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Abstract. Solution of the nonlinear Klein-Gordon equation perturbed by
small external force is investigated. The perturbation is represented by fi-

nite collections of harmonics. The frequencies of the perturbation vary slowly
and pass through the resonant values consecutively. The resonances lead to

the sequence of the wave packets with the different fast oscillated carriers. Full

asymptotic description of this process is presented.
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1. Introduction

In this work we study the problem of a generation of sequences of solitary pack-
ets with different carriers in the optical fiber. The nonlinear Klein-Gordon equation
is studied as a modeling equation. We consider this equation which is perturbed
by a small external driving force with finite collection of modes. The external
perturbation relates to the pumping of the nonlinear media by an electromagnetic
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field. The multiple-frequency pumping allows to increase the capacity of the op-
tical communication channel. The wave packets appear due to passage through a
resonance by different modes of the external force. After the passage through the
whole resonances the solution contains the full collection of the solitary packages
of waves with different carriers. The envelope functions of these packages satisfy to
nonlinear Schrödinger equation (NLSE).

In general the derivation of NLSE for small solutions of nonlinear equations
is well known [1, 2, 3] and justified [4]. Our solution has a more complicate
structure. Before all resonances the solution has an order of the perturbation and
defined by the external force. After the passage through the resonance of the last
mode of the perturbation the solution has the order of the square root of the order
of the perturbation and satisfies NLSE. So we show the process of the resonant
transformation of the solution and the appearance of the wave packets with the
different carriers.

Earlier the resonant generation of periodic waves by a small external force was
investigated by a computer simulation [5]. The phenomenon of the generation and
the scattering of the solitary waves in the case of nonlinear Schrodinger equation
was asymptotically investigated in [6, 7]. The problem on the generation of a
solitary wave with a single carrier was solved in [8, 9]. Here we use the proposed
approach to study the multiphase case.

The proposed approach is based on a local resonance phenomenon. The local
resonance in linear ordinary differential equations was investigated in papers [10,
11]. Later this phenomenon was investigated in partial differential equations for
linear case [12] and for weak nonlinear case [13, 14].

The goal of this paper is the following: to demonstrate that the passage through
the resonances allows to obtain the sequences of solitary packets of waves with the
different carriers. The packets with different carriers do not interact.

This paper has the following structure. The first section contains the state-
ment of the problem, main result and example. The second section contains the
asymptotic construction before the resonance. In the third section we construct
an internal asymptotics in the neighborhood of the resonance curve. In the fourth
section we construct the asymptotic expansion after the passage through the reso-
nance. Five section contains the analysis of the resonances in high-order terms of
the asymptotic solution. All asymptotics are matched.

2. Main result

Let us consider the Klein-Gordon equation with the cubic nonlinearity per-
turbed by external force with the finite collection of the different harmonics
(2.1)

∂2
t U − ∂2

xU + U + γU3 = ε2
N∑

k=1

fk(εx) exp
{

ik
S(ε2t, ε2x)

ε2

}
+ c.c., 0 < ε � 1.

Here γ = const; fk(y), k = 1, . . . , N and the phase function S(y, z) are smooth.
We construct the formal asymptotic solution of the WKB-type. In the domain

when the first mode of the perturbation does not pass through the resonance the
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asymptotic solution has a form

(2.2) U = −ε2
N∑

j=1

fj

lj
exp{i(jS)/ε2}+ O(ε3),

where
lj(x2, t2) ≡ j2(∂t2S)2 − j2(∂x2S)2 − 1, x2 = ε2x, t2 = ε2t.

The leading-order term has an order of ε2 and oscillates. Such solution relates to
the forced oscillations.

On the curve lk(x2, t2) = 0, k = N, . . . , 1 the frequencies of k-th mode of
the forced oscillations and a frequency of the eigen oscillations of the linearized
Klein-Gordon equation are equal. Usually the curves with the such property are
called resonant curves. The local resonance layer appears in the neighborhood of
the curve lk(x2, t2) = 0. Here we describe the passage through the resonant layer
with the ordinary number k.

After passage through the k-th resonant layer a new eigen mode with the am-
plitude of the order ε appears in the solution. It leads to changing of the number
of harmonics in leading-order term. The amplitudes of the leading-order term sat-
isfy (N − k + 1) nonlinear Schrödinger equations after passage through the k-th
resonance. The solution has a form

(2.3) U = ε
∑
α3

Ψα exp{iα3/ε2}+ O(ε2),

where α = (1, 0, α3) is a multiindex. The variable α3 possesses the value from φk

up to φN . The value k in (2.3) is defined by

k = min j : lj > 0, j = 1, . . . , N

and functions lj(x2, t2) are arrayed:

lj(x2, t2) < lm(x2, t2), 1 ≤ j < m ≤ N.

The accurate formulation of the result for this paper is following

Theorem 2.1. Let the asymptotic solution of (2.1) relates to forced oscillations:

U = −ε2
N∑

j=1

fj

lj
exp{i(jS)/ε2}+ O(ε3)

in the domain lN < 0 before the passage through the first resonance and the asymp-
totic solution has a form

U = ε
∑
α3

Ψα exp{iα3/ε2}+ O(ε2), α = (1, 0, α3),

in the domain −lk � ε, lk+1 � ε before the k-th resonance curve lk = 0. Here

α3 ∈ Υk+1
1,0 = {±φk+1,±φk+2, . . . ,±φN}

and the amplitudes Ψα satisfies (N − k) nonlinear Schrodinger equations

2i∂t2φj∂t2Ψα + ∂2
ξj

Ψα + i[∂2
t2φj − ∂2

x2
φj ]Ψα + γ|Ψα|2Ψα = 0,(2.4)

where α = (1, 0, φj) and j = k + 1, . . . , N .
Then in the domain −lk−1 � ε, lk � ε the solution has the similar structure

with the changes of the phase collection according to

Υk
1,0 = Υk+1

1,0 ∪ {±φk}.
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The number of equations in (2.4) increases up to (N − k + 1).

Here we use the upper indexes k+1 in our notations to specify the number of
the resonant curve that was crossed in our constructions.

To illustrate the the main result let us consider equation (2.1) with the simplest
driving force with two modes:

F = f1(x1) exp(i(t22/2 + x2)/ε2) + f2(x1) exp(i(t22 + 2x2)/ε2).

In this case the curves of the local resonance are the lines t2 =
√

17/16 and t2 =
√

2.
In the domain t2 <

√
17/16 the asymptotic solution is

U = O(ε2).

The solution of this order with respect to ε relates to forced oscillations.
After the passage through the first resonance the solution is

U = εΨ1,0,φ2 exp{iφ2/ε2}+ O(ε2),
√

17/16 < t2 <
√

2

The amplitude Ψ1,0,φ2 satisfies the Cauchy problem for

2i∂t2Ψ1,0,φ2 + ∂2
ξ1ξ1

Ψ1,0,φ2 + γ|Ψ1,0,φ2 |2Ψ1,0,φ2 = 0,

variable ξ1 = t1 −
√

17/16x1, Initial condition is

Ψ1,0,φ2 |t2=
√

17/16
= f1(ξ)(1 + i)

√
π.

After the passage through the second resonance the solution is

U = εΨ1,0,φ1 exp{iφ1/ε2}+ εΨ1,0,φ2 exp{iφ2/ε2}+ O(ε2), t2 >
√

2.

The amplitudes Ψ(1,0,φ1) and Ψ(1,0,φ2) are determined from the Cauchy problem for
two nonlinear Shrödinger equation:

2i∂t2Ψ1,0,φ1 + ∂2
ξ1ξ1

Ψ1,0,φ1 + γ|Ψ1,0,φ1 |2Ψ1,0,φ1 = 0,

2i∂t2Ψ1,0,φ2 + ∂2
ξ2ξ2

Ψ1,0,φ2 + γ|Ψ1,0,φ2 |2Ψ1,0,φ2 = 0.

Here ξ2 = t1 −
√

2x1/2, initial conditions are

Ψ1,0,φ2 |t2=√2 = Ψ1,0,φ2 |t2=√2−0, Ψ1,0,φ1 |t2=√2 = f2(ξ2)(1 + i)
√

π.

The solution of this Cauchy problem contains solitary waves if the initial data are
sufficiently large [17].

3. Pre-resonance expansion

In this section we construct the formal asymptotic solution in the domain before
the k-th resonant curve. Here we use scaled variables xj = εjx, tj = εjt, j = 1, 2.
The solution has a form

(3.1) U(x, t, ε) = εΨk+1
1 +

∞∑
n=2

εnΨk+1
n ,

Ψk+1
1 =

∑
±φm∈Υk+1

1,0

exp{±iφm(x2, t2)/ε2}Ψ1,0,±φm
(x1, t1, t2)
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The higher order terms are

Ψk+1
n =

n−2∑
j=0

lnj(ε)
N∑

m=k+1

( ∑
±φm

exp{±iφm(x2, t2)/ε2}Ψn,j,±φm(x1, t1, t2) +

∑
χ∈Υk+1′

n,j

exp{iχ(x2, t2)/ε2}Ψn,j,χ(x1, t1, t2)
)

,

where Υk+1′
n,j is a set of phase functions which is determined by

Υk+1
1,0 = {±φk+1,±φk+2, . . . ,±φN}; Υk+1

2,0 = Υk+1
1,0 ∪ {±S, . . . ,±NS},

Υk+1
n,j =

⋃
n1 + n2 + n3 = n,
j1 + j2 + j3 = j

χn1,j1 + χn2,j2 + χn3,j3 , χnp,jp
∈ Υk+1

np,jp
.

Υk+1′
n,j = Υk+1

n,j \Υ
k+1
1,0 .

This solution contains the two parts. The first part of the solution has the leading-
order term of the order of ε. The phase set of this part is

Υk+1
1,0 = {±φk+1,±φk+2, . . . ,±φN}

. The modes have appeared in the solution due to the crossing of the previous
(N − k) resonant curves lj = 0. The terms of the order of ε2 with the phases
/∈ Υk+1

1,0 relate to the forced oscillations and describe the behaviour of the solution
before the first resonance curve lN = 0 where the forced oscillations take place only.

The asymptotics constructed in this section is valid as lk+1 � ε, −lk � ε. The
result of this section is formulated below.

Note. Expansion (3.1) contains the terms εn lnm ε. It looks a little bit unex-
pectedly because of the original equation does not contain the logarithmic terms
with respect to ε. But these terms naturally appear due to the passage through
the previous resonant layers, see Lemma 4.6 in subsection 4.3.1.

Let us construct the formal asymptotic solution for equation (2.1) in form (3.1).
We substitute (3.1) in equation (2.1) and collect the terms of the same order of ε.
As a result we obtain a recurrent sequence of equations for the coefficients of the
asymptotics.

Terms of the order of ε give us the equations for the phase functions

(3.2) (∂t2φj)2 − (∂x2φj)2 − 1 = 0, j = k + 1, . . . , N.

Initial data for the phase functions φj , j = k + 2, . . . , N are determined by their
values on the curve lk+1 = 0. Initial data for φk+1 is related with

(3.3) φj |lk+1=0 = (k + 1)S|lk+1=0, ∂t2φj |lk+1=0 = (k + 1)∂t2S|lk+1=0.

The terms of the order of ε2 give us the homogeneous transport equation

(3.4) ∂t2φj∂t1Ψ1,0,φj
− ∂x2φj∂x1Ψ1,0,φj

= 0. j = k + 1, . . . , N.

This equation allows us to determine the dependence of the leading-order term on
characteristic variable ζ. Equation (3.4) along the characteristics

(3.5)
dx1

dζj
= −∂x2φj ,

dt1
dζj

= ∂t2φj
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can be written in the form of ordinary differential equation

(3.6)
dΨ1,0,φj

dζj
= 0.

It yields Ψ1,0,φj depends on ξj , where the ξj is defined by

dx1

dξj
= ∂t2φj ,

dt1
dξj

= ∂x2φj .

Among the terms of the order ε3 we collect the terms which oscillate as exp(iφj/ε2).
It gives

2i
(
∂t2φj∂t1Ψ2,0,φj

− ∂x2φj∂x1Ψ2,0,φj

)
+2i∂t2φj∂t2Ψ1,0,φj

+ [(∂t1ξj)2 − (∂x1ξj)2]∂2
ξjξj

Ψ1,0,φj

+i[∂2
t2φj − ∂2

x2
φj ]Ψ1,0,φj

+ γ|Ψ1,0,φj
|2Ψ1,0,φj

= 0.

It is convenient to write this equation in the form of ordinary differential equation
in terms of characteristic variables

dΨ2,0,φj

dζj
= −2i∂t2φj∂t2Ψ1,0,φj

− [(∂t1ξj)2 − (∂x1ξj)2]∂2
ξj

Ψ1,0,φj

−i[∂2
t2φj − ∂2

x2
φj ]Ψ1,0,φj

− γ|Ψ1,0,φj
|2Ψ1,0,φj

.(3.7)

Equation (3.6) shows that the right hand side of equation (3.7) does not depend on
ζj . To construct the bounded solution of (3.7) we demand the right hand side of
the equation is equal to zero. It allows to determine the dependence of the leading-
order term on slow variable t2. The amplitudes of the leading-order terms satisfy
(N − k) nonlinear Schrödinger equations

2i∂t2φj∂t2Ψ1,0,φj + [(∂t1ξj)2 − (∂x1ξj)2]∂2
ξjξj

Ψ1,0,φj

+i[∂2
t2φj − ∂2

x2
φj ]Ψ1,0,φj

+ γ|Ψ1,0,φj
|2Ψ1,0,φj

= 0, j = k + 1, . . . , N(3.8)

The initial conditions for Ψ1,0,φj
are

Ψ1,0,φj |lk=0 = Ψ1,0,φj |lk=+0, j = k + 2, . . . , N ;

Ψ1,0,φk+1 |lk+1=0 =
∫ ∞

−∞
dσfk+1(x1) exp(i

∫ σ

0

dµλk+1(x1, t1, ε)).

Integration in this integral is realized in the line of characteristic direction connected
with (3.5).

The equations for the higher-order terms are obtained by the same manner

2i
(
∂t2φj∂t1Ψn+1,k,φj

− ∂x2φj∂x1Ψn+1,k,φj

)
= 2i∂t2φj∂t2Ψn,k,φj

− ∂2
ξjξj

Ψn,k,φj

−i[∂2
t2φj − ∂2

x2
φj ]Ψn,k,φj + ∂t1ξj∂

2
ξt2Ψn−1,k,φj

−γ
∑

k1,k2,l1,l2,m1,m2,α,β,δ

Ψk1,k2,αΨl1,l2,βΨm1,m2,δ,

where k1 + l1 + m1 = n + 2, k2 + l2 + m2 = k, α + β + δ = φj , α ∈ Υk+1
k1,k2

, β ∈
Υk+1

l1,l2
, δ ∈ Υk+1

m1,m2
.
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To construct the uniform asymptotic expansion with respect to ζj we obtain
the linearized Schrodinger equation for higher-order term

2i∂t2φj∂t2Ψn,k,φj
+ ∂2

ξjξj
Ψn,k,φj

+ i[∂2
t2φj − ∂2

x2
φj ]Ψn,k,φj

= −∂t1ξ∂
2
ξjt2Ψn−1,k,φj

− γ
∑

k1,k2,l1,l2,m1,m2,α,β,δ

Ψk1,k2,αΨl1,l2,βΨm1,m2,δ,(3.9)

where k1 + l1 + m1 = n + 2, k2 + l2 + m2 = k, α + β + δ = φj , α ∈ Υk+1
k1,k2

, β ∈
Υk+1

l1,l2
, δ ∈ Υk+1

m1,m2
.

The amplitudes Ψn,k,χ as χ ∈ Υk+1′

n,k are determined by algebraic equations

(3.10)
[
−(χt2)

2 + (χx2)
2 + 1

]
Ψn,k,χ = Fn,k,χ, χ 6= ±φj , j = 1, . . . , k.

Here the right hand side of the equation depends on previous terms and their
derivatives

Fn,k,χ = −2iχt2∂t1Ψn−1,k,χ + 2iχx2∂x1Ψn−1,k,χ − 2iχt2∂t2Ψn−2,k,χ

−i [χt2t2 − χx2x2 ] Ψn−2,k,χ − ∂2
t1t2Ψn−3,k,χ − ∂2

t2t2Ψn−4,k,χ

(3.11) −γ
∑

k1,k2,l1,l2,m1,m2,α,β,δ

Ψk1,k2,αΨl1,l2,βΨm1,m2,δ,

where k1 + l1 + m1 = n − 4, k2 + l2 + m2 = k, α + β + δ = χ, α ∈ Υk+1
k1,k2

, β ∈
Υk+1

l1,l2
, δ ∈ Υk+1

m1,m2
.

Note. It’s necessary to note that the multiplier
[
−(χt2)

2 + (χx2)
2 + 1

]
can be

vanished on some curves. It leads to the resonances for the higher order terms of the
asymptotics. The passage through the resonances does not change the leading-order
terms of the asymptotic solution. We discuss this passage in section 6.

In this section we pay a special attention on the amplitudes Ψn,k,χ with the
phase function kS. These amplitudes have the strongest order singularity on the
curve lk = 0. The multiplier

[
−(χt2)

2 + (χx2)
2 + 1

]
on the left hand of equation

(3.10) equals zero on the curve lk = 0. Here we explicitly write out a few first
correction terms:

(3.12) Ψ2,0,kS = −fk

lk
,

(3.13) Ψ3,0,kS = 2ik
∂x1fk∂x2S

l2k
,

Ψ4,0,kS =
2ikfk[∂t2S∂t2 lk − ∂x2S∂x2 lk]− 4k2(∂x2S)2∂2

x1
fk

l3k
−

2ik∂t2fk∂t2S + ∂2
x1

fk + ik∂2
t2Sfk

l2k
.(3.14)

The formula for the n-th order term has the form

Ψn,m,kS =
1
lk

[
∂2

t2Ψn−4,m,kS + 2ik∂t2S∂t2Ψn−2,m,kS + ikSt2t2Ψn−2,m,kS−

2ik∂x2S∂x2Ψn−2,m,kS − ik∂2
x2

SΨn−2,m,kS − ∂2
x1

Ψn−2,m,kS−
2∂2

x1x2
Ψn−3,m,kS − ∂2

x2
Ψn−4,m,kS − 2ik∂x2S∂x1Ψn−1,m,kS+
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(3.15) γ
∑

n1+n2+n3=n,
k1+k2+k3=kS

m1+m2+m3=m

Ψn1,m1,k1Ψn2,m2,k2Ψn3,m3,k3

]
.

The main order of the singularity corresponds to the terms when m = 0. This
order depends on the number of correction term.

Lemma 3.1. The coefficient Ψn,m,ϕ, ϕ ∈ Υk+1
1,0 ∪ {kS} has the following be-

haviour

(3.16) Ψn,m,ϕ = O(l−(n−2m−1)
k ), lk → −0,

Proof. At first we prove formula (3.16) for the phase ϕ = kS. The validity of
formula (3.16) for n = 2, 3, 4 and m = 0 directly obtains from (3.12), (3.13), (3.14).
Suppose now that this formula is valid for the term Ψn−1,0,ϕ. The increase of the
order of the singularity as lk → 0 takes place due to differentiation with respect
to x2, t2 and the nonlinear term in formula (3.15). Differentiation of the terms in
formula (3.15) leads to formula (3.16) for m = 0.

The validity for values m ≥ 1 and other values of ϕ can be obtained by direct
calculations as it was shown above. Lemma is proved.

These lemma allows us to write the asymptotic representation for the coeffi-
cients

(3.17) Ψn,m,ϕ =
∞∑

j=−(n−2m−1)

Ψj
n,m,ϕ ljk, ϕ ∈ Υk+1

1,0 ∪ {kS}, lk → −0.

The terms Ψn,m,ϕ for ϕ /∈ Υk+1
1,0 ∪{kS} have the more weaker order of the singularity

as lk → −0. Equations (3.15) for these values of ϕ have the same structure but the

multiplier
1
lj

is regular as lk → −0.

The domain of the validity as lk → −0 for the formal asymptotic solution in
the form (3.1) follows from the relation

εΨk+1
n+1

Ψk+1
n

� 1.

It yields
−lk � ε.

The following theorem is proved.

Theorem 3.2. In the domain −lk � ε, lk+1 � ε the formal asymptotic so-
lution of equation (2.1) has form (3.1). The coefficients of the asymptotics are
defined either from differential equations (3.8), (3.9) or from algebraic equations
(3.12), (3.13), (3.14), (3.15).

4. Internal asymptotics

This part of the paper contains the asymptotic construction of the solution for
equation (2.1) in the neighborhood of the curve lk = 0. The domain of validity
of this internal asymptotics intersects with domain of validity of expansion (3.1).
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These expansions are matched. Here we present asymptotic constructions for arbi-
trary k in details. It is necessary to note this section also describes the transition
from the forced oscillations of O(ε2) to the solution of O(ε) when k = N .

Let us construct the internal asymptotic expansion in the domain |lk| � 1.
Denote

(4.1) λk(x1, t1, ε) =
1
ε
lk(εx1, εt1).

Theorem 4.1. In the domain |lk| � 1 the formal asymptotic solution for
equation (2.1) has the form

U(x, t, ε) = εW1 +
∞∑

n=2

εnWn,(4.2)

where

W1 = W1,0,kS exp{ikS(t2, x2)/ε2}+
N∑

m=k+1

∑
±φm

exp{±iφm(x2, t2)/ε2}W1,0,±φm

Wn =
n−2∑
j=0

lnj(ε)Wn,j,kS exp
(
ik

S(t2, x2)
ε2

)
+

n−2∑
j=0

lnj(ε)
( N∑

m=k+1

∑
±φm

exp{±iφm(x2, t2)/ε2}Wn,j,±φm(x1, t1, t2)

+
∑

χ∈Υ′
n,j

exp{iχ(x2, t2)/ε2}Wn,j,χ(x1, t1, t2)
)

,

where Υ′
n,j is the set of phase functions which is determined by

Υ1,0 = ±φk+1,±φk+2, . . . ,±φN ,±kS;

Υ2,0 = ±φk+1,±φk+2, . . . ,±φN ,±S, . . . ,±NS,

Υn,j =
⋃

n1 + n2 + n3 = n,
j1 + j2 + j3 = j

χn1,j1 + χn2,j2 + χn3,j3 , χnp,jp ∈ Υnp,jp .

Υ′
n,j = Υn,j\Υ1,0.

The function Wn,j,kS is solution of the problem for equation (4.8) with zero condi-
tion as λk → −∞.

There is a difference between asymptotics (4.2) and external pre-resonance
asymptotics (3.1). Asymptotic expansion (4.2) defines the generation of the k-th
mode by the local resonance for the leading-order term of the asymptotic expansion.
The difference is the collection of phase function. The collection of phases Υ1,0

contains (N − k + 1) phases but the phase ±φk does not exist in the k-th resonant
layer. There phases ±kS are presented in the Υ1,0 and Υ2,0 collections.

The proof of theorem 4.1 consists in three steps. First we derive equations for
the coefficients of the asymptotics. Second we solve the problems for the coefficients.
And third we determine the domain of the validity for expansion (4.2).
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4.1. The equations for coefficients. In the domain 1 � λk � ε−1 both
asymptotics (3.1) and (4.2) are valid. This fact allows us to obtain the asymptotic
representation for coefficients of (4.2). Substitute lk = ελk in formula (3.17) and
expand the obtained expression with respect to powers of ε. It yields

(4.3) Wn,m,ϕ =
∞∑

j=n−2m−1

λ−j
k Ψj

n+1,m,ϕ(x2, t2, x1), λk → −∞.

Let us obtain the differential equations for the coefficients of asymptotics (4.2).
Substitute (4.2) in equation (2.1) and collect the terms with equal powers of small
parameter and exponents. It yields the equations for coefficients Wn,j,ϕ, ϕ ∈ Υn,j .
In particularly, the terms of the order ε2 give us the equations for the amplitudes
of the leading-order terms

(4.4) 2ik∂t2S∂t1W1,0,kS − 2ik∂x2S∂x1W1,0,kS − λkW1,0,kS = fk,

(4.5)
2i∂t2φj∂t1W1,0,φj

− 2i∂x2φj∂x1W1,0,φj
− lφj

(x2, t2)W1,0,φj
= 0, j = k + 1, . . . , N.

and complex conjugated equation for W1,0,−ϕ, ϕ ∈ Υ1,0(k).
The relation of the order ε3 in equation (2.1) gives 2(N − k) + 2 equations:

2ik∂t2S∂t1W2,0,kS − 2ik∂x2S∂x1W2,0,kS − λkW2,0,kS = ∂2
x1

W1,0,kS − ∂2
t1W1,0,kS

−ik[∂2
t2S − ∂2

x2
S]W1,0,kS − 2ik∂t2S∂t2W1,0,kS + 2ik∂x2S∂x2W1,0,kS

(4.6) −3γ

(
|W1,0,kS |2 +

N∑
m=k+1

|W1,0,φm
|2
)

W1,0,kS .

2i∂t2φj∂t1W2,0,φj − 2i∂x2φj∂x1W2,0,φj − lφj (x2, t2)W2,0,φj

= ∂2
x1

W1,0,φj − ∂2
t1W1,0,φj −−i[∂2

t2φj − ∂2
x2

φj ]W1,0,φj − 2i∂t2φj∂t2W1,0,φj

(4.7) +2i∂x2S∂x2W1,0,φj
− 3γ

(
|W1,0,kS |2 +

N∑
m=k+1

|W1,0,φm
|2
)

W1,0,φj
.

The higher-order terms are calculated by the same way. In particularly Wn,j,ϕ, ϕ ∈
Υ1,0 is determined by differential equations. Here we represent the equation for am-
plitude under ϕ = kS. The equations for other phases ϕ ∈ Υ1,0 can be obtained in
a similar.

(4.8) 2ik∂t2S∂t1Wn,j,kS − 2ik∂x2S∂x1Wn,j,kS − λkWn,j,kS = Fn,j,k.

The right hand side of equation (4.8) has the form

Fn,j,k = −2ik∂t2S∂t2Wn−1,j,kS + 2ik∂x2S∂x2Wn−1,j,kS + k2(∂t2S)2Wn−1,j,kS

−k2(∂x2S)2Wn−1,j,kS − ∂2
t1Wn−1,j,kS + ∂2

x1
Wn−1,j,kS − ∂t2∂t1Wn−2,j,kS

+∂x2∂x1Wn−2,j,kS − ∂2
t2Wn−3,j,kS + ∂2

x2
Wn−3,j,kS
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(4.9) −γ
∑

n1 + n2 + n3 = n + 1,
j1 + j2 + j3 = j,

χ1 + χ2 + χ3 = kS,
χj ∈ Υnj

(k), j = 1, 2, 3

Wn1,j1,χ1Wn2,j2,χ2Wn3,j3,χ3 .

The amplitudes Wn,k,χ as χ /∈ Υ1,0 are determined by algebraic equations

(4.10)
[
−(χt2)

2 + (χx2)
2 + 1

]
Wn,k,χ = Fn,k,χ.

Here the right hand side of the equation depends on previous terms and their
derivatives

Fn,k,χ = −2iχt2∂t1Wn−1,k,χ + 2iχx2∂x1Wn−1,k,χ − 2iχt2∂t2Wn−2,k,χ

−i [χt2t2 − χx2x2 ]Wn−2,k,χ − ∂2
t1t2Wn−3,k,χ − ∂2

t2t2Wn−4,k,χ

(4.11) −γ
∑

N,k2,l1,l2,m1,m2,α,β,δ

WN,k2,αWl1,l2,βWm1,m2,δ,

where N + l1 + m1 = n − 4, k2 + l2 + m2 = k, α + β + δ = χ, α ∈ ΥN,k2 , β ∈
Υl1,l2 , δ ∈ Υm1,m2 .

4.2. The solvability of equations for higher-order terms. In this section
we present the explicit form for the higher-order term Wn,j,kS and investigate the
asymptotic behaviour as λk → ±∞.

4.2.1. Characteristic variables. The function Wn,j,kS satisfies equation (4.8).
The solution is constructed by characteristic method. Define the characteristic
variables σ, ξ. We choose a point (x0

1, t
0
1) such that ∂x2 lk|(x0

1,t01)
6= 0 as origin and

denote by σ the variable along the characteristic family for equation (4.8). We
suppose σ = 0 on the curve λk = 0. The variable ξ mensurates the distance along
the curve λk = 0 from the point (x0

1, t
0
1). This point (x0

1, t
0
1) corresponds to ξ = 0.

Let the positive direction for parameter ξ coincides with the positive direction of
x2 in the neighborhood of (x0

1, t
0
1).

The characteristic equations for (4.8) have a form

(4.12)
dt1
dσ

= 2k∂t2S(εx1, εt1),
dx1

dσ
= −2k∂x2S(εx1, εt1).

The initial conditions for the equations are

(4.13) x1|σ=0 = x0
1, t1|σ=0 = t01.

Lemma 4.2. The Cauchy problem (4.12), (4.13) for characteristics has a solu-
tions as |σ| < c1ε

−1, c1 = const > 0.

Proof. The Cauchy problem (4.12), (4.13) is equivalent to the system of the
integral equations

(4.14) t1 = t01 + 2
∫ σ

0

k∂t2S(εx1, εt1)dζ, x1 = x0
1 − 2

∫ σ

0

k∂x2S(εx1, εt1)dζ.

Substitute t̃2 = (t1 − t01)ε, x̃2 = (x1 − x0
1)ε. It yields

t̃2 = 2
∫ εσ

0

k∂t2S(x̃2 − εx0
1, t̃2 − εt01)dζ, x̃2 = −2

∫ εσ

0

k∂x2S(x̃2 − εx0
1, t̃2 − εt01)dζ.
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The integrands are smooth and bounded functions on the plane x2, t2. There exists
the constant c1 = const > 0 such that the integral operator is the contraction
operator as ε|σ| < c1. Lemma 4.2 is proved.

Assumption. We assume that the change of variables (x1, t1) → (σ, ξ) is
unique in the neighborhood of the curve λk = 0. This assumption means that the
characteristics for equation (4.8) do not touch the curve λk = 0. It means

∂x2 lk∂x2S − ∂t2 lk∂t2S 6= 0.

It is convenient to use the following asymptotic formulas for change of variables
(x1, t1) → (σ, ξ).

Lemma 4.3. In the domain |σ| � ε−1 the asymptotics as ε → 0 of the solutions
for Cauchy problem (4.12), (4.13) have the form

x1(σ, ξ, ε)− x0
1(ξ) = −2σk∂x2S + 2

N∑
n=1

εnσn+1gn(εx1, εt1) + O(εN+1σN+2),(4.15)

t1(σ, ξ, ε)− t01(ξ) = 2σk∂t2S + 2
N∑

n=1

εnσn+1hn(εx1, εt1) + O(εN+1σN+2),(4.16)

where

gn = −k
dn

dσn
(∂x2S)

∣∣∣∣
σ=0

, hn = k
dn

dσn
(∂t2S)

∣∣∣∣
σ=0

.

The lemma proves by integration by parts of equations (4.14).
The next proposition gives us the asymptotic formula which connects variables

σ and λk as σ, λk → ±∞.

Lemma 4.4. Let be σ � ε−1, then:

λk = φ(ξ)σ + O(εσ2), φ(ξ) =
dλk

dσ

∣∣∣∣
σ=0

σ →∞.

Proof. From formula (4.1) we obtain the representation in the form

λk =
∞∑

j=1

λj
k(x1, t1, ε)σjεj−1,

where

λj
k(x1, t1, ε) =

1
j!

dj

dσj
λk(x1, t1, ε)|σ=0.

It yields

λk =
dλk

dσ

∣∣
σ=0

σ + O

(
εσ2 d2λk

dσ2

)
.

Let be ∣∣∣∣d2lk
dσ2

∣∣∣∣ ≥ const, ξ ∈ R.

The function dλk/dσ is not equal to zero

dλk

dσ
=

1
2

(
− k∂x2λk∂x2S + k∂t2λk∂t2S

)
6= 0.
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Let us suppose dλk/dσ > 0. It yields

λk = φ(ξ)σ + O(εσ2), φ(ξ) =
dλk

dσ

∣∣∣∣
σ=0

The lemma is proved.
4.2.2. Solutions of the equations for higher-order terms. The higher-order terms

Wn,j,±kS are solutions of equation (4.8) with the given asymptotic behaviour λk →
−∞. Equation (4.8) can be written in terms of characteristic variables as

(4.17) i
d

dσ
Wn,j,kS − λkWn,j,kS = Fn,j,kS .

Lemma 4.5. The solution of equation (4.8) with the asymptotic behaviour (4.3)
as λk → −∞ has a form

Wn,j,kS = exp(−i

∫ σ

0

dζλk(x1, t1, ε))

×
∫ σ

−∞
dζFn,j,kS(x1, t1, ε) exp(−i

∫ ζ

0

dχλk(x1, t1, ε)).(4.18)

Proof. By direct substitution we see that expression (4.18) is the solution of
(4.17). The asymptotics of this solution as λk → −∞ can be obtained by integration
by parts and substitution

d

dσ
= 2k∂t2S∂t1 − 2k∂x2S∂x1 .

It yields

(4.19) Wn,j,kS =
∞∑

j=0

(
2k∂t2S∂t1 − 2k∂x2S∂x1

iλk

)j[
Fn,j,kS

iλk

]
, λk → −∞.

From formula (4.9) we obtain that formulas (4.19) and (4.3) are equivalent. The
lemma is proved.

4.3. Asymptotics as λk → ∞ and domain of validity of the internal
asymptotics. The domain of validity of the internal expansion is determined by
the asymptotics of higher-order terms. In this section we show that the n−th order
term of the asymptotic solution increases as λn−1

k when λk → ∞. This increase
of higher-order terms allows us to determine the domain of validity for internal
asymptotics (4.2) as λk →∞.

4.3.1. Asymptotics of higher-order terms. This section contains two propo-
sitions concerning asymptotic behaviour as λk → ∞ for higher-order terms in
(4.2). The first lemma describes the asymptotic behaviour of higher-order terms
as λk → ∞ and the second one contains a result about asymptotics of the phase
function.

Lemma 4.6. The asymptotic behaviour of Wn,j,kS as 1 � λk � ε−1 has a form

Wn,j,kS =
n−1∑
j=0

j−1∑
m=0

(
λj

k lnm |λk|W (j,m)
n,j,kS(ξ)

)
exp(−i

∫ σ

0

dζλk(x1, t1, ε))

+
∞∑

m=0

(
2k∂t2S∂t1 − 2k∂x2S∂x1

iλk

)m[
Fm,j,kS

iλk

]
.(4.20)
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Proof. Let us calculate the asymptotics of the leading-order term

W1,0,kS = exp(−i

∫ σ

0

dζλk(x1, t1, ε))
∫ ζ

−∞
dζfk(x1) exp(i

∫ σ

0

dχλk(x1, t1, ε))

= exp(−i

∫ σ

0

dζλk(x1, t1, ε))
∫ ∞

−∞
dζfk(x1) exp(i

∫ ζ

0

dχλk(x1, t1, ε))

− exp(−i

∫ σ

0

dζλk(x1, t1, ε))
∫ ∞

−σ

dζfk(x1) exp(i
∫ ζ

0

dχλk(x1, t1, ε)).

Further by integration by parts of the last term we obtain formula (4.20) as n = 1,
where

W
(0,0)
1,0,kS(ξ) =

∫ ∞

−∞
dσfk(x1) exp(i

∫ σ

0

dχλk(x1, t1, ε)),

F1,0,kS = fk(x1).
To calculate the asymptotics of W2,0,kS in formula (4.18) we use the asymptotics

with respect to σ of the leading-order term. Integral (4.18) contains the term with
linear increase with respect to σ when n = 2. We eliminate this growing part from
integral explicitly. The residuary integral converges as σ →∞. It can be calculated
in the same manner as it was calculated for W1,0,kS . It yields formula (4.20) as
n = 2, where

W
(1,0)
2,0,kS(ξ) = W

(0,0)
1,0,kS(ξ).

The same direct calculations are realized for the n−th order term. The lemma is
proved.

To complete the proof of theorem 4.1 we need to obtain the domain of validity
of asymptotics (4.2). The formal series (4.2) is asymptotic when

εWn+1

Wn
� 1, ε → 0.

Lemma 4.6 gives λk � ε−1. After substitution λk = εlk we obtain lk � 1. Theorem
4.1 is proved.

4.3.2. Asymptotics of the phase function as λk → ∞. To obtain the asymp-
totics as λk → ∞ we need to derive the asymptotics of the phase function in
formula (4.20).

Lemma 4.7. As λk →∞:

(4.21)
∫ σ

0

dξλk =
S

ε2
+

1
ε
(∂x2S(x1 − x0

1) + ∂t2S(t1 − t01)) + O(ελ3
k).

Proof. Substitute the asymptotics of λk from lemma 4.6. Calculate the asymp-
totics of the integral in formula (4.21)∫ σ

0

dζλk(x1, t1, ε) =
∫ σ

0

dζ

2

[
(−k∂x2 lk∂x2S + k∂t2 lk∂t2S)ζ + O(εζ2)

]
= (−k∂x2 lk∂x2S + k∂t2 lk∂t2S)

σ2

4
+ O(εσ3).

The asymptotics of the phase function kS(x2, t2) in the neighborhood of the curve
l1 = 0 is represented by a segment of the Taylor series. It yields

kS

ε2
=

1
ε
(k∂x2S(x1 − x0

1) + k∂t2S(t1 − t01))
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+
1
2
(kSx2x2(x1 − x0

1)
2 + 2kSx2t2(x1 − x0

1)(t1 − t01) + kSt2t2(t1 − t01)
2)

+O(ε(|t1 − t01|+ |t1 − t01|)3).
Substitute instead of (x1−x0

1) and (t1−t01) their asymptotic behaviour with respect
to ε from lemma 4.3. This substitution and result of lemma 4.4 complete the proof
of lemma 4.7.

The asymptotics as λk → −∞ contains fast oscillating terms with phase func-
tions φk+1, . . . , φN , mS, m ∈ Z, m 6= k. The leading-order term of the asymptotics
as λk → ∞ contains the oscillations with an additional phase function. We ob-
tain this result from lemma 4.6. Denote this new phase function by φk(x2, t2)/ε2.
The asymptotics of this function is obtained in lemma 4.7. The nonlinearity and
additional phase function lead to more complicated structure of the phase set for
higher-order terms of the asymptotics as λk →∞.

Lemma 4.8. The phase set Υn,j for the n−th order term of the asymptotics as
λk →∞ is determined by formula

Υ1,0 = {±φk, . . . ,±φN}; Υ2,0 = {±φk, . . . ,±φN ,±S, . . . ,±NS},

Υn,j = ∪χn1,j1 + χn2,j2 + χn3,j3 , χnm,jm ∈ Υnm,jm ,

where n1 + n2 + n3 = n, j1 + j2 + j3 = j.

The proof of this lemma follows from the asymptotic formula for n−th order
term. Representation (4.2), formula (4.20) and lemma 4.6 allow us to construct the
asymptotics as λ →∞ of the internal expansion in an explicit form

U =
N∑

n=1

εn
n−2∑
p=0

lnp(ε)
( n−1∑

j=0

n−2∑
m=0

λj lnm |λ|W (j,m)
n,p,k (ξ)

)

× exp
[
− i

(
k

ε
(∂x2S(x1 − x0

1) + ∂t2S(t1 − t01)) + O(ελ3)
)]

+
N∑

n=1

εn
n−2∑
p=0

lnp(ε)
( ∞∑

j=0

(
2k∂t2S∂t1 − 2k∂x2S∂x1

iλ

)j[
Fn,p,kS

iλ

])
exp

{
ik

S(t2, x2)
ε2

}

(4.22) +
N∑

n=2

εn
n−2∑
p=0

lnp(ε)
( ∑

ϕ∈Υn,p\kS

Wn,p,ϕ exp
{

i
ϕ(t2, x2)

ε2

})
+ c.c.

This representation and formula (4.11) complete the proof of the lemma.

5. Post-resonance expansion

In this section we show how to connect the external asymptotic solution after
the passage through the resonance with the solution in the neighborhood of the
curve lk = 0.

There is a difference between these solution. The leading-order term of the
solution in this section includes an additional mode. This new mode relates to the
phase φk which was generated by the passage through the resonance near the curve
lk = 0. It gives

(5.1) Υk
1,0 = Υk

1,0 ∪ {±φk}
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This section consists in two parts. The first part contains the construction
of the formal asymptotic solution. This solution is similar to the solution from
section 3. Asymptotic behaviour for higher-order terms as lk → 0 follows from
section 4.3.2. In the second part of this section we determine the domain of validity
for this external asymptotics near resonance curve lk(x2, t2) = 0. The matching
method gives us the initial conditions for the coefficients of the asymptotics.

5.1. Structure of the second external asymptotics. Let us construct the
formal asymptotic solution of the following form with the changing of the phase set
according to (5.1).

(5.2) U(x, t, ε) = εΨk
1 +

∞∑
n=2

εnΨk
n,

Ψk
1 =

N∑
m=k+1

∑
±φm

exp{±iφm(x2, t2)/ε2}Ψ1,0,±φm
(x1, t1, t2)

Ψk
n =

n−2∑
j=0

lnj(ε)
N∑

m=k+1

( ∑
±φm

exp{±iφm(x2, t2)/ε2}Ψn,j,±φm
(x1, t1, t2) +

∑
χ∈Υp′

n,j

exp{iχ(x2, t2)/ε2}Ψn,j,χ(x1, t1, t2)
)

,

where Υk′
n,j is a set of phase functions which is determined by

Υk
1,0 = {±φk,±φk+1, . . . ,±φN}; Υk

2,0 = Υk
1,0 ∪ {±S, . . . ,±NS},

Υk
n,j =

⋃
n1 + n2 + n3 = n,
j1 + j2 + j3 = j

χn1,j1 + χn2,j2 + χn3,j3 , χnp,jp
∈ Υk

np,jp
.

Υk′
n,j = Υk

n,j\{±φk,±φk+1, . . . ,±φN}.
Substitute this asymptotic solution in original equation and collect the terms of
the same order with respect to ε. After collecting the terms with the same phase
functions we obtain the recurrent system of equations for the coefficients.

The terms of the order ε1 give us the equation (3.2) for the phase function of
eigen oscillations. The initial data is determined by matching condition (3.3) with
the changing of indexes from (k + 1) to k.

The difference between this asymptotic constructions and constructions from
section 3 consists in changing of the number of terms of the order of ε.

The amplitudes Ψ1,0,φj are determined from

2i∂t2φj∂t2Ψ1,0,φj
+ [(∂t1ξj)2 − (∂x1ξj)2]∂2

ξjξj
Ψ1,0,φj

+

+i[∂2
t2φj − ∂2

x2
φj ]Ψ1,0,φj + γ|Ψ1,0,φj |2Ψ1,0,φj = 0, j = k, . . . , N(5.3)

The higher order terms of (5.2) satisfy equation (3.9). Here we present the
following lemma which allows to match solution (5.2) and solution (4.2).
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Lemma 5.1. The asymptotics as lk → 0 of the solution of equation (3.9) has
the form
(5.4)

Ψn,p,φk
(x1, t1, t2) =

1∑
j=−(n−2p−2)

−(j−1)∑
m=0

Ψ(j,m)
n,p,φk

(x1, t1) ljk(ln lk)m + O(1), lk → 0.

Proof. Determine the order of the singularity of the right hand side of the
equation as lk → 0. First consider equation (3.9) for n = 3, p = 0. The solution
of this equation gives us the coefficient Ψ3,0,φk

. The nonlinearity contains the
term |Ψ2,0,kS |2Ψ1,0,φk

. The function Ψ2,0,kS has the singularity of the order l−1
k as

lk → 0. It determines the order of singularity for right hand side l−2
k . We construct

the asymptotics of Ψ3,0,χ in the form

(5.5) Ψ3,0,φk
= Ψ−1,0

3,0,φk
l−1
k + Ψ0,1

3,0,φk
ln(lk) + Ψ1,1

3,0,φk
lk ln(lk) + Ψ̂3,0,φk

,

Substitute (5.5) in equation for n = 3. It leads to recurrent system of equations for
coefficients Ψ(j,p)

3,0,φk

−2i∂t2φk∂t2 lkΨ(−1,0)
3,0,φk

= −Ψ1,0,φk
|Ψ2,0,S |2l2k,

2i∂t2φ1∂t2 lkΨ(0,1)
3,0,φk

= L[Ψ(−1,0)
3,0,φk

],

2i∂t2φk∂t2 lkΨ(1,1)
3,0,φk

= L[Ψ(0,1)
3,0,φk

].
Here we denote the linear operator by

L[Ψ] = 2i∂t2φk∂t2Ψ + ∂2
ξΨ + i[∂2

t2φk − ∂2
x2

φk]Ψ + γ
(
2|Ψ1,0,φk

|2Ψ + (Ψ1,0,φk
)2Ψ∗).

The regular part Ψ̂3,0,φk
of the asymptotics satisfies the nonhomogeneous linear

Schrodinger equation. The right hand side of the equation is smooth

L[Ψ̂3,0,φk
] = −lk ln |lk|L[Ψ(1,1)

3,0,φk
]− 2i∂t2φk∂t2 lkΨ(1,1)

3,0,φk
.

The initial condition for the regular part of the asymptotics is determined below
by matching with the internal asymptotic expansion.

The structure of the terms Ψn,p,±φk
for n > 3 has a similar form. The right

hand side of equation (3.9) depends on junior terms. These singularities can be
eliminate

Fn,p,φk
=
−(n−2)∑

j=0

−j+1∑
m=0

ljk lnm |lk|fk
(j,m)
n,p,φ1

+ F̂kn,p,φ1 .

The coefficients fk
(j,m)
n,p,φk

do not contain singularities as lk → 0. These coefficients
are easy calculated.

The direct substitution of (5.4) in equation and collecting the terms with the
same order of lk complete the proof of lemma 5.1.

5.2. The domain of validity of the second external asymptotics as
lk → +0 and matching procedure. The domain of validity of the second external
asymptotics is determined by

εΨk
n+1

Ψk
n

� 1.

Formulas (5.2) and (5.4) give the condition

lk � ε.
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The domain |lk| � 1 of validity of the internal asymptotics and domain of
validity of the second external asymptotics are intersected. This fact allows to
complete the construction of the second external asymptotics by matching method
[16]. The structure of singular parts of the internal asymptotics as λk → +∞ and
external asymptotics as lk → 0 are equivalent. The coefficients are coincided due to
our constructions. The matching of regular parts of these asymptotics takes place
due to

Ψn,j,φk
|lk=0 = W

(0,0)
n,j,kS(ξ).

The function W
(0,0)
n,j,kS(ξ) is determined in lemma 4.6.

In particular, the initial condition for the amplitude Ψ1,0,φk
corresponding to

the new generated phase φk has a form

Ψ1,0,φk
|lk=0 =

∫ ∞

−∞
dσfk(x1) exp(i

∫ σ

0

dχλk(x1, t1, ε)).

The initial data for the others amplitudes Ψ1,0,φj , j = k+1, . . . , N of the leading-
order term of (5.2) are represented by values of these amplitudes on the curve lk = 0.

The soliton theory for nonlinear Schrodinger equation leads us to the fact that
the function Ψ1,0,φj

contains the solitary waves when fj(x1) is sufficiently large.

6. Resonances in the higher order terms of the asymptotics.

In this section we discuss the passage through the resonances of higher order
terms of the asymptotic solution only. Such passage does not change the leading-
order term and leads to changing of the solution in higher order terms only.

Equations (4.10) are solvable while the multiplier

l[χ] =
[
−(χt2)

2 + (χx2)
2 + 1

]
6= 0.

Let us denote a particular value of χ such that l[χ] = 0 by χr. In the neighborhood
of the curve l[χr] = 0, χr ∈ Υn,k the coefficients of the asymptotic expansion has a
form

Ψn,k,χr
= O(l−1[χr]), l[χr] → 0,

Ψn+m,k,χr = O(l−(m+1)[χr]), l[χr] → 0.(6.1)

These formulas give the domain of validity of (5.2)

(6.2) l[χr] � ε.

In the neighborhood of the curve l[χr] = 0 we use a new scaled variable λχr = lχr/ε.
The formal asymptotic solution is constructed in the form

(6.3) U(x, t, ε) = Un−2(x, t, ε) + Ures(x, t, ε).

The asymptotic solution has two parts. The first one does not depend on the
scaled variable λχr

. But the second part of the solution depends on λχr
, because

the resonance on the curve λχr
= 0 appears only in higher order terms of the

asymptotics. The terms Un−2(x, t, ε) and Ures(x, t, ε) have a form

Un−2(x, t, ε) =
n−2∑
m=1

εm
m−2∑
k=0

lnk(ε)
(∑
±φ

exp{±iφ(x2, t2)/ε2}Ψm,k,±φ(x1, t1, t2) +

∑
χr∈Υ′

m,k

exp{iχr(x2, t2)/ε2}Ψm,k,χr
(x1, t1, t2)

)
.(6.4)



THE SLOW PASSAGE THROUGH THE RESONANCES 279

Ures(x, t, ε) =
∞∑

m=n−1

εm
m−2∑
k=0

lnk(ε)
(∑
±φ

exp{±iφ(x2, t2)/ε2}Ψm,k,±φ(λχr , x1, t1, t2) +

∑
χr∈Υ′

m,k

exp{iχr(x2, t2)/ε2}Ψm,k,χr (λχr , x1, t1, t2)
)

.(6.5)

Substitution of (6.3) into (2.1) gives the recurrent sequence of the problems for the
coefficients of (6.3). Note that the coefficients Ψm,k,±φ and Ψm,k,χr for m ≤ (n−1)
are determined from the standard problems as shown in section 5.

The coefficients Ψm,k,±φ and Ψm,k,χr
for m ≥ (n−1) are determined as well as

the internal expansion from section 4. Here we present the standard problems for
the coefficients of the asymptotics without detailed derivation. The higher-order
terms are calculated by the same way. In particularly, the terms in the case lower
index is equal to χr are determined by differential equations.

(6.6) 2i∂t2χr∂t1Ψm,k,χr
− 2i∂x2χr∂x1Ψm,k,χr

− λχr
Ψm,k,χr

= Fm,k,χr
.

The right hand side Fm,k,χr of equation (6.6) has form (3.11) with the changing of
the index from χ to χr.

The terms in the case the lower index is not equal to χr are determined by
algebraic equations (4.10).

The analysis of equation (6.6) is realized in section 4.2. The passage through
this resonance layer leads to a new phase function appearance as was shown in
4.3.2. We denote this new phase function by ϕr.

In the domain after passage through resonance layer the amplitude under this
phase function is determined by

2i∂t2ϕr∂t2Ψn−1,k,ϕr + [(∂t1ξr)2 − (∂x1ξr)2]∂2
ξrξr

Ψn−1,k,ϕr +

+i[∂2
t2ϕr − ∂2

x2
ϕr]Ψn−1,k,ϕr

+ γ|Ψ1,0,φ1 |2Ψn−1,k,ϕr
= 0,(6.7)

here the variable ξr is determined by

dx1

dξr
= ∂t2χr,

dt1
dξr

= ∂x2χr.

After the passage of the resonance layer the set Υn−1,k is changed by the
following rule

Υn−1,k → Υn−1,k

⋃
χr.

It leads to changing of the set of phases for higher order correction terms by the
ordinary way.
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