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ABSTRACT. In many biological pattern formation processes and in some chem-
ical or biochemical reactions, an activator-inhibitor system of two reaction-
diffusion equations serves as a mathematical model, typically, the Gierer-
Meinhardt equations. This type of model equations features two largely dif-
ferent diffusion coefficients and an essentially nonlocal nonlinearity. In this
paper, the one-dimensional Gierer-Meinhardt equations are considered,

2

A
At :dAA—A—i-ﬁ =0 inR,
Hi=DAH—-H+A?>=0 inR,
A,H>0and A,H — 0 as |z| — oo,
where 02 = d/D < 1. By the Lyapunov-Schmidt method, a sharp order-
estimate of the number k of multiple spikes of the ground state solutions is
made. The k-spike solutions are constructed by adding small perturbation
to the function which has k appropriately distributed spikes resembling the
solution of the problem
Av—u+u?>=0 inR,
0<u—0as|z|] — oco.
The main result is that, for sufficiently small o > 0, there exists such a ground
state solution with k = const ¢~ ?, where 0 < 8 < 1/2 and S can be arbitrarily
close to 1/2. In the proof of this conjecture, a priori estimates of linear
and nonlinear parts are conducted by means of cut-off decomposition, sharp

calculations of multiple spike interactions at all levels, and finally a fine-tuned
adjustment of spike centers.
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1. Introduction

In 1952, A. M. Turing [21] showed that a reaction-diffusion system modeling
two chemical substances, called morphogens, could generate a spatially nonuni-
form pattern from a spatially almost uniform steady-state, which is stable in the
absence of diffusion, by using a symmetry-breaking instability analysis driven by
the distinguished diffusion coeflicients. Then it has been found experimentally and
numerically [2,7,8,12,14] that, for many reaction-diffusion systems, the ground
states as well as the evolving dynamics can exhibit a common phenomenon called
point condensation [20,26,28], which consists of spike-type patterns with bumps
around certain spatial points. Although the microscopic and/or biochemical rea-
sons causing such phenomena of pattern formation are still under investigation in
many cases, mathematicaly a coherent theory for the existence and stability of the
multi-spike solutions (or called multi-bump solutions, multi-spot solutions) for sev-
eral typical reaction-diffusion systems has been established based on the methods in
nonlinear elliptic partial differential equations, linear stability analysis for parabolic
equations, and singular perturbation analysis. Many of these results are listed in
the References.

The Gierer-Meinhardt model [7] proposed in 1972 and the Gray-Scott model [8]
proposed in 1983, each having certain variations in terms of the nonlinearity, are
two typical models of reaction-diffusion systems which have been intensively studied
by a number of authors in the last two decades, cf. [1,3-5,11,23,25, 27,28, 30—
32,35,36] for the Gierer-Meinhardt system and [6, 15,22, 26,29, 33,34] for the
Gray-Scott system.

The Gierer-Meinhardt model describes the activator-inhibitor coupled behavior
for many systems in cell biology and physiology [7,12,14], whereas the Gray-Scott
model characterizes self-replicating patterns of some autocatalytic and feedback
systems in reaction kinetics and biochemistry [2,6,8]. It is interesting to note that
both model systems admit specific symmetric and asymmetric multi-spike (multi-
bump) patterns in one-dimensional and two-dimensional spatial domains, as seen
in the listed references and additional papers cited therein.

Motivitated by and based on the pioneering work during 1986-1996 [13,16—20]
on the profiles, especially the location and the shape of peaks, of the variational
solutions to Neumann problems of semilinear elliptic PDEs, researches have been
conducted for Neumann problems of single nonlinear elliptic PDEs [9,10] in the



GIERER-MEINHARDT EQUATIONS 189

form
EAu—u+ f(u) =0,

and for Gierer-Meinhardt system and Gray-Scott system on the existence and con-
struction of K-spike solutions, where K is any given positive integer, by allowing
the coefficient €2 in the above equation and the ratio o2 of two largely different
diffusion coefficients in Gierer-Meinhardt or Gray-Scott system to be sufficiently
small, while K is fixed and can be large. A common and notable feature in these
works, cf. [3,4,11,23-25,28-36], is the leverage of using the Lyapunov-Schmidt
method of finite dimensional reduction to find the multi-spike profiles of ground
state solutions as a small perturbation of a basis function whose multiple spikes are
well shaped and distributed.

Consider a prescaled Gierer-Meinhardt system of two coupled nonlinear para-
bolic equations,

2
AtszA—A—k%, x€Q,t>0,

(GM) H; =DAH —H+ A%, 2€Q,t>0,
DA OH
— == Ot >
o o 0, z€90Q,t>0,

where Q is a 1D or 2D bounded, Lipschitzian domain, A = A(x,t) and H =
H(z,t) are the concentrations of an activator substance and an inhibitor substance,
respectively. As we know, an important thing is to study the positive, non-constant,
steady states called ground states of this GM system. They are the solutions of the
elliptic system:

A2
dAA—A—&—F:O, T €,
DAH -H+A?=0, ze€q,
0A OH

In the original model in [7] and in many other biological settings, it is suggested or
has been justified that one can make the assumption of a slowly diffusing activator
and a rapidly diffusing inhibitor, which implies that d < D and 0% = d/D < 1.

We can rescale the independent variables and two unknowns A and H as follows;
set

u(r) = o%A (dl/zx) . v(z) =0*H (dl/zx) .
Then the above elliptic system reduces to the following equivalent system,

u2
Au—u+— =0, x€Qy,
v

Av—c?v+u?=0, xe€Qy,

ou  Ov
%:%207 xean
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Here, Q4 = d~'/2Q. When d — 0 but ¢ remains quantitatively stabilized, for the
one-dimensional domain we come up with the limiting system

u2

uW—u+—=0, zeR,
v

(1.1) v”—02v+u2:0, r € R,

u,v >0 and u,v — 0 as |z| — oo.

The system (1.1) and its two-dimensional counterpart serve as a natural approxi-
mation to the Gierer-Meinhardt ground state equations when €4 is very large and
a pattern formation occurs in the interior of the domain away from the boundary.

A particularly notable question concerning the pattern formation of the ground
states of the Gierer-Meinhardt system (1.1) and its two-dimensional counterpart
stands as follows:

Is it true that there exist solutions with an arbitrarily large num-
ber of spikes as the diffusion ratio parameter o gets smaller and
smaller? If so, then what is the estimate of the maximal multiple
spike number k in terms of a sufficiently small given o ?

The first half of this question has been affirmatively answered by [3] for the 1D case
and by [4] for the 2D case. There are other related results in the listed references
too. What they have proved is that given an arbitrarily large integer K, there is a
small constant ox > 0 such that if 0 < ¢ < ok, then there exists a ground state
solution of (1.1), which exhibits exactly K spikes in the activator component. There
are a couple of different mechanisms to mathematically construct these multi-spike
ground state solutions.

In this work, we shall answer the second half of the aforementioned question.
Specifically, the stand point is: given an arbitrarily small o > 0, how many (namely
up to what order k relative to o) spikes can one expect to occur in a ground state
solution of the limiting Gierer-Meinhardt system? As far as we are aware, this is
an open problem.

We shall take the approach of using the Lyapunov-Schmidt method to tackle
this problem. The entire work consists of three stages: the linear part, the nonlinear
part, and the final solution to the finite dimensional reduction. In dealing with the
variable number k of multiple spikes in an unknown order of power ¢ as conjectured,
we have to conduct sophisiticated a priori estimates in order to get the sharpest
estimates in each step throughout the process of analysis.

In treating the linear part, which is the principal approximation of the Fréchet
derivative of the nonlinear, nonlocal operator of the reduced single equation, a cut-
off decomposition plays a key role to achieve the bounded invertibility of this linear
operator. In the nonlinear part, we have to integrate all the aspects of multiple
spike interactions at several levels and to assemble all the estimates together for a
sharpest attempt.

In the rest of this section, we shall set up some basic facts and concepts involved
in this paper. Most importantly, we shall establish several Tool Lemmas which will
be very instrumental and frequently used in the subsequent sections.
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First of all, what we call spike (or bump) means a function which resembles
the unique analytic solution U(z) to the ODE problem:

v —u+u?=0, zek,
(1.2)

0<wu(x)—0, aslz|— oo.

We can solve (1.2) to get the explicit form of U(z) (see Appendix A):

6e” e
(1.3) U(z) = 6 sech? (g) = a +eew)2 = a —5—66—1)2’ x € R.

This U(x) is an even, positive function. The following properties of U will be used

frequently.

LEMMA 1.1. For the spike function U(x) given by (1.3), the following properties
hold.

6e |

(1) U(z) = ————, v € R. We have
(1+ el
Ulz) = |U(z)] < 6e77l zeR,
(1.4)
U(z) = 6e~ 1ol (1 +0 (e_lwl)) , as || — oo.
(2) U'(z) = be (1_63) _ 0e ( _63 ), x € R, and U’ is an odd func-
(1+e?) (1+e?)
tion,
U'(2)] < 6e71"l, zeR,
(1.5)
|U'(z)| = 6e~ 1] (1 +0 (e“””)) , as |z| — oc.
667‘1‘
)= ————(1—-4de ™ + e~ , € R.
(3) U () (1 —delel 4 o2, 5 e R
(1+e~lel)
(4) We have
9 3 36
U(x)de = | U*(z)dx =6, U’(z)de = —,
R R R 5
/ ’ 2 6
[W@lde=3. [ @)=
(1.6) B R
z|U(z) dz = 12log 2, z|U*(z) dr = 12log2 — 3,
/||U()d 121og 2 /||U2()d 12log2 — 3
R R
/ e 1702 (2) da = 3, / e U (x) dr = 12.
R R
PROOF. These integrals can be calculated directly. See Appendix B. O

The following two lemmas are most instrumental throughout this paper, which
allows us to make the sharpest estimates.

LEMMA 1.2. Let r be a given real number and p,(x) be the function

pr(x) = e Pleml#Hrl 2 e R
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Then the following properties hold:
pr(2)] = pr(z) <e ") 2 eR,

[pr@yde = [ el = g et
R R
and

1
(1.8) / |z|pr(z) doe = / lz|e~1elem et g = — e~ I7! (1+ || +7%),
R R 2"
1 1
/ |z|?p, () do = / |x|26_‘1‘6_‘1+r‘ dz = e I"l [— (|7°| + r2) + = |7°|3} ,

1 2 3
[ el (a2 de = [ fapetretiemae - o (o Bl 22 B
(L9) I & 68 "4 3

e 21+ |r))?,

(110 [ et < 2 (] )
R

(1.7)

<

oo|>—'

PROOF. The function p,.(x) can be explicitly written as follows:

e~ (et 2 e [0,00),

pr(z) =< e 7, x € [-r,0], if r > 0;
e2rtr, x € (—o0, —7],
67(214»7’)5 T E [—T’, OO),
pr(z) =< €, x€[0,—r], ifr<0.
e2rtr, x € (—00,0],
Then (1.7)—(1.10) can be validated by straightforward integration, using substitu-
tions or integration by parts. See Appendix C for the details. O

REMARK 1. Since these relevant integrals we deal with in the subsequent sec-
tions are calculated exactly in Lemma 1.2, without any possible improvement, the
corresponding estimates will be deemed as sharp estimates.

Let 3 be a constant, 0 < § < 1. For sufficiently small ¢ > 0, let
(1.11) 7o = (1= B)|logal.
We have, for any positive integer m,
(1.12) e~ Mo — o—m(1=B)|logo| _ ;m(1-8)

The following estimates on the sums of finite geometric and mixed series of uncertain
length are very useful in the sequel.

LEMMA 1.3. Let k > 1 be an integer and let 0 < b; < 2 for j =1,...,k. For
r=r, gwen by (1.11), we have

2018
—jr <
(1.13) E bje _1_01 —
and
k

, . 2|logo|01 p
1.14 b;(jllogol)e™" < —————
(1.14) > tytltogee s < TN
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for sufficiently small o.

PRrOOF. (1.13) is obviously true. We show (1.14) by using Abel’s transforma-
tion

m m—1 7
Z aidi = amDm — Z (ai+1 — ai) Di, with Dl = Zd]
i=1 i=1 Jj=1

This is the discrete version of integration by parts. Thus we can regard jr as a;
and e’ as d; to get

k k
. —Jr bj . —Jr 2 =T
biGlogoe " = 3G e < 75 3 e

k

J

2

— — —4) (here a = ——)

{ 1—e = 1-—e } 1-p
kre™" re=" "

< - —1- —ir

S R e k-1 J; e

re" re= " ' e " (1 — e*(kfl)r) }

kre=" (1 - e"") Kol per (1 — eI

1—e—r+1—e_T l1—e "

are™" ( N e" ) are™”  2|logolo! P
(1—e7)? (1-=ogl=8)°

1—e " -
O

As a corollary of (1.14), for sufficiently small o, there is a uniform constant
Cy > 0, such that

- Collogalat=P

k
1.15 bi[i(1 4 |logal)]e ™" < .
(1.15) ; j[i (1 + [logo])] 1 o1-P)
Let integer k¥ > 2 and 0 < 8 < 1 be given. Define set in R* as follows,
A= Ao, )
k
(116) §J<§J+laj:1u7k_17 Z:lgjzou

= 86= 80 and (1 — 3)|logo| < |¢; —gj+1| <1+ |loga|,

j=1,....k—1.

With the observation of (1.15), in the subsequent sections, we can replace the in-
equality | — 41| < 1+]logo| by writing |§; — &;1+1] < |log o], just for notational
simplicity, that will not affect any estimate. We shall not repeat this remark.

For any given £ = (&1,...,&) € A, define a corresponding multi-spike function
k
(1.17) W)=Y U(x—-¢§), zeR
j=1
The partial derivatives of W will be denoted by
ow
(1.18) Wix)=—=—=-U'(z=&), j=1,...,k

3
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By (1.6), we have
(1.19) /|W |d:c—3and/|W |dx—— =1,k
The following is a known result [4].
LEMMA 1.4. The unique variational solution in H'(R) to the problem
"+ (1-2U(x))p=0 inR,
o(x) — 0 as |z| — oo,

is p(z) = U'(x). Let Ly be the operator Li(p) = —¢" + (1 — 2W(z))p. Then the
kernel of Ly is
ker L1 = Span {Wy,...,W}.

The following lemma shows that the integral in (1.20) has the same order of k
which affects some estimates we will encounter.

LEMMA 1.5. For any given & = (&1,...,&) € A, given in (1.16), if p > 0 is a
constant, then

—p min |x—§&; 2
(1.20) /e gl o2 [k— (k — 1)0#/2} ,
R K
for0 <o <1.

PRrROOF. We can directly compute this integral to get

_ n |z—&| &1 %(fl+f2)
/ e B2 dr = / e~ H(&1—x) +/ e H(x—&1)
R —0o0 1

13 00
L / R s / o—la—x)
3(&1+€2) $k

2
_ 2k _2(k—1) _s(+iiogo _ 2 [k (k= D)on/?] |
1 7 1
O

Let us also introduce a cut-off decomposition for functions. Define 6(z) to be
a truncating function:

0(z) = 6,(x)
<
(1.21) 1, for |z| <r, /4,
= ¢ smooth and decreasing, for |z| € [ry/4,75/2],
0, for |x| > r,/2,

where 7, is given in (1.11), such that § € C?(R). For small o, we can make

|6’(x)] < 1. Then, for any given & = (&1,...,&) € A, a function ¢(z) defined on R
can be written as

k
(122 ole) = 2 21(a) = golo) + Z P8z~ &),

namely, ¢;(z) = p(x)8 (x —§;),j=1,... k. ThlS will be referred to as the cut-off
decomposition with respect to £. By the separation of the points &1, . . ., & we have

supp ; Nsupp ; =0, fori#jin {1,...,k}.
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Let

(123 =R\, o=[5-24+2] j=1..k
7 J J 4’ J 4 ’ ) )

Then supp ¢y C Qo and

k
(1.24) o=J9;
j=0

2. Main Result and Approach of Proof

We use A to denote the second-order distributional derivative of a function
defined on R, namely, Ap = ¢”. We shall use I to denote the identity operator.
Consider the linear differential operator

Lo(¢) = (~A+0%I) (p), @€ H*(R)NHj(R),

2.1
@1) 0<p(z) —0, as|z|]— occ.

The Green’s function associated with L, is found to be
1

(2.2) G(z,y) = % e~?levl for x,y € R.
o

Its verification is straightforward and omitted.

First of all, we can rescale the problem (1.1). Let 7 > 0 be a parameter, which
will be specified later. We can replace u and v in (1.1) by the rescaled T7u and v,
then (1.1) becomes the problem

' —u+u?fv=0, MR
(2.3) v — 0%+ Tu? =0,
u,v > 0 and u,v — 0 as |z| — oo.

Since L, : H*(R)NHJ (R) — L%(R) is invertible and its inverse operator is bounded,
the second ODE in the system (2.3) can be solved for v, and we have
(2.4) v="T[u?] 2 Lg" (ru?) = (~A+0%1) " (ru?).
By substituting (2.4) into the first ODE in (2.3), the rescaled problem (2.3) is
reduced to a single nonlocal nonlinear ODE problem:
2

s[u]éu”—quﬁ =0 inR,

u>0and v — 0 as |z| — oo.

(2.5)

The operator S is Fréchet differentiable. In order to distinguish the solution to the
original problem (1.1) and the solution to the rescaled problems (2.3) and (2.5), we
shall retain the notation (u,v) for (2.3) and (2.5) and denote the solution to (1.1)

by (u*,v*).
We take a normalization parameter 7 to be
2
(2.6) T=T7,= —U, where w = / W?(x) du,
w R

where W (z) is the multi-spike function given in (1.17).
In this work, we shall prove the following main result, Theorem 2.1.
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THEOREM 2.1. There exists a positive number oo such that for any given o,
0 < o < gy, there exists a solution (u,v) to the one-dimensional Gierer-Meinhardt
system (2.3) with the following properties.

(1) The u component has k spikes, with

k = const o™,

2.7
@7) where 0 < B < 1/2 can be arbitrarily close to 1/2,
and such that
k
(2.8) lirr%) u(z) — Z Uz —¢&)| =0, uniformlyinz € R.
j=1

(2) The v component satisfies

(2.9) lin%) [v (& + x) — 1| = 0, uniformly on any compact set of x,

forj=1,... k.
Here & = (&1,...,&k) is some vector point in the set A defined by (1.16). Moreover,

the corresponding multi-spike ground state solution to the original Gierer-Meinhardt
system (1.1) exists and is given by (u*,v*) = (Tu, Tv).

The rest of the paper is devoted to proving this main result. Our goal is to
reach a sharp estimate on the order of the multiple spike number k in terms of o.
Here let us lay out the approach of the proof.

Since the problem (2.3) has been reduced to a single ODE problem (2.5), our
strategy is to seek for a solution of (2.5) in the form

(2.10) u(x) =W(x)+¢(x), zeR,

where W is the function of multiple standard spikes introduced in (1.17), and ¢
ought to be a small perturbation function, which tends to zero as ¢ — 0 with
respect to an appropriate norm.

Let V(z) be the unique solution of the ODE problem:

V'—o?V+1W?2=0, zeR,
(2.11)
0<V(z)—0,as |z|] — cc.
According to (2.2) and (2.4), V =T [W?] is expressed as
1
212) Vi) = o [Ty = - [ et i)y,
R R

T 20 w

where w = [, W?(y) dy is shown in (2.6). When we substitute u = W + ¢ into
(2.5), it becomes

(213)  (W'=W)+ (" —p)+ —+ = -

TWe]+ (r.t.) =0,

where (r.t.) stands for all the remainder terms of the order O (¢?) as ¢ small. Thus
 satisfies the following equation
2We  2W?

2.14 — -
(2.14) Pty T

TWe] = S[W]+ N(W,¢),
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where the left-hand side is a linear nonlocal operator on ¢, and the right-hand side
consists of nonlinear terms
W2

S[W]:WH—W+ 7, and

W+ ¢)? W2 2We 2W?
(Wt (W FAA A TW¢] ) .

T[(W + ¢)?] v \% V2

We shall take the approach of the Lyapunov-Schmidt method to show the exis-

tence of a solution ¢ of this equation (2.14), which has the properties we demand.
As for the specific procedure, we divide the entire proof into the following stages.

(2.15)

N(W, ) = (rt.) =

STAGE 1. First we shall study the linear part in equation (2.14). But instead
of its full form, we will consider the following linear operator, which we call the
principal approximation of the linear part in (2.14),

A 2

oW
L) = =" +p—2Wep + (W, )
(2.16) w

2172
=—¢"+(1-2W)p+

(W.¢), @€ H*R)NHy(R),

where w = [, W?(z)dz and (-,-) is the L? inner product. Comparing L with the
linear operator on the left side of (2.14), we have made two simplifications in (2.16)

but preserved all the essentials in the linear part. These two simplifications are: in
(2.16),

1
(2.17) we replace V(z) by 1 and T[Wy| by — (W, ).
w

In Section 3, we shall consider the following problem: Given a function h whose
weighted L norm is finite, and given a set of points (1, ...,&;) € A, find a solution
pand v = (71,...,v) € R¥ such that

k
L(g)=h+7-VeW =h+ Y W, inR,
(2.18) =1
p(x) — 0 as |z| — oo, and
(p,W;) =0, forj=1,...,k.

Under the assumption we made in Theorem 2.1, we shall prove the solution operator
is a bounded linear operator with respect to a weighted L>° space by using the a
priori estimates, the cut-off technique, and the Fredholm alternative principle.

STAGE 2. In Section 4, we shall estimate the cost of the replacements made
in (2.17), which essentially proves the statement in the main theorem (Theorem
2.1) on v component. Moreover, we shall establish a key result on the estimate of
integrals

/RS[W](I)U/ (x—¢&)dx, j=1,...k,

which constitutes the main part of the nonlinear side in (2.14) under investigation.
We also want to estimate the weighted L° norm of S[W].
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STAGE 3. By the Lyapunov-Schmidt method, the problem of seeking for a
solution ¢ of the original equation (2.14) is imbedded into an augmented problem
of solving the problem:

k

SW+ poel (@) =D 3U'(-&), weR,
j=0

(2.19) ~
(0o, U (=€) =0, j=1,....k and ps¢(z) — 0 as |z| — oo,

for both ¢, ¢ and v = (y1,..., 7). This augmented problem is equivalent to solving

k
L(p) = SW]+ P(W,0) + > _ %W,
(2.20) 7=1
<<P5U/('_§j)>:07 jZl,...,k,

p(x) — 0, as |z| — oo,

where L is the linear operator of the principal approximation studied in Section 3,
and the nonlinear part P(W, ¢) is given by

A (W4+¢)? w2 212
2.21 PW, )= 5 — | =— +2Wp - w, .
(2.21) Woo) = T+ oA v p—— Wy
In Section 5, we shall make estimates of the nonlinear terms in P(W, ¢). Then we
shall use the contraction mapping argument and the fixed point theory to show
that there exists a solution (¢s.¢,y) of the problem (2.20) under the assumptions
we make. Furthermore, an estimate on the integrals

/]R (S[W+ 90075] () = SW](2)) U’ (x=§&)dx, j=1,....k,
will be made as a preparation for the final stage.

STAGE 4. Now the problem is reduced to solving the finite-dimensional problem

k
;%AW@—MU@—MM—AQWU@—MM
(2.22)

+/ (SIW + poe] = SIW)U' (x — &) dz,
R
(=1,...,k,

in the sense that there exists a choice £ = (£1,...,&,) € A such that the right-hand
side of (2.22) turns out to be zero, so that the component v, ¢ = (71,...,7Y) of the
solution of the augmented problem (2.19) or, equivalently, (2.20), is a zero vector
corresponding to this £&. Hence the linear coeflicient matrix of ~ is nonsingular for
small 0. This proof will be fulfilled by using the Brouwer fixed point theorem.
Finally, since there exists a £ € A which makes v,¢ = 0, then the solution ¢, ¢ to
this augmented problem (2.19) is exactly the solution of the problem

(2.23) S[W + ¢pe] = 0.

Hence there exists a solution u = W + ¢, ¢ to the original problem (2.5), which has
the property stated in Theorem 2.1.
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3. The Bounded Invertibility of the Linear Operator
Here we study the linear operator of the principal approximation L defined by

A 2

2
—¢"+(1-2W)p+ (W,¢), e H*(R)NH(R),

L(p)

where w = / W?(x) du,
R

w

(3.1)

as we mentioned in (2.16). The formal adjoint operator of L with respect to the L?
inner product is given by

(32) L'(p) 2

"+ (1 -2W)p+ ¥ (W2,¢), ¢ H*(R)NH;(R).
In the sequel, we shall always refer the set A to (1.16) and make the asumption (2.7),
which will not be repeated in each lemma and theorem. We may only mention the
assumption in Theorem 2.1 for this. We shall denote a positive constant without
need of specification by a generic C.

First we estimate

LW;)=L(=U"(-=&))=2(W(x) = U(zx - &)U (z - &)

S gy
(3.3) )
= Y We- U e-&) - 2 D wr-g).
i(£9)=1
where
(3.4)
k

Z 2U (x = &)U (z = &) §2ZU(y)|U' (y+& —¢&;) (by Lemma 1.1)
i(7)=1 i2
<72) e Wlemta TGl < 72N el (by Lemma 1.2)

i#£j i#£j
<72) ol IR (by (1.12))
i#£j
1-5

g 1-8
<144 < 28801,

where, and hereafter, we assume that o is so small that
(3.5) 1-0'7F>1/2.

Moreover, we have

S -y
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k

2
2 Y-+ YU -6 U ¢
— o7
! i
k
x Yy /U(y—Ei)U’(y—ﬁj)dy’
i(#i)=1""R
in which,
k
w:/WQ(x)dx > Z/ U? (z — &) dx = 6k,
R i=1 /R
k
(3.6) YU —g) =V (@ —go)+ D U (a - &)
j=1 J#jo
952(1—5) ,
(1-8)
<86+ Ty <36 +40
where 11%13‘1219 |z —&;| = |x — &o|, and

SN U@E-&)U(x—¢§)<36) o107 <36k (40'7%) < Co' 20,
i,5=1 i,j
ij#j i?gj

Besides we have

k
2 /U@—fi)U'(y—@-)dy‘SZ<1+|si—sj|>e-'fi—fj'
i(#)=1 "% oy

(by Lemma 1.2)

1 o
< Z (1 t1o /6|i —Jl(1=5)| 10g0|> ol =I10=8)" (by Lemma 1.3)
i#]

< 40'7F 4 8|logo|ot P,

Then we get

-2 - ) < g 36+ o) 4+ 11ogol)

< C(1+ |logol)o, for some constant C' > 0,

(3.7)

because k = Co~". Tt follows from (3.3), (3.4) and (3.5) that

(3.8) |L (W;)| < 28807 +C(1 +|loga|)o.
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Similarly, we have

(3.9) —@(W{U’(—@»’S%(Gj%ol") /}RWQ(I)U/(:c—gj)dz
<i(6+401‘5)/|W(:v)| Zk: Uz =&)|U" (x - &) dz
-3k R i(#£4)=1 l ’

< % (64 40°)* (407 + 8[log o) o~
< C(1+|logo|)o, for some constant C' > 0.
Then from (3.2), (3.4) and (3.9) it follows that
(3.10) |L* (W;)| < 2880 + C(1 +|logal)o.
Thus we have proved the following lemma.

LEMMA 3.1. Under the assumption of Theorem 2.1, it holds that

IL(Wy)|<Ca'=F  or L(W;)=0(o""),

(3.11) |L* (Wj)l Séal—ﬁ or L* (Wj)ZO(Uliﬁ), J =1,...,

k.

PRrROOF. (3.11) follows from (3.8) and (3.10), since 0 < 8 < 1, the term (1 +
|log o|)o is dominated by the o1=# term when o is sufficiently small. O

1
For a fixed 0 < p < 3 define L7° = Li°(R) to be the weighted space:

L = {w € Hy(R) : 1Tn|1supe“'m'|¢(x)| < 00} ;

(3.12)

w min |o—&|
with the norm ||¢]|, = sup { e 'Sisk Y(x)| ¢ .

Note that once k and (&1, ...,&) are fixed, L7? is a Banach space. Moreover, for a
given k and different £ = (&;,...,&) € A, the norms || - ||, are all equivalent.
Now consider the following problem: Given a function h € L;® (C L*(R)) and a

¢ € A, find a solution (¢,v) € L7 x R*, v = (71, ...,%), of the following problem,

k
L(p)=h+v-VeW =h+> vW; inR,

(3.13) =1
(p,W;)=0, j=1,...,k, and

o(x) — 0 as |z| — 0.

We address the property of such a vector v = (71, ...,7v%) which satisfies equation
(3.13) in the following lemma.

LEMMA 3.2. Suppose ¢ € Ly° and v = (71,...,7) satisfy equation (3.13),
where h € L? is gwen. Then it holds that, forj=1,...k,

(3.14) il < Ivlles < Cullhllw + Ca(o)lloll s,

where C1 and Ca(0) are positive constants, and Caz(o) = O (al_%)
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PROOF. Taking the L? inner product of (3.13) with each W;, we can get
(3.15)

k
(@, L™ (W;)) = (h, Wj) +7j/R|Wj($)|2dfC+ S (W Wy), j=1,....k
i(£)=1

From Lemma 1.1, we know [, |W;|? dz = 6/5. By Lemma 3.1, we have

§ |4 —h min |o—¢] _
(o, L* (W) < / Gt B¢ BT o1, < O]
We also have
ulrsniigklszi\

"1 =%ldz| b,

[(h W) sa/e*

R

< 6||h||# / e*# 12132’“‘17&‘([@4— </ eulrsniiélszidx) o1
le—&;|<rs R

For i # j, we find that by Lemma 1.2,

(W3, W;)| < / 36eI7lemle 88l g < 36 (1 +|¢; — &) e 15
R
< 36(1+|i — j]|logo|)o=ANi=dl,
Since (3.15) can be written as a linear system with respect to v;’s,

<907 Lx (W1)> - <h7 W1>
(3.16) <§I+A> y = : ,
<907 L* (Wk)> - <h7 Wk>

and the matrix A is given by

0 (Wa,Why - Wy, W1)
A (W1, Wa) 0 s (Wi, W)
(W1, Wiy (Wo, Wy) - (Wi, W)

whose operator norm relative to R* satisfies
1A]l < vk max |(W;, W;)| < 36V (1 + |log )0’ =7
(3.17) 7
1-—38
<C(1+|logo|)o ™ 2.

We see that for o small, the matrix (6/5)I + A is boundedly invertible. Let

o (0
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Then solving (3.16), we obtain

[Yllrr < Calleol ({p, L™ (W) = (b W)l

1/2
k
< Ca | ([, L (Wi + [(h, W5)])?
j=1
3.18 —p min |x—¢&;
S ca{Vioo el ea ([ HEE )
\/_ _Mlgigk‘m_&‘ 1-8
+12VE Re i< de | o || h|u
< Cillhllw + Ca(o) el
where
—p min |z—¢&;
Cr=Ca (36+12C0" %) / BBl
(3.19) R
Co(0) = CaCo—%.
Thus, the lemma is proved. O

As a corollary, if (3.13) admits a unique solution (¢, ) such that
(3.20) el < const |||,
then v = (y1,,...,7%) is uniquely determined by (3.16) and satisfies
(3.21) [v]lge < const||R]],,

provided that 8 < 2/3.
Define a self-adjoint linear operator

(3.22) Li=-A+(1-2W)I: H*R)N Hj (R) — L*(R),

which is a part of the linear operator L in (3.1). Set

k
(3.23) Z(@)=> (=& U (& —&)+2W(a).

Jj=1
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We have

B

(3.24) Li(Z) = (A + (1 —2W)) (Z = &)U (2 — &) +2W (z ))

j=1
- (ZU’(m—gj) +Z($—€j)U"($—§j))

—2W" + (1 -2W) (Z (=) U (z = &)+ 2W(m))

= AW 4 (1 - 2W)2W + Z (z—&)[-U" (- &)+ U (z— &)

—2WU' (x - &;)]
:—2W—4ZU(I—&)U(I—§J‘)—22(37_fj)U(z_gi)U/(I_gj)v

where

1/2
(325) |4Y U@-&)U@-¢)| < 1442 (/ ool —2fo+€i6| dx)

7
7 L2 Z;éa
1/2
— 144 - ~2lgi-¢1
> ({2 +1& - & @ i
i#]
<1y (1416 - &[V2) e lm6!
i#]
<144Y" (14 /Ji = jlTlogo] ) ol-dl0=
i#£]

i#]
< Co' 7 4 C\/E01_5| logo|'/? < Col=%8 + Col_¥|10ga|1/2
20(01_25)4—0( |loga|1/2)

1/2
< 576 ko' =P + 288 (Z li — ]| 1ogo—|a“—il<1—ﬁ>) (by Lemma 1.3)
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and
(3.26) —22 r—&)U(x=&)U (z - &)
z;é] L2
/2
<72y {/ |z|2e 22l e 22t - Eld:c} (by using (1.9) in Lemma 1.2)

Z;éa

\/_ Z (14 |i — j||logo]) o!"=910=)  (by using Lemma 1.3)
i#]

<C(1+|loga|)o' ™% =0 (¢'"*|logo]).
In (3.13) let us write ¢ in the form
(3.27) p=aW +1¢, where (W,¢) =0, and a € R.

Since L(v) = L1(v), (3.13) yields the following equality

k
(3'28) a(L(W),Z>+<L1(¢),Z> = <h7Z>+Z'7j <ijz>'

j=1

From (3.24)—(3.26) it follows that

(3:29) (La(@), 2)] = |, La(Z)]
{0(2%) + 0o F 10ga|?) + 0 (¢~ *10g ) } ¥
< 0 (o' 10gol) ol

IN

since [[¥||p2 < ||l¢[|z2. Then for ¢ € Li?, by Lemma 1.5, we obtain

128 -2 iy el \ Y2
(L1(4), 2)] < O (12| log b)) / BRI T o),

1 1/2
< 0 (6" log ) (;(k . 1)0”) el

_58
0 (=% 10gal) ¢l

(3.30)

IN
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Next we estimate (L(WW), Z) in (3.28). In fact, by using (1.7) we get

(3.31) (L(W),Z) = <—W” + (1= 2W)W + 2w (W, W>,Z>
:<—W2 i By z> Y Wa-6)U@-§).2)
iZj
2
+<2Ij}/ Z(U(w—ﬁi)aUl(x—fj)>=Z>
iZj
k
- (%’“_1)< Z (z— &)U ( x—§g>+2w>+Za'l N0 Z] 1
j=1 i#£]

+0 (o' Pllogal) |W?|| . 11Z]| e

Note that

(1) <W2,i<x—@w' (v &) +2W>

Jj=1

_<£k_1) /W3

k
I S L

1/1
not both j

where the triple sum is estimated as follows,

k
D /R<x—sj>U'<:c—@)U(m—@-)U(m—@)dw

j=1 il
not both j
k k k
=50 SENEL 9 SRR 1Y) 3) SERER RS
j=1 i=j =1 i=t# J=1 i)
or {=j Z#]
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and

H1<2Z Z

Jj=1 Ié jl=1

<4322 > /|x|e 2] g~ |26~ el gy

j=1 \Z jl>1

§432e*12 > (14— jl[logal) gl II=F)
=1 |t—j[>1

< Ckllogo| o' =P < Co'=?P|log o],

H2<2Z Z

Jj=1 \f jl=1

<432Z > /|x|e le=2le+8i=Sel gy (by (1.10))

J=1e—j[>1

/Ra:—@ VU (@ — &)U (& — &)U (& — &) de

[@-6)U -0 @ do
R

<8 ¥ 10 (g - 4ot )

J=11—j|>1
k
<864y Y glHas) (|¢ — || logo| + JMU*W)
J=11—j|>1

<Ck [01_5| logo| + 02(1_5)] =0 (0" |loga|),

I D

j=1 either [i—£|>2
or |i—j|>2
or |e—j[>2

k
< 2162 Z / |x|e*|x|e*\x+fj*§i|e*\x+fj*§z\d:€

j=114,¢ as above

/R<x—sj>U'<:c—@)U(m—@-w(w—@)dw

. oli=t0=0) [ |zle~leldz  (if |i — ¢] > 2), or
<216y Y oli=il=F) [ |z|e~le+&—Eeldy  (if [i — j| > 2), or
j=11,£ as above olt=il(1=p) f]R |:Z?|67|I+Ej7§i‘dz (lf |€ - .7| > 2)

< 216 k2C|log o|o?1 =) < Co?1720) | log 0.

Therefore, we obtain

k
(%k — 1) <W2,Z(a:—§j)U' (x —¢&) +2W>

(3.32)
1(5
>3 {3 [ W@ s 40 Hlogal | 2 k40 (1 #l1ogal),
R

because

12k 12k 1 1

— 1= —1>(2—=)—-1== (£ 11

o 6k + Col—2P[log o =z < 2) 5 (for o small)
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3 3 36
/RW (:c)dx>k/RU (x)dx = 5k.

k

1Z][zr < Zw—fg =& +2AWn

and by Lemma 1.1,

Moreover, we have

s
== Wil +2[W]zr = 3[[Wllr = 18k,

k
121> < Z (=& U (x=&)|| +2(W|re

L2

1/2
k(/ lz|? |U' (z)] dz> +2kV6
R

k[G(/W “) +2V6 =k(%+2\/6>,

12
1_o1-8 W22 <24V6k, for o small.

and

[W2|| L2 < W Lo W12 <

Substituting these and (3.32) into (3.31), we obtain
(3.33) (LW),Z) > 6k+ O (¢'*F|loga|) + O (01*2’6) k+0 (c'"*F|loga|) k
=k[64+0 (0172’6| logal)] .
On the other hand, we have
(3.34) (R, Z)] < (IRl 2] e < 18K[|A]l4,

and

E

k
> i
Jj=1

where

/ijmz S /U' (r— &) [(x— &)U (z — &) +2U (¢ — &)] da

i(#£5)=1

because, when ¢ = j, we have
[T @)= 6) U =€)+ 2W @ =) da

—- [ @)t =— [ @) do=0.
R R
(odd function)
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Thus we get

(3.35) Z”yj (W;,2Z)| < ||fy||z Z {/ 36|xz|eI*lele Sl gy

J=li(#£5)=1

+ / 72e|x|ex+5i5jdz]
R

<Y [36 ( / |x|e-6°'w'dx) L]
g
+72(1 + |i — j||log o) oiﬂ(lm}
< Ck|ly|| [U(lfeo)(lfﬁ) + U(lfﬁ)| 1Ogg|}
<k (O, + Co(0)lgll,.) O (a“*eo)(l*ﬁ)) . for any small e > 0,
where we used (3.14) in Lemma 3.2.
LEMMA 3.3. Under the assumption that

(3.36) 0<p< %,
it holds that

2
(3.37) 2 w01 < Gall + Cal@leln
for a solution (¢,7v) to the problem (3.13), where Cs > 0 and Cy4(c) > 0 are

constants, with the property that Cy(o) = O (01_¥ |log O'|).

PRrOOF. From (3.28), (3.30), (3.33), (3.34) and (3.35), we obtain

1 56
. < =31 18Kk||h
(338) ol < e g mogay 1€ (71 % 1ogol) el + 18k]AlL,

+k<cl||h||u+cg<o>||so|| )0 (o=}

= 6+0 (ol 2ﬁ|1og(f| {(18+Cl ( (1_60)(1_B)>)Hh”u

N (0( 38 |1Ogg|) Co(0)0 (a“*m)“*"))) H‘P”,u}

< Cs)lhlly + Ca(o)lll,

for o sufficiently small, where Cs > 0 is a uniform constant, and Cs(c) = O (Ul’%)
implies that

Ci(0) = O (o' F10ga]) + O (o1~ FHI-w)1-7))
=0 (01_¥|logo|> .
Since (3.27) implies that
(3.40) (W.9) = alW|[72 + (W,0) = al| W2,

(3.39)
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and we see that

Wl =68+ 3 [V -6)U -6 ds

)

i#£]

< 6k+Z36/ e~ lPlemlerei=8&ldy  (by (1.7))
i#j R

<6k+ Y 36(1+]i—j|[loga]) o710~ (by Lemma 1.3)
i#£j

< 6k + Cko'P|logo| =k (6+0 (017ﬁ| logal)) .

Hence, we obtain

2 2
Z < 2 )
2 w0l < g W < el
(3.41) 1 B
< o (Collbll+ Ca(@)lell) & (6+ O (1~ log o))
= Cs[h[l + Calo) [l
where
Cs (2 Cs (2 + % O (o177 10g0|))) is a constant, and
(3.42) ,
Cyu(o) = Cu(0) (2 + 3 O (o'77 10g0|)) =0 (01_%|10g0|) .
Thus the lemma is proved. O

With all these preparations, we are going to conduct an a priori estimate of
the solution ¢ of the problem (3.13), if it exists. According to (3.1), (2.1) and (2.2),
a solution ¢ to Eq. (3.13) satisfies the integral equation

L 2w
(3.43) @(m)zi Re 2Wep — » (W,0) +h+~-VW | d

In order to get a sharp estimate of the integral term involving 2W¢ on the right-
hand side of (3.43), we use the cut-off decomposition of ¢ introduced in (1.22).
Recall that by (1.23),

Q=0QU U---UQy, (mutually disjoint)
k
QQZR\UQjande:[gj—l'g,fj—f—l'g], 7=1,...k,

j=1
1
where m,,:rg/él——( B)|log o], so that
e T =g o/t < g1 (1-F),

For any 7 =0,1,...,k, we shall consider the integral terms

1 ow?
—/ e'xy'l ZW (W, 0) +h+7-VeW | dy
Q,

(3.44)
=JH+ I+ TP+ 3 /Q el YIn(y) dy.
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1 3
Since we choose 0 < p < 1/3, we have 1 < 3 For the simplicity of notation,
- p
we set
A
(3.45) p(z) = p(x,&) = min, |z =&, zeR.

First of all, it is easy to see that

l/e“w_y‘h(y) dy’ < 1/6_‘1_y‘6_“p(y)||h||udy
2 Jr 2 Jr

= l/e_(l—u)\ac—yl (Im it gil)d?JHhHM
(3.46) 2 Jr
1 - min |z—&;
Lo ([ iy )
R
1 —pp(z
= 1 € ,LLP( )||h’||:u'
iy
n (3.44),
X k
J}_§/ e T2 (1) > u(y) dy,
Q, =0
1 e 2W3(y)
2 o T
1 —o—
J3 = _/ e TYly VW (y) dy.
2 Jq,

k
We start with the estimate of le. Then J! = Z le. Note that for any y € Qo,

. >
(3.47a) lrglgkly il = @0

We find that
Bl =|[ e wwem b < [ el

k
&il
S/ e lz=vl 626*|y*5j| (e l<<k|y ||<p||u>dy
Q0 o

k

_ &l
< 6/ o=zl Zef(lfu)lyfﬁﬂ (e 1<i <’“‘U )dyH‘P”u
Qo

j=1

k
S R D S P
Qo j=1

because
—2ule—y|—2 i _¢. _92 i _¢.
e plz—yl ”é?gkly &l <e “12&‘&” &l o—2up(@)

— )

— = — > — .
where [z —y| + min |y —&[ = min {lo—y[+|y—&Gl} 2 min |z —&|
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Moreover,
k
Y e Ommlv=&l = e~ (=myv—¢io| 4 Y e Ommlv=&|
j=1 Jj#jo
(3.47D) (where |y — &, | = min, ly — &)

S e_(l_ﬂ)wd + 26_(1_H)(w0+7‘v) + 2e~ (1-p)(zo+2rs) + ...

—(1—p)zs 1—p)(1-B)/4
2¢—(1—H) _ 25 (1—1)(1-8)/ < 4B/
T 1l—eUpre 1 gl-p)(1-p) = ’

for o small. Therefore, we get

T3] < 6e20r@) (/@ e<12ﬂ)|“y'dy> 40 == g,
0

3.48 48 1 w(1-p)/4—2up(a
(3.48) _ o (1=m(1=B)/4=20p(@) | ||

1—-2p
< 1445 1-mO=A)/Ac=20@) | | ,.

For j =1,...,k, due to suppd (- — &) NQ; =0 for £ # j and [0 (y — &;)| < 1 for
y € R, we have

k
|7} = ‘/Q e TVIW ()Y ply) dy
j £=0

J

/ I ()0 (y — €) oly) dy

k
< Z/Q_e"z‘y'U(y—é‘m)lw(y)ldy

ko péitas

=3 [ e - ) et dy
k To
=3 [ O g - ) e+ &)l dy
k Ty ly+&;—&l
<GZ/ PGl & el TEEITE T o)
~ H
k T —2p min |y+&;—&|
<6 Z / e 1Py Glem(Ammly+E—Emle "Tasisi™ T gy ||<,D||#
—
k Lo —2p min |z—&;|
Sﬁz/ e~ (m2mlemy=&3 = (=l —enl VBB gy o)
s

 ge2un() (/ e<12ﬂ)|zy5j'e<1“)'y'dy> o1l

—2pup(z Z/ (A—2p)|le—y—&;| o~ (1=p)|y+&;— E’"|dy ||90||#7
m#£j
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where, for m # j, we have

3(1—pw)(1-8
(3.50) Ze*(lfu)\y%rémlgzaﬂ WD 2V saimaes)

= F = =
— 7 V2-1

With the key observation that for any x € R, y € [—z,,2,], there is an index
jo = jo(z,y) € {1,...,k}, such that

Iw—y—§j0|=1g1]igklw—y—§jl,

we can calculate
k
Ze—(1—2u)|w—y—€j| — e—(1—2u)|w—y—5j0| + Z e~ (1=2)z—y—&;]
j=1 J#jo

—(1—2p)|z—y—&jo-1] —(1-2p)|z—y—Eo41| o ...
(3.51) sl+e e T
<142 (67(172@%/2 4o (12m)3re /2 4 —(1-2u)5r0/2 | )

2e—(1=2u)r5/2 203 (1=21)(1-p)
=l oo

=1+ <C57

1— e_(1_2”/)7‘(r

where C5 > 0 is a constant independent of small ¢. By summing up }le’ for all
j=1,...,k, and using (3.50) and (3.51), we get

(3.52)
k k
|J = Z . Z | T2 < e 200 g, {1440(1—u)(1—6)/4
=0 =0
v, k
+/ 62 —(-2la-y-& |~ Q-wlyl gy
+Z/ 62(“ 20) 2 —y—€1 ;£ (1= (1=B) gy,
m#j Y TEe
< e~ 2mp(T) ”‘p”u 14401/12+GC51 +6C5/ —(A=p)ly+&— Sm\dy
Lo m(#a) 1
2./2
< e 2e(®) llell . {144 o124 18C5 + 6 Cs \/5\/—1 oi1=-ma=p) 2170}

< e 2@ |||, {18 Cs + 144 0/12 4152 C5010-M0=0) (¢ + |logol)} ;

where we computed

2v2  2V2 re _ 1
" <1 —5v2 d2zr, == <= 1
S < oq =7V and 2w, = < (1 ) logol.
Secondly we estimate Jj2 and J? = Y Jj2. With similar observations as in the

processing of J!, by using Lemma 3.3 and (3.47) and (3.51), we can get the following
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estimates. First,

(3.53)
! o 2W2(y)
J2 = |— lz—y| [ _ w. d
‘ 0’ ‘2‘/006 < w < 7(P> Yy
1 e
< 5 (Caltll+ Cu@lel) [ W) dy
0
k 2
<18 (Callil+ Cul@lel) [ e S sT) ay
Q0 e
2
a —2p min |y—¢&il
S18(C'3||h||#+C4(J)||gp||#)/ Ll DTN NP P
Qo e

< 18 ¢ —21r(T) (03Hh||u + 04(0)”90””)/ e~ (1=2p)lz—yl 15 ,(1—1)(1=5)/2 dy
Qo

(A=) (1=p)/2

17
Copp(a) O
= 576 ¢ 21r(x) o, (G|l + Calo) el )

= e 217 (Co(0)|Ihll + Cr(0)lellu)

where

576
1—-2u
(3.54) C7(0) = Cy (0) O (0(1—u)(1—6)/2> -0 (01—¥+(1—u)(1—6)/2 | 1og0|)

=0 (017%) ,

where (1 —p)(1—8)/2> 254 =1/6. Next, for j =1,...,k, we have

%/Q e (_%{Z(y) w, <p>> dy

1 k
< 5 (Cllhllu+Ci (@) gl) { [ el vt -y
j =1

J

CG(O') = 03

c(1=m-p)/2 _ (0(1—u)(1—6)/2> ,

|77 =

+/Qj e~ lz—vl ; Uy —&)U (y—&)dy

m%é

k To
< 18(Chlh ] + Ca (o) ell) {Z / e lomv=Ele=2ure ¢l gy
t=1 Y "o

(3.55)

To
+ Z / e~ 1e=y=&l o= ly+&i —Eml p—ly+&5 =&l dy
m,l v " To

m%é
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<18 (Csllhll, + Ca (0) o) e V2l {/ e~ (1=2mla—y—&| ~20-)lyl gy

e~ (1=2w)|z—y—&;| o —2(1—p)|y+&; &« dy

+Z / (=2la=y=&;] o= (=) 74—l = (1=Wly+6~6] gy
m;él

Summing up (3.53) and (3.55) for j = 1,..., k, we obtain

k
21 < 30152 < 0@ Lo o) il + € )
j=0
k
+18 (C3||hll 4+ Ca (o) lell ) Z —(=2m)le—y=&l o =201=mlyl gy
2o
k k
/ S emligl [ 5 em2-mlte -l | gy
Toj=1 o(#4)=1
k
/ S e (m2mlemr=gl | § (ol —énl=(mmlre—ad | gy 4
~To j=1 m,l
m#L
where
k
Z (A=2mlz—y=&l < Oy by (3.51),
Z 6*2(1*#)\y+§j*&| < e20-mirs | 4 2e20-mwre 4 .
o(#5)=1
96 31— (1-5) \
b 5(1=p)(1-p) _
< [ o200 (=5) <(Co?2 , forally € [—z,,24],
and

Z e~ I=mly+E;—Emlo—(I-mly+& -8l < Z e~ (I=m)|&m—¢&e|

m,l m,t

m#L m##L

Zk: S gt 0-p)
m=1 {£m

25 (1—p)(1-p)

——aay S oI vy € [—ag, a0
— 0
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Therefore, we come up with
| 72| < €72 {C (o) |l + Cr (o) il

o= (1-5)

1
18 (Gl + 1) oll) s | 2

(3.56)
+Co31=m0=8) (0 + | log o) + C o1=WA=D=B (¢, + |10g0|)} }
< 2@ [y (o) bl + Co () llll,]
where
(3.57)
Cs(0)=Cs(0)+18C5C5[---] =0 (0'% (A-p)(1= ) +0 (0(1*“)(1*ﬁ)*5| loga|) ,

Cy (o) =Cr(0) +18C4 (0) (al %) ( =% 5(1-m(1-p)-8 |1oga|2)

=0
(0]
provided that

(3.58) Q= =p)=f=1-p—(2-p)B>0, 0f5<;:—u-

2
When we choose p = 1/3, then (3.58) implies 5 < 5 For p close to 0, 3 is close to
1/2.
Thirdly we estimate J? and J® = Z J3, with the aid of Lemma 3.2. In fact,

|70

= B/ﬂo e‘””y”ngW(y)dy’ l/QO el y'Z%
1 k
<5 [ erieealay
j=17%%
i min |z—&;|
§3||7||2/Q e~ (= le=sl =) gy 122,
'— 0

3(Calbll +Ca 0 ligll) ”Z [ ey

Where, by (3.47a) and (3.47b), we have
k
Ze’(l’“)‘y’@" < 4o(1-m=H)/4,
j=1
so that
(3.59)

75| < 3(Cullhllu+ C2 (o) lll],u) e (40<1—u><1—6>/4)/Q e~ (U=mle=vl gy
9
A e F0-m(1-p)
< ¢ (Cllbllt Ca (0) llpll) o400,
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For j =1,...,k, we have
(3.60)

LR

k k
L[ . 1 e
5/9 el "y Wily) dy §§||7||Z/Q e U (y — &) dy
J =1 =1 J

k
<3(Crllhlly + Ca (o) [l ) e Z/ﬂ e”(mmllemvlHlv=&l) gy
=179

k To
=3(Ch|lh]l, + Ca (0) ||| ) e+ Z/ e~ (I=m(le—y=& I Hly+6 &) gy
i=1"Y ~ %o

<3CHc+ Ca o) [l et | [ etmmiemmsl =ty

T o k
+/ e~ mmlemr=6l 3 ol —6il gy
4 i(#£5)=1
<3 (Cl||h||u + 5 (0) ||<P||u) €D {/ e~ (I=mlz—y—¢§;l ,—(1-p)ly| dy

2o 90 (1-u)(1-0)
~epleyg,| | 20T
+/ ¢ Tt W -

—To

Summing up (3.59) and (3.60) for j =1,...,k, by (3.51), we obtain

24
\J3| < e He(x) (Ci||h]lp + C2 (o) |l ) { m o (1= (1-5)

1—
+3C5 [/ ’ e~ (=mlyl dy +/ 0 4o 11-m) (A=) dy}} (for o small)

3.61 —up(z 24 14 ,0-
(3.61) < e @) (Cy |||, + Cs (o) ||<p||#){1_ o i (1=m)(1-5)

+3Cs LL gi=m=5) L 953(1-m0=0) (Cy 4 |loga|)} }

= e 17 (C1o () 12l + Cr (0) [l2]l)

where

Cio(o) =0 (aﬂl*“)(lfﬁ)) , and
(3.62)

Ci1(0) = Ca(0) O (a%ﬂ—mu—m) ) (a —%%u—wu—m) _
We summarize these estimates in the following lemma.

LEMMA 3.4. Under the assumption

(1 1—=p 1—pu
3.63 0 - — = —
(3.63) <6<mm{2,2_#} E—”
for any solution (p,7) to the problem (3.13), it holds that for © € R,
~2u min |o—&|
(3.64) lp(z)] <e = rsisk (K1llellu + Cs(o)]|R]])
' —p min |z—&;|
+e s (Cra(o)llelln + Kalhl,)
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where K1 > 18, Ko > 0 are constants, and
(3.65) Cs(o) =0 (0(1_“)(1_’8)_ﬁ| 10g0|) ,
(3.66) Cii(0) = O (g—?%u—mu—m) _

PROOF. First of all, note that the assumption made in (3.63) is necessary due
to the assumption (3.36) required in Lemma 3.3 and earlier proofs, as well as the
assumption (3.58) required in (3.56) and (3.57).

We assemble (3.43), (3.44), (3.46), (3.52), (3.56) and (3.61) altogether to reach
the following inequality,

1
lp(z)] < ‘J1’ + ‘J2’ + ‘J3’ + '5/6—1—11 h(y)dy'
R
< e 2@ [Cho|| |l + Cs (0) |1l + Co (o) 1]l

pple 1
(3.67) #0200 [ (0) [l + Cu1 (0) el + 12— 1
—2p min |z—&;|
=e = [Cs (@) [|7lln + (Cr2 + Co (0)) |l ]
—p min |z—§&;| 1
Lo B [(ﬂ + Cio (J)> Ilh]l,. + Ch1 (o) ||<p||#] , Yz € R,
where the constant C12 comes from (3.52) for ‘le, with

Cia > 18Cs + 144012 4+ 15v2C5 0105 (Cy + | log o))
and the other relevant constants are introduced in the estimates of ‘J 2’ and ‘J 3’.
Finally, let
K; (> Ci2+ Cy(0)) be a constant, K7 > 18 Cs > 18, and
3.68 1
( ) Ko (2 — + Clo(g)) be a constant,
—

then we reach the conclusion of this lemma. O

REMARK 2 (The order of k = O (¢77) and the effect of 1). According to the
proof procedure we have accomplished so far, the assumption (3.63) on the order
of k=0 (0‘5 ),

1—u 1
0<f<—— (K=
A (<3)
. 1 . 2 11
is sharp. As we choose p = 3 then accordingly 0 < 8 < 3 € 33 ) But we can
1—
reduce the parameter p > 0 of the weighted norm to increase the number a
— U

and to make it very close to 1/2. We shall make another remark on the order 3
after we finish the estimates in the nonlinear part later in Section 6.

LEMMA 3.5. Under the assumption (3.63), if sequences {o,,} C RT and {h,} C
Ly satisfy 0 < 0, — 0 and [|hy||, — 0, as n — oo, and if (pn,y") € L7 x R is
a solution to the problem (3.13), then it holds that

(3.69) lenll = 0, asn — co.
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PROOF. Suppose (3.69) does not hold. Without loss of generality, we can
assume that
lonll, =1, forall n.
Substituting ¢ = ¢, h = hy,, and ¢ = 0, into (3.64), in Lemma 3.4, and then
taking the limit as n — oo, we get

*2u1r<mgk\m &il
(3.70) lon(2)] < Kje , z€R

or equivalently,
n [z—&] —p min |z—&|

3.71 e gt n(2)| < Kie 'sisk z eR.
( ¢ :
We claim that there exists at least one index m € {1,...,k} such that
log K log K 1
(3.72) sup{|g0n(:c)| cx €Ly, = [{m— o8 Lo+ o8 1]} > T
1

Otherwise, for any

k
log K log K
U[ 0g 1€j+0gu1]7

we would have | | K
Mlgllgkm & | 1
on(z)] < — =1.
Ky

Moreover, for any

k
1ogK1 logKl]
'IGR |: 7§+ )
! Yoo

by (3.71) we have

n |z—§; z—&; K
BRI @) < e BRI By
Ky
Then it follows that
min |z—&;
e“lﬁiﬁ’“‘ | lon(z)] <1, for every z € R,
which contradicts the assumption |[¢,|, = 1. (Note that the norm [|¢, |, must be
attained on a subset of R with a positive Lebesgue measure.) Therefore, the claim
(3.72) holds. However, the index m may depend on n.
Define the translated function @, (x) = ¢, (¢ + &n), € R, where &, is speci-
fied in (3.72). Then for all n > 1, one has

- 1
(3.73) sup - |@n (@) 2 7=
\m\S%logKl 1
Note that

1
—log K1 >0 due to K; > 18.
1
On the other hand, (3.70) implies that
0< |Pn(z)| < Ky, z€R.

By the Heine-Borel Theorem on compactness and by a diagonal sequence selection,
we can confirm that there exists a subsequence of {,,} which converges uniformly
over compact intervals to a limit function denoted by ¢(z), x € R. We relabel the
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convergent subsequence as the same as {¢n}. Since ¢(z) satisfies Eq. (3.13), we
have

h
L(@n) =hn+ > VW, z€R,

j=1
here ;L;(:E) = hp (x4 &) and W; = W, (z + &,). Thus @, satisfies the integral
equation

. 1 s 2WR g\ o~ .
(3.74)  fu(@) =5 / e~ leul <2W<pn == (W, @)+t vgw> dy,
R w

where W(z) = W (x + &n). Now take limit as n — oo and use the Dominated
Convergence Theorem to see that the limit function ¢ satisfies the equation

315 pw) =g [ (2W0) dy = [T @p) . v e R,

because the remaining terms in (3.74) converge to zero, namely,
2W? /-
/ e~ lz=vl (—— <W, ¢n>> dy — 0 because of Lemma 3.3,
R w

/ e~ 1#=¥h, (y) dy — 0 by the assumption |hnll, — 0, and
R

/ e~ lz=ylyn . V§V~V dy — 0 because of Lemma 3.2.

It follows t}]?at ¢ is a solution to the problem:
Li(p)=—¢"+(1-2W)$=0, z€R,
(3.76) <¢, VT/j> -0, j=1,...,k and
@(x) — 0 exponentially, as |z| — oo.
By Lemma 1.4, we know that
Ker L; = Span {W1,..., Wi} = Span{Wl, . ,Wk} )
Hence, (3.76) implies that
(3.77) @ € Ker Ly N (Ker L))" = {0}, ie., @(z) =0.
However, ¢,, also satisfies the equation

- 2TV 2
Gn=(—A+1)! lQW% _

)

(W, @n) +hn 4" Vel

by the regularity of the solutions to harmonic equations, this implies ¢, € H*(R)N
H}(R) and
H95n||H2(R) < const, forn > 1.

The Sobolev imbedding property H2(R) — C!(R) infers that {(,} is uniformly
Lipschitz continuous on the compact interval Iy = [—/fl log K1,
ptlog K1]. This together with (3.73) implies that there is a positive number

1o > 0 such that
1
Iy : | on > — % > .
meas{xe 0 |pn(x)] > 2K1}_V0
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Therefore, there exists a measurable subset Iclyc R, such that meas (f ) >0
and

(3.78) @(z) >0 forz eI
Finally, (3.77) and (3.78) constitute a contradiction. This contradiction shows that
(3.69) holds. The lemma is proved. O

Now we can prove the key result concerning the solution of the augmented
linear problem (3.13), which is the principal approximation of the linear part of the
original equation (2.14).

THEOREM 3.6. Under the assumption

1—
(3.79) k= consto P, with 0 < 3 < ﬁ7

1
there exists a positive number & < 3 such that for any given 0 < o < & and for any
§=(&1,---,8k) € Ain (1.16) and a given h € L{?, the problem (3.13) has a unique

solution (p,7), which is denoted by o = J(h) and v = II(h). Moreover, there exist
two positive constants 'y and T'y such that

el = 1T (A)llw < Tollllu,

(3.80)
[Vller = IT(A) g < TillA]],.

PROOF. Define a Hilbert space H by

H= {<peHg(R) W) =0,5=1,...,k and o(z) =2 0 as || —>oo},
o
where o(z) =5 0, as |z| — co, means that
n

lim sup e*1®! | (z)] < oo,

|| — o0
and H is endowed with the norm of Sobolev space Hg (R). A solution to the problem
(3.13) ought to be such a pair (¢,v) that ¢ € H satisfying the equation

381 [V o0y dy - QW) + 2 (W) (W20) = (), Vo €

and vice-versa, and v € R* satisfying the equation (3.16). Note that this variational
equation (3.81) is equivalent to the following version,

(3.82) p—(1=A)"R(p)=(1-A)""h,
where R(p) = 2Wp — 2w

and R is a bounded linear operator, so that (I — A)~"!R is a compact operator on
H. And (I — A)~'h € H. Thus by the Fredholm alternative principle, Eq. (3.81)
is uniquely solvable if and only if it admits only the trivial zero solution for h = 0.

Suppose the existence and uniqueness part of this theorem does not hold, then
there exists a positive sequence {0,}, 0, — 0, as n — oo, and a corresponding
solution sequence {¢, } C H of the problem (3.13) with A, = 0, such that [[¢n ||, = 1
for n > 1, since we can always normalize a nontrivial solution ¢, with [l¢, |, #
0. However, this directly contradicts Lemma 3.5 as we have shown. Therefore,
applying the Fredholm alternative principle and Lemma 3.2, we can assert that

(W, ). Since (I — A)~! is a compact linear operator
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problem (3.13) has a unique solution for any 0 < o < &, where & is some constant
sufficiently small.

To show the boundedness of the solution mapping ¢ = J(h) and v € II(h) in
(3.80), we can use (3.82). By the inverse operator theorem in Banach spaces, the
unique solvability we proved in the first part of this theorem implies that

[I—(I-A)"'R] ~! is a bounded linear operator,
so that the linear operator J for the ¢-component,
(3.83) J=[I-I-0)"'R " (I-A)" eL(Ly LY,

is bounded. Then by Lemma 3.2, the linear operator Il for the y-component is also
bounded. The proof is completed. |

4. Nonlinear Estimates

In this section, we have two objectives. First we shall take the full consideration
1

of the o effect in T[W ], which is replaced by — (W, ¢) in Section 3, and estimate
w

the difference between V(z) and constant 1, while we set V(2) = 1 in Section 3.
Second is a key result on the estimate of the integrals

/RS[W](I)U/ (x—¢&)dx, j=1,...,k,

which constitutes the main part of the nonlinear side in (2.14). Here, W (z) defined
by (1.17), A defined by (1.16) and L7° defined by (3.12) remain the same.

I) For each given & = (&1,...,&) € A and W(z) given in (1.17) accordingly, the
function V =T [Wﬂ is the unique solution of the ODE problem (2.11), which has
the explicit expression (2.12). We first want to know the behavior of this function
V around the points &1, ...,&;. For each £ =1,...,k, we have
(4.1)

1 —0O|¢—T k
V(@):;/Re e Z;UQ(I—fj)+;U($—§i)U(I—§j) dx
” iZj
1 k
:1+;/R(e_”‘5’f_:”|—1) 2 U? (I—§j)+izj:U(:c—§i)U(z—§j) dx

i#j
where

w= / W?(x)dx, as we introduced in (2.16).
R
By the instrumental inequality
(4.2) 0<1—e"79 <oy, which isvalid for all y > 0,

we can make the following estimates, in which C' may represent different positive
constants which need not be further specified.
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A) For j # ¢ in the first sum in (4.1), we have

‘/R(ef"‘&*x'—l) U? (z— &) da g/R‘l—ef‘ﬂ&*Ej*I'
g/]RaKg—ﬁj—gd Uz(ac)dxga(/R |:C|U2(x)dx+/R|§g—£j|U2(:U)dx>

U?(z) dx

(4.3)
=0 (12log2 —3+6|5 —&;|) (by Lemma 1.1)
o (12log2 =34 6]¢ — j||logo|) <o (12log2 —3 + 6 (k —1)|loga])
< Co'Plloga|, for some constant C' > 0.
Hence,
(4.4)

/R(ﬂ'& ol _ )zk: (v — &) da| <

/R (el = 1) 0% (2 — &) da

/ ( e 1) U? (z— &) dx

>
i(F6)=1
< a/ || U2(z) dz + (k — 1) C o' 7 |log o]
R

< (12log2 —3) o + (k— 1) C o' ? [log o] .

B) For those cross-product integral terms with either ¢ = ¢ # j or j = £ # 1,

we have
(4.5)
/ (ef‘ﬂg"*:’:‘ - 1) U(x—&)U (z—&;)dx
i=4+£] or jfl;éi R
<2 Z /\—”'”'—1} Uy+& —&)de
;Ae) 1

<720 Z /|y| “lvHee=Sl gy (by using (1.8))
j(£0)=1

=360 Z el (1 g0 — ] + 6o -
iFD=1

Lo
T
~—

k
<360 Y o IOA (140~ j|[loga| + |£ - j|*|logo]?) (by Lemma 1.3)
i#0=1
<360 [Cc'P +Co'Plloga| + k|loga|C o' |logo|]
< Co*> P (1+4]logol) + Ca?1=% logol?

=0 (02(1_5) |10g0|2> .
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C) For those cross-product integral terms with (¢, j,¢) mutually unequal, we

have
>

1,5 (#L)
i#]

/R (e|52—w| — 1) Uz —&)U (z— &) dx

<360 > [ |6 & —afe Tl gy
i.j (20 7F
i#j
<360 Z {|§€—£i|/e—we_|w+£i_5j|dm_’_/ |:E|e_|z|e_|””+5i_5f|dx}
0,5 (#0) R R
i
(by (1.7) and (1.8))
<360 > {Iﬂ—illlogd (L +1g - gD et
i3 (#0)

1
+5e T (14 lg - gl + I6 —sjf)}

<360 e 6701 [ 31416 - 1) + kool 1+ 216 - &)
<360y olI0=A) B (14 1]i — j|[logo|) + kloga| (1 +21]i — j] | 10g0|)]
(by Lemma 1.3)
<360k[Co' P (1+|loga|) + k|logo] Colh log o]
< Ca?1P (1 + |logol|) + Co* 3 |logo|?
=0 (02_33 |10g0|2) .
Again, note that
(4.7 w= /RWQ(CC) dx > 6k, and k= O (075) .
From (4.1), (4.4), (4.5), (4.6) and (4.7) we obtain
V(&) —1< 6_1k {(1210g2 — 3)o + (k — 1)Co'~P|log o]
+0 (02(1_5)| loga|2) +0 (02_35| log a|2)}
=0 (UHﬁ) +0 (¢ Pllogal) + O (Cand logo|’) + O (02(1*ﬁ)| 1oga|2)
=0 (01*ﬁ| logal) .
Therefore, we have the following lemma.
LEMMA 4.1. It holds that

(4.8) V(&) =1+0(c"P|logol), ¢=1,...,k
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IT) In order to know the information about V (¢, + ), for |y| < %|logol, £ =
1,...,k, which covers the interval [51 — %| logol, &, + %| log a|] of the real line, we
now estimate the increment V (£, + y) — V (&). By (4.1), we have

V(E+y) -V @) = /R [emeieevel _ g=otec—]

(4.9) k
X DU =g)+)Y Ule—&)U(x-&)| da.
j=1 4,
1#]
The estimates will be made part by part, as follows.
a) For j < £ in the first sum, by using the Taylor expansion

(4.10) e =1-2+4+0(2%), forz (small) >0

we have
/ [e—Ulﬁe-i-y—w\ _ e‘”\fz-ﬂ} U2 (CL‘ _ 5]) dx
R

:/ [e*ﬂ&*éjﬂ;*fﬂ\ _ e*U|§Z*Ej*I|} UQ(x) dx
R

(a11) = / [6*0(517§j+y*r) — e*d(érﬁrr)} U?(z)dx + R(y)
. R

_ —olE—€) / [efcr(y—w) _ efm} U2(z) da + R(y)
R
= e olée=&l (gmov 1) / e’ U*(z) dz + R(y)
R

e—a\& il [ oy+ O (02y2)] O(U) + R(y)’

where the constant C (o) is given by

A A oxyr2 1 1 144
4.12 = U“(x)dx < 36 = 40
(4.12) Re * (2—0+2—|—0> 1_o2 =

and the remainder R(y) can be expressed as

R(y) = /Oo efo(x7y+§j*&) _ e*a(fefgfryfx)} UQ(CC) da
y+&e—&;

_ / - [emrtt6=60 — e=otee=6=0)] 2(z) do,
gi 5]

where the two integrals in (4.13) will be denoted by R1(y) and Ra(y), respectively.
Then,

(4.13)

(4.14)
|R1(y)| = / 670(I7y+§j7&) — eg(z*y+§j*52):| UQ(:C) dx
y+&e—§;
= / |20 (z —y + & — &)| U*(z) dz + (h.o.t.)
y+&e—§;

<720 {/ (|| + |y|) e 2* dx + |5 — ¢| |log o e 2 d:zc} + (h.o.t.)
y+&e—E; y+&e—¢&;
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in which (h.o.t.) stands for higher-order terms. Since we have, for j < ¢, that
o0 oo oo
/ (|| + |y|) e **dx = / re 2 dr + |y|/ e dx
y+8e—E; y+&e—¢; y+&e—¢;

1 o 1 o
— <_£ 6721 _ Z e?m) 4 |y| (__ 621)
2 y+&e—§; 2

2ly| + € — j| log o] + 1) e~ 2w HEe=8)

y+&e—E;

<

< 5 (L+ (0= j+1) loga]) o*=D0=D7L,

N = o —

because |y| < |logo|, and
/Oo e 2 dy < 102(€*j)(175)*1,
y+E€e—¢&; 2
Therefore,
(15) IRy (y)] < 3602 DA=A 1 4 (20— 25 4+ 1) [loga|] + (h.o.t.)
' < Co? =08 (g — j 4 1)|logo].

Similarly, we can get

[Ra(y)| =

/°° {e—a(ﬂaﬁ-ﬁj—&) _ ea<w+£a~—€e>} U?(x) da
&e—¢&;

(4.16) _ o : R
<720 xe ** dx + (£ — j) |log o] e “*dx p + (h.o.t.)
§e—&; §e—&;
< C P mDUATL 4 (0= j) [log o]

Substituting (4.15) and (4.16) into (4.13), we obtain that, for j < ¢, |y| < 3 |log o],
(4.17) / [67‘7‘5”747:’3‘ - 67‘7'5"7:’3‘} U? (z — &) dz
R

=C (o) e~ olée—=¢&;1 [_Uy +0 (02| 1oga|2)] +0 (Uz(e—j)(lfﬁ) (—j+1) ‘1Ogg|) i

b) For j > ¢, we can proceed similarly to obtain
(4.18)

[ [t — et 02 - g
R
:/ [e—olﬁj—&—i-m—y\ _ e—U\ﬁj—ﬁﬁ-wl} UQ(:ZT) dx
R
= / [6—0(5;'—&7-‘:-:6—11) _ 6—0(51—&4-1)} UQ(x) dx + R(y)
R
=C (o) e I8l [oy + O (0| logo|?)] +O (02(j_€)(1_'6) (j—241)|log or|) ,

for |y| < 1 [log o, where C(0) is the same constant in (4.12), and R(y) represents
the corresponding remainder which is treated similar to (4.13) through (4.16).
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¢) For j = { in the first sum in (4.9), we have

/ [e—a\ﬁe-i-y—w\ _ e—U\Ef—Zq U? (x — &) dz
R
(4.19) = /R [e‘”‘y_””‘ - e‘”m} U?(z) dx

_ _U/R lly — | — |e| U3(2) dz + O (o®|log o?) .
Let
(4.20) W) = [ ly—al =) V?(a)ds, yeR
Since ¥ satisfies

(4.21)

and U?(y) is an even function, ¥ is also an even function as the solution of (4.21).
Therefore, WU2U’ is an odd function, so that

(4.22) / U(y) U3 (y) U (y) dy = 0.

This property will be used later.
d) Next let us estimate the cross-product integral terms in (4.9),

g
i#j
(4.23) . i
= Z/ [e—olﬁﬁy—wl _ e—Ulﬁz—w\] Z Uz — gi) U (m _ gj) dr.
j=1"F i(#5)=1
For j < £, similarly we can get
k
/ {E*G\Eew*z\ — e*d\f@*rl} Z Uz —&)U (z—&)de
(4.24) R i(#9)-1

=C(0)e =8 [—oy + O (o2y?)] + DI (y)

where the coefficient C'(o) and the remainder ®7(y) have the following properties
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i (o) = ]c () :/Re”U(z)U(ng_gi)dz

<36 [ e e l®lemleH =Sl gp (by direct integration)

R
1 1
< 36 3 —&—&il
= (2 2t 0 5') ¢
4 y
< 36 (4 — ) Sli—ila-8)

< (484367 —i||loga]) ol —H1=0)

where we used the explicit expression of p,(z) shown in the proof of Lemma 1.2, so
that

k
C (o) = ’é(a)’ < Y (48+365 —il|logal)oli—10-0)
i(£)=1
< C(1+|loga|)e*=", for a constant C.

ii) Similar to (4.13) and (4.14), the remainder ®’ can be decomposed into

(4.26)
k

¥ (y) = / {6_”(1_”51_5’5) - e"(w_y%j_&)} Z U@)U(z+§& — &) da
y+£l_§j 1(75‘7):1
) k
- / [eig(ﬂéf&) - e"(”“rgf&)] Z U)U(z+ & —&)dr
§e—&; i(#5)=1

where the two integrals in (4.26) will be denoted by ®(y) and ®?(y), respectively.
Then we have
(4.27)

o] (y)‘ = / [e*"@*y*fj*&) — eo@ytE- f@>] Z U@)U (v +& — &) da
y+&e—¢&; i(#£5)=1
o k
< 720/ (lz] + |yl + & — &el) Z e~ 1wl emle 8 =8l 4y 4 (h.o.t.),
y+Ee—¢; i(#5)=1
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where (h.o.t.) represents the higher-order terms, and by using Lemmas 1.2 and 1.3
we find that

Z / |a:| e llemlets=8l gy (by (1.8))

7&]) 1 +£l
1 —le-eil 2
Z g¢ T+ gG - &)
i(#5)=1
L T
< Y 5071+ jllogoal)’
i(#5)=1

< Co' P logo|?,

and

k 0
3 / Iyl + 16 — &) eVl e o468l e (by (1.7))

i(£h)=1 T¥te=E

k 1 00
< > <§|logo|+|j—f|loga)/ eIl el t&i =Gl gy
i(#£5)=1 y+&e—§;

k
1 . i
< > (§homol+li-tlosol ) (1-+ i~ sl fogol) o0
1
C(+1j—2)]|logao|?ct=?

Therefore, we obtain

(4.28)

@{(y)’ <Co* P +1]j—1)]|loga|?, forj<fandj> L.

Moreover, we have
(4.29)

@é(y)’: / [e_a(ﬁs] &) _ golate;— m] Z U)U (x4 & — &) d
=& i(#5)=1

[eS) k
< 720/ (lz] + & — &) Z el e le 8 =8l gy 4 (hoo.t.)
St i(#0)=1

k

<720 ). {/ jaf e 1ol emlot &6l g 1 |g; — g
=&

ool g—log—¢] dw}
i(£)=1

§e—¢&i
<Co* P (1 +1j—¢)|loga|?, forj<{andj> L
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Thus, we have

(4.30)
k
Z / e—oléety—al _ —olé— wl} Y Uw-&)Ue—¢&)de
#J) 1 i(#£5)=1

Z C (o) e=l4=% [oysgn (&5 — &) + O (0°| log a]?)]
i(#5)=1
k
+ > Co* P+ —1))|logol?
i(#5)=1
k
< Z C(1+|logo|)ot=? e olée—4l [aysgn(§ §g)—|—0( 2|1oga|2)]

i(#£5)=1
+Ck(k—1)0®P|logo|?.
k
Note that the first part Y. --- in (4.30) can be absorbed by the corresponding
i(#5)=1

sum of the first part in (4.17) and in (4.18) for j # £.
For j = ¢ in (4.23), we have

k
Ty(y) £ / {67‘7‘5”7471‘ - e*"‘fﬁmq Z Ux—&)U (x—&)dx
R i(£4)=1
k

_ /R [emlvel — bl 3T U@)U @+ & - &) da

i(#£5)=1
k
:—o/[ly—x|—|x|] Y U@ U(x—&+&)da+ (ho.t.)
R i(#4)=1
so that
ITy(y)| < Colyl Z /e 2| o=l —&iteel 4o
i(#5)=1
k
(4.31) < Collogo] Z (1+ |i — £| [log o|) oli=41(1=5)
i(#4)=1

1
< Co?> Pllogal* =0 (aQ*ﬁ |1oga|2) , for |y| < 3 [log ol .
Thus we have proved the following result.

LEMMA 4.2. For { =1,....k, and |y| < % |logo|, it holds that

V(& +y) -V E) = - {~o) +0 (" logol)

(4.32) i e lée—=¢;l {Uysgn (& —&)+0 ( 2 |10g0|2)}
#5)=1

+0 (0 19 llog o) + 0 (k20> flog o) }
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where C (o) < 40 is shown in (4.12) and w > 6k.

PROOF. Substituting (4.17), (4.18), (4.19), (4.20), (4.30) and (4.31) into (4.9),
we obtain (4.32) with the observations as follows,

Z 0 (02” A0=B) (|5 — 0] + 1) 1oga\) =0 (020—5) |10g0|)
§(£0)=1
by using Lemma 1.3, and

Ck(k—1)6>" |logo|® (in (4.30))
+C 0> P |logo|? (in (4.31)) = O (k%?—@ |10g0|2) .
We shall note that
1 2 2-8 2) _ 2(1-5) 2
~0 (k o> |log o ) ~0 (a llog o )
O

ITT) As we said in the beginning of this section, the next is to make an estimate
of the inner products
(SWLU (- =&)), €=1,...,k,
where S[W] is defined by (2.15). Indeed,

(433) (S[W).U' (-~ &)) = / SIW)(@) U (x — &) da

1-V(zx
= V(g)Wz()U'(:c—& d:v+Z/ (x=&)U (= &)U (z — &) da
R
175]
The two parts on the right-hand side of (4.33) are denoted by E; and Es, respec-
tively. First we have

+ Y [ SHER eV - i

1;&3 or
i=j#L

REMARK 3. In the following estimates, we shall use Lemmas 4.1 and 4.2, the
latter is valid on the compact interval

1 1
(435) I = |61~ 5 logol &+ 3 logol

However, when we deal with the integrals over R, we extend the utilization of
Lemma 4.2 beyond the interval I, while the details of justification that the com-
pensation is a small amount of higher order in ¢ are omitted.

) The first term in (4.34) is

217— U (2 — > = 1—V(§g+y) 2 /
(4.36) /R Vle &)Uz =& d /way) VW Uw) dy

1=V / V(&) -V(&+y) :
B / (f@ + y) v (y)U (y) dy + /R i (@ ¥ y) UQ(?J)U (y) dy.
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where

(4.37)

’U@=/31@tiww+mw@@

V§z+y r3 V2 (& +y)

it ( ' Bl log0|) U3(y) dy (since V' (z o can be checked
§3/[(®+V@Hw) Vg W e Vie) < !

,/ O (627 P|logal) U3(y)

= 5 dy (from (4.32))
R [1+ O (c'=P|loga|) + O (o|logal|) + O (62| log o[?)]

=0 (0" [logo]) / U3(y)dy = O (¢* " |logo]) ,
R
and

/ V(&) -V (&+y)
R V(& +y)

- [ e () + ) + 1)} V)0

U?(y)U’ (y) dy

in which, according to (4.32),

g

() = ——/ ly |~ Jof] =~ ¥(y),

w

(4.38) ](% . Clo)eolé [ ysgn (§ — &) + O ( 2+6 |1og0|2)}
1= [o ) 0 ()

w

=0 (02(1*’6) |loga|2) .

By the property of (4.22) of the function ¥, we have

/Rﬂl(y)U?(y)U'(y) dy =0,

so that
1 !
/R 1+ 0 (o P|loga)) I (y)U* (y)U' (y) dy
1 2 /
- /R (1 +0(c'Blogal|) 1) 1L (y)U=(y)U" (y) dy
= 0(¢*loga) [ M) U2(0) V()] o
where

2
[ImeI v 0wl ds < [ o960 ay 6 (2) ot = 5o
R R
Hence we have

(4.39) /Rl—l—0(011*5|10g0|) L (y)U*(y)U' (y) dy = O (0” [log o) -




GIERER-MEINHARDT EQUATIONS 233

Next we get
(4.40)

1 ) /
/R 1+ 0 (o' —P[log o)) o (y) U (y)U’ (y) dy
k

= > Coe T [ ysen( - ) U)U W) dy+ 0 (2 flogl”) &
J(#0=1 v IR
k .
= Y d(e)ele il g ggn §-8& o (02 |10g0_|2> 7
oy &5 =&

where the constant d(c), given by

(4.41)

is uniformly bounded because C(a) < 40 and (c7PJw) < o7F/(6k) = O(1).
Finally we have

1
(4.42) /R 14 O (c1-Bllogal)

From (4.36), (4.37), (4.39), (4.40) and (4.42) it follows that

eV )V (y) dy = O (a2 log o) .

(4.43) /R %‘;gz) U (z— &)U (x — &) dx

k
= Z d (o) e ol&e=8l o108 gon (& —&)+0 (02(1_5) |10g0|2> )
J#D=1

b) Now we estimate the Ey part in (4.33) and the second part of F; in (4.34),
both involve the triplet product U (z — &) U (x — &) U’ (x — &). Note that

(1.44) / Ule—€)U (x— &)U (2 — &) da = 0 (209,

if max{|i — jl|,|j —£|,|¢ —i|} > 2. Suppose ¢ = £ (similarly if j = £). Then for j < ¢
we get

/U(I—Se)U(I—éj)U’(:c—&)dfc:—%/UQ(I—Se)U’(:c—éj)dz
R R
1
: =—= [ U*()U (z—¢ der =3 [ U?(z)e"lo—Stelyg
(4.45) 2/R (@)U (x — & + &) dx 3/]R (x)e T+ Q1

= 3/ e U2 (z) dre” 1975 4+ Q) + Qo
R
where

(4.46) / e ?U? (z) dz = 12, by Lemma 1.1,
R
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1 .
Q1] = ’_5 /}RU2 (2)U' (x — & + &) da — B/RUQ (z) e~ lo=8teel gy
oo 1 — e~ (@=&+&)
< 3/ U2 (z) e~ (=860 c g —1|de
&—€ (1+ e~ (@=&ite0)
§i—&e 1 — e (&i—&e—2)
+ 3/ U? (z) e~ (&&= 2) —1|dx
(4.47) e ( ) (1 + 6(51—513—1))3
< 108/ e—2lelg—lz—&;+&| {4 elr=gitel L o (6—2\w—$j+£z\>} dz
R
< C’/ e Aele2le=8tel gr (by (1.7))
R
< Ce Sl (14 [g — &) < Co?A0D (14 |j — €] [log o)
and
§i—&e
Q2| = 3/ U? () [eflrféjn%el _ e*($*§j+§fz)} dr
& —&e
(4.48) < 108/ ¥ |2 (x — & + &)|dx + (ho.t.)

=54e 284l 4 (ho.t.)
< O g2li-t0-5),

Thus we find that

[Ua-6)U@-6)U @-t)da

(4.49) _J36e7l8imtd + O (62U (1 + |5 — ¢| loga])), ifj <,
| =36 188l 4 O (o2 A=) (1 4|5 — ¢||log o)), if j >4,

We specify the sign difference between the case j < ¢, which we treated above, and
the case j > £, for which the details are omitted. The difference is originated from
different versions of U’(x) we use in two cases.
e " (1—e ")
(1+e)’
smallness of the integrals in |Q2| over (—o00,&; — &| C R™.
6e” (1 —e")

(1+er)’
the smallness of the corresponding integral over [{; — &, 00) C R™.
The only other possibility for the triplet product terms will be

For j < £, the version U'(z) = is used. Then we count on the

For j > ¢, another version U’(x) is used. Then we can count on

max{|i — j|,|j — £|,|i — ¢|} > 2,

then (4.44) applies and the sum of all these terms will be of the order

(4.50) kO <02(1_B) Z U”(1_3)> =0 (O’_B) 0 (03(1_B)> =0 (03_45) .
v=1
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Therefore, we obtain that, by Lemma 1.3, and since § < 1/2 implies 2(1 — ) <

3_4/65
EQ_;/RU(I_&)U(I—%)U (x — &) dx

i#j
- &4
(4.51) =36 ) e & ¢lsgn |§i J| +0 (02(1‘5) Ilogffl) +0 (o°4)
i#0=1
k
=36 Z e 18i—Selggn >0 5 Se = §J +0 (02(1_5) |10g0|) .
i#0=1 6 = &l

Moreover, by Lemmas 4.1 and 4.2, similar to (4.51), we have the estimate on the
second part of F7 in (4.34) as follows,

Y [ -6V -
175_] or
i=j#L
k
(4.52) =0 (0" 7 logo]) |6 Z e84l 1 0 (c®7)
JFO=1

=0 (01’5 |loga|) [O (0175) +0 (‘7374/6)]
-0 ( (1-p) |10g0|)

With these preparations, we are now ready to prove a key result in the following
theorem.

THEOREM 4.3. Under the same assumptions as in Theorem 3.6, it holds that

(4.53)

/s DU (& — &) dw—— SR (g - &l)| +0 /(0 flog o).
J#
(=1,...,k,
i which
(4.54) F(r)=—d (o) o™ |r| — 361",

where d(o) is a uniformly bounded, positive constant given by (4.41). Moreover, for
any given 0 < pp < 1, there is a constant C,, > 0 such that S[W] € Li® and

(4.55) ISVl < Co' =775
PRrROOF. By substituting (4.43), (4.51) and (4.52) into (4.33), we can confirm
that
/s DU (x— &) de = d(0) e 19 10 sgn (& — &)
J#L
(4.56) +0 (02(17[1) [log 0|2) + Z 367188 sgn (& — €))
J#L
+0 (02(1_3) |10g0|) .
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Moreover, we see that

(4.57)
> d(o) [l — 1] P sgn (g — &)
J#L
<> d(0) [olg — &l +0 (o2 1& — &l*) | o7 = O (6** 7 k(k — 1) log o)
J#L

=0 (02_5 llog o),

which can be absorbed by the last term in (4.56), i.e., O (02(1_5) |10g0|). Therefore,
(4.56) yields

/ SW(w) U’ (z — &) dx =Y {—d(a—) o P sgn (g — &) + 366719 S sgn (& — ¢;)
Jj#L

+0 (02(1_5) |10g0|2>
5}

= % ;Fﬂ@-—sm +0 (207 logo*)

which is (4.53).
Now we prove the second statement of this theorem and (4.55). For each z € R,

there is a point &, among &1, ..., & such that
(4.58) o &l = min Jo— &

Without loss of generality, we suppose that = € [£;,,&,+1)- It is possible that
|z — &, | = | — &y41]- Then we have

ZU r—&)U(z—¢) < 2366_‘1_5i0|e_|z_51‘

(4.59) &, J#io
+ Z 36 e~ 1t Cio+1l g—le—&l 1 Z Z 36 e =&l g—lz=45l
jio+1 iio io+1 i

In the first sum, the largest term is

36 e—|m—5z‘0| e—|w—£i0+1| —36e 1<z<k‘m il |:e_(1—ﬂ)|w—£i0|e—|iﬂ—£i0+1|:|

}

+|m*§i0

e |Gio+1—Eig

}

< 366_ 1<¢<k‘ »—&il {01—56%“0%0@

3667 1<i <k|m &l |:e*(1*#)|1*fi0

< 36 67#131112k| &l {0.1*5 e#|1*fz’o

= 36 ei 1<z<k| o=&il [Ul—ﬁ—u/ﬂ ,
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which implies that

Z 36 e—|$—£¢0| e—‘z—gj‘ S 36 e_ulrgniigk‘w_&‘ |:0—1_B_M/2

Jj#io

(4.60) 1952(-B)=n/2 | 9o3(1-B)-n/2 | .. }

<C 6*# lgmiiélk\mféﬂ 0’1757#/2'
It is easy to see that the second sum > --- satisfies the same estimate (4.60).

Jj#io+1

Moreover,

36 Z e lz—&il Ze—lw—fjl

i#i0,i0+1 J#i

(4.61)

< 36 [201—@ 40218 4 } [2e_12i3”_& (1 0P 4 o200 )]

min |z—&;|

< Ce 'sish ol b,
Therefore, we have the following estimate for x € I¢, where I is the interval defined
in (4.35).
1) If z € I, then by (4.59), (4.60) and (4.61), with the observation

1-V(z) -
V) O (" logoal)
we have
SWl(x) = %‘;(f) W2(z) + Z Ux—&)U(x—§)
7
=0 (al_ﬁ llog o) [e il (1 A T S N )}
(4.62)

—u min |o—¢|

+e 1<i<k 10 (UI—B—M/Q)

—i min |2—&,|

1sisk {O (01*5 log o) + O (01*5*“/2)}
_ e_ulgliigklm_&lo (Ulfﬁfﬂ/Q) .
2) If z € R\ Ie = (—00,& — 3 |logo]) U (& + 3 [log o], 00), then we can make
an estimate of S[W](z) as follows. Since (2.12) implies 0 < V(x) < 1, we have
1-V(z)| <1.
By the Lebesgue Dominated Convergence Theorem,
1
lim V(z)=— lim [ e “FIW2(z+2)dz=1,
o—0t W o—0t Jp

which means for o > 0 sufficiently small, V(z) > 1 — ¢y for some constant ey < 1.

Thus
1

_1—60.

‘ 1-V(z)
V()
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On the other hand, we have

k k
Z U? (z—¢&) < 362672“75]" (since z € R\ I¢)
j=1 j=1
(4'63) < 366_M121¢i£k‘m_&| e—(2—M)%|10gU| (1 + 0_2(1—5) + 0.4(1—5) 4. )
< Cei‘uéliiglc'migi' O.l—H/27
and

—u min |o—¢|

Y U(@—-&)U(e—&) <Ce 132" g30-m 53+0-0)
(4.64) =
< Ce—ulgliigk\w—&l o2 B—n/2.

Hence we obtain the estimate

SW](x) < ¢ eiﬂlgliigklmigil ol T2 4 Ceiﬂlgiigkm*gil o2—B—n/2
(4.65) 1-e
= 67#1g1£k|m75i| 0 (Ul—M/Q) .
In any case, (4.62) and (4.64) imply that (4.55) holds. 0

REMARK 4 (The second effect of ). In the previous remark in Section 3, we
noted the effect of 11 on the order of k = O (¢77) in (3.63). Here is the second effect
of the choice of the norm parameter u. From (4.55), we see that for 0 < pu < 1/3
being chosen very close to zero, the upper bound of the p-norm of S[W] will be
very close to the order o' =7 i.e.,

4.66 C, ot P12 0 ot B,
W W

5. Solution to the Augmented Nonlocal Problem

In this section, we shall prove that the augmented nonlocal problem (2.19)
admits a solution u = W + ¢s¢ and ¢, ¢ turns out to be a small perturbation.
Recall that problem (2.19) is equivalent to the problem (2.20), which we write
again as follows

k
L(g) = S[W]+ P(W,0) + > _ 7 W;
j=1

(5.1) ,
<¢’WJ>:O7 j:]""'?k’

p(x) =0, as |z[ — oo,

where L is the linear operator defined in (3.1), S[W] is given in (2.15), and P(W, ¢)
is given in (2.21).
By Theorem 4.3, for any 0 < u < 1/3, S[W] € L{® and

(455) IS, < Cuo =02,
We now consider the nonlinear term P(W, ). According to (2.21),
(5.2) PW, ) = (W, 0) + Pa(W, ),
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where

(5.3)

1«m@=mwwﬂ ! L, 2Ty

TR Vo W e T

and

(5.4)  Py(W,p) = —2We (1 _ %) Pt {(VIZ@ B T[Ww]] L&

V2 v
We have
T(W+¢)?] =V +2T[We]+T [¢?],
(55) TWe] = /Wwdz+ ! /R(e’“‘”” vl — )W( )o(y) dy,
where
é /R(e_”‘””_‘”‘ —1) W(y)@(y)dy' < 6%40‘””“”‘ W () [e(y)| dy

”WWEQﬂxyWy &) dy
< U||SI:||H Z/ |x—y|e*|yfgj|dy
j=1"R
el <
= a |z] e~lr=8—2l g,
ollell, <

< U||<}:||u OQ)+k(k+1)|logo]] (for any = € I¢)

=07 gl [0(1) + 0 (7= flog )] = O (o~ g ) Il

Hence, we obtain

ﬂWﬂ=OWWMMéWwM%O®“W%dMMH

(5.6)
=0 (o”) llll
and likewise, by using Lemma 1.5, we can get
(5.7) T[e*] =0o) [¢*],

Then we obtain

|PL(W, )| < 0(W2 +©*) T [¢*] + C |2Wo + | IT[W ]|

2p min |xz—&;|

< Ce 1<i<k H‘PH;%

(5.8)

provided that ||¢||,, = O(1). Here we admit = € I.
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On the other hand, we have

(5.9)
|P2(W, 0)| < 2Wp|O (o7~ [log o) 2020 (077 [log o]) O (o) | ll + Clepl?
—2p min |z—&| 12 —
<e i 1—o1p O (o' P |logal|) [l
72 2
+m O (o [logal) |l + C el
—2u ‘1 fz _
< Ce g [lel% + 0 (o' ~# [log o) [lee]l,i] -

Thus we have shown that in the range of z € I¢ = [& — |logol, & + 1| loga]],
there exists a constant C' > 0 such that
(5.10) IPW, )l < C [liellu + O (" "|logal)] Il

provided that |lo||, = O( ).
Next we consider the range z € R\ I¢. In that case,

W+e)? W2 2w
|p(W7<p)|_‘7 —2Wep+ (W, )
T(W+92] V.
2W o + > 2w?
(5.11) < ‘#_QW@—} y <W,<p>‘+C(W+@)2|2T[WSD]+T[SD2H
= [, )| + |, 0)|
where
(5.12)
. k —p min |z—&;| —2p min [z—§&;|
PW,p)| <0 | S erlensl | e ERT gl 4 oo IR g2
j=1
79 k —p min [y—§&|
W Z S /Ze ly—&il o2 dy llell,
=
7,ulr<n1£k|m &l 1/2 2
< Ce (o2 llel, + e 12)
100 BRI g )
—p min |z—&|
< Ce MERT (02 ol + )
and

Po(W.0)| = C(W + )2 [2T W] + T[]

2

el | 12T Wl +T [¢*]]

k .
<c Ze_lz_gjl n efﬂlglilgk |z—&;|
i=1

—p min |z—¢&;

< 0 ERIT (30-0 4 ) (o3 + Dl)

C —o min |z—¢&| il

o Uw(y)dyllwlﬁr/e o dy”gj”i}
R R




GIERER-MEINHARDT EQUATIONS 241

in which, by Lemma 1.5, we have

1 1 —p min i
—/W(y)dy:G and —/e gteAs 5|dy:0(1),
k Je k Jr
so that
~ —p min |z—&;| o
(5.13) [B(w, )| < Ce "B (1 g, + )2
provided that |l¢||, = O(1). From (5.11) through (5.13) we get

—p min [z—=&| / 1
(G14) POV < O 22 (), 1+ g)2)
for x € R\ I.

LEMMA 5.1. Assume that for 0 < p < 1/3, ||¢||, = O(1) as o being sufficiently
small. Then P(W, ) given by (2.21) satisfies the estimate

(.15)  [P(W,pll < C [Igl, + 0 (o' P logal) + 0 (oF )| gl

PROOF. Simply combine (5.10) for z € I and (5.14) for x € R\ I¢ to reach
the conclusion. 0

The following is a key result on the solution to the augmented nonlocal problem
(5.1). Tts proof is based on the investigation of the principal approximation linear
operator L, which we presented in Theorem 3.6, and on the prepared nonlinear
estimates shown in Theorem 4.3 and Lemma 5.1.

THEOREM 5.2. There exists a constant & > 0 such that for 0 < o < &, under
the assumption

1-— 1
(3.79) k=Co? and0< B < 2—“ (with 0 < u < 3),
- p

for any given £ = (&1,...,&k) € A in (1.16), there exists a unique solution
Yot € LZO, vy=1,.--,7%) € R*

of the augmented nonlocal problem:

SW + ¢](x Z% (x—¢&), zeR,
(5.16)
/go(ac)U’ (x—¢&)de =0, j=1,...,k,
R
o(x) — 0, as |z| — .
Moreover,
(5.17) 6ol < 2ToCpot 8012,

where L'y is the constant in (3.80) and C,, is the constant in (4.55).

PROOF. By the equivalence of problem (5.16) (aka (2.19)) and problem (5.1)
(aka (2.20)), it suffices to show that problem (5.1) has a solution (¢, ¢,7) as stated
in this theorem.

According to Theorem 3.6, if we set

(5.18) h = S[W]+ P(W, ),
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then problem (5.1) is to find a solution ¢ € LiY of the equation

(5.19) p=J(h) =T (SW]+ P(W,¢)),

and then v = II(h) can be determined, where the bounded linear operator J on
L? is well-defined and (3.80) holds. Define

(5.20) Q) £ T(SIW]+ P(W,¢)), for o L.

Then problem (5.1) is reduced to finding a fixed point ¢ € L7 of the mapping @Q,
ie.,
@ = Q)

Let B be the closed, convex set in Lj” defined by

lll,e < 20oCpuo’ =071/
(5.21) B=qpeLy: (p,W;)=0, j=1,...k,

o(x) — 0 as |z| =
We use the contraction mapping argument to prove that @) has a fixed point ¢ ¢
in B.

First we show Q(B) C B. For any ¢ € B, by the description of problem (3.13)
and the definition of J, Q(p) satisfies automatically the two conditions in (5.21),
(Q(p), W;) =0, j=1,....k and Q(¢)(z) — 0 as [z| — co.

By Theorem 4.3 and Lemma 5.1, there is a small constant & > 0, such that for
0<o <o,
(5.22)

1R w < 1Tl £ (1) LIS+ I1PW, ) ]2}

<o {Cur' P72+ C [llgll + O (P Pogal) + 0 (o4) ] gl }
< 2FOC’#01_3_”/2, for any ¢ € B.

Indeed, & > 0 can be chosen to ensure that for 0 < o < &, in (5.22),

(5.23) C |:2FQCH0'1_B_% +0 (¢ P|logal) +O (oéﬂ <

so that (5.22) holds. This implies Q(B) C B, for 0 < o < 5.
Next, for any 1,92 € B, we can estimate

1Q (1) = Q(22)| < ITNIP (Wipr) = P (Wyen)],
<o {IP (W.ip1) = L (W2) |, + | P (Weion) = P (Wo@), |

through the similar steps as we have gone in (5.5) through (5.10), for x € I¢. Then
a corresponding estimate can be made by the similar steps as (5.11) through (5.14),
for x € R\ I¢. The details are omitted here. We can conclude that for 0 < ¢ < 7,
where & > 0 is the constant chosen in accordance with (5.23), it holds that

(5.24)

1
(5.25) 1Q (p1) = Q (@2)l],, < 5 llpr = @l for any 1,2 € B.

Therefore, Q is a contraction mapping on the set B.

By the Schauder fixed point theorem, there exists a unique fixed point ¢ = ¢, ¢
of @ in the set B, which is a solution of problem (5.1) and of the original problem
(5.16), and v = 7,¢ can be determined by solving (3.16). The property (5.17)
follows from (5.21). O
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Let ¢, ¢ be the solution shown in Theorem 5.2. In order to prepare for the final
stage, we need to know about

(5.26) /RS (W + oe] (2)U' (x — &) dx
= /RS[W](z) U'(z — &) dx

+ / SIW + o] (x) - SWV)@)] U (x — &) da,

for £ = 1,...,k. The information about [, S[W](z)U’ (x — &) dx is known in
Theorem 4.3. Here we study the second part. Denote by S’ the Fréchet derivative
of the operator S. We have

(5.27)

/R [SIW + o] (z) — SIV)(@)] U (2 — &) da

=[SV (0 U (e~ ) da+ O (20757012
R

2W g, 2W? G-
— / |:g0g7§ — Qo+ v £ _ 72 T [ng,g]} U'(z—&)dr+ O (02(1 s “/2)) ,
R

and according to Lemma 1.4, by integration by parts, we have

/R [0 ¢ = o +2U (¢ — &) poe| U' (z — &) dx

= / Pog [U" (x— &) —U' (x — &) +2U (x — &) U’ (z — &)] dz = 0.
R
Hence we get

/R STV + el — SIVU' (2 — &) do — O (20747 (in (5.27))

- 2W (x) 3 . . .
(5.28) _/R< V(x) 2U( 56)) PoeU" (v —&)d

22
- [ T TWend U o g o
R

=91 (W, 00.6,0) + g2 (W, p0¢, 1),
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where
1
0 Wigoc 0 <2 [ |7 (5= 1) oreol’ o - €9 o
R
+2Z/U<x—sj>|%,g<z>||v’ (x— &)| da
g2t R
k —p min |o—gi
< 0 (o' Jlogal) / Soerlrlerlentl e RS e g,
R
ul — min |2—g&
b2y [t el B g g,

A0 TR

(5.29)

k
<0 (7 |1Ogg|)z/e—me—\m+sj—5z\dx||%yg||u
i=17%

+72 Z/ e lTlem e dr |l g e,

izt R
<0 (c' P llogal) O (1) 206C ot ~F1/2
+720 (077 [log o) 20 C ot ~Pn/2
=0 (02(1*’6)*“/2 |1oga|) +0 (02(1*’6)*“/2 |1oga|)

=0 (02(17[3)*#/2 |logo|) 7

in which Lemmas 1.2 and 1.3 are used to claim

k
Z/ el e le & =8l gy — O (1)
j=1"R

and

Z =zl o=letéi =l g — O (0‘1_6 |10g0|) .
A0 IR

Next, we have

o2 ,
g2 (W, 05, 0) = — L VT T Weoe U (v — &) da

(5.30) == /R 202 (z — &) U (z — &) T [Wepse] (z) da

- Y [ W)U - &) T Wepnel (o) do + Rond,
%,J
not both ¢

where the remainder

Rmd = /}sz2 (1 - %) T W elU (x—&)dz
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is a small amount of higher order in comparison with the first two parts on the
right-hand side of (5.30). Note that

d 1 d

L3 1 a [ _olay

T T[Wesel(r) = " dz/Re W (y) ¢o.e (y) dy
g

_c [ / T e e () e (y)dy — / ; eI () e (9)dy |

w

Consequently, we have
(5.31)

TV end (0

0o k
&
< o™ [lgoell, / emolomul 3 el-gsle BRI g

k
S Co_lJrﬁZ |: —olz—&;]| </ e*(l*d)‘yfgj‘ dy>:| ||(P01£||#
= R
<Co'"tP O (o~ ) [oell, < Co'tP 0 (c7F) 2Ty O, glt=A—n/?
=0 (02757“/2) .

Hence, we have

‘_ /R QW (x — E) U (x — &) T [Wpee) (x) da

(5.32) — '; /R U (= &) T [Weee] () da| < C /R e T (W, ] (2)] d

=0 (02757“/2) .

On the other hand, since it is shown that T [We,¢] = O (05 ||<pg,5|\u) in (5.6),

which is valid for € I or z € R\ I¢, but the details for z € R\ I¢ are omitted,
here we can get

- Y [ W)UV @) T Werd (@) da

0]
not both ¢
<0 (% llpael,) > /ef\z—me—\z—sﬂe—w—mdz
i R
not both ¢
k
(5.33) go(aﬁ oo ell, Z Z / ] o= letEi—5] p—latEi—€el gy
J=1i(#£0)=1
<0(o° ||<pg,g||ﬂ)z S el [etesla
J=li(#£6)=1

<0 (Oﬁ ||¢015||#) 2kCol=? =0 (Jﬁalfﬁf“ﬂ) O (075) 0 (Jlfﬁ)
< O( 1-8)— H/Q)
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Substituting (5.29), (5.32) and (5.33) into (5.28), we reach the following esti-
mate, which is stated as a lemma. Here O (02(1_5)_“/2 [log U|) is dominated by
0 (c20-)-1).

LEMMA 5.3. Under the same assumption as in Theorem 5.2, it holds that

(5.34) / (SIW + o] = SIWNU' (z = &) dw = O (2021
R
Now we prove the following key result.
THEOREM b5.4. Under the same assumption as in Theorem 5.2, for o suffi-

ciently small, § € A, let (po¢,70¢) € L5 ¥ R*, where vo¢ = (71,---,7%), be the
solution of problem (5.16). Then, for £ =1,... k,

Z%/U/ (x—&)U "(x = &) da

(5.35)

ag ;F &5 — &) +o( 2(1-8)— H)

where F(r) is given by (4.54), and

(U, UL) 2 /RU/ (z—&)U (x — &) dx

(5.36) _)6/5, forj=1{,
O (ol U0=Bj —¢||logal), forj # L.

PROOF. Combining (4.53) in Theorem 4.3 and (5.34) in Lemma 5.3, we get
from (5.16) the following equality, for £ =1,... k,

Z%/ I—SJ)U’(x—fg)dz—/RS[W]U’(JC—@)dz
+/ (SIW + goe] = SIWN U (¢ — &) da
R

ZF 1€ —&l)| +0O (02(1_5” logo|2> +0 (02(1—6)—;4)
Jj#L

96 | F G —ah| +0 (s2070),
J#L

where the term O (02(!=%)|log o|?) is absorbed by the last term. Moreover, we have

(w0 /|U’ 2 4o =65, j=1,... .k
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by Lemma 1.1. If j # ¢, then
(U;,U;) < 36/ e~lelemle =Sl gp (by (1.7))
R

=36(1+1¢ — §e|)e—|5j—§e|
<36 (1+|j — {||loga]) o=t
=0 (1072 — f] log o)

The proof is completed. O

6. Solution to the Reduced Finite-Dimensional Problem

In this section, we shall take the final step of the Lyapunov-Schmidt method
to solve the reduced finite-dimensional problem: To find a set of points & =
(&1,...,&) € A such that the unique solution v, ¢ = (v1,...,7%) = 0 € R¥ for
(5.16), provided that o is sufficiently small. If we achieve this, then (5.16) implies
that there exists a ¢, ¢ € L7, which satisfies

S W+ 90(775] () =0, z€R,
(6.1) (o, U'(-=&))y=0, j=1,...,k,
woe(x) — 0, as |z] — oo.
This means u = W + ¢, ¢ is a solution of the original nonlocal problem (2.5), i.e.,
2
T [u?]
u>0and v — 0 as |z| — oo.

The key term in (5.35) is

Su] =u" —u+ =0 inR,

(6.2)

0 0
= D FG =&l == |D_dlo) o P Ig - &
% |z % iz
_9 NE TR
(6.3) O |57
= Zd(a) ol P sgn (&5 — &) + 236 e~ 188 sgn (& — &)
7t 7t
=d(o) o' P(k+1-20)=) 36e lsgn (g —&), £=1,... k.
7t
Choose k points €7, ..., &) such that the following conditions are satisfied
k
(6.4a) d g =o,
j=1
and
0 _ 0 0 0 . . d(o)
(6.4b) §j - §j+1 == ‘5; - §j+1‘ = (1+B)logo +log[j(k — j)] + log 36

forj=1,...,k—1.
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Denote these points by £° = (£7,...,£)). Since k = Co™", we have

K (O
. j(k—j)< === —26
(6.5) | Jnax j(k—J) < 5 (2) o
so that
0 _ ¢0 . . d(o)
€9 — €41 = (1 + B) log o — log [j(k — )] — log ==
(6.6) o 4o
2(1—ﬁ)|10g0|—210g——log—0

2 36

By (4.12) and (4.41), for o sufficiently small,

c d(o) 144 144 5x6C 9
7 —2log = —1 ~1 log [ o . 2222 _jog (2]
(6.7) 85 T35 T8 oEg0) ~ 8 <C2 12 % 40) o8 (C>

If k satisfies

(6.8) k=905,
then we have, for j =1,...,k,
(k —1)d(0)
(1—5)|log0|<‘§?— ?+1‘§—(1+ﬁ)10g0—10gT
kd(o)
~—(1 1 —log ——— 4.12 d (4.41
(6.9) (1+p5)logo —log—==  (by (4.12) and (4.41))
~ |logo| —lo 12 x 36 =|lo |—&—lo5
sl T e T G x 36 | BT T8,
<|logo|+ 1.

It is seen from (6.9) that £° € A(o,3). Moreover, if n > 0 is a sufficiently small
number, then

k
(6.10) Ap=186=(G, &) [[€= € <nd & =0p C Ao, B).

j=0
In fact, this choice of £° implies that for o sufficiently small and for £ € A,
=367 s (¢ — &) = =) 36719 sgn (¢ - &)
J#e AL
(6.11) — 36 {e—mfl—sz\ _ e\ml—&l] L0 (02(1—6))
— 36 [6452,175%&71754 _ eflaﬁﬂff%&ﬂf&l} L0 <U2(1fﬁ)) 7

where

k
(6.12) G=8+&, j=1,....kand Y & =0.

Jj=0

By Taylor expansions, we get

o169 —0+E—&e| _ 10| 4 ~lef-¢l (sgn (& — &) <§J _ @)
(6.13) 2)

+0<0' & —&
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for |j — ¢| = 1. Substituting (6.12) into (6.11), we obtain

_ 236 e 1€ —¢l sgn (&5 — &) = 36 [6_|£?*1_£?| _ e—|52+1—52|}
J#L
(6.14) 436 [e 66l (6 ) — &) + el (G0 - &)

+0 (o[ & + e - &[] ) + 0 (20).

where

615 36 [e 16— — €l = d (o) P[0 — 1)k — £+ 1) — €k — 0)]

=—d(@)o" PP (k+1-20), ¢=1,... k.

)

From (6.3), (6.14) and (6.15), it is seen that (5.35) becomes

Zk:%' (U5, Up) = a% STF(lg - &) | +0 (20D
=1 L

(6.16) — 36 [6’|§?7r£?| (5}71 _ gg) 1o leta—el] (&H B &)}
+0 (0 Ué@—l - 542 + }égﬂ — @ﬂ) +0 (02(1—6)—u> ,

where <UJ’»7 Ué>, §,0=1,...,k, satisfy (5.36). For notational convenience, set

(6.17) m(i,j) =e 1551 i j=1,... k

The system of equations (6.16) for v = (v1,...,7) can be written as

k
Z Vi <U]Iv U{> 2
j=1 51
=M
(6.18) . ;
> (UL UL) &

j=1

+0 (0 Héﬁ—l — éé‘ + ‘éﬁ-ﬁ-l — &H) +0 (02(1_6)_”> )
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where M is the k x k matrix as follows,

(6.19)
—-m(1,2) m(1,2) 0
m(1,2) —(m(1,2)+m(2,3)) m(2,3)
M=361 0 0 mij—1,5)
0 0
0
—(m(j = 1L3)+m(G,j+1) m@,i+1) 0

m(k—1,k) —m(k—1,k)

LEMMA 6.1. The symmetric matriz M has an eigenvalue A1 = 0, whose eigenspace
N7 is one-dimensional,

(6.20) le{é:(s,s,...,s)eRk|s;£o}.
On the orthogonal complement subspace

k

(6.21) Nt == (&, b) eRE DG =0y,

j=1

the matriz M is invertible and the operator norm of the inverse matrizx M~ on
Ni satisfies

(6.22) M~ < Co,
for some uniform constant C > 0.

PrROOF. In the matrix AI — M, adding all the 2nd through kth rows to the first
row, we get

det (AT — M) = Adet My(N),

where M (A) is another A-matrix. This shows A; = 0 is an eigenvalue of M. It can
be shown directly that its associated eigenspace N; is characterized by (6.20). For
any é € Ni,
k
Zséj =0 so that (6.21) holds,
j=1
and vice-versa. Since M is symmetric, beside A\; = 0, all the other k—1 eigenvalues
must be real numbers.
Let Amin be a nonzero eigenvalue of M on N f‘, which has the smallest absolute
value. Then we know that
|Amin| = lnfL{|<M‘T"T>|}

TENT
lzl=1
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For any = = col (z1,...,z;) € R with ||z|| = 1, we have
1

36 (Mz,x) = —m(1,2) (x1 — 22) 1 + m(1,2) (x1 — x2) 22

—m(2,3) (z2 — x3) T2 + m(2,3) (z2 — x3) T3

=m(j —1,7) (xj—1 —zj) xjm1 + m(j — 1,5) (xj—1 — x5) 75

(6.23)

—m(k — 1,k) (xg—1 — x) xp—1 + m(k — 1, k) (xr—1 — xx) Tk
k-1
== m(,j+1) (2 —;41)* <0,
j=1

here we know that
m(j,j+1) = e 8-l > 0.

Hence, by (6.4b) and (6.23), we have
k—1

Amin| = =Amin =1nf { 36 > m(j,j +1) (z; — 2541)% 12 € N, [l = 1
j=1

=36m(1,2) =36m(k — 1,k) =d (o) o'’ (907 — 1) > Co,

(6.24)

for some constant C' > 0. Thus there is a constant C' > 0, such that on the subspace
Ni‘, the norm of the inverse operator M ~! satisfies

1 ~
< Co L.
|)\min|

(e
(]

Note that for k& = 2, the matrix M has the eigenvalues A\; = 0 and Ao =
—12m(1,2). But this pattern is not true for k > 3 in general. For k = 3, the three
eigenvalues are Ay = 0 and

A2, Az = m(1,2) +m(2,3) + /m(1,2)2 —m(1,2)m(2,3) +m(2,3)2.
However, (6.22) always holds.

THEOREM 6.2. Under the assumption that
1 1
(6.25) k=90"", with 8 < 3 and arbitrarily close to >

there is a constant o* > 0, such that for any given 0 < o < o*, there exists a
&= (&,...,&) € A = A(o,B) such that the problem (5.16) has a unique solution

(@0,577075)7 where
(6.26) Yoe = (V1,5 7%) = 0.

PROOF. According to Theorem 5.4, the unique solution (¢s.¢, Vs,¢) to the prob-
lem (5.16) satisfies Eq. (5.35), which is equivalently reduced to the system (6.18).
By (5.36), we can show that the coefficient matrix on the left-hand side of (6.18),

OLU) - (UpUD\ 4
. . = g I+ A,
ULU) - (UpUp)
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is the same coefficient matrix in (3.16) and it is nonsingular. We can solve (6.18)
for v,.¢ and get

o 3
(6.27) %yg_<§I+A> M{|:|-w, ()}

k

where the mapping ¥, is defined by
(6.28)

Yo (é) =-M" {O <U Ué@l - ée i + ‘éprl — ég‘z]) +0 (02(1—6)—M)} ,

in which, of course, the two terms inside {---} are k-dimensional column vectors
whose th components are as shown, respectively.

In order to show (6.26), it suffices to prove that there is a small number 7 > 0
such that

(6.29) U, has a fixed point £ € A, (C Ni°).
Now we use the argument of contraction mapping to prove it. Take a set
Z = {ée Ni-: HéH <n= |loga\_”},

where v > 0 is a small positive number and let v be fixed. For any fixed § such
that

1 1
0<p< 2 arbitrarily close to 3

a value of the parameter u can be chosen such that

1
(6.30) O<u<min{§,1—25},
which implies that
1-2 1-—
(6.31) p< 7 b so that (3.63) is satisfied: 5 < 2—“
- —H

Let u be fixed in such a way. Then we have, by Lemma 6.1 and (6.22),

H\I/a (E)HW < ||m| { HO (U Déﬁ—l - 54‘2 + |€oy1 — é@ﬂ) H
e e g <o)

< C*{|logo| ™" + o' 2" [loga|"} |loga| ™.

Then there exists a constant o1 > 0 such that, whenever 0 < o < o1, in (6.32) we
have

(6.33) C*{|logo|™ + o2~ Floga|"} < 1.
Therefore, for any 0 < o < 01, we have

(6.34) v, (Z)C Z
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Next, for any é and Q: in Z, we have

2

(6.35) H\I/(, () - v, () HW < ‘2 -

col < “&1 - ée

. 2. 2
+“§z+1—§4 —’Ce+1—C4 D

Rk

<20 ([|¢f}+ )

col (Hé@—l —éce‘ - ‘5@—1 — G

+ Héé-l—l - éé’ - ‘@H - QH ) H
(by the triangle inequalities)
< 26" ([ + €] ot (Jér = dima |+ 2] = & + feesr =)
<8 (e + <) le =<
<16C* loga|™”

é-¢].
There exists a small constant oo > 0 such that, whenever 0 < o < o9, in (6.35) we
have

(6.36) 16 C* [logo| ™" < %
so that
(6.37) [w. (&) - w. (0)] < % lé~¢. forany é.C e 2

Therefore, by (6.34) and (6.37), ¥, is a contraction mapping on the set Z, provided
that

(6.38) 0 <o <min{o,02}.

By Brouwer’s fixed point theorem, there exists a fixed point

(6.39) &, € Z such that &, = ¥, (é,,) ,

and consequently, this ég yields

(6.40) Yot = (V1,5 7) =0,

in (6.27), with &, = ¢% + ég. Thus, Theorem 6.2 is proved with

(6.41) o* =min{o,02}.

The proof is completed. |

ConNcLUSION (The completion of the proof of Theorem 2.1). Let
(6.42) oo =min{s,5,0"},

where ¢ < %, o, and o* are determined in Theorem 3.6, Theorem 5.2, and Theorem
6.2, respectively. For any 0 < o < 09, all the results shown in Sections 3 through 6
are valid. Therefore, there is a multi-spike solution (u,v) to the Gierer-Meinhardt
system (2.3), in which

(6.43) u=W+pse, andV =T [u?],
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where W (z) is given by (1.17), po¢, € L° is the solution of problem (5.16) together
with v,¢, = 0. Hence the property (2.8) is valid. The property (2.9) for the v
component is valid because

v=T [’] =T [W?] +2T [Wese, ]+ T [¢2,]
= V() + 2T Weoe, | + T [¢2e, ]
and by Lemmas 4.1 and 4.2, (5.6) and (5.7), with a little extension, we have
v (& +2) =1 <[V (§ +2) = V()]
+ V(&) = U+2IT Weoe ) +|T [#5,]|
=V (& +a) = VEN+ V(&) =1 +0(0”) pos,ll,
+0(1) | poe, |l — 0

as 0 — 0, uniformly on any compact set of x. Thus Theorem 2.1 is proved. O
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Appendix A

We can solve the nonlinear ODE problem:

W' —u+u?=0 inR,

0 <u(x) — 0, as || — oo,

to get the unique explicit solution
6e”

u(r) = 6sech? (f) = m.

2

By multiplying «’ on both sides of the equation and integrating it, we have
2 3

(ul)2:u2_§u7

2
u’:—u\/l—gu.

The sign is chosen according to the condition 0 < u(x) — 0, as |z| — oo. Let

y = logu. Then
/diy__
,/1—%@”

where we do not involve an arbitrary constant also because of the asymptotical
—1/3eY%d
boundary condition. Another substitution z = /1 — %ey, dz = / Y

1/1—%674

so that

z,

ren-

ders the above equality to

—2dz 1 1
= (-1 dz = —
/1—22 ( )/<1—z+1+z) * “
z=1lo 1+ i.e z—ew_l—\/l—gu
B gl—z7 U Tet4+1 3

Then solve this algebraic equation for u, finally we obtain the unique solution
6 xr
u(x) = %, z €R.
(1+e7)

or

Appendix B
In this Appendix we compute the integrals in Lemma 1.1. First,
—2|z| 0 2z
/Uz(sc)dz:/LALd:c:72/ 674d:c (let y =14¢€%)
R R (1+el#l) oo (14e%)

2 2
y—1 -1 1 1 1N 1/1
-7 dy=724 -4+ Y (1) 4+=(2-1
/1 g Y {2y2+3y3}1 [2 1) T3 8
6
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Next

63e —3|z|
/U3(x)dx:/ / de (let y =1+ ¢€")
R (1—|—e \1 1—‘1-61
2
:432/ =1 d _432/ [ 1}@
1 yo y°

111 15 31\ 36
= 432 ==,
] ) (24 32" 160) 5

=432
[ 33+ 2yt By

Now we compute [, |U’(z)[* da.

0 2

1—

/ |U'(:1c)|2 dx =72 & dx  (by substitution y = 14 %)
R —o0 (1 + e””)

2 _ _9)2 2
:72/ wdy:m/ i@,(y3—5y2+8y—4)dy
1 Y 1Y

[=2]

Then we have

/|x|U(z)dgc:2/ :Z:U(:c)dgg:m/ Lde
R 0 0o (I+e®)

_ o o0 d 0 —x
— 12| % +/ v :12/ C dr
1+e*|, o l+e* o lH4+e™®

= —121log (1+ e )| = 12log2.

Next,

o] —2x oo 2z
/|:C|U2(:v)dac:72/ L4dx:72/ L4dx
R o (I+e®) o (I+e%)

1wt |71 2 (1 ta)e
=79 __LS +_/ %dz
3 (+er)], 3Jo (1+e)
=792 _ELIQ
6 (1+e7)7|,
1 ee} —2x
—12 —+/ — _3+12{
4 Jo (1T+e)

_3+12{—%—10g(1—|—e ””)

+1
6 o (1+4+e®)

=
[ v

0}

=3—-6+12log2 = 12log2 — 3.
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Moreover, we have

oo o0 —x 2T
/(fpc| U? (:c)dz:2/ e”l7l 2 (:c)dz:72/ I
R 0 0

(1+e)*
© em 2 1 |7
:72/ =2 ;| =3
o (L+e7) 3 (1+e)
Finally,
oo —x 2z 36 1 e

/e_IU2(x)dx:/ - Tdr = —— 3 =12.
R oo (14e?) 3 (1+e")

Appendix C
Here we give the detailed proof of Lemma 1.2. The first statement in (1.7),

pr(x)<e ", zeR,

simply follows from the triangle inequality. Now we show the second statement in
(1.7) by calculation for both cases r > 0 and r < 0. For r > 0, by the explicit
expression of p, (x),

-7 0 [e%e}
/ e lelemlotrl gy = / 2 do + / e "dx + / e~ (2247 gy
R —00 —r 0

1 1
=3 e "+re "+ B e "=104r) eIl

For r < 0,

0 —r [eS)
/ ezl g=lztrl g0 — / 2247 1 +/ e dr +/ e~ (1) 4o
R —o0 0 —r

1 1
= §eT —re" + §er =1+ |r])e”I"

Therefore, (1.7) holds.
To save space, we show (1.8), (1.9), and (1.10) only for the case r > 0. For the
case r < 0, the verification is similar and is omitted. Since for r > 0,

—r 0 oo
/ x| el eIzl gy = / —xe T 4 / —ze "+ / ze~ (22HT)
R —o0 —r 0

_ —£621+T—|—1621+T o _ w_26—7‘ 0 _ Ee—(2w+r)+le—(2w+r) 00
2 4 . 2 . 2 4 0

o f(r 1 r? . L 1 _ 9

—° (§+1)+7€ +3e =g A+,

so (1.8) is valid.
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Next we show (1.9). For r > 0, we have

—r 0
2 _ _ _
/|33| e 2l e 2|x+r|d:c:/ z? 62I62x+2r+/ z? e %" da
R —00 —r

[e%S)
+/ $2 6—21 e—2w—2r dr
0

2r .’II2 4z L 4a 4z - .’II3 —2r 0
=7 T8 type Ty
_’_6727“ (_‘I_Q 674x _ E 674x _ i e4x> -
1 8 0

:e*QW L+M+ﬁ+w
16 8 4 3 '

Therefore, (1.9) is valid.
Finally we show (1.10). For r > 0, we have

/ 2| e~ ¥l e=2letr] g < e 17 / lz|e”1* T dz  (by (1.7))
R R

-r 0 oo
= eIl {/ —ze®t" +/ —ge~ (@) +/ :Ee_(”””)}
—oo —r 0

0
= eI"l { (—ae™ et L+ (we_(w”) + e_(:”J“T))‘

+ (_xe—(w+r) _ e—(m-i—r))}
0
="l (r+l4+r+e " —14¢€")
= e I"l (2r +2e77) = 2¢~ 1" (|7°| + e_w) .

Therefore, (1.10) is valid. The proof is completed.
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