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Abstract. In many biological pattern formation processes and in some chem-
ical or biochemical reactions, an activator-inhibitor system of two reaction-
diffusion equations serves as a mathematical model, typically, the Gierer-
Meinhardt equations. This type of model equations features two largely dif-
ferent diffusion coefficients and an essentially nonlocal nonlinearity. In this

paper, the one-dimensional Gierer-Meinhardt equations are considered,

At = d∆A − A +
A2

H
= 0 in R,

Ht = D∆H − H + A2 = 0 in R,

A,H > 0 and A,H → 0 as |x| → ∞,

where σ2 = d/D � 1. By the Lyapunov-Schmidt method, a sharp order-
estimate of the number k of multiple spikes of the ground state solutions is
made. The k-spike solutions are constructed by adding small perturbation
to the function which has k appropriately distributed spikes resembling the
solution of the problem

∆u − u + u2 = 0 in R,

0 < u → 0 as |x| → ∞.

The main result is that, for sufficiently small σ > 0, there exists such a ground
state solution with k = const σ−β , where 0 < β < 1/2 and β can be arbitrarily
close to 1/2. In the proof of this conjecture, a priori estimates of linear
and nonlinear parts are conducted by means of cut-off decomposition, sharp
calculations of multiple spike interactions at all levels, and finally a fine-tuned
adjustment of spike centers.
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1. Introduction

In 1952, A. M. Turing [21] showed that a reaction-diffusion system modeling
two chemical substances, called morphogens, could generate a spatially nonuni-
form pattern from a spatially almost uniform steady-state, which is stable in the
absence of diffusion, by using a symmetry-breaking instability analysis driven by
the distinguished diffusion coefficients. Then it has been found experimentally and
numerically [2,7,8,12,14] that, for many reaction-diffusion systems, the ground
states as well as the evolving dynamics can exhibit a common phenomenon called
point condensation [20,26,28], which consists of spike-type patterns with bumps
around certain spatial points. Although the microscopic and/or biochemical rea-
sons causing such phenomena of pattern formation are still under investigation in
many cases, mathematicaly a coherent theory for the existence and stability of the
multi-spike solutions (or called multi-bump solutions, multi-spot solutions) for sev-
eral typical reaction-diffusion systems has been established based on the methods in
nonlinear elliptic partial differential equations, linear stability analysis for parabolic
equations, and singular perturbation analysis. Many of these results are listed in
the References.

The Gierer-Meinhardt model [7] proposed in 1972 and the Gray-Scott model [8]
proposed in 1983, each having certain variations in terms of the nonlinearity, are
two typical models of reaction-diffusion systems which have been intensively studied
by a number of authors in the last two decades, cf. [1,3–5,11,23,25,27,28,30–
32,35,36] for the Gierer-Meinhardt system and [6,15,22,26,29,33,34] for the
Gray-Scott system.

The Gierer-Meinhardt model describes the activator-inhibitor coupled behavior
for many systems in cell biology and physiology [7,12,14], whereas the Gray-Scott
model characterizes self-replicating patterns of some autocatalytic and feedback
systems in reaction kinetics and biochemistry [2,6,8]. It is interesting to note that
both model systems admit specific symmetric and asymmetric multi-spike (multi-
bump) patterns in one-dimensional and two-dimensional spatial domains, as seen
in the listed references and additional papers cited therein.

Motivitated by and based on the pioneering work during 1986–1996 [13,16–20]
on the profiles, especially the location and the shape of peaks, of the variational
solutions to Neumann problems of semilinear elliptic PDEs, researches have been
conducted for Neumann problems of single nonlinear elliptic PDEs [9, 10] in the
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form

ε2∆u− u+ f(u) = 0,

and for Gierer-Meinhardt system and Gray-Scott system on the existence and con-
struction of K-spike solutions, where K is any given positive integer, by allowing
the coefficient ε2 in the above equation and the ratio σ2 of two largely different
diffusion coefficients in Gierer-Meinhardt or Gray-Scott system to be sufficiently
small, while K is fixed and can be large. A common and notable feature in these
works, cf. [3,4,11,23–25,28–36], is the leverage of using the Lyapunov-Schmidt

method of finite dimensional reduction to find the multi-spike profiles of ground
state solutions as a small perturbation of a basis function whose multiple spikes are
well shaped and distributed.

Consider a prescaled Gierer-Meinhardt system of two coupled nonlinear para-
bolic equations,

(GM)

At = d∆A−A+
A2

H
, x ∈ Ω, t > 0,

Ht = D∆H −H +A2, x ∈ Ω, t > 0,

∂A

∂n
=
∂H

∂n
= 0, x ∈ ∂Ω, t ≥ 0,

where Ω is a 1D or 2D bounded, Lipschitzian domain, A = A(x, t) and H =
H(x, t) are the concentrations of an activator substance and an inhibitor substance,
respectively. As we know, an important thing is to study the positive, non-constant,
steady states called ground states of this GM system. They are the solutions of the
elliptic system:

d∆A−A+
A2

H
= 0, x ∈ Ω,

D∆H −H +A2 = 0, x ∈ Ω,

∂A

∂n
=
∂H

∂n
= 0, x ∈ ∂Ω.

In the original model in [7] and in many other biological settings, it is suggested or
has been justified that one can make the assumption of a slowly diffusing activator
and a rapidly diffusing inhibitor, which implies that d� D and σ2 = d/D � 1.

We can rescale the independent variables and two unknownsA andH as follows;
set

u(x) = σ2A
(
d1/2x

)
, v(x) = σ2H

(
d1/2x

)
.

Then the above elliptic system reduces to the following equivalent system,

∆u− u+
u2

v
= 0, x ∈ Ωd,

∆v − σ2v + u2 = 0, x ∈ Ωd,

∂u

∂n
=
∂v

∂n
= 0, x ∈ ∂Ωd.
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Here, Ωd = d−1/2Ω. When d → 0 but σ remains quantitatively stabilized, for the
one-dimensional domain we come up with the limiting system

(1.1)

u′′ − u+
u2

v
= 0, x ∈ R,

v′′ − σ2v + u2 = 0, x ∈ R,

u, v > 0 and u, v → 0 as |x| → ∞.

The system (1.1) and its two-dimensional counterpart serve as a natural approxi-
mation to the Gierer-Meinhardt ground state equations when Ωd is very large and
a pattern formation occurs in the interior of the domain away from the boundary.

A particularly notable question concerning the pattern formation of the ground
states of the Gierer-Meinhardt system (1.1) and its two-dimensional counterpart
stands as follows:

Is it true that there exist solutions with an arbitrarily large num-

ber of spikes as the diffusion ratio parameter σ gets smaller and

smaller? If so, then what is the estimate of the maximal multiple

spike number k in terms of a sufficiently small given σ?

The first half of this question has been affirmatively answered by [3] for the 1D case
and by [4] for the 2D case. There are other related results in the listed references
too. What they have proved is that given an arbitrarily large integer K, there is a
small constant σK > 0 such that if 0 < σ ≤ σK , then there exists a ground state
solution of (1.1), which exhibits exactlyK spikes in the activator component. There
are a couple of different mechanisms to mathematically construct these multi-spike
ground state solutions.

In this work, we shall answer the second half of the aforementioned question.
Specifically, the stand point is: given an arbitrarily small σ > 0, how many (namely
up to what order k relative to σ) spikes can one expect to occur in a ground state
solution of the limiting Gierer-Meinhardt system? As far as we are aware, this is
an open problem.

We shall take the approach of using the Lyapunov-Schmidt method to tackle
this problem. The entire work consists of three stages: the linear part, the nonlinear
part, and the final solution to the finite dimensional reduction. In dealing with the
variable number k of multiple spikes in an unknown order of power σ as conjectured,
we have to conduct sophisiticated a priori estimates in order to get the sharpest
estimates in each step throughout the process of analysis.

In treating the linear part, which is the principal approximation of the Fréchet
derivative of the nonlinear, nonlocal operator of the reduced single equation, a cut-
off decomposition plays a key role to achieve the bounded invertibility of this linear
operator. In the nonlinear part, we have to integrate all the aspects of multiple
spike interactions at several levels and to assemble all the estimates together for a
sharpest attempt.

In the rest of this section, we shall set up some basic facts and concepts involved
in this paper. Most importantly, we shall establish several Tool Lemmas which will
be very instrumental and frequently used in the subsequent sections.
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First of all, what we call spike (or bump) means a function which resembles
the unique analytic solution U(x) to the ODE problem:

(1.2)
u′′ − u+ u2 = 0, x ∈ R,

0 < u(x) → 0, as |x| → ∞.

We can solve (1.2) to get the explicit form of U(x) (see Appendix A):

(1.3) U(x) = 6 sech2
(x

2

)
=

6ex

(1 + ex)2
=

6e−x

(1 + e−x)2
, x ∈ R.

This U(x) is an even, positive function. The following properties of U will be used
frequently.

Lemma 1.1. For the spike function U(x) given by (1.3), the following properties

hold.

(1) U(x) =
6e−|x|

(
1 + e−|x|

)2 , x ∈ R. We have

(1.4)
U(x) = |U(x)| ≤ 6e−|x|, x ∈ R,

U(x) = 6e−|x|
(
1 +O

(
e−|x|

))
, as |x| → ∞.

(2) U ′(x) =
6ex (1 − ex)

(1 + ex)3
=

−6e−x (1 − e−x)

(1 + e−x)3
, x ∈ R, and U ′ is an odd func-

tion,

(1.5)
|U ′(x)| ≤ 6e−|x|, x ∈ R,

|U ′(x)| = 6e−|x|
(
1 +O

(
e−|x|

))
, as |x| → ∞.

(3) U ′′(x) =
6e−|x|

(
1 + e−|x|

)4
(
1 − 4e−|x| + e−2|x|

)
, x ∈ R.

(4) We have

(1.6)

∫

R

U(x) dx =

∫

R

U2(x) dx = 6,

∫

R

U3(x) dx =
36

5
,

∫

R

|U ′(x)| dx = 3,

∫

R

|U ′(x)|2 dx =
6

5
,

∫

R

|x|U(x) dx = 12 log 2,

∫

R

|x|U2(x) dx = 12 log 2 − 3,

∫

R

e−|x|U2(x) dx = 3,

∫

R

e−xU2(x) dx = 12.

Proof. These integrals can be calculated directly. See Appendix B. �

The following two lemmas are most instrumental throughout this paper, which
allows us to make the sharpest estimates.

Lemma 1.2. Let r be a given real number and pr(x) be the function

pr(x) = e−|x|e−|x+r|, x ∈ R.



192 YUNCHENG YOU

Then the following properties hold:

(1.7)

|pr(x)| = pr(x) ≤ e−|r|, x ∈ R,
∫

R

pr(x) dx =

∫

R

e−|x|e−|x+r| dx = (1 + |r|)e−|r|,

and ∫

R

|x|pr(x) dx =

∫

R

|x|e−|x|e−|x+r| dx =
1

2
e−|r|

(
1 + |r| + r2

)
,(1.8)

∫

R

|x|2pr(x) dx =

∫

R

|x|2e−|x|e−|x+r| dx = e−|r|

[
1

2

(
|r| + r2

)
+

1

3
|r|3
]
,

∫

R

|x|2pr(x)
2 dx =

∫

R

|x|2e−2|x|e−2|x+r| dx = e−2|r|

(
1

16
+

|r|
8

+
r2

4
+

|r|3
3

)

≤ 1

3
e−2|r| (1 + |r|)3,

(1.9)

∫

R

|x|e−|x|e−2|x+r| dx ≤ 2e−|r|
(
|r| + e−|r|

)
.(1.10)

Proof. The function pr(x) can be explicitly written as follows:

pr(x) =





e−(2x+r), x ∈ [0,∞),
e−r, x ∈ [−r, 0], if r > 0;
e2x+r, x ∈ (−∞,−r],

pr(x) =





e−(2x+r), x ∈ [−r,∞),
er, x ∈ [0,−r], if r < 0.
e2x+r, x ∈ (−∞, 0],

Then (1.7)–(1.10) can be validated by straightforward integration, using substitu-
tions or integration by parts. See Appendix C for the details. �

Remark 1. Since these relevant integrals we deal with in the subsequent sec-
tions are calculated exactly in Lemma 1.2, without any possible improvement, the
corresponding estimates will be deemed as sharp estimates.

Let β be a constant, 0 < β < 1. For sufficiently small σ > 0, let

(1.11) rσ = (1 − β)| log σ|.
We have, for any positive integer m,

(1.12) e−mrσ = e−m(1−β)| log σ| = σm(1−β).

The following estimates on the sums of finite geometric and mixed series of uncertain
length are very useful in the sequel.

Lemma 1.3. Let k ≥ 1 be an integer and let 0 ≤ bj ≤ 2 for j = 1, . . . , k. For

r = rσ given by (1.11), we have

(1.13)

k∑

j=1

bje
−jr ≤ 2σ1−β

1 − σ1−β
,

and

(1.14)

k∑

j=1

bj(j| logσ|)e−jr ≤ 2| logσ|σ1−β

(1 − σ1−β)
2 ,
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for sufficiently small σ.

Proof. (1.13) is obviously true. We show (1.14) by using Abel’s transforma-
tion

m∑

i=1

aidi = amDm −
m−1∑

i=1

(ai+1 − ai)Di, with Di =
i∑

j=1

dj .

This is the discrete version of integration by parts. Thus we can regard jr as aj

and e−jr as dj to get

k∑

j=1

bj(j| logσ|)e−jr =

k∑

j=1

bj
1 − β

(jr)e−jr ≤ 2

1 − β

k∑

j=1

jre−jr

= a




kre−r

(
1 − e−kr

)

1 − e−r
−

k−1∑

j=1

re−r
(
1 − e−jr

)

1 − e−r



 (here a =

2

1 − β
)

≤ a





kre−r

1 − e−r
− re−r

1 − e−r


k − 1 −

k−1∑

j=1

e−jr







= a

{
re−r

1 − e−r
+

re−r

1 − e−r
· e

−r
(
1 − e−(k−1)r

)

1 − e−r

}

≤ are−r

1 − e−r

(
1 +

e−r

1 − e−r

)
=

are−r

(1 − e−r)
2 =

2| logσ|σ1−β

(1 − σ1−β)
2 .

�

As a corollary of (1.14), for sufficiently small σ, there is a uniform constant
C0 > 0, such that

(1.15)
k∑

j=1

bj [j(1 + | logσ|)]e−jr ≤ C0| logσ|σ1−β

(1 − σ1−β)
2 .

Let integer k ≥ 2 and 0 < β < 1 be given. Define set in R
k as follows,

(1.16)

Λ = Λ(σ, β)

=




ξ = (ξ1, . . . , ξk) :

ξj < ξj+1, j = 1, . . . , k − 1,
k∑

j=1

ξj = 0,

and (1 − β)| logσ| ≤ |ξj − ξj+1| ≤ 1 + | logσ|,
j = 1, . . . , k − 1.




.

With the observation of (1.15), in the subsequent sections, we can replace the in-
equality |ξj − ξj+1| ≤ 1+ | logσ| by writing |ξj − ξj+1| ≤ | logσ|, just for notational
simplicity, that will not affect any estimate. We shall not repeat this remark.

For any given ξ = (ξ1, . . . , ξk) ∈ Λ, define a corresponding multi-spike function

(1.17) W (x) =

k∑

j=1

U (x− ξj) , x ∈ R.

The partial derivatives of W will be denoted by

(1.18) Wj(x) =
∂W

∂ξj
= −U ′ (x− ξj) , j = 1, . . . , k.
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By (1.6), we have

(1.19)

∫

R

|Wj(x)| dx = 3 and

∫

R

|Wj(x)|2 dx =
6

5
, j = 1, . . . , k.

The following is a known result [4].

Lemma 1.4. The unique variational solution in H1(R) to the problem

−ϕ′′ + (1 − 2U(x))ϕ = 0 in R,

ϕ(x) → 0 as |x| → ∞,

is ϕ(x) = U ′(x). Let L1 be the operator L1(ϕ) = −ϕ′′ + (1 − 2W (x))ϕ. Then the

kernel of L1 is

kerL1 = Span {W1, . . . ,Wk} .
The following lemma shows that the integral in (1.20) has the same order of k

which affects some estimates we will encounter.

Lemma 1.5. For any given ξ = (ξ1, . . . , ξk) ∈ Λ, given in (1.16), if µ > 0 is a

constant, then

(1.20)

∫

R

e
−µ min

1≤i≤k
|x−ξi|

dx ≤ 2

µ

[
k − (k − 1)σµ/2

]
,

for 0 < σ < 1.

Proof. We can directly compute this integral to get
∫

R

e
−µ min

1≤i≤k
|x−ξi|

dx =

∫ ξ1

−∞

e−µ(ξ1−x) +

∫ 1
2
(ξ1+ξ2)

ξ1

e−µ(x−ξ1)

+

∫ ξ2

1
2
(ξ1+ξ2)

e−µ(ξ2−x) + · · · +
∫ ∞

ξk

e−µ(x−ξk)

=
2k

µ
− 2(k − 1)

µ
e−

µ
2
(1+| log σ|) =

2

µ

[
k − (k − 1)σµ/2

]
.

�

Let us also introduce a cut-off decomposition for functions. Define θ(x) to be
a truncating function:

(1.21)

θ(x) = θσ(x)

=





1, for |x| ≤ rσ/4,

smooth and decreasing, for |x| ∈ [rσ/4, rσ/2] ,

0, for |x| ≥ rσ/2,

where rσ is given in (1.11), such that θ ∈ C2(R). For small σ, we can make
|θ′(x)| ≤ 1. Then, for any given ξ = (ξ1, . . . , ξk) ∈ Λ, a function ϕ(x) defined on R

can be written as

(1.22) ϕ(x) =

k∑

j=0

ϕj(x) = ϕ0(x) +

k∑

j=1

ϕ(x)θ (x− ξj) ,

namely, ϕj(x) = ϕ(x)θ (x− ξj), j = 1, . . . , k. This will be referred to as the cut-off
decomposition with respect to ξ. By the separation of the points ξ1, . . . , ξk we have

suppϕi ∩ suppϕj = ∅, for i 6= j in {1, . . . , k}.
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Let

(1.23) Ω0 = R \
k⋃

j=1

Ωj , Ωj =
[
ξj −

rσ
4
, ξj +

rσ
4

]
, j = 1, . . . , k.

Then suppϕ0 ⊂ Ω0 and

(1.24) Ω =
k⋃

j=0

Ωj .

2. Main Result and Approach of Proof

We use ∆ to denote the second-order distributional derivative of a function
defined on R, namely, ∆ϕ = ϕ′′. We shall use I to denote the identity operator.
Consider the linear differential operator

(2.1)
Lo(ϕ) =

(
−∆ + σ2I

)
(ϕ), ϕ ∈ H2(R) ∩H1

0 (R),

0 < ϕ(x) → 0, as |x| → ∞.

The Green’s function associated with Lo is found to be

(2.2) G(x, y) =
1

2σ
e−σ|x−y|, for x, y ∈ R.

Its verification is straightforward and omitted.
First of all, we can rescale the problem (1.1). Let τ > 0 be a parameter, which

will be specified later. We can replace u and v in (1.1) by the rescaled τu and τv,
then (1.1) becomes the problem

(2.3)

u′′ − u+ u2/v = 0,
v′′ − σ2v + τu2 = 0,

in R

u, v > 0 and u, v → 0 as |x| → ∞.

Since Lo : H2(R)∩H1
0 (R) → L2(R) is invertible and its inverse operator is bounded,

the second ODE in the system (2.3) can be solved for v, and we have

(2.4) v = T
[
u2
] ∆

= L−1
0

(
τu2
)

=
(
−∆ + σ2I

)−1 (
τu2
)
.

By substituting (2.4) into the first ODE in (2.3), the rescaled problem (2.3) is
reduced to a single nonlocal nonlinear ODE problem:

(2.5)
S[u]

∆
= u′′ − u+

u2

T [u2]
= 0 in R,

u > 0 and u→ 0 as |x| → ∞.

The operator S is Fréchet differentiable. In order to distinguish the solution to the
original problem (1.1) and the solution to the rescaled problems (2.3) and (2.5), we
shall retain the notation (u, v) for (2.3) and (2.5) and denote the solution to (1.1)
by (u∗, v∗).

We take a normalization parameter τ to be

(2.6) τ = τσ =
2σ

ω
, where ω =

∫

R

W 2(x) dx,

where W (x) is the multi-spike function given in (1.17).
In this work, we shall prove the following main result, Theorem 2.1.
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Theorem 2.1. There exists a positive number σ0 such that for any given σ,
0 < σ ≤ σ0, there exists a solution (u, v) to the one-dimensional Gierer-Meinhardt

system (2.3) with the following properties.

(1) The u component has k spikes, with

(2.7)
k = constσ−β ,

where 0 < β < 1/2 can be arbitrarily close to 1/2,

and such that

(2.8) lim
σ→0

∣∣∣∣∣∣
u(x) −

k∑

j=1

U (x− ξj)

∣∣∣∣∣∣
= 0, uniformly in x ∈ R.

(2) The v component satisfies

(2.9) lim
σ→0

|v (ξj + x) − 1| = 0, uniformly on any compact set of x,

for j = 1, . . . , k.

Here ξ = (ξ1, . . . , ξk) is some vector point in the set Λ defined by (1.16). Moreover,

the corresponding multi-spike ground state solution to the original Gierer-Meinhardt

system (1.1) exists and is given by (u∗, v∗) = (τu, τv).

The rest of the paper is devoted to proving this main result. Our goal is to
reach a sharp estimate on the order of the multiple spike number k in terms of σ.
Here let us lay out the approach of the proof.

Since the problem (2.3) has been reduced to a single ODE problem (2.5), our
strategy is to seek for a solution of (2.5) in the form

(2.10) u(x) = W (x) + ϕ(x), x ∈ R,

where W is the function of multiple standard spikes introduced in (1.17), and ϕ
ought to be a small perturbation function, which tends to zero as σ → 0 with
respect to an appropriate norm.

Let V (x) be the unique solution of the ODE problem:

(2.11)
V ′′ − σ2V + τW 2 = 0, x ∈ R,

0 < V (x) → 0, as |x| → ∞.

According to (2.2) and (2.4), V = T
[
W 2
]

is expressed as

(2.12) V (x) =
τ

2σ

∫

R

e−σ|x−y|W 2(y) dy =
1

ω

∫

R

e−σ|x−y|W 2(y) dy,

where ω =
∫

R
W 2(y) dy is shown in (2.6). When we substitute u = W + ϕ into

(2.5), it becomes

(2.13) (W ′′ −W ) + (ϕ′′ − ϕ) +
W 2

V
+

2Wϕ

V
− 2W 2

V 2
T [Wϕ] + (r.t.) = 0,

where (r.t.) stands for all the remainder terms of the order O
(
ϕ2
)

as ϕ small. Thus
ϕ satisfies the following equation

(2.14) −ϕ′′ + ϕ− 2Wϕ

V
+

2W 2

V 2
T [Wϕ] = S[W ] +N(W,ϕ),
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where the left-hand side is a linear nonlocal operator on ϕ, and the right-hand side
consists of nonlinear terms

(2.15)

S[W ] = W ′′ −W +
W 2

V
, and

N(W,ϕ) = (r.t.) =
(W + ϕ)2

T [(W + ϕ)2]
−
(
W 2

V
+

2Wϕ

V
− 2W 2

V 2
T [Wϕ]

)
.

We shall take the approach of the Lyapunov-Schmidt method to show the exis-
tence of a solution ϕ of this equation (2.14), which has the properties we demand.
As for the specific procedure, we divide the entire proof into the following stages.

Stage 1. First we shall study the linear part in equation (2.14). But instead
of its full form, we will consider the following linear operator, which we call the
principal approximation of the linear part in (2.14),

L(ϕ)
∆
= −ϕ′′ + ϕ− 2Wϕ+

2W 2

ω
〈W,ϕ〉

= −ϕ′′ + (1 − 2W )ϕ+
2W 2

ω
〈W,ϕ〉, ϕ ∈ H2(R) ∩H1

0 (R),

(2.16)

where ω =
∫

R
W 2(x) dx and 〈·, ·〉 is the L2 inner product. Comparing L with the

linear operator on the left side of (2.14), we have made two simplifications in (2.16)
but preserved all the essentials in the linear part. These two simplifications are: in
(2.16),

(2.17) we replace V (x) by 1 and T [Wϕ] by
1

ω
〈W,ϕ〉.

In Section 3, we shall consider the following problem: Given a function h whose
weighted L∞ norm is finite, and given a set of points (ξ1, . . . , ξk) ∈ Λ, find a solution
ϕ and γ = (γ1, . . . , γk) ∈ R

k such that

(2.18)

L(ϕ) = h+ γ · ∇ξW = h+
k∑

j=1

γjWj in R,

ϕ(x) → 0 as |x| → ∞, and

〈ϕ,Wj〉 = 0, for j = 1, . . . , k.

Under the assumption we made in Theorem 2.1, we shall prove the solution operator
is a bounded linear operator with respect to a weighted L∞ space by using the a

priori estimates, the cut-off technique, and the Fredholm alternative principle.

Stage 2. In Section 4, we shall estimate the cost of the replacements made
in (2.17), which essentially proves the statement in the main theorem (Theorem
2.1) on v component. Moreover, we shall establish a key result on the estimate of
integrals ∫

R

S[W ](x)U ′ (x− ξj) dx, j = 1, . . . , k,

which constitutes the main part of the nonlinear side in (2.14) under investigation.
We also want to estimate the weighted L∞ norm of S[W ].
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Stage 3. By the Lyapunov-Schmidt method, the problem of seeking for a
solution ϕ of the original equation (2.14) is imbedded into an augmented problem
of solving the problem:

(2.19)
S [W + ϕσ,ξ] (x) =

k∑

j=0

γjU
′ (x− ξj) , x ∈ R,

〈ϕσ,ξ, U
′ (· − ξj)〉 = 0, j = 1, . . . , k, and ϕσ,ξ(x) → 0 as |x| → ∞,

for both ϕσ,ξ and γ = (γ1, . . . , γk). This augmented problem is equivalent to solving

(2.20)

L(ϕ) = S[W ] + P (W,ϕ) +

k∑

j=1

γjWj

〈ϕ,U ′ (· − ξj)〉 = 0, j = 1, . . . , k,

ϕ(x) → 0, as |x| → ∞,

where L is the linear operator of the principal approximation studied in Section 3,
and the nonlinear part P (W,ϕ) is given by

(2.21) P (W,ϕ)
∆
=

(W + ϕ)2

T [(W + ϕ)2]
−
(
W 2

V
+ 2Wϕ− 2W 2

ω
〈W,ϕ〉

)
.

In Section 5, we shall make estimates of the nonlinear terms in P (W,ϕ). Then we
shall use the contraction mapping argument and the fixed point theory to show
that there exists a solution (ϕσ,ξ, γ) of the problem (2.20) under the assumptions
we make. Furthermore, an estimate on the integrals

∫

R

(S [W + ϕσ,ξ] (x) − S[W ](x))U ′ (x− ξj) dx, j = 1, . . . , k,

will be made as a preparation for the final stage.

Stage 4. Now the problem is reduced to solving the finite-dimensional problem

k∑

j=1

γj

∫

R

U ′ (x− ξj)U
′ (x− ξ`) dx =

∫

R

S[W ]U ′ (x− ξ`) dx

+

∫

R

(S [W + ϕσ,ξ] − S[W ])U ′ (x− ξ`) dx,

` = 1, . . . , k,

(2.22)

in the sense that there exists a choice ξ = (ξ1, . . . , ξk) ∈ Λ such that the right-hand
side of (2.22) turns out to be zero, so that the component γσ,ξ = (γ1, . . . , γk) of the
solution of the augmented problem (2.19) or, equivalently, (2.20), is a zero vector
corresponding to this ξ. Hence the linear coefficient matrix of γ is nonsingular for
small σ. This proof will be fulfilled by using the Brouwer fixed point theorem.
Finally, since there exists a ξ ∈ Λ which makes γσ,ξ = 0, then the solution ϕσ,ξ to
this augmented problem (2.19) is exactly the solution of the problem

(2.23) S [W + ϕσ,ξ ] = 0.

Hence there exists a solution u = W +ϕσ,ξ to the original problem (2.5), which has
the property stated in Theorem 2.1.
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3. The Bounded Invertibility of the Linear Operator

Here we study the linear operator of the principal approximation L defined by

(3.1)
L(ϕ)

∆
= −ϕ′′ + (1 − 2W )ϕ+

2W 2

ω
〈W,ϕ〉, ϕ ∈ H2(R) ∩H1

0 (R),

where ω =

∫

R

W 2(x) dx,

as we mentioned in (2.16). The formal adjoint operator of L with respect to the L2

inner product is given by

(3.2) L∗(ϕ)
∆
= −ϕ′′ + (1 − 2W )ϕ+

2W

ω

〈
W 2, ϕ

〉
, ϕ ∈ H2(R) ∩H1

0 (R).

In the sequel, we shall always refer the set Λ to (1.16) and make the asumption (2.7),
which will not be repeated in each lemma and theorem. We may only mention the
assumption in Theorem 2.1 for this. We shall denote a positive constant without
need of specification by a generic C.

First we estimate

L (Wj) = L (−U ′ (· − ξj)) = 2 (W (x) − U (x− ξj))U
′ (x− ξj)

− 2W 2

ω
〈W,U ′ (· − ξj)〉

=

k∑

i(6=j)=1

2U (x− ξi)U
′ (x− ξj) −

2W 2(x)

ω
〈W,U ′ (· − ξj)〉 ,

(3.3)

where

∣∣∣∣∣∣

k∑

i(6=j)=1

2U (x− ξi)U
′ (x− ξj)

∣∣∣∣∣∣
≤ 2

∑

i6=j

U(y) |U ′ (y + ξi − ξj)| (by Lemma 1.1)

(3.4)

≤ 72
∑

i6=j

e−|y|e−|y+ξi−ξj | ≤ 72
∑

i6=j

e−|ξi−ξj | (by Lemma 1.2)

≤ 72
∑

i6=j

σ|i−j|(1−β) (by (1.12))

≤ 144
σ1−β

1 − σ1−β
≤ 288σ1−β,

where, and hereafter, we assume that σ is so small that

(3.5) 1 − σ1−β > 1/2.

Moreover, we have

∣∣∣∣−
2W 2(x)

ω
〈W,U ′ (· − ξj)〉

∣∣∣∣
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=
2

ω




k∑

j=1

U2 (x− ξj) +
∑

i,j
i6=j

U (x− ξi)U (x− ξj)




×
k∑

i(6=j)=1

∣∣∣∣
∫

R

U (y − ξi)U
′ (y − ξj) dy

∣∣∣∣

in which,

(3.6)

ω =

∫

R

W 2(x) dx ≥
k∑

i=1

∫

R

U2 (x− ξi) dx = 6k,

k∑

j=1

U2 (x− ξj) = U2 (x− ξjo) +
∑

j 6=jo

U2 (x− ξj)

≤ 36 +
2σ2(1−β)

1 − σ2(1−β)
≤ 36 + 4σ2(1−β)

where min
1≤j≤k

|x− ξj | = |x− ξjo|, and

∑

i,j=1
i6=j

U (x− ξi)U (x− ξj) ≤ 36
∑

i,j
i6=j

σ|i−j|(1−β) ≤ 36k
(
4σ1−β

)
≤ Cσ1−2β .

Besides we have

k∑

i(6=j)=1

∣∣∣∣
∫

R

U (y − ξi)U
′ (y − ξj) dy

∣∣∣∣ ≤
∑

i6=j

(1 + |ξi − ξj |) e−|ξi−ξj |

(by Lemma 1.2)

≤
∑

i6=j

(
1 +

1

1 − β
|i− j|(1 − β)| log σ|

)
σ|i−j|(1−β) (by Lemma 1.3)

≤ 4σ1−β + 8| logσ|σ1−β .

Then we get

(3.7)

∣∣∣∣−
2W 2(x)

ω
〈W,U ′ (· − ξj)〉

∣∣∣∣ ≤
1

3k

(
36 + Cσ1−2β

)
(4 + 8| logσ|)σ1−β

≤ C(1 + | logσ|)σ, for some constant C > 0,

because k = Cσ−β . It follows from (3.3), (3.4) and (3.5) that

(3.8) |L (Wj)| ≤ 288σ1−β + C(1 + | logσ|)σ.
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Similarly, we have
∣∣∣∣−

2W (x)

ω

〈
W 2, U ′ (· − ξj)

〉∣∣∣∣ ≤
1

3k

(
6 + 4σ1−β

) ∣∣∣∣
∫

R

W 2(x)U ′ (x− ξj) dx

∣∣∣∣(3.9)

≤ 1

3k

(
6 + 4σ1−β

) ∫

R

|W (x)|
k∑

i(6=j)=1

U (x− ξi) |U ′ (x− ξj)| dx

≤ 1

3k

(
6 + 4σ1−β

)2 (
4σ1−β + 8| logσ|

)
σ1−β

≤ C̃(1 + | logσ|)σ, for some constant C̃ > 0.

Then from (3.2), (3.4) and (3.9) it follows that

(3.10) |L∗ (Wj)| ≤ 288σ1−β + C̃(1 + | logσ|)σ.
Thus we have proved the following lemma.

Lemma 3.1. Under the assumption of Theorem 2.1, it holds that

(3.11)
|L (Wj)| ≤ Cσ1−β or L (Wj) = O

(
σ1−β

)
,

|L∗ (Wj)| ≤ C̃σ1−β or L∗ (Wj) = O
(
σ1−β

)
,

j = 1, . . . , k.

Proof. (3.11) follows from (3.8) and (3.10), since 0 < β < 1, the term (1 +
| logσ|)σ is dominated by the σ1−β term when σ is sufficiently small. �

For a fixed 0 < µ ≤ 1

3
, define L∞

µ = L∞
µ (R) to be the weighted space:

(3.12)

L∞
µ =

{
ψ ∈ H1

0 (R) : lim sup
|x|→∞

eµ|x||ψ(x)| <∞
}
,

with the norm ‖ψ‖µ = sup

{
e

µ min
1≤i≤k

|x−ξi||ψ(x)|
}
.

Note that once k and (ξ1, . . . , ξk) are fixed, L∞
µ is a Banach space. Moreover, for a

given k and different ξ = (ξ1, . . . , ξk) ∈ Λ, the norms ‖ · ‖µ are all equivalent.
Now consider the following problem: Given a function h ∈ L∞

µ (⊂ L2(R)) and a

ξ ∈ Λ, find a solution (ϕ, γ) ∈ L∞
µ ×R

k, γ = (γ1, . . . , γk), of the following problem,

(3.13)

L(ϕ) = h+ γ · ∇ξW = h+

k∑

j=1

γjWj in R,

〈ϕ,Wj〉 = 0, j = 1, . . . , k, and

ϕ(x) → 0 as |x| → ∞.

We address the property of such a vector γ = (γ1, . . . , γk) which satisfies equation
(3.13) in the following lemma.

Lemma 3.2. Suppose ϕ ∈ L∞
µ and γ = (γ1, . . . , γk) satisfy equation (3.13),

where h ∈ L∞
µ is given. Then it holds that, for j = 1, . . . , k,

(3.14) |γj | ≤ ‖γ‖Rk ≤ C1‖h‖µ + C2(σ)‖ϕ‖µ,

where C1 and C2(σ) are positive constants, and C2(σ) = O
(
σ1− 3β

2

)
.
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Proof. Taking the L2 inner product of (3.13) with each Wj , we can get
(3.15)

〈ϕ,L∗ (Wj)〉 = 〈h,Wj〉 + γj

∫

R

|Wj(x)|2 dx+

k∑

i(6=j)=1

γi 〈Wi,Wj〉 , j = 1, . . . , k.

From Lemma 1.1, we know
∫

R
|Wj |2 dx = 6/5. By Lemma 3.1, we have

|〈ϕ,L∗ (Wj)〉| ≤
∫

R

C̃σ1−βe
−µ min

1≤i≤k
|x−ξi|

dx‖ϕ‖µ ≤ Cσ1−β‖ϕ‖µ.

We also have

|〈h,Wj〉| ≤ 6

∫

R

e
−µ min

1≤i≤k
|x−ξi|

e−|x−ξj |dx‖h‖µ

≤ 6‖h‖µ

{∫

|x−ξj |≤rσ

e
−µ min

1≤i≤k
|x−ξi|

dx+

(∫

R

e
−µ min

1≤i≤k
|x−ξi|

dx

)
σ1−β

}

For i 6= j, we find that by Lemma 1.2,

|〈Wi,Wj〉| ≤
∫

R

36e−|x|e−|x+ξi−ξj | dx ≤ 36 (1 + |ξi − ξj |) e−|ξi−ξj |

≤ 36(1 + |i− j|| logσ|)σ(1−β)|i−j|.

Since (3.15) can be written as a linear system with respect to γj ’s,

(3.16)

(
6

5
I +A

)
γ =




〈ϕ,L∗ (W1)〉 − 〈h,W1〉
...

〈ϕ,L∗ (Wk)〉 − 〈h,Wk〉


 ,

and the matrix A is given by

A =




0 〈W2,W1〉 · · · 〈Wk ,W1〉
〈W1,W2〉 0 · · · 〈Wk ,W2〉

· · · · · ·
〈W1,Wk〉 〈W2,Wk〉 · · · 〈Wk,Wk〉


 ,

whose operator norm relative to R
k satisfies

‖A‖ ≤
√
kmax

i6=j
|〈Wi,Wj〉| ≤ 36

√
k (1 + | logσ|)σ1−β

≤ C(1 + | logσ|)σ1− 3β
2 .

(3.17)

We see that for σ small, the matrix (6/5)I +A is boundedly invertible. Let

CA =

∥∥∥∥∥

(
6

5
I +A

)−1
∥∥∥∥∥ .
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Then solving (3.16), we obtain

‖γ‖Rk ≤ CA ‖col (〈ϕ,L∗ (Wj)〉 − 〈h,Wj〉)‖Rk

≤ CA




k∑

j=1

(|〈ϕ,L∗ (Wj)〉| + |〈h,Wj〉|)2



1/2

≤ CA

{√
k Cσ1−β‖ϕ‖µ + 36

(∫

R

e
−µ min

1≤i≤k
|x−ξi|

dx

)
‖h‖µ

+12
√
k

(∫

R

e
−µ min

1≤i≤k
|x−ξi|

dx

)
σ1−β‖h‖µ

}

≤ C1‖h‖µ + C2(σ)‖ϕ‖µ

(3.18)

where

(3.19)
C1 = CA

(
36 + 12Cσ1− 3β

2

)∫

R

e
−µ min

1≤i≤k
|x−ξi|

dx,

C2(σ) = CACσ
1− 3β

2 .

Thus, the lemma is proved. �

As a corollary, if (3.13) admits a unique solution (ϕ, γ) such that

(3.20) ‖ϕ‖µ ≤ const ‖h‖µ,

then γ = (γ1,, . . . , γk) is uniquely determined by (3.16) and satisfies

(3.21) ‖γ‖Rk ≤ const ‖h‖µ,

provided that β ≤ 2/3.
Define a self-adjoint linear operator

(3.22) L1 = −∆ + (1 − 2W ) I : H2(R) ∩H1
0 (R) → L2(R),

which is a part of the linear operator L in (3.1). Set

(3.23) Z(x) =

k∑

j=1

(x− ξj)U
′ (x− ξj) + 2W (x).
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We have

L1(Z) = (−∆ + (1 − 2W ))




k∑

j=1

(x− ξj)U
′ (x− ξj) + 2W (x)


(3.24)

= −


∑

j

U ′ (x− ξj) +
∑

j

(x− ξj)U
′′ (x− ξj)




′

− 2W ′′ + (1 − 2W )


∑

j

(x− ξj)U
′ (x− ξj) + 2W (x)




= −4W ′′ + (1 − 2W )2W +
∑

j

(x− ξj) [−U ′′′ (x− ξj) + U ′ (x− ξj)

− 2WU ′ (x− ξj)]

= −2W − 4
∑

i,j
i6=j

U (x− ξi)U (x− ξj) − 2
∑

i,j
i6=j

(x− ξj)U (x− ξi)U
′ (x− ξj) ,

where

∥∥∥∥∥∥∥∥
−4
∑

i,j
i6=j

U (x− ξi)U (x− ξj)

∥∥∥∥∥∥∥∥
L2

≤ 144
∑

i,j
i6=j

(∫

R

e−2|x|e−2|x+ξi−ξj | dx

)1/2

(3.25)

= 144
∑

i6=j

([
1

2
+ |ξi − ξj |

]
e−2|ξi−ξj |

)1/2

≤ 144
∑

i6=j

(
1 + |ξi − ξj |1/2

)
e−|ξi−ξj |

≤ 144
∑

i6=j

(
1 +

√
|i− j|| logσ|

)
σ|i−j|(1−β)

≤ 576 kσ1−β + 288


∑

i6=j

|i− j|| logσ|σ2|i−j|(1−β)




1/2

(by Lemma 1.3)

≤ Cσ1−2β + C
√
k σ1−β | logσ|1/2 ≤ Cσ1−2β + Cσ1− 3β

2 | logσ|1/2

= O
(
σ1−2β

)
+O

(
σ1− 3β

2 | logσ|1/2
)
,
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and

∥∥∥∥∥∥∥∥
−2
∑

i,j
i6=j

(x− ξj)U (x− ξi)U
′ (x− ξj)

∥∥∥∥∥∥∥∥
L2

(3.26)

≤ 72
∑

i6=j

{∫

R

|x|2e−2|x|e−2|x+ξj−ξi|dx

}1/2

(by using (1.9) in Lemma 1.2)

≤ 72√
3

∑

i6=j

(1 + |i− j|| logσ|) σ|i−j|(1−β) (by using Lemma 1.3)

≤ C (1 + | logσ|) σ1−2β = O
(
σ1−2β | logσ|

)
.

In (3.13) let us write ϕ in the form

(3.27) ϕ = aW + ψ, where 〈W,ψ〉 = 0, and a ∈ R.

Since L(ψ) = L1(ψ), (3.13) yields the following equality

(3.28) a〈L(W ), Z〉 + 〈L1(ψ), Z〉 = 〈h, Z〉 +

k∑

j=1

γj 〈Wj , Z〉 .

From (3.24)–(3.26) it follows that

|〈L1(ψ), Z〉| = |〈ψ,L1(Z)〉|(3.29)

≤
{
O
(
σ1−2β

)
+O

(
σ1− 3β

2 | logσ|1/2
)

+O
(
σ1−2β | logσ|

)}
‖ψ‖L2

≤ O
(
σ1−2β | logσ|

)
‖ϕ‖L2 ,

since ‖ψ‖L2 ≤ ‖ϕ‖L2 . Then for ϕ ∈ L∞
µ , by Lemma 1.5, we obtain

|〈L1(ψ), Z〉| ≤ O
(
σ1−2β | log θ|

) (∫

R

e
−2 min

1≤i≤k
|x−ξi|

dx

)1/2

‖ϕ‖µ

≤ O
(
σ1−2β | log θ|

) ( 1

µ
(k − (k − 1)σµ

)1/2

‖ϕ‖µ

≤ O
(
σ1− 5β

2 ‖ logσ|
)
‖ϕ‖µ.

(3.30)
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Next we estimate 〈L(W ), Z〉 in (3.28). In fact, by using (1.7) we get

(3.31) 〈L(W ), Z〉 =

〈
−W ′′ + (1 − 2W )W +

2W 2

ω
〈W,W 〉, Z

〉

=

〈
−W 2 +

12k

ω
W 2, Z

〉
−
∑

i,j
i6=j

〈U (x− ξi)U (x− ξj) , Z〉

+

〈
2W 2

ω

∑

i,j
i6=j

〈U (x− ξi) , U
′ (x− ξj)〉 , Z

〉

=

(
12k

ω
− 1

)〈
W 2,

k∑

j=1

(x− ξj)U
′ (x− ξj) + 2W

〉
+
∑

i6=j

σ|i−j|(1−β)‖Z‖L1

+O
(
σ1−β | logσ|

) ∥∥W 2
∥∥

L2 ‖Z‖L2.

Note that

(
12k

ω
− 1

)〈
W 2,

k∑

j=1

(x− ξj)U
′ (x− ξj) + 2W

〉

=

(
12k

ω
− 1

)




5

3

∫

R

W 3(x) dx

+

k∑

j=1

∑

i,`
not both j

∫

R

(x− ξj)U (x− ξi)U (x− ξ`)U
′ (x− ξj) dx





where the triple sum is estimated as follows,

∣∣∣∣∣∣∣∣

k∑

j=1

∑

i,`
not both j

∫

R

(x− ξj)U
′ (x− ξj)U (x− ξi)U (x− ξ`) dx

∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣

k∑

j=1

∑

i=j
or `=j

· · ·

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣

k∑

j=1

∑

i=`6=j

· · ·

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣

k∑

j=1

∑

i6=j
`6=j
i6=`

· · ·

∣∣∣∣∣∣∣∣∣∣

= Π1 + Π2 + Π3,
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and

Π1 ≤ 2

k∑

j=1

∑

|`−j|≥1

∣∣∣∣
∫

R

(x− ξj)U
′ (x− ξj)U (x− ξj)U (x− ξ`) dx

∣∣∣∣

≤ 432

k∑

j=1

∑

|`−j|≥1

∫

R

|x|e−2|x|e−|x+ξj−ξ`|dx

≤ 432 e−1
k∑

j=1

∑

|`−j|≥1

(1 + |`− j|| logσ|)σ|`−j|(1−β)

≤ Ck| logσ|σ1−β ≤ Cσ1−2β | logσ|,

Π2 ≤ 2

k∑

j=1

∑

|`−j|≥1

∣∣∣∣
∫

R

(x− ξj)U
′ (x− ξj)U

2 (x− ξ`) dx

∣∣∣∣

≤ 432

k∑

j=1

∑

|`−j|≥1

∫

R

|x|e−|x|e−2|x+ξj−ξ`|dx (by (1.10))

≤ 864

k∑

j=1

∑

|`−j|≥1

e−|ξj−ξ`|
(
|ξj − ξ`| + e−|ξj−ξ`|

)

≤ 864

k∑

j=1

∑

|`−j|≥1

σ|i−`|(1−β)
(
|i− `|| logσ| + σ|i−`|(1−β)

)

≤ Ck
[
σ1−β | logσ| + σ2(1−β)

]
= O

(
σ1−2β | logσ|

)
,

Π3 ≤
k∑

j=1

∑

either |i−`|≥2
or |i−j|≥2
or |`−j|≥2

∣∣∣∣
∫

R

(x− ξj)U
′ (x− ξj)U (x− ξi)U (x− ξ`) dx

∣∣∣∣

≤ 216

k∑

j=1

∑

i,` as above

∫

R

|x|e−|x|e−|x+ξj−ξi|e−|x+ξj−ξ`|dx

≤ 216

k∑

j=1

∑

i,` as above





σ|i−`|(1−β)
∫

R
|x|e−|x|dx (if |i− `| ≥ 2), or

σ|i−j|(1−β)
∫

R
|x|e−|x+ξj−ξ`|dx (if |i− j| ≥ 2), or

σ|`−j|(1−β)
∫

R
|x|e−|x+ξj−ξi|dx (if |`− j| ≥ 2)

≤ 216 k2C| logσ|σ2(1−β) ≤ Cσ2(1−2β)| logσ|.
Therefore, we obtain

(3.32)

(
12k

ω
− 1

)〈
W 2,

k∑

j=1

(x− ξj)U
′ (x− ξj) + 2W

〉

≥ 1

2

{
5

3

∫

R

W 3(x) dx +O
(
σ1−2β | logσ|

)}
≥ 6k +O

(
σ1−2β | logσ|

)
,

because

12k

ω
− 1 =

12k

6k + Cσ1−2β | logσ| − 1 ≥
(

2− 1

2

)
− 1 =

1

2
(for σ small)
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and by Lemma 1.1,
∫

R

W 3(x) dx > k

∫

R

U3(x) dx =
36

5
k.

Moreover, we have

‖Z‖L1 ≤

∥∥∥∥∥∥

k∑

j=1

(x− ξj)U
′ (x− ξj)

∥∥∥∥∥∥
L1

+ 2‖W‖L1

= ‖ −W‖L1 + 2‖W‖L1 = 3‖W‖L1 = 18k,

‖Z‖L2 ≤

∥∥∥∥∥∥

k∑

j=1

(x− ξj)U
′ (x− ξj)

∥∥∥∥∥∥
L2

+ 2‖W‖L2

≤ k

(∫

R

|x|2 |U ′(x)|2 dx
)1/2

+ 2k
√

6

≤ k

[
6

(∫

R

|x|2e−2|x|

)1/2

+ 2
√

6

]
= k

(
3

2
+ 2

√
6

)
,

and

∥∥W 2
∥∥

L2 ≤ ‖W‖L∞‖W‖L2 ≤ 12

1 − σ1−β
‖W‖L2 ≤ 24

√
6 k, for σ small.

Substituting these and (3.32) into (3.31), we obtain

〈L(W ), Z〉 ≥ 6k + O
(
σ1−2β | logσ|

)
+O

(
σ1−2β

)
k +O

(
σ1−2β | logσ|

)
k

= k
[
6 +O

(
σ1−2β | logσ|

)]
.

(3.33)

On the other hand, we have

(3.34) |〈h, Z〉| ≤ ‖h‖µ‖Z‖L1 ≤ 18k‖h‖µ,

and ∣∣∣∣∣∣

k∑

j=1

γj 〈Wj , Z〉

∣∣∣∣∣∣
≤ ‖γ‖

k∑

j=1

∣∣∣∣
∫

R

Wj(x)Z(x) dx

∣∣∣∣ ,

where

∫

R

Wj(x)Z(x) dx = −
k∑

i(6=j)=1

∫

R

U ′ (x− ξj) [(x− ξi)U
′ (x− ξi) + 2U (x− ξi)] dx

because, when i = j, we have

−
∫

R

U ′ (x− ξj) [(x− ξj)U
′ (x− ξj) + 2U (x− ξj)] dx

= −
∫

R

(x− ξj)U
′ (x− ξj)

2 dx = −
∫

R

x |U ′(x)|2 dx = 0.

(odd function)
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Thus we get

(3.35)

∣∣∣∣∣∣

k∑

j=1

γj 〈Wj , Z〉

∣∣∣∣∣∣
≤ ‖γ‖

k∑

j=1

k∑

i(6=j)=1

[∫

R

36|x|e−|x|e|x+ξi−ξj |dx

+

∫

R

72e−|x|e−|x+ξi−ξj |dx

]

≤ ‖γ‖
∑

i,j
i6=j

[
36

(∫

R

|x|e−ε0|x|dx

)
e−(1−ε0)|ξi−ξj |

+ 72(1 + |i− j|| logσ|)σ|i−j|(1−β)

]

≤ Ck‖γ‖
[
σ(1−ε0)(1−β) + σ(1−β)| logσ|

]

≤ k (C1‖h‖µ + C2(σ)‖ϕ‖µ)O
(
σ(1−ε0)(1−β)

)
, for any small ε0 > 0,

where we used (3.14) in Lemma 3.2.

Lemma 3.3. Under the assumption that

(3.36) 0 < β <
1

2
,

it holds that

(3.37)

∣∣∣∣
2

ω
〈W,ϕ〉

∣∣∣∣ ≤ C3‖h‖µ + C4(σ)‖ϕ‖µ,

for a solution (ϕ, γ) to the problem (3.13), where C3 > 0 and C4(σ) > 0 are

constants, with the property that C4(σ) = O
(
σ1− 3β

2 | logσ|
)
.

Proof. From (3.28), (3.30), (3.33), (3.34) and (3.35), we obtain

(3.38) |a| ≤ 1

k [6 +O (σ1−2β | logσ|)]
{
O
(
σ1− 5β

2 | logσ|
)
‖ϕ‖µ + 18k‖h‖µ

+k (C1‖h‖µ + C2(σ)‖ϕ‖µ)O
(
σ(1−ε0)(1−β)

)}

≤ 1

6 +O (σ1−2β | logσ|)
{(

18 + C1O
(
σ(1−ε0)(1−β)

))
‖h‖µ

+
(
O
(
σ1− 3β

2 | logσ|
)

+ C2(σ)O
(
σ(1−ε0)(1−β)

))
‖ϕ‖µ

}

≤ Ĉ3‖h‖µ + Ĉ4(σ)‖ϕ‖µ,

for σ sufficiently small, where Ĉ3 > 0 is a uniform constant, and C2(σ) = O
(
σ1− 3β

2

)

implies that

Ĉ4(σ) = O
(
σ1− 3β

2 | logσ|
)

+O
(
σ1− 3β

2
+(1−ε0)(1−β)

)

= O
(
σ1− 3β

2 | logσ|
)
.

(3.39)

Since (3.27) implies that

(3.40) 〈W,ϕ〉 = a‖W‖2
L2 + 〈W,ψ〉 = a‖W‖2

L2 ,
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and we see that

‖W‖2
L2 = 6k +

∑

i,j
i6=j

∫

R

U (x− ξi)U (x− ξj) dx

≤ 6k +
∑

i6=j

36

∫

R

e−|x|e−|x+ξi−ξj |dx (by (1.7))

≤ 6k +
∑

i6=j

36(1 + |i− j|| logσ|)σ|i−j|(1−β) (by Lemma 1.3)

≤ 6k + Ckσ1−β | logσ| = k
(
6 +O

(
σ1−β | logσ|

))
.

Hence, we obtain

(3.41)

∣∣∣∣
2

ω
〈W,ϕ〉

∣∣∣∣ ≤
2

6k
|〈W,ϕ〉| ≤ 1

3k
|a|‖W‖2

L2

≤ 1

3k

(
Ĉ3‖h‖µ + Ĉ4(σ)‖ϕ‖µ

)
k
(
6 +O

(
σ1−β | logσ|

))

= C3‖h‖+ C4(σ)‖ϕ‖µ,

where

(3.42)

C3

(
≥ Ĉ3

(
2 +

1

3
O
(
σ1−β | logσ|

)))
is a constant, and

C4(σ) = Ĉ4(σ)

(
2 +

1

3
O
(
σ1−β | logσ|

))
= O

(
σ1− 3β

2 | logσ|
)
.

Thus the lemma is proved. �

With all these preparations, we are going to conduct an a priori estimate of
the solution ϕ of the problem (3.13), if it exists. According to (3.1), (2.1) and (2.2),
a solution ϕ to Eq. (3.13) satisfies the integral equation

(3.43) ϕ(x) =
1

2

∫

R

e−|x−y|

(
2Wϕ− 2W 2

ω
〈W,ϕ〉 + h+ γ · ∇ξW

)
dy.

In order to get a sharp estimate of the integral term involving 2Wϕ on the right-
hand side of (3.43), we use the cut-off decomposition of ϕ introduced in (1.22).
Recall that by (1.23),

Ω = Ω0 ∪ Ω1 ∪ · · · ∪ Ωk, (mutually disjoint)

Ω0 = R r

k⋃

j=1

Ωj and Ωj = [ξj − xσ , ξj + xσ ] , j = 1, . . . , k,

where xσ = rσ/4 =
1

4
(1 − β)| logσ|, so that

e−xσ = e−rσ/4 ≤ σ
1
4

(1−β).

For any j = 0, 1, . . . , k, we shall consider the integral terms

(3.44)

1

2

∫

Ωj

e−|x−y|

[
2W (y)

k∑

`=0

ϕ`(y) −
2W 2

ω
〈W,ϕ〉 + h+ γ · ∇ξW

]
dy

= J1
j + J2

j + J3
j +

1

2

∫

Ωj

e−|x−y|h(y) dy.
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Since we choose 0 < µ ≤ 1/3, we have
1

1 − µ
≤ 3

2
. For the simplicity of notation,

we set

(3.45) ρ(x) = ρ(x, ξ)
∆
= min

1≤i≤k
|x− ξi| , x ∈ R.

First of all, it is easy to see that

(3.46)

∣∣∣∣
1

2

∫

R

e−|x−y|h(y) dy

∣∣∣∣ ≤
1

2

∫

R

e−|x−y|e−µρ(y)‖h‖µdy

=
1

2

∫

R

e−(1−µ)|x−y|e
−µ

„

|x−y|+ min
1≤i≤k

|y−ξi|

«

dy‖h‖µ

≤ 1

2
e
−µ min

1≤i≤k
|x−ξi|

(∫

R

e−(1−µ)|x−y|dy

)
‖h‖µ

=
1

1 − µ
e−µρ(x)‖h‖µ.

In (3.44),

J1
j =

1

2

∫

Ωj

e−|x−y|2W (y)

k∑

`=0

ϕ`(y) dy,

J2
j =

1

2

∫

Ωj

e−|x−y|

(
−2W 2(y)

ω
〈W,ϕ〉

)
dy, and

J3
j =

1

2

∫

Ωj

e−|x−y|γ · ∇ξW (y) dy.

We start with the estimate of J1
j . Then J1 =

k∑
j=0

J1
j . Note that for any y ∈ Ω0,

(3.47a) min
1≤i≤k

|y − ξi| ≥ xσ .

We find that
∣∣J1

0

∣∣ =
∣∣∣∣
∫

Ω0

e−|x−y|W (y)ϕ(y) dy

∣∣∣∣ ≤
∫

Ω0

e−|x−y||W (y)||ϕ(y)| dy

≤
∫

Ω0

e−|x−y|


6

k∑

j=1

e−|y−ξj |



(
e
−µ min

1≤i≤k
|y−ξi|‖ϕ‖µ

)
dy

≤ 6

∫

Ω0

e−|x−y|




k∑

j=1

e−(1−µ)|y−ξj |



(
e
−2µ min

1≤i≤k
|y−ξi|

)
dy‖ϕ‖µ

≤ 6e−2µρ(x)

∫

Ω0

e−(1−2µ)|x−y|




k∑

j=1

e−(1−µ)|y−ξj |


 dy‖ϕ‖µ,

because

e
−2µ|x−y|−2µ min

1≤i≤k
|y−ξi| ≤ e

−2µ min
1≤i≤k

|x−ξi|
= e−2µρ(x),

where |x− y| + min
1≤i≤k

|y − ξi| = min
1≤i≤k

{|x− y| + |y − ξi|} ≥ min
1≤i≤k

|x− ξi| .
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Moreover,

(3.47b)

k∑

j=1

e−(1−µ)|y−ξj | = e−(1−µ)|y−ξj0 | +
∑

j 6=j0

e−(1−µ)|y−ξj |

(where |y − ξj0 | = min
1≤j≤k

|y − ξj |)

≤ e−(1−µ)xσ + 2e−(1−µ)(xσ+rσ) + 2e−(1−µ)(xσ+2rσ) + · · ·

≤ 2e−(1−µ)xσ

1 − e−(1−µ)rσ
=

2σ(1−µ)(1−β)/4

1 − σ(1−µ)(1−β)
≤ 4σ(1−µ)(1−β)/4,

for σ small. Therefore, we get

∣∣J1
0

∣∣ ≤ 6e−2µρ(x)

(∫

Ω0

e−(1−2µ)|x−y|dy

)
4σ(1−µ)(1−β)/4‖ϕ‖µ

=
48

1 − 2µ
σ(1−µ)(1−β)/4e−2µρ(x)‖ϕ‖µ

≤ 144σ(1−µ)(1−β)/4e−2µρ(x)‖ϕ‖µ.

(3.48)

For j = 1, . . . , k, due to supp θ (· − ξ`) ∩ Ωj = ∅ for ` 6= j and |θ (y − ξj)| ≤ 1 for
y ∈ R, we have

(3.49)

∣∣J1
j

∣∣ =
∣∣∣∣∣

∫

Ωj

e−|x−y|W (y)
k∑

`=0

ϕ`(y) dy

∣∣∣∣∣

=

∣∣∣∣∣

∫

Ωj

e−|x−y|W (y)θ (y − ξj)ϕ(y) dy

∣∣∣∣∣

≤
k∑

m=1

∫

Ωj

e−|x−y|U (y − ξm) |ϕ(y)| dy

=
k∑

m=1

∫ ξj+xσ

ξj−xσ

e−|x−y|U (y − ξm) |ϕ(y)| dy

=

k∑

m=1

∫ xσ

−xσ

e−|x−y−ξj |U (y + ξj − ξm) |ϕ (y + ξj)| dy

≤ 6

k∑

m=1

∫ xσ

−xσ

e−|x−y−ξj |e−|y+ξj−ξm|e
−µ min

1≤i≤k
|y+ξj−ξi|

dy ‖ϕ‖µ

≤ 6

k∑

m=1

∫ xσ

−xσ

e−|x−y−ξj |e−(1−µ)|y+ξj−ξm|e
−2µ min

1≤i≤k
|y+ξj−ξi|

dy ‖ϕ‖µ

≤ 6

k∑

m=1

∫ xσ

−xσ

e−(1−2µ)|x−y−ξj |e−(1−µ)|y+ξj−ξm|e
−2µ min

1≤i≤k
|x−ξi|

dy ‖ϕ‖µ

= 6e−2µρ(x)

(∫ xσ

−xσ

e−(1−2µ)|x−y−ξj |e−(1−µ)|y|dy

)
‖ϕ‖µ

+6e−2µρ(x)


∑

m6=j

∫ xσ

−xσ

e−(1−2µ)|x−y−ξj |e−(1−µ)|y+ξj−ξm|dy


 ‖ϕ‖µ,



GIERER-MEINHARDT EQUATIONS 213

where, for m 6= j, we have

(3.50)
∑

m6=j

e−(1−µ)|y+ξj−ξm| ≤ 2σ
3
4
(1−µ)(1−β)

1 − σ1−β
≤ 2

√
2√

2 − 1
σ

3
4
(1−µ)(1−β).

With the key observation that for any x ∈ R, y ∈ [−xσ , xσ ], there is an index
j0 = j0(x, y) ∈ {1, . . . , k}, such that

|x− y − ξj0 | = min
1≤j≤k

|x− y − ξj | ,

we can calculate

(3.51)

k∑

j=1

e−(1−2µ)|x−y−ξj | = e−(1−2µ)|x−y−ξj0 | +
∑

j 6=j0

e−(1−2µ)|x−y−ξj |

≤ 1 + e−(1−2µ)|x−y−ξj0−1| + e−(1−2µ)|x−y−ξj0+1| + · · ·

≤ 1 + 2
(
e−(1−2µ)rσ/2 + e−(1−2µ)3rσ/2 + e−(1−2µ)5rσ/2 + · · ·

)

= 1 +
2e−(1−2µ)rσ/2

1 − e−(1−2µ)rσ
= 1 +

2σ
1
2
(1−2µ)(1−β)

1 − σ(1−2µ)(1−β)
< C5,

where C5 > 0 is a constant independent of small σ. By summing up
∣∣J1

j

∣∣ for all

j = 1, . . . , k, and using (3.50) and (3.51), we get
(3.52)

∣∣J1
∣∣ =

∣∣∣∣∣∣

k∑

j=0

J1
j

∣∣∣∣∣∣
≤

k∑

j=0

∣∣J1
j

∣∣ ≤ e−2µρ(x) ‖ϕ‖µ

{
144σ(1−µ)(1−β)/4

+

∫ xσ

−xσ

6

k∑

j=1

e−(1−2µ)|x−y−ξj |e−(1−µ)|y| dy

+
∑

m6=j

∫ xσ

−xσ

6

k∑

j=1

e−(1−2µ)|x−y−ξj |σ
3
4
(1−µ)(1−β) dy





≤ e−2µρ(x) ‖ϕ‖µ



144σ1/12 + 6C5

2

1 − µ
+ 6C5

∫ xσ

−xσ

k∑

m(6=j)=1

e−(1−µ)|y+ξj−ξm| dy





≤ e−2µρ(x) ‖ϕ‖µ

{
144σ1/12 + 18C5 + 6C5

2
√

2√
2 − 1

σ
3
4
(1−µ)(1−β) 2xσ

}

≤ e−2µρ(x) ‖ϕ‖µ

{
18C5 + 144σ1/12 + 15

√
2C5σ

3
4
(1−µ)(1−β) (C0 + | logσ|)

}
,

where we computed

2
√

2√
2 − 1

<
2
√

2

0.4
= 5

√
2, and 2xσ =

rσ
2

≤ 1

2
(1 − β) | logσ|.

Secondly we estimate J2
j and J2 =

k∑
j=0

J2
j . With similar observations as in the

processing of J1, by using Lemma 3.3 and (3.47) and (3.51), we can get the following
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estimates. First,
(3.53)

∣∣J2
0

∣∣ =
∣∣∣∣
1

2

∫

Ω0

e−|x−y|

(
−2W 2(y)

ω
〈W,ϕ〉

)
dy

∣∣∣∣

≤ 1

2
(C3‖h‖µ + C4(σ)‖ϕ‖µ)

∫

Ω0

e−|x−y|W 2(y) dy

≤ 18 (C3‖h‖µ + C4(σ)‖ϕ‖µ)

∫

Ω0

e−|x−y|




k∑

j=1

e−|y−ξj |




2

dy

≤ 18 (C3‖h‖µ + C4(σ)‖ϕ‖µ)

∫

Ω0

e−|x−y|




k∑

j=1

e−(1−µ)|y−ξj |




2

e
−2µ min

1≤i≤k
|y−ξi|

dy

≤ 18 e−2µρ(x) (C3‖h‖µ + C4(σ)‖ϕ‖µ)

∫

Ω0

e−(1−2µ)|x−y| 16σ(1−µ)(1−β)/2 dy

= 576 e−2µρ(x) σ
(1−µ)(1−β)/2

1 − 2µ
(C3‖h‖µ + C4(σ)‖ϕ‖µ)

= e−2µρ(x) (C6(σ)‖h‖µ + C7(σ)‖ϕ‖µ) ,

where

(3.54)

C6(σ) = C3
576

1 − 2µ
σ(1−µ)(1−β)/2 = O

(
σ(1−µ)(1−β)/2

)
,

C7(σ) = C4 (σ)O
(
σ(1−µ)(1−β)/2

)
= O

(
σ1− 3β

2
+(1−µ)(1−β)/2 | logσ|

)

= O
(
σ1− 3β

2

)
,

where (1 − µ)(1 − β)/2 ≥ 2
3 · 1

2 · 1
2 = 1/6. Next, for j = 1, . . . , k, we have

(3.55)

∣∣J2
j

∣∣ =
∣∣∣∣∣
1

2

∫

Ωj

e−|x−y|

(
−2W 2(y)

ω
〈W,ϕ〉

)
dy

∣∣∣∣∣

≤ 1

2
(C3‖h‖µ + C4 (σ) ‖ϕ‖µ)

{∫

Ωj

e−|x−y|
k∑

`=1

U2 (y − ξ`) dy

+

∫

Ωj

e−|x−y|
∑

m,`
m6=`

U (y − ξi)U (y − ξ`) dy





≤ 18 (C3‖h‖µ + C4 (σ) ‖ϕ‖µ)

{
k∑

`=1

∫ xσ

−xσ

e−|x−y−ξj |e−2|y+ξj−ξ`| dy

+
∑

m,`
m6=`

∫ xσ

−xσ

e−|x−y−ξj |e−|y+ξj−ξm|e−|y+ξj−ξ`| dy
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≤ 18 (C3‖h‖µ + C4 (σ) ‖ϕ‖µ) e
−2µ min

1≤i≤k
|x−ξi|

{∫ xσ

−xσ

e−(1−2µ)|x−y−ξj |e−2(1−µ)|y| dy

+

k∑

`(6=j)=1

∫ xσ

−xσ

e−(1−2µ)|x−y−ξj |e−2(1−µ)|y+ξj−ξ`| dy

+
∑

m,`
m6=`

∫ xσ

−xσ

e−(1−2µ)|x−y−ξj |e−(1−µ)|y+ξj−ξm|e−(1−µ)|y+ξj−ξ`| dy




.

Summing up (3.53) and (3.55) for j = 1, . . . , k, we obtain

∣∣J2
∣∣ ≤

k∑

j=0

∣∣J2
j

∣∣ ≤ e−2µρ(x)

{
C6 (σ) ‖h‖µ + C7 (σ) ‖ϕ‖µ

+18 (C3‖h‖µ + C4 (σ) ‖ϕ‖µ)



∫ xσ

−xσ

k∑

j=1

e−(1−2µ)|x−y−ξj |e−2(1−µ)|y| dy

+

∫ xσ

−xσ

k∑

j=1

e−(1−2µ)|x−y−ξj |




k∑

`(6=j)=1

e−2(1−µ)|y+ξj−ξ`|


 dy

+

∫ xσ

−xσ

k∑

j=1

e−(1−2µ)|x−y−ξj |



∑

m,`
m6=`

e−(1−µ)|y+ξj−ξm|e−(1−µ)|y+ξj−ξ`|


 dy







,

where

k∑

j=1

e−(1−2µ)|x−y−ξj | ≤ C5, by (3.51),

∑

`(6=j)=1

e−2(1−µ)|y+ξj−ξ`| ≤ e−2(1−µ) 3
4

rσ

[
1 + 2e−2(1−µ)rσ + · · ·

]

≤ 2σ
3
2
(1−µ)(1−β)

1 − σ2(1−µ)(1−β)
≤ C σ

3
2
(1−µ)(1−β), for all y ∈ [−xσ, xσ ] ,

and

∑

m,`
m6=`

e−(1−µ)|y+ξj−ξm|e−(1−µ)|y+ξj−ξ`| ≤
∑

m,`
m6=`

e−(1−µ)|ξm−ξ`|

≤
k∑

m=1

∑

`6=m

σ|m−`|(1−µ)(1−β)

≤ k
2σ(1−µ)(1−β)

1 − σ(1−µ)(1−β)
≤ C σ(1−µ)(1−β)−β , ∀y ∈ [−xσ , xσ ] .
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Therefore, we come up with

(3.56)

∣∣J2
∣∣ ≤ e−2µρ(x) {C6 (σ) ‖h‖µ + C7 (σ) ‖ϕ‖µ

+18 (C3‖h‖µ + C4 (σ) ‖ϕ‖µ)C5

[
1

1 − µ
σ

1
2
(1−µ)(1−β)

+C σ
3
2
(1−µ)(1−β) (C0 + | logσ|) + C σ(1−µ)(1−β)−β (C0 + | logσ|)

]}

≤ e−2µρ(x) [C8 (σ) ‖h‖µ + C9 (σ) ‖ϕ‖µ] ,

where
(3.57)

C8 (σ) = C6 (σ) + 18C3C5 [· · ·] = O
(
σ

1
2
(1−µ)(1−β)

)
+O

(
σ(1−µ)(1−β)−β | logσ|

)
,

C9 (σ) = C7 (σ) + 18C4 (σ)C5 [· · ·] = O
(
σ1− 3β

2

)
+O

(
σ1− 3β

2 σ(1−µ)(1−β)−β |logσ|2
)

= O
(
σ1− 3β

2

)
,

provided that

(3.58) (1 − µ)(1 − β) − β = 1 − µ− (2 − µ)β > 0, or β <
1 − µ

2 − µ
.

When we choose µ = 1/3, then (3.58) implies β <
2

5
. For µ close to 0, β is close to

1/2.

Thirdly we estimate J3
j and J3 =

k∑
j=0

J3
j , with the aid of Lemma 3.2. In fact,

∣∣J3
0

∣∣ =
∣∣∣∣
1

2

∫

Ω0

e−|x−y| γ · ∇ξW (y) dy

∣∣∣∣ =

∣∣∣∣∣∣
1

2

∫

Ω0

e−|x−y|
k∑

j=1

γjWj(y) dy

∣∣∣∣∣∣

≤ 1

2
‖γ‖

k∑

j=1

∫

Ω0

e−|x−y| 6 e−|y−ξj | dy

≤ 3‖γ‖
k∑

j=1

∫

Ω0

e−(1−µ)(|x−y|+|y−ξj |) dy e
−µ min

1≤i≤k
|x−ξi|

≤ 3 (C1‖h‖µ + C2 (σ) ‖ϕ‖µ) e−µρ(x)
k∑

j=1

∫

Ω0

e−(1−µ)(|x−y|+|y−ξj |) dy,

Where, by (3.47a) and (3.47b), we have

k∑

j=1

e−(1−µ)|y−ξj | ≤ 4σ(1−µ)(1−β)/4,

so that

∣∣J3
0

∣∣ ≤ 3 (C1‖h‖µ + C2 (σ) ‖ϕ‖µ) e−µρ(x)
(
4σ(1−µ)(1−β)/4

)∫

Ω0

e−(1−µ)|x−y| dy

≤ 24

1 − µ
e−µρ(x) (C1‖h‖µ + C2 (σ) ‖ϕ‖µ)σ

1
4
(1−µ)(1−β).

(3.59)
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For j = 1, . . . , k, we have
(3.60)

∣∣J3
j

∣∣ =
∣∣∣∣∣
1

2

∫

Ωj

e−|x−y|
k∑

i=1

γiWi(y) dy

∣∣∣∣∣ ≤
1

2
‖γ‖

k∑

i=1

∫

Ωj

e−|x−y| |U ′ (y − ξi)| dy

≤ 3 (C1‖h‖µ + C2 (σ) ‖ϕ‖µ) e−µρ(x)
k∑

i=1

∫

Ωj

e−(1−µ)(|x−y|+|y−ξi|) dy

= 3 (C1‖h‖µ + C2 (σ) ‖ϕ‖µ) e−µρ(x)
k∑

i=1

∫ xσ

−xσ

e−(1−µ)(|x−y−ξj |+|y+ξj−ξi|) dy

≤ 3 (C1‖h‖µ + C2 (σ) ‖ϕ‖µ) e−µρ(x)

[∫ xσ

−xσ

e−(1−µ)|x−y−ξj |e−(1−µ)|y| dy

+

∫ xσ

−xσ

e−(1−µ)|x−y−ξj |
k∑

i(6=j)=1

e−(1−µ)|y+ξj−ξi| dy




≤ 3 (C1‖h‖µ + C2 (σ) ‖ϕ‖µ) e−µρ(x)

[∫ xσ

−xσ

e−(1−µ)|x−y−ξj |e−(1−µ)|y| dy

+

∫ xσ

−xσ

e−(1−µ)|x−y−ξj | · 2σ
3
4
(1−µ)(1−β)

1 − σ(1−µ)(1−β)
dy

]
.

Summing up (3.59) and (3.60) for j = 1, . . . , k, by (3.51), we obtain

(3.61)

∣∣J3
∣∣ ≤ e−µρ(x) (C1‖h‖µ + C2 (σ) ‖ϕ‖µ)

{
24

1 − µ
σ

1
4
(1−µ)(1−β)

+3C5

[∫ xσ

−xσ

e−(1−µ)|y| dy +

∫ xσ

−xσ

4σ
3
4
(1−µ)(1−β) dy

]}
(for σ small)

≤ e−µρ(x) (C1‖h‖µ + C2 (σ) ‖ϕ‖µ)

{
24

1 − µ
σ

1
4
(1−µ)(1−β)

+3C5

[
2

1 − µ
σ

1
4
(1−µ)(1−β) + 2σ

3
4
(1−µ)(1−β) (C0 + | logσ|)

]}

= e−µρ(x) (C10 (σ) ‖h‖µ + C11 (σ) ‖ϕ‖µ) ,

where

(3.62)
C10(σ) = O

(
σ

1
4
(1−µ)(1−β)

)
, and

C11(σ) = C2(σ)O
(
σ

1
4
(1−µ)(1−β)

)
= O

(
σ1− 3β

2
+ 1

4
(1−µ)(1−β)

)
.

We summarize these estimates in the following lemma.

Lemma 3.4. Under the assumption

(3.63) 0 < β < min

{
1

2
,
1 − µ

2 − µ

}
=

1 − µ

2 − µ
,

for any solution (ϕ, γ) to the problem (3.13), it holds that for x ∈ R,

|ϕ(x)| ≤ e
−2µ min

1≤i≤k
|x−ξi|

(K1‖ϕ‖µ + C8(σ)‖h‖µ)

+ e
−µ min

1≤i≤k
|x−ξi|

(C11(σ)‖ϕ‖µ +K2‖h‖µ) ,

(3.64)
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where K1 ≥ 18, K2 > 0 are constants, and

C8(σ) = O
(
σ(1−µ)(1−β)−β | logσ|

)
,(3.65)

C11(σ) = O
(
σ1− 3β

2
+ 1

4
(1−µ)(1−β)

)
.(3.66)

Proof. First of all, note that the assumption made in (3.63) is necessary due
to the assumption (3.36) required in Lemma 3.3 and earlier proofs, as well as the
assumption (3.58) required in (3.56) and (3.57).

We assemble (3.43), (3.44), (3.46), (3.52), (3.56) and (3.61) altogether to reach
the following inequality,

(3.67)

|ϕ(x)| ≤
∣∣J1
∣∣+
∣∣J2
∣∣+
∣∣J3
∣∣+
∣∣∣∣
1

2

∫

R

e−|x−y| h(y) dy

∣∣∣∣

≤ e−2µρ(x) [C12‖ϕ‖µ + C8 (σ) ‖h‖µ + C9 (σ) ‖ϕ‖µ]

+e−µρ(x)

[
C10 (σ) ‖h‖µ + C11 (σ) ‖ϕ‖µ +

1

1 − µ
‖h‖µ

]

= e
−2µ min

1≤i≤k
|x−ξi|

[C8 (σ) ‖h‖µ + (C12 + C9 (σ)) ‖ϕ‖µ]

+e
−µ min

1≤i≤k
|x−ξi|

[(
1

1 − µ
+ C10 (σ)

)
‖h‖µ + C11 (σ) ‖ϕ‖µ

]
, ∀x ∈ R,

where the constant C12 comes from (3.52) for
∣∣J1
∣∣, with

C12 ≥ 18C5 + 144σ1/12 + 15
√

2C5 σ
3
4
(1−µ)(1−β) (C0 + | logσ|) ,

and the other relevant constants are introduced in the estimates of
∣∣J2
∣∣ and

∣∣J3
∣∣.

Finally, let

(3.68)

K1 (≥ C12 + C9(σ)) be a constant, K1 ≥ 18C5 ≥ 18, and

K2

(
≥ 1

1 − µ
+ C10(σ)

)
be a constant,

then we reach the conclusion of this lemma. �

Remark 2 (The order of k = O
(
σ−β

)
and the effect of µ). According to the

proof procedure we have accomplished so far, the assumption (3.63) on the order
of k = O

(
σ−β

)
,

0 < β <
1 − µ

2 − µ
(<

1

2
)

is sharp. As we choose µ =
1

3
, then accordingly 0 < β <

2

5
∈
(

1

3
,
1

2

)
. But we can

reduce the parameter µ > 0 of the weighted norm to increase the number
1 − µ

2 − µ
and to make it very close to 1/2. We shall make another remark on the order β
after we finish the estimates in the nonlinear part later in Section 6.

Lemma 3.5. Under the assumption (3.63), if sequences {σn} ⊂ R
+ and {hn} ⊂

L∞
µ satisfy 0 < σn → 0 and ‖hn‖µ → 0, as n → ∞, and if (ϕn, γ

n) ∈ L∞
µ × R

k is

a solution to the problem (3.13), then it holds that

(3.69) ‖ϕn‖ → 0, as n→ ∞.
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Proof. Suppose (3.69) does not hold. Without loss of generality, we can
assume that

‖ϕn‖µ = 1, for all n.

Substituting ϕ = ϕn, h = hn, and σ = σn into (3.64), in Lemma 3.4, and then
taking the limit as n→ ∞, we get

(3.70) |ϕn(x)| ≤ K1e
−2µ min

1≤i≤k
|x−ξi|

, x ∈ R

or equivalently,

(3.71) e
µ min

1≤i≤k
|x−ξi| |ϕn(x)| ≤ K1e

−µ min
1≤i≤k

|x−ξi|
, x ∈ R.

We claim that there exists at least one index m ∈ {1, . . . , k} such that

(3.72) sup

{
|ϕn(x)| : x ∈ Im =

[
ξm − logK1

µ
, ξm +

logK1

µ

]}
≥ 1

K1
.

Otherwise, for any

x ∈
k⋃

j=1

[
ξj −

logK1

µ
, ξj +

logK1

µ

]
,

we would have

e
µ min

1≤i≤k
|x−ξi| |ϕn(x)| < K1

K1
= 1.

Moreover, for any

x ∈ R \
k⋃

j=1

[
ξj −

logK1

µ
, ξj +

logK1

µ

]
,

by (3.71) we have

e
µ min

1≤i≤k
|x−ξi| |ϕn(x)| ≤ K1e

−µ min
1≤i≤k

|x−ξi|
<
K1

K1
= 1.

Then it follows that

e
µ min

1≤i≤k
|x−ξi| |ϕn(x)| < 1, for every x ∈ R,

which contradicts the assumption ‖ϕn‖µ = 1. (Note that the norm ‖ϕn‖µ must be

attained on a subset of R with a positive Lebesgue measure.) Therefore, the claim
(3.72) holds. However, the index m may depend on n.

Define the translated function ϕ̃n(x) = ϕn (x+ ξm), x ∈ R, where ξm is speci-
fied in (3.72). Then for all n ≥ 1, one has

(3.73) sup
|x|≤ 1

µ
log K1

|ϕ̃n(x)| ≥ 1

K1
.

Note that
1

µ
logK1 > 0 due to K1 ≥ 18.

On the other hand, (3.70) implies that

0 ≤ |ϕ̃n(x)| ≤ K1, x ∈ R.

By the Heine-Borel Theorem on compactness and by a diagonal sequence selection,
we can confirm that there exists a subsequence of {ϕ̃n} which converges uniformly
over compact intervals to a limit function denoted by ϕ̃(x), x ∈ R. We relabel the
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convergent subsequence as the same as {ϕ̃n}. Since ϕ̃(x) satisfies Eq. (3.13), we
have

L (ϕ̃n) = h̃n +

h∑

j=1

γn
j W̃j , x ∈ R,

here h̃n(x) = hn (x+ ξm) and W̃j = Wj (x+ ξm). Thus ϕ̃n satisfies the integral
equation

(3.74) ϕ̃n(x) =
1

2

∫

R

e−|x−y|

(
2W̃ ϕ̃n − 2W̃ 2

ω

〈
W̃ , ϕ̃n

〉
+ h̃n + γn · ∇ξW̃

)
dy,

where W̃ (x) = W (x+ ξm). Now take limit as n → ∞ and use the Dominated
Convergence Theorem to see that the limit function ϕ̃ satisfies the equation

(3.75) ϕ̃(x) =
1

2

∫

R

e−|x−y|
(
2W̃ ϕ̃

)
(y) dy =

∫

R

e−|x−y|W̃ (y)ϕ̃(y) dy, x ∈ R,

because the remaining terms in (3.74) converge to zero, namely,
∫

R

e−|x−y|

(
−2W̃ 2

ω

〈
W̃ , ϕ̃n

〉)
dy → 0 because of Lemma 3.3,

∫

R

e−|x−y|h̃n(y) dy → 0 by the assumption ‖hn‖µ → 0, and

∫

R

e−|x−y|γn · ∇ξW̃ dy → 0 because of Lemma 3.2.

It follows that ϕ̃ is a solution to the problem:

(3.76)

L1 (ϕ̃) = −ϕ̃′′ + (1 − 2W )ϕ̃ = 0, x ∈ R,
〈
ϕ̃, W̃j

〉
= 0, j = 1, . . . , k, and

ϕ̃(x) → 0 exponentially, as |x| → ∞.

By Lemma 1.4, we know that

KerL1 = Span {W1, . . . ,Wk} = Span
{
W̃1, . . . , W̃k

}
.

Hence, (3.76) implies that

(3.77) ϕ̃ ∈ KerL1 ∩ (KerL1)
⊥

= {0}, i.e., ϕ̃(x) ≡ 0.

However, ϕ̃n also satisfies the equation

ϕ̃n = (−∆ + I)−1

[
2W̃ ϕ̃n − 2W̃ 2

ω

〈
W̃ , ϕ̃n

〉
+ h̃n + γn · ∇ξW̃

]
,

by the regularity of the solutions to harmonic equations, this implies ϕ̃n ∈ H2(R)∩
H1

0 (R) and
‖ϕ̃n‖H2(R) ≤ const, for n ≥ 1.

The Sobolev imbedding property H2(R) → C0,1
loc (R) infers that {ϕ̃n} is uniformly

Lipschitz continuous on the compact interval I0 =
[
−µ−1 logK1 ,

µ−1 logK1

]
. This together with (3.73) implies that there is a positive number

ν0 > 0 such that

meas

{
x ∈ I0 : |ϕ̃n(x)| ≥ 1

2K1

}
≥ ν0.
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Therefore, there exists a measurable subset Ĩ ⊂ I0 ⊂ R, such that meas
(
Ĩ
)
> 0

and

(3.78) ϕ̃(x) > 0 for x ∈ Ĩ .

Finally, (3.77) and (3.78) constitute a contradiction. This contradiction shows that
(3.69) holds. The lemma is proved. �

Now we can prove the key result concerning the solution of the augmented
linear problem (3.13), which is the principal approximation of the linear part of the
original equation (2.14).

Theorem 3.6. Under the assumption

(3.79) k = constσ−β, with 0 < β <
1 − µ

2 − µ
,

there exists a positive number σ̂ ≤ 1

2
such that for any given 0 < σ ≤ σ̂ and for any

ξ = (ξ1, . . . , ξk) ∈ Λ in (1.16) and a given h ∈ L∞
µ , the problem (3.13) has a unique

solution (ϕ, γ), which is denoted by ϕ = J (h) and γ = Π(h). Moreover, there exist

two positive constants Γ0 and Γ1 such that

(3.80)
‖ϕ‖µ = ‖J (h)‖µ ≤ Γ0‖h‖µ,

‖γ‖Rk = ‖Π(h)‖Rk ≤ Γ1‖h‖µ.

Proof. Define a Hilbert space H by

H =

{
ϕ ∈ H1

0 (R) : 〈ϕ,Wj〉 = 0, j = 1, . . . , k, and ϕ(x)
exp−−→
µ

0 as |x| → ∞
}
,

where ϕ(x)
exp−−→
µ

0, as |x| → ∞, means that

lim sup
|x|→∞

eµ|x||ϕ(x)| <∞,

andH is endowed with the norm of Sobolev spaceH1
0 (R). A solution to the problem

(3.13) ought to be such a pair (ϕ, γ) that ϕ ∈ H satisfying the equation

(3.81)

∫

R

(ϕ′ψ′ + ϕψ) dy − 〈2Wϕ,ψ〉 +
2

ω
〈W,ϕ〉

〈
W 2, ψ

〉
= 〈h, ψ〉, ∀ψ ∈ H,

and vice-versa, and γ ∈ R
k satisfying the equation (3.16). Note that this variational

equation (3.81) is equivalent to the following version,

(3.82) ϕ− (1 − ∆)−1R(ϕ) = (1 − ∆)−1h,

where R(ϕ) = 2Wϕ− 2W 2

ω
〈W,ϕ〉. Since (I − ∆)−1 is a compact linear operator

and R is a bounded linear operator, so that (I − ∆)−1R is a compact operator on
H . And (I − ∆)−1h ∈ H . Thus by the Fredholm alternative principle, Eq. (3.81)
is uniquely solvable if and only if it admits only the trivial zero solution for h = 0.

Suppose the existence and uniqueness part of this theorem does not hold, then
there exists a positive sequence {σn}, σn → 0, as n → ∞, and a corresponding
solution sequence {ϕn} ⊂ H of the problem (3.13) with hn ≡ 0, such that ‖ϕn‖µ = 1

for n ≥ 1, since we can always normalize a nontrivial solution ϕn with ‖ϕn‖µ 6=
0. However, this directly contradicts Lemma 3.5 as we have shown. Therefore,
applying the Fredholm alternative principle and Lemma 3.2, we can assert that
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problem (3.13) has a unique solution for any 0 < σ ≤ σ̂, where σ̂ is some constant
sufficiently small.

To show the boundedness of the solution mapping ϕ = J (h) and γ ∈ Π(h) in
(3.80), we can use (3.82). By the inverse operator theorem in Banach spaces, the
unique solvability we proved in the first part of this theorem implies that

[
I − (I − ∆)−1R

]−1
is a bounded linear operator,

so that the linear operator J for the ϕ-component,

(3.83) J =
[
I − (I − ∆)−1R

]−1
(I − ∆)−1 ∈ L

(
L∞

µ , L
∞
µ

)
,

is bounded. Then by Lemma 3.2, the linear operator Π for the γ-component is also
bounded. The proof is completed. �

4. Nonlinear Estimates

In this section, we have two objectives. First we shall take the full consideration

of the σ effect in T [Wϕ], which is replaced by
1

ω
〈W,ϕ〉 in Section 3, and estimate

the difference between V (x) and constant 1, while we set V (x) = 1 in Section 3.
Second is a key result on the estimate of the integrals

∫

R

S[W ](x)U ′ (x− ξj) dx, j = 1, . . . , k,

which constitutes the main part of the nonlinear side in (2.14). Here, W (x) defined
by (1.17), Λ defined by (1.16) and L∞

µ defined by (3.12) remain the same.
I) For each given ξ = (ξ1, . . . , ξk) ∈ Λ and W (x) given in (1.17) accordingly, the

function V = T
[
W 2
]

is the unique solution of the ODE problem (2.11), which has
the explicit expression (2.12). We first want to know the behavior of this function
V around the points ξ1, . . . , ξk. For each ` = 1, . . . , k, we have
(4.1)

V (ξ`) =
1

ω

∫

R

e−σ|ξ`−x|




k∑

j=1

U2 (x− ξj) +
∑

i,j
i6=j

U (x− ξi)U (x− ξj)


 dx

= 1 +
1

ω

∫

R

(
e−σ|ξ`−x| − 1

)



k∑

j=1

U2 (x− ξj) +
∑

i,j
i6=j

U (x− ξi)U (x− ξj)


 dx

where

ω =

∫

R

W 2(x) dx, as we introduced in (2.16).

By the instrumental inequality

(4.2) 0 ≤ 1 − e−σy ≤ σy, which is valid for all y ≥ 0,

we can make the following estimates, in which C may represent different positive
constants which need not be further specified.
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A) For j 6= ` in the first sum in (4.1), we have

(4.3)

∣∣∣∣
∫

R

(
e−σ|ξ`−x| − 1

)
U2 (x− ξj) dx

∣∣∣∣ ≤
∫

R

∣∣∣1 − e−σ|ξ`−ξj−x|
∣∣∣U2(x) dx

≤
∫

R

σ |ξ` − ξj − x|U2(x) dx ≤ σ

(∫

R

|x|U2(x) dx +

∫

R

|ξ` − ξj |U2(x) dx

)

= σ (12 log 2 − 3 + 6 |ξ` − ξj |) (by Lemma 1.1)

≤ σ (12 log 2 − 3 + 6 |`− j| | logσ|) ≤ σ (12 log 2 − 3 + 6 (k − 1) | logσ|)
≤ C σ1−β |logσ| , for some constant C > 0.

Hence,
(4.4)∣∣∣∣∣∣

∫

R

(
e−σ|ξ`−x| − 1

) k∑

j=1

U2 (x− ξj) dx

∣∣∣∣∣∣
≤
∣∣∣∣
∫

R

(
e−σ|ξ`−x| − 1

)
U2 (x− ξ`) dx

∣∣∣∣

+

k∑

j(6=`)=1

∣∣∣∣
∫

R

(
e−σ|ξ`−x| − 1

)
U2 (x− ξj) dx

∣∣∣∣

≤ σ

∫

R

|x|U2(x) dx + (k − 1)C σ1−β |logσ|

≤ (12 log 2 − 3)σ + (k − 1)C σ1−β |logσ| .

B) For those cross-product integral terms with either i = ` 6= j or j = ` 6= i,
we have
(4.5)

∑

i=`6=j or j=`6=i

∣∣∣∣
∫

R

(
e−σ|ξ`−x| − 1

)
U (x− ξi)U (x− ξj) dx

∣∣∣∣

≤ 2

k∑

j(6=`)=1

∫

R

∣∣∣e−σ|y| − 1
∣∣∣U (y)U (y + ξ` − ξj) dx

≤ 72σ

k∑

j(6=`)=1

∫

R

|y| e−|y|e−|y+ξ`−ξj | dy (by using (1.8))

= 36σ
k∑

j(6=`)=1

e−|ξ`−ξj |
(
1 + |ξ` − ξj | + |ξ` − ξj |2

)

≤ 36σ

k∑

j(6=`)=1

σ|`−j|(1−β)
(
1 + |`− j| | logσ| + |`− j|2| logσ|2

)
(by Lemma 1.3)

≤ 36σ
[
C σ1−β + C σ1−β |logσ| + k |logσ|C σ1−β |logσ|

]

≤ C σ2−β (1 + | logσ|) + C σ2(1−β) |logσ|2

= O
(
σ2(1−β) |logσ|2

)
.
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C) For those cross-product integral terms with (i, j, `) mutually unequal, we
have

(4.6)

∑

i,j(6=`)
i6=j

∣∣∣∣
∫

R

(
e|ξ`−x| − 1

)
U (x− ξi)U (x− ξj) dx

∣∣∣∣

≤ 36σ
∑

i,j(6=`)
i6=j

∫

R

|ξ` − ξi − x| e−|x|e−|x+ξi−ξj | dx

≤ 36σ
∑

i,j(6=`)
i6=j

{
|ξ` − ξi|

∫

R

e−|x|e−|x+ξi−ξj | dx+

∫

R

|x| e−|x|e−|x+ξi−ξj | dx

}

(by (1.7) and (1.8))

≤ 36σ
∑

i,j(6=`)

{
|`− i| |logσ| (1 + |ξi − ξj |) e−|ξi−ξj |

+
1

2
e−|ξi−ξj |

(
1 + |ξi − ξj | + |ξi − ξj |2

)}

≤ 36σ
∑

i,j
i6=j

e−|ξi−ξj |

[
1

2
(1 + |ξi − ξj |) + k |logσ| (1 + 2 |ξi − ξj |)

]

≤ 36σ
∑

i,j
i6=j

σ|i−j|(1−β)

[
1

2
(1 + |i− j| |logσ|) + k |logσ| (1 + 2 |i− j| | logσ|)

]

(by Lemma 1.3)

≤ 36σ k
[
C σ1−β (1 + | logσ|) + k |logσ|C σ1−β |logσ|

]

≤ C σ2(1−β) (1 + | logσ|) + C σ2−3β |logσ|2

= O
(
σ2−3β |logσ|2

)
.

Again, note that

(4.7) ω =

∫

R

W 2(x) dx ≥ 6k, and k = O
(
σ−β

)
.

From (4.1), (4.4), (4.5), (4.6) and (4.7) we obtain

V (ξ`) − 1 ≤ 1

6k

{
(12 log 2 − 3)σ + (k − 1)Cσ1−β | logσ|

+O
(
σ2(1−β)| logσ|2

)
+O

(
σ2−3β | logσ|2

)}

= O
(
σ1+β

)
+O

(
σ1−β | logσ|

)
+O

(
σ2−β | logσ|2

)
+O

(
σ2(1−β)| logσ|2

)

= O
(
σ1−β | logσ|

)
.

Therefore, we have the following lemma.

Lemma 4.1. It holds that

(4.8) V (ξ`) = 1 +O
(
σ1−β | logσ|

)
, ` = 1, . . . , k.
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II) In order to know the information about V (ξ` + y), for |y| ≤ 1
2 | logσ|, ` =

1, . . . , k, which covers the interval
[
ξ1 − 1

2 | logσ|, ξk + 1
2 | logσ|

]
of the real line, we

now estimate the increment V (ξ` + y) − V (ξ`). By (4.1), we have

(4.9)

V (ξ` + y) − V (ξ`) =
1

ω

∫

R

[
e−σ|ξ`+y−x| − e−σ|ξ`−x|

]

×




k∑

j=1

U2 (x− ξj) +
∑

i,j
i6=j

U (x− ξi)U (x− ξj)


 dx.

The estimates will be made part by part, as follows.
a) For j < ` in the first sum, by using the Taylor expansion

(4.10) e−x = 1 − x+O
(
x2
)
, for x (small) > 0,

we have

(4.11)

∫

R

[
e−σ|ξ`+y−x| − e−σ|ξ`−x|

]
U2 (x− ξj) dx

=

∫

R

[
e−σ|ξ`−ξj+y−x| − e−σ|ξ`−ξj−x|

]
U2(x) dx

=

∫

R

[
e−σ(ξ`−ξj+y−x) − e−σ(ξ`−ξj−x)

]
U2(x) dx +R(y)

= e−σ(ξ`−ξj)

∫

R

[
e−σ(y−x) − eσx

]
U2(x) dx+ R(y)

= e−σ|ξ`−ξj |
(
e−σy − 1

) ∫

R

eσxU2(x) dx +R(y)

= e−σ|ξ`−ξj |
[
−σy +O

(
σ2y2

)]
Ĉ(σ) +R(y),

where the constant Ĉ(σ) is given by

(4.12) Ĉ(σ)
∆
=

∫

R

eσxU2(x) dx ≤ 36

(
1

2− σ
+

1

2 + σ

)
=

144

4 − σ2
< 40,

and the remainder R(y) can be expressed as

(4.13)

R(y) =

∫ ∞

y+ξ`−ξj

[
e−σ(x−y+ξj−ξ`) − e−σ(ξ`−ξj+y−x)

]
U2(x) dx

−
∫ ∞

ξ`−ξj

[
e−σ(x+ξj−ξ`) − e−σ(ξ`−ξj−x)

]
U2(x) dx,

where the two integrals in (4.13) will be denoted by R1(y) and R2(y), respectively.
Then,
(4.14)

|R1(y)| =

∣∣∣∣∣

∫ ∞

y+ξ`−ξj

[
e−σ(x−y+ξj−ξ`) − eσ(x−y+ξj−ξ`)

]
U2(x) dx

∣∣∣∣∣

≤
∫ ∞

y+ξ`−ξj

|−2σ (x− y + ξj − ξ`)|U2(x) dx + (h.o.t.)

≤ 72σ

{∫ ∞

y+ξ`−ξj

(|x| + |y|) e−2x dx+ |j − `| |logσ|
∫ ∞

y+ξ`−ξj

e−2x dx

}
+ (h.o.t.)
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in which (h.o.t.) stands for higher-order terms. Since we have, for j < `, that
∫ ∞

y+ξ`−ξj

(|x| + |y|) e−2xdx =

∫ ∞

y+ξ`−ξj

xe−2xdx+ |y|
∫ ∞

y+ξ`−ξj

e−2xdx

=

(
−x

2
e−2x − 1

4
e−2x

)∣∣∣∣
∞

y+ξ`−ξj

+ |y|
(
−1

2
e−2x

)∣∣∣∣
∞

y+ξ`−ξj

≤ 1

2
(2|y| + |`− j| |logσ| + 1) e−2(y+ξ`−ξj)

≤ 1

2
(1 + (`− j + 1) |logσ|)σ2(`−j)(1−β)−1,

because |y| ≤ 1
2 | logσ|, and

∫ ∞

y+ξ`−ξj

e−2xdx ≤ 1

2
σ2(`−j)(1−β)−1.

Therefore,

|R1(y)| ≤ 36σ2(`−j)(1−β) [1 + (2`− 2j + 1) |logσ|] + (h.o.t.)

≤ C σ2(`−j)(1−β) (`− j + 1) | logσ|.
(4.15)

Similarly, we can get

(4.16)

|R2(y)| =

∣∣∣∣∣

∫ ∞

ξ`−ξj

[
e−σ(x+ξj−ξ`) − eσ(x+ξj−ξ`)

]
U2(x) dx

∣∣∣∣∣

≤ 72σ

{∫ ∞

ξ`−ξj

xe−2x dx+ (`− j) |logσ|
∫ ∞

ξ`−ξj

e−2x dx

}
+ (h.o.t.)

≤ C σ2(`−j)(1−β)+1 [1 + (`− j) |logσ|] .

Substituting (4.15) and (4.16) into (4.13), we obtain that, for j < `, |y| ≤ 1
2 |logσ|,

(4.17)

∫

R

[
e−σ|ξ`+y−x| − e−σ|ξ`−x|

]
U2 (x− ξj) dx

= Ĉ (σ) e−σ|ξ`−ξj |
[
−σy +O

(
σ2| logσ|2

)]
+O

(
σ2(`−j)(1−β)(`− j + 1) |logσ|

)
.

b) For j > `, we can proceed similarly to obtain
(4.18) ∫

R

[
e−σ|ξ`+y−x| − e−σ|ξ`−x|

]
U2 (x− ξj) dx

=

∫

R

[
e−σ|ξj−ξ`+x−y| − e−σ|ξj−ξ`+x|

]
U2(x) dx

=

∫

R

[
e−σ(ξj−ξ`+x−y) − e−σ(ξj−ξ`+x)

]
U2(x) dx + R̃(y)

= Ĉ (σ) e−σ|ξj−ξ`|
[
σy +O

(
σ2| logσ|2

)]
+O

(
σ2(j−`)(1−β)(j − `+ 1) |logσ|

)
,

for |y| ≤ 1
2 |logσ|, where Ĉ(σ) is the same constant in (4.12), and R̃(y) represents

the corresponding remainder which is treated similar to (4.13) through (4.16).
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c) For j = ` in the first sum in (4.9), we have

(4.19)

∫

R

[
e−σ|ξ`+y−x| − e−σ|ξ`−x|

]
U2 (x− ξ`) dx

=

∫

R

[
e−σ|y−x| − e−σ|x|

]
U2(x) dx

= −σ
∫

R

[|y − x| − |x|]U2(x) dx +O
(
σ2| logσ|2

)
.

Let

(4.20) Ψ(y) =

∫

R

[|y − x| − |x|]U2(x) dx, y ∈ R.

Since Ψ satisfies

(4.21)
Ψ′′(y) = 2U2(y), y ∈ R,

Ψ(0) = 0, Ψ′(0) = 0,

and U2(y) is an even function, Ψ is also an even function as the solution of (4.21).
Therefore, ΨU2U ′ is an odd function, so that

(4.22)

∫

R

Ψ(y)U2(y)U ′(y) dy = 0.

This property will be used later.
d) Next let us estimate the cross-product integral terms in (4.9),

(4.23)

∫

R

[
e−σ|ξ`+y−x| − e−σ|ξ`−x|

]∑

i,j
i6=j

U (x− ξi)U (x− ξj) dx

=

k∑

j=1

∫

R

[
e−σ|ξ`+y−x| − e−σ|ξ`−x|

] k∑

i(6=j)=1

U (x− ξi)U (x− ξj) dx.

For j < `, similarly we can get

(4.24)

∫

R

[
e−σ|ξ`+y−x| − e−σ|ξ`−x|

] k∑

i(6=j)=1

U (x− ξi)U (x− ξj) dx

= C̃ (σ) e−σ|ξ`−ξj |
[
−σy +O

(
σ2y2

)]
+ Φj(y)

where the coefficient C̃(σ) and the remainder Φj(y) have the following properties
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i) C̃ (σ) =

k∑

i(6=j)=1

C̃i (σ), with

C̃i (σ) =
∣∣∣C̃i (σ)

∣∣∣ =
∫

R

eσx U(x)U (x+ ξj − ξi) dx

≤ 36

∫

R

eσx e−|x| e−|x+ξj−ξi| dx (by direct integration)

≤ 36

(
1

2 − σ
+

1

2 + σ
+ |ξj − ξi|

)
e−|ξj−ξi|

≤ 36

(
4

4 − σ2
+ |j − i| |logσ|

)
σ|j−i|(1−β)

< (48 + 36 |j − i| | logσ|) σ|j−i|(1−β),

where we used the explicit expression of pr(x) shown in the proof of Lemma 1.2, so
that

(4.25)
C̃ (σ) =

∣∣∣C̃ (σ)
∣∣∣ ≤

k∑

i(6=j)=1

(48 + 36 |j − i| | logσ|)σ|j−i|(1−β)

≤ C (1 + |logσ|)σ1−β , for a constant C.

ii) Similar to (4.13) and (4.14), the remainder Φj can be decomposed into
(4.26)

Φj(y) =

∫ ∞

y+ξ`−ξj

[
e−σ(x−y+ξj−ξ`) − eσ(x−y+ξj−ξ`)

] k∑

i(6=j)=1

U(x)U (x+ ξj − ξi) dx

−
∫ ∞

ξ`−ξj

[
e−σ(x+ξj−ξ`) − eσ(x+ξj−ξ`)

] k∑

i(6=j)=1

U(x)U (x+ ξj − ξi) dx

where the two integrals in (4.26) will be denoted by Φj
1(y) and Φj

2(y), respectively.
Then we have
(4.27)

∣∣∣Φj
1(y)

∣∣∣ =

∣∣∣∣∣∣

∫ ∞

y+ξ`−ξj

[
e−σ(x−y+ξj−ξ`) − eσ(x−y+ξj−ξ`)

] k∑

i(6=j)=1

U(x)U (x+ ξj − ξi) dx

∣∣∣∣∣∣

≤ 72σ

∫ ∞

y+ξ`−ξj

(|x| + |y| + |ξj − ξ`|)
k∑

i(6=j)=1

e−|x| e−|x+ξj−ξi| dx+ (h.o.t.),
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where (h.o.t.) represents the higher-order terms, and by using Lemmas 1.2 and 1.3
we find that

k∑

i(6=j)=1

∫ ∞

y+ξ`−ξj

|x| e−|x| e−|x+ξj−ξi| dx (by (1.8))

≤
k∑

i(6=j)=1

1

2
e−|ξj−ξi| (1 + |ξj − ξi|)2

≤
k∑

i(6=j)=1

1

2
σ|i−j|(1−β) (1 + |i− j| |logσ|)2

≤ C σ1−β |logσ|2 ,

and

k∑

i(6=j)=1

∫ ∞

y+ξ`−ξj

(|y| + |ξ` − ξj |) e−|x| e−|x+ξj−ξi| dx (by (1.7))

≤
k∑

i(6=j)=1

(
1

2
|logσ| + |j − `| |logσ|

)∫ ∞

y+ξ`−ξj

e−|x| e−|x+ξj−ξi| dx

≤
k∑

i(6=j)=1

(
1

2
|log σ| + |j − `| |logσ|

)
(1 + |i− j| |logσ|)σ|i−j|(1−β)

≤ C (1 + |j − `|) | logσ|2 σ1−β .

Therefore, we obtain

(4.28)
∣∣∣Φj

1(y)
∣∣∣ ≤ C σ2−β (1 + |j − `|) | logσ|2, for j < ` and j > `.

Moreover, we have
(4.29)

∣∣∣Φj
2(y)

∣∣∣ =

∣∣∣∣∣∣

∫ ∞

ξ`−ξi

[
e−σ(x+ξj−ξ`) − eσ(x+ξj−ξ`)

] k∑

i(6=j)=1

U(x)U (x+ ξj − ξi) dx

∣∣∣∣∣∣

≤ 72σ

∫ ∞

ξ`−ξi

(|x| + |ξj − ξ`|)
k∑

i(6=j)=1

e−|x| e−|x+ξj−ξi| dx+ (h.o.t.)

≤ 72σ

k∑

i(6=j)=1

{∫ ∞

ξ`−ξi

|x| e−|x| e−|x+ξj−ξi| dx+ |ξj − ξ`|
∫ ∞

ξ`−ξi

e−|x| e−|x+ξj−ξi| dx

}

≤ C σ2−β (1 + |j − `|) | logσ|2, for j < ` and j > `.
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Thus, we have
(4.30)

T c
` (y)

∆
=

k∑

i(6=j)=1

∫

R

[
e−σ|ξ`+y−x| − e−σ|ξ`−x|

] k∑

i(6=j)=1

U (x− ξi)U (x− ξj) dx

=

k∑

i(6=j)=1

C̃ (σ) e−σ|ξ`−ξj |
[
σy sgn (ξj − ξ`) +O

(
σ2| logσ|2

)]

+
k∑

i(6=j)=1

C σ2−β (1 + |j − `|) | logσ|2

≤
k∑

i(6=j)=1

C (1 + | logσ|) σ1−β e−σ|ξ`−ξj |
[
σy sgn (ξj − ξ`) +O

(
σ2| logσ|2

)]

+C k (k − 1)σ2−β | logσ|2.

Note that the first part
k∑

i(6=j)=1

· · · in (4.30) can be absorbed by the corresponding

sum of the first part in (4.17) and in (4.18) for j 6= `.
For j = ` in (4.23), we have

T`(y)
∆
=

∫

R

[
e−σ|ξ`+y−x| − e−σ|ξ`−x|

] k∑

i(6=j)=1

U (x− ξi)U (x− ξ`) dx

=

∫

R

[
e−σ|y−x| − e−σ|x|

] k∑

i(6=j)=1

U(x)U (x+ ξ` − ξi) dx

= −σ
∫

R

[|y − x| − |x|]
k∑

i(6=j)=1

U(x)U (x− ξi + ξ`) dx+ (h.o.t.)

so that

(4.31)

|T`(y)| ≤ C σ |y|
k∑

i(6=j)=1

∫

R

e−|x| e−|x−ξi+ξ`| dx

≤ C σ |logσ|
k∑

i(6=j)=1

(1 + |i− `| |log σ|)σ|i−`|(1−β)

≤ C σ2−β |logσ|2 = O
(
σ2−β |logσ|2

)
, for |y| ≤ 1

2
|logσ| .

Thus we have proved the following result.

Lemma 4.2. For ` = 1, . . . , k, and |y| ≤ 1
2 |logσ|, it holds that

(4.32)

V (ξ` + y) − V (ξ`) =
1

ω

{
−σΨ(y) +O

(
σ2−β |logσ|2

)

+

k∑

i(6=j)=1

Ĉ (σ) e−σ|ξ`−ξj |
[
σy sgn (ξj − ξ`) +O

(
σ2 |logσ|2

)]

+O
(
σ2(1−β) |logσ|

)
+O

(
k2σ2−β |logσ|2

)}
,
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where Ĉ (σ) < 40 is shown in (4.12) and ω ≥ 6k.

Proof. Substituting (4.17), (4.18), (4.19), (4.20), (4.30) and (4.31) into (4.9),
we obtain (4.32) with the observations as follows,

k∑

j(6=`)=1

O
(
σ2|j−`|(1−β) (|j − `| + 1) | logσ|

)
= O

(
σ2(1−β) |logσ|

)

by using Lemma 1.3, and

Ck (k − 1)σ2−β |logσ|2 (in (4.30))

+C σ2−β |logσ|2 (in (4.31)) = O
(
k2σ2−β |logσ|2

)
.

We shall note that
1

ω
O
(
k2σ2−β |logσ|2

)
= O

(
σ2(1−β) |logσ|2

)

�

III) As we said in the beginning of this section, the next is to make an estimate
of the inner products

〈S[W ], U ′ (· − ξ`)〉 , ` = 1, . . . , k,

where S[W ] is defined by (2.15). Indeed,

(4.33) 〈S[W ], U ′ (· − ξ`)〉 =

∫

R

S[W ](x)U ′ (x− ξ`) dx

=

∫

R

1 − V (x)

V (x)
W 2(x)U ′ (x− ξ`) dx+

∑

i,j
i6=j

∫

R

U (x− ξi)U (x− ξj)U
′ (x− ξ`) dx.

The two parts on the right-hand side of (4.33) are denoted by E1 and E2, respec-
tively. First we have

(4.34) E1 =

∫

R

1 − V (x)

V (x)
U2 (x− ξ`)U

′ (x− ξ`) dx

+
∑

i6=j or
i=j 6=`

∫

R

1 − V (x)

V (x)
U (x− ξi)U (x− ξj)U

′ (x− ξ`) dx.

Remark 3. In the following estimates, we shall use Lemmas 4.1 and 4.2, the
latter is valid on the compact interval

(4.35) Iξ =

[
ξ1 −

1

2
|logσ| , ξk +

1

2
|logσ|

]
.

However, when we deal with the integrals over R, we extend the utilization of
Lemma 4.2 beyond the interval Iξ, while the details of justification that the com-
pensation is a small amount of higher order in σ are omitted.

a) The first term in (4.34) is

(4.36)

∫

R

1 − V

V
U2 (x− ξ`)U

′ (x− ξ`) dx =

∫

R

1 − V (ξ` + y)

V (ξ` + y)
U2(y)U ′(y) dy

=

∫

R

1 − V (ξ`)

V (ξ` + y)
U2(y)U ′(y) dy +

∫

R

V (ξ`) − V (ξ` + y)

V (ξ` + y)
U2(y)U ′(y) dy.
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where
(4.37) ∫

R

1 − V (ξ`)

V (ξ` + y)
U2(y)U ′(y) dy =

∫

R

1

3

V (ξ`) − 1

V 2 (ξ` + y)
V ′ (ξ` + y)U3(y) dy

≤ 1

3

∫

R

O
(
σ1−β | logσ|

)
σ

[V (ξ`) + V (ξ` + y) − V (ξ`)]
2 U

3(y) dy (since V ′(x) ≤ σ can be checked)

=

∫

R

O
(
σ2−β | logσ|

)
U3(y)

[
1 +O (σ1−β | logσ|) +O (σ| logσ|) +O

(
σ2(1−β)| logσ|2

)]2 dy (from (4.32))

= O
(
σ2−β |logσ|

) ∫

R

U3(y) dy = O
(
σ2−β |logσ|

)
,

and
∫

R

V (ξ`) − V (ξ` + y)

V (ξ` + y)
U2(y)U ′(y) dy

=

∫

R

1

1 +O (σ1−β | logσ|) {Π1(y) + Π2(y) + Π3(y)}U2(y)U ′(y) dy,

in which, according to (4.32),

(4.38)

Π1(y) = −σ
ω

∫

R

[|y − x| − |x|] = −σ
ω

Ψ(y),

Π2(y) =

k∑

j(6=`)=1

Ĉ (σ) e−σ|ξ`−ξj |
[σ
ω
y sgn (ξj − ξ`) +O

(
σ2+β |logσ|2

)]

Π3(y) =
1

ω

[
O
(
σ2(1−β) |logσ|

)
+O

(
k2σ2−β |logσ|2

)]

= O
(
σ2(1−β) |logσ|2

)
.

By the property of (4.22) of the function Ψ, we have
∫

R

Π1(y)U
2(y)U ′(y) dy = 0,

so that
∫

R

1

1 +O (σ1−β | logσ|) Π1(y)U
2(y)U ′(y) dy

=

∫

R

(
1

1 +O (σ1−β | logσ|) − 1

)
Π1(y)U

2(y)U ′(y) dy

= O
(
σ1−β | logσ|

) ∫

R

|Π1(y)|U2(y) |U ′(y)| dy,

where
∫

R

|Π1(y)|U2(y) |U ′(y)| dy ≤
∫

R

σ1+β |y| · 63 e−3|y| dy = 63

(
2

9

)
σ1+β = 48σ1+β.

Hence we have

(4.39)

∫

R

1

1 +O (σ1−β | logσ|) Π1(y)U
2(y)U ′(y) dy = O

(
σ2 |log σ|

)
.



GIERER-MEINHARDT EQUATIONS 233

Next we get
(4.40) ∫

R

1

1 +O (σ1−β | logσ|) Π2(y)U
2(y)U ′(y) dy

=

k∑

j(6=`)=1

Ĉ (σ) e−σ|ξ`−ξj |
σ

ω

∫

R

y sgn (ξj − ξ`)U
2(y)U ′(y) dy +O

(
σ2+β |logσ|2

)
k

=

k∑

j(6=`)=1

d (σ) e−σ|ξ`−ξj | σ1+β sgn
ξj − ξ`
|ξj − ξ`|

+O
(
σ2 |logσ|2

)
,

where the constant d(σ), given by

d (σ) = Ĉ (σ)
σ−β

ω

(
1

3

∫

R

U3(y) dy

)
= Ĉ (σ)

σ−β

ω

(
1

3
· 36

5

)

=
12

5
Ĉ (σ)

(
σ−β

ω

)
,

(4.41)

is uniformly bounded because Ĉ(σ) < 40 and
(
σ−β/ω

)
≤ σ−β/(6k) = O(1).

Finally we have

(4.42)

∫

R

1

1 +O (σ1−β | logσ|) Π3(y)U
2(y)U ′(y) dy = O

(
σ2(1−β) |logσ|2

)
.

From (4.36), (4.37), (4.39), (4.40) and (4.42) it follows that

(4.43)

∫

R

1 − V (x)

V (x)
U2 (x− ξ`)U

′ (x− ξ`) dx

=
k∑

j(6=`)=1

d (σ) e−σ|ξ`−ξj | σ1+β sgn (ξj − ξ`) +O
(
σ2(1−β) |logσ|2

)
.

b) Now we estimate the E2 part in (4.33) and the second part of E1 in (4.34),
both involve the triplet product U (x− ξi)U (x− ξj)U

′ (x− ξ`). Note that

(4.44)

∫

R

U (x− ξi)U (x− ξj)U
′ (x− ξ`) dx = O

(
σ2(1−β)

)
,

if max{|i− j|, |j − `|, |`− i|} ≥ 2. Suppose i = ` (similarly if j = `). Then for j < `
we get

(4.45)

∫

R

U (x− ξ`)U (x− ξj)U
′ (x− ξ`) dx = −1

2

∫

R

U2 (x− ξ`)U
′ (x− ξj) dx

= −1

2

∫

R

U2(x)U ′ (x− ξj + ξ`) dx = 3

∫

R

U2 (x) e−|x−ξj+ξ`| dx +Q1

= 3

∫

R

e−xU2 (x) dx e−|ξj−ξ`| +Q1 +Q2.

where

(4.46)

∫

R

e−xU2 (x) dx = 12, by Lemma 1.1,
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|Q1| =

∣∣∣∣−
1

2

∫

R

U2 (x)U ′ (x− ξj + ξ`) dx− 3

∫

R

U2 (x) e−|x−ξj+ξ`| dx

∣∣∣∣

≤
∣∣∣∣∣3
∫ ∞

ξj−ξ`

U2 (x) e−(x−ξj+ξ`)

[
1 − e−(x−ξj+ξ`)

(
1 + e−(x−ξj+ξ`)

)3 − 1

]
dx

∣∣∣∣∣

+

∣∣∣∣∣3
∫ ξj−ξ`

−∞

U2 (x) e−(ξj−ξ`−x)

[
1 − e−(ξj−ξ`−x)

(
1 + e(ξj−ξ`−x)

)3 − 1

]
dx

∣∣∣∣∣

≤ 108

∫

R

e−2|x|e−|x−ξj+ξ`|
[
4 e−|x−ξj+ξ`| +O

(
e−2|x−ξj+ξ`|

)]
dx

≤ C

∫

R

e−2|x|e−2|x−ξj+ξ`| dx (by (1.7))

≤ C e−2|ξj−ξ`| (1 + |ξj − ξ`|) ≤ C σ2|j−`|(1−β) (1 + |j − `| |logσ|) ,

(4.47)

and

|Q2| =

∣∣∣∣∣3
∫ ξj−ξ`

−∞

U2 (x)
[
e−|x−ξj+ξ`| − e−(x−ξj+ξ`)

]
dx

∣∣∣∣∣

≤ 108

∫ ξj−ξ`

−∞

e2x |2 (x− ξj + ξ`)| dx+ (h.o.t.)

= 54 e−2|ξj−ξ`| + (h.o.t.)

≤ C σ2|j−`|(1−β).

(4.48)

Thus we find that

(4.49)

∫

R

U (x− ξ`)U (x− ξj)U
′ (x− ξ`) dx

=

{
36 e−|ξj−ξ`| +O

(
σ2|j−`|(1−β) (1 + |j − `| |logσ|)

)
, if j < `,

−36 e−|ξj−ξ`| +O
(
σ2|j−`|(1−β) (1 + |j − `| |logσ|)

)
, if j > `,

We specify the sign difference between the case j < `, which we treated above, and
the case j > `, for which the details are omitted. The difference is originated from
different versions of U ′(x) we use in two cases.

For j < `, the version U ′(x) = −6e−x (1 − e−x)

(1 + e−x)
3 is used. Then we count on the

smallness of the integrals in |Q2| over (−∞, ξj − ξ`] ⊂ R
−.

For j > `, another version U ′(x) =
6ex (1 − ex)

(1 + ex)
3 is used. Then we can count on

the smallness of the corresponding integral over [ξj − ξ`,∞) ⊂ R
+.

The only other possibility for the triplet product terms will be

max{|i− j|, |j − `|, |i− `|} ≥ 2,

then (4.44) applies and the sum of all these terms will be of the order

(4.50) k O

(
σ2(1−β)

∞∑

ν=1

σν(1−β)

)
= O

(
σ−β

)
O
(
σ3(1−β)

)
= O

(
σ3−4β

)
.
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Therefore, we obtain that, by Lemma 1.3, and since β < 1/2 implies 2(1−β) <
3 − 4β,

E2 =
∑

i,j
i6=j

∫

R

U (x− ξi)U (x− ξj)U
′ (x− ξ`) dx

= 36
k∑

j(6=`)=1

e−|ξj−ξ`| sgn
ξ` − ξj
|ξ` − ξj |

+O
(
σ2(1−β) |logσ|

)
+O

(
σ3−4β

)

= 36

k∑

j(6=`)=1

e−|ξj−ξ`| sgn
ξ` − ξj
|ξ` − ξj |

+O
(
σ2(1−β) |logσ|

)
.

(4.51)

Moreover, by Lemmas 4.1 and 4.2, similar to (4.51), we have the estimate on the
second part of E1 in (4.34) as follows,

(4.52)

∑

i6=j or
i=j 6=`

∫

R

1 − V

V
U (x− ξi)U (x− ξj)U

′ (x− ξ`) dx

= O
(
σ1−β |logσ|

)

63

k∑

j(6=`)=1

e−|ξj−ξ`| +O
(
σ3−4β

)



= O
(
σ1−β |logσ|

) [
O
(
σ1−β

)
+O

(
σ3−4β

)]

= O
(
σ2(1−β) |logσ|

)
.

With these preparations, we are now ready to prove a key result in the following
theorem.

Theorem 4.3. Under the same assumptions as in Theorem 3.6, it holds that

(4.53)
∫

R

S[W ](x)U ′ (x− ξ`) dx =
∂

∂ξ`


∑

j 6=`

F (|ξj − ξ`|)


+O

(
σ2(1−β) |logσ|2

)
,

` = 1, . . . , k,

in which

(4.54) F (r) = −d (σ) σ1+β |r| − 36 e−|r|,

where d(σ) is a uniformly bounded, positive constant given by (4.41). Moreover, for

any given 0 < µ < 1, there is a constant Cµ > 0 such that S[W ] ∈ L∞
µ and

(4.55) ‖S[W ]‖µ ≤ Cµσ
1−β−µ

2 .

Proof. By substituting (4.43), (4.51) and (4.52) into (4.33), we can confirm
that

(4.56)

∫

R

S[W ](x)U ′ (x− ξ`) dx =
∑

j 6=`

d (σ) e−σ|ξj−ξ`| σ1+β sgn (ξj − ξ`)

+O
(
σ2(1−β) |logσ|2

)
+
∑

j 6=`

36 e−|ξj−ξ`| sgn (ξ` − ξj)

+O
(
σ2(1−β) |logσ|

)
.
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Moreover, we see that
(4.57) ∣∣∣∣∣∣

∑

j 6=`

d (σ)
[
e−σ|ξj−ξ`| − 1

]
σ1+β sgn (ξj − ξ`)

∣∣∣∣∣∣

≤
∑

j 6=`

d (σ)
[
σ |ξj − ξ`| +O

(
σ2 |ξj − ξ`|2

)]
σ1+β = O

(
σ2+β k(k − 1) |log σ|

)

= O
(
σ2−β |logσ|

)
,

which can be absorbed by the last term in (4.56), i.e., O
(
σ2(1−β) |logσ|

)
. Therefore,

(4.56) yields

∫

R

S[W ](u)U ′ (x− ξ`) dx =
∑

j 6=`

[
−d (σ) σ1+β sgn (ξ` − ξj) + 36 e−|ξj−ξ`| sgn (ξ` − ξj)

]

+O
(
σ2(1−β) |logσ|2

)

=
∂

∂ξ`


∑

j 6=`

F (|ξj − ξ`|)


+O

(
σ2(1−β) |logσ|2

)
,

which is (4.53).
Now we prove the second statement of this theorem and (4.55). For each x ∈ R,

there is a point ξi0 among ξ1, . . . , ξk such that

(4.58) |x− ξi0 | = min
1≤i≤k

|x− ξi| .

Without loss of generality, we suppose that x ∈ [ξi0 , ξi0+1). It is possible that
|x− ξi0 | = |x− ξi0+1|. Then we have

(4.59)

∣∣∣∣∣∣∣∣

∑

i,j
i6=j

U (x− ξi)U (x− ξj)

∣∣∣∣∣∣∣∣
≤
∑

j 6=i0

36 e−|x−ξi0
| e−|x−ξj |

+
∑

j 6=i0+1

36 e−|x−ξj0+1| e−|x−ξj | +
∑

i6=i0 ,i0+1

∑

j 6=i

36 e−|x−ξi| e−|x−ξj |.

In the first sum, the largest term is

36 e−|x−ξi0 | e−|x−ξi0+1| = 36 e
−µ min

1≤i≤k
|x−ξi|

[
e−(1−µ)|x−ξi0 |e−|x−ξi0+1|]

= 36 e
−µ min

1≤i≤k
|x−ξi|

[
e−(1−µ)|x−ξi0 |e−|ξi0+1−ξi0 |+|x−ξi0 |

]

≤ 36 e
−µ min

1≤i≤k
|x−ξi|

[
σ1−β eµ|x−ξi0 |

]

≤ 36 e
−µ min

1≤i≤k
|x−ξi|

[
σ1−βe

µ
2
| log σ|

]

= 36 e
−µ min

1≤i≤k
|x−ξi|

[
σ1−β−µ/2

]
,
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which implies that

(4.60)

∑

j 6=i0

36 e−|x−ξi0 | e−|x−ξj | ≤ 36 e
−µ min

1≤i≤k
|x−ξi|

[
σ1−β−µ/2

+2σ2(1−β)−µ/2 + 2σ3(1−β)−µ/2 + · · ·
]

≤ C e
−µ min

1≤i≤k
|x−ξi|

σ1−β−µ/2.

It is easy to see that the second sum
∑

j 6=i0+1

· · · satisfies the same estimate (4.60).

Moreover,

(4.61)

36
∑

i6=i0,i0+1


e−|x−ξi|

∑

j 6=i

e−|x−ξj |




≤ 36
[
2σ1−β + σ2(1−β) + · · ·

] [
2e

− min
1≤i≤k

|x−ξi|
(
1 + σ1−β + σ2(1−β) + · · ·

)]

≤ Ce
− min

1≤i≤k
|x−ξi|

σ1−β .

Therefore, we have the following estimate for x ∈ Iξ , where Iξ is the interval defined
in (4.35).

1) If x ∈ Iξ , then by (4.59), (4.60) and (4.61), with the observation

1 − V (x)

V (x)
= O

(
σ1−β |logσ|

)
,

we have

(4.62)

S[W ](x) =
1 − V (x)

V (x)
W 2(x) +

∑

i,j
i6=j

U (x− ξi)U (x− ξj)

= O
(
σ1−β |logσ|

) [
e
− min

1≤i≤k
|x−ξi|

(
1 + σ1−β + σ2(1−β) + · · ·

)]2

+e
−µ min

1≤i≤k
|x−ξi|

O
(
σ1−β−µ/2

)

= e
−µ min

1≤i≤k
|x−ξi|

[
O
(
σ1−β |logσ|

)
+O

(
σ1−β−µ/2

)]

= e
−µ min

1≤i≤k
|x−ξi|

O
(
σ1−β−µ/2

)
.

2) If x ∈ R \ Iξ =
(
−∞, ξ1 − 1

2 |logσ|
)⋃ (

ξk + 1
2 |logσ| ,∞

)
, then we can make

an estimate of S[W ](x) as follows. Since (2.12) implies 0 < V (x) ≤ 1, we have

|1 − V (x)| ≤ 1.

By the Lebesgue Dominated Convergence Theorem,

lim
σ→0+

V (x) =
1

ω
lim

σ→0+

∫

R

e−σ|z|W 2 (z + x) dz = 1,

which means for σ > 0 sufficiently small, V (x) ≥ 1 − ε0 for some constant ε0 < 1.
Thus ∣∣∣∣

1 − V (x)

V (x)

∣∣∣∣ ≤
1

1 − ε0
.
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On the other hand, we have

(4.63)

k∑

j=1

U2 (x− ξj) ≤ 36

k∑

j=1

e−2|x−ξj | (since x ∈ R \ Iξ)

≤ 36e
−µ min

1≤i≤k
|x−ξi|

e−(2−µ) 1
2
| log σ|

(
1 + σ2(1−β) + σ4(1−β) + · · ·

)

≤ Ce
−µ min

1≤i≤k
|x−ξi|

σ1−µ/2,

and
∑

i,j
i6=j

U (x− ξi)U (x− ξj) ≤ C e
−µ min

1≤i≤k
|x−ξi|

σ
1
2
(1−µ) σ

1
2
+(1−β)

≤ C e
−µ min

1≤i≤k
|x−ξi|

σ2−β−µ/2.

(4.64)

Hence we obtain the estimate

S[W ](x) ≤ C

1 − ε0
e
−µ min

1≤i≤k
|x−ξi|

σ1−µ/2 + C e
−µ min

1≤i≤k
|x−ξi|

σ2−β−µ/2

= e
−µ min

1≤i≤k
|x−ξi|

O
(
σ1−µ/2

)
.

(4.65)

In any case, (4.62) and (4.64) imply that (4.55) holds. �

Remark 4 (The second effect of µ). In the previous remark in Section 3, we
noted the effect of µ on the order of k = O

(
σ−β

)
in (3.63). Here is the second effect

of the choice of the norm parameter µ. From (4.55), we see that for 0 < µ ≤ 1/3
being chosen very close to zero, the upper bound of the µ-norm of S[W ] will be
very close to the order σ1−β , i.e.,

(4.66) Cµσ
1−β−µ/2 ≈ Cµσ

1−β .

5. Solution to the Augmented Nonlocal Problem

In this section, we shall prove that the augmented nonlocal problem (2.19)
admits a solution u = W + ϕσ,ξ and ϕσ,ξ turns out to be a small perturbation.
Recall that problem (2.19) is equivalent to the problem (2.20), which we write
again as follows

(5.1)

L(ϕ) = S[W ] + P (W,ϕ) +

k∑

j=1

γjWj

〈ϕ,Wj〉 = 0, j = 1, . . . , k,

ϕ(x) → 0, as |x| → ∞,

where L is the linear operator defined in (3.1), S[W ] is given in (2.15), and P (W,ϕ)
is given in (2.21).

By Theorem 4.3, for any 0 < µ ≤ 1/3, S[W ] ∈ L∞
µ and

(4.55) ‖S(W )‖µ ≤ Cµσ
1−β−µ/2.

We now consider the nonlinear term P (W,ϕ). According to (2.21),

(5.2) P (W,ϕ) = P1(W,ϕ) + P2(W,ϕ),
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where
(5.3)

P1(W,ϕ) = (W + ϕ)2
[

1

T [(W + ϕ)2]
− 1

V
+

2T [Wϕ]

V 2

]
− (2W + ϕ)ϕ

2T [Wϕ]

V 2

and

(5.4) P2(W,ϕ) = −2Wϕ

(
1 − 1

V

)
+ 2W 2

[ 〈W,ϕ〉
ω

− T [Wϕ]

V 2

]
+
ϕ2

V
.

We have

(5.5)

T
[
(W + ϕ)2

]
= V + 2T [Wϕ] + T

[
ϕ2
]
,

T [Wϕ] =
1

ω

∫

R

Wϕdx+
1

ω

∫

R

(
e−σ|x−y| − 1

)
W (y)ϕ(y) dy,

where

1

ω

∣∣∣∣
∫

R

(
e−σ|x−y| − 1

)
W (y)ϕ(y) dy

∣∣∣∣ ≤
1

6k

∫

R

σ|x−y|W (y) |ϕ(y)| dy

≤ σ‖ϕ‖µ

6k

k∑

j=1

∫

R

|x− y|U (y − ξj) dy

≤ σ‖ϕ‖µ

k

k∑

j=1

∫

R

|x− y| e−|y−ξj | dy

=
σ‖ϕ‖µ

k

k∑

j=1

∫

R

|z| e−|x−ξj−z| dz

=
σ‖ϕ‖µ

k

k∑

j=1

(
2e−|x−ξj| + 2 |x− ξj |

)

≤ σ‖ϕ‖µ

k
[O (1) + k (k + 1) | logσ|] (for any x ∈ Iξ)

= σ1+β ‖ϕ‖µ

[
O (1) +O

(
σ−2β |logσ|

)]
= O

(
σ1−β |logσ|

)
‖ϕ‖µ.

Hence, we obtain

T [Wϕ] = O
(
σβ
)
‖ϕ‖µ

∫

R

W (x) dx +O
(
σ1−β | logσ|

)
‖ϕ‖µ

= O
(
σβ
)
‖ϕ‖µ,

(5.6)

and likewise, by using Lemma 1.5, we can get

(5.7) T
[
ϕ2
]

= O(1)
∥∥ϕ2

∥∥
µ
.

Then we obtain

|P1(W,ϕ)| ≤ C
(
W 2 + ϕ2

)
T
[
ϕ2
]
+ C

∣∣2Wϕ+ ϕ2
∣∣ |T [Wϕ]|

≤ Ce
−2µ min

1≤i≤k
|x−ξi|‖ϕ‖2

µ.
(5.8)

provided that ‖ϕ‖µ = O(1). Here we admit x ∈ Iξ .
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On the other hand, we have
(5.9)
|P2(W,ϕ)| ≤ 2W |ϕ|O

(
σ1−β | logσ|

)
+ 2W 2O

(
σ1−β | logσ|

)
O
(
σβ
)
‖ϕ‖µ + C|ϕ|2

≤ e
−2µ min

1≤i≤k
|x−ξi|

[
12

1 − σ1−β
O
(
σ1−β |logσ|

)
‖ϕ‖µ

+
72

(1 − σ1−β)
2 O (σ |logσ|) ‖ϕ‖µ + C ‖ϕ‖2

µ

]

≤ Ce
−2µ min

1≤i≤k
|x−ξi| [‖ϕ‖2

µ +O
(
σ1−β |logσ|

)
‖ϕ‖µ

]
.

Thus we have shown that in the range of x ∈ Iξ =
[
ξ1 − 1

2 | logσ|, ξk + 1
2 | logσ|

]
,

there exists a constant C > 0 such that

(5.10) ‖P (W,ϕ)‖µ ≤ C
[
‖ϕ‖µ +O

(
σ1−β | logσ|

)]
‖ϕ‖µ,

provided that ‖ϕ‖µ = O(1).
Next we consider the range x ∈ R \ Iξ . In that case,

(5.11)

|P (W,ϕ)| =

∣∣∣∣
(W + ϕ)2

T [(W + ϕ)2]
− W 2

V
− 2Wϕ+

2W 2

ω
〈W,ϕ〉

∣∣∣∣

≤
∣∣∣∣
2Wϕ+ ϕ2

V
− 2Wϕ+

2W 2

ω
〈W,ϕ〉

∣∣∣∣+ C(W + ϕ)2
∣∣2T [Wϕ] + T

[
ϕ2
]∣∣

=
∣∣∣P̂1(W,ϕ)

∣∣∣+
∣∣∣P̂2(W,ϕ)

∣∣∣ ,

where
(5.12)

∣∣∣P̂1(W,ϕ)
∣∣∣ ≤ C




k∑

j=1

e−|x−ξj |


 e

−µ min
1≤i≤k

|x−ξi|‖ϕ‖µ + Ce
−2µ min

1≤i≤k
|x−ξi|‖ϕ‖2

µ

+
72

6k




k∑

j=1

e−|x−ξj |




2 ∫

R

k∑

j=1

e−|y−ξj | e
−µ min

1≤i≤k
|y−ξi|

dy ‖ϕ‖µ

≤ Ce
−µ min

1≤i≤k
|x−ξi|

(
σ1/2 ‖ϕ‖µ + ‖ϕ‖2

µ

)

+Ce
−µ min

1≤i≤k
|x−ξi|

σ1− µ
2 ‖ϕ‖µ

≤ Ce
−µ min

1≤i≤k
|x−ξi|

(
σ1/2 ‖ϕ‖µ + ‖ϕ‖2

µ

)
,

and ∣∣∣P̂2(W,ϕ)
∣∣∣ = C(W + ϕ)2

∣∣2T [Wϕ] + T
[
ϕ2
]∣∣

≤ C




k∑

j=1

e−|x−ξj | + e
−µ min

1≤i≤k
|x−ξi| ‖ϕ‖µ




2

∣∣2T [Wϕ] + T
[
ϕ2
]∣∣

≤ Ce
−µ min

1≤i≤k
|x−ξi|

(
σ

1
2
(1−µ) + ‖ϕ‖µ

)(
σ

1
2 + ‖ϕ‖µ

)

·C
k
e
−σ min

1≤i≤k
|x−ξi|

[∫

R

W (y) dy ‖ϕ‖µ +

∫

R

e
−µ min

1≤i≤k
|x−ξi|

dy ‖ϕ‖2
µ

]
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in which, by Lemma 1.5, we have

1

k

∫

R

W (y) dy = 6 and
1

k

∫

R

e
−µ min

1≤i≤k
|y−ξi|

dy = O(1),

so that

(5.13)
∣∣∣P̂2(W,ϕ)

∣∣∣ ≤ Ce
−µ min

1≤i≤k
|x−ξi|

(
σ1−µ

2 ‖ϕ‖µ + ‖ϕ‖2
µ

)
,

provided that ‖ϕ‖µ = O(1). From (5.11) through (5.13) we get

(5.14) |P (W,ϕ)| ≤ Ce
−µ min

1≤i≤k
|x−ξi|

(
σ

1
2 ‖ϕ‖µ + ‖ϕ‖2

µ

)
,

for x ∈ R \ Iξ .
Lemma 5.1. Assume that for 0 < µ ≤ 1/3, ‖ϕ‖µ = O(1) as σ being sufficiently

small. Then P (W,ϕ) given by (2.21) satisfies the estimate

(5.15) ‖P (W,ϕ‖µ ≤ C
[
‖ϕ‖µ +O

(
σ1−β | logσ|

)
+O

(
σ

1
2

)]
‖ϕ‖µ.

Proof. Simply combine (5.10) for x ∈ Iξ and (5.14) for x ∈ R \ Iξ to reach
the conclusion. �

The following is a key result on the solution to the augmented nonlocal problem
(5.1). Its proof is based on the investigation of the principal approximation linear
operator L, which we presented in Theorem 3.6, and on the prepared nonlinear
estimates shown in Theorem 4.3 and Lemma 5.1.

Theorem 5.2. There exists a constant σ̌ > 0 such that for 0 < σ ≤ σ̌, under

the assumption

(3.79) k = Cσ−β and 0 < β <
1 − µ

2 − µ
(with 0 < µ ≤ 1

3
),

for any given ξ = (ξ1, . . . , ξk) ∈ Λ in (1.16), there exists a unique solution

ϕσ,ξ ∈ L∞
µ , γ = (γ1, . . . , γk) ∈ R

k

of the augmented nonlocal problem:

(5.16)

S[W + ϕ](x) =

k∑

j=1

γjU
′ (x− ξj) , x ∈ R,

∫

R

ϕ(x)U ′ (x− ξj) dx = 0, j = 1, . . . , k,

ϕ(x) → 0, as |x| → ∞.

Moreover,

(5.17) ‖ϕσ,ξ‖µ ≤ 2Γ0Cµσ
1−β−µ/2,

where Γ0 is the constant in (3.80) and Cµ is the constant in (4.55).

Proof. By the equivalence of problem (5.16) (aka (2.19)) and problem (5.1)
(aka (2.20)), it suffices to show that problem (5.1) has a solution (ϕσ,ξ, γ) as stated
in this theorem.

According to Theorem 3.6, if we set

(5.18) h = S[W ] + P (W,ϕ),
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then problem (5.1) is to find a solution ϕ ∈ L∞
µ of the equation

(5.19) ϕ = J (h) = J (S[W ] + P (W,ϕ)),

and then γ = Π(h) can be determined, where the bounded linear operator J on
L∞

µ is well-defined and (3.80) holds. Define

(5.20) Q(ϕ)
∆
= J (S[W ] + P (W,ϕ)), for ϕ ∈ L∞

µ .

Then problem (5.1) is reduced to finding a fixed point ϕ ∈ L∞
µ of the mapping Q,

i.e.,
ϕ = Q(ϕ).

Let B be the closed, convex set in L∞
µ defined by

(5.21) B =



ϕ ∈ L∞

µ :
‖ϕ‖µ ≤ 2Γ0Cµσ

1−β−µ/2

〈ϕ,Wj〉 = 0, j = 1, . . . , k,
ϕ(x) → 0 as |x| → ∞



 .

We use the contraction mapping argument to prove that Q has a fixed point ϕσ,ξ

in B.
First we show Q(B) ⊂ B. For any ϕ ∈ B, by the description of problem (3.13)

and the definition of J , Q(ϕ) satisfies automatically the two conditions in (5.21),

〈Q(ϕ),Wj〉 = 0, j = 1, . . . , k, and Q(ϕ)(x) → 0 as |x| → ∞.

By Theorem 4.3 and Lemma 5.1, there is a small constant σ̌ > 0, such that for
0 < σ ≤ σ̌,

‖Q(ϕ)‖µ ≤ ‖J ‖L(L∞
µ ) {‖S(W )‖µ + ‖P (W,ϕ)‖µ}

≤ Γ0

{
Cµσ

1−β−µ/2 + C
[
‖ϕ‖µ +O

(
σ1−β | logσ|

)
+O

(
σ

1
2

)]
‖ϕ‖µ

}

≤ 2Γ0Cµσ
1−β−µ/2, for any ϕ ∈ B.

(5.22)

Indeed, σ̌ > 0 can be chosen to ensure that for 0 < σ ≤ σ̌, in (5.22),

(5.23) C
[
2Γ0Cµσ

1−β−µ
2 +O

(
σ1−β | logσ|

)
+O

(
σ

1
2

)]
≤ 1

8
,

so that (5.22) holds. This implies Q(B) ⊂ B, for 0 < σ ≤ σ̌.
Next, for any ϕ1, ϕ2 ∈ B, we can estimate

(5.24)
‖Q (ϕ1) −Q (ϕ2)‖ ≤ ‖J ‖ ‖P (W,ϕ1) − P (W,ϕ2)‖µ

≤ Γ0

{
‖P1 (W,ϕ1) − P1 (W,ϕ2)‖µ + ‖P2 (W,ϕ1) − P2 (W,ϕ2)‖µ

}

through the similar steps as we have gone in (5.5) through (5.10), for x ∈ Iξ . Then
a corresponding estimate can be made by the similar steps as (5.11) through (5.14),
for x ∈ R \ Iξ. The details are omitted here. We can conclude that for 0 < σ ≤ σ̌,
where σ̌ > 0 is the constant chosen in accordance with (5.23), it holds that

(5.25) ‖Q (ϕ1) −Q (ϕ2)‖µ ≤ 1

2
‖ϕ1 − ϕ2‖µ , for any ϕ1, ϕ2 ∈ B.

Therefore, Q is a contraction mapping on the set B.
By the Schauder fixed point theorem, there exists a unique fixed point ϕ = ϕσ,ξ

of Q in the set B, which is a solution of problem (5.1) and of the original problem
(5.16), and γ = γσ,ξ can be determined by solving (3.16). The property (5.17)
follows from (5.21). �
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Let ϕσ,ξ be the solution shown in Theorem 5.2. In order to prepare for the final
stage, we need to know about

(5.26)

∫

R

S [W + ϕσ,ξ] (x)U
′ (x− ξ`) dx

=

∫

R

S[W ](x)U ′ (x− ξ`) dx

+

∫

R

[S [W + ϕσ,ξ] (x) − S[W ](x)]U ′ (x− ξ`) dx,

for ` = 1, . . . , k. The information about
∫

R
S[W ](x)U ′ (x− ξ`) dx is known in

Theorem 4.3. Here we study the second part. Denote by S ′ the Fréchet derivative
of the operator S. We have
(5.27) ∫

R

[S [W + ϕσ,ξ] (x) − S[W ](x)]U ′ (x− ξ`) dx

=

∫

R

S′[W ] (ϕσ,ξ)U
′ (x− ξ`) dx+O

(
σ2(1−β−µ/2)

)

=

∫

R

[
ϕ′′

σ,ξ − ϕσ,ξ +
2Wϕσ,ξ

V
− 2W 2

V 2
T [Wϕσ,ξ ]

]
U ′ (x− ξ`) dx+O

(
σ2(1−β−µ/2)

)
,

and according to Lemma 1.4, by integration by parts, we have

∫

R

[
ϕ′′

σ,ξ − ϕσ,ξ + 2U (x− ξ`)ϕσ,ξ

]
U ′ (x− ξ`) dx

=

∫

R

ϕσ,ξ [U ′′′ (x− ξ`) − U ′ (x− ξ`) + 2U (x− ξ`)U
′ (x− ξ`)] dx = 0.

Hence we get

(5.28)

∫

R

[S [W + ϕσ,ξ] − S[W ]]U ′ (x− ξ`) dx−O
(
σ2(1−β−µ/2)

)
(in (5.27))

=

∫

R

(
2W (x)

V (x)
− 2U (x− ξ`)

)
ϕσ,ξU

′ (x− ξ`) dx

−
∫

R

2W 2

V 2
T [Wϕσ,ξ ]U

′ (x− ξ`) dx

= g1 (W,ϕσ,ξ, `) + g2 (W,ϕσ,ξ, `) ,
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where

(5.29)

|g1 (W,ϕσ,ξ, `)| ≤ 2

∫

R

∣∣∣∣W
(

1

V
− 1

)
ϕσ,ξ(x)U

′ (x− ξ`)

∣∣∣∣ dx

+2
∑

j 6=`

∫

R

U (x− ξj) |ϕσ,ξ(x)| |U ′ (x− ξ`)| dx

≤ O
(
σ1−β |logσ|

) ∫

R

k∑

j=1

e−|x−ξj | e−|x−ξ`| e
−µ min

1≤i≤k
|x−ξi|

dx ‖ϕσ,ξ‖µ

+72

k∑

j 6=`

∫

R

e−|x| e−|x+ξj−ξ`| e
−µ min

1≤i≤k
|x−ξi|

dx ‖ϕσ,ξ‖µ

≤ O
(
σ1−β |logσ|

) k∑

j=1

∫

R

e−|x| e−|x+ξj−ξ`| dx ‖ϕσ,ξ‖µ

+72
∑

j 6=`

∫

R

e−|x| e−|x+ξj−ξ`| dx ‖ϕσ,ξ‖µ

≤ O
(
σ1−β |logσ|

)
O (1) 2Γ0Cµσ

1−β−µ/2

+72O
(
σ1−β |logσ|

)
2Γ0Cµσ

1−β−µ/2

= O
(
σ2(1−β)−µ/2 |logσ|

)
+O

(
σ2(1−β)−µ/2 |logσ|

)

= O
(
σ2(1−β)−µ/2 |logσ|

)
,

in which Lemmas 1.2 and 1.3 are used to claim

k∑

j=1

∫

R

e−|x| e−|x+ξj−ξ`| dx = O (1)

and
∑

j 6=`

∫

R

e−|x| e−|x+ξj−ξ`| dx = O
(
σ1−β |logσ|

)
.

Next, we have

(5.30)

g2 (W,ϕσ,ξ , `) = −
∫

R

2W 2

V 2
T [Wϕσ,ξ]U

′ (x− ξ`) dx

= −
∫

R

2U2 (x− ξ`)U
′ (x− ξ`)T [Wϕσ,ξ ] (x) dx

−
∑

i,j
not both `

∫

R

2U (x− ξi)U (x− ξj)U
′ (x− ξ`) T [Wϕσ,ξ] (x) dx + Rmd,

where the remainder

Rmd =

∫

R

2W 2

(
1 − 1

V 2

)
T [Wϕσ,ξ ]U

′ (x− ξ`) dx
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is a small amount of higher order in comparison with the first two parts on the
right-hand side of (5.30). Note that

d

dx
T [Wϕσ,ξ ] (x) =

1

ω

d

dx

∫

R

e−σ|x−y|W (y)ϕσ,ξ (y) dy

=
σ

ω

[∫ ∞

x

e−σ|x−y|W (y)ϕσ,ξ(y)dy −
∫ x

−∞

e−σ|x−y|W (y)ϕσ,ξ(y)dy

]
.

Consequently, we have
(5.31)∣∣∣∣

d

dx
T [Wϕσ,ξ] (x)

∣∣∣∣ ≤ Cσ1+β ‖ϕσ,ξ‖µ

∫ ∞

−∞

e−σ|x−y|
k∑

j=1

e−|y−ξj |e
−µ min

1≤i≤k
|x−ξi|

dy

≤ Cσ1+β
k∑

j=1

[
e−σ|x−ξj |

(∫

R

e−(1−σ)|y−ξj | dy

)]
‖ϕσ,ξ‖µ

≤ Cσ1+β O
(
σ−β

)
‖ϕσ,ξ‖µ ≤ Cσ1+β O

(
σ−β

)
2Γ0Cµ σ

1−β−µ/2

= O
(
σ2−β−µ/2

)
.

Hence, we have

(5.32)

∣∣∣∣−
∫

R

2U2 (x− ξ`)U
′ (x− ξ`) T [Wϕσ,ξ] (x) dx

∣∣∣∣

=

∣∣∣∣
2

3

∫

R

U3 (x− ξ`)T
′ [Wϕσ,ξ] (x) dx

∣∣∣∣ ≤ C

∫

R

e−3|x−ξ`| |T ′ [Wϕσ,ξ ] (x)| dx

= O
(
σ2−β−µ/2

)
.

On the other hand, since it is shown that T [Wϕσ,ξ] = O
(
σβ ‖ϕσ,ξ‖µ

)
in (5.6),

which is valid for x ∈ Iξ or x ∈ R \ Iξ , but the details for x ∈ R \ Iξ are omitted,
here we can get

(5.33)

∣∣∣∣∣∣∣
−

∑

i,j
not both `

∫

R

2U (x− ξi)U (x− ξj)U
′ (x− ξ`)T [Wϕσ,ξ] (x) dx

∣∣∣∣∣∣∣

≤ O
(
σβ ‖ϕσ,ξ‖µ

) ∑

i,j
not both `

∫

R

e−|x−ξi| e−|x−ξj | e−|x−ξ`| dx

≤ O
(
σβ ‖ϕσ,ξ‖µ

) k∑

j=1

k∑

i(6=`)=1

∫

R

e−|x| e−|x+ξi−ξj | e−|x+ξi−ξ`| dx

≤ O
(
σβ ‖ϕσ,ξ‖µ

) k∑

j=1

k∑

i(6=`)=1

e−|ξi−ξ`|

∫

R

e−|x+ξi−ξj | dx

≤ O
(
σβ ‖ϕσ,ξ‖µ

)
2k Cσ1−β = O

(
σβσ1−β−µ/2

)
O
(
σ−β

)
O
(
σ1−β

)

≤ O
(
σ2(1−β)−µ/2

)
.
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Substituting (5.29), (5.32) and (5.33) into (5.28), we reach the following esti-
mate, which is stated as a lemma. Here O

(
σ2(1−β)−µ/2 |logσ|

)
is dominated by

O
(
σ2(1−β)−µ

)
.

Lemma 5.3. Under the same assumption as in Theorem 5.2, it holds that

(5.34)

∫

R

(S [W + ϕσ,ξ] − S[W ])U ′ (x− ξ`) dx = O
(
σ2(1−β)−µ

)
.

Now we prove the following key result.

Theorem 5.4. Under the same assumption as in Theorem 5.2, for σ suffi-

ciently small, ξ ∈ Λ, let (ϕσ,ξ, γσ,ξ) ∈ L∞
µ × R

k, where γσ,ξ = (γ1, . . . , γk), be the

solution of problem (5.16). Then, for ` = 1, . . . , k,

(5.35)

k∑

j=1

γj

∫

R

U ′ (x− ξj)U
′ (x− ξ`) dx

=
∂

∂ξ`


∑

j 6=`

F (|ξj − ξ`|)


+O

(
σ2(1−β)−µ

)
,

where F (r) is given by (4.54), and

(5.36)

〈
U ′

j , U
′
k

〉 ∆
=

∫

R

U ′ (x− ξj)U
′ (x− ξ`) dx

=

{
6/5, for j = `,

O
(
σ|j−`|(1−β)|j − `|| logσ|

)
, for j 6= `.

Proof. Combining (4.53) in Theorem 4.3 and (5.34) in Lemma 5.3, we get
from (5.16) the following equality, for ` = 1, . . . , k,

k∑

j=1

γj

∫

R

U ′ (x− ξj)U
′ (x− ξ`) dx =

∫

R

S[W ]U ′ (x− ξ`) dx

+

∫

R

(S [W + ϕσ,ξ ] − S[W ])U ′ (x− ξ`) dx

=
∂

∂ξ`


∑

j 6=`

F (|ξj − ξ`|)


+O

(
σ2(1−β)| logσ|2

)
+O

(
σ2(1−β)−µ

)

=
∂

∂ξ`


∑

j 6=`

F (|ξj − ξ`|)


+O

(
σ2(1−β)−µ

)
,

where the term O
(
σ2(1−β)| logσ|2

)
is absorbed by the last term. Moreover, we have

〈
U ′

j , U
′
j

〉
=

∫

R

|U ′(x)|2 dx = 6/5, j = 1, . . . , k,
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by Lemma 1.1. If j 6= `, then

〈
U ′

j , U
′
`

〉
≤ 36

∫

R

e−|x|e−|x+ξj−ξ`| dx (by (1.7))

= 36 (1 + |ξj − ξ`|) e−|ξj−ξ`|

≤ 36 (1 + |j − `|| logσ|)σ|j−`|(1−β)

= O
(
σ|j−`|(1−β)|j − `|| logσ|

)
.

The proof is completed. �

6. Solution to the Reduced Finite-Dimensional Problem

In this section, we shall take the final step of the Lyapunov-Schmidt method
to solve the reduced finite-dimensional problem: To find a set of points ξ =
(ξ1, . . . , ξk) ∈ Λ such that the unique solution γσ,ξ = (γ1, . . . , γk) = 0 ∈ R

k for
(5.16), provided that σ is sufficiently small. If we achieve this, then (5.16) implies
that there exists a ϕσ,ξ ∈ L∞

µ , which satisfies

(6.1)

S [W + ϕσ,ξ] (x) = 0, x ∈ R,

〈ϕσ,ξ, U
′(· − ξj)〉 = 0, j = 1, . . . , k,

ϕσ,ξ(x) → 0, as |x| → ∞.

This means u = W + ϕσ,ξ is a solution of the original nonlocal problem (2.5), i.e.,

(6.2)
S[u] = u′′ − u+

u2

T [u2]
= 0 in R,

u > 0 and u→ 0 as |x| → ∞.

The key term in (5.35) is

(6.3)

∂

∂ξ`


∑

j 6=`

F (|ξj − ξ`|)


 = − ∂

∂ξ`


∑

j 6=`

d (σ) σ1+β |ξj − ξ`|




− ∂

∂ξ`


∑

j 6=`

36 e−|ξj−ξ`|




=
∑

j 6=`

d (σ)σ1+β sgn (ξj − ξ`) +
∑

j 6=`

36 e−|ξj−ξ`| sgn (ξ` − ξj)

= d (σ)σ1+β(k + 1 − 2`) −
∑

j 6=`

36 e|ξj−ξ`| sgn (ξj − ξ`) , ` = 1, . . . , k.

Choose k points ξ01 , . . . , ξ
0
k such that the following conditions are satisfied

(6.4a)

k∑

j=1

ξ0j = 0,

and

(6.4b) ξ0j − ξ0j+1 = −
∣∣ξ0j − ξ0j+1

∣∣ = (1 + β) log σ + log[j(k − j)] + log
d(σ)

36
,

for j = 1, . . . , k − 1.
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Denote these points by ξ0 =
(
ξ01 , . . . , ξ

0
k

)
. Since k = Cσ−β , we have

(6.5) max
1≤j≤k−1

j(k − j) ≤ k2

4
=

(
C

2

)2

σ−2β

so that
∣∣ξ0j − ξ0j+1

∣∣ = −(1 + β) log σ − log [j(k − j)] − log
d(σ)

36

≥ (1 − β) | logσ| − 2 log
C

2
− log

d(σ)

36
.

(6.6)

By (4.12) and (4.41), for σ sufficiently small,

(6.7) −2 log
C

2
− log

d(σ)

36
= log

144

C2d(σ)
> log

(
144

C2
· 5 × 6C

12 × 40

)
= log

(
9

C

)
.

If k satisfies

(6.8) k = 9σ−β,

then we have, for j = 1, . . . , k,

(1 − β) | logσ| <
∣∣ξ0j − ξ0j+1

∣∣ ≤ − (1 + β) logσ − log
(k − 1)d(σ)

36

≈ − (1 + β) logσ − log
kd(σ)

36
(by (4.12) and (4.41))

≈ | logσ| − log
12 × 36

5 × 6 × 36
= | logσ| + log

5

2
< | logσ| + 1.

(6.9)

It is seen from (6.9) that ξ0 ∈ Λ(σ, β). Moreover, if η > 0 is a sufficiently small
number, then

(6.10) Λη =



ξ = (ξ1, . . . , ξk) :

∥∥ξ − ξ0
∥∥ < η,

k∑

j=0

ξj = 0



 ⊂ Λ(σ, β).

In fact, this choice of ξ0 implies that for σ sufficiently small and for ξ ∈ Λη,

(6.11)

−
∑

j 6=`

36 e−|ξj−ξ`| sgn (ξj − ξ`) = −
∑

j 6=`

36 e−|ξj−ξ`| sgn
(
ξ0j − ξ0`

)

= 36
[
e−|ξ`−1−ξ`| − e|ξ`+1−ξ`|

]
+O

(
σ2(1−β)

)

= 36
[
e−|ξ0

`−1−ξ0
`+ξ̂`−1−ξ̂`| − e−|ξ0

`+1−ξ0
`+ξ̂`+1−ξ̂`|

]
+O

(
σ2(1−β)

)
,

where

(6.12) ξj = ξ0j + ξ̂j , j = 1, . . . , k, and

k∑

j=0

ξ̂j = 0.

By Taylor expansions, we get

e−|ξ0
j −ξ0

`+ξ̂j−ξ̂`| = e−|ξ0
j−ξ0

` | + e−|ξ0
j −ξ0

` | (sgn (ξ` − ξj))
(
ξ̂j − ξ̂`

)

+O

(
σ
∣∣∣ξ̂j − ξ̂`

∣∣∣
2
)
,

(6.13)
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for |j − `| = 1. Substituting (6.12) into (6.11), we obtain

(6.14)

−
∑

j 6=`

36 e−|ξj−ξ`| sgn (ξj − ξ`) = 36
[
e−|ξ0

`−1−ξ0
` | − e−|ξ0

`+1−ξ0
` |
]

+36
[
e−|ξ0

`−1−ξ`|
(
ξ̂`−1 − ξ̂`

)
+ e−|ξ0

`+1−ξ0
` |
(
ξ̂`+1 − ξ̂`

)]

+O

(
σ

[∣∣∣ξ̂`−1 − ξ̂`

∣∣∣
2

+
∣∣∣ξ̂`+1 − ξ̂`

∣∣∣
2
])

+O
(
σ2(1−β)

)
,

where

(6.15)
36
[
e−|ξ0

`−1−ξ0
` | − e−|ξ0

`+1−ξ0
` |
]

= d (σ) σ1+β [(`− 1)(k − `+ 1) − `(k − `)]

= −d (σ) σ1+β (k + 1 − 2`) , ` = 1, . . . , k.

From (6.3), (6.14) and (6.15), it is seen that (5.35) becomes

(6.16)

k∑

j=1

γj

〈
U ′

j , U
′
`

〉
=

∂

∂ξ`


∑

j 6=`

F (|ξj − ξ`|)


+O

(
σ2(1−β)−µ

)

= 36
[
e−|ξ0

`−1−ξ0
` |
(
ξ̂`−1 − ξ̂`

)
+ e−|ξ0

`+1−ξ0
` |
(
ξ̂`+1 − ξ̂`

)]

+O

(
σ

[∣∣∣ξ̂`−1 − ξ̂`

∣∣∣
2

+
∣∣∣ξ̂`+1 − ξ̂`

∣∣∣
2
])

+O
(
σ2(1−β)−µ

)
,

where
〈
U ′

j , U
′
`

〉
, j, ` = 1, . . . , k, satisfy (5.36). For notational convenience, set

(6.17) m(i, j) = e−|ξ0
i −ξ0

j |, i, j = 1, . . . , k.

The system of equations (6.16) for γ = (γ1, . . . , γk) can be written as

(6.18)




k∑
j=1

γj

〈
U ′

j , U
′
1

〉

...
k∑

j=1

γj

〈
U ′

j , U
′
k

〉




= M



ξ̂1
...

ξ̂k




+O
(
σ
[∣∣∣ξ̂`−1 − ξ̂`

∣∣∣+
∣∣∣ξ̂`+1 − ξ̂`

∣∣∣
])

+O
(
σ2(1−β)−µ

)
,



250 YUNCHENG YOU

where M is the k × k matrix as follows,
(6.19)

M = 36




−m(1, 2) m(1, 2) 0 · · ·
m(1, 2) −(m(1, 2) +m(2, 3)) m(2, 3) · · ·

. . .

0 0 · · · m(j − 1, j)

0 0 · · · · · ·
· · · · · · · · · 0
· · · · · · · · · 0

−(m(j − 1, j) +m(j, j + 1)) m(j, j + 1) · · · 0
. . .

. . .

· · · · · · m(k − 1, k) −m(k − 1, k)




.

Lemma 6.1. The symmetric matrix M has an eigenvalue λ1 = 0, whose eigenspace

N1 is one-dimensional,

(6.20) N1 =
{
ξ̂ = (s, s, . . . , s) ∈ R

k | s 6= 0
}
.

On the orthogonal complement subspace

(6.21) N⊥
1 =



ξ̂ =

(
ξ̂1, . . . , ξ̂k

)
∈ R

k |
k∑

j=1

ξ̂j = 0



 ,

the matrix M is invertible and the operator norm of the inverse matrix M−1 on

N⊥
1 satisfies

(6.22)
∥∥M−1

∥∥ ≤ C̃ σ−1,

for some uniform constant C̃ > 0.

Proof. In the matrix λI−M , adding all the 2nd through kth rows to the first
row, we get

det (λI −M) = λ detM1(λ),

where M1(λ) is another λ-matrix. This shows λ1 = 0 is an eigenvalue of M . It can
be shown directly that its associated eigenspace N1 is characterized by (6.20). For

any ξ̂ ∈ N⊥
1 ,

k∑

j=1

sξ̂j = 0 so that (6.21) holds,

and vice-versa. Since M is symmetric, beside λ1 = 0, all the other k−1 eigenvalues
must be real numbers.

Let λmin be a nonzero eigenvalue of M on N⊥
1 , which has the smallest absolute

value. Then we know that

|λmin| = inf
x∈N⊥

1

‖x‖=1

{|〈Mx, x〉|}.
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For any x = col (x1, . . . , xk) ∈ R
k with ‖x‖ = 1, we have

(6.23)

1

36
〈Mx, x〉 = −m(1, 2) (x1 − x2) x1 +m(1, 2) (x1 − x2)x2

−m(2, 3) (x2 − x3)x2 +m(2, 3) (x2 − x3) x3

· · · · · ·
−m(j − 1, j) (xj−1 − xj)xj−1 +m(j − 1, j) (xj−1 − xj)xj

· · · · · ·
−m(k − 1, k) (xk−1 − xk)xk−1 +m(k − 1, k) (xk−1 − xk)xk

= −
k−1∑

j=1

m(j, j + 1) (xj − xj+1)
2 ≤ 0,

here we know that

m(j, j + 1) = e−|ξ0
j −ξ0

j+1| > 0.

Hence, by (6.4b) and (6.23), we have

(6.24)
|λmin| = −λmin = inf



36

k−1∑

j=1

m(j, j + 1) (xj − xj+1)
2

: x ∈ N⊥
1 , ‖x‖ = 1





= 36m(1, 2) = 36m(k − 1, k) = d (σ) σ1+β
(
9σ−β − 1

)
≥ Cσ,

for some constant C > 0. Thus there is a constant C̃ > 0, such that on the subspace
N⊥

1 , the norm of the inverse operator M−1 satisfies

∥∥M−1
∥∥ =

1

|λmin|
≤ C̃σ−1.

�

Note that for k = 2, the matrix M has the eigenvalues λ1 = 0 and λ2 =
−12m(1, 2). But this pattern is not true for k ≥ 3 in general. For k = 3, the three
eigenvalues are λ1 = 0 and

λ2, λ3 = m(1, 2) +m(2, 3) ±
√
m(1, 2)2 −m(1, 2)m(2, 3) +m(2, 3)2.

However, (6.22) always holds.

Theorem 6.2. Under the assumption that

(6.25) k = 9σ−β, with β <
1

2
and arbitrarily close to

1

2
,

there is a constant σ∗ > 0, such that for any given 0 < σ ≤ σ∗, there exists a

ξ = (ξ1, . . . , ξk) ∈ Λ = Λ(σ, β) such that the problem (5.16) has a unique solution

(ϕσ,ξ, γσ,ξ), where

(6.26) γσ,ξ = (γ1, . . . , γk) = 0.

Proof. According to Theorem 5.4, the unique solution (ϕσ,ξ, γσ,ξ) to the prob-
lem (5.16) satisfies Eq. (5.35), which is equivalently reduced to the system (6.18).
By (5.36), we can show that the coefficient matrix on the left-hand side of (6.18),



〈U ′

1, U
′
1〉 · · · 〈U ′

k, U
′
1〉

· · · · · ·
〈U ′

1, U
′
k〉 · · · 〈U ′

k, U
′
k〉


 =

6

5
I +A,
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is the same coefficient matrix in (3.16) and it is nonsingular. We can solve (6.18)
for γσ,ξ and get

(6.27) γσ,ξ =

(
6

5
I +A

)−1

M
{


ξ̂1
...

ξ̂k


− Ψσ

(
ξ̂
)}

,

where the mapping Ψσ is defined by
(6.28)

Ψσ

(
ξ̂
)

= −M−1

{
O

(
σ

[∣∣∣ξ̂`−1 − ξ̂`

∣∣∣
2

+
∣∣∣ξ̂`+1 − ξ̂`

∣∣∣
2
])

+O
(
σ2(1−β)−µ

)}
,

in which, of course, the two terms inside {· · · } are k-dimensional column vectors
whose `th components are as shown, respectively.

In order to show (6.26), it suffices to prove that there is a small number η > 0
such that

(6.29) Ψσ has a fixed point ξ̂ ∈ Λη (⊂ N⊥
1 ).

Now we use the argument of contraction mapping to prove it. Take a set

Z =
{
ξ̂ ∈ N⊥

1 :
∥∥∥ξ̂
∥∥∥ ≤ η = | logσ|−ν

}
,

where ν > 0 is a small positive number and let ν be fixed. For any fixed β such
that

0 < β <
1

2
, arbitrarily close to

1

2
,

a value of the parameter µ can be chosen such that

(6.30) 0 < µ < min

{
1

3
, 1 − 2β

}
,

which implies that

(6.31) µ <
1 − 2β

1 − β
so that (3.63) is satisfied: β <

1 − µ

2 − µ
.

Let µ be fixed in such a way. Then we have, by Lemma 6.1 and (6.22),

(6.32)

∥∥∥Ψσ

(
ξ̂
)∥∥∥

Rk
≤
∥∥M−1

∥∥
{ ∥∥∥∥O

(
σ

[∣∣∣ξ̂`−1 − ξ̂`

∣∣∣
2

+
∣∣∣ξ̂`+1 − ξ̂`

∣∣∣
2
])∥∥∥∥

+
∥∥∥O
(
σ2(1−β)−µ

)∥∥∥
}

≤ C∗

{∥∥∥ξ̂
∥∥∥

2

+ σ1−2β−µ

}

≤ C∗
{
| logσ|−ν + σ1−2β−µ |logσ|ν

}
| logσ|−ν .

Then there exists a constant σ1 > 0 such that, whenever 0 < σ ≤ σ1, in (6.32) we
have

(6.33) C∗
{
| logσ|−ν + σ1−2β−µ |logσ|ν

}
< 1.

Therefore, for any 0 < σ ≤ σ1, we have

(6.34) Ψσ (Z) ⊂ Z.
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Next, for any ξ̂ and ζ̂ in Z, we have

(6.35)
∥∥∥Ψσ

(
ξ̂
)
− Ψσ

(
ζ̂
)∥∥∥

Rk
≤ C∗

∥∥∥∥ col

( ∣∣∣∣
∣∣∣ξ̂`−1 − ξ̂`

∣∣∣
2

−
∣∣∣ζ̂`−1 − ζ̂`

∣∣∣
2
∣∣∣∣

+

∣∣∣∣
∣∣∣ξ̂`+1 − ξ̂`

∣∣∣
2

−
∣∣∣ζ̂`+1 − ζ̂`

∣∣∣
2
∣∣∣∣
)∥∥∥∥

Rk

≤ 2C∗
(∥∥∥ξ̂

∥∥∥+
∥∥∥ζ̂
∥∥∥
)∥∥∥∥ col

( ∣∣∣
∣∣∣ξ̂`−1 − ξ̂`

∣∣∣−
∣∣∣ζ̂`−1 − ζ̂`

∣∣∣
∣∣∣

+
∣∣∣
∣∣∣ξ̂`+1 − ξ̂`

∣∣∣−
∣∣∣ζ̂`+1 − ζ̂`

∣∣∣
∣∣∣
)∥∥∥∥

(by the triangle inequalities)

≤ 2C∗
(∥∥∥ξ̂

∥∥∥+
∥∥∥ζ̂
∥∥∥
)∥∥∥col

(∣∣∣ξ̂`−1 − ζ̂`−1

∣∣∣+ 2
∣∣∣ξ̂` − ζ̂`

∣∣∣+
∣∣∣ξ̂`+1 − ζ̂`+1

∣∣∣
)∥∥∥

≤ 8C∗
(∥∥∥ξ̂

∥∥∥+
∥∥∥ζ̂
∥∥∥
)∥∥∥ξ̂ − ζ̂

∥∥∥

≤ 16C∗ |logσ|−ν
∥∥∥ξ̂ − ζ̂

∥∥∥ .

There exists a small constant σ2 > 0 such that, whenever 0 < σ ≤ σ2, in (6.35) we
have

(6.36) 16C∗ |logσ|−ν ≤ 1

2
,

so that

(6.37)
∥∥∥Ψσ

(
ξ̂
)
− Ψσ

(
ζ̂
)∥∥∥ ≤ 1

2

∥∥∥ξ̂ − ζ̂
∥∥∥ , for any ξ̂, ζ̂ ∈ Z.

Therefore, by (6.34) and (6.37), Ψσ is a contraction mapping on the set Z, provided
that

(6.38) 0 < σ < min {σ1, σ2} .
By Brouwer’s fixed point theorem, there exists a fixed point

(6.39) ξ̂σ ∈ Z such that ξ̂σ = Ψσ

(
ξ̂σ

)
,

and consequently, this ξ̂σ yields

(6.40) γσ,ξσ
= (γ1, . . . , γk) = 0,

in (6.27), with ξσ = ξ0 + ξ̂σ . Thus, Theorem 6.2 is proved with

(6.41) σ∗ = min {σ1, σ2} .
The proof is completed. �

Conclusion (The completion of the proof of Theorem 2.1). Let

(6.42) σ0 = min {σ̂, σ̌, σ∗} ,
where σ̂ ≤ 1

2 , σ̌, and σ∗ are determined in Theorem 3.6, Theorem 5.2, and Theorem
6.2, respectively. For any 0 < σ ≤ σ0, all the results shown in Sections 3 through 6
are valid. Therefore, there is a multi-spike solution (u, v) to the Gierer-Meinhardt
system (2.3), in which

(6.43) u = W + ϕσ,ξσ
and V = T

[
u2
]
,
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whereW (x) is given by (1.17), ϕσ,ξσ
∈ L∞

µ is the solution of problem (5.16) together
with γσ,ξσ

= 0. Hence the property (2.8) is valid. The property (2.9) for the v
component is valid because

v = T
[
u2
]

= T
[
W 2
]
+ 2T [Wϕσ,ξσ

] + T
[
ϕ2

σ,ξσ

]

= V (x) + 2T [Wϕσ,ξσ
] + T

[
ϕ2

σ,ξσ

]

and by Lemmas 4.1 and 4.2, (5.6) and (5.7), with a little extension, we have

|v (ξj + x) − 1| ≤ |V (ξj + x) − V (ξj)|
+ |V (ξj) − 1| + 2 |T [Wϕσ,ξσ

]| +
∣∣T
[
ϕ2

σ,ξσ

]∣∣

= |V (ξj + x) − V (ξj)| + |V (ξj) − 1| +O
(
σβ
)
‖ϕσ,ξσ

‖µ

+O(1) ‖ϕσ,ξσ
‖2

µ → 0

as σ → 0, uniformly on any compact set of x. Thus Theorem 2.1 is proved. �
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Appendix A

We can solve the nonlinear ODE problem:

u′′ − u+ u2 = 0 in R,

0 < u(x) → 0, as |x| → ∞,

to get the unique explicit solution

u(x) = 6 sech2
(x

2

)
=

6ex

(1 + ex)2
.

By multiplying u′ on both sides of the equation and integrating it, we have

(u′)
2

= u2 − 2

3
u3,

so that

u′ = −u
√

1 − 2

3
u.

The sign is chosen according to the condition 0 < u(x) → 0, as |x| → ∞. Let
y = logu. Then ∫

dy√
1 − 2

3 e
y

= −x,

where we do not involve an arbitrary constant also because of the asymptotical

boundary condition. Another substitution z =
√

1 − 2
3 e

y, dz =
−1/3 eydy√

1 − 2
3 e

y
, ren-

ders the above equality to
∫ −2dz

1 − z2
= (−1)

∫ (
1

1 − z
+

1

1 + z

)
dz = −x,

or

x = log
1 + z

1− z
, i.e., z =

ex − 1

ex + 1
=

√
1 − 2

3
u.

Then solve this algebraic equation for u, finally we obtain the unique solution

u(x) =
6ex

(1 + ex)
2 , x ∈ R.

Appendix B

In this Appendix we compute the integrals in Lemma 1.1. First,

∫

R

U2 (x) dx =

∫

R

36e−2|x|

(
1 + e−|x|

)4 dx = 72

∫ 0

−∞

e2x

(1 + ex)
4 dx (let y = 1 + ex)

= 72

∫ 2

1

y − 1

y4
dy = 72

{−1

2y2
+

1

3y3

}∣∣∣∣
2

1

= 72

[
1

2

(
1 − 1

4

)
+

1

3

(
1

8
− 1

)]

= 6.
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Next,

∫

R

U3 (x) dx =

∫

R

63e−3|x|

(
1 + e−|x|

)6 dx = 432

∫ 0

−∞

e3x

(1 + ex)
6 dx (let y = 1 + ex)

= 432

∫ 2

1

(y − 1)2

y6
dy = 432

∫ 2

1

[
1

y4
− 2

y5
+

1

y6

]
dy

= 432

[
− 1

3y3
+

1

2y4
− 1

5y5

]∣∣∣∣
2

1

= 432

(
7

24
− 15

32
+

31

160

)
=

36

5
.

Now we compute
∫

R
|U ′(x)|2 dx.

∫

R

|U ′(x)|2 dx = 72

∫ 0

−∞

e2x (1 − ex)
2

(1 + ex)6
dx (by substitution y = 1 + ex)

= 72

∫ 2

1

(y − 1)(y − 2)2

y6
dy = 72

∫ 2

1

1

y6

(
y3 − 5y2 + 8y − 4

)
dy

= 72

∫ 2

1

(
y−3 − 5y−4 + 8y−5 − 4y−6

)
dy

= 72

[
−1

2
y−2 +

5

3
y−3 − 2y−4 +

4

5
y−5

]∣∣∣∣
2

1

= 72

(
3

8
− 35

24
+

15

8
− 31

40

)
=

6

5
.

Then we have
∫

R

|x|U (x) dx = 2

∫ ∞

0

xU (x) dx = 12

∫ ∞

0

xex

(1 + ex)
2 dx

= 12

[ −x
1 + ex

∣∣∣∣
∞

0

+

∫ ∞

0

dx

1 + ex

]
= 12

∫ ∞

0

e−x

1 + e−x
dx

= −12 log
(
1 + e−x

)∣∣∞
0

= 12 log 2.

Next,

∫

R

|x|U2 (x) dx = 72

∫ ∞

0

xe−2x

(1 + e−x)
4 dx = 72

∫ ∞

0

xe2x

(1 + ex)
4 dx

= 72

{
−1

3

xex

(1 + ex)3

∣∣∣∣∣

∞

0

+
1

3

∫ ∞

0

(1 + x)ex

(1 + ex)3
dx

}

= 72

{
−1

6

1 + x

(1 + ex)2

∣∣∣∣∣

∞

0

+
1

6

∫ ∞

0

dx

(1 + ex)2

}

= 12

{
1

4
+

∫ ∞

0

e−2x

(1 + e−x)
2 dx

}
= 3 + 12

{
e−x

1 + e−x

∣∣∣∣
∞

0

+

∫ ∞

0

e−x

1 + e−x
dx

}

= 3 + 12

{
− 1

2
− log

(
1 + e−x

)∣∣∣∣
∞

0

}

= 3 − 6 + 12 log 2 = 12 log 2 − 3.
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Moreover, we have

∫

R

e−|x| U2 (x) dx = 2

∫ ∞

0

e−|x| U2 (x) dx = 72

∫ ∞

0

e−xe2x

(1 + ex)
4 dx

= 72

∫ ∞

0

ex

(1 + ex)
4 dx = −72

3

1

(1 + ex)
3

∣∣∣∣∣

∞

0

= 3.

Finally,

∫

R

e−x U2 (x) dx =

∫ ∞

−∞

36
e−xe2x

(1 + ex)
4 dx = −36

3

1

(1 + ex)
3

∣∣∣∣∣

∞

−∞

= 12.

Appendix C

Here we give the detailed proof of Lemma 1.2. The first statement in (1.7),

pr (x) ≤ e−|r|, x ∈ R,

simply follows from the triangle inequality. Now we show the second statement in
(1.7) by calculation for both cases r ≥ 0 and r < 0. For r ≥ 0, by the explicit
expression of pr (x),

∫

R

e−|x| e−|x+r| dx =

∫ −r

−∞

e2x+r dx+

∫ 0

−r

e−r dx+

∫ ∞

0

e−(2x+r) dx

=
1

2
e−r + re−r +

1

2
e−r = (1 + |r|) e−|r|.

For r < 0,

∫

R

e−|x| e−|x+r| dx =

∫ 0

−∞

e2x+r dx+

∫ −r

0

er dx+

∫ ∞

−r

e−(2x+r) dx

=
1

2
er − rer +

1

2
er = (1 + |r|) e−|r|.

Therefore, (1.7) holds.
To save space, we show (1.8), (1.9), and (1.10) only for the case r ≥ 0. For the

case r < 0, the verification is similar and is omitted. Since for r ≥ 0,

∫

R

|x| e−|x| e−|x+r| dx =

∫ −r

−∞

−xe2x+r +

∫ 0

−r

−xe−r +

∫ ∞

0

xe−(2x+r)

=

(
−x

2
e2x+r +

1

4
e2x+r

)∣∣∣∣
−r

−∞

− x2

2
e−r

∣∣∣∣
0

−r

−
(
x

2
e−(2x+r) +

1

4
e−(2x+r)

)∣∣∣∣
∞

0

= e−r

(
r

2
+

1

4

)
+
r2

2
e−r +

1

4
e−r =

1

2
e−|r|

(
1 + |r| + r2

)
,

so (1.8) is valid.
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Next we show (1.9). For r ≥ 0, we have

∫

R

|x|2 e−2|x| e−2|x+r| dx =

∫ −r

−∞

x2 e2xe2x+2r +

∫ 0

−r

x2 e−2r dx

+

∫ ∞

0

x2 e−2x e−2x−2r dx

= e2r

(
x2

4
e4x − x

8
e4x +

1

32
e4x

)∣∣∣∣
−r

−∞

+
x3

3
e−2r

∣∣∣∣
0

−r

+e−2r

(
−x

2

4
e−4x − x

8
e−4x − 1

32
e−4x

)∣∣∣∣
∞

0

= e−2r

{(
r2

4
+

|r|
8

+
1

32

)
+

|r|3
3

+
1

32

}

= e−2|r|

(
1

16
+

|r|
8

+
r2

4
+

|r|3
3

)
.

Therefore, (1.9) is valid.
Finally we show (1.10). For r ≥ 0, we have

∫

R

|x| e−|x| e−2|x+r| dx ≤ e−|r|

∫

R

|x| e−|x+r| dx (by (1.7))

= e−|r|

{∫ −r

−∞

−xex+r +

∫ 0

−r

−xe−(x+r) +

∫ ∞

0

xe−(x+r)

}

= e−|r|

{(
−xex+r + ex+r

)∣∣−r

−∞
+
(
xe−(x+r) + e−(x+r)

)∣∣∣
0

−r

+
(
−xe−(x+r) − e−(x+r)

)∣∣∣
∞

0

= e−|r|
(
r + 1 + r + e−r − 1 + e−r

)

= e−|r|
(
2r + 2e−r

)
= 2e−|r|

(
|r| + e−|r|

)
.

Therefore, (1.10) is valid. The proof is completed.
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