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Equations With a Periodic Potential.
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Abstract. We study the linearized stability properties of periodic solutions
to the nonlinear Schrödinger (NLS) equation with a periodic potential. We
exploit the symmetries of the problem, in particular the Hamiltonian structure
and the U(1) symmetry, to develop a simple sufficient condition that guarantees
the existence of a modulational instability spectrum along the imaginary axis.

In the case of small amplitude solutions that bifurcate from the band edges of
the linear problem this condition becomes especially simple. We find that the
small amplitude solutions corresponding to the band edges alternate stability,
with the first band edge being modulationally unstable in the focusing case, the
second band edge being modulationally unstable in the defocusing case, and
so on. This small amplitude result has a nice physical interpretation in terms
of the effective mass of a particle in the periodic potential. We also consider,
in somewhat less detail, some sideband instabilities in the small amplitude
limit. We find that, depending on the Krein signature of the collision, these
instabilities can be of one of two types. Finally we illustrate these results in
the case where the potential V (x) is an elliptic function, where many of the
relevant calculations can be done explicitly.
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1. Introduction

In this paper we consider the stability of standing wave solutions to the NLS
equation with an external potential:

(1.1) iψt = −1

2
ψxx ± ε|ψ|2ψ + V (x)ψ,

where the potential V (x) has period 1. Such a model arises in a number of physical
contexts, most notably as a simplified model for Bose-Einstein condensates in a
periodic traps. In this context the presence or absence of a dynamical instability is
believed to have important physical consequences[26].

We assume that we have a standing wave solution ψ(x, t, ε) = exp(−iω(ε)t)φ(x, ε),
where φ(x, ε) is real valued and either periodic, φ(x + 1, ε) = φ(x, ε), or antiperi-
odic, φ(x + 1, ε) = −φ(x, ε). We can assume that the standing wave has fixed
L2 norm, since this amounts to rescaling ε. For certain perturbative results we
will also assume that the standing wave bifurcates continuously from the Floquet-
Bloch eigenfunctions in the usual way. In other words we assume that φ(x, 0) is an
eigenfunction of the periodic Schrödinger operator

(1.2) µφ = ω(0)φ = −1

2
φxx + V (x)φ

corresponding to a band edge, and φ(x, ε) ∈ C2 ([0, 1] × (−δ, δ)) . Such a result
follows from standard variational arguments: see, for instance, the work of Crandall
and Rabinowitz[5] and Rabinowitz[21].

This problem differs from the solitary wave stability problem because the spec-
trum of the linearized operator consists of bands of absolutely continuous spec-
trum. As a result of this index results based on counting the dimensions of the
negative subspaces of L±, like those of Jones[10], Grillakis[8], or Grillakis, Shatah
and Strauss[9] are no longer applicable in a straightforward way. We shall see that
in many cases the above standing wave can be shown to be linearly unstable for
arbitrarily small amplitudes. This stands in marked contrast to the problem on the
whole line, where Rose and Weinstein[22] have shown that solutions which bifurcate
from the linear solutions are stable for sufficiently small amplitudes.

We find that the combination of the Hamiltonian structure and the U(1) sym-
metry dramatically simplifies the structure and possible bifurcations of the spec-
trum of the linearized operator. We find a simple sufficient condition on the L+

operator which guarantees the existence of a modulational instability. In the case of
weakly nonlinear standing waves, when ε is small, we apply a perturbation argument
to show that the lower band edges are modulationally unstable in the focusing case,
while the upper band edges are modulationally unstable in the defocusing case.

We also study, in somewhat less detail, some bifurcations which occur for non-
zero values of µ when a certain eigenvalue degeneracy condition is met. We find
that this bifurcation generically leads to the emergence of complex eigenvalues, and
thus instability. Depending on the Krein signature of the unperturbed eigenvalues
this may or may not lead to the opening of a gap along the real axis.

There have been a number of papers in the literature which have used the
Hamiltonian structure of the linearized operator to garner information on the struc-
ture of the linearized spectrum and the possible instabilities of standing waves. We
will try to mention a few which are most closely related to the calculation pre-
sented here. One of the earliest such papers that we are aware of is the work of
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MacKay and Saffman[14, 15] on the stability of water waves. MacKay and Saffman
made extensive use of the Hamiltonian structure, primarily the Krein sign, in or-
der to classify the possible bifurcations of the linearized spectrum for water waves.
More recently Carter and Segur[4] carried out a related study on the stability of
cnoidal wave solutions to the two dimensional cubic NLS. Pelinovsky, Sukhurukhov,
and Kivshar[20] have studied the bifurcations and stability of gap solitons for an
NLS type equation with a periodic potential. Sandstede and Yew[23] have stud-
ied the same problem we consider here, the stability of periodic solutions to a
nonlinear Schrodinger equation with a potential, in the limit of long period (the
tight-binding approximation). Finally, Li and McLaughlin[13] and Mityagin[17]
have made a study of the periodic non-selfadjoint Zakharov-Shabat operator, and
Shin has made a study of the spectrum of a non-self-adjoint periodic second order
Schrodinger equations[24].

Throughout this paper we will apply the following notation. U(x) will de-
note the solution operator of the periodic ODE. The matrix M will denote the
monodromy, or period, map U(1). We will have occasion to consider the spectral
properties of the second order operators L± individually. The matrix m will denote
the mondromy matrix of the second order eigenvalue problem associated to L±. For
each of these quantities the dependence on the parameters µ, ε will be generally be
suppressed unless it is necessary for clarity. Similarly K±(µ) will denote the Flo-
quet discriminants of the full stability problem, while k(µ) will denote the Floquet
discriminant of the second order problem associated with L±.

2. Fundamentals of Hamiltonian Floquet Theory

In this section we review some results of Floquet theory for the special case
in which the equations admit a Hamiltonian formulation. For more details see the
text of Yakubovich and Starzhinskii[27].

2.1. The Lyapunov-Poincare theorem. To begin we assume a Floquet
problem of the following form:

Ux = JH(x)U U(0) = I2N×2N(2.1)

H(x+ 1) = H(x) Ht = H(2.2)

where, for simplicity, we have set the period to one. Here I2N×2N is the 2N × 2N
identity matrix and J is the usual skew-symmetric matrix

J =

(

0 − IN

IN 0

)

.(2.3)

The monodromy matrix M is defined to be the period map M = U(1). It is easy
to see that U(x), and thus M, satisfies the relation

(2.4) Ut JU = J,

so that U(x) is a symplectic1 matrix. From this it follows that det(U) = 1, and
more generally that the characteristic polynomial P (λ) = det(U − λ I) satisfies

det(U − λ I) = det(Ut − λ I) = det(J(Ut − λ I)Jt)(2.5)

= det(U−1 − λ I) = λ2N det(U−1) det(U − λ−1 I)(2.6)

= λ2NP (λ−1)(2.7)

1Sometimes called J-orthogonal.
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thus the polynomial is palindromic - if P (λ) =
∑2N

0 ajλ
j then a2N−j = aj . This

result is known as the Lyapunov-Poincare theorem [27].
This symmetry implies that the problem of finding the roots of the 2N th degree

polynomial P (λ) can be reduced to finding the roots of an N th degree polynomial

P̃ (z) by means of the transformation z = λ + λ−1. For the case of the stability
problem for standing wave solutions to the nonlinear Schrodinger equation the
monodromy matrix is 4 × 4 (N = 2) In the case the characteristic polynomial of
the monodromy matrix takes the form

(2.8) P (λ) = 1 + aλ+ bλ2 + aλ3 + λ4 = 0.

Under the conformal map z = λ+ λ−1 the roots of this polynomial are mapped to
the roots of the second degree polynomial

(2.9) P̃ (z) = z2 + az + (b− 2) = 0

with λ = z±
√

z2−4
2 , and the characteristic polynomial admits an explicit factoriza-

tion into two second degree polynomials,

(2.10) P (λ) = (1 −K+λ+ λ2)(1 −K−λ+ λ2)

where the K± are the following algebraic functions of a, b:

(2.11) K± =
−a±

√
a2 − 4b+ 8

2
.

The functions K± will be refered to as the Floquet discriminants. Since the confor-
mal mapping z = λ+ 1

λ
takes the unit circle to the real interval [−2, 2] it follows that

the monodromy matrix has two eigenvalues (counted by algebraic multiplicity) on
the unit circle if K+ lies in the real interval [−2, 2], and two more if K− ∈ [−2, 2].

It is convenient to express the K± in terms of the invariants of M. Since
a = −Tr(M), b = − 1

2 Tr(M2) + 1
2 Tr(M)2 the Floquet discriminants are given by

(2.12) K± =
Tr(M) ±

√

−( Tr(M))2 + 2 Tr(M2) + 8

2
This leads to our first observation

Lemma 2.1. The possible (algebraic) multiplicities of the eigenvalues of a 4×4
monodromy matrix are (1, 1, 1, 1) , (1, 1, 2) , (2, 2) and 4. The conditions on the
monodromy matrix M which produce eigenvalues of higher multiplicity are as fol-
lows:

Condition on K± Condition on M Root Multiplicities

K+ = ±2 or K− = ±2 Tr(M2) = ( Tr(M) ± 2))
2

(1,1,2)
Simple Band Edge
K+ = ±2 and K− = ∓2 Tr(M) = 0 (2,2)
Repeated Band Edge Tr(M2) = 4

K+ = K− 6= ±2 2 Tr(M2) = ( Tr(M))2 − 8 (2,2)
‘Accidental’ Degeneracy Tr(M) 6= ±4
K+ = K− = ±2 Tr(M) = ±4 4

Double Band Edge Tr(M2) = 4

Proof. A straightforward calculation from the explicit factorization given in
(2.10). �
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It is worthwhile considering the codimensions of the above possibilities. Since
we have a one parameter family of mondromy matrices, parameterized by the spec-
tral parameter µ, (here we are considering ε as fixed) we should generically expect
to see possibilities 1 and 3, which require only one condition, but not possibilities
2 and 4, which require two independent conditions be satisfied. We shall see that
possibility 4 always happens at µ = 0 for ε = 0 due to symmetries. It is this degen-
eracy which forces a modulational instability in the small amplitude case. It is this
situation that we will consider in most detail. We will also consider possibility 3,
in somewhat less detail. We will not consider possibility 2, since it is non-generic,
nor possibility 1, since it is not very interesting: one expects that the band edges
will typically move under perturbation.

2.2. Krein Signature. There is an extensive theory of the structural stability
of symplectic matrices due to Krein and collaborators. We shall give only a brief
summary of this theory here. It is clear that if a symplectic matrix M has k
distinct eigenvalues on the unit circle then it follows from continuity that a nearby
symplectic matrix M̃ must also have k distinct eigenvalues on the unit circle. Thus
eigenvalues of symplectic matrices can only leave the unit circle via collisions. What
is less clear is that only certain collisions can lead to pairs of eigenvalues leaving the
unit circle. The quantity which distinguishes such “dangerous” collisions is that of
the Krein signature. The Krein sign η of an eigenvector ~v of a symplectic matrix
M is defined to be

(2.13) η = sgn(<~v J~v>),

while the signature (p, q) of an r−dimensional eigenspace is defined as follows: p
(resp. q) is the number of linearly independent eigenvectors with positive (resp.
negative) Krein sign.

The fundamental stability result for symplectic matrices says that a symplectic
matrix is structurally stable (i.e. the number of eigenvalues on the unit circle does
not change under perturbation 2) if all eigenspaces corresponding to eigenvalues on
the unit circle have a definite Krein signature. Further this result is tight: if an
eigenspace is of indefinite Krein signature then a generic perturbation will cause
roots to move off of the unit circle. The first result is known as Krein’s theorem,
while the second is known as the Krein-Gelfand-Lidskii strong stability theorem.
For precise statements, as well as proof, see Yakubovich and Starzhinskii[27].

2.3. Hill’s Equation. In this section we state some properties of the Hill’s
equation

(2.14) Hψ = −ψxx +Q(x)ψ = µψ

that will be useful in the sequel. We will also define a quantity that will be useful
in the analysis to follow.

In the remainder of this section m is the (2× 2) monodromy matrix associated
to the Hill’s equation (2.14):

(2.15) m =

(

ψ1(1, µ) ψ2(1, µ)
ψ′

1(1, µ) ψ′
2(1, µ)

)

,

2Here perturbations are always assumed to preserve the symplectic nature of the matrix.
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with k(µ) = Tr(m), and j is the standard skew-symmetric form

(2.16) j =

(

0 −1
1 0

)

.

We begin with some well-known facts. The spectrum of the above eigenvalue
problem consists of the union of the set of intervals spec(H) = [µ0, µ1

′]∪ [µ2
′, µ1]∪

[µ2, µ3
′] . . . , where k(µi) = 2 and k(µ′

i) = −2. The points {µi}, {µ′
i} are referred to

as the periodic and antiperiodic eigenvalues respectively, and together they comprise
the band edges. It is obviously true from continuity that µ2i < µ2i+1

′ and µ′
2i <

µ2i−1, so the bands are always nontrivial. It can happen that µ′
2i−1 = µ′

2i, or
µ2i−1 = µ2i, corresponding to a closed gap. This is commonly referred to as a
double point. In the interior of each band there are two quasi-periodic solutions,
while at the band edge there is one periodic or antiperiodic solution and one solution
which grows linearly, unless the band edge is a double point, in which case there are
two periodic or antiperiodic solutions. The derivative of the Floquet discriminant
is non-zero in the bands, has exactly one zero in each gap, and is nonzero on the
band edges unless the band edge is a double point, in which case the derivative
of Floquet discriminant has a simple zero. Proofs of these facts can be found in
Magnus and Winkler[16].

In the first lemma we introduce a quantity which will play an important role
in the perturbation analysis. The sign of this quantity will be important in deter-
mining the modulational stability of the standing wave.

Lemma 2.2. Define the quantity σ(µ) as follows:

(2.17) σ(µ) = Tr (jm(µ))

Then the following hold

(1) σ(µ) is non-zero on the interior of each band.
(2) σ(µ) vanishes at a band edge iff the band edge is a double point.
(3) sgn(σ(µ)) = − sgn(k′(µ)) = − sgn( Tr( ∂m

∂µ
)) if µ ∈ spec(H).

Proof. On the interior of a band it holds k2(µ)−4 < 0. If we set η1 = ψ1(1, µ),
η2 = ψ2(1, µ), η′1 = ψ′

1(1, µ), and η′2 = ψ′
2(1, µ), then

(2.18) k2(µ) − 4 = (η1 − η′2)
2 + 4η′1η2,

which implies that η′1η2 ≤ 0. By its definition, σ(µ) = −η′1 + η2 = − sgn(η′1)(|η′1|+
|η2|). But (2.18) implies that η′1 6= 0 and η2 6= 0. Thus it follows that σ(µ) is
nonzero in the interior of each band.

Let a band edge be a double point. It follows that k2(µ)− 4 = 0 and moreover
k′(µ) = 0. Following [16] one can show that

(2.19) k′(µ) = sgn(η′1)(|η′1|
∫

ψ2
2 + |η2|

∫

ψ2
1 ± 2

√

|η′1|
√

|η2|
∫

ψ1ψ2),

where ψ1, ψ2 are the two linearly independent solutions of

(2.20) ψxx + (µ−Q(x))ψ = 0,

that satisfy the initial conditions ψ1(0, µ) = 1, ψ′
1(0, µ) = 0, ψ2(0, µ) = 0, and

ψ′
2(0, µ) = 1. We used again (2.18) and, in particular, the inequality η′1η2 ≤ 0.

By Cauchy-Schwartz it follows that sgn(η′1) = 0, thus η′1 = 0. But then, also
η1 − η′2 = 0, which in turn forces η2 = 0.
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The other implication is proved as follows: σ(µ) = 0 implies 0 = k2(µ) − 4 =
(η1 − η′2)

2 + 4η2
2 , so η2 = η′1 = 0 and η1 − η′2 = 0. But then clearly k′(µ) = 0.

Finally, again in [16] it is shown that if η′1 6= 0 then k′(µ) and η′1 have the same
sign. The result follows, since from the first part of this lemma, σ(µ) and η′1 have
opposite signs. �

This quantity is related to the Krein sign, and actually agrees with the Krein
sign of the eigenvalue of the monodromy matrix in the upper half plane. However
the main utility of this quantity is that it allows one to compute the sign of the
off-diagonal piece of the Jordan normal form at a band edge, as in the lemma below.

Lemma 2.3. At a band edge the monodromy matrix m has the following Jordan
normal form:

(2.21) m = ot

(

±1 σ(µ)
0 ±1

)

o

where o is a proper orthogonal matrix: oot = I, det(o) = +1

Proof. It is known that at a band edge that is not a double point ±1 is an
eigenvalue of algebraic multiplicity two, and geometric multiplicity 1. The Jordan
normal form implies that

(2.22) m = ot

(

±1 K
0 ±1

)

o = otm̃o

where o is orthogonal and can be chosen to have determinant +1. It remains to be
checked that K = σ(µ). One easily observes that j is a rotation and thus commutes
with o. This implies that σ = Tr(jm) = Tr(ojotm̃) = K, so σ is constant on the
connected component of the orthogonal group containing the identity.

�

Remark 2.4. If o is chosen to be on the other connected component of the
orthogonal group j and o anti-commute, and the sign of the σ is reversed. This is
not surprising, since σ represents a sense of rotation of the monodromy matrix, and
thus satisfies a right-hand rule. The value of σ at a band edge, in particular the sign,
will prove important in determining the stability of small amplitude standing wave
solutions. Note that the Krein signature of an eigenvalue of the monodromy matrix
in the upper half-plane is equal to the sign of σ, and thus has the opposite sign from
the derivative of the Floquet discriminant. Thus the sign of this quantity is positive
in the first band, negative in the second band, and generally sign(σ) = (−1)k−1,
where k is the band number.

3. Modulational Instability of Standing Waves

3.1. General Results. We assume that (for ε fixed) we have a solution ψ =
e−iω(ε)tφstand(x, ε) to the NLS equation with a periodic potential

iψt = −1

2
ψxx + ε|ψ|2ψ + V (x)ψ(3.1)

V (x+ 1) = V (x),(3.2)
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where φ is real and either periodic φ(x+1) = φ(x) or anti-periodic φ(x+1) = −φ(x).
The eigenvalue problem governing the linearized stability is given by

L+p = µq(3.3)

L−q = µp(3.4)

where the operators L± are given by

L− = −1

2
∂xx + V (x) + ε|φstand|2(x, ε) − ω(ε)(3.5)

L+ = −1

2
∂xx + V (x) + 3ε|φstand|2(x, ε) − ω(ε)(3.6)

Here we have eliminated the time dependence via a Fourier transform, so that
an instability corresponds to an eigenvalue µ off of the real axis. We note in
passing that all of these results carry over in a straightforward way to a more
general nonlinear Schrodinger equation of the form

iψt = −1

2
ψxx + V (x)ψ + U(x, |ψ|2)ψ

which has L± operators given by

L− = −1

2
∂xx + V (x) + U(x, |φstand|2) − ω(3.7)

L+ = −1

2
∂xx + V (x) + U(x, |φstand|2) + 2D2U(x, |φstand|2) − ω.(3.8)

For ease of discussion we consider only the cubic case, which is physically the most
interesting.

The eigenvalue problem in Eqn (3.6) has a Hamiltonian formulation for real µ.
The Lyapunov-Poincare theorem of the previous section implies that the character-
istic polynomial of the monodromy matrix is palindromic, P (λ) = λ4P (λ−1), for µ
on the real axis. Also note that for arbitrary values of ε the spectrum is symmetric
about the real and imaginary axes, since the eigenvalue problem is invariant under
the transformations µ→ −µ, p→ −p, q → q and µ → µ̄, p→ p̄, q → q̄.

We begin by noting a few simple properties of this eigenvalue problem, and the
associated monodromy matrix. The notation follows that of section 2.1.

Proposition 3.1. The Floquet stability problem for an NLS standing wave has
the following properties:

(1) µ = 0 is a periodic (anti-periodic) eigenvalue.
(2) M(µ) is an entire matrix-valued function of µ, of order 1

2 .
(3) The monodromy matrix M is symplectic for all µ ∈ C.
(4) The Floquet discriminants K±(µ) are analytic functions of µ away from

the branch points where 2 Tr(M2) − Tr(M)2 = 8.
(5) At µ = 0 the characteristic polynomial of the monodromy matrix has the

following special form:

(3.9) P (λ)|µ=0 = 1 − Tr(M)λ+ (2 Tr(M) − 2)λ2 − Tr(M)λ3 + λ4

Proof. That µ = 0 is always an eigenvalue follows from Noether’s theorem and
the phase invariance of NLS. The corresponding eigenvector is p = φstand(x), q =
0. The fact that φstand is periodic (resp. antiperiodic) implies that µ = 0 is
a periodic (resp. antiperiodic) eigenvalue. The fact that M is entire follows from
standard arguments - see for example the text of Sibuya[25]. Note that 2 Tr(M2)−
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Tr(M)2 = 8 is also an entire function of fractional order, and thus must have a
countable number of zeros. The fact that M is symplectic for real µ follows from
the results cited in the previous section. To see that this in fact holds for all µ ∈ C
simply note that J − Mt JM is an entire function that is zero on the real axis,
and thus must be identically zero[1]. From the first part it follows that λ = 1
(resp. λ = −1) is a root of P (λ)|µ=0. A simple division shows that the polynomial
λ− 1 divides the polynomial λ4 + aλ3 + bλ2 + aλ+ 1 if and only if b+ 2a+ 2 = 0,
which proves the last part. Note that this same calculation shows that if λ = 1 is a
root it is necessarily of multiplicity 2 or 4. This is, again, due to the Hamiltonian
symmetry. �

Lemma 3.2. If 0 is not a periodic eigenvalue of the L+ operator the Floquet
discriminants K±(µ) are analytic in a neighborhood of µ = 0.

Proof. For µ = 0 the stability problem decouples, and the monodromy matrix
takes the block diagonal form

(3.10) M =

(

m− 0
0 m+

)

,

where m± are the monodromy matrices associated with L±. It follows from the
previous lemma that λ = 1 is an eigenvalue of m− with multiplicity 2. A short
calculation using the fact that 2× 2 matrices satisfy Tr(m2) = Tr(m)2 − 2 det(m)
shows that 2 Tr(M2) − Tr(M)2 + 8 = ( Tr(m+) − 2)2. If 0 is not a periodic
eigenvalue of L+ then Tr(m+) 6= 2, thus 2 Tr(M2)− Tr(M)2 + 8 6= 0 and K± are
analytic in a neighborhood of µ = 0.

Theorem 3.3. A sufficient condition for the existence of a modulational insta-
bility spectrum is that µ = 0 is in the interior of a band of the L+ operator.

Proof. From the previous lemma if µ = 0 is in the interior of a band of the L+

then the Floquet discriminants K±(µ) are analytic in a neighborhood of the origin.
From the fact that the coefficients of the characteristic polynomial are invariant
under the transformation µ→ −µ it follows that K±(µ) are even, and thus are real
on an segment of the imaginary axis containing the origin. Since K−(0) ∈ (−2, 2)
it follows that K−(µ) is real and ∈ (−2, 2) on some segment of the imaginary axis
containing the origin, and thus there is a modulational instability. �

Remark 3.4. The same argument guarantees the existence of a modulational
instability if either K+(0) = +2 and K ′′

+(0) ≥ 0 or K+(0) = −2 and K ′′
+(0) ≤ 0.

The calculation of the sign of the second derivative appears to require a difficult
second order perturbation calculation.

3.2. Perturbative results for weak nonlinearity. In this section we study
the Floquet spectrum for small amplitude waves, with a particular emphasis on the
behavior near µ = 0. We shall see that the U(1) phase invariance of the NLS forces
a four-fold degeneracy of the eigenvalues of the unperturbed monodromy matrix
at µ = 0. Under perturbation this degeneracy can lead to the birth of a spine of
continuous spectrum lying along the imaginary axis. Whether or not such a spine
is born is determined by the relative sign of the nonlinearity and the quantity σ
defined in the previous section, and the length of the spine is of the order of σε.
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When ε = 0 the operators L± are equal and are given by

(3.11) L−(0) = L+(0) = −1

2
∂xx + V (x) − ω(0)

and the resulting eigenvalue problem is self-adjoint. It is easy to see that in this
case the spectrum of the stability problem is given by spec(L−) ∪ spec(−L−). In
this case it is also straightforward to calculate that the monodromy matrix M of
the full stability problem takes the block diagonal form

(3.12) M =

(

m(µ) 0
0 m(−µ)

)

where m(±µ) is the monodromy matrix for the problem

(3.13) L−(0)ψ = ±µψ.
From this block diagonal form it follows that for ε = 0 the invariants of the full
monodromy matrix can be expressed in terms of the Floquet discriminants k(±µ)
of the second order problem via

Tr(M(µ)) = Tr (m(µ)) + Tr (m(−µ)) = k(µ) + k(−µ)

Tr(M2(µ)) = Tr
(

m2(µ)
)

+ Tr
(

m2(−µ)
)

= k2(µ) + k2(−µ) − 4.

Here we have used the fact that 2 × 2 matrices satisfy the identity Tr(m2) =
Tr(m)2 − 2 det(m). From this it follows that the Floquet discriminants K±(µ) for
the full problem can be written in terms of the Floquet discriminant of L− via

(3.14) K±(µ) =
k(µ) + k(−µ) ±

√

(k(µ) − k(−µ))2

2
.

Obviously this could be simplified to K±(µ) = k(±µ) however we do not do this,
since it obscures the degeneracy at the points where k(µ) = k(−µ).

The U(1) symmetry of the NLS equation implies that µ = 0 is a band-edge of
L−. Thus for ε = 0, µ = 0 the monodromy matrix has has a single eigenvalue ±1 of
multiplicity four. This corresponds to the last entry in the table in figure 1. This
seemingly non-generic four-fold degeneracy of eigenvalues is forced by the phase-
invariance symmetry along with the symplectic nature of the monodromy matrix,
and can give rise to the modulational instability at non-zero wave amplitudes.

In the next lemma we present a normal form calculation for the Floquet dis-
criminants in a neighborhood of µ = 0, ε = 0. The calculation is particularly simple
due to some additional symmetries, which dramatically reduce the number of coef-
ficients which need to be computed. We present the calculation for periodic band
edges: the calculation for the anti-periodic bands edges is identical except for some
sign changes. In this latter case we merely state the final result.

Lemma 3.5. The Floquet discriminants of the monodromy matrix have the
following normal form in a neighborhood of ε = 0, µ = 0:

K±(µ) = 2 + k′′(0)
2 µ2 + 2εσ <φ4

1> +E1 ±
√

(k′(0)µ)
2

+ (2σε<φ4
1>)

2
+E2

E1 = o(ε, µ2)

E2 = o(ε2, µ2)

where k(µ) is the Floquet discriminant for the L−(0) operator. The band of unstable

modes is, for small ε, given by (−i 2σε<φ4

1
>

k′(0) , i
2σε<φ4

1
>

k′(0) ).
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Proof: This perturbation calculation is somewhat tedious but can be made
simpler by the use of some of the previously derived identities. From the last part of
Proposition 1 we can express the ε derivatives of the coefficients of the characteristic
polynomial P (λ) = λ4 +a(µ, ε)λ3 + b(µ, ε)λ2 +a(µ, ε)λ+1 at the µ = 0 in terms of
Tr(M|µ = 0). This represents a considerable savings in effort, since we only need
to calculate the four diagonal elements of M, rather than all 16 elements of M.
To compute the µ derivatives of the coefficients of the characteristic polynomial at
the origin we use the fact that a(µ, 0) = −(k(µ) + k(−µ)), b(µ, 0) = k(µ)k(−µ) + 2.

The mixed partial ∂2

∂ε∂µ
vanishes at the origin since the a, b coefficients are even

functions of µ for all ε. Note that, because of the square root branch point, it is
necessary to carry the expansion out to second order to get what amounts to a first
order result - the local normal form at the origin is a cone.

We present the calculation of ∂ Tr(M|µ=0)
∂ε

first. The problem L−(ε)φ = 0
has a periodic solution that we denote by φ1(= φstand), and a linearly growing
solution that we denote by φ2. We choose φ1,2 to form an orthogonal right-handed
coordinate system:

φ1(0) = cos(θ) φ′1(0) = sin(θ)

φ2(0) = − sin(θ) φ′2(0) = cos(θ)

Since µ = 0 is a band edge for the L−(ε) operator we have the following expressions
for the period map:

φ2(1) = φ2(0) + σφ1(0) = σ cos(θ) − sin(θ)

φ′2(1) = σ sin(θ) + cos(θ),

where σ = Tr(jm), with m the monodromy matrix for L−(ε) and j the Hamiltonian
form. Again we emphasize that σ must be non-zero if the band edge is not a double
point, and the sign of σ follows from the results of Lemma 2.

It is convenient to define a second set of solutions ψ1,2 which satisfy L−ψ = 0
along with the initial conditions ψ1(0) = 1, ψ′

1(0) = 0 and ψ2(0) = 0, ψ′
2(0) = 1.

These are obviously related to the φ1,2 by ψ1 = cos(θ)φ1 − sin(θ)φ2 and ψ2 =
sin(θ)φ1 + cos(θ)φ2. These functions form a natural basis in which to do per-
turbation theory on the L+ operator. Note that we are considering L+(ε) as a
perturbation of L−(ε), rather than L−(0). This is slightly more convenient since,
by phase invariance, we know exact eigenfunctions of the former.

As is usual in Floquet theory we must construct a fundamental set of solutions
ψ̃1, ψ̃2 to

(3.15) L+ψ̃1,2 = L−ψ̃1,2 + 2ε|φ1|2ψ̃1,2 = 0

that satisfy the boundary conditions

ψ̃1(0) = 1 ψ̃′
1(0) = 0

ψ̃2(0) = 0 ψ̃′
2(0) = 1

A straightforward perturbation calculation gives the following expressions for the
fundamental set of solutions to L+φ̃ = 0 :

ψ̃1(x) = ψ1 − 4ε

(

φ1

∫

φ2
1φ2ψ1 − φ2

∫

φ3
1ψ1

)

ψ̃2(x) = ψ2 − 4ε

(

φ1

∫

φ2
1φ2ψ2 − φ2

∫

φ3
1ψ2

)
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Using the fact that φ2(1) = φ2(0) + σφ1(0) we get the following expression for the
trace of the monodromy matrix to the leading order in ε in terms of φ1,2

ψ̃1(1) = ψ1(1) − 4ε
(

cos2(θ)(< φ3
1φ2 > −σ < φ4

1 >)

+ sin θ cos θ(σ < φ3
1φ2 > + < φ4

1 > − < φ2
1φ

2
2 >)

− sin2(θ) < φ3
1φ2 >

)

ψ̃′
2(1) = φ′2(1) − 4ε(− cos2(θ) < φ3

1φ2 >

+ sin(θ) cos(θ) < φ2
1φ

2
2 > −σ < φ3

1φ2 > − < φ4
1 >)

+ sin2 θ(< φ3
1φ2 > −σ < φ4

1 >).

Here <f>=
∫ 1

0 f(y)dy. From this it follows that the monodromy matrix is given
to leading order in ε by

Tr(M|µ = 0) = ψ̃1(1) + ψ̃′
2(1) + ψ1(1) + ψ′

2(1)(3.16)

= 2(ψ1(1) + ψ′
2(1)) + 4εσ < φ4

1 > +O(ε2).(3.17)

It is easy to calculate that a(µ, 0) = −4 − k′′(0)µ2 + o(µ2), and that b(µ, 0) =
6 + (2k′′(0) − (k′(0))2)µ2 + o(µ2). This, together with the vanishing of the mixed
partial and the equation (2.11) gives the above result. �

Remark 3.6. From the proof of the preceeding lemma, and the use of the
time-invariant Hamiltonian energy functional

(3.18) H =

∫
(

1

2
|ψx|2 ±

ε

2
|ψ|4 − V (x)|ψ|2

)

dx,

it follows that

(3.19)
∂ TrM

∂ε

∣

∣

∣

∣

(0,0)

= 8σ
∂H

∂ε

∣

∣

∣

∣

ε=0

.

Thus, the instability condition can be expressed in terms of the signs of σ and of
the derivative of the energy functional. This is a feature that appears regularly in
the study of stability of nonlinear waves: that the sign of the derivative of some
conserved quantity is a proxy for the index of some linearized operator. For some
results of a similar flavor in a variety of different contexts (both conservative and
dissipative) see [9, 11, 12, 18, 19].

Theorem 3.7. For ε small and positive (focusing NLS) and solutions bifurcat-
ing from a lower band edge that is not a double point, or for ε small and negative
and solutions bifurcating from an upper band edge that is not a double point there
exists a band of spectrum along the imaginary axis.

Proof. The proof follows from the preceeding lemma and the the first theo-
rem. From the explicit factorization of the characteristic polynomial it follows that,
for ε fixed, the Floquet discriminants K±(µ) are analytic functions in the cut plane
with branch points at the points where

(3.20) 2 Tr(M2) − Tr(M)2 + 8 = 0

From the preceeding lemma it follows that at µ = 0 this quantity reduces to
(3.21)

(

2 Tr(M2) − Tr(M)2 + 8
)

|µ=0 = ( Tr(M)|µ=0 − 4)2 = 16σ2ε2 <ψ4
1>

2 +o(ε2)
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and thus this quantity is nonzero for small but nonzero ε: the fact that the band
edge is not a double point guarantees that σ 6= 0. It follows that the Floquet
discriminants K± are analytic in a neighborhood of µ = 0 and satisfy

K+(0) = 2 + 4εσ < ψ4
1 > +O(ε2)

K−(0) = 2.

As in the first theorem the fact that K+(µ) is an even function of µ implies that µ =
0 is a critical point, and K+ is real on a segment of the imaginary axis containing
the origin. Recall that for odd numbered bands the periodic eigenvalue is the lower
band edge, and σ is positive, and for even numbered bands the periodic eigenvalue
is the upper band edge, and σ is negative. For ε < 0 (defocusing) and odd numbered
bands, or for ε > 0 and even numbered bands the perturbation result implies that
K+(0) ∈ (−2, 2), so there exists an interval on the imaginary axis on which K+(µ)
is real and ∈ (−2, 2). The analogous calculation for solutions bifurcating from the
anti-periodic eigenvalues shows that for ε < 0 (defocusing) and even numbered
bands, for ε > 0 and odd numbered bands K+(0) ∈ (−2, 2), and there exists a
spine of spectrum along the imaginary axis. Thus, for ε small and defocusing
nonlinearity standing wave solutions which bifurcate from the lower band edge are
modulationally unstable, while for focusing nonlinearity standing wave solutions
which bifurcate from the upper band edge are modulationally unstable. �

Note that if K ′′
±(0) = 0 there exist additional arcs of spectrum emerging from

the origin into the complex plane. For ε sufficiently small the local normal form
calculation guarantees that the second derivative is non-vanishing, and this does
not occur. It remains a possibility for larger ε, though we have not been able to
observe it in numerical experiments.

4. Finite Wavelength Instabilities.

The instability considered in the previous section is a long-wavelength, or mod-
ulational, instability. The wavelength of the unperturbed solution is marginally
stable, but a band of wavelengths around this wavelength are unstable, and the
spectrum consists of a band of unstable eigenvalues containing the origin. In this
section we consider the possibility of finite wavelength instabilities, where the band
of unstable eigenvalues does not contain the origin. This case is somewhat more
difficult than the case of modulational instabilities, since there are fewer symme-
tries, and our results are somewhat less detailed. In addition to the analyticity
arguments of the previous section a major tool will be the Krein signature.

First we note the following lemma

Lemma 4.1. The spectrum of the stability problem consists of a union of con-
tinuous curves in the complex plane. The possible endpoints of the curves are peri-
odic/antiperiodic points K±(µ) = ±2, critical points K ′

±(µ) = 0, or branch points
a2(µ) − 4b(µ) + 8 = 0 (or K+(µ) = K−(µ)).

Proof. As before K±(µ) are analytic away from the (isolated) points where
a2(µ) − 4b(µ) + 8 = 0. Suppose µ is a point in the spectrum that is not a branch
point, (anti)-periodic point or critical point. We assume for the sake of argument
that K+(µ) ∈ (−2, 2). Since K+ is analytic in a neighborhood of µ and µ is not a
critical point of K+ an appeal to the implicit function theorem shows the existence
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of a unique curve through µ along which K+ is real. Since µ is not a band edge
continuity implies that K+ is real and ∈ (−2, 2) in some neighborhood of µ. �

Remark: Note that for Hill’s equation the only possible band edges are peri-
odic or anti-periodic points - the first possibility. For non-self-adjoint Schrodinger
operators ( as noted by Shin[24]) the second possibility arises. The third possibility
only arises for equations of higher order than second.

We now consider the possibility of finite wavelength instabilities arising from
points µ∗ where K+(µ∗) = K−(µ∗). First note that in the small amplitude limit,
when ε = 0, we have a2−4b+8 = (k(µ)−k(−µ))2 = k′′(µ∗)(µ−µ∗)2+O((µ−µ∗)4)
so the branch points are degenerate (once again the normal form is a cone). Under
perturbation this degeneracy is expected to break, and generically it can do so in
one of two ways, which are generally referred to as the avoided collision and the
open gap. These possibilities are illustrated in figure 1, along with a picture of the
spectrum in the complex plane. Note that the curves of spectrum in the imaginary
direction emerge from the critical points K ′

±(µ) = 0, while the edges of the gap
occur at the branch points, where K ′

±(µ) = ∞, so the real spectrum protrudes
slightly into the interior of the eye.

It is rather tedious to compute the normal form for this case, since one lacks the
even symmetry, but consideration of the Krein-Gelfand-Lidskii theorem can reduce
the possibilities. In the case of a collision of two eigenvalues with the same Krein
sign the open gap is forbidden, since that corresponds to eigenvalues leaving the
unit circle. In the case of two eigenvalues with the opposite Krein sign one expects
that under perturbation the eigenvalues should leave the unit circle. We formalize
this observation as a theorem.

Theorem 4.2. In the neighborhood of an accidental degeneracy (µ = µ∗, ε = 0)
the Floquet discriminants have the following normal form

K±(µ) = k(µ∗) + (k′(µ∗) − k′(−µ∗))(µ− µ∗) + αε+E1±
√

(k′(µ∗) + k′(−µ∗))2 (µ− µ∗)2 + γε2 +E2

E1 = O(ε2, (µ− µ∗)2, ε(µ− µ∗))

E1 = O(ε3, (µ− µ∗)3, ε(µ− µ∗)2, ε2(µ− µ∗))

Further, if sgn(k′(µ∗)) = sgn(k′(−µ∗)) the quadratic form (k′(µ∗) + k′(−µ∗))2(µ−
µ∗)2 + γε2 is nonnegative.

Proof. A straightforward, though slightly tedious, perturbation argument
shows that ∂

∂ε
(a2 − 4b + 8)|ε=0 = 0, so that this quantity is locally quadratic,

as well as having a vanishing mixed partial at ε = 0. The Krein signs of the unper-
turbed eigenvalues are the same as the signs of k′(µ) and k′(−µ) respectively. In the
case where these signs are the same the Krein-Gelfand-Lidskii theorem guarantees
that, under small perturbations, the eigenvalues of M remain on the unit circle.
Since non-negativity of the above quadratic form is a necessary condition for the
eigenvalues to remain on the unit circle the the sign condition together with the
Krein theorem guarantees non-negativity of this form. �

Note that this theorem does not preclude the following possibilities: in the
case of like Krein sign collisions it is possible that the quadratic form is only semi-
definite, rather than being strictly positive. Such would be the case if the intersec-
tion persists under perturbation. In the case of collisions of opposite Krein sign a
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naive application of the Krein-Gelfand-Lidskii theorem gives no information. While
the Krein-Gelfand-Lidskii theorem implies that generic perturbations should cause
eigenvalues of opposite Krein sign to move off of the unit circle there is no guaran-
tee that this particular perturbation will do so. We conjecture that, in the small
amplitude case the signature of the quadratic form is equal to the signature of the
subspace. This would imply that that intersections of opposite Krein signs always
open to a gap, while intersections of the same Krein sign always open to an avoided
collision. Very preliminary numerical evidence has supports this conjecture, but we
currently have not proof of this. FInally we note that µ = 0 always corresponds
to a collision of eigenvalues of like Krein sign, implying that this degeneracy will
generically open to the avoided collision, in agreement with the results of Lemma 5.
In Fig(1) we illustrate these possibilities: an intersection of Floquet discriminants
of the opposite slope opening to an avoided collision, and an intersection of discrim-
inants of like slope opening to a gap. We have not illustrated the intersection of
Floquet discriminants of the opposite slope opening to a gap, which is forbidden by
the Krein theorem, or the intersection of Floquet discriminants of the same slope
opening to an avoided collision, which is non-generic if it occurs at all.

An obvious corollary of this is the following:

Corollary 4.3. If sgn(k′(µ∗)) = sgn(k′(−µ∗)) and γ > 0, or if sgn(k′(µ∗)) =
− sgn(k′(−µ∗)) and γ < 0 then there exists a band of spectrum off of the real axis.

From the local normal form it is an easy calculation that, in either case, for
sufficiently small ε the Floquet discriminants K± must have a critical point in the
neighborhood of µ∗, and that a2 − 4b + 8 6= 0 at this critical point. From the
analyticity arguments of the previous section this guarantees that K± are real and
∈ (−2, 2) in some neighborhood of the critical point. Again one expects that in the
case of a like Krein sign collision one should generically have γ > 0, leading to the
avoided collision and a loop of spectrum opening into the complex plane, but there
seems to way to show this in any particular case without actually calculating γ. It
is interesting that the cases which would not lead to the spectrum opening into the
complex plane are the ones that are disallowed or non-generic.

5. Explicit Examples and Numerics

In this section we present some examples. We will primarily be working with
known exact elliptic function solutions. We consider the nonlinear Schrödinger
equation

(5.1) iψt = −1

2
ψxx + V0 sn2(x, k)ψ ± |ψ|2ψ

This equation has a one-parameter family of exact solutions given by

ψ(x, t) = r(x)e−iωt+iθ(x)(5.2)

r2(x) = A sn2(x, k) +B(5.3)

θ(x) = c

∫

dx′

r2(x′)
(5.4)

A = −(V0 + k2)(5.5)

c2 = B

(

B

V0 + k2 − 1

)

(

V0 + k2 −Bk2
)

(5.6)
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WhereB ∈
(

−∞,−k2
)

∪
(

V0+k2

k2 , V0 + k2
)

for the focusing sign andB ∈
(

−(V0 + k2),−V0+k2

k2

)

∪
(

−k2,∞
)

for the defocusing sign. These solutions represent nonlinear stationary
states which bifurcate from the linear Bloch states. We are primarily interested
in the solutions which bifurcate from the band edges. These correspond to the
boundaries of the above regions of validity. In the focusing case we have

r0(x) =

√
V0 + k2

k2
dn(x, k) ω = −1 − V0

k2
+
k2

2
V0 + k2 > 0(5.7)

r1(x) =
√

V0 + k2 cn(x, k) ω =
1

2
− V0 − k2 v0 + k2 > 0(5.8)

r2(x) =
√

−(V0 + k2) sn(x, k) ω =
1 + k2

2
V0 + k2 < 0,(5.9)

while in the defocusing case we have the analogous solutions

r0(x) =

√
V0 + k2

k2
dn(x, k) ω = −1 − V0

k2
+
k2

2
V0 + k2 < 0(5.10)

r1(x) =
√

V0 + k2 cn(x, k) ω =
1

2
− V0 − k2 v0 + k2 < 0(5.11)

r2(x) =
√

−(V0 + k2) sn(x, k) ω =
1 + k2

2
V0 + k2 > 0.(5.12)

The solutions all bifurcate from the the linear Bloch states at V0 +k2 = 0, with the
dn, cn solutions existing on one side of the bifurcation and the sn solution on the
other side. It is easy to check that the spectrum of the L− operator in each of these
cases is the 1-gap Lamé operator plus some constant which differs in each case.
The ground state of L− is dn(x, k), while the next two antiperiodic eigenfunctions
are given by cn(x, k), sn(x, k). The gap between the eigenvalues corresponding to
the cn and sn is the only open gap - the remainder of the gaps are closed to double
points. The values of σ correspoding to each of these band edges can be computed
explicitly. They are given explicitly in terms of elliptic integrals as follows:

σdn =

∫ 2K

0

dx

dn2(x, k)
= 2

∫ 1

√
1−k2

dy

y2
√

(1 − y2)(y2 − (1 − k2))

σcn = k2

∫ 2K

0

sn2(x, k)

dn2(x, k)
dx = 2

∫ 1

√
1−k2

(1 − y2)

y2
√

(1 − y2)(y2 − (1 − k2))
dy

σsn = −k2

∫ 2K

0

sn2(x, k)dx = −2

∫ 1

√
1−k2

(1 − y2)
√

(1 − y2)(y2 − (1 − k2))
dy.

The σdn can be computed using the usual reduction of order technique to
compute the second linearly independent solution. A similar calculation gives σcn,sn,
but one must deform the integral into the complex plane to avoid poles of the elliptic
functions. Note that σdn and σcn have the same sign, as they are band edges of the
first band, while σsn has the opposite sign, since it is the band edge of the second
band.

In what follows the parameter ε = V0 +k2. There is an obvious rescaling which
transforms the above form of the NLS equation to the form considered earlier.

5.1. Jacobi sine (sn(x, k)) type solutions. It follows from Theorem (2) that
for V0 + k2 = ε suffiently small that the dn and sn solutions, as lower band edges,
are modulationally unstable. Moreover, from Theorem (1) we are guaranteed a
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Opposite Krein Sign.

Same Krein Sign.

Open Gap

"Open Eye"

"Closed Eye"

Multiplicity 4
Multiplicity 2

Complex SpectrumUnperturbed Problem

Avoided Collision

Floquet Discriminants

Figure 1. The possible bifurcations of degenerate eigenvalues of
a symplectic matrix under perturbation, and the local behavior of
the Floquet discriminants.

modulational instability as long as the L+ operator is in the interior of a band
at µ = 0. Thus in each case we have an open interval (0, ε∗) in which we are
guaranteed a modulational instability, where ε∗ is the smallest positive value of
ε such that µ = 0 is a band edge of the L+ operator. We will focus on the
sn solution, since the instability of the dn solution follows from more elementary
arguments. We have found numerically that µ = 0 is in the interior of a band for
ε ∈ (−1.33, 0) ∪ (−3.0,−1.56) ∪ (−6.7,−5.6) . . ., which shows instability for ε in
these intervals. The numerical evidence further shows that in this particular case
the second derivative of the branch of the Floquet discriminant passing through −2
is always negative, which implies that these solutions are always unstable. We do
not currently have a proof of this. It is also whether this feature is special to the
elliptic function solutions, or if it holds in greater generality. It is interesting to note
that the sn(x, k) solution also has a finite-wavelength instability that appears at
arbitrarily small positive amplitude. This is illustrated in Fig (2). When ε = 0 the
Floquet discriminants of the unperturbed problem k(±µ) intersect near µ ≈ .45.
This is a collision of opposite Krein sign, since the discriminants have slopes of
the same sign. This intersection opens into a gap under perturbation, as is clear
from the figure. In Fig(3) we show a detail of the previous figure, along with a
grey-scale plot of the size of the imaginary part of the Floquet discriminant, with
black representing a negative imaginary part and white a positive imaginary part.
The curve of real K+(µ)) is clearly visible as a sharp edge. Careful inspection of
this graph shows that these additional branches of spectrum emerge from the real
axis at the critical points K ′

±(µ) = 0.
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Figure 2. The Floquet Discriminants for the sn(x, k) solution in
the focusing case with ε = 0, .1
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Figure 3. A detail of the previous figure. The first graph shows
the Floquet discriminants along the real µ axis for ε = .1 (note
the open gap) and the second graph shows a greyscale plot of the
imaginary part of the Floquet discriminant in the complex plane.
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Figure 4. The Floquet discriminants for the focusing cn(x, k) so-
lution for V0 = −1/2,−1/4,−.228,−.1.
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5.2. Jacobi cosine (cn(x, k)) type solutions: The stability of the cn type
solutions is extremely interesting, and is the subject of Fig(4). For small ε the
perturbation result guarantees that µ = 0 is in a gap for the L+ operator, and
numerically we find no modulational instability for small ε. As before we expect
that for some critical value of ε µ = 0 will enter a band of L+ and an instability
will develop. In this case the critical value of ε can actually be computed explicitly.
When V0 = 0(ε = k2) we find that L+ is the 2-gap Lamé operator, with µ = 0 is a
band edge. It is also straightforward to show using the Sturm oscillation theorem
and monotonicity of the band edges in ε that this is the smallest value of ε for which
L+ has a band edge at µ = 0. Thus we are guaranteed a modulational instability
for some interval of ε beginning at V0 = 0(ε = k2). It is worth remarking that
in this critical case (the integrable one) all of the information about the spectrum
of the linearization, as well as a great deal more, can be obtained as degenerate
cases of exact N-gap solutions to NLS. See, in particular, Chapter 4 of the text by
Belokolos, Bobenko, Enol’skii, Its and Matveev[2] for the general case, or the work
of Ercolani, Forest and McLaughlin[6, 7] for the degenerate 1-gap case.

The birth of a modulational instability at V0 = 0 supports a intuition based
on physical reasoning that was put forth in [3] which suggested that such solutions
should go unstable at V0 = 0. Interestingly it appears that there exists a finite
amplitude side-band type instability that sets in before the modulational instabil-
ity. This is illustrated in figure 4, which shows the Floquet discriminants for the
linearized operator of the focusing NLS about a cn type solution with modulus
k2 = 1/2 and a sequence of different values of ε. Near V0 ≈ −.23 the Floquet
discriminants K± cross, causing a gap to open and a loop of spectrum to emerge
into the complex plane. This instability disproves a guess made in [3], based on
numerical experiments, that the cn type solutions should be stable for V0 < 0. As
V0 increases the neighborhood about the origin in which the Floquet discriminants
are real shrinks, until at V0 = 0 the discriminants are only real at the origin. For
positive V0 the discriminants again become real in a neighborhood of the origin, and
the results of previous sections imply the existence of a modulational instability.

6. Conclusions

We have established a sufficient condition for the modulational instability of a
periodic standing wave solution to the NLS equation, which can be easily checked.
In the case of weak nonlinearity this reduces to a physically reasonable criterion
based on the effective mass of a particle in the periodic potential. We have also made
some preliminary progress into studying the birth of side-band type instabilities. In
the case of like Krein-sign collisions the gap-opening bifurcation is forbidden. Very
preliminary numerical experiments suggest that, in the case of opposite Krein-sign
collisions the “avoided collision” bifurcation is forbidden, but we do not currently
have a proof of this.

It is interesting to compare these results to the analogous theory for decaying
potentials on the whole line. In previous work Rose and Weinstein[22] gave a
detailed analysis of the problem

iψt = −1

2
ψxx + V (x)ψ − |ψ|2ψ

under the assumption that V (x) is decaying at infinity. They were able to show
the existence of a family of stationary solutions, which arise as minimizers of a
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certain functional. These solutions bifurcate from the ground state of the linear
problem. Further, they showed that these solutions are stable for sufficiently small
amplitudes. In contrast our results show that in the periodic case the focusing NLS
solutions which bifurcate from the ground state (necessarily a lower band edge) are
always unstable for sufficiently small amplitudes. This is presumably a reflection of
the fact that in the whole line case there is always a gap between the ground state
energy and the energy of the next excited state, while in the periodic case one has a
continuum of energies, but it would be nice to have a more detailed understanding
of this point.
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