0 and h ∈ H
s+1
3

loc (R+), then the solution u of the linear version of

(0.1) belongs to the space L2(0, T ;Hs+ 3
2 (R+)).

The linearized version of (0.1) with zero initial data, φ = 0, has another
interesting property. The solution u(x, t) is the restriction to R+ × R+ of a
function w(x, t) defined on R × R which is such that
„Z ∞

−∞

Z ∞

−∞

(1 + |ξ|)2s(1 + |τ − ξ3|)2b|ŵ(ξ, τ)|2dξdτ

«1/2

≤ C ‖h‖
H

3b+s−1/2
3 (R+)

where b is any value in [0, 1
2
− s

3
) if − 3

2
≤ s < 3

2
, b is any value in [0, 5

6
− s

3
] if

− 1
2

< s < 1 and C is a constant depending only on s and b.
Aided by these boundary integral estimates, and after introduction of

suitable versions of the Bourgain spaces whose underlying spatial-temporal
domain is a quarter plane, we demonstrate that the full nonlinear IBVP (0.1)

is unconditionally locally well-posed in the space Hs(R+) for any s > − 3
4
.

More precisely, it is shown that

for a given compatible pair (φ, h) ∈ Hs(R+) × H
s+1
3

loc (R+), there ex-
ists a T ∗ > 0 such that the IBVP (0.1) admits a unique mild solution u ∈
C([0, T ∗],Hs(R+)), which depends continuously on the initial value φ and the
boundary value h.

Moreover, the IBVP (0.1) is shown to be unconditionally globally well-

posed in Hs(R+) × H
s+1
3

loc (R+) for s ≥ 3, while unconditional global well-

posedness is shown to hold for 0 ≤ s < 3 in Hs(R+) × H
1+s+ε

3
loc (R+) for any

ε > 0.
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1. Introduction

In this paper, we continue the study of the initial-boundary-value problem for
the Korteweg-de Vries (KdV) equation posed in a quarter plane, namely

(1.1)
ut + ux + uux + uxxx = 0, for x, t ≥ 0,

u(x, 0) = φ(x), u(0, t) = h(t).





As pointed out by several authors, (see [1] for an early commentary in the context
of the BBM-equation), initial-boundary-value problems of the form (1.1) may serve
as models for waves generated by a wave maker in a channel, or for waves approach-
ing shallow water (e.g. the shore) from deep water. Similar problems arise in other
physical contexts where KdV-type equations serve as models. Here, two mathemat-
ical issues connected to (1.1) will be addressed; boundary smoothing properties and
the well-posedness of this initial-boundary value problem (IBVP henceforth) in the
L2−based Sobolev spaces Hs(R+). The overall thrust of our theory is that stronger
boundary smoothing properties than heretofore noticed allow the formulation of a
sharper well-posedness theory.

We begin with a review of existing theory which provides a setting in which to
state precisely our results and put them into present day context. Recall that for
the pure initial-value problem (IVP henceforth) for the KdV-equation

(1.2) ut + uux + uxxx = 0, u(x, 0) = φ(x), x, t ∈ R,

written in traveling coordinates, it is well-known that there is no gain or loss of
regularity in the Sobolev classes Hs(R). As Saut and Temam [38] pointed out, for
any t ∈ R,

u(·, t) ∈ Hs(R) if and only if φ ∈ Hs(R),

at least for suitable values of s. There is, however, more subtle smoothing associated
with the initial-value problem (1.2). In the late 1970’s, Kato [28, 29] discovered
that for solutions of (1.2),

(1.3) φ ∈ Hs(R) implies that u ∈ L2(0, T ;Hs+1
loc (R)).

This property, now known as Kato-smoothing, stimulated an extensive investigation
of various smoothing properties associated with solving the KdV-equation and other
dispersive wave equations (see, for example, [10, 11, 14, 31, 32, 33, 34, 39, 43]
and the references contained therein). In particular, Kenig, Ponce and Vega [31]
demonstrated that, when φ ∈ Hs(R) with s > 3

4 , there is a unique solution u of
(1.2) which belongs to the space C(R;Hs(R)) and is such that

(1.4)

(
sup

−∞<x<+∞

∫ T

−T

|∂s+1
x u(x, t)|2dt

) 1
2

≤ C ‖φ‖Hs(R) ,

(1.5)

(∫ T

−T

sup
−∞<x<+∞

|∂xu(·, t)|4dt
) 1

4

≤ C ‖φ‖Hs(R)

and

(1.6)

(∫ +∞

−∞
sup

−T≤t≤T
|u(x, t)|2dx

) 1
2

≤ C(1 + T ) ‖φ‖Hs(R)
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where the constants C on the right-hand sides depend only on s and on T when
it appears. The inequality (1.4) is a sharp version of Kato smoothing and (1.5) is
sometimes called global smoothing of Strichartz type, while (1.6) reveals a kind of
global temporal smoothing.

In the early 1990’s, in attempting to establish the well-posedness of (1.2) in
Hs(R) for smaller values of s, Bourgain [11] found a yet more subtle smoothing
property for solutions of (1.2). This property may be expressed as follows: for
φ ∈ Hs(R) with s ≥ 0, (1.2) admits a solution u ∈ C([0, T ];Hs(R)) which is the
restriction to R× (0, T ) of a function w on the whole plane R×R such that

(1.7)

(∫ ∞

−∞

∫ ∞

−∞
(1 + |ξ|)2s(1 + |τ − ξ3|)|ŵ(ξ, τ)|2dξdτ

)1/2

≤ C ‖φ‖Hs(R)

where C depends only on s and ŵ is the Fourier transform of w with respect to
both of the independent variables. Because of this smoothing property of solutions,
Bourgain could show that (1.2) is (conditionally) well-posed in Hs(R) for s ≥
0. (The distinction between well-posedness and conditional well-posedness will be
drawn presently.) Later, the smoothing property (1.7) was improved by Kenig,
Ponce and Vega [33, 34] to the stronger property
(1.8)

Ns,b(w) ≡
(∫ ∞

−∞

∫ ∞

−∞
(1 + |ξ|)2s(1 + |τ − ξ3|)2b|ŵ(ξ, τ)|2dξdτ

)1/2

≤ C ‖φ‖Hs(R)

for any φ ∈ Hs(R) with s > − 3
4 , where 1

2 < b < 1 depends only on s and C depends
on s and b. Note that if s ∈ R and U is the unitary group in Hs(R) defined by

U(t) = exp (itP (Dx)),

where P (Dx) is the Fourier multiplier with symbol P (ξ) = ξ3, then (cf. [36])

Ns,b(w) ∼ ‖U(−t)w‖Hs,b

where Hs,b ≡ Hb
t (R;Hs

x(R)). For given f ∈ Hs,b, the larger the value of b, the
smoother is f with respect to time t. In particular, if b > 1

2 , Hs,b is continuously
embedded into the space C(R;Hs

x(R)). The inequality (1.8) allowed Kenig, Ponce
and Vega to show that, locally in time, the IVP (1.2) is (conditionally) well-posed in
Hs(R) provided only that s > − 3

4 . This result was recently strengthened to include
(conditional) global well-posedness in the same function classes, by Colliander, et
al. in [13].

For the IBVP (1.1), the Kato smoothing property for (1.1) was established by
Bona and Winther [8, 9], where they showed that solutions lie in L2(0, T ;Hn+1

loc (R+))

if φ ∈ Hn(R+) and h ∈ Hn+2
loc (R+) for n ≥ 2. Smoothing properties analogous to

(1.4)-(1.6) were established by Bona, Sun and Zhang. These were derived in [4] in
the following form.

For s > 3
4 , if φ ∈ Hs(R+) and h ∈ H

s+1
3

loc (R+) satisfy certain compatibility
conditions at (x, t) = (0, 0), then the IBVP (1.1) admits a unique solution

u ∈ C(0, T ;Hs(R+)) ∩ L2(0, T ;Hs+1
loc (R+)),

which satisfies the additional properties

(1.9)

(
sup

0<x<+∞

∫ T

0

|∂s+1
x u(x, t)|2dt

) 1
2

≤ C

(
‖φ‖Hs(R+) + ‖h‖

H
s+1
3 (0,T )

)
,
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(1.10)

(∫ T

0

sup
0<x<+∞

|∂xu(·, t)|4dt
) 1

4

≤ C

(
‖φ‖Hs(R) + ‖h‖

H
s+1
3 (0,T )

)

and

(1.11)

(∫ +∞

0

sup
0≤t≤T

|u(x, t)|2dx
) 1

2

≤ C

(
‖φ‖Hs(R) + ‖h‖

H
s+1
3 (0,T )

)

where the constants depend only on s and T . As just stated, the results in [4]
were local in time; corresponding global results were also established but were only
optimal if s ≥ 3. Global results very nearly corresponding to the local theory in [4]
are obtained in the recent paper [19] of Faminskii.

Recently, Colliander and Kenig [12] in a paper concerned with the IBVP for
the generalized KdV-equation wherein uux is replaced by upux, showed in the case
p = 1 that solutions of (1.1) also possess a Bourgain smoothing property which can

be expressed precisely as follows. For φ ∈ L2(R+) and h ∈ H
1
3 (R+), (1.1) admits

a solution u ∈ C(0, T ;L2(R+)) which is the restriction of a function w(x, t) defined
on the whole plane satisfying

(1.12) Λ̃α
0,b(w) ≤ C

(
‖φ‖Hs(R) + ‖h‖

H
1
3 (R+)

)

where

Λ̃α
s,b(w) =

(
N2

s,b(w) +

∫ ∞

−∞

∫ 1

−1

(1 + |τ |)2α|ŵ(ξ, τ)|2dξdτ
) 1

2

with α > 1
2 and where the constant b is required to be strictly less than 1

2 in contrast

to the theory for the IVP (1.2), where b > 1
2 obtains.

The discussion is now turned more directly to the contributions in the present
essay. We commence with boundary smoothing properties. Note first that if the
boundary value h in (1.1) vanishes identically, the solution u satisfies the energy
identity

d

dt

∫ ∞

0

u2(x, t)dx + u2
x(0, t) = 0 for all t ≥ 0.

Thus, the L2−norm of the solution u is decreasing and is strictly so as long as
ux(0, t) 6= 0. This suggests that some dissipative mechanism is introduced through
imposition of the boundary condition at x = 0. An interesting question arises
naturally in this situation:

Can one quantify this boundary dissipative effect?

It is well-known that a solution often becomes smoother under the influence of
dissipative effects. Thus a further question presents itself:

Do solutions of (1.1) becomes smoother because of this boundary dissipative
effect?

To address these issues, it is helpful to consider carefully the linear problem

(1.13)
ut + ux + uxxx = 0, x, t ∈ R+,

u(x, 0) = 0, u(0, t) = h(t), x, t ∈ R+
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associated to (1.1) and present some new boundary smoothing properties for its
solutions. The Kato-smoothing result of [8], when extended to fractional-order
spaces, states that the solution u of (1.13) belongs to the space

C(R+;Hs(R+)) ∩ L2(R+;Hs+1
loc (R+))

if h ∈ H
s+1
3

0 (R+), at least if s is not too small. The space Hr
0 (R+) is the closure

of D(R+) in Hr(R+), as usual. It will be demonstrated in this paper that (1.13)
possesses the following additional boundary smoothing properties.

Theorem 1.1. For a given pair (b, s) satisfying

(1.14)





0 ≤ b < 1
2 − s

3 if s ≤ 0, or

0 ≤ b < 5
6 − s

3 if − 1
2 < s < 1,

there exists a constant C depending only on s and b such that for any h ∈ H
s+1
3

0 (R+),
the corresponding solution u of (1.13) is the restriction of a function w(x, t) defined
on the whole plane satisfying

(1.15) Ns,b(w) ≤ C ‖h‖
H

3b+s−1/2
3 (R+)

.

Remark: Notice that this improves upon the just described result of Colliander and
Kenig [12] both as regards the range of b (solutions are seen to be smoother in t)
and by allowing for negative values of s.

As a corollary, there appears the following boundary smoothing property for
solutions of the IBVP (1.13).

Theorem 1.2. Let s ≥ − 3
2 and T > 0 be given. There exists a constant C

such that for any h ∈ H
s+1
3

0 (R+), the corresponding solution u of (1.13) belongs to

the space L2(0, T ;H
s+3

2
0 (R+)) and satisfies

(1.16) ‖u‖
L2(0,T ;Hs+ 3

2 (R+))
≤ C ‖h‖

H
s+1
3 (R+)

for a constant C depending only on s and T .

Remarks:

(i) The smoothing property presented by (1.16) is global in the spatial variable
x.

(ii) This smoothing property only holds for (1.13); it is not valid for the linear
IBVP associated to (1.1) nor for the nonlinear problem (1.1).

(iii) For any T > 0 and ε > 0, the following estimates were established by
Faminskii [18] for the solution u of (1.13);

(1.17) ‖u‖C(0,T ;L2(R+)) ≤ C(T, ε) ‖h‖L6+ε(0,T ) ,

(1.18) ‖ux(x, ·)‖L1
t (0,T ;L∞

x (R+)) ≤ C ‖h‖
H

1
3
+ε(R+)

and

(1.19) ‖ux‖L2(R+×R+) ≤ C ‖h‖
H

1
6 (R+)

.
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(iv) As a direct consequence of estimate (1.16), we have

(1.20) ‖ux(x, ·)‖L2
t (0,T ;L∞

x (R+)) ≤ C ‖h‖
H

1
3
+ε(R+)

which is slightly stronger than (1.18).
(v) The estimate (1.18) plays a key role in establishing sharper global well-

posedness results for (1.1) in [19].

In addition, two improved versions of Bourgain smoothing are developed here
for the nonlinear IBVP (1.1). These take the following form.

Theorem 1.3. For given s in the interval − 3
4 < s ≤ 1, there exists a constant

b ∈ (0, 1
2 ] depending on s such that for φ ∈ Hs(R+) and h ∈ H

3b+s−1/2
3 (R+), with

φ(0) = h(0) in case s > 1
2 , the IBVP (1.1) admits a solution u ∈ C(0, T ;Hs(R+))

which is the restriction to the domain R+ × (0, T ) of a function w(x, t), defined on
the whole plane, satisfying

(1.21) Λ̃α
s,b(w) ≤ C

(
‖φ‖Hs(R) + ‖h‖

H
3b+s−1/2

3 (R+)

)

for some α > 1
2 . In particular, if h ∈ H

s+1
3 (R+), then

(1.22) Λ̃α
s, 12

(w) ≤ C

(
‖φ‖Hs(R) + ‖h‖

H
s+1
3 (R+)

)
.

Remarks:

(i) In case s = 0, (1.22) is a slightly stronger version of the estimate (1.12)
due to Colliander and Kenig [12] in that it allows b = 1

2 instead of asking

that b be strictly less than 1
2 .

(ii) As pointed out earlier, one needs that φ ∈ Hs(R+) and h ∈ H
s+1
3

loc (R+) to
have the solution u of the IBVP (1.1) belonging to the space C(0, T ;H s(R+)).
However, when b < 1

2 ,

3b+ s− 1/2

3
<

1 + s

3
.

Estimate (1.21) thus reveals a boundary smoothing property for the non-
linear problem (1.1).

The second main issue addressed in this paper is the well-posedness of the IBVP
(1.1). Here and above, well-posedness means existence and uniqueness of solutions,
and continuous dependence of solutions on auxiliary data. The following definition
encapsulates the precise sense of well posedness enforced here.

Definition 1.4 (well-posedness). Let s, s′ ∈ R be given. The IBVP (1.1) is

said to be (locally) well-posed in the space Hs(R+)×Hs′

loc(R
+) if for any r > 0 there

exists a T = T (r) > 0 with T (r) → ∞ as r → 0 such that for given φ ∈ Hs(R+)

and h ∈ Hs′

loc(R
+) satisfying suitable compatibility conditions, and if

‖φ‖Hs(R+) + ‖h‖Hs′ (0,T ) ≤ r,

then (1.1) admits a unique solution u = u(x, t) in the space C(0, T ;Hs(R+)). More-
over, the solution depends continuously on its initial data φ and its boundary value
h in the corresponding spaces.

Remarks:



8 JERRY L. BONA, S. M. SUN, AND BING-YU ZHANG

(i) The well-posedness described above is called local well-posedness since the
T in the above definition may depend on r. If T may be taken to be
independent of r, then (1.1) is said to be globally well-posed in the space

Hs(R+) ×Hs′

loc(R
+).

(ii) By a standard scaling argument, the above definition of well-posedness is
equivalent to the following statement:

There exists a δ depending only on s and s′, such that for given φ ∈
Hs(R+) and h ∈ Hs′

loc(R
+) satisfying suitable compatibility conditions and

having

‖φ‖Hs(R+) + ‖h‖Hs′ (0,1) ≤ δ,

then (1.1) admits a unique solution u = u(x, t) in the space C(0, 1;Hs(R+)).
Moreover, the solution depends continuously on its initial data φ and its
boundary value h in the corresponding spaces.

(iii) There is a weaker notion discussed by Kato [30] of conditional well-
posedness in which solutions are only known to be unique if they satisfy
additional auxiliary conditions. Solutions satisfying such conditions are
often available via the contraction mapping principle applied to an asso-
ciated integral equation, but they are not necessarily known to be unique
in the broader class not respecting the extra conditions. This point will be
further elaborated presently.

The mathematical study of the IBVP (1.1) began with the work of Ton [42]
in which, existence and uniqueness were established assuming that the initial data
φ is smooth and the boundary data h ≡ 0. The first well-posedness result in the
strict sense of Definition 1.4 for the IBVP (1.1) was presented by Bona and Winther
[8, 9].

Theorem A The IBVP (1.1) is (globally) well-posed in the space H3k+1(R+) ×
Hk+1

loc (R+) for k = 1, 2, · · · .
Faminskii, in a wide-ranging paper [16], deals with the IBVP (1.1) for a general-

ization of the KdV-equation somewhat like that appearing later in Craig, Kappeler
and Strauss [15]. He puts forward a theory of well-posedness for generalized so-
lutions set in weighted H1−Sobolev classes. Moreover, he obtains extra interior
regularity in case the initial data decays suitably rapidly at +∞. In [4], Bona, Sun
and Zhang obtained the following conditional well-posedness result for (1.1).

Theorem B The IBVP (1.1) is locally well-posed in the space H s(R+)×H
s+1
3

loc (R+)
for s > 3/4 with the following auxiliary condition to ensure uniqueness;

(1.23) the solution u satisfies the estimates (1.9), (1.10) and (1.11).

Remarks: Notice that the last result reveals the relationship

s′ =
s+ 1

3

in the notation of the definition of well-posedness. This turns out to be the natural
consequence of the balance

∂t ∼ ∂3
x.

It was not noticed in the early attacks [8,9,16-19,42] on (1.1).
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In Theorem A, solutions are in fact classical, which is to say all the terms in the
equation are bounded and continuous functions of (x, t) and the equation is satisfied
identically. In Theorem B, the solutions are distributional, but of course have the
further regularity attached to lying in C(0, T ;Hs(R+)) and satisfying (1.9), (1.10)
and (1.11).

The following result for (1.1) was established recently by Colliander and Kenig
[12].

Theorem C 1 For any φ ∈ Hs(R+) and h ∈ H
s+1
3 (R+) with 0 ≤ s ≤ 1 which

satisfy the compatibility condition φ(0) = h(0) if s > 1
2 , there exists a T = T (φ, h) >

0 and a solution u ∈ C(0, T ;Hs(R+)) of the IBVP (1.1). The map (φ, h) → u is

Lipschitz-continuous from Hs(R+) ×H
s+1
3 (R+) to C(0, T ;Hs(R+)).

This is not a well-posedness result in the sense of Definition 1.4, since uniqueness
is not discussed. Actually, a well-posedness result is established for an integral
equation

(1.24) w = HS1(φ, h) + IHS1(wwx)

posed on the whole plane R×R, where HS1(φ, h) is an integral operator associated
to the linear homogeneous problem

vt + vx + vxxx = 0, x > 0, t ∈ (0, T ) ,

w(x, 0) = φ(x), w(0, t) = h(t) , x > 0, t ∈ (0, T )





and IHS1(f) is an integral operator associated with the linear inhomogeneous
problem

vt + vx + vxxx = f, x > 0, t ∈ (0, T ) ,

w(x, 0) = 0, w(0, t) = 0, x > 0, t ∈ (0, T ) .





The precise definitions of the integral operators HS1 and IHS1 are given in [12].
The relation between (1.24) and the IBVP (1.1) (without the linear transport term
ux in the equation) is that a solution w of (1.24) on R × R, when restricted to
the domain R+ × (0, T ), is a solution of (1.1). For the integral equation (1.24),
Colliander and Kenig established the following well-posedness result.

Theorem D Let 0 ≤ s ≤ 1 be given with s 6= 1
2 . There exists a δ > 0 such that,

if (φ, h) ∈ Hs(R+) ×H
s+1
3 (R+) satisfies

‖(φ, h)‖
Hs(R+)×H

s+1
3 (R+)

≤ δ

and φ(0) = h(0) when s > 1
2 , then the integral equation (1.24) admits a unique

solution u ∈ C(R;L2
x(R)) satisfying the auxiliary condition

Λ̃α
s,b(w) <∞

for some α > 1
2 and b in the range 0 < b < 1

2 (see the text following (1.12) above).

The well-posedness of (1.1) presented in Theorem B and Theorem D is con-
ditional rather than in the sense of Definition 1.4 since auxiliary conditions are
needed to ensure the uniqueness. By contrast, the well-posedness of (1.1) pre-
sented in Theorem A is in the strict sense of Definition 1.4 and is unconditional.

1This result has been extended recently by J. Holmer [25] to the case − 3
4

< s < 0.
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The issue of conditional well-posedness also appears in the works of Bourgain, and
Kenig, Ponce and Vega for the IVP (1.2) where the uniqueness is established only
for solutions in the space C(−T, T ;Hs(R)) satisfying certain auxiliary conditions.
A basic question is are these auxiliary conditions really essential to the unique-
ness? The reader is referred to [7, 30] for further discussion of unconditional and
conditional well-posedness for general classes of nonlinear evolution equations.

The issue is more interesting than might appear at first glance. There are many
ways to transform the IBVP (1.1) into an integral equation. Most of these admit
an analysis something like that made in [12] leading to Theorem C. The question
is, when two such solutions are restricted to R+ × (0, T ) for some T > 0, are they
equal to each other? For the linear problem, this is established in [12], but the
point is unresolved for the nonlinear problem.

One of the main theorems proved in this paper is the following well-posedness
result for (1.1), which also resolves the uniqueness issue for the nonlinear problem
just mentioned.

Theorem 1.9. Let s ∈ (− 3
4 , 1] and T > 0 be given. For any φ ∈ Hs(R+) and

h ∈ H
s+1
3 (0, T ) satisfying the compatibility condition

φ(0) = h(0)

when s > 1
2 , there exists a T ∗ > 0 depending only on ‖(φ, h)‖

Hs(R+)×H
s+1
3 (0,T )

such that the IBVP (1.1) admits a unique solution u ∈ C(0, T ∗;Hs(R+)) which is
the restriction to R+ × [0, T ] of a function w = w(x, t) satisfying the estimate

(1.25) Λ̃α
s, 12

(w) <∞

for some α > 1
2 .

Remarks:

(i) The solution given by this Theorem is smoother than that given by Theo-
rem D of Colliander and Kenig, and by Holmer since b = 1

2 rather than

being strictly less than 1
2 .

(ii) The theorem still holds if we replace 1
2 by some b < 1

2 in (1.25). Thus the
solutions given by Colliander and Kenig in Theorem D and the solution
provided by Theorem 1.9 are the same when restricted to R+.

Theorem 1.9 is also a conditional well-posedness result. It is natural to specu-
late whether or not the auxiliary condition (1.25) is removable. A way of resolving
this issue is to introduce a concept of mild solution for the IBVP (1.1).

Definition 1.10 (mild solution). Let s < 3 and T > 0 be given. For given

φ ∈ Hs(R+) and h ∈ H
s+1
3

loc (R+), a function u ∈ C(0, T ;Hs(R+)) is said to be a
mild solution of (1.1) on the time interval [0, T ] if there exists a sequence {un}∞n=1

in the space

C(0, T ;H3(R+)) ∩ C1(0, T ;L2(R+))

with

φn(x) = un(x, 0), hn(t) = un(0, t), n = 1, 2, · · · ,
such that
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(i) un solves the equation in (1.1) in L2(R+) for 0 < t < T , which is to
say, each term in the equation lies in C(0, T ;L2(R+)) and the equation is
satisfies for each t, almost everywhere in space;

(ii) limn→∞ sup0≤t≤T ‖un(·, t) − u(·, t)‖Hs(R+) = 0;

(iii) limn→∞ ‖φn − φ‖Hs(R+) = 0 and limn→∞ ‖hn − h‖
H

s+1
3 (0,T )

= 0.

Remark: A mild solution is a weak solution when s ≥ 0, but not necessarily
vice versa. However, a mild solution might not on the face of it be a distributional
solution when s < 0 since u2 may not be a well-defined distribution. Classical energy
arguments demonstrate uniqueness of solutions if s > 3

2 . Hence, while larger values
of s can be encompassed by demanding the sequence {un}∞n=1 be drawn from even
smoother function classes, there is no need for this in the present context.

We will show that the following facts hold about mild solutions.

Theorem 1.11 (existence and uniqueness).

(a) The weak solutions given by Theorem B, Theorem C and Theorem 1.9 are
all mild solutions.

(b) For given φ ∈ Hs(R+) and h ∈ H
s+1
3

loc (R+) with s > − 3
4 , the IBVP (1.1)

admits at most one mild solution.

An immediate consequence of this theorem is that the auxiliary conditions in
Theorem B, Theorem C and Theorem 1.9 are not essential for the uniqueness and
all of them can be removed.

If the appellation solution in Definition 1.4 is understood as mild solution,
then we have the following unconditional well-posedness results as one of the main
theorems in this paper.

Theorem 1.12 (unconditional well-posedness). The IBVP (1.1) is uncondi-

tionally (locally) well-posed in the space Hs(R+) × H
s+1
3

loc (R+) for s > − 3
4 . Its

solution u has the additional properties:




u satisfies the estimates (1.9)-(1.11) if s > 3
4 ;

u satisfies the estimates (1.22) if − 3
4 < s < 1.

Remark: As a model of real wave phenomena, the Korteweg-de Vries equation is
not derived to take account of singularity formulation. Thus, one would hope that
global well-posedness results obtain for (1.1). Indeed this was shown to be the case in

Hs(R+)×H
s+1
3

loc (R+) in [4] for s ≥ 3. For 1 ≤ s ≤ 3, the results of [4] only yielded

conditional global well-posedness in the slightly smaller space H s(R+)×H
7+3s
12

loc (R+).
Faminskii’s recent work [19] showed that (1.1) is conditionally globally well-posed

in the space Hs(R+) ×H
1+s+ε

3

loc (R+) when 0 ≤ s < 3, but leaves open the question
of whether the well-posedness is unconditional or not.

Concerning global well-posedness, the following result follows readily from the
local theory in Theorem 1.12.

Theorem 1.13 (global well-posedness). The IBVP (1.1) is unconditionally

globally well-posed in the space Hs(R+)×H
1+s+ε

3

loc (R+) for 0 ≤ s < 3 and is uncon-

ditionally globally well-posed in the space Hs(R+) ×H
1+s
3

loc (R+) for s ≥ 3.
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The paper is organized as follows. In Section 2, explicit representation formulas
are recalled for solutions of initial-boundary-value problems for the linear KdV
equation. These were developed in our earlier paper [4] and will be used to establish
the main theorems of this paper. We will demonstrate in this section how to convert
the IBVP (1.1) posed in a quarter plane to an integral equation posed on the
whole plane, which sets the stage for using powerful tools developed by Bourgain,
Kenig, Ponce and Vega and others to study the well-posedness of the IVP. Three
different types of extension of the boundary integral operator associated to the
non-homogeneous linear boundary value problem (1.13) are provided, which are
denoted by BIe(t), BIm1(t) and BIm2(t), respectively (see Section 2 for the precise
definitions of those operators). Among those operators, BIe(t) is the simplest; it is
basically an even extension (with respect to the spatial variable x) of the boundary
integral operator, from the half line R+ to the whole line R. Using this operator,
we are able to prove Theorem 1.1 in case 0 ≥ s ≥ − 1

2 . If s < − 1
2 , one only has the

estimate:

Ns,b(w) ≤ C ‖h‖
H

3b−1
3 (R+)

instead of the inequality (1.15) featured in Theorem 1.1. Because of this state of
affairs, the more complicated boundary operators BIm1(t) and BIm2(t) are intro-
duced. The operator BIm1(t) is helpful when s < 0, whereas BIm2(t) is effective
when 0 ≤ s < 1.

In Section 3, attention is given to the non-homogeneous linear boundary value
problem (1.13). It is demonstrated there that the aforementioned global boundary
smoothing properties obtain, as expounded in Theorem 1.1 and Theorem 1.2. The
boundary integral operators BIm1(t) and BIm2(t) play a crucial role in the analysis.

In Section 4, it is shown that the IBVP (1.1) is locally unconditionally well-

posed in the space Hs(R+)×H
s+1
3

loc (R+) for s > − 3
4 and is globally unconditionally

well-posed in the same space for s ≥ 3 and, for any ε > 0, in the space Hs(R+) ×
H

s+1+ε
3

loc (R+) when 0 ≤ s < 3.

The last section consists of two appendices. The proofs of some technical
lemmas used in Section 4 are presented in Appendix I. The results are based on
minor modification of arguments already in the literature. The proofs are sketched
for the convenience of readers. Some discussion of the boundary integral operator
BIe is provided in Appendix II. The outcome of the analysis is a result showing
that estimates involving BIe(t) alone do not suffice to prove Theorem 1.1, thereby
providing a reason for the introduction of the more complicated boundary operators
BIm1 and BIm2 .

2. Linear Problems and Extension Formulas

This section is divided into two subsections. In the first, some explicit represen-
tation formulas are recalled from [4] for solutions of initial-boundary-value problems
for the linear KdV-equation. Then, a method is put forward to convert the IBVP
(1.1) posed on a quarter plane to an integral equation posed on the whole plane.
The second subsection features a discussion of the aforementioned three different
extensions to R×R of the boundary integral operator associated to the boundary
value problem (2.1) given below. These extended boundary integral operators will
play a central role in our analysis.
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2.1 Explicit solution formulas for linear problems

First, consider the non-homogeneous problem

(2.1)
ut + ux + uxxx = 0, for x, t ≥ 0,

u(x, 0) = 0, u(0, t) = h(t).





Its solution may be written in the form (see [4])

(2.2) u(x, t) = [Wbdr(t)h] (x) = [Ub(t)h] (x) + [Ub(t)h] (x)

where, for x, t ≥ 0,

[Ub(t)h] (x) =
1

2π

∫ ∞

1

eit(µ3−µ)e
−

„√
3µ2−4+iµ

2

«

x
(3µ2 − 1)

∫ ∞

0

e−iξ(µ3−µ)h(ξ)dξdµ.

Next, consider the same linear equation posed with zero boundary conditions, but
non-trivial initial data, viz.

(2.3)
ut + ux + uxxx = 0, for x, t ≥ 0,

u(x, 0) = φ(x), u(0, t) = 0 .





By semigroup theory, its solution may be obtained in the form

(2.4) u(t) = Wc(t)φ

where the spatial variable is suppressed and Wc(t) is the C0-semigroup in the space
L2(R+) generated by the operator

Af = −f ′′′ − f ′

with the domain
D(A) = {f ∈ H3(R+)| f(0) = 0}.

By d’Alembert’s formula, one may use the semigroup Wc(t) to formally write the
solution of the forced linear problem

(2.5)
ut + ux + uxxx = f, for x, t ≥ 0,

u(x, 0) = 0, u(0, t) = 0,





in the form

(2.6) u(·, t) =

∫ t

0

Wc(t− τ)f(·, τ)dτ.

The following helpful formula for Wc(t)φ was established in [4]. As is apparent
from (2.4) and (2.6), this gives an explicit representation for solutions of the inho-
mogeneous problems (2.3) and (2.5).

Proposition 2.1. For any φ ∈ L2(R+), define

U+
0 (t)φ(x) =

1

2π

∫ ∞

1

eiµ3t−iµt

∫ ∞

0

eiµ(x−ξ)φ(ξ)dξdµ,

U+
1 (t)φ(x) = − 1

2π

∫ ∞

1

eiµ3t−iµte
−

„

iµ+
√

3µ2−4
2

«

x
∫ ∞

0

e−iµξφ(ξ)dξdµ

and

U+
2 (t)φ(x) =

1

2πi

∫ ∞

0

e−µ3t−µte
−

„

µ−i
√

3µ2+4
2

«

x
∫ ∞

0

e−µξφ(ξ)dξdµ.
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Then it follows that

Wc(t)φ(x) =

2∑

j=0

(
U+

j (t)φ(x) + U+
j (t)φ(x)

)
.

As a comparison, recall the explicit solution formula for the pure initial-value
problem (IVP) for the linear KdV equation (cf. (1.2))

(2.7)
ut + ux + uxxx = 0, x, t ∈ R,

u(x, 0) = g(x), x ∈ R,





namely

(2.8) u(x, t) = WR(t)g(x) = c

∫ ∞

−∞
ei(ξ3−ξ)teixξ

∫ ∞

−∞
e−iyξg(y)dydξ.

The formula for WR(t) is much simpler than that of Wc(t). We take advantage
of this simplicity to give a related representation of Wc(t) in terms of WR(t) and
Wbdr(t).

2

Let a function φ be defined on the half line R+ and let φ∗ be an extension of
φ to the whole line R. The mapping φ 7→ φ∗ can be organized so that it defines
a bounded linear operator B from Hs(R+) to Hs(R). Henceforth, φ∗ = Bφ will
refer to the result of such an extension operator applied to φ ∈ Hs(R+). Assume
that v = v(x, t) is the solution of

vt + vx + vxxx = 0, v(x, 0) = φ∗(x)

for x ∈ R, t ≥ 0. If g(t) = v(0, t), then vg = vg(x, t) = Wbdr(t)g is the cor-
responding solution of the non-homogeneous boundary-value problem (2.1) with
boundary condition h(t) = g(t) for t ≥ 0. It is clear that for x > 0 the function
v(x, t) − vg(x, t) solves the IBVP (2.3), and this leads directly to a representation
of the semigroup Wc(t) in terms of Wbdr(t) and WR(t).

Proposition 2.2. For a given s and φ ∈ Hs(R+) with φ(0) = 0, if φ∗ is its
extension to R as described above, then Wc(t)φ may be written in the form

Wc(t)φ = WR(t)φ∗ −Wbdr(t)g

for any x, t > 0, where g is the trace of WR(t)φ∗ at x = 0.

Remark: This representation of Wc(t) is less explicit than that presented in Propo-
sition 2.1. However, it enables us to use the well established theory for WR(t) to
study Wc(t). It is worth emphasis, however, that Wc, by its nature, does not depend
upon the extension φ∗ of φ. The representation in Proposition 2.2 does, of course,
depend on the extension and this representation will be useful in deriving linear
estimates.

In a similar manner, one may derive an alternative representation of solutions
of the inhomogeneous initial-boundary-value problem (2.5).

Proposition 2.3. If f∗(·, t) = Bf(·, t) is an extension of f from R+ ×R+ to
R×R+, say, then the solution u of (2.5) may be written in the form

u(·, t) =

∫ t

0

WR(t− τ)f∗(·, τ)dτ −Wbdr(t)v

2This was suggested by one of the referees of our earlier paper [4].
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for any x, t ≥ 0 where v ≡ v(t) is the trace of
∫ t

0
WR(t− τ)f∗(·, τ)dτ at x = 0.

Finally, consider the fully inhomogeneous initial-boundary-value problem

(2.9)
ut + ux + uxxx = f, for x, t ≥ 0,

u(x, 0) = φ(x), u(0, t) = h(t),





where φ and h are assumed to satisfy the compatibility condition h(0) = φ(0). Let
u(x, t) = z(x, t) + e−x−th(0). If u solves (2.9), then z(x, t) solves

zt + zx + zxxx = f + 3e−x−th(0), for x, t ≥ 0,

z(x, 0) = φ(x) − e−xφ(0), z(0, t) = h(t) − e−th(0).





Decompose z in the form z = w + v + y with

wt + wx + wxxx = f + 3e−x−th(0), for x, t ≥ 0,

w(x, 0) = 0, w(0, t) = 0,





vt + vx + vxxx = 0, for x, t ≥ 0,

v(x, 0) = φ(x) − e−xφ(0), v(0, t) = 0,





and
yt + yx + yxxx = 0, for x, t ≥ 0,

y(x, 0) = 0, y(0, t) = h(t) − e−th(0).





The following representation for the solution of (2.9) emerges from this decomposi-
tion together with the results of Propositions 2.3 and 2.4 and Duhamel’s principle.

Proposition 2.4. The solution u(x, t) of (2.9) may be realized in the form

u(x, t) = Wc(t)
(
φ(x) − e−xφ(0)

)
+

∫ t

0

Wc(t− τ)
(
f(x, τ) + 3e−x−τh(0)

)
dτ +

+
[
Wbdr(t)

(
h(t) − e−th(0)

)]
(x) + e−x−th(0).(2.10)

In case s ≤ 1
2 , the compatibility condition is not needed. One may choose

φ(0) = h(0) = 0. In this situation, (2.10) becomes simply

(2.11) u(x, t) = Wc(t)φ(x) +

∫ t

0

Wc(t− τ)f(x, τ)dτ + [Wbdr(t)h] (x).

In any case, by Proposition 2.2 and Proposition 2.3, (2.10) may be written as

u(x, t) = WR(t)φ∗1(x) +

∫ t

0

WR(t− τ)
(
f∗(x, τ) + 3p(x, τ)

)
dτ +

+
[
Wbdr(t)

(
h(t) − e−th(0) − g(t) − v(t)

)]
(x) + p(x, t)(2.12)

for x ∈ R+ and t ≥ 0, where

φ1(x) = φ(x) − e−xφ(0), p(x, t) = e−x−th(0)

and g(t) and v(t) are the temporal traces of

WR(t)φ∗1(x) and

∫ t

0

WR(t− τ)
(
f∗(x, τ) + 3p(x, τ)

)
dτ
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at x = 0, respectively. Of course, if the right-hand side f already happens to be
defined on R×R, there is no need to apply the extension operator.

The solution formula (2.12) holds only for x > 0 and t > 0. It will be convenient
to extend this formula in such a way that it holds for all x, t ∈ R. This will provide
a context in which to establish the well-posedness of the nonlinear problem in the
framework of Bourgain spaces. Note that the first two terms on the right side of
(2.12) are naturally defined for x, t ∈ R. Only the third term, viewed as a function
of x and t, needs to be extended from R+×R+ to R×R. With an appropriate exten-
sion of the third term, to be denoted by [W∗

bdr(t) (h(t) − e−th(0) − g(t) − v(t))] (x),
the function u(x, t) given by the formula (2.12) may be viewed as a function of x de-
fined on the whole line R, which of course solves (2.9) when restricted to R+ ×R+.
If one replaces f in (1.12) by −uux and drops the extension operator, there appears
the nonlinear integral equation

u(x, t) = WR(t)φ∗1(x) −
∫ t

0

WR(t− τ)u(x, τ)ux(x, τ)dτ +

+3

∫ t

0

WR(t− τ)p(x, τ)dτ +

[
W∗

bdr(t)
(
h(t) − e−th(0) − g(t) − v(t)

)]
(x) + p(x, t)

posed on the whole plane R × R. It is clear from its construction that if this
integral equation has a solution, then when the solution is restricted to the domain
R+ × (0, T ), it solves the IBVP (1.1). It is also clear that if u ∈ C(0, T ;H3(R+)),
then it is a strong solution (distributional solution for which all of the terms in the
equation lie in C(0, T ;L2(R+)) and such that they sum to the zero function in this
latter space).

2.2 Extensions of the boundary integral operator

As pointed out in Section 2.1, to use the Bourgain spaces in a straightforward
way to study well-posedness of the IBVP (1.1), one needs to extend the boundary
integral operator Wbdr(t) to an integral operator W∗

bdr(t) so that, for any given
boundary value function h(t), [W∗

bdr(t)h(t)](x) is, for each t ∈ R, a function of x
defined on the whole line R. There are infinitely many ways to accomplish such
an extension; among them the even extension is probably the simplest. However,
as will be made clear presently, and especially in Appendix II, special extensions
are needed if one intends to capture some of the more subtle smoothing properties
induced via the imposition of a boundary condition at x = 0.

Next are presented three different types of extensions of the boundary integral
operator Wbdr(t). Rewrite Wbdr(t) as

[Wbdr(t)h] (x)

=
1

2π
Re

∫ ∞

1

eiµ3t−iµte−(
√

3µ2−4+iµ) x
2 (3µ2 − 1)

∫ ∞

0

e−i(µ3−µ)ξh(ξ)dξdµ

=
1

2π
Re

∫ 4

1

eiµ3t−iµte
−

“√
3µ2−4+iµ

”

φ3(x)
(3µ2 − 1)φ1(µ)

∫ ∞

0

e−i(µ3−µ)ξh(ξ)dξdµ

+
1

2π
Re

∫ ∞

2√
3

eiµ3t−iµte−(
√

3µ2−4+iµ) x
2 (3µ2 − 1)φ2(µ)

∫ ∞

0

e−i(µ3−µ)ξh(ξ)dξdµ

:=
1

2π
{I1(x, t) + I2(x, t)}
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where φ1(µ) and φ2(µ) are nonnegative cut-off functions satisfying

φ1(µ) + φ2(µ) = 1 for any µ ∈ R+

with supp φ1 ⊂ (−1, 4), supp φ2 ⊂ (3,∞) and φ3(x) is a smooth function on R such
that

φ3(x) =
x

2
for x ≥ 0, φ3(x) = 0 for x ≤ −1 .

Observe that √
3µ2 − 4 + iµ

2
x =

√
4 − 3µ2 + µ

2
ix

is purely imaginary for 1 ≤ µ ≤ 2/
√

3. The integral I1 is naturally defined for all
values of x and t and, viewed as a function defined on R×R, is in fact C∞−smooth
there, with all its derivatives decreasing rapidly as x→ ±∞. Thus no complicated
extension of I1 is required as the obvious one suffices. It is otherwise for I2. To
discuss I2, it is convenient to let µ(λ) denote the positive solution of

µ3 − µ = λ

for λ ≥ 0 and µ ≥ 1, while µ(λ) = −µ(−λ) for λ < 0. Note that µ(λ) is strictly
increasing on [0,∞) and that values of µ ≥ 2√

3
correspond to values of λ ≥ 2

3
√

3
.

By a change of variables, the integral I2 can be rewritten in the form

I2(x, t) = Re

∫ ∞

2
3
√

3

∫ ∞

0

eiλte
−

“√
3µ2(λ)−4+iµ(λ)

”

x
2 e−iλsφ2(µ(λ))h(s)dsdλ

=

∫ ∞

2
3
√

3

∫ ∞

0

e−
x
√

3µ2(λ)−4
2 cos

(
λ(t− s) − 1

2
µ(λ)x

)
φ2(µ(λ))h(s)dsdλ

:= E(x, t)

for x ≥ 0. Let the extension of E(x, t) to x < 0 be g(x, t) and write

I2(x, t) =





E(x, t), x ≥ 0,

g(x, t), x < 0,

where g(x, t) is to be defined. Note that

Fx[I2](ξ, t) =

∫ ∞

−∞
I2(x, t)e

ixξdx =

∫ 0

−∞
g(x, t)

(
cos(xξ) + i sin(xξ)

)
dx

+

∫ ∞

0

E(x, t)
(

cos(xξ) + i sin(xξ)
)
dx

=

∫ ∞

0

(
E(x, t) cos(xξ) + g(−x, t) cos(xξ)

)
dx

+i

∫ ∞

0

(
E(x, t) sin(xξ) − g(−x, t) sin(xξ)

)
dx.

Recall the identities
∫ ∞

0

sin(xξ)

∫ ∞

0

cos(xη)h(η)dηdx =
1

2

∫ ∞

−∞

1

ξ − x
h(x)dx
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and

h(x) =
2

π

∫ ∞

0

cos(xξ)

∫ ∞

0

cos(ξη)h(η)dηdξ ,

where h(x) is extended evenly to negative values of x. These relations yield
∫ ∞

0

(
E(x, t) sin(xξ) − g(−x, t) sin(xξ)

)
dx

=
1

π

∫ ∞

−∞

1

ξ − η

(∫ ∞

0

cos(ηx)E(x, t)dx −
∫ ∞

0

cos(ηx) g(−x, t)dx
)
dη.

In consequence, it transpires that

Fx,t[I2] = Ft

[∫ ∞

0

(
E(x, t) cos(xξ) + g(−x, t) cos(xξ)

)
dx

]

+
i

π

∫ ∞

−∞

1

ξ − η
Ft

[∫ ∞

0

cos(ηx)E(x, t)dx −
∫ ∞

0

cos(ηx) g(−x, t)dx
]
dη.

Note that different choices of g(x, t) give different extensions of E(x, t) to x < 0.
The following three choices of g(x, t) will be studied in this article.

(i) Let g(−x, t) = E(x, t) for x ∈ R+. This is perhaps the simplest extension. It
results in the formula

(2.13) Fx,t[I2] = Ft

[
2

∫ ∞

0

E(x, t) cos(xξ)dx

]
.

The boundary integral operator corresponding to this extension of Wbdr(t) is de-
noted by BIe(t); the subscript e stands for even of course.

(ii) For x > 0, choose g(−x, t) such that

Ft

[∫ ∞

0

g(−x, t) cos(xξ)dx

]
(τ) = −Ft

[∫ ∞

0

E(x, t) cos(xξ)dx

]
(τ)Θ(ξ, τ)

+Ft

[∫ ∞

0

E(x, t) cos(xξ)dx

]
(τ)
(
1 − Θ(ξ, τ)

)
ν(ξ)ω(τ)(2.14)

where Θ(ξ, τ) = χ(|ξ| − δ|τ |1/3) with δ > 0 fixed, 0 ≤ χ(ξ) ≤ 1 everywhere, and

χ(ξ) =





1, ξ < 0,

0, ξ > 1,

whilst

ν(ξ) =





−1 , |ξ| ≥ 1,

0, |ξ| < 1,

and ω(τ) is a smooth and bounded function to be specified momentarily. It is easy
to see that such a g is a combination of even and odd extension, viz.

Fx,t [I2] := Î21(ξ, τ) + Î22(ξ, τ)

where

Î21(ξ, τ) = Ft

[∫ ∞

0

E(x, t) cos(xξ)dx

]
(τ)
(
1 − Θ(ξ, τ)

)(
1 + ν(ξ)ω(τ)

)
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and

Î22(ξ, τ) =
i

π

∫ ∞

−∞

1

ξ − η
Ft

[∫ ∞

0

E(x, t) cos(xη)dx

]
(τ)

×
[
2Θ(η, τ) +

(
1 − Θ(η, τ)

)(
1 − ν(η)ω(τ)

)]
dη

=
i

π

∫ ∞

0

(
1

ξ − η
+

1

ξ + η

)
Ft

[∫ ∞

0

E(x, t) cos(xη)dx

]
(τ)

×
[
2Θ(η, τ) +

(
1 − Θ(η, τ)

)(
1 − ν(η)ω(τ)

)]
dη.(2.15)

Because of the algebraic identity

1

ξ − η
+

1

ξ + η
=

2

ξ

(
1 +

η2

ξ2 − η2

)
,

we may write Î22(ξ, τ) as

Î22(ξ, τ) =
2i

πξ

∫ ∞

0

Ft

[∫ ∞

0

E(x, t) cos(xη)dx

]

×
[
2Θ(η, τ) +

(
1 − Θ(η, τ)

)(
1 − ν(ξ)ω(τ)

)]
dη

+
2i

πξ

∫ ∞

0

(η/ξ)2

1 − (η/ξ)2
Ft

[∫ ∞

0

E(x, t) cos(xη)dx

]

×
[
2Θ(η, τ) +

(
1 − Θ(η, τ)

)(
1 − ν(ξ)ω(τ)

)]
dη

:= Q1(ξ, τ) +Q2(ξ, τ) .

Rewrite the integral E(x, t) as follows;

E(x, t) = Re

∫ ∞

2
3
√

3

∫ ∞

0

eiλte
−
(√

3µ2(λ)−4+iµ(λ)

)
x
2
e−iλsφ2(µ(λ))h(s)dsdλ

=
1

2

∫ ∞

2
3
√

3

∫ ∞

0

eiλte
−
(√

3µ2(λ)−4+iµ(λ)

)
x
2
e−iλsφ2(µ(λ))h(s)dsdλ

+
1

2

∫ ∞

2
3
√

3

∫ ∞

0

e−iλte
−
(√

3µ2(λ)−4−iµ(λ)

)
x
2
eiλsφ2(µ(λ))h(s)dsdλ

=
1

2

∫ ∞

−∞

∫ ∞

0

eiλte
−
(√

3µ2(λ)−4+iµ(λ)

)
x
2
e−iλsφ2(µ(λ))h(s)dsdλ

+
1

2

∫ ∞

−∞

∫ ∞

0

e−iλte
−
(√

3µ2(λ)−4−iµ(λ)

)
x
2
eiλsφ2(µ(λ))h(s)dsdλ
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where the fact that φ2(µ(λ)) = 0 for λ < 2
3
√

3
was used in the last step, a point

that follows since suppφ2 ⊂ (3,∞). A direct computation reveals that

∫ ∞

0

e
−
(√

3µ2(λ)−4+iµ(λ)

)
x
2

cos(xη)dx = K11(η, λ)+K21(η, λ)+K31(η, λ)+K41(η, λ)

and

∫ ∞

0

e
−
(√

3µ2(λ)−4−iµ(λ)

)
x
2

cos(xη)dx = K12(η, λ)+K22(η, λ)+K32(η, λ)+K42(η, λ)

with

K11(η, λ) =

√
3µ2(λ) − 4

3µ2(λ) − 4 +
(
2η + µ(λ)

)2 ,(2.16)

K21(η, λ) =

√
3µ2(λ) − 4

3µ2(λ) − 4 +
(
2η − µ(λ)

)2 ,(2.17)

K31(η, λ) =

(
3µ2(λ) − 4

)
µ(λ)

2i
(
3µ2(λ) − 4 + (2η + µ(λ))2

)(
3µ2(λ) − 4 + (2η − µ(λ))2

) ,(2.18)

K41(η, λ) =

(
µ2(λ) − 4η2

)
µ(λ)

2i
(
3µ2(λ) − 4 + (2η + µ(λ))2

)(
3µ2(λ) − 4 + (2η − µ(λ))2

)(2.19)

and 



K12(η, λ) = K11(η, λ), K22(η, λ) = K21(η, λ),

K32(η, λ) = −K31(η, λ), K42(η, λ) = −K41(η, λ).
(2.20)

Thus, Ft

[∫∞
0 E(x, t) cos(xη)dx

]
may be expressed in the form

Ft

[∫ ∞

0

E(x, t) cos(xη)dx

]
(τ)

=
4∑

m=1

Km1(η, τ)φ2(µ(τ))ĥ(τ) +
4∑

m=1

Km2(η,−τ)φ2(µ(−τ))ĥ(−τ)(2.21)

where

ĥ(τ) =

∫ ∞

0

e−iτsh(s)ds.

Here, we note that from the definition of φ2, for any given τ there is only one
nonzero summand in (2.21) and the sum involving the terms Km2(η,−τ) is the
same as the sum involving on the terms Km1(η, τ). Because φ2(µ(τ)) is a bounded
C∞-function, and since, as direct calculation shows,

∣∣∣∣∣

∫ ∞

0

4∑

m=1

Km1(η, τ)
(
1 − Θ(η, τ)

)
dη

∣∣∣∣∣ ≥ C2 > 0,



BOUNDARY SMOOTHING PROPERTIES 21

where C2 is a fixed constant independent of τ , it follows that the formula,

(
1 + ω(τ)

)
φ2(µ(τ))

∫ ∞

0

4∑

m=1

Km1(η, τ)
(
1 − Θ(η, τ)

)
dη

= −2φ2(µ(τ))

∫ ∞

0

4∑

m=1

Km1(η, τ)Θ(η, τ)dη ,(2.22)

defines the C∞(R)−function ω(τ) in such a way that dkω/dτk is bounded on R,
for k = 0, 1, 2, · · · . It is clear that this choice of ω(τ) makes

Q1(ξ, τ) ≡ 0, for all τ when |ξ| ≥ 1 .

Hence, for |ξ| ≥ 1,

Î22(ξ, τ) = Q2(ξ, τ)

=
2i

πξ

∫ ∞

0

η2

ξ2 − η2
Ft

[∫ ∞

0

E(x, t) cos(xη)dx

]
(τ)Θ1(η, τ)dη(2.23)

where

Θ1(η, τ) = 2Θ(η, τ) +
(
1 − Θ(η, τ)

)(
1− ν(η)ω(τ)

)
.

Moreover, when |ξ| ≥ 1 and τ ≥ 0,

Î22(ξ, τ) =
2i

πξ

∫ ∞

0

η2

ξ2 − η2

[
4∑

m=1

Km1(η, τ)φ2(µ(τ))ĥ(τ)

]
Θ1(η, τ)dη,(2.24)

whereas

Î22(ξ, τ) =
2i

πξ

∫ ∞

0

η2

ξ2 − η2

[
4∑

m=1

Km2(η,−τ)φ2(µ(−τ))ĥ(−τ)
]

Θ1(η, τ)dη

when |ξ| ≥ 1 and τ < 0. The boundary integral operator corresponding to this
extension of Wbdr(t) is denoted by BIm1(t).

(iii) For x > 0, choose g(−x, t) such that

Ft

[∫ ∞

0

g(−x, t) cos(xξ)dx

]
(τ) = −Ft

[∫ ∞

0

E(x, t) cos(xξ)

]
(τ)
(
1 − Θ(ξ, τ)

)

+Ft

[∫ ∞

0

E(x, t) cos(xξ)dx

]
(τ)Θ(ξ, τ)ν(ξ)ω(τ).(2.25)

In this case,

Fx,t [I2] := Î∗21(ξ, τ) + Î∗22(ξ, τ)(2.26)

where, if Θ2(η, τ) = 2 (1 − Θ(η, τ)) + Θ(η, τ)(1 − ν(η)ω(τ)), then

Î∗21(ξ, τ) = Ft

[∫ ∞

0

E(x, t) cos(xξ)dx

]
(τ)Θ(ξ, τ)

(
1 + ν(ξ)ω(τ)

)
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and

Î∗22(ξ, τ) =
i

π

∫ ∞

−∞

1

ξ − η
Ft

[∫ ∞

0

E(x, t) cos(xη)dx

]
(τ)Θ2(η, τ)dη

=
i

π

∫ ∞

0

(
1

ξ − η
+

1

ξ + η

)
Ft

[∫ ∞

0

E(x, t) cos(xη)dx

]
(τ)Θ2(η, τ)dη

=
2i

πξ

∫ ∞

0

Ft

[∫ ∞

0

E(x, t) cos(xη)dx

]
(τ)Θ2(η, τ)dη

+
2i

πξ

∫ ∞

0

(η/ξ)2

1− (η/ξ)2
Ft

[∫ ∞

0

E(x, t) cos(xη)dx

]
(τ)Θ2(η, τ)dη

:= Q∗
1(ξ, τ) +Q∗

2(ξ, τ).

Just as in case (ii), one can choose an appropriate function ω(τ) such that

Q∗
1(ξ, τ) = 0 for |ξ| > 1 and any τ ∈ R.

The boundary integral operator corresponding to this extension of Wbdr(t) is de-
noted by BIm2(t).

3. Boundary smoothing properties

In this section, attention is focused upon the non-homogeneous boundary-
value problem

(3.1)
ut + ux + uxxx = 0, for x, t ≥ 0,

u(x, 0) = 0, u(0, t) = h(t).





Our analysis turns around a detailed understanding of the boundary integral oper-
ators introduced in Section 2.

For given s ∈ R, 0 ≤ b ≤ 1, α > 1
2 and any function w ≡ w(x, t) : R× R → R,

define

Λs,b(w) =

(∫ ∞

−∞

∫ ∞

−∞

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)2s |ŵ(ξ, τ)|2 dξdτ

) 1
2

,

λα(w) =

(∫ ∞

−∞

∫

|ξ|≤1

(1 + |τ |)2α |ŵ(ξ, τ)|2 dξdτ
) 1

2

.(3.2)

Consider first the operator BIm1(t).

Theorem 3.1. Let ψ(t) be a given smooth function of t with compact support
and assume that s and b are within the range 0 ≤ b < 1

2 + s
3 < 1. Then there exists

a constant C depending only on ψ such that

(3.3) Λ−s,b

(
ψBIm1(h)

)
≤ C ‖h‖

H
3b−s−1/2

3 (R+)

for any h ∈ H
3b−s−1/2

3
0 (R+).
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Proof: Recall that
[BIm1(t)h] (x) = I1(x, t) + I2(x, t)

where I1(x, t) is a function defined on the whole plane R × R and is, in fact, a
C∞-smooth function of x and t. For any t ∈ R,

‖I1(x, t)‖L2
x(R) ≤ C

∥∥∥∥(3µ2 − 1)φ1(µ)

∫ ∞

0

e−i(µ3−µ)ξh(ξ)dξ

∥∥∥∥
L2

µ(R)

≤ C ‖h‖L2(R+) .

This type of inequality is also valid for ∂j
x∂

l
tI1 for any j, l ≥ 0. Thus it is straight-

forward to see that if h ∈ L2(R+), then

(3.4) Λ−s,b(ψI1) ≤ C‖h‖L2(R+)

for any given b ≥ 0 and s ∈ R where the constant C depends only on ψ, b and s.
To analyze I2(x, t), remember that

Fx,t[I2](ξ, τ) = Î21(ξ, τ) + Î22(ξ, τ)

where, for |ξ| ≥ 1,

Î21(ξ, τ) = Ft

[∫ ∞

0

E(x, t) cos(xξ)dx

]
(τ)
(
1 − Θ(ξ, τ)

)(
1 + ω(τ)

)

and

Î22(ξ, τ) =
i

π

∫ ∞

0

(
1

ξ − η
+

1

ξ + η

)
Ft

[∫ ∞

0

E(x, t) cos(xη)dx

]
(τ)Θ1(η, τ)dη.

Since the relevant estimates in the region |ξ| < 1 are straightforward, in what
follows it is always assumed that |ξ| ≥ 1. First, consider the term

∫ ∞

−∞

∫ ∞

−∞

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

∣∣∣Î21(ξ, τ)
∣∣∣
2

dξdτ.

We have the following estimate for this term.

Proposition 3.2. Let s ≥ 0 and 0 < b < 1
2 + s

3 be given. There exists a
constant C such that
(3.5)∫ ∞

−∞

∫ ∞

−∞

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

∣∣∣Î21(ξ, τ)
∣∣∣
2

dξdτ ≤ C‖h‖2

H
3b−s−1/2

3 (R+)

for any h ∈ H
3b−s−1/2

3 (R+).

Proof of Proposition 3.2: According to (2.21),

Ft

[∫ ∞

0

E(x, t) cos(x, ξ)dx

]
(τ)

=

4∑

m=1

Km1(ξ, τ)φ2(µ(τ))ĥ(τ) +

4∑

m=1

Km2(ξ,−τ)φ2(µ(−τ))ĥ(−τ).

In the following, detailed analysis is given for terms containing K21 and K41; the
estimates for the other terms follow similar lines. Suppose that ξ ≥ 0. The case
ξ < 0 is entirely analogous. Write

Am1(ξ, τ) = Km1(ξ, τ)φ2(µ(τ))ĥ(τ), m = 1, 2, 3, 4.



24 JERRY L. BONA, S. M. SUN, AND BING-YU ZHANG

For given s and b > 0, we have

∫ ∞

−∞

∫ ∞

0

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

∣∣∣A21(ξ, τ)
(
1 + ω(τ)

)(
1 − Θ(ξ, τ)

)∣∣∣
2

dξdτ

≤ C

∫ ∞

−∞
φ2(µ(τ))

∣∣∣∣
∫ ∞

0

h(s)e−isτds

∣∣∣∣
2

B21(τ)dτ

with

B21(τ) =

∫ ∞

0

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

∣∣∣
(
1 + ω(τ)

)(
1 − Θ(ξ, τ)

)∣∣∣
2

×

(
3µ2(τ) − 4

)
φ2(µ(τ))

(
3µ2(τ) − 4 + (2ξ − µ(τ))2

)2 dξ.

Claim: If b < 1
2 + s

3 , then, as τ → ∞,

B21(τ) = O(τ
6b−2s−1

3 ).

To see the claim is true, note that in fact

B21(τ) =

∫ ∞

δ|τ |
1
3

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

(
3µ2(τ) − 4

)
φ2(µ(τ))

(
3µ2(τ) − 4 + (2ξ − µ(τ))2

)2

×
(
1 + ω(τ)

)2(
1 − Θ(ξ, τ)

)2

dξ

since Θ(ξ, τ) = 1 when ξ < δ|τ | 13 , where δ > 0 is fixed, but arbitrary for the nonce
(see (2.14)). Let ξ = η(ζ) be the real solution of the equation

ξ3 − ξ = ζ, for 0 ≤ ζ <∞

that connects continuously to the unique real root as ζ becomes large (e.g. ζ > 2
3
√

3
).

Note that

η(ζ) ∼ ζ
1
3 as ζ → ∞ .
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For large τ , it is also the case that µ(τ) ∼ τ
1
3 . Thus, for τ > 0 large enough,

B21(τ) ≤ C

∫ ∞

δ3τ

(
3µ2(τ) − 4

)
(1 + |τ − ζ|)2b

(
3µ2(τ) − 4 + (2η(ζ) − µ(τ))2

)2

(
1 + |ζ|

)− 2s
3 1

3η2(ζ) − 1
dζ

≤ C

∫ ∞

δ3τ

τ
2
3 (1 + |τ − ζ|)2b

(
1 + 3τ

2
3 + (2η(ζ) − τ

1
3 )2
)2 (1 + |ζ|)− 2s

3
1

3η2(ζ) − 1
dζ

= C

∫ 2τ

δ3τ

τ
2
3 (1 + |τ − ζ|)2b

(
1 + 3τ

2
3 + (2η(ζ) − τ

1
3 )2
)2 (1 + |ζ|)− 2s

3
1

3η2(ζ) − 1
dζ

+ C

∫ ∞

2τ

τ
2
3 (1 + |τ − ζ|)2b

(
1 + 3τ

2
3 + (2η(ζ) − τ

1
3 )2
)2 (1 + |ζ|)− 2s

3
1

3η2(ζ) − 1
dζ

:= G21−1(τ) +G21−2(τ).

Continuing this sequence of inequalities, note further that

G21−1(τ) ≤ C
τ

2
3

(1 + τ
2
3 )2

∫ 2τ

δ3τ

(1 + |τ − ζ|)2b

(1 + |ζ|) 2s
3

1

3η2(ζ) − 1
dζ

≤ C
τ

2
3 (1 + τ)2b

(1 + τ
2
3 )2

∫ 2τ

δ3τ

1

(1 + ζ)
2+2s

3

dζ

≤ Cτ
6b−2s−1

3

and

G21−2(τ) ≤ Cτ
2
3

∫ ∞

2τ

(1 + |τ − ζ|)2b

(1 + τ
2
3 + ζ

2
3 )2(1 + ζ)

2s
3 ζ

2
3

dζ

≤ Cτ
2
3

∫ ∞

2τ

ζ2b

ζ2(1+ s
3 )
dζ

≤ Cτ
6b−2s−1

3

if b < 1
2 + s

3 . The claim is thereby established. As a consequence, the following

inequality emerges. For given s ≥ 0 and b < 1
2 + s

3 , there exists a constant C such

that
∫ ∞

2
3
√

3

φ2(µ(τ))

∣∣∣∣
∫ ∞

0

h(s)e−iwτdw

∣∣∣∣
2

B21(τ)dτ

≤ C

∫ ∞

2
3
√

3

φ2(µ(τ))τ
2(3b−s−1/2)

3

∣∣∣∣
∫ ∞

0

h(w)e−iwτdw

∣∣∣∣
2

dτ

≤ C ‖h‖2
H(3b−s−1/2)/3(R+)(3.6)

for any h ∈ H
3b−s−1/2

3 (R+).
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Next, consider the term

A41(ξ, τ) = K41(ξ, τ)φ2(µ(τ))ĥ(τ)

involving K41. For given b > 0 and s ∈ R,
∫ ∞

−∞

∫ ∞

0

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s |A41(ξ, τ)|2(1 + ω(τ))2

(
1 − Θ(ξ, τ)

)2

dξdτ ≤ C

∫ ∞

2
3
√

3

φ2(µ(τ))

∣∣∣∣
∫ ∞

0

e−isτh(s)ds

∣∣∣∣
2

B41(τ)dτ

where B41(τ) is equal to

∫ ∞

0

(4ξ2 − µ2(τ))2µ(τ)2
(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

(1 + ω(τ))2(1 − Θ(ξ, τ))2
(
3µ2(τ) − 4 + (2ξ + µ(τ))2

)2(
3µ2(τ) − 4 + (2ξ − µ(τ))2

)2 dξ.

As in the estimation of B21(τ), one shows that if b < 1
2 + s

3 ,

B41(τ) = O(τ
6b−2s−1

3 )

as τ → ∞ using again the fact that µ(τ) ∼ τ
1
3 for large positive value of τ .

Consequently, for 0 ≤ b < 1
2 + s

3 and s ≥ 0, there exists a constant C such that

∫ ∞

2
3
√

3

φ2(µ(τ))

∣∣∣∣
∫ ∞

0

h(s)e−isτds

∣∣∣∣
2

B41(τ)dτ ≤ C ‖h‖2

H
3b−s−1/2

3 (R+)
.

The proof of Proposition 3.2 is complete. �

Next, attention is given to the term
∫ ∞

−∞

∫ ∞

−∞

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

∣∣∣Î22(ξ, τ)
∣∣∣
2

dξdτ,

for which we have the following estimate.

Proposition 3.3. Let s and b be given satisfying 0 ≤ b < 5
6 + s

3 <
4
3 . Then

there exists a constant C such that
(3.7)∫ ∞

−∞

∫ ∞

−∞

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

∣∣∣Î22(ξ, τ)
∣∣∣
2

dξdτ < C‖h‖2

H
3b−s− 1

2
3 (R+)

for any h ∈ H
3b−s− 1

2
3 (R+).

Proof of Proposition 3.3: First, we note that to study Î22(ξ, τ), we can use the

form of Î22(ξ, τ) in (2.15) or (2.24). As before, details are given for only one term
in Ft

[∫∞
0 E(x, t) cos(xη)dx

]
, say

A11(ξ, τ) = K11(ξ, τ)φ2(µ(τ))ĥ(τ).

Notice that A11(−ξ, τ) = A21(ξ, τ). Hence, we may consider only the case wherein
ξ ≥ 0. Denote by q2 the function

q2(ξ, τ) =
1

3µ2(τ) − 4 + (2ξ + µ(τ))2
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and, for ξ ≥ 1, let D2 be given by

D2(ξ, τ) = 2

∫ ∞

0

η2Θ(η, τ)

ξ(ξ2 − η2)
q2(η, τ)dη+

(
1 +ω(τ)

) ∫ ∞

0

η2
(
1 − Θ(η, τ)

)

ξ(ξ2 − η2)
q2(η, τ)dη

for ξ ≥ δ1µ(τ) (from (2.24)) and

D2(ξ, τ) = 2

∫ ∞

0

ξΘ(η, τ)

(ξ2 − η2)
q2(η, τ)dη +

(
1 + ω(τ)

)∫ ∞

0

ξ
(
1 − Θ(η, τ)

)

(ξ2 − η2)
q2(η, τ)dη

for 0 ≤ ξ ≤ δ1µ(τ) (from (2.15)), where δ1 > 0 is a small constant. The relevance
of these functions will become clear presently. First, note that

A11(ξ, τ) = q2(ξ, τ)φ2(µ(τ))ĥ(τ)
√

3µ2(τ) − 4.

As for D2, changing variables in the integrals of its definition shows it to have the
form

D2(ξ, τ) = 2

∫ ∞

0

η2

ξ(ξ2 − η2)
Θ(η, τ)q2(η, τ)dη

+
(
1 + ω(τ)

) ∫ ∞

0

η2

ξ(ξ2 − η2)

(
1 − Θ(η, τ)

)
q2(η, τ)dη

=
2

µ2(τ)

∫ a0

0

η2

y(y2 − η2)
Θ(µ(τ)η, τ)p2(η, τ)dη

+
1 + ω(τ)

µ2(τ)

∫ ∞

a1

η2

y(y2 − η2)

(
1 − Θ(µ(τ)η, τ)

)
p2(η, τ)dη

:= D21(y, τ) +D22(y, τ)(3.8)

where

a0 =
δ|τ | 13 + 1

µ(τ)
, a1 =

δ|τ | 13
µ(τ)

, y = ξ/µ(τ) ≥ δ1, p2(η, τ) =
1

2 − 4
µ2(τ) + (2η + 1)2

.

We have similar definitions for 0 ≤ y ≤ δ1. Remark that a0 is bounded indepen-
dently of τ and so for y large enough, y2 − η2 is bounded below for η ∈ [0, a0].
Thus,

D21(y, τ) =
2

y3µ2(τ)

∫ a0

0

η

1− (η/y)2
Θ(µ(τ)η, τ)p2(η, τ)dη

:=
1

y3µ2(τ)
D21,2(τ, y)

where

|D21,2(τ, y)| ≤ C for all τ and y large.
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Turning to D22, note that Θ(µ(τ)η, τ) = 0 for η ≥ a1, so
∫ ∞

a1

η2

y(y2 − η2)

(
1 − Θ(µ(τ)η, τ)

)
p2(η, τ)dη

=

∫ ∞

a1

η2

y(y2 − η2)
p2(η, τ)dη

=
1

y2

∫ ∞

a1
y

1

1 − z2
z2y2p2(zy, τ)dz

=
1

y2

∫ ∞

a1
y

1

1 − z2

(
z2y2p2(zy, τ) − 1/4

)
dz +

1

4y2

∫ ∞

a1
y

1

1 − z2
dz

:=
1

y2

(
D22,1(y, τ) +D22,2(y, τ)

)
.

Of course,

D22,2(y, τ) =
1

4

∫ ∞

a1
y

1

1 − z2
dz = −1

4

∫ a1
y

0

1

1 − z2
dz

since ∫ ∞

0

1

1− z2
dz = 0

as a principal-value integral. It is therefore clear that

|D22,2(y, τ)| ≤
C

y

for some constant C independent of τ when y is large, say y ≥ y0. As forD22,1(y, τ),
note that

η2y2p2(ηy, τ) − 1/4 =
1

y

(
4

µ2(τ)y
− 3

y
− 8η

)(
2

y2
− 4

µ2(τ)y2
+

(
2η +

1

y

)2
)−1

:=
1

y
p∗(η, y, τ).

Rewrite D22,1(y, τ) as

D22,1(y, τ) =
1

y

(∫ 1/2

a1/y

+

∫ 2

1/2

+

∫ ∞

2

)
p∗(η, y, τ)

1 − η2
dη

to obtain ∣∣∣∣∣

(∫ 2

1/2

+

∫ ∞

2

)
p∗(η, y, τ)

1 − η2
dη

∣∣∣∣∣ ≤ C

and ∣∣∣∣∣

∫ 1/2

a1/y

p∗(η, y, τ)

1 − η2
dη

∣∣∣∣∣ ≤ C(1 + ln y)

where C is independent of τ and y for µ(τ) ≥ 3 and y large. Thus, if y ≥ y0, then

(3.9) |D2(µ(τ)y, τ)| ≤ C

y3
(1 + ln y)

1

µ2(τ)
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where C is independent of τ and y. The following calculation shows the relevance
of D2;

∫ ∞

0

∫ ∞

0

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

∣∣∣∣
∫ ∞

−∞

1

ξ − η
A11(η, τ)Θ1(η, τ)dη

∣∣∣∣
2

dξdτ

=

∫ ∞

0

1

π2
φ2

2(µ(τ))|ĥ|2(τ)
(
3µ2(τ) − 4

)∫ ∞

0

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

×
∣∣∣∣
∫ ∞

−∞

1

ξ − η
q2(η, τ)Θ1(η, τ)dη

∣∣∣∣
2

dξdτ

=

∫ ∞

0

1

π2
φ2

2(µ(τ))|ĥ|2(τ)
(
3µ2(τ) − 4

)

×
∫ ∞

0

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s |D2(ξ, τ)|2dξdτ.

Appropriate bounds on D2 yield bounds on the left-hand side of the last formula.
Consider the quantity

E2(τ) :=
(
3µ2(τ) − 4

)∫ ∞

0

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s |D2(ξ, τ)|2dξ

=
(
3µ2(τ) − 4

)(∫ δ1µ(τ)

0

+

∫ y0µ(τ)

δ1µ(τ)

+

∫ ∞

y0µ(τ)

)
(
1 + |τ − (ξ3 − ξ)|

)2b

× (1 + |ξ|)−2s
D2

2(ξ, τ)dξ

:= E21(τ) +E22(τ) +E23(τ)

where δ1 is again a small constant. By the choice of ω(τ), it transpires that for
large τ ,

|E23(τ)| ≤ Cτ
2
3 (µ(τ))2

∫ ∞

y0µ(τ)

ξ6b−2s−6dξ

≤ Cτ
2
3 µ(τ)6b−2s−3

∫ ∞

y0

ξ6b−2s−6dξ

≤ Cτ
6b−2s−1

3

if 6b− 2s− 6 < −1 , which is to say b < s
3 + 5

6 . For δ1 ≤ y ≤ y0, say,

|D2| ≤ C

µ2(τ)

(
1 +

∣∣∣∣
∫ a0

0

1

y − η
Θ(µ(τ)η, τ)p2(η, τ)dη

+
(
1 + ω(τ)

)∫ 2y0

a1

1

y − η

(
1 − Θ(µ(τ)η, τ)

)
p2(η, τ)dη

∣∣∣∣
)
.
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Note that if δ1 ≤ y ≤ a0, then
∣∣∣∣
∫ a0

0

1

y − η
Θ(µ(τ)η, τ)p2(η, τ)dη

∣∣∣∣ ≤
∣∣∣∣
∫ a0

0

Θ(µ(τ)η, τ)

y − η

(
p2(η, τ) − p2(y, τ)

)
dη

∣∣∣∣

+

∣∣∣∣p2(y, τ)

∫ a0

0

Θ(µ(τ)η, τ)

y − η
dη

∣∣∣∣ ≤ C.

The same bound is valid if a1 ≤ y ≤ y0. Thus,

(3.10) |D2| ≤
C

µ2(τ)

and

|E22(τ)| ≤ Cτ−
2
3

∫ y0µ(τ)

δ1µ(τ)

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

dξ

≤ Cτ−
2
3



∫ 1

2 τ
1
3

δ1µ(τ)

+

∫ 2τ
1
3

1
2 τ

1
3

+

∫ y0µ(τ)

2τ
1
3


(1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

dξ

≤ Cτ−
2
3


τ2b

∫ 1
2 τ

1
3

δ1µ(τ)

(1 + |ξ|)−2s dξ +

∫ 2τ
1
3

1
2 τ

1
3

(
1 + |τ − (ξ3 − ξ)|

)2b
ξ−2sdξ

+

∫ y0µ(τ)

2τ
1
3

ξ6b−2sdξ

)

≤ Cτ−
2
3

(
τ2b+ 1−2s

3 +

∫ 2

1
2

(1 + τ |ξ − 1|)2bτ
1−2s

3 ξdξ + τ
6b−2s+1

3

)

≤ Cτ−
2
3

(
τ

6b−2s+1
3 + τ2b+ 1−2s

3

)

≤ Cτ
6b−2s−1

3

since b ≥ 0. If 0 ≤ y = ξ
µ(τ) ≤ δ1 in the term D2 = D21 +D22, then

|D22| ≤
C

µ2(τ)

∣∣∣∣
∫ ∞

a1

2y

y2 − η2

(
1 − Θ(µ(τ)η, τ)

)
p2(η, τ)dη

∣∣∣∣ ≤ C
|y|

µ2(τ)

and

D21 =
1

µ2(τ)

[∫ a0

0

1

y − η

(
p2(η, τ) − p2(y, τ)

)
Θ(µ(τ)η, τ)dη

+

∫ a0

0

1

y + η

(
p2(η, τ) − p2(−y, τ)

)
Θ(µ(τ)η, τ)dη

+

∫ a0

0

(
1

y − η
p2(y, τ) +

1

y + η
p2(−y, τ)

)
Θ(µ(τ)η, τ)dη

]

:=
1

µ2(τ)
(D21−1 +D21−2 +D21−3) .
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Recall that p2(η, τ) =
(
3 − 4

µ2(τ) + (2η + 1)2
)−1

, so that

D21−1(y, τ) +D21−2(y, τ) =

=

∫ a0

0

Θ(µ(τ)η, τ)

3 − 4
µ2(τ) + (2η + 1)2

(
η + y + 1

3 − 4
µ2(τ) + (2y + 1)2

− η − y + 1

3 − 4
µ2(τ) + (−2y + 1)2

)
dη

=

∫ a0

0

Θ(µ(τ)η, τ)

3 − 4
µ2(τ) + (2η + 1)2

[
−8y(η + 1)

(3 − 4
µ2(τ) + (2y + 1)2)(3 − 4

µ2(τ) + (−2y + 1)2)

+ y

(
1

3 − 4
µ2(τ) + (2y + 1)2

+
1

3 − 4
µ2(τ) + (−2y + 1)2

)]
dη.

It thus transpires that
|D21−1 +D21−2| ≤ C|y|.

Also,

D21−3 = p2(y, τ)

∫ a0

0

1

y − η
Θ(µ(τ)η, τ)dη + p2(−y, τ)

∫ a0

0

1

y + η
Θ(µ(τ)η, τ)dη

= p2(y, τ)

(∫ a1

0

1

y − η
dη +

∫ a0

a1

1

y − η
Θ(µ(τ)η, τ)dη

)

+p2(−y, τ)
(∫ a1

0

1

y + η
dη +

∫ a0

a1

1

y + η
Θ(µ(τ)η, τ)dη

)

= p2(y, τ)
(
− ln |a1 − y| + ln |y|

)
+ p2(−y, τ)

(
ln |a1 + y| − ln |y|

)

+p2(y, τ)

∫ a0

a1

1

η

Θ(µ(τ)η, τ)dη
y
η − 1

+ p2(−y, τ)
∫ a0

a1

1

η

Θ(µ(τ)η, τ)dη
y
η + 1

=
(
− p2(y, τ) + p2(−y, τ)

)(
ln |a1| − ln |y|

)
+ p2(y, τ)

(
− ln

∣∣∣∣1 − y

a1

∣∣∣∣
)

+p2(−y, τ) ln

(
1 +

y

a1

)
+ p2(y, τ)

∫ a0

a1

1

η

(
−1 +

y/η

y/η − 1

)
Θ(µ(τ)η, τ)dη

+p2(−y, τ)
∫ a0

a1

1

η

(
1 − y/η

y/η + 1

)
Θ(µ(τ)η, τ)dη

=
(
− p2(y, τ) + p2(−y, τ)

)(
ln |a1| − ln |y| +

∫ a0

a1

1

η
Θ(µ(τ)η, τ)dη

)

+p2(y, τ)

(
− ln

(
1 − y

a1

)
+

∫ a0

a1

y

(y − η)η
Θ(µ(τ)η, τ)dη

)

+p2(−y, τ)
(

ln

(
1 +

y

a1

)
−
∫ a0

a1

y

(y + η)η
Θ(µ(τ)η, τ)dη

)
.

It follows that

|D21−3| ≤ C|y|
(
|ln |y|| + 1

)
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and

|D21| ≤
C|y|

(
| ln |y|| + 1

)

µ2(τ)
,

which implies that

(3.11) |D2| ≤
C|y|

(
| ln |y|| + 1

)

µ2(τ)
.

Thus, it is apparent that

|E21| ≤ Cτ2/3

∫ δ1µ(τ)

0

(1 + |τ |)2b (1 + |ξ|)−2s ξ
2

τ2

(
1 +

∣∣∣∣ln | ξ

µ(τ)
|
∣∣∣∣
)
dξ

≤ Cτ−4/3(1 + |τ |)2b

∫ δ1µ(τ)

0

(1 + |ξ|)−2s

(
1 +

∣∣∣∣ln | ξ

µ(τ)
|
∣∣∣∣
)
ξ2dξ

≤ Cτ−4/3(1 + |τ |)2b

∫ δ1

0

(1 + |µ(τ)||ξ|)−2sµ3(τ)(1 + | ln |ξ||)ξ2dξ

≤ Cτ−
1
3+2b− 2s

3

∫ δ1

0

ξ2−2s(1 + | ln |ξ||)dξ

≤ Cτ2b−(2s+1)/3

if 2 − 2s > −1. Combining these estimates, there obtains

|E2(τ)| ≤ Cτ2b−(2s+1)/3

if s < 3
2 and 0 < b < 1

2 + s
3 . This in turn implies that

∫ ∞

−∞

∫ ∞

0

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

∣∣∣∣
∫ ∞

−∞

1

ξ − η
A21(η, τ)

×
(
2Θ(η, τ) +

(
1 − Θ(η, τ)

)(
1 + ω(τ)

))
dη
∣∣∣
2

dξdτ

≤ C

∫ ∞

0

τ2b−(2s+1)/3

∣∣∣∣
∫ ∞

0

h(w)e−iwτdw

∣∣∣∣
2

dτ ≤ C‖h‖2

Hb− s
3
− 1

6
.

Similar estimates for the other terms yield, in sum,
∫ ∞

−∞

∫ ∞

−∞

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

∣∣∣Î22(ξ, τ)
∣∣∣
2

dξdτ ≤ C‖h‖2

Hb− s
3
− 1

6

if 0 ≤ s < 3/2 and 0 ≤ b < 5
6 + s

3 . This completes the proof of the Proposition 3.3.
�.

By combining above two propositions, we obtain the estimate (3.3). The proof
of Theorem 3.1 is complete. �

Now, attention is turned to the operator BIm2(t).
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Theorem 3.4. Let ψ(t) be a given smooth function of t with compact support
and assume that 0 ≤ b < 5

6 + s
3 with −1 ≤ s < 1

2 . Then there exists a constant C
such that

(3.12) Λ−s,b(ψBIm2(h)) ≤ C ‖h‖
H

3b−s−1/2
3 (R+)

for any h ∈ H
3b−s−1/2

3
0 (R+).

Proof: As in the proof of Theorem 3.1, it suffices to prove the following two
propositions.

Proposition 3.5. Let s ∈ R and b ≥ 0 be given. There exists a constant C
such that

∫ ∞

−∞

∫ ∞

−∞

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

∣∣∣Î∗21(ξ, τ)
∣∣∣
2

dξdτ

≤





C‖h‖2

H
9b−s− 5

2
9

if s ≤ 1
2 ,

C‖h‖2

H
3b−1

3

if s ≥ 1
2 .

(3.13)

Proposition 3.6. Let s and b be given satisfying 0 ≤ b < 5
6 + s

3 . There exists
a constant C such that
(3.14)∫ ∞

−∞

∫ ∞

−∞

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

∣∣∣Î∗22(ξ, τ)
∣∣∣
2

dξdτ ≤ C‖h‖2

H
3b−s− 1

2
3 (R+)

for any h ∈ H
3b−s− 1

2
3 (R+).

We only present a proof of Proposition 3.5. The proof of Proposition 3.6 follows
the same line as that of Proposition 3.3 and is therefore omitted. As in the proof of
Proposition 3.2, detailed analysis is given for the term containingK21; the estimates
for the other terms are sufficiently similar that their proof does not require further
elaboration. Suppose ξ ≥ 1 and τ ≥ 0 in what follows. The other cases are entirely
analogous. Define

Am1(ξ, τ) = Km1(ξ, τ)φ2(µ(τ))ĥ(τ), m = 1, 2, 3.

For given s and b ≥ 0, we have

∫ ∞

0

∫ ∞

1

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

∣∣∣A21(ξ, τ)
(
1 + ω(τ)

)
Θ(ξ, τ)

∣∣∣
2

dξdτ

≤ C

∫ ∞

−∞
φ2(µ(τ))

∣∣∣∣
∫ ∞

0

h(s)e−isτds

∣∣∣∣
2

B∗
21(τ)dτ
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with

B∗
21(τ) =

∫ ∞

1

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

∣∣∣
(
1 + ω(τ)

)
Θ(ξ, τ)

∣∣∣
2

× (3µ2(τ) − 4)φ2(µ(τ))
(
3µ2(τ) − 4 + (2ξ − µ(τ))2

)2 dξ

≤ C

∫ δτ
1
3

1

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

(
3µ2(τ) − 4

)
φ2(µ(τ))

(
3µ2(τ) − 4 + (2ξ − µ(τ))2

)2 dξ

because of the properties of Θ, and where δ > 0 is, as before, fixed, but arbitrary
for the moment. Let ξ = η(ζ) be the real solution of the equation

ξ3 − ξ = ζ, 0 ≤ ζ <∞, for which 1 ≤ ξ <∞.

Note that η(ζ) ∼ ζ
1
3 as ζ → ∞. For large τ , note also that µ(τ) ∼ τ

1
3 . Thus, for

τ > 0 large enough that δτ 1/3 > 1,

B∗
21(τ) ≤ C

∫ δτ
1
3

0

(3µ2(τ) − 4) (1 + |τ − ζ|)2b

(
3µ2(τ) − 4 + (2η(ζ) − µ(τ))2

)2 (1 + |ζ|)− 2s
3

1

3η2(ζ) − 1
dζ

≤ C

∫ δτ
1
3

0

τ
2
3 (1 + |τ − ζ|)2b

(
1 + 3τ

2
3 + (2η(ζ) − τ

1
3 )2
)2 (1 + |ζ|)− 2s

3
1

3η2(ζ) − 1
dζ

≤ C
τ

2
3

(
1 + τ

2
3

)2

∫ δτ
1
3

0

(1 + |τ − ζ|)2b

(1 + |ζ|) 2s
3

1

3η2(ζ) − 1
dζ

≤ C
τ

2
3

(1 + τ
2
3 )2

∫ δτ
1
3

0

(1 + |τ − ζ|)2b

(1 + ζ)
2+2s

3

dζ

≤ Cτ
6b−2

3

(
1 + τ

1−2s
9

)

≤





Cτ
18b−2s−5

9 if s ≤ 1
2 ,

Cτ
6b−2

3 if s ≥ 1
2 .



BOUNDARY SMOOTHING PROPERTIES 35

In consequence,
∫ ∞

0

∫ ∞

0

(
1 + |τ − (ξ3 − ξ)|

)2b
(1 + |ξ|)−2s

∣∣∣A21(ξ, τ)
(
1 + ω(τ)

)
Θ(ξ, τ)

∣∣∣
2

dξdτ

≤ C

∫ ∞

0

φ2(µ(τ))

∣∣∣∣
∫ ∞

0

h(s)e−isτds

∣∣∣∣
2

B∗
21(τ)dτ

≤ C

∫ ∞

0

φ2(µ(τ))

∣∣∣∣
∫ ∞

0

h(s)e−isτds

∣∣∣∣
2




Cτ
18b−2s−5

9 dτ if s ≤ 1
2 ,

Cτ
6b−2

3 dτ if s ≥ 1
2 .

=





C‖h‖2

H
9b−s− 5

2
9

if s ≤ 1
2 ,

C‖h‖2

H
3b−1

3

if s ≥ 1
2 .

The proof is complete. �

Finally, consider the operator BIe(t).

Theorem 3.7. Let ψ(t) be a given smooth function of t with compact support.
Assume that 




0 ≤ b < 1
2 + s

3 if s ≥ 0,

0 ≤ b < 1
2 if −1 ≤ s < 0.

Then there exists a constant C such that

(3.15) Λ−s,b(ψBIeh) ≤





C ‖h‖
H

3b−s−1/2
3 (R+)

if s ≤ 1
2 ,

C ‖h‖
H

3b−1
3 (R+)

if s ≥ 1
2 .

for any h ∈ H
3b−s−1/2

3
0 (R+) if s ≤ 1

2 and for any h ∈ H
3b−1

3
0 (R+) if s ≥ 1

2 .

Proof: To establish (3.15) it suffices to prove the following proposition.

Proposition 3.8. Assume that



0 ≤ b < 1
2 + s

3 if s ≥ 0,

0 ≤ b < 1
2 if −1 ≤ s < 0.

Then there exists a constant C such that

(3.16) Λ−s,b(Fx,t[I2]) ≤





C ‖h‖
H

3b−s−1/2
3 (R+)

if s ≤ 1
2 ,

C ‖h‖
H

3b−1
3 (R+)

if s ≥ 1
2 .

for any h ∈ H
3b−s−1/2

3
0 (R+) if s ≤ 1

2 and for any h ∈ H
3b−1

3
0 (R+) if s ≥ 1

2 .

To see (3.16) is true, write Fx,t[I2](η, τ) as

Fx,t[I2](η, τ) = Fx,t[I2](η, τ)Θ(η, τ) + Fx,t[I2](η, τ)
(
1 − Θ(η, τ)

)
.

Then, (3.16) is seen to follow from Proposition 3.2 and Proposition 3.5. �
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Observe that

‖w‖L2(0,T ;Hs(R)) ≤ CΛs,b(ψw)

for any s ∈ R and b ≥ 0, where ψ ∈ C∞
0 (R) and ψ(t) = 1 when t ∈ (0, T ). The

following theorem, which follows from Theorem 3.1, reveals a boundary smoothing
property of the linear KdV-equation.

Theorem 3.9. For any T > 0 and s ≥ − 3
2 , there exists a constant C such that

(3.17) ‖Wbdrh‖
L2(0,T ;Hs+ 3

2 (R+))
≤ C ‖h‖

H
1+s
3 (R+)

for any h ∈ H
1+s
3

0 (R+).

Proof: From Theorem 3.1, the inequality

‖Wbdrh‖L2(0,T ;Hs(R+)) ≤ Λs,b(ψBIm1h) ≤ C ‖h‖
H

3b+s−1/2
3 (R+)

follows, for some constant C and 0 ≤ b < 1
2 + s

3 . Estimate (3.17) with s = 0 is

seen to be valid by taking b = 0 and s = 3
2 . To show (3.17) holds for s > 0, let

u = Wbdrh and w = ut. Then w = Wbdrh
′. In addition, note that

‖Wbdrh‖L2(0,T ;H3(R+)) ≤ C ‖w‖L2(0,T ;L2(R+)) .

Thus, we have

‖Wbdrh‖L2(0,T ;H3+(3/2)(R+)) ≤ C ‖Wbdrh
′‖L2(0,T ;H(3/2)(R+))

≤ C ‖h‖
H

4
3 (R+)

.

By interpolation, (3.17) holds for 0 ≤ s ≤ 3. A similar argument shows that it
holds for any s > 3. The proof is complete. �

Remark: It was proved in [4] that h ∈ H
1+s
3

0 (R+) implies that

Wbdrh ∈ C([0, T ];Hs(R+)) ∩ L2(0, T ;Hs+1
loc (R+)).

Theorem 3.9 does not follow from this. It represents a new, somewhat more subtle
smoothing property.

To conclude this section, we present another estimate of BIm1h and BIm2h in
the space C(R;Hs(R)) which will be useful in studying the well-posedness prob-
lem for the IBVP (1.1) in the next section. The main difficulty in its proof is to
discover how to efficiently convert spatial regularity of BImjh, j = 1, 2 to temporal
regularity of the boundary value function h.

Lemma 3.10. For − 3
2 < α < 1

2 , the inequality

(3.18) sup
t∈R

‖BIm1h‖Hα(R) ≤ C ‖h‖
H

α+1
3 (R+)

holds for some constant C; for − 1
2 < α < 1, there is a constant C such that

(3.19) sup
t∈R

‖BIm2h‖Hα(R) ≤ C ‖h‖
H

α+1
3 (R+)

.
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Proof: We provide the proof of (3.18). The proof of (3.19) is very similar.
According to the proof of Theorem 3.1, it suffices to show that

P21(ξ, t) =

∫ ∞

−∞
eiλtq21(ξ, λ)φ2(µ(λ))

∫ ∞

0

h(s)e−iλsds
(
1 − Θ(ξ, λ)

)(
1 + ν(ξ)ω(λ)

)
dλ

+
2i

πξ

∫ ∞

−∞
eλti

∫ ∞

0

η2

ξ2 − η2
q21(η, λ)φ2(µ(λ))

∫ ∞

0

h(s)e−iλsdsΘ1(η, λ)dηdλ

= P21−1(ξ, t) + P21−2(ξ, t)

satisfies

sup
t∈R

∫ ∞

0

(1 + |ξ|)2α |P21−j(ξ, t)|2 dξ ≤ C ‖h‖2

H
α+1

3 (R+)

for j = 1, 2, where

q21(ξ, λ) =

√
3µ2(λ) − 4

3µ2(λ) − 4 +
(
2ξ − µ(λ)

)2 .

Toward establishing these inequalities, we first study P21−1. Observe that
∫ ∞

0

(1 + |ξ|)2α |P21−1(ξ, t)|2 dξ

=

∫ ∞

0

(1 + |ξ|)2α
∣∣
∫ ∞

−∞
eλ1tiq21(ξ, λ1)φ2(µ(λ1))ĥ(λ1)

(
1 − Θ(ξ, λ1)

)(
1 + ν(ξ)ω(λ1)

)
dλ1

∣∣

×
∣∣∣∣
∫ ∞

−∞
eλ2tiq21(ξ, λ2)φ2(µ(λ2))ĥ(λ2)

(
1 − Θ(ξ, λ2)

)(
1 + ν(ξ)ω(λ2)

)
dλ2

∣∣∣∣ dξ

≤
∫ ∞

−∞

∫ ∞

−∞
φ2(µ(λ2))|ĥ(λ2)|φ2(µ(λ1))|ĥ(λ1)|

×
(∫ ∞

0

(1 + |ξ|)2αq21(ξ, λ1)q21(ξ, λ2)
(
1 − Θ(ξ, λ1)

)(
1 − Θ(ξ, λ2)

)
dξ

)
dλ1dλ2.

Now, estimate the term

I(λ1, λ2) =

∫ ∞

0

(1 + |ξ|)2αq21(ξ, λ1)q21(ξ, λ2)
(
1 − Θ(ξ, λ1)

)(
1 − Θ(ξ, λ2)

)
dξ.

Since µ(λ) ∼ O(λ1/3) as λ→ ∞,

|I(λ1, λ2)| ≤ Cλ
1/3
1 λ

1/3
2

∫ ∞

0

(1 + |ξ|)2α
(
1 − Θ(ξ, λ1)

)(
1 − Θ(ξ, λ2)

)
dξ

(
1 + λ

2/3
1 + (2ξ − µ(λ1))2

)(
1 + λ

2/3
2 + (2ξ − µ(λ2))2

) .
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By the symmetry of this expression in λ1 and λ2, it suffices to consider only the
case 0 ≤ λ1 ≤ λ2. Fix δ > 0 and break up the integral II(λ1, λ2) as before;

II(λ1, λ2) =

∫ ∞

0

(1 + |ξ|)2α
(
1 − Θ(ξ, λ1)

)(
1 − Θ(ξ, λ2)

)
dξ

(
1 + λ

2/3
1 + (2ξ − µ(λ1))2

)(
1 + λ

2/3
2 + (2ξ − µ(λ2))2

)

=

(∫ max(δ|λ2|, |µ(λ1)|)

δ|λ2|
+

∫ 2|µ(λ2)|

max(δ|λ2|, |µ(λ1)|)
+

∫ ∞

2|µ(λ2)|

)
(· · · ) dξ

:= II1(λ1, λ2) + II2(λ1, λ2) + II3(λ1, λ2).

Note that (2ξ − µ(λ1))
2 ≥ (2ξ − |µ(λ1)|)2. In the integral II1, either the limits of

integration are the same, so the integral is zero, or, for λ1 and λ2 large, 0 < C0λ2 ≤
λ1 ≤ λ2 for some C0 > 0. In this case,

II1(λ1, λ2) ≤ C

∫ |µ(λ1)|

δ|λ1|

(1 + |ξ|)2αdξ

(1 + |λ1|
2
3 )(1 + |λ2|

2
3 )

≤ C

(1 + |λ1|)
1
3− 2α

3 (1 + |λ2|)
2
3

≤ C(1 + |λ2|)
2α
3 −1 .

In II2, note that ξ − |µ(λ1| ≥ 0, so that

II2(λ1, λ2) ≤
∫ 2|µ(λ2)|

δ|λ2|

(1 + |ξ|)2α−2dξ
(
1 + |λ2|

2
3

)
+
(
2ξ − |µ(λ2)|

)2

≤ C(1 + |λ2|)
2α
3 −1.

For II3, it follows directly that

II3(λ1, λ2) ≤
∫ ∞

2|µ(λ2)|

1

(1 + |ξ|)4−2α
dξ ≤ C(1 + |λ2|)

2α
3 −1.

Thus, for 0 < λ1 ≤ λ2 and λ1 large,

|II(λ1, λ2)| ≤ C(1 + |λ2|)
2α
3 −1.
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These three inequalities imply
∫ ∞

0

(1 + |ξ|)2α|P21−1(ξ, t)|2dξ ≤ C

∫ ∞

0

∫ λ2

0

φ2(µ(λ1))φ2(µ(λ2))|ĥ(λ1)ĥ(λ2)|

×|λ1|
1
3 |λ2|

1
3 (1 + |λ2|)

2α
3 −1dλ1dλ2

= C

∫ ∞

0

∫ λ2

0

φ2(µ(λ1))φ2(µ(λ2))(1 + |λ1|)
1+α

3 (1 + |λ2|)
1+α

3

(1 + |λ1|)
α
3 (1 + |λ2|)1−

α
3

|ĥ(λ1)ĥ(λ2)|dλ1dλ2

≤ C

∫ ∞

0

∫ λ2

0

|λ1|−
α
3 |λ2|−1+ α

3 (1 + |λ1|)
1+α

3 (1 + |λ2|)
1+α

3 |ĥ(λ1)ĥ(λ2)|dλ1dλ2

≤ C
∥∥∥(1 + |λ1|)

1+α
3 |ĥ(λ1)|

∥∥∥
L2

∥∥∥(1 + |λ2|)
1+α

3 |ĥ(λ2)|
∥∥∥

L2

≤ C ‖h‖2

H
1+α

3
,(3.20)

if α
3 <

1
2 , or α < 3

2 (see e.g. page 245 in [24]).
Similarly, for P21−2, we need only study

III(λ1, λ2) =

∫ ∞

0

(1 + |ξ|)2αD21(ξ, λ1)D21(ξ, λ2)dξ

where

D21(ξ, λ) = 2

∫ ∞

0

η2Θ(η, λ)

ξ(ξ2 − η2)
q2(η, λ)dη+

(
1+ν(ξ)ω(λ)

)∫ ∞

0

η2
(
1 − Θ(η, λ)

)

ξ(ξ2 − η2)
q2(η, λ)dη.

Note that D21 = D2

√
µ2(λ) − 4 with D2 as defined in (3.8). Following the analysis

of II(λ1, λ2), fix δ1 > 0 small and rewrite III in the form

III(λ1, λ2) =

(∫ δ1|µ(λ1)|

0

+

∫ min{δ1|µ(λ2)|, 100|µ(λ1)|}

δ1|µ(λ1)|
+

∫ δ1|µ(λ2)|

min{δ1|µ(λ2)|, 100|µ(λ1)|}

+

∫ max{δ1|µ(λ2)|, 100|µ(λ1)|}

δ1|µ(λ2)|
+

∫ 100|µ(λ2)|

max{δ|µ(λ2)|, 100|µ(λ1)|}
+

∫ ∞

100|µ(λ2)|

)
(· · · ) dξ

:= III1(λ1, λ2) + III2(λ1, λ2) + III3(λ1, λ2) + III4(λ1, λ2)

+III5(λ1, λ2) + III6(λ1, λ2).

From the estimates of D2 in (3.9), (3.10) and (3.11), it follows that for ξ ≥ 100µ(λ),
say,

D21(ξ, λ) ≤
Cµ2(λ)

(
1 +

∣∣∣ ln |ξ/µ(λ)|
∣∣∣
)

ξ3
,

whereas, for δ1µ(λ) ≤ ξ ≤ 100µ(λ)

D21(ξ, λ) ≤
C

µ(λ)
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and for 0 ≤ ξ ≤ δ1µ(λ)

D21(ξ, λ) ≤
C|ξ|

(
1 +

∣∣∣ ln |ξ/µ(λ)|
∣∣∣
)

µ2(λ)
.

The estimate for III1 is obtained as follows:

III1(λ1, λ2)

≤ C

∫ δ1µ(λ1)

0

(
1 + |ξ|

)2α

ξ2
(
1 +

∣∣∣ ln |ξ/µ(λ1)|
∣∣∣
)(

1 +
∣∣∣ ln |ξ/µ(λ2)|

∣∣∣
)

µ2(λ1)µ2(λ2)
dξ

= C

∫ δ1

0

(
1 + |µ(λ1)w|

)2α

µ(λ1)w
2
(
1 +

∣∣∣ ln |w|
∣∣∣
)(

1 +
∣∣∣ ln |µ(λ1)w/µ(λ2)|

∣∣∣
)
|

µ2(λ2)
dξ

≤ Cµ1+2α(λ1)µ
−2(λ2) ≤ C

(
1 + |λ1|

) 1+2α
3
(
1 + |λ2|

)− 2
3

.

Continuing as in the estimate of (3.20) yields the same inequality, of course with a
different constant, as appeared in (3.20) provided −α

3 <
1
2 , which is to say α > − 3

2 .
For III2, we have

III2(λ1, λ2)

≤ C

∫ min{δ1µ(λ2),100µ(λ1)}

δ1µ(λ1)

(1 + |ξ|)2α|ξ|
(
1 +

∣∣∣ ln |ξ/µ(λ2)|
∣∣∣
)

µ(λ1)µ2(λ2)
dξ

≤ C(µ(λ1))
−1(µ(λ2))

−2

∫ 100µ(λ1)

δ1µ(λ1)

(
1 + |ξ|

)1+2α(
1 +

∣∣∣ ln |ξ/µ(λ2)|
∣∣∣
)
dξ

≤ C(1 + |λ1|)
1+2α

3 (1 + |λ2|)−
2
3 ,

which again gives the estimate (3.20) if α > − 3
2 .

For III3, note that it is only required to consider the case wherein

100µ(λ1) = min{δ1µ(λ2), 100µ(λ1)}.
In this situation,

III3(λ1, λ2)

≤ C

∫ δ1µ(λ2)

100µ(λ1)

(
1 + |ξ|

)2α

µ2(λ1)
(
1 + |ln |ξ/µ(λ1)||

)(
1 + |ln |ξ/µ(λ2)||

)

ξ2µ2(λ2)
dξ

≤ C
(
µ(λ1)

)2(
µ(λ2)

)−2
∫ ∞

100µ(λ1)

(1 + |ξ|)2α−2
(
1 +

∣∣∣ ln |ξ/µ(λ1)|
∣∣∣
)

×
(
1 +

∣∣∣ ln |ξ/µ(λ2)|
∣∣∣
)
dξ

≤ C
(
µ(λ1)

)2α+1(
µ(λ2)

)−2

≤ C
(
1 + |λ1|

) 1+2α
3
(
1 + |λ2|

)− 2
3

,

if 2α− 1 < 0, which is to say, α < 1
2 . This gives the estimate (3.20) as before.
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Again, in III4, it is only necessary to consider the case wherein

max{δ1µ(λ2), 100µ(λ1)} = 100µ(λ1).

In this case, δ1µ(λ2) ≤ 100µ(λ1), which implies that 0 < C0λ2 ≤ λ1 ≤ λ2 for some
C0 > 0. Thus, it follows that

III4(λ1, λ2) ≤ C

∫ 100µ(λ1)

δ1µ(λ2)

(
1 + |ξ|

)2α

µ−1(λ1)µ
−1(λ2)

d
ξ

≤ C
(
µ(λ1)

)−1(
µ(λ2)

)−1
∫ 100µ(λ1)

δ1µ(λ1)

(
1 + |ξ|

)2α

dξ

≤ C
(
µ(λ1)

)2α(
µ(λ2)

)−1

≤ C
(
1 + |λ1|

)(2α)/3(
1 + |λ2|

)−1/3

≤ C
(
1 + |λ1|

) 1+2α
3
(
1 + |λ2|

)− 2
3

.

For III5, argue as follows:

III5(λ1, λ2)

≤ C

∫ 100µ(λ2)

max{δ1µ(λ2), 100µ(λ1)}

(
1 + |ξ|

)2α

µ2(λ1)
(
1 +

∣∣∣ ln |ξ/µ(λ1)|
∣∣∣
)

ξ3µ(λ2)
dξ

≤ C
(
µ(λ1)

)2(
µ(λ2)

)−1
∫ 100µ(λ2)

δ1µ(λ2)

(
1 + |ξ|

)2α−3(
1 +

∣∣∣ ln |ξ/µ(λ1)|
∣∣∣
)
dξ

≤ C
(
µ(λ1)

)2(
µ(λ2)

)2α−3(
µ(λ2)/µ(λ1)

)1−2α

≤ C
(
1 + |λ1|

) 1+2α
3
(
1 + |λ2|

)− 2
3

,

if α < 1
2 . Similarly,

III6(λ1, λ2)

≤ C

∫ ∞

100µ(λ2)

(
1 + |ξ|

)2α

µ2(λ1)µ
2(λ2)

(
1 +

∣∣∣ ln |ξ/µ(λ1)|
∣∣∣
)(

1 +
∣∣∣ ln |ξ/µ(λ2)|

∣∣∣
)

ξ6
dξ

≤ C
(
µ(λ1)µ(λ2)

)2
∫ ∞

100µ(λ2)

(
1 + |ξ|

)2α−6(
1 +

∣∣∣ ln |ξ/µ(λ1)|
∣∣∣
)(

1 +
∣∣∣ ln |ξ/µ(λ2)|

∣∣∣
)
dξ

≤ C
(
µ(λ1)

)2(
µ(λ2)

)2α−3(
µ(λ2)/µ(λ1)

)1−2α

≤ C
(
1 + |λ1|

) 1+2α
3
(
1 + |λ2|

)− 2
3

,

if α < 1
2 . The proof is complete. �
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4. Well-posedness

In this section, the well-posedness of the IBVP

(4.1)
ut + ux + uux + uxxx = 0, for x, t ≥ 0,

u(x, 0) = φ(x), u(0, t) = h(t).





is studied in the space Hs(R+) × H
s+1
3

loc (R+). To state precisely our results, we
introduce the following notation and Bourgain-type spaces. For any given s ∈ R,
0 ≤ b ≤ 1, 0 ≤ α ≤ 1 and function w ≡ w(x, t) : R2 → R, Λs,b(w) and λα(w) are
defined as in Section 3. In addition, define

Gs(w) =

(∫ ∞

−∞
(1 + |ξ|)2s

(∫ ∞

−∞

|ŵ(ξ, τ)|
1 + |τ − (ξ3 − ξ)|dτ

)2

dξ

)1/2

,

Qs,b(w) =



∫ ∞

−∞

∫ ∞

−∞
(1 + |ξ|)2s |ŵ(ξ, τ)|2

(
1 + |τ − (ξ3 − ξ)|

)2b
dτdξ




1/2

and

Pα(w) =

(∫ ∞

−∞

∫

|ξ|≤1

|ŵ(ξ, τ)|2
(1 + |τ |)2(1−α)

dτdξ

)1/2

.

Let Xs,b be the space of all functions w satisfying

‖w‖Xs,b
:= Λs,b(w) <∞

(see the definition in (3.2)) while Ys,b is the space of all w satisfying

‖w‖Ys,b
:=
(
G2

s (w) + Q2
s,b(w)

)1/2
<∞.

In addition, let Xα
s,b be the space of all functions w satisfying

‖w‖Xα
s,b

:=
(
Λ2

s,b(w) + λ2
α(w)

)1/2
<∞

(again, see the definition in (3.2)) and let Y α
s,b be the space of all w satisfying

‖w‖Y α
s,b

:=
(
P2

α(w) + G2
s (w) + Q2

s,b(w)
)1/2

<∞.

The spaces Xs,b, Ys,b, X
α
s,b and Y α

s,b are all Banach spaces. Note that Xs,b and Xα
s,b

are equivalent when b ≥ α. The spaces Ys,b and Xs,−b are also equivalent when
b < 1

2 . Define also

Xα
s,b ≡ C(R;Hs(R)) ∩Xα

s,b

with the norm

‖w‖Xα
s,b

=

(
sup
t∈R

‖w(·, t)‖2
Hs(R) + ‖w‖2

Xα
s,b

)1/2

.

By their definitions,

Xα1

s,b1
⊂ Xα2

s,b2
if α1 ≤ α2 and b1 ≤ b2,

whereas
Y α2

s,b2
⊂ Y α1

s,b1
if α1 ≥ α2 and b1 ≤ b2.



BOUNDARY SMOOTHING PROPERTIES 43

The above Bourgain-type spaces are defined for functions posed on the whole
plane R×R. However, the IBVP (4.1) is posed on the quarter plane R+ ×R+ and
we are seeking its solution in the space C(R+ : Hs(R+)) corresponding to a given

initial value in the space Hs(R+) and boundary data in the space H
s+1
3

loc (R+). It
is thus natural to consider restricted versions of the above Bourgain-type spaces to
the quarter plane R+ × R+. Let Ω denote a subinterval of R; define a restricted
version of the Bourgain space Xs,b to the domain R+ × Ω as follows:

Xs,b(R
+ × Ω) = Xs,b

∣∣∣
R+×Ω

with the quotient norm

‖u‖Xs,b(R+×Ω) ≡ inf
w∈Xs,b

{‖w‖Xs,b
: w(x, t) = u(x, t) on R+ × Ω}

for any given function u(x, t) defined on R+×Ω. Of course, it is clear that ‖u‖Xs,b
=

‖u‖Xs,b(R×R). The spaces Ys,b(R
+×Ω), Xα

s,b(R
+×Ω), Y α

s,b(R
+×Ω) and Xα

s,b(R
+×Ω)

are defined similarly. Naturally, if w̃ is any extension of w in Xs,b(R
+ × Ω) to

Xs,b(R×R), then ‖w̃‖Xs,b(R×R) ≥ ‖w‖Xs,b(R+×Ω).

For the IBVP (4.1), we have the following well-posedness result.

Theorem 4.1. Let s ∈ (− 3
4 , 1), T > 0 and r > 0 be given. There exist T ∗ with

0 < T ∗ ≤ T and b with 0 < b < 1
2 such that

(i) if φ ∈ Hs(R+) and h ∈ H
s+1
3

loc (R+) satisfy

‖φ‖Hs(R+) + ‖h‖
H

s+1
3 (0,T )

≤ r

and
φ(0) = h(0)

when s > 1
2 , then the IBVP (4.1) admits a unique solution u ∈ X α

s, 1
2

(R+×
(0, T ∗)) for some α > 1

2 ;

(ii) if φ ∈ Hs(R+) and h ∈ H
3b−1/2+s

3

loc (R) satisfy

‖φ‖Hs(R+) + ‖h‖
H

3b−1/2+s
3 (0,T )

≤ r

and
φ(0) = h(0)

when s > 1
2 , then the IBVP (4.1) admits a unique solution u ∈ X α

s,b(R
+ ×

(0, T ∗)) for some α > 1
2 .

Moreover, the solution u depends continuously on φ and h in the corresponding
spaces.

Remarks: The result presented in part (i) of the above theorem is slightly stronger
than that of Colliander and Kenig [12] and Holmer [25] in the sense that u is the
restriction to R+ × (0, T ∗) of a function w ∈ Xα

s, 1
2

instead of w ∈ Xα
s,b for some b

strictly less than 1
2 . The result presented in part (ii) shows a boundary smoothing

since the boundary value h is only required to lie in the space H
3b−1/2+s

3

loc (R+) and

3b− 1/2 + s

3
<
s+ 1

3

when b < 1
2 .
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The proof of Theorem 4.1 is based on the results expounded in Section 3 and the
following lemmas whose proofs can be found in [33, 34, 11, 12, 4] or derived from
them in a straightforward way. For the convenience of the reader, we provide in
the Appendix brief indications of the proofs of the results used here. In the lemmas
given below, ψ(t), σ(t) ∈ C∞

0 (R) with ψ = 1 on [−1, 1] and supp ψ ⊂ (−2, 2), σ = 1
on supp ψ and supp σ ⊂ (−2, 2) also.

Lemma 4.2. Assume that 0 < δ < 1, −∞ < s < ∞, 0 < b ≤ 1 and α ∈ ( 1
2 , 1].

Then there exists a constant C depending only on s, b, α and ψ such that

(4.2)
∥∥ψ(δ−1t)WR(t)φ

∥∥
Xα

s,b

≤ Cδ
1−2b∗

2 ‖φ‖Hs(R) ,

(4.3)
∥∥ψ(δ−1t)h

∥∥
Xα

s,b

≤ Cδ
1−2b∗

2 ‖h‖Xα
s,b
,

and

(4.4)

∥∥∥∥ψ(δ−1t)

∫ t

0

WR(t− t′)f(t′)dt′
∥∥∥∥

Xα
s,b

≤ Cδ
1−2b∗

2 ‖f‖Y 1−α
s,1−b

.

Here b∗ is any number larger than b.

Lemma 4.3. (a) For −∞ < s < ∞, there exists a constant C depending
only on s such that

(4.5) sup
x∈R

‖WR(t)φ‖
H

s+1
3

t (R)
≤ C‖φ‖Hs(R)

for any φ ∈ Hs(R).
(b) For −1 ≤ s < ∞, there exists a constant C depending only on ψ and s

such that

(4.6) sup
x∈R

‖ψ(t)WR(t)φ‖
H

s+1
3

t (R)
≤ C‖φ‖Hs(R)

for any φ ∈ Hs(R).

Lemma 4.4. Let 0 ≤ b < 1
2 , −1 ≤ s <∞ and define

w(x, t) =

∫ t

0

[WR(t− t′)f(·, t′)](x)dt′.

For ψ as described above, there exists C depending only on b, s and ψ such that

(4.7) sup
x∈R

‖ψ(t)w(x, t)‖
H

s+1
3

t (R)
≤ C ‖f‖Ys,b

.

In addition, for −∞ < s <∞, 0 ≤ b < 1
2 ,

(4.8) sup
t∈R

‖ψ(t)w(x, t)‖Hs
x(R) ≤ C ‖f‖Ys,b

.

Lemma 4.5. Given s > − 3
4 , there exist b = b(s) < 1

2 , α = α(s) > 1
2 and

C, µ > 0 such that

(4.9) ‖∂x(uv)‖Y α
s,b

≤ CT µ ‖u‖Xα
s,b

‖v‖Xα
s,b

for any u, v ∈ Xα
s,b with compact support in [−T, T ].
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The bilinear estimate (4.9) with µ = 0 was established by Colliander and Kenig
[12], and Holmer [25] for any u, v ∈ Xα

s,b. In addition, one may observe by studying

Holmer’s analysis that for s ∈ (− 3
4 ,− 1

2 ), it follows that max
{

2
3 + s

3 ,
5
12 − s

9

}
≤ b <

1
2 in the above lemma. As one can see, b → 1

2 as s → − 3
4 or − 1

2 . The bilinear
estimate presented in the following lemma gives an indication of how small a value
of b one can choose for s in the range of (− 9

16 , 0).

Lemma 4.6. Let

w(x, t) = σ2(δ−1t)∂x

(
u(x, t)v(x, t)

)

where u, v ∈ Xα
s,b. For any given s with 0 < s < 9

16 , choose b1, b and α by

max

{
1 − s

2
,

7

16

}
< b1 <

1

2
,

7

16
< b <

1

2

and suppose

1

2
< α <

1 + 6b

16b
.

Then there exists a constant C such that

‖w‖Y α
−s,b1

≤ Cδθ0 ‖u‖Xα
−s,b

‖v‖Xα
−s,b

for any u, v ∈ Xα
−s,b and −1 ≤ δ ≤ 1, where

θ0 = 1 − 2α+
1 − 2b

8b
> 0.

Next, we consider the non-homogeneous linear problem

(4.10)
ut + ux + uxxx = 0, for x, t ≥ 0,

u(x, 0) = 0, u(0, t) = h(t).





Recall its solution may be represented in the form

u(x, t) = [Wbdr(t)h] (x)

for x, t ≥ 0 as explained in Section 2.

Lemma 4.7. For a given pair (b, s) satisfying

(4.11)





0 ≤ b < 1
2 − s

3 if s ≤ 0, or

0 ≤ b < 5
6 − s

3 if − 1
2 < s < 1,

and a given α ∈ ( 1
2 , 1), there exists a constant C such that for any T > 0 and

any h ∈ H
s+1
3

0 (0, T ), the corresponding solution u of (4.10) belongs to the restricted
Bourgain space Xα

s,b(R
+ × (0, T )) and satisfies

(4.12) ‖u‖Xα
s,b(R

+×(0,T )) ≤ C ‖h‖
H

3b+s−1/2
3 (0,T )

.
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Proof: For T > 0, let h1 ∈ H
s+1
3 (R+) be such that h1 ≡ h in the space H

s+1
3 (0, T )

and let ψ1 ∈ C∞
0 (R) be such that ψ1(t) = 1 for any t ∈ [0, T ]. Define

u1(x, t) =





[
BIm1(t)h1

]
(x) if 0 ≤ b < 1

2 − s
3 and s < 0,

[
BIm2(t)h1

]
(x) if 0 ≤ b < 5

6 − s
3 and 0 ≤ s < 1,

Observing that

u(x, t) = u1(x, t) for (x, t) ∈ R+ × [0, T ],

and using Theorem 3.1, Theorem 3.4 and Lemma 3.10, one arrives at the conclusion,

‖u‖Xα
s,b(R

+×(0,T )) ≤ ‖ψ1u1‖Xα
s,b

≤ C ‖h1‖
H

s+1
3 (R+)

for a constant C depending on ψ1 and s. Thus, (4.12) follows and the proof is
complete. �

Consider the same linear equation posed with zero boundary conditions, but
non-trivial initial data, viz.

(4.13)
ut + ux + uxxx = 0, for x, t ≥ 0,

u(x, 0) = φ(x), u(0, t) = 0 .





Its solution can be written as

u(x, t) = [Wc(t)φ] (x)

for x, t ≥ 0.

Lemma 4.8. Assume that 1
2 < α ≤ 1. For a given pair (b, s) satisfying (4.11)

and 0 ≤ b ≤ 1, there exists a constant C such that for any T > 0 and any φ ∈
Hs

0(R+), the corresponding solution u of (4.13) belongs to the restricted Bourgain
space Xα

s,b(R
+ × (0, T )) and satisfies the bound

(4.14) ‖u‖Xα
s,b

(R+×(0,T )) ≤ C ‖φ‖Hs(R+) .

Proof: According to Proposition 2.2, one may write Wc(t)φ as

Wc(t)φ = WR(t)φ∗ −Wbdr(t)g

for any x, t > 0, where g is the trace of WR(t)φ∗ at x = 0 and φ∗ ∈ Hs(R) and
equals to φ when restricted on R+. The estimate (4.14) follows from Lemma 4.2,
Lemma 4.3 and Lemma 4.7. �

Now we turn to the forced linear problem

(4.15)
ut + ux + uxxx = f, for x, t ≥ 0,

u(x, 0) = 0, u(0, t) = 0 .





Its solution can be written in the form

u(·, t) =

∫ t

0

Wc(t− τ)f(·, τ)dτ.
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Lemma 4.9. Assume that −1 ≤ s < 1, 1
2 < α ≤ 1 and 0 < b < 1

2 . For

any T > 0, there is a constant C such that for any f ∈ Y 1−α
s,b (R+ × (0, T )), the

corresponding solution u of (4.15) belongs to the space X α
s,b(R

+×(0, T )) and satisfies
the inequality

(4.16) ‖u‖Xα
s,b(R

+×(0,T )) ≤ C ‖f‖Y 1−α
s,b (R+×(0,T )) .

In addition, there exists a b∗ ∈ (0, 1
2 ) such that if f ∈ Y 1−α

s,b∗ (R+ × (0, T )), then

the corresponding solution u of (4.15) belongs to the space X α
s, 1

2

(R+ × (0, T )) and

satisfies the bound

(4.17) ‖u‖Xα

s, 1
2

(R+×(0,T )) ≤ C ‖f‖Y 1−α
s,b∗ (R+×(0,T )) .

Proof: By Proposition 2.3,

u(·, t) =

∫ t

0

WR(t− τ)f(·, τ)dτ −Wbdr(t)v

for any x, t > 0 where v ≡ v(t) is the trace of
∫ t

0
WR(t− τ)f(·, τ)dτ at x = 0. The

estimates (4.16) and (4.17) then follow from Lemma 4.2, Lemma 4.4 and Lemma
4.7 by noting that Y 1−α

s, 1
2

(R+ × (0, T )) is a subspace of Y 1−α
s,b∗ (R+ × (0, T )). �

The lemma below presents a version of a bilinear estimate in the restricted
Bourgain space Xs,b(R

+ × (0, T )) which follows directly from Lemma 4.5.

Lemma 4.10. Given s > − 3
4 , there exist b = b(s) < 1

2 , α = α(s) > 1
2 and

C, µ > 0 such that

(4.18) ‖∂x(uv)‖Y α
s,b(R

+×(0,T )) ≤ CT µ ‖u‖Xα
s,b(R

+×(0,T ) ‖v‖Xα
s,b(R

+×(0,T ))

for any u, v ∈ Xα
s,b(R

+ × (0, T )).

We are now ready to present the proof of Theorem 4.1.

Proof of Theorem 4.1: By applying Lemmas 4.7–4.10, Theorem 4.1 can be
established by the standard contraction mapping principle. The proof is provided
only for Part (i). The proof of Part (ii) is entirely similar and so is omitted.

Let φ ∈ Hs(R+) and h ∈ H
s+1
3

loc (R+) be given with s ∈ (− 3
4 ,

1
2 ]. For given θ

with 0 < θ ≤ 1 (to be chosen precisely later) and v, w ∈ X α
s, 1

2

(R+ × (0, θ)), define

(4.19) F(w) = Wc(t)φ + Wbdr(t)h−
∫ t

0

Wc(t− τ)(wxw)(τ)dτ.

Using Lemma 4.7 -Lemma 4.10, it is seen that

‖F(w)‖Xα

s, 1
2

(R+×(0,θ)) ≤ C1

(
‖φ‖Hs(R+) + ‖h‖

H
s+1
3 (0,T )

)
+ C2θ

µ ‖w‖2
Xα

s, 1
2

(R+×(0,θ))

and

‖F(v) − F(w)‖X
s, 1

2
(R+×θ)) ≤ C2θ

µ ‖v − w‖X
s, 1

2
(R+×(0,θ)) ‖v + w‖X

s, 1
2
(R+×(0,θ))

where the constant C1 and C2 are independent of θ, v and w. Let Br be the ball
in the space Xα

s, 1
2

(R+ × (0, θ)) with radius r where

r = 2C1

(
‖φ‖Hs(R+) + ‖h‖

H
s+1
3 (0,T )

)
,
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and choose θ = T ∗ small enough that

2C2(T
∗)µr ≡ β < 1.

Then it follows readily that F maps Br into itself and that for w, v ∈ Br,

‖F(w) − F(v)‖Xα

s, 1
2

(R+×(0,T∗)) ≤ β ‖w − v‖Xα

s, 1
2

(R+×(0,T∗)) .

Thus, the mapping F is a contraction on the ball Br. The fixed point u of this map
F in Br is the advertised solution. For s > 1/2, we use the integral form (2.12)
together with f = −uux to obtain the result. �

It is next demonstrated that there is at most one fixed point of the operator F,
whether or not the fixed point is determined by the contraction mapping principle.

Lemma 4.11. Let − 3
4 < s < 1 and fix φ ∈ Hs(R+) and h ∈ H

s+1
3

loc (R+). Let F
be as defined in (4.19). Suppose u1 ∈ Xα

s, 1
2

(R+×(0, θ1)) and u2 ∈ Xα
s, 1

2

(R+×(0, θ2))

both are fixed points of F, where 0 < θ1 ≤ θ2 < θ. Then,

u2

∣∣∣
t∈(0,θ1)

= u1

in Xα
s, 1

2

(R+ × (0, θ1)).

Proof: The argument is made by standard energy estimates using the bilinear
estimates just derived. Let w = u1−u2. Then, it follows that, at least for 0 ≤ t ≤ θ1,
(4.20)

w = F(u1)−F(u2) =
1

2

∫ t

0

Wc(t−τ)∂x(u2
1−u2

2)dτ =
1

2

∫ t

0

Wc(t−τ)∂x[(u1+u2)w]dτ .

The equality
∫ t

0

Wc(t− τ)∂x(u2 − v2)dτ =

∫ t

0

Wc(t− τ)∂x[(u+ v)(u− v)]dτ

follows from the fact that it holds for smooth functions u and v and the observation
that such functions are dense in X α

s, 1
2

(R+ × (0, θ)). Let θ be fixed with 0 < θ ≤ θ1.

Using the same analysis that came to the fore in establishing that F is contractive,
it is deduced from (4.20) that

‖w‖Xα

s, 1
2

(R+×(0,θ)) ≤ Cθµ‖u1 + u2‖Xα

s, 1
2

(R+×(0,θ))‖w‖Xα

s, 1
2

(R+×(0,θ)) ,

where C is independent of u1, u2, θ and µ > 0. Continuing this inequality, there
obtains

(4.21) ‖w‖Xα

s, 1
2

(R+×(0,θ)) ≤ CθµM‖w‖Xα

s,1
2

(R+×(0,θ)) ,

where

M = max{‖u1‖Xα

s, 1
2

(R+×(0,θ)) , ‖u2‖Xα

s, 1
2

(R+×(0,θ))}.

Here, use is made of the fact that if v ∈ X α
s, 1

2

(R+ × (0, T )), then if S < T , v ∈
Xα

s, 1
2

(R+ × (0, S)) and

‖v‖Xα

s, 1
2

(R+×(0,S)) ≤ ‖v‖Xα

s,1
2

(R+×(0,T )) .
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If θ is chosen small enough, then (4.21) forces ‖w‖Xα

s, 1
2

(R+×(0,θ)) = 0. So, w = 0

and u1 = u2 as elements of Xα
s, 1

2

(R+ × (0, θ)). Define θ0 to be

θ0 = sup{θ > 0 : u1 = u2 ∈ Xα
s, 1

2
(R+ × (0, θ))}

and suppose θ0 < θ1. Then, u1(·, θ0) = u2(·, θ0) but this is no longer true for some
θ’s with θ > θ0 arbitrarily close to θ0. Consider again (4.20) and for θ > θ0, write
it in the form

w(·, t) =
1

2

∫ θ0

0

Wc(t− τ)∂x[(u1 + u2)w]dτ +
1

2

∫ t

θ0

Wc(t− τ)∂x[(u1 + u2)w]dτ .

Because of the choice of θ0, the first term above is zero, and so

w =
1

2

∫ t

θ0

Wc(t− τ)∂x[(u1 + u2)w]dτ .

As before,

‖w‖Xα

s, 1
2

(R+×(θ0,θ)) ≤ C(θ − θ0)
µM‖w‖Xα

s, 1
2

(R+×(θ0,θ))

and this, too, implies w = 0 on [θ0, θ] if θ is chosen sufficiently near θ0. Thus,
θ0 = θ1 and

u2

∣∣∣
t∈(0,θ1)

= u1

as advertised. �

Corollary 4.12. Let r > s lie in the interval (− 3
4 , 1). Suppose for some θ > 0

ur ∈ Xα
r, 1

2

(R+ × (0, θ)) and us ∈ Xα
s, 1

2

(R+ × (0, θ)) are both fixed points of F where

(φ, h) lie in Hr(R+) ×H
r+1
3

loc (R+). Then, ur = us in Xα
r, 1

2

(R+ × (0, θ)).

Proof: Since Xα
r,b(R

+ × (0, θ)) ⊂ Xα
s,b(R

+ × (0, θ)), it follows that both ur and us

are fixed points of F in Xα
s,b(R

+ × (0, θ)) and hence must be equal there. As ur lies
in the smoother class, so does us. �

Remark: It is worth noting that if u is a strong solution of the initial-boundary-
value problem (1.1), which is to say that u ∈ C([0, T ];H3(R+)) for some T > 0,
then u does satisfy the fixed-point problem (4.19), at least for 0 ≤ t ≤ T . This
follows readily from the formal derivation of (4.19) in Section 2, all of whose steps
are rigorously verified in the context of that much regularity. Note, again, that the
mapping F does not depend upon any extension operations, though we have used
such operators to represent F (in a non-unique way) to facilitate its analysis.

The well-posedness result presented in Theorem 4.1 is conditional since the
uniqueness is established in the space Xs,b(R

+ × (0, T )) instead of in the space
C([0, T ];Hs(R+)). Attention is now given to showing the well posedness is un-
conditional. Toward this end, following the development in [7], it is first proved
that the well-posedness result in Theorem 4.1 has the property of persistence of
regularity.

Proposition 4.13 (persistence of regularity). For given s with − 3
4 < s < 1

and T > 0, let φ ∈ H3(R+) and h ∈ H
4
3

loc(0, T ) satisfy the compatibility condition

h(0) = φ(0).
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Then the solution us ∈ C([0, Ts];H
s(R+)), Ts ≤ T , corresponding to the auxiliary

data (φ, h) given by Theorem 4.1 has the property that

us ∈ C([0, Ts];H
3(R+)).

Proof: First, using the global well-posedness theory developed in [4], there
is adduced a unique solution ũ of (1.1) corresponding to the auxiliary data φ ∈
H3(R+) and h ∈ H

4
3

loc(R
+) which, for every T > 0, lies in C([0, T ];H3(R+)) ∩

C1([0, T ];L2(R+)). To prove that us lies in C([0, T ];H3(R+)), it suffices to show
that ũ, when restricted to [0, Ts], lies in the uniqueness class for us, which is to
say, ũ ∈ Xα

s, 1
2

(R+ × (0, Ts)). This follows since, as noted in the remark following

Corollary 4.12, ũ is a fixed point of F. Moreover, by Theorem 4.1, the value Ts

depends only on ‖(φ, h)‖
Hs(R+)×H

s+1
3 (0,T )

. Note also that if s2 ≤ s1, then Ts1 ≤ Ts2

and Xα
s1,b(R

+ × (0, T ) ⊂ Xα
s2,b(R

+ × (0, T )) for any T > 0. In consequence of these

ruminations, it suffices to show ũ ∈ X α
s, 1

2

(R+ × (0, T )) for some s in the range

− 3
4 < s < − 1

2 . We turn to establishing this fact.
Let T = 2Ts, say, and let u1(x, t) be the even extension in both x and t of ũ

to the domain R× (−T, T ). Multiply u1 by an even cut-off function ψ1(t) which is
identically 1 on [−Ts, Ts] and whose support lies in (−T, T ), and view U = ψ1u1 as
a function defined on R×R. The Fourier transform of U with respect to x and t is

Û(ξ, τ) = 4

∫ ∞

0

∫ ∞

0

U(x, t) cos(xξ) cos(tτ) dxdt .

Since U(x, t) ∈ C1(R+;L2(R+)) has a compact support in t, an integration by
parts gives

τÛ(ξ, τ) = −4

∫ ∞

0

∫ ∞

0

Ut(x, t) cos(xξ) sin(tτ) dxdt ,

which yields

‖τÛ(ξ, τ)‖L2(R×R) ≤ C‖Ut(x, t)‖L2(R+×R+)

≤ C

(
sup

t∈[0,T ]

‖ũt(·, t)‖L2(R+) + sup
t∈[0,T ]

‖ũ(·, t)‖L2(R+)

)
.

Moreover, by a similar argument, we have

‖ξÛ(ξ, τ)‖L2(R×R) ≤ C‖Ux(x, t)‖L2(R×R+)

≤ C

(
sup

t∈[0,T ]

‖ũx(·, t)‖L2(R+) + sup
t∈[0,T ]

‖ũ(·, t)‖L2(R+)

)
.

Thus, for − 3
4 < s ≤ − 1

2 ,

Ns, 1
2
(U) ≤ C

∫ ∞

−∞

∫ ∞

−∞
[1 + |τ | + (1 + |ξ|)3+2s]|Û(ξ, τ)|2dξdτ

≤ C

(
sup

t∈[0,T ]

‖ũt(·, t)‖L2(R+) + sup
t∈[0,T ]

‖ũx(·, t)‖L2(R+) + sup
t∈[0,T ]

‖ũ(·, t)‖L2(R+)

)
.

It is deduced that U(x, t) ∈ Xα
s, 1

2

(R+ × (0, T )) for any s with − 3
4 < s < − 1

2 , and so

U restricted to (0, T
2 ] lies in Xα

s, 1
2

(R+ × (0, T
2 )). However, the restriction of U(x, t)
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for (x, t) in R+ × [0, Ts] is ũ(x, t), and thus ũ lies in Xα
s, 1

2

(R+ × (0, Ts)). Therefore,

us(x, t) lies in C([0, Ts];H
3(R+)) and the proof is complete. �

Corollary 4.14. Let s be fixed in the range − 3
4 < s < 1. For given φ ∈

Hs(R+) and h ∈ H
s+1
3

loc (R+) satisfying φ(0) = h(0) if s > 1
2 , the solution u ∈

C([0, T ];Hs(R+)) given by Theorem 4.1 is a mild solution.

Proof: Choose a sequence {φn} in H3(R+) and a sequence {hn} in H
4
3 (R+)

such that φn(0) = hn(0) for n = 1, 2, · · · , φn converges to φ in the space Hs(R+)

and hn converges to h in H
s+1
3 (0, T ). Let un be the solution of (4.1) corresponding

to φn and hn determined by Theorem 4.1. It is elementary that un depends con-
tinuously on (φn, hn) because it is obtained via the contraction mapping principle.
Thus, as n → ∞, un converges to u in C([0, T ];Hs(R+)). By Proposition 4.13,
un ∈ C([0, T ];H3(R+)) is a strong solution of (1.1) for n = 1, 2, · · · . Thus, by
definition, u is a mild solution. �

Remark: In the same manner, one can show that the solutions given by Theorem
B and Theorem D in Section 1 are all mild solutions.

Proposition 4.15 (uniqueness of mild solution). Let s > − 3
4 be given. For

any φ ∈ Hs(R+) and h ∈ H
s+1
3

loc (R+), the IBVP (4.1) admits at most one mild
solution defined on the time interval [0, T ].

Proof: It suffices to show uniqueness in case of s ≤ 3
2 as the case s > 3

2 follows
from a straightforward energy inequality and Gronwall’s Lemma. Suppose u and v
are two mild solutions of (4.1) corresponding to the given φ and h. By definition,
there exist two sequences {un} and {vn} in the space C([0, T ];H3(R+)) with

un(x, 0) = φn(x), vn(x, 0) = ψn(x), un(0, t) = hn(t), vn(0, t) = gn(t)

for n = 1, 2, · · · , such that

lim
n→∞

‖un − u‖C([0,T ];Hs(R+)) = lim
n→∞

‖vn − v‖C([0,T ];Hs(R+)) = 0

and un and vn are strong solutions of (4.1) for n = 1, 2, · · · . Define

u∗m =





u2n if m = 2n′

v2n+1 if m = 2n+ 1

and
u∗m(x, 0) = φ∗m(x), u∗m(0, t) = h∗m(t)

for m = 1, 2, · · · . Note that (φ∗m, h
∗
m) is a Cauchy sequence in the space Hs(R+)×

H
s+1
3 (0, T ) since both gn and hn converge to h in H

s+1
3 (0, T ) and both φn and ψn

converges to φ inHs(R+). On the other hand, because of the property of persistence
of regularity, u∗m is the restriction of wm to the domain R+× [0, T ] where wm is the
solution with auxiliary data (φ∗

m, h
∗
m) determined by Theorem 4.1 corresponding to

φ∗m and h∗m, for m = 1, 2, · · · . By the continuous dependence portion of Theorem
4.1, {wm} is also a Cauchy sequence in the space C([0, T ];Hs(R+)). Consequently,
u∗m is a Cauchy sequence in C([0, T ];Hs(R+)), which implies that

u = v in the space C([0, T ];Hs(R+)).

The proof is complete. �
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As a consequence of the above results, the following unconditional well-posedness
theorem emerges for the IBVP (4.1)

Theorem 4.16 (unconditional well-posedness). For any given s > − 3
4 and

r > 0, there exists a T > 0 depending only on r and s such that if φ ∈ H s(R+) and

h ∈ H
s+1
3

loc (R+) satisfying the s−compatibility conditions (cf. [4]) and

‖φ‖Hs(R+) + ‖h‖
H

s+1
3 (0,T )

≤ r,

then (4.1) admits a unique mild solution u ∈ C(0, T ;Hs(R+)). Moreover, the
solution u depends continuously on φ and h in the respective spaces.

Remark : In fact, it can be further demonstrated that the solution u depends on
φ and h analytically in the respective spaces (cf. [44, 45]).

Finally, we turn to the issue of global well-posedness of the IBVP (4.1). A pre-
liminary global result is first derived; this result will be extended by interpolation.

Proposition 4.17. Let T > 0 and ε > 0 be given. For any φ ∈ L2(R+) and h ∈
H

1+ε
3 (0, T ), the IBVP (4.1) admits a unique mild solution u ∈ C([0, T ];L2(R+)).

The solution u has the additional property that there exists a u∗ ∈ X0,b for some
b < 1

2 such that

(4.22) ‖u∗‖X0,b
≤ α0

(
‖(φ, h)‖

L2(R+)×H
1+ε
3 (0,T )

)

and u is the restriction of u∗ to the domain R+ × [0, T ). Here α0 : R+ → R+ is a
nondecreasing continuous function. Moreover, the solution map

u = K(φ, h)

is real analytic from the space L2(R+) ×H
1+ε
3 (0, T ) to C([0, T ];L2(R+)).

Proof: Since local well-posedness has been established in Theorem 4.16, it
suffices to prove the following a priori estimate for smooth solutions u of the IBVP
(4.1):

(4.23) sup
0≤t≤T

‖u(·, t)‖L2(R+) ≤ αT

(
‖φ‖L2(R+) + ‖h‖

H
1+ε
3 (0,T )

)

for the given value of T , where αT : R+ → R+ is a non-decreasing function
depending only on T .

To prove (4.23), write a smooth solution u of (4.1) in the form u = w+v where
v solves

vt + vx + vxxx = 0, for x, t ≥ 0,

v(x, 0) = 0, v(0, t) = h(t)





and w solves

(4.24) wt + wx + wwx + (vw)x + wxxx = −vvx

with the auxiliary conditions

(4.25) w(x, 0) = φ(x) and w(0, t) = 0.
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By Theorem 3.9,

(4.26) sup
x∈R+

‖vx(x, ·)‖L2(0,T ) ≤ C ‖h‖
H

1+ε
3 (0,T )

.

Multiplying both sides of (4.24) by 2w, integrating with respect to x over (0,∞),
and integrating by parts appropriately, there obtains
(4.27)
d

dt

∫ ∞

0

w2(x, t)dx+w2
x(0, t) = −2

∫ ∞

0

v(x, t)vx(x, t)w(x, t)dx−
∫ ∞

0

vx(x, t)w2(x, t)dx

for any t ∈ (0, T ). In consequence, it is deduced that

d

dt
‖w(·, t)‖2

L2(R+) ≤
∫ ∞

0

(
2|v(x, t)vx(x, t)w(x, t)| + |vx(x, t)w2(x, t)|

)
dx

≤ ‖v(·, t)‖2
H1(R+) ‖w(·, t)‖L2(R+) + sup

x∈R+

|vx(·, t)| ‖w(·, t)‖2
L2(R+) ,

from which it follows that

d

dt
‖w(·, t)‖L2(R+) ≤ ‖v(·, t)‖2

H1(R+) + sup
x∈R+

|vx(·, t)| ‖w(·, t)‖L2(R+)

for t ∈ (0, T ). The inequality (4.23) then follows from Gronwall’s Lemma and
(4.26). The proof is completed by approximating the rough solution by a sequence
of smooth solutions and noting that (4.27) continues to hold in the limit. �

Theorem 4.18. For any ε > 0, the IBVP (4.1) is globally unconditionally
well-posed in the space

Hs(R+) ×H
1+s+ε

3

loc (R+)

if 0 ≤ s < 3 and is globally unconditionally well-posed in the space

Hs(R+) ×H
1+s
3

loc (R+)

for s ≥ 3.

Proof: The IBVP (4.1) is known from the results in [4] to be unconditionally

globally well-posed in the space Hs(R+) × H
1+s
3

loc (R+) for s ≥ 3. The case of
0 < s < 3 follows from this result and Proposition 4.17 by nonlinear interpolation
theory [41, 3] as expounded in [4]. The proof is complete. �

5. Appendices

5.1. Appendix I. Proof of Lemma 4.2: Let u = WR(t)φ. Then the same
proof as presented in [33] demonstrates that

(5.1) Λs,b(ψ(δ−1t)u) ≤ Cδ
1−2b

2 ‖φ‖Hs(R+)

for some constant C independent of δ and φ. (Note that it is required in [33] that
b > 1

2 , which is, in fact, not needed in the proof.) Since

λα(ψ(δ−1t)u) ≤ CΛs,α(ψ(δ−1t)u),

it follows from (5.1) that

(5.2) λα(ψ(δ−1t)u) ≤ Cδ
1−2α

2 ‖φ‖Hs(R+) .

Estimate (4.2) is then established by combining (5.1) and (5.2).
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According to [33],

(5.3) Λs,b(ψ(δ−1t)v) ≤ Cδ
1−2b

2 Λs,b(v)

where b is required to be strictly greater than 1
2 . However, if b ≤ 1

2 , then the proof
of (5.3) in [33] is straightforwardly modified (cf. [46]) to obtain the estimate

(5.4) Λs,b(ψ(δ−1t)v) ≤ Cδ
1−2b′

2 Λs,b(v)

where b′ is any number strictly greater than 1/2. Combining estimate (5.4) with
the estimate

λα(ψ(δ−1t)v) ≤ Cδ
1−2α

2 λα(v),

which follows from exactly the same observations as did (5.3), yields (4.3).

The proof of (4.4) is based on analysis in [11, 33], though with a little modifi-
cation. First observe that

ψ(δ−1t)

∫ t

0

WR(t− t′)f(t′)dt′

= ψ(δ−1t)

∫ ∞

−∞

∫ ∞

−∞
eixξf̂(ξ, τ)ψ(τ − (ξ3 − ξ))

eiτt − eit(ξ3−ξ)

τ − (ξ3 − ξ)
dξdτ

+ψ(δ−1t)

∫ ∞

−∞

∫ ∞

−∞
eixξf̂(ξ, τ)(1 − ψ(τ − (ξ3 − ξ)))

eiτt − eit(ξ3−ξ)

τ − (ξ3 − ξ)
dξdτ

:= A+B.

By a Taylor series expansion,

A =

∞∑

k=1

ik

k!
δkψk(δ−1t)WR(t)g

with

ĝ(ξ) =

∫ ∞

−∞
f̂(ξ, τ)(τ − (ξ3 − ξ))k−1ψ(τ − (ξ3 − ξ))dτ

and

ψk(δ−1t) :=

(
t

δ

)k

ψ(δ−1t), k = 1, 2, · · · .

As δ ≤ 1 and b ≤ 1,

δ2
∫ ∞

−∞

∣∣∣ψ̂k(δτ)
∣∣∣
2

(1 + |τ |2b)dτ ≤ Cδ1−2b(k + 1)2.
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Moreover, because of the restriction on the support of ψ,

‖g‖2
Hs(R) ≤

C

∫ ∞

−∞
(1 + |ξ|)2s

∣∣∣∣
∫ ∞

−∞
f̂(ξ, τ)(τ − (ξ3 − ξ))k−1ψ(τ − (ξ3 − ξ))dτ

∣∣∣∣
2

dξ

≤ C

∫ ∞

−∞
(1 + |ξ|)2s

∣∣∣∣∣

∫

|τ−(ξ3−ξ)|<1

f̂(ξ, τ)dτ

∣∣∣∣∣

2

dξ

≤ C

∫ ∞

−∞
(1 + |ξ|)2s

∣∣∣∣∣

∫ ∞

−∞

f̂(ξ, τ)

1 + |τ − (ξ3 − ξ)|dτ
∣∣∣∣∣

2

dξ.

Thus, applying (4.2) gives

‖A‖Xα
s,b

≤ C

∞∑

k=1

δk(k + 1)2

k!
δ

1−2b∗
2 ‖g‖Hs(R)

≤ Cδ
1−2b∗

2 (



∫ ∞

−∞
(1 + |ξ|)2s

∣∣∣∣∣

∫ ∞

−∞

f̂(ξ, τ)

1 + |τ − (ξ3 − ξ)|dτ
∣∣∣∣∣

2

dξ




1
2

.

Next, consider the term B which can be written as

B = B1 +B2

with

B1 = −ψ(δ−1t)

∫ ∞

−∞
ei(xξ+t(ξ3−ξ))

(∫ ∞

−∞

1 − ψ(τ − (ξ3 − ξ))

τ − (ξ3 − ξ)
f̂(ξ, τ)

)
dξ

and

B2 = ψ(δ−1t)

∫ ∞

−∞
ei(xξ+tτ)

(∫ ∞

−∞

1 − ψ(τ − (ξ3 − ξ))

τ − (ξ3 − ξ)
f̂(ξ, τ)

)
dξ.

For B1, (4.2) yields

‖B1‖2
Xα

s,b
≤ Cδ1−2b∗

∫ ∞

−∞
(1 + |ξ|)2s

(∫ ∞

−∞

|f̂(ξ, τ)|
(1 + |τ − (ξ3 − ξ)|dτ

)2

dξ.

As for B2, applying (4.3) leads to

‖B2‖2
Xα

s,b
≤ Cδ1−2b∗

∥∥∥∥
∫ ∞

−∞
ei(xξ+tτ)

(∫ ∞

−∞

1 − ψ(τ − (ξ3 − ξ))

τ − (ξ3 − ξ)
f̂(ξ, τ)

)
dξ

∥∥∥∥
2

Xα
s,b

≤ Cδ1−2b∗
∫ ∞

−∞

∫ ∞

−∞
(1 + |ξ|)2s |f̂(ξ, τ)|2

(1 + |τ − (ξ3 − ξ)|)2(1−b)
dξdτ

+ Cδ1−2b∗
∫ ∞

−∞

∫

|ξ|≤1

|f̂(ξ, τ)|2
(1 + |τ |)2(1−α)

dξdτ.

The proof is complete. �

Proof of Lemma 4.3.



56 JERRY L. BONA, S. M. SUN, AND BING-YU ZHANG

(a). Estimate (4.5) was established in [4], Lemma 3.10 when s ≥ 0. The proof
presented there is also valid for s ≤ 0.

(b). Let u = WR(t)φ and s1 := s+1
3 . Then s1 ≥ 0 when −1 ≤ s < ∞. Observe

that there is a constant C depending only on s such that

‖ψu‖H
s1
t (R) ≤ C

(
‖ψu‖L2

t (R) + ‖Ds1
t (ψu)‖L2

t (R)

)
.

For 0 ≤ s1 < 1, the Leibniz rule for fractional derivative implies

‖Ds1
t (ψ(t)u(x, t)) − ψ(t)Ds1

t u(x, t) −Ds1
t ψ(t)u(x, t)‖L2

t (R)

≤ C ‖ψ‖L∞(R) ‖Ds1
t u(x, t)‖L2

t (R) .

Thus, it transpires that

‖ψ(t)u(x, t)‖H
s1
t (R) ≤ C ‖u(x, t)‖H

s1
t (R)

where C depends on s and ψ. Estimate (4.6) then follows from (4.5). If 1 ≤ s1 < 2,
write s1 as s1 = 1 + s′ with 0 ≤ s′ < 1; with this notation, we have

Ds1
t (ψ(t)u(x, t)) = Ds′

t (ψ′(t)u(x, t) + ψ(t)∂tu(x, t)).

It follows that

‖Ds1
t (ψ(t)u(x, t))‖L2

t (R)

≤ C

(∥∥∥Ds′

t (ψ′(t)u(x, t))
∥∥∥

L2
t (R)

+
∥∥∥Ds′

t (ψ(t)∂tu(x, t))
∥∥∥

L2
t (R)

)

≤ C
(
‖u(x, t)‖Hs′

t (R) + ‖u(x, t)‖H
s1
t (R)

)

≤ C ‖φ‖Hs(R) .

One shows by continuing this bootstrapping argument that (4.6) holds for any
s1 ≥ 2. The proof is complete. �

Proof of Lemma 4.4. First assume that −1 ≤ s ≤ 2 − 3b. As in the proof of
Lemma 4.2, write w(x, t) as

w(x, t) = A(x, t) +B1(x, t) +B2(x, t)

where

A(x, t) =

∞∑

k=1

ik

k!
tkψ(t)WR(t)g,

B1(x, t) = ψ(t)WR(t)q,

and B2(x, t) is the remainder. Then, Lemma 4.3 yields

sup
x∈R

‖A(x, t)‖2

H
s+1
2

t (R)
≤ C ‖g‖2

Hs(R)

≤ C

∫ ∞

−∞
(1 + |ξ|)2s

∣∣∣∣∣

∫ ∞

−∞

f̂(ξ, τ)

1 + |τ − (ξ3 − ξ)|dτ
∣∣∣∣∣

2

dξ.
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and

sup
x∈R

‖B1(x, t)‖2

H
s+1
2

t (R)
≤ C ‖q‖2

Hs(R)

≤ C

∫ ∞

−∞
(1 + |ξ|)2s

(∫ ∞

−∞

|f̂(ξ, τ)|
(1 + |τ − (ξ3 − ξ)|dτ

)2

dξ.

As for B2(x, t), notice that

sup
x∈R

‖B2(x, t)‖
H

s+1
3

t (R)

≤ C

∫ ∞

−∞
(1 + |τ |)

2(s+1)
3

(∫ ∞

−∞

|1 − ψ(τ − (ξ3 − ξ))|
|τ − (ξ3 − ξ)| f̂(ξ, τ)dξ

)2

dτ

≤ C

∫ ∞

−∞
(1 + |τ |)

2(s+1)
3

(∫ ∞

−∞

1

1 + |τ − (ξ3 − ξ)| f̂(ξ, τ)dξ

)2

dτ

≤ C

∫ ∞

−∞
(1 + |τ |)

2(s+1)
3 G(τ)

∫ ∞

−∞

|f̂(ξ, τ)|2 (1 + |ξ|)2s

(1 + |τ − (ξ3 − ξ)|)2b
dξdτ

where

G(τ) :=

∫ ∞

−∞

dξ

(1 + |ξ|)2s
(1 + |τ − (ξ3 − ξ)|)2(1−b)

≤ C

∫ ∞

−∞

dη

|η| 23 (1 + |η|) 2s
3 (1 + |τ − η|)2(1−b)

.

Therefore, it suffices to show that there exists a constant C such that for any τ ∈ R,

(5.5) G(τ) ≤ C

(1 + |τ |) 2(s+1)
3

.

Write G in the form

G(τ) = G1(τ) +G2(τ) +G3(τ)

with

G1(τ) =

∫

|η|≤ 1
2 |τ |

dη

|η| 23 (1 + |η|) 2s
3 (1 + |τ − η|)2(1−b)

,

G2(τ) =

∫

1
2 |τ |<|η|<2|τ |

dη

|η| 23 (1 + |η|) 2s
3 (1 + |τ − η|)2(1−b)

and

G3(τ) =

∫

2|τ |≤|η|

dη

|η| 23 (1 + |η|) 2s
3 (1 + |τ − η|)2(1−b)

.

In the region |η| ≤ |τ |
2 , note that (1 + |τ − η|) ∼ (1 + |τ |) and |τ − η| > |η|. Thus,

for s ≤ 0,

G1(τ) ≤ C(1 + |τ |)−
2(s+1)

3

∫ ∞

−∞

dη

|η| 23 (1 + |η|)2(1−b)− 2
3

≤ C

(1 + |τ |) 2(s+1)
3

.



58 JERRY L. BONA, S. M. SUN, AND BING-YU ZHANG

as b < 1
2 . When 0 ≤ s ≤ 2 − 3b,

G1(τ) ≤ C(1 + |τ |)−
2(s+1)

3

∫ ∞

−∞

dη

|η| 23 (1 + |η|) 2s
3 (1 + |τ − η|)2(1−b)− 2(s+1)

3

≤ C(1 + |τ |)−
2(s+1)

3

∫ ∞

−∞

dη

|η| 23 (1 + |η|)2(1−b)− 2
3

≤ C

(1 + |τ |) 2(s+1)
3

.

In the region |τ |
2 < |η| < 2|τ |,

G2(τ) ≤ C(1 + |τ |)−
2(s+1)

3

∫ 2|τ |

|τ|
2

dη

(1 + |τ − η|)2(1−b)

≤ C

(1 + |τ |) 2(s+1)
3

since b < 1
2 . In the region 2|τ | ≤ |η|, it is the case that 1 + |τ − η| = O(1 + |η|).

Thus

G3(τ) ≤ C

∫

|η|≥2|τ |

dη

|η| 2(s+1)
3 (1 + |η|)2(1−b)

≤ C(1 + |τ |)−
2(s+1)

3 .

We have thus proved (4.7) for −1 ≤ s ≤ 2 − 3b. In particular, it holds for s = −1,
which is to say

(5.6) sup
x∈R

‖ψ(t)w(x, t)‖L2
t (R) ≤ C ‖f‖Y 0

−1,b
.

To see (4.7) is valid for other values of s, let v = wxxx. The definition of w implies
that

v(x, t) =

∫ t

0

[WR(t− t′)fxxx(·, t′)](x)dt′.

Using the estimate (4.7) just proved for −1 ≤ s ≤ 2 − 3b , it is deduced that

sup
x∈R

‖ψ(t)v(x, t)‖
H

s+1
3

t (R)
≤ C ‖f‖Y 0

s+3,b

for −1 ≤ s ≤ 2 − 3b. Since wt = f − wxxx − wx, one sees that

sup
x∈R

‖ψ(t)wt(x, t)‖
H

s+1
3

t (R)
≤ C ‖f‖Y 0

s+3,b,

or, equivalently,

sup
x∈R

‖ψ(t)w(x, t)‖
H

s+4
3

t (R)
≤ C ‖f‖Y 0

s+3,b
.

In particular,

(5.7) sup
x∈R

‖ψ(t)w(x, t)‖H1
t (R) ≤ C ‖f‖Y 0

2,b
.

By standard interpolation, (4.7) holds for −1 ≤ s ≤ 2. A continuation of the
bootstrap argument just applied yields the desired result for other values of s. This
completes the proof. �
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Proof of Lemma 4.6. The proof is based on some minor modifications of argu-
ments in [11, 33]. By the definition of the space Y α

s,b1
it suffices to establish the

following three estimates:

(5.8) Q−s,b1(w) ≤ Cδθ0 ‖u‖Xα
−s,b

‖v‖Xα
−s,b

,

(5.9) Pα(w) ≤ Cδθ0 ‖u‖Xα
−s,b

‖v‖Xα
−s,b

and

(5.10) G(w) ≤ Cδθ0 ‖u‖X−s,b
‖v‖Xα

−s,b
.

Define

p(x, t) = σ(δ−1t)u(x, t), q(x, t) = σ(δ−1t)v(x, t),

where σ is as before, and let w be defined via its Fourier transform, viz.

ŵ(ξ, λ) = cξq̂ ∗ p̂.
Also define

βb,α(ξ, λ) = (1 + |λ− (ξ3 − ξ)|)b + χ(ξ)(1 + |λ|)α

where χ = χ[−1,1] and

f(ξ, λ) = (1 + |ξ|)−sβb,α(ξ, λ) |p̂(ξ, λ)| , g(ξ, λ) = (1 + |ξ|)−sβb,α(ξ, λ) |q̂(ξ, λ)| .
It follows that

‖f‖L2
ξL2

τ
= ‖p‖X−s,b

and ‖g‖L2
ξL2

τ
= ‖q‖X−s,b

.

Moreover, there is a constant C for which

|ŵ(ξ, λ)| ≤ C|ξ|
∫ ∞

−∞

∫ ∞

−∞

(1 + |ξ1|)sf(ξ1, λ1)

βb,α(ξ1, λ1)

(1 + |ξ − ξ1|)sg(ξ − ξ1, λ− λ1)

βb,α(ξ − ξ1, λ− λ1)
dξ1λ1.

To estimate Λs,b(w), proceed by duality. Let h(ξ, λ) ≥ 0, with ‖h‖L2
ξL2

λ
≤ 1

and consider the expression

Υ =

∫

R4

|ξ|h(ξ, λ)
(1 + |ξ|)s(1 + |λ− (ξ3 − ξ)|)b1

(1 + |ξ1|)sf(ξ1, λ1)

βb,α(ξ1, λ1)

(1 + |ξ − ξ1|)sg(ξ − ξ1, λ− λ1)

βb,α(ξ − ξ1, λ− λ1)
dµ

where dµ = dξ1dλ1dξdλ. By symmetry, it suffices to estimate the integral in the
domain

|ξ1| ≤ |ξ − ξ1|.
Because of the identity

λ− (ξ3 − ξ) −
[
λ1 − (ξ31 − ξ1) + (λ− λ1) − (ξ3 − ξ − (ξ31 − ξ1))

]
= 3ξ(ξ − ξ1)ξ1,

one of the following three cases always occurs:
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(5.11)





(a) |λ− (ξ3 − ξ)| ≥ |ξ| |ξ − ξ1| |ξ1|,

(b) |λ1 − (ξ31 − ξ)| ≥ |ξ| |ξ − ξ1| |ξ1|,

(c) |λ− λ1 − ((ξ − ξ1)
3 − (ξ − ξ1))| ≥ |ξ| |ξ − ξ1| |ξ1|.

To bound the integral Υ we split the domain of integration into several pieces.
Assume first that |ξ| ≤ 2 and |ξ1| ≤ 1. Since |ξ1| ≤ |ξ − ξ1| then |ξ − ξ1| ≤ 3,

and consequently the integral Υ restricted to this domain is bounded as before:

∫

R4

h(ξ, λ)
f(ξ1, λ1)

(1 + |λ1 − (ξ31 − ξ1)|)b

g(ξ − ξ1, λ− λ1)

(1 + |λ− λ1 − ((ξ − ξ1)3 − (ξ − ξ1))|)b
dµ

=
〈
h, F̂b ∗ Ĝb

〉
= 〈H0, FbGb〉

≤ C ‖h‖L2
ξL2

λ
‖Fb‖L4

xL4
t
‖Gb‖L4

xL4
t

≤ C ‖h‖L2
ξL2

λ
‖g‖L2

ξL2
λ
‖Fb‖L4

xL4
t
,

if b > 1
3 , where

Ĥρ =
h(ξ, λ)

(1 + |λ− (ξ3 − ξ)|)ρ

and F̂b and Ĥb are defined similarly.

Assume next that |ξ| ≤ 2 and 1 ≤ |ξ1| ≤ |ξ1 − ξ|. We consider the three cases
in (5.11). If (a) holds, the integral Υ in this region is bounded by

∫

R4

h(ξ, λ)
|ξ1|s−b1f(ξ1, λ1)

(1 + |λ1 − (ξ31 − ξ1)|)b

|ξ − ξ1|s−b1g(ξ − ξ1, λ− λ1)

(1 + |(λ− λ1 − ((ξ − ξ1)3 − (ξ − ξ1))|)b
dµ

≤
∫

R4

h(ξ, λ)
|ξ1|

1
8 f(ξ1, λ1)

(1 + |λ1 − (ξ31 − ξ1)|)b

|ξ − ξ1|
1
8 g(ξ − ξ1, λ− λ1)

(1 + |(λ− λ1 − ((ξ − ξ1)3 − (ξ − ξ1))|)b
dµ

=

〈
h,

̂
D

1
8
x Fb ∗

̂
D

1
8
xGb

〉
=
〈
H0, D

1
8
x FbD

1
8
xGb

〉

≤ C ‖h‖L2
ξL2

λ

∥∥∥D
1
8
x Fb

∥∥∥
L4

xL4
t

∥∥∥D
1
8
xGb

∥∥∥
L4

xL4
t

≤ C ‖h‖L2
ξL2

λ
‖g‖L2

ξL2
λ

∥∥∥D
1
8
x Fb

∥∥∥
L4

xL4
t

.

Here, it was assumed that

s− b1 ≤ 1

8
, b1 ≤ 1, b >

3

8
.
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If case (b) holds, the integral Υ is bounded in the following way:

∫

R4

|ξ|1−bχ( 1
2ξ)h(ξ, λ)

(1 + |λ− (ξ3 − ξ)|)b1

|ξ1|s−bf(ξ1, λ1)|ξ − ξ1|s−bg(ξ − ξ1, λ− λ1)

(1 + |λ− λ1 − ((ξ − ξ1)3 − (ξ − ξ1))|)b
dµ

=

∫

R4

χ( ξ
2 )h(ξ, λ)

(1 + |λ− (ξ3 − ξ)|)b1

f(ξ1, λ1)|ξ − ξ1|
1
4 g(ξ − ξ1, λ− λ1)

(1 + |λ− λ1 − ((ξ − ξ1)3 − (ξ − ξ1))|)b
dµ

=

〈
Ĥb1 , F̂0 ∗

̂
D

1
4
xGb

〉
=
〈
Hb1 , F0D

1
4
xGb

〉

≤ C ‖Hb1‖L4
xL6

t
‖F0‖L2

xL2
t

∥∥∥D
1
4
xGb

∥∥∥
L4

xL3
t

≤ C ‖h‖L2
ξL2

λ
‖f‖L2

ξL2
τ

∥∥∥D
1
4
xGb

∥∥∥
L4

xL3
t

,

where

Ĥb1(ξ, λ) =
h(ξ, λ)χ( 1

2ξ)

(1 + |λ− (ξ3 − ξ)|)b1
.

To effect this estimate, it was assumed that

s− b <
1

8
, 1 ≥ b >

1

3
, b1 >

5

12
.

If (c) holds, then

Υ ≤
∫

R4

|ξ|1−bχ( 1
2ξ)h(ξ, λ)

(1 + |λ− (ξ3 − ξ)|)b1

|ξ1|
1
8 f(ξ1, λ1)|ξ − ξ1|

1
8 g(ξ − ξ1, λ− λ1)

(1 + |λ1 − (ξ31 − ξ1)|)b
dµ

≤ C

∫

R4

χ( 1
2ξ)h(ξ, λ)

(1 + |λ− (ξ3 − ξ)|)b1

|ξ1|
1
8 f(ξ1, λ1)g(ξ − ξ1, λ− λ1)

(1 + |λ1 − (ξ31 − ξ1)|)b
dµ+

+C

∫

R4

χ( 1
2ξ)h(ξ, λ)

(1 + |λ− (ξ3 − ξ)|)b1

|ξ1|
1
4 f(ξ1, λ1)g(ξ − ξ1, λ− λ1)

(1 + |λ1 − (ξ31 − ξ1)|)b
dµ

:= B1 +B2.

Arguing as in case (b) yields

B1 ≤ C ‖h‖L2
ξL2

λ
‖g‖L2

ξL2
τ

∥∥∥D
1
8
x Fb

∥∥∥
L4

xL4
t

and B2 ≤ C ‖h‖L2
ξL2

λ
‖f‖L2

ξL2
τ

∥∥∥D
1
4
xGb

∥∥∥
L4

xL3
t

.

Next consider the case |ξ| ≥ 2. First assume |ξ| ≥ 2 and |ξ1| ≤ 1 so that
|ξ − ξ1| ≥ 1. In this domain,

1

2
|ξ| ≤ |ξ − ξ1| ≤ 2|ξ|,
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and so the integral Υ is bounded as follows:
∫

R4

|ξ|1−sh(ξ, λ)

(1 + |λ− (ξ3 − ξ)|)b1

χ( 1
2 ξ)f(ξ1, λ1)

(1 + |λ1|)α

|ξ − ξ1|sg(ξ − ξ1, λ− λ1)

(1 + |λ− λ1 − ((ξ − ξ1)3 − (ξ − ξ1))|)b
dµ

=
〈
D1−s

x Hb1 ,FαD
s
xGb

〉

≤ C
∥∥D1−s

x Hb1

∥∥
L

2
s
x L2

t

‖Fα‖L2
xL∞

t
‖Ds

xGb‖
L

2
1−s
x L2

t

≤ C ‖h‖L2
ξL2

τ
‖Fα‖L2

xL∞
t
‖Ds

xGb‖
L

2
1−s
x L2

t

≤ C ‖h‖L2
ξL2

τ
‖Fα‖L2

xL∞
t
‖Ds

xGb‖
L

2
1−s
x L2

t

,

whereF̂α(ξ, λ) =
χ( 1

2 ξ)f(ξ,λ)

(1+|λ|)α . In these machinations, it was required that

0 ≤ s ≤ 1, b1 >
1

2
(1 − s), b >

s

2
, α >

1

2
.

Assume now that |ξ| ≥ 2, |ξ1| ≥ 1 and |ξ − ξ1| ≥ |ξ1|. In this region, the
inequality |ξ| ≤ 2|ξ − ξ1| holds and therefore the integral Υ is bounded above by

∫

R4

|ξ|1−sh(ξ, λ)

(1 + |λ− (ξ3 − ξ)|)b1

|ξ1|sf(ξ1, λ1)|ξ − ξ1|sg(ξ − ξ1, λ− λ1)

(1 + |λ1 − (ξ31 − ξ1)|)b(1 + |λ− λ1 − ((ξ − ξ1)3 − (ξ − ξ1))|)b
dµ.

The domain of integration of the latter integral is again considered in the three
subcases as in (5.11). If (a) holds,

∫

R4

|ξ|1−sh(ξ, λ)

(1 + |λ− (ξ3 − ξ)|)b1

|ξ1|sf(ξ1, λ1)|ξ − ξ1|sg(ξ − ξ1, λ− λ1)

(1 + |λ1 − (ξ31 − ξ1)|)b(1 + |λ− λ1 − ((ξ − ξ1)3 − (ξ − ξ1))|)b
dµ

≤ C

∫

R4

|ξ|1−s−b1h(ξ, λ)

|ξ1|s−b1f(ξ1, λ1)|ξ − ξ1|s−b1g(ξ − ξ1, λ− λ1)

(1 + |λ1 − (ξ31 − ξ1)|)b(1 + |λ− λ1 − ((ξ − ξ1)3 − (ξ − ξ1))|)b
dµ

≤ C

∫

R4

h(ξ, λ)
|ξ1|

1
8 f(ξ1, λ1)|ξ − ξ1|

1
8 g(ξ − ξ1, λ− λ1)

(1 + |λ1 − (ξ31 − ξ1)|)b(1 + |λ− λ1 − ((ξ − ξ1)3 − (ξ − ξ1))|)b
dµ

≤ C ‖h‖L2
ξL2

λ

∥∥∥D
1
8
x Fb

∥∥∥
L4

xL4
t

∥∥∥D
1
8
xGb

∥∥∥
L4

xL4
t

≤ C ‖h‖L2
ξL2

λ
‖g‖L2

ξL2
λ

∥∥∥D
1
8
x Fb

∥∥∥
L4

xL4
t

,
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where it was required that

b1 − s+
1

8
≥ 0 , b1 ≥ 7

16
, s− b1 ≤ 1

8
.

If (b) holds, Υ is bounded above by
∫

R4

|ξ|1−sh(ξ, λ)

(1 + |λ− (ξ3 − ξ)|)b1

|ξ1|sf(ξ1, λ1)|ξ − ξ1|sg(ξ − ξ1, λ− λ1)

(1 + |λ1 − (ξ31 − ξ1)|)b(1 + |λ− λ1 − ((ξ − ξ1)3 − (ξ − ξ1))|)b
dµ

≤ C

∫

R4

|ξ|1−s−bh(ξ, λ)|ξ1|s−bf(ξ1, λ1)
|ξ − ξ1|s−bg(ξ − ξ1, λ− λ1)

(1 + |λ− λ1 − ((ξ − ξ1)3 − (ξ − ξ1))|)b
dµ

≤ C

∫

R4

h(ξ, λ)f(ξ1, λ1)
|ξ − ξ1|1/4g(ξ − ξ1, λ− λ1)

(1 + |λ− λ1 − ((ξ − ξ1)3 − (ξ − ξ1))|)b
dµ

≤ C ‖h‖L2
ξL2

λ
‖f‖L2

ξL2
τ

∥∥∥D
1
4
xGb

∥∥∥
L4

xL3
t

,

the validation of which subsists on the conditions

b1 ≥ 7

16
, 3b− s >

3

4
, s− b ≤ 1

8
.

If (c) holds, we bound Υ above as follows:
∫

R4

|ξ|1−sh(ξ, λ)

(1 + |λ− (ξ3 − ξ)|)b1

|ξ1|sf(ξ1, λ1)|ξ − ξ1|sg(ξ − ξ1, λ− λ1)

(1 + |λ1 − (ξ31 − ξ1)|)b(1 + |λ− λ1 − ((ξ − ξ1)3 − (ξ − ξ1))|)b
dµ

≤ C

∫

R4

|ξ|1−s−bh(ξ, λ)

(1 + |λ− (ξ3 − ξ)|)b1

|ξ1|2(s−b)f(ξ1, λ1)g(ξ − ξ1, λ− λ1)

(1 + |λ1 − (ξ31 − ξ1)|)b
dµ+

+

∫

R4

|ξ|1−2bh(ξ, λ)

(1 + |λ− (ξ3 − ξ)|)b1

|ξ1|s−bf(ξ1, λ1)g(ξ − ξ1, λ− λ1)

(1 + |λ1 − (ξ31 − ξ1)|)b
dµ

≤ C ‖f‖L2
ξ
L2

τ
‖g‖L2

ξ
L2

τ

∥∥∥D1/8
x Fb

∥∥∥
L4

xL4
t

,

for which we needed

s− b ≤ 1

16
, b ≥ 7

16
.

Let α0 = max
{

s
2 ,

7
16

}
, α0 < b < 1

2 and γ0 = 1
2 − b. Then, using the same

argument as that appearing in the proof of Lemma 3.4 in [33], one sees that the
quantities ∥∥∥D

1
4
x Fb

∥∥∥
L4

xL3
t

,
∥∥∥D

1
8
x Fb

∥∥∥
L4

xL4
t

, ‖Fb‖L4
xL4

t

are bounded by

Cδ
γ0
4b ‖p‖Xα

−s,b

and for 0 ≤ s′ ≤ 1, the quantities∥∥∥D
1
4
xGb

∥∥∥
L4

xL3
t

,
∥∥∥Ds′

x Gb

∥∥∥
L

2
1−s′
x L2

t
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are bounded by

Cδ
γ0
4b ‖q‖Xα

−s,b

where C is a constant independent of δ, p and q. Consequently, by Lemma 4.1, it
must be the case that

Pα(w) + Q−s,b1(w) ≤ Cδ
γ0
4b ‖p‖Xα

−s,b
‖q‖Xα

−s,b

≤ Cδ1−2α+
γ0
4b ‖p‖Xα

−s,b
‖q‖Xα

−s,b
.

One may choose α > 1
2 such that

θ0 = 1 − 2α+
γ0

4b
> 0.

to obtain the estimates (5.8) and (5.9).

Now, notice that
∫

R

(∫

R

|û(ξ, λ)|
1 + |λ− (ξ3 − ξ)|dλ

)2

dξ

=

∫

R

(∫

R

|û(ξ, λ)|
(1 + |λ− (ξ3 − ξ)|)b1

1

(1 + |λ− (ξ3 − ξ)|)1−b1
dλ

)2

dξ

≤
∫

R

(∫

R

|û(ξ, λ)|2
(1 + |λ− (ξ3 − ξ)|)2b1

dλ

)(∫

R

1

(1 + |λ− (ξ3 − ξ)|)2(1−b1)
dλ

)
dξ.

Since b1 <
1
2 and 2(1 − b1) > 1, the second λ−integral is bounded and only the

estimate of the first term is needed. Thus (5.10) follows from (5.8) and (5.9). The
proof is complete. �

5.2. Appendix II. Observe that, if b ≥ 0, τ ∈ R and −1 ≤ ξ ≤ 1, then there
are constants C1 and C2 such that

C1(1 + |τ |)2b ≤ (1 + |τ − (ξ3 − ξ)|2b ≤ C2(1 + |τ |)2b

and

C1 ≤ (1 + |ξ|)s ≤ C2.

Thus, if s ∈ R and b ≥ 0,

λb(w) ≤ CΛs,b(w).

The following estimate then follows directly from Theorem 3.7.

Lemma 5.1. Let ψ(t) be a smooth function of t with compact support. For any
α ≥ 0, there exists a constant C such that

(5.12) λα(ψBIeh) ≤ C ‖h‖
H

3α−1
3 (R+)

for any h ∈ H
3α−1

3
0 (R+).

The next lemma shows that the estimate (5.12) is optimal as regards the
Sobolev index on its right-hand side.

Lemma 5.2. The estimate (5.12) in Lemma 5.1 fails if H
3α−1

3
0 (R+) is replaced

by H
3α−1

3 −ε
0 (R+) for any ε > 0.
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Proof: Return to the proof of the inequalities in Theorem 3.7 and use the notation
in force there. All we need to consider is the estimate of I2(x, t) since it has been
demonstrated in the proof of Theorem 3.1 that

Λs,b(ψI1) ≤ C ‖h‖L2(R+)

for any b ≥ 0 and s ∈ R, where the constant C depends only on ψ, b and s. Recall
that

Fx [ReI2(x, t)] =

∫ ∞

2√
3

∫ ∞

0

(∫ ∞

0

cos(xξ) cos

(
λ(t− s) − µ(λ)

2
x

)
e−x

√
3µ2(λ)−4

2 dx

)
φ1(µ(λ))h(s)dsdλ.

Now suppose |ξ| ≤ 1 and study the behavior of the kernel as λ → +∞. Because of
an earlier computation, it is known that

∫ ∞

0

cos(xξ) cos
(
λ(t− s) − µ(λ)

2
x
)
e−x

√
3µ2(λ)−4

2 dx

= −
√

3

2λ
1
3

(cos(λ(t + s)) − sin(λ(t+ s)))

+A0(ξ, λ) cos(λ(t− s)) +B0(ξ, λ) sin(λ(t − s))

= − 1

λ1/3
cos
(
λ(t− s) +

1

6
π
)

+A0(ξ, λ) cos(λ(t − s)) +B0(ξ, λ) sin(λ(t− s))

where

|A0(ξ, λ)| + |B0(ξ, λ)| ≤
C

λ
2
3

uniformly for |ξ| ≤ 1. The estimates for A0(ξ, λ) cos(λ(t−s)) and B0(ξ, λ) sin(λ(t−
s)) can be obtained as before and the results are better in fact. Thus, attention
may be focused on the term corresponding to the portion

− 1

λ
1
3

cos
(
λ(t− s) +

1

6
π
)
,

of the kernel, namely

II1(t) =

∫ ∞

2√
3

∫ ∞

0

1

λ
1
3

cos
(
λ(t− s) +

1

6
π
)
φ1(µ(λ))h(s)dsdλ

:= B1(t) +B1(t)

with

B1(t) =
1

2

∫ ∞

2√
3

eiλtφ1(µ(λ))

λ
1
3

∫ ∞

0

e−i(λs− 1
6 π)h(s)dsdλ.

Taking the Fourier transform in the temporal variable leads to

Ft [II1(t)] (τ) =
1

2

φ1(µ(τ))

τ
1
3

∫ ∞

0

e−i(λs− 1
6 π)h(s)ds

+
1

2

φ1(µ(−τ))
−τ 1

3

∫ ∞

0

e−(λs+ 1
6 π)h(s)ds.
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For any smooth function ψ(t) with compact support in R, we have

Ft [ψ(t)II1(t)] (τ) = Ft[ψ(t)](τ) ∗ Ft [II1(t)] (τ)

=

∫ ∞

2√
3

ψ̂(s1)Ft [II1(t)] (τ − s1)ds1.

Of course, for any n > 0, ψ̂(τ) ∼ |τ |−n as τ → ∞. Break the last integral into two
parts, viz.

Ft [ψ(t)II1(t)] (τ) =

(∫

|s1|>
√

|τ |
+

∫

|s1|≤
√

|τ |

)
ψ̂(s1)Ft [II1(t)] (τ − s1)ds1.

The term

∫

|s1|>
√

|τ |
ψ̂(s1)Ft [II1(t)] (τ − s1)ds1

decays rapidly as |τ | → ∞. Consequently, we look carefully at the term

II3(τ) =

∫

|s1|≤
√

|τ |
ψ̂(s1) [II1(t)] (τ − s1)ds1

=

∫

|s1|≤
√

|τ |

ψ̂(s1)

2(τ − s1)1/3
m(µ(τ − s1))

∫ ∞

0

e−i(τ−s1)h(s)dsds1

=
1

2τ
1
3

∫

|s1|≤
√

|τ |
ψ̂(s1)m(µ(τ − s1))

∫ ∞

0

e−i(τ−s1)h(s)dsds1 +O(τ−
2
3 )

where

m(µ(τ − s1)) = φ1(µ(τ − s1))e
i π
6 − φ1(µ(s1 − τ))e−i π

6 .

As τ → +∞,

II3(τ) =
1

2τ
1
3

∫

|s1|≤
√

|τ |
ψ̂(s1)e

i π
6

∫ ∞

0

e−i(τ−s1)sh(s)dsds1 +O(τ−
2
3 )

=
1

4τ
1
3

∫ ∞

1

ψ̂(s1)

∫ ∞

1

e−i(τ−s1)sei π
6 h̃(s)dsds1 +O(τ−2/3)

=
1

4τ
1
3

Fs

[
ψ(s)ei π

6 h̃(s)
]
(τ) +O(τ−

2
3 )
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where h̃(s) is the even extension of h(s). Estimate the semi-norm λα of ψ(t)I2(x, t)
as before:

λα(ψI2) ≥ C

∫ ∞

1

∫ 1

0

|τ |α
∣∣∣FtFx [II1(x, t)ψ(t)]

∣∣∣
2

dξdτ

≥ C

∫ ∞

0

∫ 1

0

|τ |α
(∣∣∣∣

1

τ
1
3

Fs

[
ψ(s)ei π

6 h̃(s)
]
(τ)

∣∣∣∣
2

−
∣∣∣∣∣

1

τ
2
3

φ2
1(µ(τ))

(∫ ∞

0

h(s)e−isτ

)2
∣∣∣∣∣

)
dτ

≥ C

(∫ ∞

0

τ2α− 2
3

∣∣∣Fs

[
ψ(s)ei π

6 h̃(s)
]
(τ)
∣∣∣
2

dτ −
∫ ∞

0

τ2α− 4
3

∣∣∣∣
∫ ∞

0

h(s)e−isτds

∣∣∣∣
2

dτ

)

≥ C

(∥∥∥ψ(t)h̃(t)
∥∥∥

2

H
α− 1

3
t (R+)

− ‖h‖2

Hα− 2
3 (R+)

)
.

Thus, if we choose h(t) = hn(t) such that

(i) ‖ψ(t)hn(t)‖Hα−1/3 → +∞ as n→ ∞,
(ii) ‖hn‖Hα−2/3 bounded independently of n and

(iii) hn converges to h∗ in the space H
3α−1

3 −ε
0 (R+)),

then it follows that

λα(II2,n(x, t)ψ(t)) → ∞

as n→ ∞. So, inequality (3.17) cannot hold withH
3α−1

3
0 (R+) replaced byH

3α−1
3 −ε

0 (R+),
no matter how small is ε > 0. The proof is complete �
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