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Abstract. The existence of travelling generalized kinks with oscillation tails
is studied for a class of 1D lattice equations with both onsite and intersite
potential. The travelling wave equation of the corresponding discrete nonlin-
ear equation is formulated as an advanced–delay differential equation which is
reduced by a center manifold method to a 4-dimensional singular ODE with
certain symmetries and with a symmetric heteroclinic structure. Bifurcations
of solutions from the heteroclinic ones are investigated for the singular per-
turbation systems of autonomous o.d.eqns in R

4. This gives the existence of
generalized kink solutions with co–propagating oscillation tails.

Contents

1. Introduction 357
2. Formalism in discrete dynamical system 359
3. Center manifold reductions 361
4. Bifurcation Results 363
5. Travelling Waves 365
6. Generalized potentials 366
7. Appendix: Linearization around heteroclinic connection 367
References 370

1. Introduction

In recent years there has been a flurry of mathematical research arising from
condensed matter physics and physical chemistry, namely the study of localised
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modes in anharmonic molecules and molecular crystals. Using classical approxi-
mations, these are described by nonlinear lattice equations (differential–difference
equations).

Most nonlinear lattice systems are not integrable even if the PDE model in the
continuum limit is; see [2], [5] and references therein. Prototype models for such
nonlinear lattices take the form of various discrete NLS equations or systems, a
particularly important class of solutions of which are so called discrete breathers

which are homoclinic in space and oscillatory in time. Other questions involve
the existence and propagation of topological defects or kinks which mathematically
are heteroclinic connections between a ground and an excited steady state. Non-
equilibrium dynamics of many physical systems can be characterized by the creation
and motion of topological excitations or defects, so called kinks, which have appli-
cations to problems such as dislocation and mass transport in solids, charge-density
waves, commensurable-incommensurable phase transitions, Josephson transmission
lines etc. Prototype models here are discrete version of sine-Gordon equations, also
known as Frenkel-Kontorova (FK) models. There are many outstanding issues for
such systems relating to the global existence and dynamics of localised modes for
general nonlinearities, away from either continuum or anti-continuum limits.

In this paper, we consider a perturbed Hamiltonian chain of coupled oscillators
with an Hamiltonian

(1.1) H =
∑

n∈Z

( 1

2
u̇2

n +
1

2ε2
(un+1 − un)2 + Hα(un) + µG(un+1 − un)

)

,

where ε > 0 is a discretness parameter and µ is a small parameter measuring the
relation of intersite and offsite potentials, Hα, G ∈ C2(R) and α ≥ 0 is a parameter.
The Hamiltonian H gives the discrete nonlinear Klein-Gordon eqn:

(1.2)
ün −

1

ε2
(un+1 − 2un + un−1) + hα(un)

+µ
{

g(un − un−1)− g(un+1 − un)
}

= 0 ,

where hα(x) = H ′
α(x) and g(x) = G′(x).

Eqn (1.2) with µ = 0 can be considered as a spatial discretization of the p.d.eqn

(1.3) utt − uξξ + hα(u) = 0 .

The discrete sine-Gordon equation for h0(u) = sin u, (α = 0) and µ = 0 in (1.2) of
the form

(1.4) ün = un+1 − 2un + un−1 − Γ2 sinun

has been numerically investigated by Eilbeck and co-workers [3], [9]: As Γ→ 0, we
get the continuum sine-Gordon equation with the supporting moving kinks of the
form

(1.5) u(x, t) = 4 arctan
[

exp
(

Γ
x− νt√
1− ν2

)]

.

Thus it was natural [3] to seek numerically solutions of

(1.6) ν2U ′′(z) = U(z + 1)− 2U(z) + U(z − 1)− Γ2 sin U(z) ,

where U(z) = U(n− νt) = un(t), with the boundary conditions U(z)→ 0 mod 2π
as z → ±∞. He did not find such solutions. His closest result is that the numerical
solution of (1.6) near (1.5) has tails of periodic waves of small amplitude.
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We also consider a Hamiltonian perturbation to (1.4) of the form

(1.7)
ün −

1

ε2
(un+1 − 2un + un−1) + sinun

+µ
{

sin(un − un+1) + sin(un − un−1)
}

= 0 .

Motivated by (1.7), we fix h ≡ hα for α = 0 and suppose the following conditions:

(A1) h, g ∈ C1(R) are odd, h is 2π-periodic, h(x−π) = −h(x) and g is globally
Lipschitz on R.

(A2) h(−π) = h(π) = 0, h′(−π) = h′(π) = a2 > 0 and there is a heteroclinic
solution Φ of ẍ − h(x) = 0 such that Φ(t) = 2π − Φ(−t) and Φ(t) → 2π
as t→ +∞.

For (1.7) clearly h(x) = g(x) = sin x and Φ(t) = 4 arctan[exp t]. We show
bellow in Section 6 that the condition h(x− π) = −h(x) is superfluous in (A1), so
it can be omitted. But for simplicity, we prove the results under condition (A1).

By assumption (A2), the ODE (1.3) with α = 0 admits travelling wave solutions

u(x, t) = Φ
( x− νt√

1− ν2

)

, 0 < ν < 1 .

We consider for travelling wave solutions of (1.2) of stationary profile in a moving
reference with constant velocity ν/ε. One can write

un(t) = V
(

n− ν

ε
t
)

≡ V (z), z = n− ν

ε
t, 0 < ν < 1 .

Eqn (1.2) is reduced to the following functional differential equation:

(1.8)
ν2V ′′(z)− V (z + 1) + 2V (z)− V (z − 1) + ε2h(V (z))

+ε2µ
{

g(V (z)− V (z − 1))− g(V (z + 1)− V (z))
}

= 0 ,

where ′ represents differentiation with respect to z. This paper provides analytical
results about the existence of solutions of eqn (1.8) near Φ and the relationship
between travelling wave solutions of (1.2) and (1.3) for ε > 0, µ small.

The outline of the paper is as follows: In Section 2, we formulate eqn (1.8) as
a dynamical system. In Section 3, we apply center manifold theory to the study
of existence of travelling waves with non-small amplitude oscillations on infinite
nonlinear lattice (perturbed discrete sine-Gordon). In Sections 4 and 5, we state
and prove the main theorems of this paper. In Section 6, we also investigate the
existence of travelling wave solutions of eqn (1.7), that are closed to the kink solution
when the form of hα is given by

hα(u) =
(1 + 2α) sin u

(1 + α(1− cosu))2

and α ≥ 0. In Appendix, we prove some preliminary results concerning the unique-
ness of solution for the linearized o.d.eqn ẍ + h(x) = 0 along the heteroclinic
solution.

2. Formalism in discrete dynamical system

In this section, we consider the advanced-delay differential equation (1.8) as a
dynamical system.
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We shift V (z) ←→ V (z) − π and note h(x − π) = −h(x) in (1.8) to get the
following functional differential equation:

(2.1)
ν2V ′′(z)− V (z + 1) + 2V (z)− V (z − 1)− ε2h(V (z))

+ε2µ
{

g(V (z)− V (z − 1))− g(V (z + 1)− V (z))
}

= 0 .

Since computations are the same as in [4], we follow that paper. We introduce a
new variable v ∈ [−1, 1] and functions X(t, v) = x(t + v). The notation U(t)(v) =
(

x(t), ξ(t), X(t, v)
)

indicates our intention to construct V as a map from R into
some function space living on the v-interval [−1, 1]. Eqn (2.1) can be written as
follows

(2.2)

Ut = LU +
ε2

ν2
M(U) ,

U(t, v) =
(

x(t), ξ(t), X(t, v)
)

, v ∈ [−1, 1] ,

where

L =





0 1 0
− 2

ν2 0 1
ν2 δ1 + 1

ν2 δ−1

0 0 ∂v





M(U) =
(

0, h(x)− µ
{

g(x− δ−1X(v))− g(δ1X(v)− x)
}

, 0
)

and δ±1 be the difference operators, defined by δ±1X(v) = X(±1). We introduce
the Banach spaces H and D for U(v) =

(

x, ξ, X(v)
)

H = R
2 × C[−1, 1] ,

D =
{

U ∈ R
2 × C1[−1, 1] | X(0) = x

}

with the usual maximum norms. Then L ∈ L(D, H) and M ∈ C1(D, D). We
consider (2.2) on D. The spectrum σ(L) is given by the explicit solution of the
problem (2.2) with ε = 0:

U(t, v) = (x, ξ, X(v))eλt

where λ is given by the roots of characteristic equation:

N(λ) = λ2 +
2

ν2
(1− coshλ) = 0 .

There are infinitely many isolated eigenvalues λ ∈ C. We are interested in those
eigenvalues λ, which define the center manifold of the problem (2.2) at <λ = 0.
Clearly σ(L) is invariant under λ → λ̄ and λ → −λ. The central part σ0(L) =
σ(L) ∩ ıR is determined by the equation

(2.3) q2 +
2

ν2
(cos q − 1) = 0 , q ∈ R .

The resolvent equation

(λI − L)U = F , λ ∈ C , U ∈ D

has to be solvabled for any given F ∈ H. When λ is not in the spectrum of
the operator L, the inhomogeneous problem can be solved. The eigenvalues λ,
defined by the roots of the characteristic equation, appear as poled in the solution
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of the resolvent equation. The center manifold reductions follow from the Laurent
expansion of the solution of resolvent equation near the eigenvalues λ with <λ = 0.

The basic properties of σ(L) are given in Lemma 1 of [6] and we refer the reader
to that paper for more details. In this paper, we assume that ν1 < ν < 1 where
ν = ν1 is the first value from the left of 1 for which the equations

λ2 +
2

ν2
(cosλ− 1) = 0, λ− 1

ν2
sin λ = 0

have a common nonzero solution λ 6= 0. Then equation N(ıq) = 0 has the double
root 0 and simple roots ±q. Hence we have σ0(L) = {0,±ıq}.

3. Center manifold reductions

The linear operator on the 4th-dimensional central subspace Hc has the form

Lc = L/Hc =









0 1 0 0
0 0 0 0
0 0 0 q
0 0 −q 0









in the basis (ξ1, ξ2, ξ3, ξ4) defined by

ξ1 = (1, 0, 1) , ξ2 = (0, 1, v)

ξ3 = (1, 0, cos qv) , ξ4 = (0, q, sin qv)

and which satisfies Lξ1 = 0, Lξ2 = ξ1, Lξ3 = −qξ4, Lξ4 = qξ3.
The projection Pc : H→ Hc is given by

Pc(U) = P1(U)ξ1 + P2(U)ξ2 + P3(U)ξ3 + P4(U)ξ4 ,

where

P1(U) =
ν2

ν2 − 1
x− 1

ν2 − 1

1
∫

0

(1− s)
[

X(s) + X(−s)
]

ds ,

P2(U) =
ν2

ν2 − 1
ξ +

1

ν2 − 1

1
∫

0

[

X(−s)−X(s)
]

ds ,

P3(U) =
(

ν2qx−
1

∫

0

sin q(1− s)
[

X(s) + X(−s)
]

ds
)

/
(

qν2 − sin q
)

,

P4(U) =
(

ν2ξ +

1
∫

0

cos q(1− s)
[

X(−s)−X(s)
]

ds
)

/
(

qν2 − sin q
)

.

These projections are derived as the residues of the inverse (λI−L)−1 at λ = 0, ±ıq,
respectively, of the resolvent operator [7].

Condition (A1) implies that M is globally Lipschitz. So we can apply the
procedure of a center manifold method [7] to get for ε, µ small the reduced equation
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of (2.2) over Hc given by

(3.1)
u̇c = Lcuc +

ε2

ν2
PcM

(

uc + ε2Ψε,µ(uc)
)

= Lcuc +
ε2

ν2
Pc(M(uc)) + O(ε4) ,

where uc = u1ξ1 + u2ξ2 + u3ξ3 + u4ξ4 and Ψε,µ is the graph map of the center
manifold. Then (3.1) has the form

u̇1 = u2, u̇2 =
ε2

ν2 − 1
ĥ(u1, u2, u3, u4, ε

2, µ)

u̇3 = qu4, u̇4 = −qu3 +
ε2

qν2 − sin q
ĥ(u1, u2, u3, u4, ε

2, µ) ,

for a C1-function ĥ. Let us consider

x(t) = x1(t) = u1(t/ε) , x2(t) = u2(t/ε)/ε ,

y(t) = y1(t) = u3(t/ε) , y2(t) = u4(t/ε) .

Then (3.1) has the form

ẋ1 = x2, ẋ2 =
1

ν2 − 1
ĥ(x1, εx2, y1, y2, ε

2, µ)

ẏ1 =
q

ε
y2, ẏ2 = −q

ε
y1 +

ε

qν2 − sin q
ĥ(x1, εx2, y1, y2, ε

2, µ) ,

which gives

(3.2)

ẍ =
1

1− ν2
f(x, εẋ, y, εẏ/q, ε, µ) ,

ε2ÿ + q2y =
ε2q

sin q − ν2q
f(x, εẋ, y, εẏ/q, ε, µ) ,

where f(x1, x2, y1, y2, ε, µ) = −h(x1 + y1) + O(ε2 + |µ|). For ε = µ = 0 and y = 0,
the limit equation of (3.2) has the form

(3.3) (1− ν2)ẍ− h(x) = 0

which is precisely the travelling wave equation of the PDE (1.3) with α = 0 shifted

by u←→ u−π. Equation (3.3) has a heteroclinic solution x(t) = φ(t/
√

1− ν2) for
φ(t) = Φ(t)− π.

We consider the symmetry S(U) =
(

x,−ξ, X(−v)
)

on H. Then (2.2) is re-
versible with respect to S, i.e. S ◦ L = −L ◦ S, M ◦ S = −S ◦M . Moreover, we
have Pc ◦ S = S ◦ Pc and Sξ1 = ξ1, Sξ2 = −ξ2, Sξ3 = ξ3, Sξ4 = −ξ4. Hence

Sc = S/Hc =









1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1









.

Since Sc is unitary, the map Ψε,µ can be chosen [6] in such a way that S ◦Ψε,µ =
Ψε,µ ◦ Sc. This implies

LcScuc +
ε2

ν2
PcM

(

Scuc + ε2Ψε,µ(Scuc)
)

= −Sc

(

Lcuc +
ε2

ν2
PcM

(

uc + ε2Ψε,µ(uc)
)

)

.
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Hence (3.1) is reversible with respect to Sc. Moreover, Sc has in the coordinates
(x1, x2, y1, y2) on Hc the form Sc(x1, x2, y1, y2) = (x1,−x2, y1,−y2). Consequently
we get for (3.2):

(B1) f(x1,−x2, y1,−y2, ε, µ) = f(x1, x2, y1, y2, ε, µ).

Furthermore, we consider the symmetry S̃(U) = −U on H. Then (2.2) is

symmetric with respect to S̃, i.e. S̃ ◦ L = L ◦ S̃, M ◦ S̃ = S̃ ◦M . Moreover, we
have Pc ◦ S̃ = S̃ ◦ Pc. Consequently we get for (3.2):

(B2) f(−x1,−x2,−y1,−y2, ε, µ) = −f(x1, x2, y1, y2, ε, µ).

Finally, we consider the shift S̄(U) = U + 2πξ1 on H. Then L = L ◦ S̄,
M ◦ S̄ = M , Pc ◦ S̄ = S̄ ◦ Pc. Hence we get S̄Hc = Hc and in the coordinates
(x1, , x2, y1, y2) on Hc we have S̄c(x1, x2, y1, y2) = (x1+2π, x2, y1, y2) for S̄c = S̄/Hc.
Consequently we get for (3.2):

(B3) f(x1 + 2π, x2, y1, y2, ε, µ) = f(x1, x2, y1, y2, ε, µ).

Summarizing we see that the reduced o.d.eqn (3.2) satisfies properties (B1-B3).

4. Bifurcation Results

Motivated by properties (B1-3), we study in this section singularly perturbed
systems of the form

(4.1)
ẍ + h(x) = f1(x, ẋ, y, εẏ, ε) ,

ε2ÿ + y = ε2g1(x, ẋ, y, εẏ, ε) ,

where ε > 0 is a small parameter and we assume the following assumptions

(C1) f1, g1 ∈ C1, f1(x1, x2, 0, 0, 0) = 0.

(C2) f1(x1,−x2, y1,−y2, ε) = f1(x1, x2, y1, y2, ε) = −f1(−x1, x2,−y1, y2, ε) =
f1(x1 +2π, x2, y1, y2, ε) and g1(x1,−x2, y1,−y2, ε) = g1(x1, x2, y1, y2, ε) =
−g1(−x1, x2,−y1, y2, ε) = g1(x1 + 2π, x2, y1, y2, ε).

We note that (A3) implies the next property

(C3) h(−π) = h(π) = 0, h′(−π) = h′(π) = −a2 < 0 and φ(t) = Φ(t) − π
is a heteroclinic solution of ẍ + h(x) = 0 such that Φ(−t) = −Φ(t) and
Φ(t)→ π as t→ +∞.

We studied in [4] a similar problem when equation ẍ+h(x) = 0 had a homoclinic
solution.

First we are looking for periodic solutions of (4.1) near a heteroclinic loop
(φ(t), 0) ∪ (φ(−t), 0). For this reason, we make the change of variables

x(t) = φ(t) + ε1/4u(t), y(t) =
√

εv(t) ,

and we get

(4.2)

ε2v̈ + v = ε3/2g1(φ + ε1/4u, φ̇ + ε1/4u̇,
√

εv, ε3/2v̇, ε)

ü + h′(φ)u = − 1

ε1/4

{

h(φ + ε1/4u)− h(φ)− h′(φ)ε1/4u
}

+
1

ε1/4
f1(φ + ε1/4u, φ̇ + ε1/4u̇,

√
εv, ε3/2v̇, ε) .
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We are looking for solutions of (4.1) satisfying x(0) = ẋ(T ) = 0, y(0) = ẏ(T ) = 0.
This gives

(4.3)
u(0) = 0, u̇(T ) = −φ̇(T )/ε1/4

v(0) = 0, v̇(T ) = 0 .

The next result deals with this problem.

Theorem 4.1. For any k0 ∈ N there is an ε0 > 0 such that for any 0 < ε < ε0

and T = ε
(

k[ε−3/2]π + τ
)

with k ∈ N, k ≤ k0, τ ∈ [−π/3, π/3], system (4.1) has a

4T -periodic solution (x(t), y(t)) near (φ(t), 0), −T ≤ t ≤ T such that x, y are odd

functions and x(t + 2T ) = −x(t), y(t + 2T ) = −y(t). Here [ε−3/2] is the integer

part of ε−3/2.

Proof. First of all, by using Lemmas 7.1-7.2 from Appendix and the approach
as in the first part of the proof of Theorem 3.1 in [4], we see that for any k0 ∈ N

there is an ε0 > 0 such that for any 0 < ε < ε0 and T = ε
(

k[ε−3/2]π+τ
)

with k ∈ N,
k ≤ k0, τ ∈ [−π/3, π/3], problem (4.2)-(4.3) has a solution on the interval [0, T ].
This gives a solution of (4.1) near (φ(t), 0), 0 ≤ t ≤ T satisfying x(0) = ẋ(T ) = 0
and y(0) = ẏ(T ) = 0. We extend these functions as follows

x(t) =















x(t) for t ∈ [0, T ]
x(2T − t) for t ∈ [T, 2T ]
−x(t− 2T ) for t ∈ [2T, 3T ]
−x(4T − t) for t ∈ [3T, 4T ] ,

and

y(t) =















y(t) for t ∈ [0, T ]
y(2T − t) for t ∈ [T, 2T ]
−y(t− 2T ) for t ∈ [2T, 3T ]
−y(4T − t) for t ∈ [3T, 4T ] .

We easily check that these are the desired 4T -periodic solutions stated in Theorem
4.1. �

Now we are looking for a solution near a heteroclinic solution (φ(t), 0). For this
reason we consider the conditions x(0) = 0, x(T ) = π and y(0) = y(T ) = 0. The
above change of variables gives

(4.4)
u(0) = 0, u(T ) = (π − φ(T ))/ε1/4

v(0) = v(T ) = 0 .

So we consider the problem (4.2) subject to (4.4). The next result deals with this
problem.

Theorem 4.2. For any k0 ∈ N there is an ε0 > 0 such that for any 0 < ε < ε0

and T = ε
(

k[ε−3/2]π + τ
)

with k ∈ N, k ≤ k0, τ ∈ [π/6, π/2], system (4.1) has

a solution (x(t), y(t)) on R near (φ(t), 0), −T ≤ t ≤ T such that x, y are odd

functions and x(t + 2T ) = x(t) + 2π, y(t + 2T ) = y(t).

Proof. Again, by using Lemmas 7.3-7.4 from Appendix and the approach as
in the first part of the proof of Theorem 3.1 in [4], we see that for any k0 ∈ N there
is an ε0 > 0 such that for any 0 < ε < ε0 and T = ε

(

k[ε−3/2]π + τ
)

with k ∈ N,
k ≤ k0, τ ∈ [π/6, π/2], problem (4.2) with (4.4) has a solution on the interval [0, T ].
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This gives a solution of (4.1) near (φ(t), 0), 0 ≤ t ≤ T satisfying x(0) = 0, x(T ) = π
and y(0) = y(T ) = 0. We extend these functions as follows

x(t) =

{

x(t) for t ∈ [0, T ]
2π − x(2T − t) for t ∈ [T, 2T ] ,

and

y(t) =

{

y(t) for t ∈ [0, T ]
−y(2T − t) for t ∈ [T, 2T ] .

We easily check that these are the desired solutions stated in Theorem 4.2. �

Remark 4.3. We note that the derived 4T -periodic solutions xT,ε and yT,ε in
Theorem 4.1 of equation (4.1) are near to (φ(t), 0) in the sense that xT,ε(t)−φ(t) =

O(ε1/4), ẋT,ε(t)− φ̇(t) = O(ε1/4), yT,ε(t) = O(
√

ε), εẏT,ε(t) = O(
√

ε) uniformly for
−T ≤ t ≤ T and T satisfying the assumption of Theorem 4.1 for a fixed k0. These
estimates are consistent with the form of (4.1). Similarly for Theorem 4.2.

5. Travelling Waves

By applying Theorems 4.1 and 4.2 to (3.2) we get the following result:

Theorem 5.1. For any k0 ∈ N there is an ε0 > 0 such that for any 0 < ε < ε0,

|µ| ≤ ε0ε
1/4 and T = ε

(

k[ε−3/2]π + τ
)

with k ∈ N, k ≤ k0, τ ∈ [π/3, π/6],
system (3.2) has a 4T -periodic solution (xT,ε,1(t), yT,ε,1(t)) near (φ(t), 0), −T ≤
t ≤ T such that xT,ε,1, yT,ε,1 are odd functions and xT,ε,1(t + 2T ) = −xT,ε,1(t),
yT,ε,1(t + 2T ) = −yT,ε,1(t). Moreover, under these assumptions, system (3.2) has a

solution (xT,ε,2(t), yT,ε,2(t)) on R near (φ(t), 0), −T ≤ t ≤ T such that xT,ε,2, yT,ε,2

are odd functions and xT,ε,2(t + 2T ) = xT,ε,2(t) + 2π, yT,ε,2(t + 2T ) = yT,ε,2(t).

The solutions of Theorem 5.1 have the forms

uT,ε
c,i (t) = xT,ε,i(εt)ξ1 + εẋT,ε,i(εt)ξ2 + yT,ε,i(εt)ξ3 + ε(ẏT,ε,i(εt)/q)ξ4, i = 1, 2

in (3.1). Furthermore, we have U(t, ·) = uc(t) + ε2Ψε,µ(uc(t)) = uc(t) + O(ε2)
for (2.2) on the center manifold considered in (3.1). We also note that the x(t)-
coordinate of U(t, v) in (2.2) satisfies (2.1). Consequently, if xT,ε,i(εt), i = 1, 2 are

the x-coordinates of uT,ε
c,i (t) + ε2Ψε,µ(uT,ε

c,i (t)), then the travelling wave solutions of

(1.2) corresponding to xT,ε,i(t), yT,ε,i(t) have the forms

(5.1)
uT,ε,i

n (t) = xT,ε,i
(

ε
(

n− ν

ε
t
))

= xT,ε,i(εn− νt) =

xT,ε,i(εn− νt) + yT,ε,i(εn− νt) + O(ε2) .

Clearly uT,ε,1
n (t) is T/ν-periodic in t with the velocity ν while uT,ε,2

n (t) is T/ν-
periodically shifted (librational) in t with the velocity ν. Then Remark 4.3 gives

uT,ε,i
n (t) = φ

( εn− νt√
1− ν2

)

+ O(ε1/4)

uniformly for −T ≤ εn− νt ≤ T and T satisfying the assumptions of Theorem 5.1
for a fixed k0. We shall call travelling wave solution uT,ε,1

n (t) + π, n ∈ Z of (1.2) as
rotational while uT,ε,2

n (t) + π, n ∈ Z as librational.
Finally, we note that we get (1.2) with µ = 0 from (1.3) by putting

un(t) = u(εn, t) ,

uxx(εn, t) ∼ u(ε(n + 1), t)− 2u(εn, t) + u(ε(n− 1), t)

ε2
.
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Summarizing we get the main analytical result of this paper.

Theorem 5.2. If h, g satisfy the assumptions (A1 − 2) then travelling wave

solution u(x, t) = Φ
(

x−νt√
1−ν2

)

for 0 < ν1 < ν < 1 of (1.3) with α = 0 can be

approximated by the both rotational and librational travelling wave solutions of (1.2)
with α = 0 with very large periods and with the velocity ν for µ = o(ε1/4) small.

We note that travelling wave solution (5.1) of (1.8) derived in this paper have
tails of periodic waves of small amplitude caused by the y-components in (5.1). This
result is consistent with the numerical result of J.C. Eilbeck for (1.6) mentioned in
Introduction.

For 0 < ν < ν1, we could still use the above method. We know from [6] that
there is a decreasing sequence {νi}∞i=1 ⊂ (0, 1) with νi → 0 as i → ∞ and for any
νi+1 < ν < νi the linear operator L has the double non semi-simple eigenvalue at
0, and 2i + 1 pairs of simple imaginary eigenvalues. So after the center manifold
reduction, we should get a system like (3.2) and we could generalize the bifurcation
results of Section 4 for such systems. We do not carry out those computations in
this paper.

6. Generalized potentials

We note in this section that our method can be used for broader class of func-
tions h than above. For instance, let us consider P.D.E.

(6.1) utt − uxx + hα(u) = 0

for

hα(u) =
(1 + 2α) sin u

(1 + α(1− cosu))2

and α ≥ 0. We note that hα(u−π) 6= −hα(u) for α > 0, so condition (A1) does not
hold. But still like in (1.7), we take its spatial discretization with a Hamiltonian
perturbation of the form

(6.2)
ün −

1

ε2
(un+1 − 2un + un−1) + hα(un)

+µ
{

sin(un − un+1) + sin(un − un−1)
}

= 0 .

Now we make a change of variables u ←→ u − π and un ←→ un − π in (6.1) and
(6.2), respectively, to get

(6.3) utt − uxx + gα(u) = 0

and

(6.4)
ün −

1

ε2
(un+1 − 2un + un−1) + gα(un)

+µ
{

sin(un − un+1) + sin(un − un−1)
}

= 0 ,

respectively, for

(6.5) gα(u) = − (1 + 2α) sin u

(1 + α(1 + cosu))2
.
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Clearly gα ∈ C1(R) is odd and 2π-periodic. Hence we can carry out the center man-
ifold reduction of Section 3 for (6.2) to get a system like (4.1) with the nonsingular
unperturbed part

(1− ν2)ẍ− gα(x) = 0 .

We have gα(−π) = gα(π) = 0 and g′
α(−π) = g′

α(π) = 1 + 2α > 0. Hence (−π, 0)
and (π, 0) are hyperbolic equilibria of

(6.6) ẋ = y, ẏ = gα(x) .

It is not difficult to observe that the upper odd heteroclinic solution φα of (6.6)
connecting (−π, 0) and (π, 0) is determined by the equation

φ̇α = 2
√

1 + 2α
cos(φα/2)

√

1 + 2α cos2(φα/2)
,

φα(0) = 0 ,

which is equivalent to the implicit equation

√
2α arcsin

√
2α sin(φα(t)/2)√

1 + 2α
+ arctanh

sin(φα(t)/2)
√

1 + 2α cos2(φα(t)/2)
=
√

1 + 2αt .

Summarizing, we can apply the results of the above sections to (6.2) uniformly for
α ≥ 0 from bounded intervals. Moreover, we see that our method can be used when
instead of the condition h(x − π) = −h(x) we consider h(−x − π) = −h(x − π).
But if h is odd and 2π-periodic then h(−x− π) = h(−x + π) = −h(x− π). Hence
the condition h(x− π) = −h(x) is superfluous in (A1), so it can be omitted.

7. Appendix: Linearization around heteroclinic connection

We take the linearization of the equation

(7.1) ẍ + h(x) = 0

along φ(t) = Φ(t)− π and consider the variational equation

(7.2) ü + h′(φ(t))u = z(t), 0 ≤ t ≤ T .

We note that φ̇(t) is even while φ̈(t) is odd and φ(t) satisfies (7.1). Since h′(−π) =

h′(π) = −a2 < 0, a > 0, we have φ̇(t), φ̈(t) ∼ e−at as t→ +∞, i.e. it holds that

φ̇(t)/e−at → k1 6= 0 and φ̈(t)/e−at → k2 6= 0 as t→ +∞ .

The homogeneous eqn (7.2) with z = 0 has solutions wi(t), i = 1, 2 such that:

. w1 is even, w1(0) = 1, ẇ1(0) = 0, w1(t), ẇ1(t) ∼ e−at as t→ +∞,

. w2 is odd, w2(0) = 0, ẇ2(0) = 1, w2(t), ẇ2(t) ∼ eat as t→ +∞.

First we consider (7.2) with the boundary value conditions

(7.3) u(0) = 0, u̇(T ) = b .

The general solution of (7.2) has the form

u(t) = c1w1(t) + c2w2(t) + z1(t) ,

z1(t) =

t
∫

0

[

w2(t)w1(s)− w1(t)w2(s)
]

z(s) ds .
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The condition (7.3) gives c1 = 0 and

c2 = − ż1(T )

ẇ2(T )
+

b

ẇ2(T )
.

Hence, we get

u(t) = L1
T (z, b) ≡ b

w2(t)

ẇ2(T )
−

T
∫

t

w2(t)w1(s)z(s) ds

+
w2(t)

ẇ2(T )

T
∫

0

ẇ1(T )w2(s)z(s) ds−
t

∫

0

w1(t)w2(s)z(s) ds .

Then

u̇(t) = b
ẇ2(t)

ẇ2(T )
−

T
∫

t

ẇ2(t)w1(s)z(s) ds

+
ẇ2(t)

ẇ2(T )

T
∫

0

ẇ1(T )w2(s)z(s) ds−
t

∫

0

ẇ1(t)w2(s)z(s) ds .

By using the above asymptotic properties of w1 and w2, there is a constant C1 > 0
such that for any t, s ∈ [0, T ] and T > 0 large, we get

|w2(t)/ẇ2(T )| ≤ C1e
a(t−T ) , |ẇ2(t)/ẇ2(T )| ≤ C1e

a(t−T ) ,

|w2(t)w1(s)| ≤ C1e
a(t−s) , |ẇ2(t)w1(s)| ≤ C1e

a(t−s)

|w2(t)ẇ1(T )w2(s)/ẇ2(T )| ≤ C1e
a(t+s−2T ) ,

|ẇ2(t)ẇ1(T )w2(s)/ẇ2(T )| ≤ C1e
a(t+s−2T ) ,

|w1(t)w2(s)| ≤ C1e
a(s−t) , |ẇ1(t)w2(s)| ≤ C1e

a(s−t) .

These estimates imply the existence of a constant c > 0 such that

(7.4) ||u||+ ||u̇|| ≤ c(|b|+ ||z||) ,

where ||x|| = max[0,T ] |x(t)|. Summarizing, we get the next result.

Lemma 7.1. Problem (7.2)-(7.3) has a unique solution u = L1
T (z, b) satisfying

(7.4).

Now, we consider the problem

(7.5)
ε2v̈ + v = εz(t), 0 ≤ t ≤ T ,

v(0) = v̇(T ) = 0 .

We can immediately see that the solution of eqn (7.5) is given by

v(t) = L1
ε,T (z) ≡ − sin(t/ε)

cos(T/ε)

T
∫

0

cos
T − s

ε
z(s) ds +

t
∫

0

sin
t− s

ε
z(s) ds .

If T satisfies

(7.6)
∣

∣

∣

T

ε
− kπ

∣

∣

∣ ≤ π/3, k ∈ N
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then 1 ≥ | cos(T/ε)| ≥ 1/2, and we obtain the estimate

(7.7) ||v||+ ||εv̇|| ≤ 6T ||z|| .
Summarizing, we get the next result.

Lemma 7.2. If condition (7.6) holds then problem (7.5) has a unique solution

v = L1
ε,T (z) satisfying (7.7).

Next, we consider (7.2) with the boundary conditions

(7.8) u(0) = 0, u(T ) = b .

By substituting (7.8) into the above general solution of (7.2), we get c1 = 0 and

c2 = b
w2(T ) −

z1(T )
w2(T ) . Hence, we get

u(t) = L2
T (z, b) ≡ b

w2(t)

w2(T )
−

T
∫

t

w2(t)w1(s)z(s) ds

+
w2(t)

w2(T )

T
∫

0

w1(T )w2(s)z(s) ds−
t

∫

0

w1(t)w2(s)z(s) ds .

Then

u̇(t) = b
ẇ2(t)

w2(T )
−

T
∫

t

ẇ2(t)w1(s)z(s) ds

+
ẇ2(t)

w2(T )

T
∫

0

w1(T )w2(s)z(s) ds−
t

∫

0

ẇ1(t)w2(s)z(s) ds .

Again by using the above asymptotic properties of w1 and w2, there is a constant
C2 > 0 such that for any t, s ∈ [0, T ] and T > 0 large, we get

|w2(t)/w2(T )| ≤ C2e
a(t−T ) , |ẇ2(t)/w2(T )| ≤ C2e

a(t−T ) ,

|w2(t)w1(s)| ≤ C2e
a(t−s) , |ẇ2(t)w1(s)| ≤ C2e

a(t−s)

|w2(t)w1(T )w2(s)/w2(T )| ≤ C2e
a(t+s−2T ) ,

|ẇ2(t)w1(T )w2(s)/w2(T )| ≤ C2e
a(t+s−2T ) ,

|w1(t)w2(s)| ≤ C2e
a(s−t) , |ẇ1(t)w2(s)| ≤ C2e

a(s−t) .

These estimates imply the existence of a constant c̄ > 0 such that

(7.9) ||u||+ ||u̇|| ≤ c̄(|b|+ ||z||) .

Summarizing, we get the next result.

Lemma 7.3. Problem (7.2)-(7.8) has a unique solution u = L2
T (z, b) satisfying

(7.9).

Finally, we consider the problem

(7.10)
ε2v̈ + v = εz(t), 0 ≤ t ≤ T ,

v(0) = v(T ) = 0 .
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We can immediately see that the solution of eqn (7.10) is given by

v(t) = L2
ε,T (z) ≡ − sin(t/ε)

sin(T/ε)

T
∫

0

sin
T − s

ε
z(s) ds +

t
∫

0

sin
t− s

ε
z(s) ds .

If T satisfies

(7.11) π/2 ≥
∣

∣

∣

T

ε
− kπ

∣

∣

∣ ≥ π/6, k ∈ N

then 1 ≥ | sin(T/ε)| ≥ 1/2, and we obtain the estimate

(7.12) ||v||+ ||εv̇|| ≤ 6T ||z|| .
Summarizing, we get the next result.

Lemma 7.4. If condition (7.11) holds then problem (7.10) has a unique solution

v = L2
ε,T (z) satisfying (7.12).
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