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ABSTRACT. Reported here are results concerning the initial boundary value
problem (IBVP) for the Korteweg-de Vries equation in a quarter plane, viz.

ut + Uy + ut + Ugze =0, for x, t >0,
(0.1)

u(z,0) = ¢(z), u(0,t) = h(t).
The present study commences with a representation of solutions of (0.1) de-
rived in our earlier paper [Trans. American Math. Soc. 354 (2001), 427-490].
The problem (0.1) arises naturally in the modeling of various types of wave
phenomena, but the focus here will be on two mathematical points, namely a
type of boundary smoothing and its impact upon the well-posedness of (0.1)
in the L2 —based Sobolev spaces H*(R™1).

It has been known for some time that the KdV equation posed on the
quarter plane possesses the Kato smoothing property just as do solutions on
the whole plane of the pure initial value problem; that is to say

s+1

¢ € H(RY) and h € Hlf (RT) implies w € L2(0,T; HENH(RT)) for
any finite value of T for which the solution exists on [0,T].

It is shown here that the linear IBVP obtained by dropping the nonlinear
term uug in (0.1) has the following somewhat startling smoothing property:

st1
if =0 and h € H, > (RT), then the solution u of the linear version of
(0.1) belongs to the space L?(0,T; He+3 (RT)).
The linearized version of (0.1) with zero initial data, ¢ = 0, has another

interesting property. The solution u(x,t) is the restriction to R x Rt of a
function w(z,t) defined on R x R which is such that

oo oo 1/2
(/7 [ aviama+ir-eploenPar) " <Clbl s

(RT)

where b is any value in [0, % —3)if —% <s< %, b is any value in [0, % —3lif
—% < s <1 and C is a constant depending only on s and b.

Aided by these boundary integral estimates, and after introduction of
suitable versions of the Bourgain spaces whose underlying spatial-temporal
domain is a quarter plane, we demonstrate that the full nonlinear IBVP (0.1)
is unconditionally locally well-posed in the space H®(R1) for any s > —%.

More precisely, it is shown that

s+1
for a given compatible pair (¢,h) € H*(R') x H, 3 (R%), there ex-
ists a T* > 0 such that the IBVP (0.1) admits a unique mild solution u €
C([0,T*], H*(RT)), which depends continuously on the initial value ¢ and the
boundary value h.
Moreover, the IBVP (0.1) is shown to be unconditionally globally well-
posed in H*(R') x H; 3 (R") for s > 3, while unconditional global well-
L4ste
posedness is shown to hold for 0 < s < 3 in H*(RT) x H,, .* (RT) for any

e>0.
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1. Introduction

In this paper, we continue the study of the initial-boundary-value problem for
the Korteweg-de Vries (KdV) equation posed in a quarter plane, namely

Up + Up + UUg + Ugee = 0, for z, t >0,

(1.1)
u(z,0) = ¢(x), u(0,t) = h(t).

As pointed out by several authors, (see [1] for an early commentary in the context
of the BBM-equation), initial-boundary-value problems of the form (1.1) may serve
as models for waves generated by a wave maker in a channel, or for waves approach-
ing shallow water (e.g. the shore) from deep water. Similar problems arise in other
physical contexts where KdV-type equations serve as models. Here, two mathemat-
ical issues connected to (1.1) will be addressed; boundary smoothing properties and
the well-posedness of this initial-boundary value problem (IBVP henceforth) in the
L?—based Sobolev spaces H*(R™). The overall thrust of our theory is that stronger
boundary smoothing properties than heretofore noticed allow the formulation of a
sharper well-posedness theory.

We begin with a review of existing theory which provides a setting in which to
state precisely our results and put them into present day context. Recall that for
the pure initial-value problem (IVP henceforth) for the KdV-equation

(1.2) Up + Uy + Ugge = 0, u(z,0) = ¢(x), z, t€R,

written in traveling coordinates, it is well-known that there is no gain or loss of
regularity in the Sobolev classes H*(R). As Saut and Temam [38] pointed out, for
any t € R,

u(-,t) € H°(R) ifand only if ¢ € H*(R),
at least for suitable values of s. There is, however, more subtle smoothing associated
with the initial-value problem (1.2). In the late 1970’s, Kato [28, 29] discovered
that for solutions of (1.2),

(1.3) ¢ € H*(R) implies that u € L?(0,T; H: "1 (R)).

loc

This property, now known as Kato-smoothing, stimulated an extensive investigation
of various smoothing properties associated with solving the KdV-equation and other
dispersive wave equations (see, for example, [10, 11, 14, 31, 32, 33, 34, 39, 43]
and the references contained therein). In particular, Kenig, Ponce and Vega [31]
demonstrated that, when ¢ € H*(R) with s > %, there is a unique solution u of
(1.2) which belongs to the space C(R; H*(R)) and is such that

—oo<z<+oco J T

r ;
(14) < sup / |8£+1U(I,t)|2dt> S OHQS”H““(R) )

T 4
(1.5) </ sup |6wu('7t)|4dt> < ¢l g (r)

—T —oo<x<+o00

and
1

“+o0 2
(1.6) ([ sw WoPar) <cO+1) 10l

—oo —T<t<T
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where the constants C' on the right-hand sides depend only on s and on 7" when
it appears. The inequality (1.4) is a sharp version of Kato smoothing and (1.5) is
sometimes called global smoothing of Strichartz type, while (1.6) reveals a kind of
global temporal smoothing.

In the early 1990’s, in attempting to establish the well-posedness of (1.2) in
H?(R) for smaller values of s, Bourgain [11] found a yet more subtle smoothing
property for solutions of (1.2). This property may be expressed as follows: for
¢ € H*(R) with s > 0, (1.2) admits a solution u € C([0,T]; H*(R)) which is the
restriction to R x (0,T) of a function w on the whole plane R x R such that

0o 0o 1/2
an ([ [ asiarasie-ehlaenrar) < Clollg,

where C' depends only on s and w is the Fourier transform of w with respect to
both of the independent variables. Because of this smoothing property of solutions,
Bourgain could show that (1.2) is (conditionally) well-posed in H*(R) for s >
0. (The distinction between well-posedness and conditional well-posedness will be
drawn presently.) Later, the smoothing property (1.7) was improved by Kenig,
Ponce and Vega [33, 34] to the stronger property

(1.8)

0o 0o 1/2
Nty = ([ [T av e - @iPlae k) < C ol

for any ¢ € H°(R) with s > —%, where % < b < 1 depends only on s and C' depends
on s and b. Note that if s € R and U is the unitary group in H*(R) defined by

U(t) = exp (itP(Dy)),
where P(D,) is the Fourier multiplier with symbol P(¢) = €2, then (cf. [36])
Nyp(w) ~ U=ty w]] o

where H*? = HP(R; H:(R)). For given f € H*%® the larger the value of b, the
smoother is f with respect to time ¢. In particular, if b > %, H*? is continuously
embedded into the space C(R; Hi(R)). The inequality (1.8) allowed Kenig, Ponce
and Vega to show that, locally in time, the IVP (1.2) is (conditionally) well-posed in
H*(R) provided only that s > —% This result was recently strengthened to include
(conditional) global well-posedness in the same function classes, by Colliander, et
al. in [13].

For the IBVP (1.1), the Kato smoothing property for (1.1) was established by
Bona and Winther [8, 9], where they showed that solutions lie in L2 (0, T; H}I' (RT))
if $ € H"(R*) and h € H]"I?(R™) for n > 2. Smoothing properties analogous to
(1.4)-(1.6) were established by Bona, Sun and Zhang. These were derived in [4] in

the following form.
s+1
For s > 3 if ¢ € H*(R") and h € H,? (R") satisfy certain compatibility

conditions at (z,t) = (0,0), then the IBVP (1.1) admits a unique solution
ue C(0,T; H*(RY)) N L*(0,T; H T (RY)),

loc

which satisfies the additional properties

T
(1.9) ( sup / |8§+1u(x,t)|2dt>
0<z<+0c0 JO

1
2

<C (||¢||HS(R+) + Hh”;ﬁ? (0,T)> ’
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T 4
1.10 du(-,t)*dt] <C . h|| s
(1.10) (/ sl ) < (16l + 11l 51 g,

and

1
+o0 2
2
(L11) ( / sup |u(a, t)] dw) sC(Ilqﬁllﬂsm)+llh||Hs;1<o,T>>

0<t<T

where the constants depend only on s and 7. As just stated, the results in [4]
were local in time; corresponding global results were also established but were only
optimal if s > 3. Global results very nearly corresponding to the local theory in [4]
are obtained in the recent paper [19] of Faminskii.

Recently, Colliander and Kenig [12] in a paper concerned with the IBVP for
the generalized KdV-equation wherein uu, is replaced by u”u,, showed in the case
p = 1 that solutions of (1.1) also possess a Bourgain smoothing property which can
be expressed precisely as follows. For ¢ € L2(RT) and h € H3 (R"), (1.1) admits
a solution u € C(0,T; L?(R*)) which is the restriction of a function w(z,t) defined
on the whole plane satisfying

(1.12) 850(w) < € (I6l2ery + 1Al 13 )

where

al) = (st’b(w) +/Z /11(1+ |T|)2a|w(§,7’)|2d§dr>%

with o > % and where the constant b is required to be strictly less than % in contrast
to the theory for the IVP (1.2), where b > % obtains.

The discussion is now turned more directly to the contributions in the present
essay. We commence with boundary smoothing properties. Note first that if the
boundary value h in (1.1) vanishes identically, the solution u satisfies the energy
identity

d o0
dt Jo

Thus, the L?—norm of the solution u is decreasing and is strictly so as long as
u;(0,t) # 0. This suggests that some dissipative mechanism is introduced through
imposition of the boundary condition at x = 0. An interesting question arises
naturally in this situation:

u?(z,t)de +uZ(0,t) = 0 for all ¢t > 0.

Can one quantify this boundary dissipative effect?

It is well-known that a solution often becomes smoother under the influence of
dissipative effects. Thus a further question presents itself:

Do solutions of (1.1) becomes smoother because of this boundary dissipative
effect?

To address these issues, it is helpful to consider carefully the linear problem

ut+ux+uzzz:03 Z, t€R+7
(1.13)
u(z,0) =0, u(0,t) = h(t), x, t€ R



6 JERRY L. BONA, S. M. SUN, AND BING-YU ZHANG

associated to (1.1) and present some new boundary smoothing properties for its
solutions. The Kato-smoothing result of [8], when extended to fractional-order
spaces, states that the solution u of (1.13) belongs to the space
C(R*; H*(R7)) N L* (RT3 HipH(RY))
M

if h e Hy® (RT), at least if s is not too small. The space Hjj(R") is the closure
of D(RT) in H"(R™), as usual. It will be demonstrated in this paper that (1.13)
possesses the following additional boundary smoothing properties.

THEOREM 1.1. For a given pair (b, s) satisfying

O§b<%—§ if <0, or

(1.14)

0<b<

(e[S

: 1
5 if —5<s<l,

s41

there exists a constant C' depending only on s and b such that for anyh € H,® (R"),

the corresponding solution u of (1.13) is the restriction of a function w(z,t) defined
on the whole plane satisfying

. < s—1/ .

(1 15) Nsyb(w) ~ C ||h||H3b+L3 1 2(R+)

Remark: Notice that this improves upon the just described result of Colliander and

Kenig [12] both as regards the range of b (solutions are seen to be smoother in t)
and by allowing for negative values of s.

As a corollary, there appears the following boundary smoothing property for
solutions of the IBVP (1.13).

THEOREM 1.2. Let s > —% and T > 0 be given. There exists a constant C

i
such that for any h € Hy® (R"), the corresponding solution u of (1.13) belongs to
3
the space L*(0,T; H5+2 (R)) and satisfies

(1'16) ||u||L2(07T,HS+%(R+)) S CHhHH‘Stl (R+)

for a constant C depending only on s and T.

Remarks:

(i) The smoothing property presented by (1.16) is global in the spatial variable
x.
(ii) This smoothing property only holds for (1.13); it is not valid for the linear
IBVP associated to (1.1) nor for the nonlinear problem (1.1).
(iii) For any T > 0 and € > 0, the following estimates were established by
Faminskii [18] for the solution u of (1.13);

(1.17) lullco,rsz2(rey) < C(Ts€) 1Al oreo,ry s

(1.18) e (@, My o,rspee rey) < CllRI e g
and

(1.19) ||UmHL2(R+xR+) <C ”h”H%(Rﬂ ’
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(iv) As a direct consequence of estimate (1.16), we have
(1.20) e (@, M 2 0,rspee ry) < CllAI 3 e g

which is slightly stronger than (1.18).
(v) The estimate (1.18) plays a key role in establishing sharper global well-
posedness results for (1.1) in [19].
In addition, two improved versions of Bourgain smoothing are developed here
for the nonlinear IBVP (1.1). These take the following form.

THEOREM 1.3. For given s in the interval —% < s <1, there exists a constant
3bts—1/2
3

b € (0,3] depending on s such that for ¢ € H*(RT) and h € H™ s (R"), with
$(0) = h(0) in case s > &, the IBVP (1.1) admits a solution u € C(0,T; H*(R™))
which is the restriction to the domain R™ x (0,T) of a function w(x,t), defined on
the whole plane, satisfying

(121) 50) < (16l + 1l s )
for some a > % In particular, if h € HY (RT), then

(122 2 0) < C (Wl + bl 51 )
Remarks:

(i) In case s =0, (1.22) is a slightly stronger version of the estimate (1.12)
due to Colliander and Kenig [12] in that it allows b = % instead of asking
that b be strictly less than %

s+1

(i) As pointed out earlier, one needs that ¢ € H*(R") and h € H,;> (R™) to

loc

have the solution u of the IBVP (1.1) belonging to the space C(0,T; H*(RT)).
However, when b < %,

8bts—1/2 _1+s

3 3

Estimate (1.21) thus reveals a boundary smoothing property for the non-
linear problem (1.1).

The second main issue addressed in this paper is the well-posedness of the IBVP
(1.1). Here and above, well-posedness means existence and uniqueness of solutions,
and continuous dependence of solutions on auxiliary data. The following definition
encapsulates the precise sense of well posedness enforced here.

DEFINITION 1.4 (well-posedness). Let s, s’ € R be given. The IBVP (1.1) is
said to be (locally) well-posed in the space H*(R1) x HZSO,C(R*) if for any r > 0 there
exists a T = T(r) > 0 with T(r) — oo as r — 0 such that for given ¢ € H*(R™")
and h € Hfolc(R*‘) satisfying suitable compatibility conditions, and if

Ml s (ry + 12l grer 0,7 < 7

then (1.1) admits a unique solution v = u(x,t) in the space C(0,T; H*(R™)). More-
over, the solution depends continuously on its initial data ¢ and its boundary value
h in the corresponding spaces.

Remarks:

~—
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(i) The well-posedness described above is called local well-posedness since the
T in the above definition may depend on r. If T may be taken to be
independent of r, then (1.1) is said to be globally well-posed in the space
H¥(RY) x Hy,(RY).

(ii) By a standard scaling argument, the above definition of well-posedness is
equivalent to the following statement:

There exists a 0 depending only on s and s', such that for given ¢ €
H*(RY) and h € Hy, (R*) satisfying suitable compatibility conditions and
having

16 1=y + 10l g 0,1y < 6,
then (1.1) admits a unique solution u = u(x,t) in the space C(0,1; H*(R™)).
Moreover, the solution depends continuously on its initial data ¢ and its
boundary value h in the corresponding spaces.

(iii) There is a weaker notion discussed by Kato [30] of conditional well-
posedness in which solutions are only known to be unique if they satisfy
additional auziliary conditions. Solutions satisfying such conditions are
often available via the contraction mapping principle applied to an asso-
ciated integral equation, but they are mot necessarily known to be unique
in the broader class not respecting the extra conditions. This point will be
further elaborated presently.

The mathematical study of the IBVP (1.1) began with the work of Ton [42]
in which, existence and uniqueness were established assuming that the initial data
¢ is smooth and the boundary data h = 0. The first well-posedness result in the
strict sense of Definition 1.4 for the IBVP (1.1) was presented by Bona and Winther
8, 9].

Theorem A The IBVP (1.1) is (globally) well-posed in the space H3*+1(R*) x
HFPY(RY) fork=1,2,---.

loc
Faminskii, in a wide-ranging paper [16], deals with the IBVP (1.1) for a general-
ization of the KdV-equation somewhat like that appearing later in Craig, Kappeler
and Strauss [15]. He puts forward a theory of well-posedness for generalized so-
lutions set in weighted H'!—Sobolev classes. Moreover, he obtains extra interior
regularity in case the initial data decays suitably rapidly at +oco. In [4], Bona, Sun
and Zhang obtained the following conditional well-posedness result for (1.1).

s+1
3

Theorem B The IBVP (1.1) is locally well-posed in the space H*(RT)xH,? (R™)
for s > 3/4 with the following auziliary condition to ensure uniqueness;

(1.23) the solution u satisfies the estimates (1.9), (1.10) and (1.11).

Remarks: Notice that the last result reveals the relationship
, s+1
3
in the notation of the definition of well-posedness. This turns out to be the natural
consequence of the balance

O ~ 3.
It was not noticed in the early attacks [8,9,16-19,42] on (1.1).
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In Theorem A, solutions are in fact classical, which is to say all the terms in the
equation are bounded and continuous functions of (x,t) and the equation is satisfied
identically. In Theorem B, the solutions are distributional, but of course have the
further regularity attached to lying in C(0,T; H5(R™)) and satisfying (1.9), (1.10)
and (1.11).

The following result for (1.1) was established recently by Colliander and Kenig
[12].
s+1

Theorem C ! For any ¢ € H*(RY) and h € H™5 (RY) with 0 < s < 1 which
satisfy the compatibility condition ¢(0) = h(0) if s > &, there exists a T = T(¢, h) >
0 and a solution v € C(0,T; H¥(R")) of the IBVP (1.1). The map (¢,h) — u is
Lipschitz-continuous from H*(R*) x H5 (R*) to C(0,T; H*(R*)).

This is not a well-posedness result in the sense of Definition 1.4, since uniqueness
is not discussed. Actually, a well-posedness result is established for an integral
equation

(1.24) w = HS1(¢p,h) + THS (ww,)

posed on the whole plane R x R, where HS1(¢, h) is an integral operator associated
to the linear homogeneous problem

Vs + Vg + Vg =0, x>0, t€(0,T),

w(z,0) = ¢(z), w(0,t)=h(t), x>0, te(0,T)

and THS,(f) is an integral operator associated with the linear inhomogeneous
problem
Ut + Vg + Vpoe = f, >0,1€(0,T),

w(z,0) =0, w(0,t)=0, =>0,tec(0,T).
The precise definitions of the integral operators HS; and IH.S; are given in [12].
The relation between (1.24) and the IBVP (1.1) (without the linear transport term
u, in the equation) is that a solution w of (1.24) on R x R, when restricted to
the domain R x (0,7, is a solution of (1.1). For the integral equation (1.24),
Colliander and Kenig established the following well-posedness result.
Theorem D Let 0 < s <1 be given with s # % There exists a 6 > 0 such that,

if (¢, h) € HS(RT) x H5 (R") satisfies
(GOl =41

<
R+Y)xH3 (R+) —

and ¢(0) = h(0) when s > %, then the integral equation (1.24) admits a unique

solution u € C(R; L2(R)) satisfying the auxiliary condition

for some a > % and b in the range 0 < b < 3 (see the text following (1.12) above).
The well-posedness of (1.1) presented in Theorem B and Theorem D is con-

ditional rather than in the sense of Definition 1.4 since auxiliary conditions are

needed to ensure the uniqueness. By contrast, the well-posedness of (1.1) pre-

sented in Theorem A is in the strict sense of Definition 1.4 and is unconditional.

IThis result has been extended recently by J. Holmer [25] to the case —% <s<0.
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The issue of conditional well-posedness also appears in the works of Bourgain, and
Kenig, Ponce and Vega for the IVP (1.2) where the uniqueness is established only
for solutions in the space C(—T,T; H*(R)) satisfying certain auxiliary conditions.
A basic question is are these auxiliary conditions really essential to the unique-
ness? The reader is referred to [7, 30] for further discussion of unconditional and
conditional well-posedness for general classes of nonlinear evolution equations.

The issue is more interesting than might appear at first glance. There are many
ways to transform the IBVP (1.1) into an integral equation. Most of these admit
an analysis something like that made in [12] leading to Theorem C. The question
is, when two such solutions are restricted to Rt x (0,T) for some T > 0, are they
equal to each other? For the linear problem, this is established in [12], but the
point is unresolved for the nonlinear problem.

One of the main theorems proved in this paper is the following well-posedness
result for (1.1), which also resolves the uniqueness issue for the nonlinear problem
just mentioned.

THEOREM 1.9. Let s € (—2,1] and T > 0 be given. For any ¢ € H*(R") and
h e HSTH(QT) satisfying the compatibility condition

¢(0) = h(0)

1 ; * .
when s > 3, there exists a T* > 0 depending only on ||(¢, h)||HS(R+)XHST+1(07T)

such that the IBVP (1.1) admits a unique solution v € C(0,T*; H*(R™)) which is
the restriction to RT x [0,T] of a function w = w(x,t) satisfying the estimate

(1.25) A2 (w) < oo

for some a > %

Remarks:

(i) The solution given by this Theorem is smoother than that given by Theo-
rem D of Colliander and Kenig, and by Holmer since b = % rather than
being strictly less than %

(ii) The theorem still holds if we replace § by some b < & in (1.25). Thus the
solutions given by Colliander and Kenig in Theorem D and the solution

provided by Theorem 1.9 are the same when restricted to RT.

Theorem 1.9 is also a conditional well-posedness result. It is natural to specu-
late whether or not the auxiliary condition (1.25) is removable. A way of resolving
this issue is to introduce a concept of mild solution for the IBVP (1.1).

DEFINITION 1.10 (mild solution). Let s < 3 and T > 0 be given. For given

st1
¢ € H*(RT) and h € H,? (R"), a function u € C(0,T; H*(R™)) is said to be a
mild solution of (1.1) on the time interval [0,T] if there exists a sequence {u,}22

in the space
C(0,T; H*(RM))nC*(0,T; L*(R™))
with
On(x) = up(x,0), hn(t) = un(0,1), n=1,2---,
such that
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(i) u, solves the equation in (1.1) in L*(RT) for 0 < t < T, which is to
say, each term in the equation lies in C(0,T; L2(RY)) and the equation is
satisfies for each t, almost everywhere in space;

(i) limp—oo SuPg<i<r [[Un(,t) — ul, )l fe(pe) = 05

(i) Yo [0 = Bl e sy = 0 and 1o [y = B ogs =0

Remark: A mild solution is a weak solution when s > 0, but not necessarily
vice versa. However, a mild solution might not on the face of it be a distributional
solution when s < 0 since u?

arguments demonstrate uniqueness of solutions if s > % Hence, while larger values
of s can be encompassed by demanding the sequence {u,}°2; be drawn from even
smoother function classes, there is no need for this in the present context.

may not be a well-defined distribution. Classical energy

We will show that the following facts hold about mild solutions.

THEOREM 1.11 (existence and uniqueness).

(a) The weak solutions given by Theorem B, Theorem C and Theorem 1.9 are
all mild solutions.

(b) For given ¢ € H*(R™) and h € H,
admits at most one mild solution.

s+1
5 (RY) with s > —3, the IBVP (1.1)

oc

An immediate consequence of this theorem is that the auxiliary conditions in
Theorem B, Theorem C and Theorem 1.9 are not essential for the uniqueness and
all of them can be removed.

If the appellation solution in Definition 1.4 is understood as mild solution,
then we have the following unconditional well-posedness results as one of the main
theorems in this paper.

THEOREM 1.12 (unconditional well-posedness). The IBVP (1.1) is uncondi-

s+1
tionally (locally) well-posed in the space H*(R") x H, > (RY) for s > —32. Its
solution u has the additional properties:

u satisfies the estimates (1.9)-(1.11) ifs>3;

u satisfies the estimates (1.22) if =3 <s<1.

Remark: As a model of real wave phenomena, the Korteweg-de Vries equation is
not derived to take account of singularity formulation. Thus, one would hope that
global well-posedness results obtain for (1.1). Indeed this was shown to be the case in

st1
H*(RY)x H, > (R") in [4] for s > 3. For 1 < s < 3, the results of [4] only yielded

loc
T43s
conditional global well-posedness in the slightly smaller space H*(R*)x H, ' (RT).
Faminskii’s recent work [19] showed that (1.1) is conditionally globally well-posed

1+s+4e€
in the space H(R') x H,, * (R") when 0 < s < 3, but leaves open the question

of whether the well-posedness is unconditional or not.

Concerning global well-posedness, the following result follows readily from the
local theory in Theorem 1.12.
THEOREM 1.13 (global well-posedness). The IBVP (1.1) is unconditionally
1+s+e
globally well-posed in the space H¥(R") x H,, > (R*) for 0 < s < 3 and is uncon-

1+s
ditionally globally well-posed in the space H*(R™) x H,? (R™) for s > 3.
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The paper is organized as follows. In Section 2, explicit representation formulas
are recalled for solutions of initial-boundary-value problems for the linear KdV
equation. These were developed in our earlier paper [4] and will be used to establish
the main theorems of this paper. We will demonstrate in this section how to convert
the IBVP (1.1) posed in a quarter plane to an integral equation posed on the
whole plane, which sets the stage for using powerful tools developed by Bourgain,
Kenig, Ponce and Vega and others to study the well-posedness of the IVP. Three
different types of extension of the boundary integral operator associated to the
non-homogeneous linear boundary value problem (1.13) are provided, which are
denoted by BI.(t), BIn1(t) and BI,,2(t), respectively (see Section 2 for the precise
definitions of those operators). Among those operators, BI.(t) is the simplest; it is
basically an even extension (with respect to the spatial variable x) of the boundary
integral operator, from the half line R to the whole line R. Using this operator,
we are able to prove Theorem 1.1 in case 0 > s > —%. If s < —%, one only has the
estimate:

Nsﬁb(w) S O ||h||H3b3—1 (R+)

instead of the inequality (1.15) featured in Theorem 1.1. Because of this state of
affairs, the more complicated boundary operators BI,,1(t) and BI,,2(t) are intro-
duced. The operator BI,,;(t) is helpful when s < 0, whereas BI,2(t) is effective
when 0 < s < 1.

In Section 3, attention is given to the non-homogeneous linear boundary value
problem (1.13). It is demonstrated there that the aforementioned global boundary
smoothing properties obtain, as expounded in Theorem 1.1 and Theorem 1.2. The
boundary integral operators BI,,1(t) and BI,,2(t) play a crucial role in the analysis.

In Section 4, it is shown that the IBVP (1.1) is locally unconditionally well-

s+1

posed in the space H*(R") x H, 7 (R*) for s > —32 and is globally unconditionally

well-posed in the same space for s > 3 and, for any € > 0, in the space H*(R*") x
+lte

H, 5 (R*)when0<s< 3.

loc

The last section consists of two appendices. The proofs of some technical
lemmas used in Section 4 are presented in Appendix I. The results are based on
minor modification of arguments already in the literature. The proofs are sketched
for the convenience of readers. Some discussion of the boundary integral operator
BI. is provided in Appendix II. The outcome of the analysis is a result showing
that estimates involving BI.(¢) alone do not suffice to prove Theorem 1.1, thereby
providing a reason for the introduction of the more complicated boundary operators
Blml and BIm2 .

2. Linear Problems and Extension Formulas

This section is divided into two subsections. In the first, some explicit represen-
tation formulas are recalled from [4] for solutions of initial-boundary-value problems
for the linear KdV-equation. Then, a method is put forward to convert the IBVP
(1.1) posed on a quarter plane to an integral equation posed on the whole plane.
The second subsection features a discussion of the aforementioned three different
extensions to R x R of the boundary integral operator associated to the boundary
value problem (2.1) given below. These extended boundary integral operators will
play a central role in our analysis.
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2.1 Explicit solution formulas for linear problems
First, consider the non-homogeneous problem

Up + Uy + Ugee =0, for x, ¢ >0,

(2.1)
u(z,0) =0, u(0,t) = h(t).
Its solution may be written in the form (see [4])
(2.2) w(@,t) = Wear(t)h] (z) = [Up(t)h] () + [Us(t)h] (2)

where, for z, t > 0,
I R (@)z 2 T e
Uh] () = 5 [ et e 2= 1) [ e (e
1 0
Next, consider the same linear equation posed with zero boundary conditions, but
non-trivial initial data, viz.

U + Uy + Ugee = 0, for z, ¢ >0,

(2.3)

u(@,0) = o), u(0,¢)=0.
By semigroup theory, its solution may be obtained in the form
(2.4) ult) = We(t)

where the spatial variable is suppressed and W, (t) is the Cy-semigroup in the space
L?(R™) generated by the operator

Af =—f"~F
with the domain
D(A) = {f € H*(R")| f(0) = 0}.

By d’Alembert’s formula, one may use the semigroup W, (¢) to formally write the
solution of the forced linear problem

Up + Uy + Ugye = f, for z, t >0,
(2.5)

u(z,0) =0, u(0,t) =0,

in the form

(2.6) u(-,t) = /0 We(t —71)f(-,7)dT.

The following helpful formula for W, (t)¢ was established in [4]. As is apparent
from (2.4) and (2.6), this gives an explicit representation for solutions of the inho-
mogeneous problems (2.3) and (2.5).

PROPOSITION 2.1. For any ¢ € L*(RT), define

Ui () = 5= [ et [ eneg(pdcap.

Uf_(t)qb(x) = _% ‘/100 eiﬂstii“tei(iw\/gﬁﬁ)z /Oo eii‘u§¢(§)d§du

0
and

UF ()6(r) = 5 /0 * oty () /O " e g (6)dedp.

T
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Then it follows that

2 e
W) = Y (U (6(@) + UF 1)(x))

j=0
As a comparison, recall the explicit solution formula for the pure initial-value
problem (IVP) for the linear KdV equation (cf. (1.2))

ut+um+uwww:Oa 1’7t€R7
(2.7)
’U,(CC,O)ZQ(Q:L r€R,
namely
(2.8) u(z,t) = Wr(t)g(z) = c/ el _g)te”g/ e~ W g(y)dyde.

The formula for Wg(¢) is much simpler than that of W,(¢). We take advantage
of this simplicity to give a related representation of W,(t) in terms of Wgr(¢) and
Wear(t).2

Let a function ¢ be defined on the half line R™ and let ¢* be an extension of
¢ to the whole line R. The mapping ¢ — ¢* can be organized so that it defines
a bounded linear operator B from H*(R") to H*(R). Henceforth, ¢* = B¢ will
refer to the result of such an extension operator applied to ¢ € H*(R1). Assume
that v = v(x,t) is the solution of

Vi + Vg F Vgza = 0, v(z,0) = ¢*(x)

for x € R, t > 0. If g(¢t) = v(0,t), then vy = vg(x,t) = Whar(t)g is the cor-
responding solution of the non-homogeneous boundary-value problem (2.1) with
boundary condition h(t) = g(¢) for ¢ > 0. It is clear that for z > 0 the function
v(z,t) — vg(z,t) solves the IBVP (2.3), and this leads directly to a representation
of the semigroup W,(t) in terms of Wha,(t) and Wg(t).

PROPOSITION 2.2. For a given s and ¢ € H*(R') with ¢(0) = 0, if ¢* is its
extension to R as described above, then W (t)¢ may be written in the form

We(t)p = Wr(t)¢" — Whar(t)g
for any x, t > 0, where g is the trace of Wg(t)¢* at x = 0.
Remark: This representation of W.(t) is less explicit than that presented in Propo-
sition 2.1. However, it enables us to use the well established theory for Wg(t) to
study W.(t). It is worth emphasis, however, that W, by its nature, does not depend
upon the extension ¢* of ¢. The representation in Proposition 2.2 does, of course,

depend on the extension and this representation will be useful in deriving linear
estimates.

In a similar manner, one may derive an alternative representation of solutions
of the inhomogeneous initial-boundary-value problem (2.5).

PROPOSITION 2.3. If f*(-,t) = Bf(-,t) is an extension of f from RT x RT to
R x R, say, then the solution u of (2.5) may be written in the form

(e t) = /O Wt — 1) (- 7)dr — Waan (£

2This was suggested by one of the referees of our earlier paper [4].
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for any x, t > 0 where v = v(t) is the trace of fot Wgr(t —7)f*(-,7)dr at x = 0.
Finally, consider the fully inhomogeneous initial-boundary-value problem

ut+um+uwww:f7 forx7t207
(2.9)
u(z,0) = ¢(x), u(0,t) = h(t),

where ¢ and h are assumed to satisfy the compatibility condition h(0) = ¢(0). Let
u(z,t) = z(z,t) + e~ *"th(0). If u solves (2.9), then z(z,t) solves

2t + 2o + Zoaw = f +3e727h(0), for m, t >0,

2(2,0) = o(x) — e 6(0),  2(0,8) = h(t) — e~*h(0).
Decompose z in the form z = w + v + y with
Wy + Wy + Weze = f+3e7*7th(0), for z, t >0,
w(z,0) =0, w(0,t) =0,
VUt + Vg + Vgge =0, for x, ¢ >0,
v(x,0) = ¢(x) — e *¢(0), v(0,t) = 0,

and
Yt + Yo + Yoz =0, for x, t >0,

y(z,0) =0, y(0,t) = h(t) — e~*h(0).
The following representation for the solution of (2.9) emerges from this decomposi-
tion together with the results of Propositions 2.3 and 2.4 and Duhamel’s principle.

PROPOSITION 2.4. The solution u(x,t) of (2.9) may be realized in the form

u(z,t) = We(t) ((;5(:17) - e_:”(b(())) —|—/0 We(t —71) (f(z, T)+ 36_1_7h(0)) dr +

(2.10) + Whar () (R(t) — e "h(0))] () + e *"h(0).

In case s < %, the compatibility condition is not needed. One may choose
¢(0) = h(0) = 0. In this situation, (2.10) becomes simply

(2.11) u(z,t) = We(t)o(z) + /0 We(t — 1) f(x, 7)dT + Whar(t)h] ().

In any case, by Proposition 2.2 and Proposition 2.3, (2.10) may be written as

u(z, t) = Wr(t)éi(x) + /O Wi(t = 7)(f*(@,7) + 3p(e,7) ) dr +

(2.12) + Whar (1) (1(8) = 7 0(0) = g(1) = v(®)) | (@) + p(a, 1)
for z € RT and t > 0, where

$1(2) = ¢(z) — e "¢(0), p(x,t) = e *"h(0)
and g(t) and v(t) are the temporal traces of

Wr(t)6%(z) and /Ot Wr(t —7) (f*(:v, ) + 3p(z, T))dT
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at x = 0, respectively. Of course, if the right-hand side f already happens to be
defined on R x R, there is no need to apply the extension operator.

The solution formula (2.12) holds only for 2 > 0 and ¢ > 0. It will be convenient
to extend this formula in such a way that it holds for all z, ¢ € R. This will provide
a context in which to establish the well-posedness of the nonlinear problem in the
framework of Bourgain spaces. Note that the first two terms on the right side of
(2.12) are naturally defined for z, t € R. Ounly the third term, viewed as a function
of x and ¢, needs to be extended from R x RT to Rx R. With an appropriate exten-
sion of the third term, to be denoted by [Wy,,.(t) (h(t) — e th(0) — g(t) — v(t))] (z),
the function u(z,t) given by the formula (2.12) may be viewed as a function of x de-
fined on the whole line R, which of course solves (2.9) when restricted to R x R™.
If one replaces f in (1.12) by —uu, and drops the extension operator, there appears
the nonlinear integral equation

u(z,t) = Wg(t)o](x) —/0 Wg(t — Tu(z, T)ug(z, 7)dr +
+3/0 Wr(t — m)p(z, 7)dT +

(Wi (0)(R(t) = €7"R(0) = g(t) = v(1)) | (2) + (e, )

posed on the whole plane R x R. It is clear from its construction that if this
integral equation has a solution, then when the solution is restricted to the domain
RT x (0,T), it solves the IBVP (1.1). It is also clear that if u € C(0,T; H3(RT)),
then it is a strong solution (distributional solution for which all of the terms in the
equation lie in C(0,7T; L?(R")) and such that they sum to the zero function in this
latter space).

2.2  Eaxtensions of the boundary integral operator

As pointed out in Section 2.1, to use the Bourgain spaces in a straightforward
way to study well-posedness of the IBVP (1.1), one needs to extend the boundary
integral operator Wyq,(t) to an integral operator W;,.(t) so that, for any given
boundary value function h(t), Wiy, (£)h(t)](z) is, for each t € R, a function of =
defined on the whole line R. There are infinitely many ways to accomplish such
an extension; among them the even extension is probably the simplest. However,
as will be made clear presently, and especially in Appendix II, special extensions
are needed if one intends to capture some of the more subtle smoothing properties
induced via the imposition of a boundary condition at x = 0.

Next are presented three different types of extensions of the boundary integral
operator Whya,(t). Rewrite Wha,(t) as

Whear(t)h] ()

_ %Re /oo ei,u3t*iﬂte*(\/3,u2*4+i#)% (3[}/2 _ 1) /00 eii(#?’i“)gh(f)dgdu
T 1

0
1 L i - —4+i T o ;
_ %Re / ezu3t—mt6 (\/ 3pu?—4+ H) #3( )(3M2 — )¢y (,U*)/ e—z(u3—u)£h(§)d§du
1 0
bgehe [ en e IR 32 1)) [ e 00 0R(ded
V3

= % {L(z,t) + Iz2(x,t)}
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where ¢1(u) and ¢2(p) are nonnegative cut-off functions satisfying

d1(p) + Pa(p) =1 for any p € R

with supp ¢1 C (—1,4), supp 2 C (3,00) and ¢3(x) is a smooth function on R such
that

o3(x) = g forx >0, ¢3(x)=0 forax<—1.
Observe that

\/3u? _4”“1: /4= 3p? tu
2 N 2

is purely imaginary for 1 < p < 2/4/3. The integral I is naturally defined for all
values of x and ¢ and, viewed as a function defined on R X R, is in fact C'°°—smooth
there, with all its derivatives decreasing rapidly as x — 4co. Thus no complicated
extension of I is required as the obvious one suffices. It is otherwise for Is. To
discuss Io, it is convenient to let u(A) denote the positive solution of

PP —p=A
for A > 0 and g > 1, while u(A) = —u(—=A) for A < 0. Note that pu(X) is strictly
increasing on [0, 00) and that values of p > % correspond to values of \ > —2_

3v3’
By a change of variables, the integral I5 can be rewritten in the form

IQ(ZZ?,t) — Re/ / eiAtef(\/3#2()\)*4+i#(>\))%efiAs(bz(‘u(/\))h(S)dsd)\
725 /0

:‘/Tﬂﬁéﬁ3€W4“EQ@—$—%MM@¢AMmemwA
3V3

= E(x,t)
for x > 0. Let the extension of E(z,t) to x < 0 be g(z,t) and write

E(I’ t)7 X Z 07
IQ('rvt) =
g(z, 1), x <0,

where g(z,t) is to be defined. Note that

Full2](€,t) = /00 Ly(z,t)e™ dr = /O g(xﬂf)(cos(x@ —|—isin(a:§))dx

— 00 — 00

+ /000 E(:c,t)(cos(x{) +isin(x§))dm

= /000 (E(z,t) cos(z) + g(—z,t) cos(z{))dm
+1i /000 (E(z,t) sin(xf) — g(—=z,1t) sin(xf))dz.

Recall the identities

/000 sin(z§) /000 cos(zn) h(n)dndz = %/Z : i xh(:c)d:c
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and

W) = 2 /0 " cos(ae) /0 " cos(én)h(n)dndé .

T
where h(x) is extended evenly to negative values of z. These relations yield

/000 (E(:U,t) sin(x€) — g(—x,t) Sin($§)>dx

_ 1 / c_L ( /0 " cos(nz) Bz, t)dz — /0 ~ cos(z) g(—x,t)dx) dn.

T J-x 5 -
In consequence, it transpires that

Furtll2] = F {/OOO (E(:c,t) cos(z€) + g(—=x,t) cos(a:{))dz]

Lz / ) { /0 " cos(nz) E(w, t)dz — /0 ~ cos(z) g(—x,t)dx] dn.

T J—c0 5 -n
Note that different choices of g(x, t) give different extensions of E(z,t) to z < 0.
The following three choices of g(z,t) will be studied in this article.

(i) Let g(—=,t) = E(z,t) for x € RT. This is perhaps the simplest extension. It
results in the formula

(2.13) Foills] = F [2 /0 B ) cos(asﬁ)dx} .

The boundary integral operator corresponding to this extension of Wyg,.(¢) is de-
noted by BI.(t); the subscript e stands for even of course.

(ii) For z > 0, choose g(—=z,t) such that

Fi {/OOO g(—z,1) cos(;z:f)dx] (1) = —-F [/OOO E(z,t) cos(mf)dx] ()&, 1)

(2.14)  +F [ /O ~ B 1) cos(:z:f)dx] (r) (1 — o, T))y(g)w(r)

where O(¢,7) = x(|¢] — 6|7|*/?) with § > 0 fixed, 0 < x(&) < 1 everywhere, and

1, £ <0,
x(§) =
0, &> 1,
whilst
_17 |£| 2 17
v(€) =
0, €] < 1,

and w(7) is a smooth and bounded function to be specified momentarily. It is easy
to see that such a g is a combination of even and odd extension, viz.

Fuilla] = I (&,7) + Ioa(€,7)

where

In(€,7) = F [ /O " Bt cos(:z:f)dx] (r) (1 — o, T)) (1 n y(g)w(f))



BOUNDARY SMOOTHING PROPERTIES

and
122(57 T)= : /(:é n]:t [/ E(z,t) cos(mn)dm} (1)
X [2@(77,7’) + (1 — O(n, T)) (1 — V(?])W(T)):| dn
= %/;O (5 ! » + §—|1-77) Fi [/OOOE(:E,t)cos(mn)dx] (1)
(2.15) X [2@(77, )+ (1 — o, T)) (1 - V(n)w(T))} .

Because of the algebraic identity

Lyt 2 7772)
€—n+€+n_§(1+§2—n2 ’

we may write Ios (€, 7) as

Ins(&,7) = 2—2 Fi {/OOO E(z,t) cos(mn)dm}

X [2@(77, T)+ (1 - @(77,7')) (1 - V(f)w(T))] dn

e / 1 —n/qf/g [/‘X’ E(z,1) COS(:L’n)dx]

X [2@(77, T) + (1 — 9(77,7')) (1 — u(ﬁ)w(T))} dn

= Ql(gvT) + QQ(&T) .

Rewrite the integral E(z,t) as follows;

/ / \/W-Hu A)) %67M5¢2(M(x\))h(s)dsd)\
/ / \/W-HM(/\)) %efi)\séfb(,u()\))h(s)dscl)\

19

/ / O () LR

/ / \/W-HM(/\)) %eiiAS¢2(H()\))h(S)de)\

/ / e—iMt e V32N —4- zu(A)) Z'\Séf’z(u()\))h(s)dsd)\
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where the fact that ¢2(u(X)) = 0 for A < % was used in the last step, a point
that follows since supp ¢ C (3,00). A direct computation reveals that

/°° . (\/ 3u2(>\)*4+iu(>\)) z

0

cos(xn)dr = K11(n, \)+Ka1(n, \)+K31(n, ) +K41(n, A)

and

* (/BrEN—a—ip(\) ) £
/ e (W . ) cos(zn)da = Ki2(1, \)+ Ko (0, A)+K32(1, \)+-Kaa (0, A)
0

with
(2.16) K11 (1, \) = ) — 4 -
3u2(N) — 4+ (20 + (V)
32\ — 4

(217) K21(773 A) = PR

3u2(\) — 4+ (2 - (V)
(31200 = 4) (¥

20(3u2(0) — 4+ (20 + p(0)?) (3u2(0) = 4+ (20 = p(1)?)
(1200 = 492) ()

20(3u2(0) — 4+ (20 + p(V)?) (342(0) — 4+ (20 — p(1)?)

(2.18) K31(n,A) =

3

(2.19) Kui(n, ) =

and

Kia(n,A) = K11(n, A), Kaa(n, ) = Ka1(n, A),
(2.20)
K32(777 >\) = _K31(777 )‘)a K42(773 /\) = _K41(777 >\)

Thus, 7 [f,~ E(z,t) cos(zn)dz] may be expressed in the form

F [ /0 ~ B t) cos(:m;)dx] (7)

4

4
D Ko, )d2(u(m)h(r) + Y Ko (n, =7)d2(1(=7))A(~7)

m=1 m=1

(2.21)

where
iL(T):/ e "5 h(s)ds.
0

Here, we note that from the definition of ¢9, for any given 7 there is only one
nonzero summand in (2.21) and the sum involving the terms K,2(n, —7) is the
same as the sum involving on the terms K,,1(n, 7). Because ¢o(u(7)) is a bounded
C°°-function, and since, as direct calculation shows,

/OOO mi_:l Kmi(n,7) (1 —O(n, T))dn

202>0,




BOUNDARY SMOOTHING PROPERTIES 21

where Cs is a fixed constant independent of 7, it follows that the formula,

(1+))oatutr)) [ 5" sl 7)1~ 000
0 m=1

o 4
(2.22) = =202(u(r)) [ 3 Ko, 7)0 (0. .
m=1
defines the C°°(R)—function w(7) in such a way that d*w/dr* is bounded on R,
for k=0,1,2,--- . It is clear that this choice of w(7) makes
Q1(&,7) =0, forall 7 when [{| >1.

Hence, for [£| > 1,
Ioa(§,7) = Qa2(¢,7)

2 [ n?

N e

Fi [ /O " B 1) cos(:m;)dx] ()01 (n, 7)dn

where
O1(n,7) = 20(n,7) + (1= 001,7)) (1 - vinw(r)) .

Moreover, when || > 1 and 7 > 0,

N | Rl 2 4 ~
224)  Da(6) = 2 [ L ST Kot (1, 1) (u(r)i(7) | €401, ),
7€ Jo &= mel
whereas
In(é,7) = A iKm(ﬂ —7)¢2(1(—7))A(=7) | ©1(n,7)dn
SRR g PR ’

when |¢] > 1 and 7 < 0. The boundary integral operator corresponding to this
extension of W, (t) is denoted by BI,,1(t).

(iii) For « > 0, choose g(—=z,t) such that

2 { / g cos(mf)dm} ()= -F [ / " B, cos(mf)] M (1-6m)

(2.25)  +7F [ /O ” B 1) cos(mf)dx] (1O, T (E)w(r).

In this case,

(2.26) Fealla) = 13,6, 7) + I35(¢,7)

where, if O5(1,7) = 2 (1 — O(n, 7)) + O(n, 7)(1 = v(n)w(7)), then

Buen) =% | [ Bt eostatyte| (0(€7) (14 v(hol)
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and

B =1 [t | [ B costenas| (reatnryan

ooé 7
:%/OOO (51774_5_1?7)]—} [/ E(z,t) cos(zn)d ]( )©2(n, T)dn
— i—é OOO Fi {/OOO E(x,t) cos(mn)dm} (1)O2(n, 7)dn

+i_2 i 1£77(/§/£ Fi [/ E(z,t) cos(mn)dm} (1)O2(n, 7)dn

= Q1(&7) + Qa(6, 7).
Just as in case (ii), one can choose an appropriate function w(7) such that
Qi) =0 for |¢] > 1 and any 7 € R.

The boundary integral operator corresponding to this extension of W, (t) is de-
noted by BI,,2(t).

3. Boundary smoothing properties

In this section, attention is focused upon the non-homogeneous boundary-
value problem

Ut + Uy + Ugge =0, for z, t >0,
(3.1)
u(z,0) =0, u(0,t) = h(t).
Our analysis turns around a detailed understanding of the boundary integral oper-

ators introduced in Section 2.

For given s € R, 0<b <1, a > % and any function w = w(z,t) : R X R — R,
define

1

’LU) — (‘/_OO /_OO (1 + |T _ (53 _§)|)2b (1 + |§|)2s |w(£’T)|2d§dT> 2 7
88 el = </_OO /5<1<1+|T|)2a Iw(5,7)|2d§d7>

Consider first the operator BI,,1(t).

THEOREM 3.1. Let 1(t) be a given smooth function of t with compact support
and assume that s and b are within the range 0 < b < % + 5 < 1. Then there exists
a constant C depending only on v such that

(3.3) A_S,b(wzs.rml(h)) < C Il spmesro

3b—s—1/2

forany he H, * (RY).

(RF)
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Proof: Recall that

[BIn1(t)h] () = I (x,t) + I2(z,t)
where I (z,t) is a function defined on the whole plane R x R and is, in fact, a
C>-smooth function of z and ¢. For any t € R,

C H(3u2 — 1)1 () /0 h e~ =mE (£)dg

IN

112 (2, )l L2 Ry

L% (R)

IN

C||h||L2(R+)-

This type of inequality is also valid for 320/, for any j, [ > 0. Thus it is straight-
forward to see that if h € L?(R™), then

(3.4) A_sp(¥1h) < O||hl L2+

for any given b > 0 and s € R where the constant C' depends only on %, b and s.
To analyze I3(x,t), remember that

-7:1,15[[2](577—) = f21 (57 T) + j22(§= T)
where, for |£] > 1,

In(€,7) = F, UOOO E(z,1) cos(:cﬁ)dx} (7) (1 — o, T)) (1 n w(r))

and

Io(6,7) = %/Ooo (ﬁ + ﬁ) 7 [/OOO E(z, 1) cos(mn)dx] (101 (1, 7).

Since the relevant estimates in the region |{| < 1 are straightforward, in what
follows it is always assumed that |{] > 1. First, consider the term

/_Oo /_Oo L+ = (E-oN* @+ en™

We have the following estimate for this term.

Io1 (€, 7) ’2 dedr.

PROPOSITION 3.2. Let s > 0 and 0 < b < % + % be given. There exists a

constant C such that

(3.5)
L/,(1+|T-(£3—§)I)2b(1+lél)_2s

3b—s—1/2

foranyhe H- 3 (RT).
Proof of Proposition 3.2: According to (2.21),

7 [ /0 B cos(m,ﬁ)dm} (7)

R 2
In(g, 7| dedr < ClAI? smssse

(RT)

4 4
=D K (&) ((m)h(r) + > Kz (&, =7)2(u(=7))h(=7).
m=1 m=1

In the following, detailed analysis is given for terms containing Ko; and Ky1; the
estimates for the other terms follow similar lines. Suppose that £ > 0. The case
& < 0 is entirely analogous. Write

Aml(gaT) = Kml(gaT)(bQ(:u(T))ﬁ(T)v m = 17 2’ 3’ 4.
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For given s and b > 0, we have

/_O:O /OOO 1+ = (=N a+leh ™ A21(§,T)(1 +w(7‘)) (1 - @(5,7)) ’2d§dr

/ h(s)e “Tds
0

2
Bgl (T)dT

<c / " pa(u(n)

with

Ba(r) = [ (=€ =) @+ i)™ (14 0m) (1- 0(e)[

(34%(r) = 4) éa(u(r))
(302(r) — 4+ (26 — (r))?)

X

d.

Claim: Ifb< i+ 3, then, as T — oo,

6b—2s—1
3

B21 (T) = O(T
To see the claim is true, note that in fact

L= @) e >
s (302(r) — 4+ (26 - u(n))?)

Bu(r) = /5 * (312(r) — 4) da(u(r))

x(1+ w(T))2 (1-e, T))2d§

since ©(&,7) = 1 when & < 8|7|3, where § > 0 is fixed, but arbitrary for the nonce
(see (2.14)). Let £ = n(¢) be the real solution of the equation

e —e=¢, for 0<(<o0

that connects continuously to the unique real root as ¢ becomes large (e.g. ¢ > %)
Note that

n¢) ~¢5 as (- oo.
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For large 7, it is also the case that u(7) ~ 73. Thus, for 7 > 0 large enough,

o (3u3(r) —4) A+ 1T —¢)”

% 1
Boi(r) < C 1+ T
s (3#2(7)—4+(2n(<)—u(7))2)2( ) ) -1
A (e 4 2 1
< C (L+[CN™% g —=dC
7 (14378 + (20(Q) _7%)2)2 SP(C) — 1
S A O o) 1
= C L+[CN™ gy —dC
7 (14378 + (20(¢) _7%)2)2 (€)= 1
e % T — 2 2s
L © 73 (L+|r—¢l) (H'CD_TWCK

2r (1 + 375 + (2n(¢) — T%)2)2

= G2171(7’) + G2172(7’).

Continuing this sequence of inequalities, note further that
2
3

27 2b
(147 =<l 1
Go1-1(T C
wat < Ot | S o

dg

IN
Q
\‘
o
—
S|+
\‘
S~—"
[\~
<o
\N
5
—
ey

IN
Q
\‘

and

N N (S G
Gana(r) = O /27 A+ 2440583 "

5 o] 2b
< (Crs / ¢ d¢
2

if b < % + 5. The claim is thereby established. As a consequence, the following
inequality emerges. For given s > 0 and b < % + 3, there exists a constant C such

that

o] 00 2

[, o[ [ e du] (s

2= 0
o] oo 2

2(3b—s—1/2) .
SC/ 2 (u(r))T 3 / h(w)e ™" dw| dr
2 0
36 <O
3b—s—1/2

foranyhe H 3 (RT).
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Next, consider the term

Aq(&,7) = Ku1 (&, 7)o (u(7)) ()

involving K4;. For given b > 0 and s € R,

/jo /Om (14— (€ —ON™ (1 + €))7 |Au (&, D) P(1 + w(r))?

00 2
/ e Th(s)ds| Bai(r)dr
0

(1-6(en) detr < [ oatutr)
3V3
where By (7) is equal to
/°° (1€ — P ()p(r)? (Lt I = (€ = 9" A+ Je) ™ (L w(m)* (1L - O ) o
0 (302(r) =4+ (26 + u(r))2) " (362(7) — 4+ (26 — pu(r))?)

As in the estimation of B (1), one shows that if b < £ + 2,

6b—2s5—1

B41(T) = O(Tf)

as T — oo using again the fact that u(r) ~ 73 for large positive value of .
Consequently, for 0 < b < % + % and s > 0, there exists a constant C' such that

/; )| [ his)e s

The proof of Proposition 3.2 is complete. [

2

B41 (T)dT S C ||h||i13b75371/2 (R*) .

Next, attention is given to the term

/_OO /_OO (Lt — (€~ O)™ 1+ )~

for which we have the following estimate.

Inle, )| dear,

PROPOSITION 3.3. Let s and b be given satisfying 0 < b < %—i— 3 < %. Then
there exists a constant C such that

67
/, /, (14— (=N 1+ e~

3b757%

for any he H—=— (R").

R 2
I (€.7)| dedr < ClnI* .
H3b : (R+)

Proof of Proposition 3.3: First, we note that to study Iso (&,7), we can use the
form of Is2(&,7) in (2.15) or (2.24). As before, details are given for only one term
in 7 [f° E(z,t) cos(azn)dzx], say

An(€,7) = K&, m)éa(p(r)h(r).
Notice that Aq1(—&,7) = A21(&, 7). Hence, we may consider only the case wherein
& > 0. Denote by g2 the function
1

3p(r) — 4+ (26 + pu(7))?

(J2(§= T) =
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and, for £ > 1, let D3 be given by

co 2 o 21 — T
Dz(S,T)—2/O %qz(nm)dnJr(HW(T))/ %‘Jz(nﬁ)dﬁ

0

for &€ > 61p(7) (from (2.24)) and

0o 0o 1-— @( 7')
£0(n,7) §(1-00.)
Dy, 7 :2/ q 77,7'd77—|—(1—|—w7’) q2(n, 7)dn

e A K D))y~ e
for 0 < & < d1u(r) (from (2.15)), where é; > 0 is a small constant. The relevance
of these functions will become clear presently. First, note that

A1 (& 7) = q2(& 7) P2 (u(7)) A7)/ 3p?(7) — 4.

As for D5, changing variables in the integrals of its definition shows it to have the
form

Daer) = 2 ey

2

+(1 n w(r)) /OOO % (1 —om, r))qz(w)dn

_772

aop 2
- 27_) /0 y(y2n O(u(r)n, T)p2(n, 7)dn

1 ( %)
- :2?;(;) /: y(yzni 7 (1 - G(H(T)%T))I)Z(??a T)dn
(3.8) := Doi(y,7) + Daa(y, T)
where
a0:5|7'|%+17 a1:5|7|.% 1

N(T) ma Y= g//.l,(T) > 617 pQ(T]a T) =

2— o 2+ 1)
We have similar definitions for 0 < y < d;. Remark that ag is bounded indepen-
dently of 7 and so for y large enough, y? — n? is bounded below for n € [0, ao).
Thus,

2 ao n
D21(yu T) = y3M2(T) /0 1— (Tl/y)g G(M(T)Th T)p2 (77’ T)dn
1
= mDQLQ(Tv Y)

where

|Da12(1,y)| < C for all 7 and y large.
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Turning to Dag, note that ©(u(7)n,7) = 0 for n > aq, so

/:O y(y;]iin?) (1 - G(N(T)%T))pz(nﬁ)dn

[e'e] ,'72
= / mﬁz(% 7)dn
a

1 [/ 1
= — [} mz2y2p2(2y77')d2

y? S
I R 1o
= ?/u = (z Yy pg(zy,T)—l/ll) dz—&—4—yz/a_1 mdz

1

= (Dzz 1(y,7) + D22,2(y, 7’))-
Of course,

a1
1/ 1 1 v 1
D = — —_—dz = —— —d
222(0,7) 4/a_1 -2 4/0 -2

since

< 1
——dz=0
/0 1- 2%

as a principal-value integral. It is therefore clear that
C
[Daz,2(y, 7)| < m

for some constant C' independent of 7 when y is large, say y > yo. As for Dag 1(y, 7),
note that

—1
1 4 3 2 4 1\2
2 2
po(ny,7) —1/4 = —<————8> ——7+<2 +—>
ny palny,7) = 1/ v\ v T\ 2y Ty

1
= —p*(%yﬂ')-
Y

Rewrite Dag 1(y, T) as

1/2
Da21(y,7) </ / / ) ny, d77
ai/y 1/2
/ / 77 y, dn
1/2

/1/2 p*(n, b7 )4 i
ai/y L=n

where C' is independent of 7 and y for u(7) > 3 and y large. Thus, if y > yo, then

C

to obtain

<C

and

<C(l1+Invy)
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where C' is independent of 7 and y. The following calculation shows the relevance

of DQ;
/OO/OO (17— (€ — o) (1 + )~
0 0

- /o S BIRP) (357(r) — 4) /0 (L4l = (€ - 9™ (1 +1gh~™

2

/_ ) ﬁAu(n,ﬂ@l(n,r)dn dedr

2
dedr

X ‘/m gi77612(7777)61(77,7)d77

= [ ZBwE o (3520 - 1)
0
< [Tl € - 0 (i) a7 P
0

Appropriate bounds on D5 yield bounds on the left-hand side of the last formula.
Consider the quantity

Eo(r) = (36%(r) - 4) /OOO(1+|r—<£3—s>|)2b<1+|s|>25|D2<s,r>|2ds

oo

e

x (1+ &)~ D3(¢, 7)d¢

= E91(7) + Eaa(T) + Ea3(7)

where d; is again a small constant. By the choice of w(7), it transpires that for

large T,

B < O ) [ T ooy

Yo (T)

SCT§M(T)6b—2s—3/ §6b—2s—6d§
Y

Yo

6b—2s—1
3

<Cr
if6b—25—6<—1,whichistosayb<%—I—%.Forélgygyo,say,
C
Do < s (1
el = e
290 1

H(1ru) [ (1= 8w, T))Pz(nﬁ)an |

al y_n

/an ﬁg(u(ﬂm T)p2(n, 7)dn
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Note that if §; < y < ag, then

ag 1
/0 H@(M(T)n, T)pQ(n’T)dn‘ <

/ 0 O(u(r)n,T)
0

AT (o)l )

“o(u(t)n, T
+ pz(yﬂ')/ Mdn‘ <C.

0 y—n

The same bound is valid if a1 <y < yo. Thus,
C

3.10 Ds| <
( ) | 2| = /1*2(7—)
and

Yo (T)

Baml<or i [T (L= €@ - ) (14 Je) e

d1p(T)

%T% 203 you(T
C_% . 3 2b —2s
<or /5 / (1+|r — (€ —6))™ (1+[¢) > de

vor(™) 6b—2
+ —4%d
/27% ¢ ¢
_2 2b+172s 2 1—2s 6b—2s+4+1
<Cr 3|7t 5+ | (L+7E—-1)*"r = 3
1
3

_2 [ b—2s41 1-2s
<Cr 3(7’ 5 47 )

S CT6b72571
sinceb>0. If0<y= < 01 in the term Do = Doy + Dos, then
c /°° 2y ly|
Dos| < (1—®u7'77,7')p n,T dn}<0
D2l < 22 o Y212 W) 7) )p2(.7) 12(T)

and

Doy = | [ (s ) ) € i

# [7 = (el 7) = w7 ) OCutrm

[ () + ) Ol
1

=2 (D21-1+ D212 + D21-3).
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Recall that pa(n,7) = (3 - #%(T) + (2n+ 1)2) , so that

Da1-1(y, 7) + Da1-2(y, 7) =

_/a“ O(u(r)n,7) < n+y+1 n—y+1 )d
= 1 1 n
o 3 3

—wm T @ D2 \3 - Q) 3 - (2 1)

—8y(n+1)
B == + 2y +1D2)B — o + (29 +1)?)

_ /“0 O(u(r)n,7)
0 3= = T (2n+1)?

1 1
Ty (3— s+ (2 1)2 32 ﬁ@+(—2y+1)2> .
It thus transpires that
|D21-1 4 Da1 2| < Clyl.
Also,
ao 1 ao 1
Dorcs = pae7) | == O(u(rIn 7+ pa(=.7) [ Ol r)a

o) ([ o+ [ oty

al 1 ag 1
+ -y, T —d +/ @ T aTd)
pto) ([ gt [ e

= p2(y,7)( —lar =yl + W yl) +pa(=y,7) (n]ar +y| ~ I Jy])

10, )dn 0 10u(r)n, )dn

+p2(y77)/ — +p2(—y77)/
a n %_1 ay n %+1

-y
ai

)

sl (1 L) ) [0 (<1 ) @u(rin

sl [ 1 (1= 2 ) @u(rin.

= (= pato7) 4 pa(om)) (1l =l + paty) (~

= (—p2(yv7') +p2(—y,7)) <lnla1| —In|y| +/a0 %@(u(f)n, T)dn)

ai

el ) <_ 8 <1 - a%> " /: (y —yn)n@(u(T)n’ T)dn)

2e(=57) (m <1 " a%> - /: (y fn)n@(u(r)n, T)dn) '

It follows that
[D21-s] < Clyl (I Jyll +1)
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and
D < Clyl (1 yll +1)
2= 3 (7)

which implies that

Cly|(1nlyl+1)

(3.11) Dof € s

Thus, it is apparent that

d1p(T) 2
Bal <o [0 pr a5 (14

1n|%|D d&
1n|%|‘)52d5

o1
<O P [+ e+ inelhe?d

01 p(T)
<orBarp® [ A <1 "
0

01
SCT_§+2I>—?S/ £2725(1 + |In|é||)de
0

< O2—(25+1)/3
if 2 — 2s > —1. Combining these estimates, there obtains
|E2(T)| S CTZb—(23+1)/3

if s < % and 0 < b < % + 5. This in turn implies that

I [avr-@-onavir|[ L anon
—o0 JO

7005_77

x(20(0,7)+ (1-00,7) (1+ w(T)))dnr dédr

2
dr < C|n|j?,
H

_s_1
376

< C/OO £2b—(25+1)/3
0

/ h(w)e™ "7 dw

0

Similar estimates for the other terms yield, in sum,

/fiK%(P+h—(€—<ﬂf71+KD”S

if0<s<3/2and0<b< % + 5. This completes the proof of the Proposition 3.3.
0.

“ 2
In(e, )| dear < b2,

6

By combining above two propositions, we obtain the estimate (3.3). The proof
of Theorem 3.1 is complete. [J

Now, attention is turned to the operator BI,,a(t).
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THEOREM 3.4. Let 1(t) be a given smooth function of t with compact support
and assume that 0 < b < % + % with —1 < s < % Then there exists a constant C
such that

(3.12) Ao (¥BLya() < CIh| smesss

5 (RN

3b—s—1/2

forany he H, * (RY).

Proof: As in the proof of Theorem 3.1, it suffices to prove the following two
propositions.

PROPOSITION 3.5. Let s € R and b > 0 be given. There exists a constant C
such that

“ 2
I (7| dedr

[ [ avr-@-an*avie™

C||h||29b7;7§ ifS < %;
(3.13) <
CIME ws 52 .

PROPOSITION 3.6. Let s and b be given satisfying 0 < b < % + 5. There exists
a constant C' such that
(3.14)

00 00 R 9
[ i@ -on® a i n| dr < cini?

H— 3~ (R+)

3b—s— 3

for any he H—3 (R").

We only present a proof of Proposition 3.5. The proof of Proposition 3.6 follows
the same line as that of Proposition 3.3 and is therefore omitted. As in the proof of
Proposition 3.2, detailed analysis is given for the term containing K1; the estimates
for the other terms are sufficiently similar that their proof does not require further
elaboration. Suppose £ > 1 and 7 > 0 in what follows. The other cases are entirely
analogous. Define

Aml(f,T) = Km1(§7T)qf)2(u(T))iL(T), m = 17 27 3.

For given s and b > 0, we have

/Oo /OO (1+|r— (€ =)™ @+leh™ A21(§77')(1+W(T)>@(§,T)‘2d§d7'
0 1

/ h(s)e “Tds
0

2

<c/ ” gau(r)) By, (r)dr
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with

‘ 2

By (r) = /100 (L= (€ — D™ (1 + &)~

(1+w(n)elE )

(1) = ()
(3u2(r) — 4+ (26 — u(r))?)

(34%(r) = 4) g (u(r))

(3u2(r) — 4+ (26 — u())?)

X

dg

o=

ot 3 % _os
sc/l (14— (€ —&))% 1+ €] S

because of the properties of ©, and where § > 0 is, as before, fixed, but arbitrary
for the moment. Let £ = n(¢) be the real solution of the equation

& -¢=¢, 0<(<oo, for which 1 <€ < oo.

Note that n(¢) ~ (3 as ( — oo. For large 7, note also that w(T) ~ 73. Thus, for
7 > 0 large enough that 67/3 > 1,

1
3

6T 2 _ _ 2b ”e
Bt < o SOEAUITZD gy g%
O (32r) — 4+ 20(Q) - p(r))?) L
or3 2 2b
< c LA U1 e E
/0 (1 +375 + (29(¢) - T%)2)2 (6 =1
2 578 2b
T 1+ =< 1
c—— \ d
- (1+T§)2/o A% BPQ-1°
2 sr3 2
o 7'32 (1+|T—<|) p
: (1+T§)2/0 o= ¢
< OT6b3—2 (1+T17925)
{ Or e ifs <,
<
crs” if > 1.
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In consequence,

/M/W(LHT—@B—OD%O+KD”SAm@mX1+wh0®@Jﬂ%mT
0 0

o] o 2
< [ oaturn| [ s as| By war
0 0
0 0o . 2 (;'7'181)792875 dr if s < %,
< C/ $2(p(7)) / h(s)e "7 ds .
0 0 CT%dT if s Z %
Cln|?,, . s ifs<g,
_ H o
ClIRI2 o1 if s > 1.

The proof is complete. [J

Finally, consider the operator BI.(t).

THEOREM 3.7. Let ¥(t) be a given smooth function of t with compact support.
Assume that

0<b<3+3% if s >0,
0<b<3 if —1<s<0.
Then there exists a constant C such that
i 1
C”h”H?’b—ss—l[Z (R+) ZfS < 37
(3.15) A_sy(YBIch) <
. 1
C ||h||H3b3—1 (R+) lfS > 5-
3b—s—1/2

3b—1
foranyh € Hy, ® (RY)ifs<3 and for anyh € Hy® (RT) if s> 3.
Proof: To establish (3.15) it suffices to prove the following proposition.

PROPOSITION 3.8. Assume that

0<b<i+32 if s >0,
0<b<3 if —1<s<0.
Then there exists a constant C such that
. 1
O||h||H3b75371/2(R+) ZfS S 3
(3.16) A p(Fupll]) < X
C||h||H3b;1(R+) lfSZ 5-

3b—s—1/2

3b—1
foranyh e Hy, ® (RY)ifs<3 and for anyh € Hy® (RT) if s> 3.

To see (3.16) is true, write F, [l2](n, T) as

Fadl BI0,7) = Foa 1) 0,7)0 (0, 7) + Foal B (0,7) (1 = ©(n, 7))
Then, (3.16) is seen to follow from Proposition 3.2 and Proposition 3.5. O
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Observe that
W]l Ly 0,700 (Ry) < CAsp(Yw)

for any s € R and b > 0, where ¢ € C§°(R) and ¥(¢) = 1 when ¢t € (0,T). The
following theorem, which follows from Theorem 3.1, reveals a boundary smoothing
property of the linear KdV-equation.

THEOREM 3.9. For any T >0 and s > —%, there exists a constant C such that

(317) ||Wbdrh||L2(O,T;Hs+%(R+)) S C ||h||H#(R+)

1+4s
3

for any h € Hy* (R™).

Proof: From Theorem 3.1, the inequality

[Waarhll 0150y < e (GBI ) < C ] svsse

follows, for some constant C' and 0 < b < § 4 £. Estimate (3.17) with s = 0 is
seen to be valid by taking b = 0 and s = 3. To show (3.17) holds for s > 0, let
U = Wharh and w = u;. Then w = Wyg,-h'. In addition, note that

Woarbll 0,703 (ry) < C Wy 0,702 (R4 ) -

Thus, we have

IN

HWbdrh||L2(o,T;H3+(3/2>(R+)) C ||Wbdrhl||L2(0,T;H(3/2>(R+))

IN

By interpolation, (3.17) holds for 0 < s < 3. A similar argument shows that it
holds for any s > 3. The proof is complete. [

ﬁ
Remark: It was proved in [4] that h € Hy®> (R") implies that

Waarh € C([0,T); H*(RT)) 0 L?(0, T; HEVH(RT)).

loc

Theorem 3.9 does not follow from this. It represents a new, somewhat more subtle
smoothing property.

To conclude this section, we present another estimate of BI,,1h and BIl,,2h in
the space C'(R; H?(R)) which will be useful in studying the well-posedness prob-
lem for the IBVP (1.1) in the next section. The main difficulty in its proof is to
discover how to efficiently convert spatial regularity of BI,,;h, j = 1,2 to temporal
regularity of the boundary value function h.

LEMMA 3.10. For —% <a< %, the inequality

(3.18) fgg”lg[mlh”Ha(R) < COlhll yogr pr

holds for some constant C'; for —% < a < 1, there is a constant C' such that

(3.19) sup IBLm2hll o gy < C IRl agr g -
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Proof: We provide the proof of (3.18). The proof of (3.19) is very similar.
According to the proof of Theorem 3.1, it suffices to show that

Por(&,t) = /_Oo e a1 (&, N)da (1u(N))

/0 ns)eMds (1-0(6, 1) (1 + H(Ew(n) ) dA

2i [ ; 00 2
+7T—2/_006/\t/0 5277_7772(121(77,/\)9%)2(“(/\))

/ h(s)e~™*dsO1 (n, \)dnd\
0

=Por1-1(§,t) + Par—2(§, 1)
satisfies

sup [ (14 1677 [Pary (€0 dE < C I e
0

teR RT)

for 7 = 1,2, where
3ur(N\) —4
S
3i2(\) — 4+ (26— u(V))

Toward establishing these inequalities, we first study P21_1. Observe that

g21 (57 )‘) =

/0 (1 4+ €D [Para (€] de

= /000(1 + 1€ /_O:O M1 (€, M) d2((M))h (M)
(1= ) (1+v(©wn))dn|

X

/°° 2110 (€, 22)2 (X)) h(02) (1~ O(6, ) ) (14 (O)w(2) ) da

dg

= /_Z /_O:O (1 A2) |2 (A2) b2 (A1) | B(M)|

X </ (1 + 1€])** g1 (&, M) go (&, >\2)(1 -0, /\1)) (1 - 0O(¢, /\2))615) dh1d).

0

Now, estimate the term
I\, o) = 001 2a A ) (1 -0 N 1—O(& X)) dE.
(A1, A2) /0 (1 +1€)"*g21 (& A1)ga1(€ 2)( (€ 1))( (€ 2))5
Since p(\) ~ O(A/3) as A — oo,

(1+ I (1 - 0te ) ) (1 - 016, 12) ) de
(1007 26 = nO))?) (1425 + (26— ()]

Il < OV [
0
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By the symmetry of this expression in A\; and Ag, it suffices to consider only the
case 0 < \; < \g. Fix 6 > 0 and break up the integral I7(\1, A2) as before;

Howg) = [ o D™ (1-0E M) (1 -0 x) )de
(A1, A2) = /0 (1 + )\f/S + (2¢ - ,U()\l))2) (1 + )\3/3 (26— u(>x2))2)

max (8| Az ], [u(A1)]) 2|u(r2)| o0
5| Az] max(6[Az], |#(A1)]) 2|lu(r2)]

= IIl()\l, )\2) + 112()\1,)\2) + IIg()\l, )\2)

Note that (26 — u(M\1))? > (26 — |u(M\1)])?. In the integral I1;, either the limits of
integration are the same, so the integral is zero, or, for A\; and A3 large, 0 < CpAe <
A1 < Ag for some Cy > 0. In this case,

[(A1)] (1+ |§|)2ad§
sal (L M)+ of?)
C
S 1 2a 2
(T+ M55 (14 [A2])3

ITi(MA1, M) < C

<O+ |A) 0.

In 15, note that & — |u(A1| > 0, so that

2[u(A2)] 202
0w < / (12+|£|) d¢ i
312l (1 + |)\2|§) + (25 - |M(>\2)|)
< O+ |a)F

For 13, it follows directly that

o 1 20
IT3(A, A s/ L _ge<c+ L
Mdo) < |y Azt < k)

Thus, for 0 < A1 < A9 and \; large,

[II(M\, A2) < C(1+ [Ao]) 570
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These three inequalities imply

o0 )\2

/00(1 + [€D)** [Par1 (&, 1) PdE < C/ &2 (1(M)) b2 ((A2)) R (A1) (Ao
0 o Jo

<A1 |F [A2]F (1 + [Ao)) T LdArd)s

1+a

2 G(u(A)) B2 () (1 4 A ]) (L 4 [A2])
‘O/o / ( 3

3 ~ ~
7 RO ()| dA1dA
L+ M) 51+ o)™ [h(A)h(A2)|dA1dA2

[e's) Ao N
SC/ / Il F Dl 75 E (L ) T (1 Do) 5 ()R |dArdAs
0 0

<@+ np S RO, [|@+ P @)

L2
2
(3:20)C |12 1z

if 2 <1 ora<2 (seee.g. page 245 in [24]).
Similarly, for Ps;_o, we need only study

ITI(A1, A2) = / (14 [€])**D21(&, M) D21 (€, A2)dE
0

where

Da1(€,)) =2 /Ooo %qz(m /\)dn+(1+u(£)w(A)) /Ooo w

Note that Da; = Day/u2(\) — 4 with Dy as defined in (3.8). Following the analysis
of IT(A1, \2), fix 61 > 0 small and rewrite I1] in the form

SlpODl pmin{apO2)], 100D} porle(ha)]
III(A\1, \o) = / +/ +/
0 51lu(M)] min{81|p(22)], 100[u(A1)]}

max{81[u(A2)], 100[u(A)]}  £100[u(re)] s
o o Ve
51 ln(re)| max{slu(r2)], 100[u(A)1}  J100[u(xe)|

= 11110\1,/\2) +IIIQ()\1,/\2) +IIIg()\1,/\2) +III4()\1,/\2)

q2(n, N)dn.

FITI5(A, A2) + TTI5(Ar, he).

From the estimates of D in (3.9), (3.10) and (3.11), it follows that for & > 100u()),
say,

C2 () (1+ [ mfe/u()])

D21 (€M) <

& ’
whereas, for §1p(A) < € < 100u(N)
C
< -
D21(§=)‘) — ,UJ(A)
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and for 0 < & < d1u(N)

Clél(1+ | mle/unl|)
(2 (N) '
The estimate for I11; is obtained as follows:

ITI (M1, A2)

sy (1+16l) "€ (1+ [le/n0n) ) (1+ [ mlg/u0ra) )
=<, PR ) *

D31 (&,0) <

Id§

o (o) e (14 il ) (14 [ /0]
- O/o 20)

142a

< Ot (a2 00) < O(L ) T (1 Pal)

Continuing as in the estimate of (3.20) yields the same inequality, of course with a
different constant, as appeared in (3.20) provided —¢ < %, which is to say o > —%.
For 1115, we have

I115(M\, A2)
win(5 s 10040} (1 -+ [€])2¢](1+ | n ¢/ n(r2) )
S11(0) (A1) 2 (A2)

1004(A1) 14+

(11e) " (1 [ mle/mon] ) de

<C

< OO (M) /

d1p(A1)

1+2a

<SOA+ M) 7T (14 A5,

which again gives the estimate (3.20) if o > —%.
For 1115, note that it is only required to consider the case wherein

100(A1) = min{d1p(A2), 100u( A1)}
In this situation,

I1I5(M1, A2)

st (1416l) " n20u) (14 I le/ul]) (14 /)
< C/loou(/\l) €212(\g) dg

<C(un) (wow) [

x (14 Je/u(re) | ) de

oo

(L4l (1 + | mle/nOn)l))

004 (A1)

142a

<c(un) " (0w) T e(ieml) T (14 pal)

if 2a — 1 < 0, which is to say, a < 1. This gives the estimate (3.20) as before.
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Again, in I11y, it is only necessary to consider the case wherein
max{d1pt(A2), 100u(A1)} = 100p(Aq).
In this case, d1u(A2) < 100u(A1), which implies that 0 < CpAz < Ay < Ay for some
Cy > 0. Thus, it follows that

2a
1001(A1) (1 + |§|) ) (A2)

ITIy (A, M) <C e y 3
1H(A2
<oun) (o) [ (141)

< 0(pon)”™ (u0ra) " e(rea) T (e pal)

1+2a 2
(1 + |)\2|) .

M

<c(1+nl)
For 1115, argue as follows:

III5(/\1,)\2)
. /100#@2) (1+|§|) 2(0) (1+ | ¢ /n0n) |})

max{81u(A2), 100p(A1)} §3u(A2)

<c(un) (wow) [

< () (102) " (u0)/u0w))

(1 + |/\2|)7% )

100u(X2)

(11el)™ (1 | mle/monn] ) de

1p(A2)

1-2a

1+2a

< 0(1 + |>\1|)
if a < % Similarly,
II15(A1,A2)

w  (1+1el) e 00r0) (1 [le/uon)l]) (1 + | mle/n0u))) B

100 (A2) &8

< O(urn0a) / Oo( (s €)™ (1 [ mle/mon]) (14 e/ de

(10
O(un) (102) " () m0)
<c(t

<C

IN

+ A1 ) - (1 + |/\2|)_% :

if @ < 5. The proof is complete. [J
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4. Well-posedness

In this section, the well-posedness of the IBVP

Up + Uy + UUg + Ugze = 0, for z, t >0,
(4.1)
u(z,0) = ¢(z), u(0,1) = h(t).

is studied in the space H*(RT) x H,, = (RT). To state precisely our results, we

loc
introduce the following notation and Bourgain-type spaces. For any given s € R,

0<b<1,0<a<1and function w = w(z,t) : R? - R, Asp(w) and A\, (w) are
defined as in Section 3. In addition, define

</ ([ ettty )

1/2
(e, P
Qi (1 +1¢)* drd
L (11— -9l)"

(/] €D )
g1 (14 [r])20-) '

Let X, be the space of all functions w satisfying

(see the definition in (3.2)) while Y5 is the space of all w satisfying
lwly, , = (G2(w) + Q2 (w) """ < oo,

In addition, let X', be the space of all functions w satisfying

and

X, = Agp(w) < 00

1/2
ol o, = (AZp(w) + A2 (w)) " < o0

(again, see the definition in (3.2)) and let Y% be the space of all w satisfying

el s, = (P2(w) + G2(w) + Q2y(w)) " <

The spaces X p, Ysp, X;b and st‘b are all Banach spaces. Note that X ; and Xsofb
are equivalent when b > a. The spaces Y, and X _; are also equivalent when
b < % Define also

X

‘S)

=C(R;H°(R)) nxXgy,

with the norm

1/2
2 2
g, = (s0p Ol + luli, )
’ teER ’
By their definitions,
XM Cc X if a1 < an and by < bo,

S bl S b2
whereas
YO cYer if a1 > o and by < bs.

S b2 S,bl
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The above Bourgain-type spaces are defined for functions posed on the whole
plane R x R. However, the IBVP (4.1) is posed on the quarter plane R x Rt and
we are seeking its solution in the space C(R* : H*(R™)) corresponding to a given
initial value in the space H*(R") and boundary data in the space H, l? (RT). Tt
is thus natural to consider restricted versions of the above Bourgain-type spaces to
the quarter plane R x R*. Let Q denote a subinterval of R; define a restricted
version of the Bourgain space X ; to the domain R x Q as follows:

Xsﬁb(RjL X Q) = Xs,b
Rt xQ
with the quotient norm

lullx, ,(rexey = Juf {llwllx,, = w(@,t) = (@) on BT x Q}

for any given function u(x,t) defined on R* x . Of course, it is clear that lullx,, =
lullx. ,(rxr)- Thespaces Yy, (RTxQ), X (RTxQ), Y (RT xQ) and X, (R xQ)
are defined similarly. Naturally, if w is any extension of w in X, ,(RT x Q) to
Xsp(R x R), then [0 x, ,(rxr) = Wl x, ,(r+x)-

For the IBVP (4.1), we have the following well-posedness result.

THEOREM 4.1. Let s € (—%, 1), T >0 andr > 0 be given. There exist T* with
0<T*<T and b with0 < b< % such that

() if 6 € H*(R™) and h € H.& (R satisfy

oc

1815 ey + Wl 51 ) S 7
and
¢(0) = h(0)

when s > L, then the IBVP (4.1) admits a unique solution u € X;‘% (RT x
(0,T%)) for some a > &:

3b—1/2+s

(ii) if ¢ € H*(RT) and h € H,,, > (R) satisfy
[62e gy + 1oy <7

and

¢(0) = h(0)
when s > §, then the IBVP (4.1) admits a unique solution u € X&,(RT X
(0,T)) for some a > .

Moreover, the solution u depends continuously on ¢ and h in the corresponding
spaces.

Remarks: The result presented in part (i) of the above theorem is slightly stronger

than that of Colliander and Kenig [12] and Holmer [25] in the sense that u is the

restriction to RT x (0,T*) of a function w € X1 instead of w € X, for some b
i) ’

strictly less than % The result presented in part (i) shows a boundary smoothing
3b—1/2+s
since the boundary value h is only required to lie in the space H,,, * (R') and

3b-1/24s _s+1
3 3

when b < %
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The proof of Theorem 4.1 is based on the results expounded in Section 3 and the
following lemmas whose proofs can be found in [33, 34, 11, 12, 4] or derived from
them in a straightforward way. For the convenience of the reader, we provide in
the Appendix brief indications of the proofs of the results used here. In the lemmas
given below, ¢(t),o(t) € Cg°(R) with ¢ = 1 on [—1,1] and supp ¢ C (-2,2),0 =1
on supp v and supp o C (—2,2) also.

LEMMA 4.2. Assume that 0 <0 <1, —co<s<00,0<b<1anda € (%,1].
Then there exists a constant C depending only on s, b, a and ¥ such that

1—2b*

(12) [ OWR ()] o < C8E 10l
1 1—2b*
(43) [~ k] o < CO2 Bl
and
t .
o e [ wae-esew| <es i,
0 Xg,b s,1—b
Here b* is any number larger than b.
LEMMA 4.3. (a) For —oo < s < 0o, there exists a constant C' depending
only on s such that
(4.5) sup [Wr(t)9l| spr < Cl6llms(r)
TzER H, (R)

for any ¢ € H*(R).
(b) For —1 < s < o0, there ezists a constant C depending only on ¢ and s
such that

(4.6) sup |4 (t)Wr(t)4 < Cl|@ll = (r)
rER H

s+1
:

0 (R)

for any ¢ € H*(R).

LEMMA 4.4. Let 0< b < %, —1 < s < o0 and define
t
w(z, ) = / (Wit — ) f(-. )] (x)dt'.
0
For v as described above, there exists C' depending only on b, s and ¢ such that

(4.7) sup [[p(t)w(z, )| s < Clflly,, -
TER H, (R) ’

In addition, for —oco < s <00, 0<b< %,

(48) sup [ (O)w(e, )] . gy < C 1S
teER

Yo *

LEMMA 4.5. Given s > —3, there exist b = b(s) < 1, o = a(s) > % and
C, u> 0 such that

(4.9) 102 (u0)llya, < CT* o, ol

for any u, v € X, with compact support in [T, T].
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The bilinear estimate (4.9) with g = 0 was established by Colliander and Kenig
[12], and Holmer [25] for any u, v € X¢}. In addition, one may observe by studying

Holmer’s analysis that for s € (=3, —1), it follows that max {% 5,5 -5 <b<

% in the above lemma. As one can see, b — % as s — —% or —%. The bilinear

estimate presented in the following lemma gives an indication of how small a value
of b one can choose for s in the range of (—=%,0).

LEMMA 4.6. Let

w(z, t) = 0267 11)0, (u(:c,t)v(z,t))

9

where u, v € X¢). For any given s with 0 < s < choose b1, b and o by

16~
max 4 =5 Tl 1 l<b<l
*172 ' 16 1S9 76 2
and suppose
1< <1—|—6b
2 5% T6p

Then there exists a constant C' such that
Hwnyg . < Cg% Hu”)(g . ||v||xg .
s,b1 s, S,

for any u, v € Xf&b and —1 < § <1, where

1-2b
0p=1—-2 —_— .
0 a+ 3D >0

Next, we consider the non-homogeneous linear problem

Up + Uy + Ugge = 0, for x, ¢t >0,
(4.10)
u(z,0) =0, u(0,t) = h(t).

Recall its solution may be represented in the form
u(x,t) = Waar (t)h] ()
for x, t > 0 as explained in Section 2.
LEMMA 4.7. For a given pair (b, s) salisfying

0<b<

§ if <0, or

(SIS

(4.11)
0<b<

(e[

: 1
-5 if —3<s<],

and a given o € (%, 1), there exists a constant C such that for any T > 0 and
s41

any h € Hy® (0,T), the corresponding solution u of (4.10) belongs to the restricted

Bourgain space X$y(R* x (0,T)) and satisfies

(4.12) [ullxe, (r+x(0,7)) < C”h”H“*—"ElQ(o,T)'
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s+1

Proof: For T > 0, let hy € H% (R'1) be such that hy = h in the space H 5 (0,7T)
and let ¢, € C§°(R) be such that ¢ (t) =1 for any ¢ € [0,T]. Define

[BIml(t)hl} () if0<b< and s < 0,

s
3

N

up(z,t) =

[e[e8

%and0§8<17

{Blmg(t)hl} () if0<b<
Observing that
u(z,t) = uy(z,t) for (z,t) € R x [0,T7,

and using Theorem 3.1, Theorem 3.4 and Lemma 3.10, one arrives at the conclusion,

Il ety < I1tll s, < Cllall gt

for a constant C depending on v and s. Thus, (4.12) follows and the proof is
complete. []

Consider the same linear equation posed with zero boundary conditions, but
non-trivial initial data, viz.

Up + Uy + Ugge = 0, for x, ¢ >0,
(4.13)
u(z,0) = ¢(z), u(0,t) =0.

Its solution can be written as

for z, t > 0.

LEMMA 4.8. Assume that % < a < 1. For a given pair (b,s) satisfying (4.11)
and 0 < b < 1, there exists a constant C' such that for any T > 0 and any ¢ €
H§(RT), the corresponding solution u of (4.13) belongs to the restricted Bourgain
space X (RT x (0,T)) and satisfies the bound

(4.14) ||u||Xs"fb(R+><(O,T)) < Cloll g (pe) -
Proof: According to Proposition 2.2, one may write We(t)¢ as

We (t)¢ = WR(t)¢* - Wbdr(t)g

for any z, ¢t > 0, where g is the trace of Wg(t)¢* at x = 0 and ¢* € H*(R) and
equals to ¢ when restricted on R*. The estimate (4.14) follows from Lemma 4.2,
Lemma 4.3 and Lemma 4.7. [J

Now we turn to the forced linear problem

Ut + Uy + Ugye = f, for z, t >0,
(4.15)
u(z,0) =0, u(0,t) =0.

Its solution can be written in the form

u(~,t)—/0 We(t —7)f(-,7)dr.
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LEMMA 4.9. Assume that —1 < s < 1, % <a<land0 <b< % For
any T > 0, there is a constant C such that for any f € Y, *(R* x (0,T)), the
corresponding solution u of (4.15) belongs to the space Xsojb(lfi"r x(0,T)) and satisfies

the inequality

(4.16) ||U||x;b(R+x(o,T)) <C ||f||y5{;a(R+x(o,T)) :
In addition, there exists a b* € (0,3) such that if f € Ysl)l;’J‘(RJr x (0,T)), then

the corresponding solution u of (4.15) belongs to the space X&1 (R* x (0,T)) and
2
satisfies the bound

(4.17) ||u||Xz%(R+><(O,T)) <C ||f||ys{;*ﬂ(R+x(o,T)) :

Proof: By Proposition 2.3,
t
u(-,t) = / Wg(t —71)f(-,7)dT — Whar(t)v
0

for any x, t > 0 where v = v(t) is the trace of fg Wr(t—7)f(-,7)dr at © = 0. The
estimates (4.16) and (4.17) then follow from Lemma 4.2, Lemma 4.4 and Lemma
4.7 by noting that Y:Z“(R"’ x (0,T)) is a subspace of Y',.*(R* x (0,7)). O

I) ’

The lemma below presents a version of a bilinear estimate in the restricted
Bourgain space X ,(R' x (0,7")) which follows directly from Lemma 4.5.

LEMMA 4.10. Given s >
C, u > 0 such that

there exist b = b(s) < 3, @ = a(s) > 1 and

_3
4’ 2

(4.18) ||am(uv)||ygb(R+x(0,T)) <cT* ||U||ng(R+x(0,T) ||U||ng(R+x(0,T))

for any u, v e X% (R' x (0,T)).
s,b

We are now ready to present the proof of Theorem 4.1.

Proof of Theorem 4.1: By applying Lemmas 4.7-4.10, Theorem 4.1 can be
established by the standard contraction mapping principle. The proof is provided
only for Part (i). The proof of Part (ii) is entirely similar and so is omitted.

s41
Let ¢ € H*(R") and h € H, 2 (R") be given with s € (—32,1]. For given 6
with 0 < 6 < 1 (to be chosen precisely later) and v, w € X, (R* x (0,6)), define
)

(119 Fw) = We)o = Wi~ [ Wt~ )i
Using Lemma 4.7 -Lemma 4.10, it is seen th;),t
||F(w)||xz%(R+x(o,9)) <G ( 10l o () + ”h”HST“(o,T)) + Cat" Hw”icz%(mx(o,e))
and
[F(v) — F(w)HXSY%(R+><0)) < Co0" v - w”XSY%(R*X(O,H)) v+ w||XSY%(R+><(O,9))

where the constant C; and C5 are independent of #, v and w. Let B, be the ball
in the space X%, (R* x (0,0)) with radius r where
)2

r=2C ( ||¢||HS(R+) + Hh”ff? (0,T) )’




48 JERRY L. BONA, S. M. SUN, AND BING-YU ZHANG

and choose # = T* small enough that
205(T"H*r=p8< 1.
Then it follows readily that F maps B, into itself and that for w,v € B,,
[ F(w) — F(U)ngl(R+><(0,T*)) < Bllw =vllxe, (mexor) -
'3 3

Thus, the mapping F is a contraction on the ball B,.. The fixed point u of this map
F in B, is the advertised solution. For s > 1/2, we use the integral form (2.12)
together with f = —wuu, to obtain the result. [J

It is next demonstrated that there is at most one fixed point of the operator F,
whether or not the fixed point is determined by the contraction mapping principle.

s41

LEMMA 4.11. Let -3 < s <1 and fir ¢ € H*(R") and h € H, > (R"). Let F

be as defined in (4.19). Suppose uy € X1 (R* x(0,01)) andug € X1 (R x(0,62))
'3 i)

both are fized points of F, where 0 < 81 < 0y < 8. Then,

2 = U1
t€(0,61)

in X2, (R* x (0,6,)).

Proof: The argument is made by standard energy estimates using the bilinear
estimates just derived. Let w = u;—uso. Then, it follows that, at least for 0 < ¢t < 64,
(4.20)

w = F(uy)—F(u2) = %/0 We(t—7)0y (u3 —u3)dr = %/0 We(t—7)0y [(u1+ug)w]dr .

The equality

/ We(t —7)0x(u? — v?)dr = / We(t — 7)0z[(u + v)(u — v)]dT
0 0

follows from the fact that it holds for smooth functions v and v and the observation
that such functions are dense in X, (R* x (0,6)). Let 6 be fixed with 0 < 6 < ;.
)

Using the same analysis that came to the fore in establishing that F is contractive,
it is deduced from (4.20) that

[wllxe, (rex.0)) < COlur + ullxa (mex0p[wllxe, (R x.0)
’2 ’2 ’2

where C' is independent of uq,us,0 and g > 0. Continuing this inequality, there
obtains

(4.21) [wll x| (r+x(0,0)) < COMwllxa (r+x(0,6)) 5

where
M = max{|lu1llx= (r+x(0,0))» [u2llx=, (rR+x(0,00)}-
3 s, 5
Here, use is made of the fact that if v € X*, (R x (0,7)), then if S < T, v €
i)
X, (R* % (0,9)) and
i)

[vllee | (r+x(0,8)) < [Vllxe, (m+x (0, -
oy
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If 0 is chosen small enough, then (4.21) forces |[w[|x« (r+x(0,0)) = 0. So, w =0
55
and u; = uy as elements of X®, (R x (0,0)). Define 6 to be
)
o =sup{6 >0 : ug =uy € X*, (R* x (0,0))}
i)

and suppose 6y < 6;. Then, ui(-,0) = ua(-,6p) but this is no longer true for some
&’s with € > 6, arbitrarily close to 6p. Consider again (4.20) and for 6 > 6, write
it in the form

1 [% 1t
w(-,t) = 3 We(t — 7)0z[(u1 + ug)w]dr + 3 We(t — 7)0z[(u1 + u2)w]dr .
0 )
Because of the choice of 6y, the first term above is zero, and so
1t
w=g We(t — 7)0:[(u1 + ug)wldr .
0o

As before,
[wllaee, (m+x(80.0)) < CO = o) M[wllxe, (r+x(85.0)
2 2

and this, too, implies w = 0 on [fy, 0] if 6 is chosen sufficiently near 6y. Thus,
6‘0 = 91 and
2 = u1
t€(0,01)
as advertised. [

COROLLARY 4.12. Let r > s lie in the interval (—%, 1). Suppose for some 6 > 0
u, € X% (R % (0,0)) and us € X2, (RT x (0,0)) are both fixed points of F where
'3 )

T_H
(¢,h) liec in H"(R™) x H, ;2 (RT). Then, u, = us in X%, (R* x (0,0)).
'3

Proof: Since X% (R x (0,0)) C X% (RT x (0,0)), it follows that both u, and u
are fixed points of F in X%, (R x (0,6)) and hence must be equal there. As u, lies
in the smoother class, so does u,. [J

Remark: It is worth noting that if u is a strong solution of the initial-boundary-
value problem (1.1), which is to say that u € C([0,T); H3(R*')) for some T > 0,
then u does satisfy the fized-point problem (4.19), at least for 0 < ¢t < T. This
follows readily from the formal derivation of (4.19) in Section 2, all of whose steps
are rigorously verified in the context of that much regularity. Note, again, that the
mapping F does not depend upon any extension operations, though we have used
such operators to represent F (in a non-unique way) to facilitate its analysis.

The well-posedness result presented in Theorem 4.1 is conditional since the
uniqueness is established in the space X (R x (0,7)) instead of in the space
C([0,T]; H*(R™)). Attention is now given to showing the well posedness is un-
conditional. Toward this end, following the development in [7], it is first proved
that the well-posedness result in Theorem 4.1 has the property of persistence of
regularity.

PROPOSITION 4.13 (persistence of regularity). For given s with —2 < s <1

4
and T >0, let ¢ € H3(RT) and h € H? (0,T) satisfy the compatibility condition

loc

h(0) = ¢(0).
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Then the solution us € C([0,Ts); H*(RT)), Ts < T, corresponding to the auxiliary
data (¢, h) given by Theorem 4.1 has the property that
us € O([0, T); H*(RY)).

Proof: First, using the global well-posedness theory developed in [4], there
is adduced a unique solution @ of (1.1) corresponding to the auxiliary data ¢ €
H3(RT) and h € Hlic(R"’) which, for every T > 0, lies in C([0,T]; H*(RT)) N
CL([0,T]; L*(RT)). To prove that us lies in C([0,T]; H3(R™)), it suffices to show
that @, when restricted to [0,T5], lies in the uniqueness class for us, which is to
say, u € X7y (R* x (0,Ts)). This follows since, as noted in the remark following

’2

Corollary 4.12; u is a fixed point of F. Moreover, by Theorem 4.1, the value T}
depends only on ||(¢, h)|| Note also that if so < s1, then Ty, < Ty,
HS R+) B (0.1

and X2 (RT x (0,T) C X2 (R x (() T)) for any T > 0. In consequence of these
ruminations, it suffices to show @ € X' (R+ (0,7)) for some s in the range

_Z < 5§ < —5. We turn to establishing thls fact.

Let T = 2TS7 say, and let uq(x,t) be the even extension in both = and ¢ of @
to the domain R x (—=7,T'). Multiply u; by an even cut-off function 4 (t) which is
identically 1 on [—T5, Ts] and whose support lies in (=7, T), and view U = tu; as
a function defined on R x R. The Fourier transform of U with respect to = and ¢ is

U, ) = 4/ / (x,t) cos(z€) cos(tT) dzdt .

Since U(z,t) € C*(RT; L*(R")) has a compact support in ¢, an integration by
parts gives

TU(E, 1) = —4 /000 /000 Us(z,t) cos(x€) sin(tr) dxdt

which yields

17U Dl L2 (rxry < CllU(@, )| 22 (Rt xR+
< C( sup ||Ge(,t)l|2(r+) + sup ||ﬂ('7t)||L2(R+)> :
te[0,T te[0,T]

Moreover, by a 