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Abstract. We focus on the mathematical analysis of existence and nonlinear
exponential stability (linear exponential instability, respectively) of steady-

state solutions of the scalar nonlocal equation

∂u

∂t
+u = (α−γu)

Z
R

K(x−y)H(u(y, t)−θ)dy+(β−δu)

Z
R

K(x−y)H(u(y, t)−Θ)dy,

and the nonlinear system of integral-differential equations

∂u

∂t
+ u + w = (α − γu)

Z
R

K(x − y)H(u(y, t) − θ)dy

+ (β − δu)

Z
R

K(x − y)H(u(y, t) − Θ)dy,

∂w

∂t
= ε(u − τw).

The steady-states may cross the threshold θ or Θ only. More interesting

cases are that they may cross both thresholds θ and Θ. Stable waves rep-

resent attractors of the dynamical system. We also investigate bifurcations
of solutions of these equations. The kernel is either an even probability func-

tion with exponential decay at infinity or a Mexican hat type function, e.g.

K(x) = A exp(−a|x|)−B exp(−b|x|) and K(x) = A exp(−ax2)−B exp(−bx2),
where A > B > 0 and a > b > 0 are constants. The firing rate H is the Heav-

iside step function.
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1. Introduction

In this paper, we are concerned with the following nonlinear system of integral-
differential equations arising from nonlocal neuronal networks

∂u

∂t
+ u+ w = (α− γu)

∫
R
K(x− y)H(u(y, t)− θ)dy

+ (β − δu)
∫

R
K(x− y)H(u(y, t)−Θ)dy, u(x, 0) = u0(x),(1)

∂w

∂t
= ε(u− τw), w(x, 0) = w0(x).(2)

We focus on the existence and nonlinear exponential stability (linear exponential
instability, respectively) of steady-state solutions of the system. We also investigate
bifurcations of the solutions. To achieve our main goal, we use ideas in nonlinear
analysis.

In this system, u(x, t) represents the membrane potential of a neuron at position
x and time t, while w represents the leaking current processes on a slow time scale.
The system represents a one-dimensional chain of neurons with nonlocal synaptic
coupling, with α−γu and β−δu being the coupling strength. The constants θ and Θ
are the thresholds for synaptic coupling to be activated. The integral terms on the
right-hand side of equation (1) account for excitatory connections between the cell
at x and other neurons in the network. See [3]-[6] for more biological backgrounds.

To derive the nonlocal model equation, first of all, we consider one-dimensional
chain of discrete array of neurons. Each neuron may represent a relaxation oscilla-
tor. Moreover, every neuron receives strong contributions of membrane potentials
from some neurons and weak contributions from other neurons: [α−γu(x, t)]K(x−
yj)H(u(yj , t) − θ)4yj , where K(x − yj) (representing a synapse weight) can be
viewed as the probability that there is a synaptic connection between the nerve cell
at yj and the cell at x; H(u(yj , t)− θ) = 1 if u(yj , t) > θ and H(u(yj , t)− θ) = 0 if
u(yj , t) < θ; α− γu(x, t) denotes synaptic coupling strength; and 4yj = yj − yj−1.
Note that synapses are the principal sites where neurons communicate with each
other. Most neurons communicate with each other at chemical synapses in which
messages are transmitted by the release of chemicals called neurotransmitters from
the presynaptic cells and detected by receptors on the postsynaptic cells. Now we
find that this coupling is indeed of chemical synapses type. Summing up the con-
tributions of membrane potentials from all other neurons to a single neuron would
yield the Riemann sum: [α− γu(x, t)]

∑N
j=1K(x− yj)H(u(yj , t)− θ)4yj , where N

denotes the total number of neurons.
Secondly, note that there are about a trillion (1012) neurons and approximately

a zillion (1015) synapses and a single neuron may receive inputs from about 104

synapses. Therefore the number of neurons and their tree-like dendritic structure
in even a small piece of cortex is so large that a natural approach to take in mod-
eling layers of cortex is to consider a continuum of cells. That is to say, a cortical
layer of nerve tissue can be regarded as a neuronal field that supports and prop-
agates interacting patterns of excitation. Motivated by this fact, if we consider
an ideal situation, namely, along the one-dimensional neural field, the neurons are
continuously distributed (so that N → +∞), then we obtain a nonlocal term:
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(α− γu)
∫

R K(x− y)H(u(y, t)− θ)dy. Thus, the equation (1) is of great interest in
nonlocal neuronal networks.

We consider a different characterization of the gain function in which there
is a low persistent activity rate and a high saturating rate. This case differs from
previous works and myself, because the system has two firing rates and two nonlocal
terms. Mathematical analysis of this problem is more challenging than before.

Suppose that the constants α > 0, β > 0, γ ≥ 0, δ ≥ 0, 0 < ε � 1, θ > 0,
Θ > 0 and τ > 0 satisfy the following assumptions

0 < θ <
α

1 + γ
< Θ <

α+ β

1 + γ + δ
,

and

0 < θ <
ατ

1 + (1 + γ)τ
< Θ <

(α+ β)τ
1 + (1 + γ + δ)τ

.

The kernel function describes the network architecture and it is a sufficiently regular
even probability measure with exponential decay at infinity. Let H(x) = 0 for all
x < 0 and H(x) = 1 for all x > 0.

We display several well-known results of (1)-(2). The main results are stated
and established in the next three sections. Consider the scalar integral-differential
equation

ut + u = (α− βu)
∫

R
K(x− y)H(u(y, t)− θ)dy,(3)

with 0 < θ < α
1+β . Traveling wave fronts (namely, u(x, t) = U(z), Uz 6= 0, where

z = x + νt and ν denotes wave-speed) are probably one of the most interesting
solutions of (3). Waves with positive or negative wave-speed satisfy

νUz + U = (α− βU)
∫

R
K(z − y)H(U(y)− θ)dy.(4)

Theorem A. Let β = 0. For each fixed kernel function satisfying 0 ≤ K(x) ≤
C exp(−ρ|x|), K(−x) = K(x) for all x ∈ R and

∫
R K(x)dx = 1, where C > 0

and ρ > 0 are constants, there are two wave fronts, one increasing and the other
decreasing, with one of the wave-speeds ±ν0:

Uincreasing(z) = α

∫ z

−∞
K(x)dx− α

∫ z

−∞
exp

(
x− z

ν0

)
K(x)dx,

α

2
− θ = α

∫ 0

−∞
exp

(
+
x

ν0

)
K(x)dx, z = x+ ν0t,

Udecreasing(z) = α

∫ ∞

z

K(x)dx− α

∫ ∞

z

exp
(
z − x

ν0

)
K(x)dx,

α

2
− θ = α

∫ ∞

0

exp
(
− x

ν0

)
K(x)dx, z = x− ν0t,
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if 0 < θ < α
2 , and very similarly,

Udecreasing(z) = α

∫ ∞

z

K(x)dx+ α

∫ z

−∞
exp

(
x− z

ν0

)
K(x)dx,

θ − α

2
= α

∫ 0

−∞
exp

(
+
x

ν0

)
K(x)dx, z = x+ ν0t,

Uincreasing(z) = α

∫ z

−∞
K(x)dx+ α

∫ ∞

z

exp
(
z − x

ν0

)
K(x)dx,

θ − α

2
= α

∫ ∞

0

exp
(
− x

ν0

)
K(x)dx, z = x− ν0t,

if θ > α
2 . There are two steady-state solutions

Uincreasing(z) = α

∫ z

−∞
K(x)dx and Udecreasing(z) = α

∫ ∞

z

K(x)dx,

if θ = α
2 . Overall, there hold U(0) = θ. Either Uz ≥ 0 on R and

lim
z→−∞

(U(z), Uz(z)) = (0, 0), lim
z→+∞

(U(z), Uz(z)) = (α, 0),

or Uz ≤ 0 on R and

lim
z→−∞

(U(z), Uz(z)) = (α, 0), lim
z→+∞

(U(z), Uz(z)) = (0, 0).

The wave-speed is a well defined function of θ
α , such that

lim
θ
α→0+

ν

(
θ

α

)
= +∞, lim

θ
α→

1
2

ν

(
θ

α

)
= 0+, lim

θ
α→1−

ν

(
θ

α

)
= +∞.

Moreover

lim
θ
α→0+

Uincreasing

(
z,
θ

α

)
= αH

(
θ − α

2

)
,

lim
θ
α→

1
2

Uincreasing

(
z,
θ

α

)
= α

∫ z

−∞
K(x)dx,

lim
θ
α→1−

Uincreasing

(
z,
θ

α

)
= αH

(
θ − α

2

)
,

and

lim
θ
α→0+

Udecreasing

(
z,
θ

α

)
= αH

(
θ − α

2

)
,

lim
θ
α→

1
2

Udecreasing

(
z,
θ

α

)
= α

∫ ∞

z

K(x)dx,

lim
θ
α→1−

Udecreasing

(
z,
θ

α

)
= αH

(
θ − α

2

)
.

Proof. See [13]-[15] for its proof. #
Note that when ε = 0, the second variable w in system (1)-(2) becomes a

constant. The equation

νUz + U +W = (α− βU)
∫

R
K(z − y)H(U(y)− θ)dy,
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has a decreasing (increasing, respectively) traveling wave solution U , such that
U(0) = θ, if the counterpart equation (4) has an increasing (decreasing, respec-
tively) solution for 0 < θ < α

2 (θ > α
2 > 0, respectively), where ν = ±ν0 and

W = α− 2θ.
The stability of each of these monotone traveling waves is determined com-

pletely by the essential spectrum and eigenvalues of an associate linear differential
operator L, see [13]. Furthermore, the eigenvalues of the operator coincide with the
zeros of a complex analytic function E(λ), which is called the eigenvalue function.
The eigenvalue function is defined by

E+(λ) = 1−
∫ 0

−∞
exp

(
+
λ+ 1
ν0

x

)
K(x)dx/

∫ 0

−∞
exp

(
+
x

ν0

)
K(x)dx,

for traveling waves with a positive speed +ν0, and by

E−(λ) = 1−
∫ ∞

0

exp
(
−λ+ 1

ν0
x

)
K(x)dx/

∫ ∞

0

exp
(
− x

ν0

)
K(x)dx,

for waves with a negative speed −ν0. Making a change of variable x → −x, we
find E+(λ) = E−(λ). Rigorous mathematical analysis demonstrates that all of these
monotone traveling wave solutions are stable relative to (3), see [13].

When ε > 0, under certain conditions on the parameters α, γ and θ, the system
(1)-(2) can support both slow and fast homoclinic orbits as well as heteroclinic orbit.

Theorem B. Suppose that 0 < 2θ < α, β = 0, 0 < αγ
1+γ < θ and 0 <

ε � 1. Then, there exist a unique slow homoclinic orbit (Uslow(ε, ·),Wslow(ε, ·))
corresponding to a unique slow wave-speed νslow(ε), and a unique fast homoclinic
orbit (Ufast(ε, ·),Wfast(ε, ·)) corresponding to a unique fast wave-speed νfast(ε). The
slow wave-speed νslow(ε) = κ1(ε)ε and the fast wave-speed νfast(ε) = ν0 − κ2(ε)ε,
where κi(ε) > 0 are constants such that κi(ε) > 0 for all 0 ≤ ε � 1. Both
homoclinic orbits satisfy the traveling wave equations

νUz + U +W = α

∫
R
K(z − y)H(U(y)− θ)dy,(5)

νWz = ε(U − γW ),(6)

and the homogeneous Dirichlet boundary conditions

lim
z→±∞

(U(ε, z),W (ε, z)) = lim
z→±∞

(Uz(ε, z),Wz(ε, z)) = (0, 0).

Furthermore, the slow orbit is unstable and the fast orbit is stable, in the sense of
L∞(R)× L∞(R)-norm. Suppose that 0 < 2θ < α, αγ

1+γ > θ and 0 < ε � 1. Then,
there exists a unique heteroclinic orbit (Uhetero(ε, ·),Whetero(ε, ·)) corresponding to a
unique wave-speed νhetero(ε) = ν0− κ(ε)ε. The heteroclinic orbit satisfies the above
traveling wave equations (5)-(6) and the Dirichlet boundary conditions

lim
z→−∞

(U(ε, z),W (ε, z)) = (0, 0), lim
z→+∞

(U(ε, z),W (ε, z)) =
α

1 + γ
(γ, 1),

lim
z→±∞

(Uz(ε, z),Wz(ε, z)) = (0, 0).

The heteroclinic orbit is also stable relative to system (1)-(2).
Proof. See [8], [13], [15] for its proof. #
Remark 1. The slow homoclinic orbit being unstable and the fast homoclinic

orbit being stable is consistent with the results of the nonlinear singularly perturbed
system of Fitzhugh-Nagumo equations ut = uxx+u(1−u)(u−a)−w, wt = ε(u−γw),
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where 0 < a < 1
2 , γ > 0 and 0 < ε� 1 (this is a single cell cable model), see [10]-

[11].
Consider the scalar integral-differential equation

∂u

∂t
+ u = (α− γu)

∫
R
K(x− y)H(u(y, t)− θ)dy

+(β − δu)
∫

R
K(x− y)H(u(y, t)−Θ)dy.(7)

Traveling wave fronts (namely, u(x, t) = U(z), Uz 6= 0, where z = x + νt and ν
denotes wave-speed) are probably one of the most interesting solutions of (3) and
they satisfy

νUz + U = (α− γU)
∫

R
K(z − y)H(U(y)− θ)dy

+(β − δU)
∫

R
K(z − y)H(U(y)−Θ)dy.(8)

Theorem C. Suppose that 2θ < α < Θ < α+ β
2 and γ = δ = 0. For each fixed

kernel function satisfying 0 ≤ K(x) ≤ C exp(−ρ|x|), K(−x) = K(x) for all x ∈ R
and

∫
R K(x)dx = 1, where C > 0 and ρ > 0 are constants, there are exactly three

monotonically increasing, exponentially stable traveling wave fronts to equation (4).
The first traveling wave front is given by

U1(z) = α

∫ z

−∞
K(x)dx− α

∫ z

−∞
exp

(
x− z

ν1

)
K(x)dx,

d

dz
U1(z) =

α

ν1

∫ z

−∞
exp

(
x− z

ν1

)
K(x)dx,

lim
z→−∞

U1(z) = 0, lim
z→+∞

U1(z) = α, lim
z→±∞

d

dz
U1(z) = 0,

and the first wave-speed ν = ν1 > 0 is determined by

α

2
− α

∫ 0

−∞
exp

(
x

ν1

)
K(x)dx = θ.

The second front is

U2(z) = α+ β

∫ z

−∞
K(x)dx− β

∫ z

−∞
exp

(
x− z

ν2

)
K(x)dx,

d

dz
U2(z) =

β

ν2

∫ z

−∞
exp

(
x− z

ν2

)
K(x)dx,

lim
z→−∞

U2(z) = α, lim
z→+∞

U2(z) = α+ β, lim
z→±∞

d

dz
U2(z) = 0,

and the second wave-speed ν = ν2 is determined by

α+
β

2
− β

∫ 0

−∞
exp

(
x

ν2

)
K(x)dx = Θ.
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The third front is

U3(z) = α

∫ z

−∞
K(x)dx+ β

∫ z−Z

−∞
K(x)dx

−
∫ z

−∞
exp

(
x− z

ν3

)
[αK(x) + βK(x− Z)]dx,

d

dz
U3(z) =

1
ν3

∫ z

−∞
exp

(
x− z

ν3

)
[αK(x) + βK(x− Z)]dx,

lim
z→−∞

U3(z) = 0, lim
z→+∞

U3(z) = α+ β, lim
z→±∞

d

dz
U3(z) = 0,

and the third wave-speed ν = ν3 together with the crossing Z are determined by

α

2
+ β

∫ −Z

−∞
K(x)dx−

∫ 0

−∞
exp

(
x

ν3

)
[αK(x) + βK(x− Z)]dx = θ,

and

α

∫ Z

−∞
K(x)dx+

β

2
−
∫ 0

−∞
exp

(
x

ν3

)
[αK(x+ Z) + βK(x)]dx = Θ.

Proof. See [15] for its proof. #
Note that when ε = 0, the second variable w in system (1)-(2) becomes a

constant. The equation

νUz + U +W = (α− γU)
∫

R
K(z − y)H(U(y)− θ)dy

+(β − δU)
∫

R
K(z − y)H(U(y)−Θ)dy,

has three decreasing traveling wave solutions, such that U1(0) = θ, U2(0) = Θ,
U3(0) = θ and U3(S) = Θ, for some unique S < 0.

The spectral stability of each of these monotone traveling waves is determined
completely by the essential spectrum and eigenvalues of an associate linear differen-
tial operator L, see [13]-[15]. Furthermore, the eigenvalues of the operator coincide
with the zeros of a complex analytic function E(λ), called the eigenvalue function.
Rigorous mathematical analysis demonstrates that all of these monotone traveling
wave solutions are spectrally stable relative to (3), see [13]-[15].

When ε > 0, under certain conditions on the parameters α, β, γ, δ, ε, θ, Θ and
τ , the system (1)-(2) can support both slow and fast homoclinic orbits as well as
heteroclinic orbit.

Theorem D. (I) There are three exponentially stable, homoclinic orbits. They
satisfy the boundary conditions

lim
z→±∞

(U1(ε, z),W1(ε, z)) = (0, 0),

lim
z→±∞

(U2(ε, z),W2(ε, z)) =
(

αγ

1 + γ
,

α

1 + γ

)
,

lim
z→±∞

(U2(ε, z),W2(ε, z)) = (0, 0).

Furthermore, (U1,W1) crosses the threshold θ twice but does not cross Θ, (U2,W2)
crosses the threshold Θ twice but does not cross θ, and (U3,W3) crosses the threshold
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θ twice and the threshold Θ twice. (II) There are precisely three exponentially stable,
heteroclinic orbits. They satisfy the following boundary conditions

lim
z→−∞

(U1(ε, z),W1(ε, z)) = (0, 0),

lim
z→+∞

(U1(ε, z),W1(ε, z)) =
(

αγ

1 + γ
,

α

1 + γ

)
,

lim
z→−∞

(U2(ε, z),W2(ε, z)) =
(

αγ

1 + γ
,

α

1 + γ

)
,

lim
z→+∞

(U2(ε, z),W2(ε, z)) =
(
αγ + βγ

1 + γ
,
α+ β

1 + γ

)
,

lim
z→−∞

(U3(ε, z),W3(ε, z)) = (0, 0),

lim
z→+∞

(U3(ε, z),W3(ε, z)) =
(
αγ + βγ

1 + γ
,
α+ β

1 + γ

)
.

Furthermore, the second component of each of the heteroclinic orbits is strictly in-
creasing on R. (U1,W1) crosses the threshold θ once but does not cross Θ, (U2,W2)
crosses the threshold Θ once but does not cross θ and (U3,W3) crosses the threshold
θ once and the threshold Θ once.

Proof. See [15] for its proof. #
Remark. There are three exponentially unstable, homoclinic orbits with the

same boundary conditions and crossings as above.

2. steady-state solutions

Suppose that either the kernel function is nonnegative, even, at least piecewise
smooth, such that∫

R
K(x)dx = 1, K ′(x) ≤ 0 in R+, K(x) ≤ C exp(−ρ|x|) in R,

for some positive constants C and ρ; or the kernel is a Mexican hat type func-
tion, such as K(x) = A exp(−a|x|) − B exp(−b|x|) and K(x) = A exp(−ax2) −
B exp(−bx2), where A > B > 0 and a > b > 0 are constants, such that

∫
R K(x)dx =

1, K ′(x) < 0 on (0,M) and K ′(x) > 0 on (M,+∞), for some constant M > 0. In
neuroscience, lateral inhibition (i.e. short distance connection represent excitatory
connections and long range connections represent inhibitory connections) is of great
interests. The corresponding kernel functions look like Mexican hats.

We focus on the analysis with nonnegative kernel functions. The steady-states
are always positive if the kernel is positive and some of them are monotone. But for
Mexican hat type kernels, the steady-states are not necessarily positive or mono-
tone.

2.1. Existence and spectral instability: the case ε = 0. We study non-
trivial steady-states of the scalar equation (8) in this subsection.

Theorem 1. (I) When (2+γ)θ < α, there exists a unique positive steady-state
U , such that U(0) = U(X∗) = θ, U < θ on (−∞, 0)

⋃
(X∗,+∞) and θ < U < Θ on

(0, X∗), for some X∗ > 0. (II) When (2 + γ)θ = α, there are exactly two positive,
monotone steady-states U , such that U(0) = θ. (III) When (2 + γ)θ > α, there
exists a unique positive steady-state U , such that U(0) = U(X∗) = θ, θ < U < Θ
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on (−∞, 0)
⋃

(X∗,+∞) and U < θ on (0, X∗) for some X∗ > 0. (IV) The steady-
states in the first and the third cases are spectrally unstable relative to equation
(8).

Proof. The steady-state solutions should satisfy the equation

U(x) = (α− γU)
∫

R
K(x− y)H(U(y)− θ)dy.

(I) Let (2 + γ)θ < α. By using mean value theorem, it is straightforward to show
that there exists a unique number X∗ > 0, such that

α

∫ X∗

0

K(x)dx/

[
1 + γ

∫ X∗

0

K(x)dx

]
= θ.

The steady-state solution is given by

U(x) = α

∫ X∗

0

K(x− y)dy/

[
1 + γ

∫ X∗

0

K(x− y)dy

]
.

Furthermore K ′ ≤ 0 on R+ implies that U ′ ≥ 0 on (−∞, 1
2X∗) and U ′ ≤ 0 on

( 1
2X∗,+∞), thus U(0) = U(X∗) = θ, U < θ on (−∞, 0)

⋃
(X∗,+∞) and θ < U < Θ

on (0, X∗). Therefore, U is the desired steady-state. Additionally, there hold

U ′(x) = α[K(x)−K(x−X∗)]/

[
1 + γ

∫ X∗

0

K(x− y)dy

]2

,

U ′(0) = α[K(0)−K(X∗)]/

[
1 + γ

∫ X∗

0

K(x)dx

]2

,

U ′(X∗) = α[K(X∗)−K(0)]/

[
1 + γ

∫ X∗

0

K(x)dx

]2

,

|U ′(0)| = |U ′(X∗)| =
1
α

(α− γθ)2[K(0)−K(X∗)].

The steady-state is symmetric about the x = X∗
2 -axis, because

U

(
X∗

2
− x

)
= α

∫ X∗

0

K

(
X∗

2
− x− y

)
dy/

[
1 + γ

∫ X∗

0

K

(
X∗

2
− x− y

)
dy

]

= α

∫ X∗

0

K

(
X∗

2
+ x− ζ

)
dζ/

[
1 + γ

∫ X∗

0

K

(
X∗

2
+ x− ζ

)
dζ

]

= U

(
x+

X∗

2

)
,

where we have made a change of variable ζ = X∗− y and also applied the property
K(−x) = K(x) for all x. The uniqueness of the steady-state (up to translation
invariance) is obviously true. Due to the assumption |K(x)| ≤ C exp(−ρ|x|) on R,
the steady-state converges to zero exponentially fast as z → ±∞.
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(II) Let (2 + γ)θ = α, then

Uincreasing(x) = α

∫ x

−∞
K(ξ)dξ/

[
1 + γ

∫ x

−∞
K(ξ)dξ

]
,

Udecreasing(x) = α

∫ ∞

x

K(ξ)dξ/
[
1 + γ

∫ ∞

x

K(ξ)dξ
]
,

are the steady-states of (8). Moreover

U ′increasing(x) = +αK(x)/
[
1 + γ

∫ x

−∞
K(ξ)dξ

]2
,

U ′decreasing(x) = −αK(x)/
[
1 + γ

∫ ∞

x

K(ξ)dξ
]2
,

|U ′increasing(0)| = |U ′decreasing(0)| = 4
α
K(0)θ2.

(III) Let (2 + γ)θ > α > (1 + γ)θ, then very similar to the case (2 + γ)θ < α, there
exists a positive number X∗ satisfying[

α− α

∫ X∗

0

K(x)dx

]
/

[
1 + γ − γ

∫ X∗

0

K(x)dx

]
= θ.

There is a unique nontrivial steady-state

U(x) =

[
α− α

∫ X∗

0

K(x− y)dy

]
/

[
1 + γ − γ

∫ X∗

0

K(x− y)dy

]
.

Moreover

U ′(x) = α[K(x−X∗)−K(x)]/

[
1 + γ − γ

∫ X∗

0

K(x− y)dy

]2

,

U ′(0) = α[K(X∗)−K(0)]/

[
1 + γ − γ

∫ X∗

0

K(x)dx

]2

,

U ′(X∗) = α[K(0)−K(X∗)]/

[
1 + γ − γ

∫ X∗

0

K(x)dx

]2

,

|U ′(0)| = |U ′(X∗)| = 1
α

(α− γθ)2[K(0)−K(X∗)].

(IV) Let (2+γ)θ 6= α so that either X∗ or X∗ is well-defined. The case (2+γ)θ = α
can be investigated similarly. The linearization of (8) about one of the steady-states
U is

Pt(x, t) +
[
1 + γ

∫
R
K(x− y)H(U(y)− θ)dy

]
P (x, t)

=
α− γU(x)
|U ′(0)|

K(x)P (0, t) +
α− γU(x)
|U ′(X)|

K(x−X)P (X, t),

where X = X∗ or X = X∗, and the corresponding eigenvalue problem is[
λ+ 1 + γ

∫
R
K(x− y)H(U(y)− θ)dy

]
ψ(x)

=
α− γU(x)
|U ′(0)|

K(x)ψ(0) +
α− γU(x)
|U ′(X)|

K(x−X)ψ(X).
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Define the open, unbounded region Ω = {λ ∈ C: Reλ > −1}. We will study
the eigenvalue problem in Ω. If ψ(0) = ψ(X) = 0, then ψ ≡ 0. If ψ(0) = 0 or
ψ(X) = 0, then simple analysis also shows that ψ ≡ 0. Without loss of generality,
we assume that ψ(0) 6= 0 and ψ(X) 6= 0. Now we define the linear operator
L : C0(R)

⋂
L∞(R) → C0(R)

⋂
L∞(R) by

Lψ = −
[
1 + γ

∫
R
K(x− y)H(U(y)− θ)dy

]
ψ

+
α− γU(x)
|U ′(0)|

K(x)ψ(0) +
α− γU(x)
|U ′(X)|

K(x−X)ψ(X).

The essential spectrum of L consists of those numbers satisfying Reλ = −1. Due
to translation invariance of the steady-states, λ = 0 is an eigenvalue of L and U ′

is the corresponding eigenfunction. To find other eigenvalues, setting x = 0 and
x = X in the eigenvalue problems, we get(

λ+
α

α− γθ
− α− γθ

|U ′(0)|
K(0)

)
ψ(0) =

α− γθ

|U ′(X)|
K(X)ψ(X),

and (
λ+

α

α− γθ
− α− γθ

|U ′(X)|
K(0)

)
ψ(X) =

α− γθ

|U ′(0)|
K(X)ψ(0).

Therefore [
λ+

α

α− γθ
− α− γθ

|U ′(0)|
K(0)

] [
λ+

α

α− γθ
− α− γθ

|U ′(X)|
K(0)

]
=

[(α− γθ)K(X)]2

|U ′(0)||U ′(X)|
.

Note that |U ′(0)| = |U ′(X)| if (2 + γ)θ 6= α. Solving this algebraic equation, we
find that

λ1 = (α− γθ)
K(0)−K(X)

|U ′(0)|
− α

α− γθ
= 0,

and

λ2 = (α− γθ)
K(0) +K(X)

|U ′(0)|
− α

α− γθ
> 0.

Therefore, any of the steady-states is spectrally unstable.
Suppose that (2 + γ)θ = α. Then by similar analysis, we can show that there

exists no nonzero eigenvalue of the associated linear operator L in the right half
plane {λ: Reλ > −1}, and the number λ = 0 is a simple eigenvalue of L. Thus the
monotone steady-states are spectrally stable relative to (8). #

Remark . If (2 + γ)θ 6= α, then there are two eigenvalues, counting algebraic
multiplicities, because the steady-state crosses the threshold θ twice. If (2+γ)θ = α,
then there is only one eigenvalue, also counting algebraic multiplicity, because the
steady-state crosses the threshold θ only once.

Theorem 2. (I) When (2 + 2γ + δ)Θ < 2α+ β, there exists a unique positive
steady-state U , such that U(0) = U(Y∗) = Θ, θ < U < Θ on (−∞, 0)

⋃
(Y∗,+∞)

and U > Θ on (0, Y∗), for some Y∗ > 0. (II) When (2+2γ+δ)Θ = 2α+β, there are
exactly two positive, monotone steady-states U , such that U(0) = Θ. (III) When
(2 + 2γ + δ)Θ > 2α + β, there exists a unique positive steady-state U , such that
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U(0) = U(Y ∗) = Θ, U > Θ on (−∞, 0)
⋃

(Y ∗,+∞) and θ < U < Θ on (0, Y ∗) for
some Y ∗ > 0. (IV) The steady-states in the first and the third cases are spectrally
unstable relative to equation (8).

Proof. It is very similar to that of Theorem 1 and is omitted. #

Theorem 3. Suppose that (α−γΘ)[(2+δ)Θ−β] > 0 and (β−δθ)[(2+γ)θ−α] >
0, such that

(2 + γ)θ − α

2(β − δθ)
+

(2 + δ)Θ− β

2(α− γΘ)
< 1,

for case (I),
(2 + γ)θ − α

2(β − δθ)
+

(2 + δ)Θ− β

2(α− γΘ)
= 1,

for case (II), and
(2 + γ)θ − α

2(β − δθ)
+

(2 + δ)Θ− β

2(α− γΘ)
> 1,

for case (III). (I) There exists a unique positive steady-state U , such that U(0) =
U(Z∗) = θ, U < θ on (−∞, 0)

⋃
(Z∗,+∞) and U > θ on (0, Z∗), for some Z∗ > 0;

U(Γ∗) = U(Λ∗) = Θ, U < Θ on (−∞,Γ∗)
⋃

(Λ∗,+∞) and U > Θ on (Γ∗,Λ∗), for
some constants 0 < Γ∗ < Λ∗ < Z∗. (II) There are exactly two positive, monotone
steady-states U , such that U(0) = θ and U(Ω∗) = Θ or U(0) = θ and U(Ω∗) = Θ,
for some real numbers Ω∗ and Ω∗. (III) There exists a unique positive steady-state
U , such that U(0) = U(Z∗) = θ, U > θ on (−∞, 0)

⋃
(Z∗,+∞) and U < θ on

(0, Z∗) for some Z∗ > 0; U(Γ∗) = U(Λ∗) = Θ, U > Θ on (−∞,Γ∗)
⋃

(Λ∗,+∞)
and U < Θ on (Γ∗,Λ∗), for some constants Γ∗ < 0 < Z∗ < Λ∗. (IV) The steady-
states in the first and the third cases are spectrally unstable relative to equation
(8).

Proof. (I) There exist three numbers 0 < Γ∗ < Λ∗ < Z∗, such that

(α− γθ)
∫ Z∗

0

K(x)dx+ (β − δθ)
∫ Λ∗

Γ∗

K(x)dx = θ,

(α− γΘ)
∫ Λ∗

Λ∗−Z∗

K(x)dx+ (β − δΘ)
∫ Λ∗−Γ∗

0

K(x)dx = Θ.

The unique positive steady-state is given by

U(x) =

{
α

∫ x

x−Z∗

K(ξ)dξ + β

∫ x−Γ∗

x−Λ∗

K(ξ)dξ

}

/

{
1 + γ

∫ x

x−Z∗

K(ξ)dξ + δ

∫ x−Γ∗

x−Λ∗

K(ξ)dξ

}
.

The derivative is

U ′(x) = {[α+ (αδ − βγ)
∫ Λ∗

Γ∗

K(x− y)dy][K(x)−K(x− Z∗)]

+[β + (βγ − αδ)
∫ Z∗

0

K(x− y)dy][K(x− Λ∗)−K(x− Γ∗)]}

/

{
1 + γ

∫ x

x−Z∗

K(ξ)dξ + δ

∫ x−Γ∗

x−Λ∗

K(ξ)dξ

}2

.
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(II) There exist exactly two real numbers Ω∗ and Ω∗, such that

(2 + γ)θ − α

2(β − δθ)
=

∫ −Ω∗

−∞
K(x)dx,

(2 + δ)Θ− β

2(α− γΘ)
=

∫ Ω∗

−∞
K(x)dx,

and
(2 + γ)θ − α

2(β − δθ)
=

∫ ∞

−Ω∗
K(x)dx,

(2 + δ)Θ− β

2(α− γΘ)
=

∫ ∞

Ω∗
K(x)dx.

The positive monotone steady-states are given by, respectively

U(x) =

{
α

∫ x

−∞
K(ξ)dξ + β

∫ x−Ω∗

−∞
K(ξ)dξ

}

/

{
1 + γ

∫ x

−∞
K(ξ)dξ + δ

∫ x−Ω∗

−∞
K(ξ)dξ

}
,

and

U(x) =
{
α

∫ ∞

x

K(ξ)dξ + β

∫ ∞

x−Ω∗
K(ξ)dξ

}
/

{
1 + γ

∫ ∞

x

K(ξ)dξ + δ

∫ ∞

x−Ω∗
K(ξ)dξ

}
.

The derivatives are

U ′(x) =
{

(β + (βγ − αδ)
∫ x

−∞
K(ξ)dξ)K(x− Ω∗)

+(α+ (αδ − βγ)
∫ x−Ω∗

−∞
K(ξ)dξ)K(x)

}

/

{
1 + γ

∫ x

−∞
K(ξ)dξ + δ

∫ x−Ω∗

−∞
K(ξ)dξ

}2

,

and

U ′(x) = −
{

(β + (βγ − αδ)
∫ ∞

x

K(ξ)dξ)K(x− Ω∗)

+(α+ (αδ − βγ)
∫ ∞

x−Ω∗

K(ξ)dξ)K(x)
}

/

{
1 + γ

∫ ∞

x

K(ξ)dξ + δ

∫ ∞

x−Ω∗

K(ξ)dξ
}2

.

(III) There exist Γ∗ and Λ∗, such that

(α− γθ)

[
1−

∫ Z∗

0

K(x)dx

]
+ (β − δθ)

[
1−

∫ Λ∗

Γ∗
K(x)dx

]
= θ,

(α− γΘ)

[
1−

∫ Λ∗

Λ∗−Z∗
K(x)dx

]
+ (β − δΘ)

[
1−

∫ Λ∗−Γ∗

0

K(x)dx

]
= Θ.
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The unique positive steady-state is given by

U(x) =

{
α− α

∫ x

x−Z∗
K(ξ)dξ + β − β

∫ x−Γ∗

x−Λ∗
K(ξ)dξ

}

/

{
1 + γ − γ

∫ x

x−Z∗
K(ξ)dξ + δ − δ

∫ x−Γ∗

x−Λ∗
K(ξ)dξ

}
.

The derivative is

U ′(x) = −{[α+ (αδ − βγ)(1−
∫ x−Γ∗

x−Λ∗
K(ξ)dξ)][K(x)−K(x− Z∗)]

+[β + (βγ − αδ)(1−
∫ x

x−Z∗
K(ξ)dξ)][K(x− Λ∗)−K(x− Γ∗)]}

/

{
1 + γ − γ

∫ x

x−Z∗
K(ξ)dξ + δ − δ

∫ x−Γ∗

x−Λ∗
K(ξ)dξ

}2

.

It is very similar to that of Theorem 1 and is omitted. #

2.2. Existence and spectral instability: the case ε > 0. The parameter
ε > 0 is arbitrarily large in this subsection.

Theorem 4. Let θ < ατ
1+(1+γ)τ < Θ. Then, there exist at least four nontriv-

ial steady-state solutions to the equations (1)-(2). The steady-states are spectrally
unstable relative to (1)-(2), if (2 + 2τ + γτ)θ 6= ατ .

Proof. Solving the system

U(x) +W (x) = (α− γU)
∫

R
K(x− y)H(U(y)− θ)dy,

U(x) = τW (x),

is equivalent to solving the system

U(x) =
τ

1 + τ
(α− γU)

∫
R
K(x− y)H(U(y)− θ)dy,

W (x) =
1

1 + τ
(α− γU)

∫
R
K(x− y)H(U(y)− θ)dy.

The rest of the analysis for the existence of the steady-states is the same as above
(i.e the case ε = 0). If (2 + 2τ + γτ)θ < ατ , then there exists a unique positive
number A∗, such that

ατ

∫ A∗

0

K(x)dx/

[
1 + τ + γτ

∫ A∗

0

K(x)dx

]
= θ.

The unique nontrivial steady-state is given by

(U(x),W (x))

=

{
α

∫ A∗

0

K(x− y)dy/

[
1 + τ + γτ

∫ A∗

0

K(x− y)dy

]}
(τ, 1),

and
(U ′(x),W ′(x))
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=

α(1 + τ)[K(x)−K(x−A∗)]/

[
1 + τ + γτ

∫ A∗

0

K(x− y)dy

]2
 (τ, 1).

Furthermore

U ′(0) =
(α− γθ)2

α(1 + τ)
[K(0)−K(A∗)] = −U ′(A∗).

If (2 + 2τ + γτ)θ > ατ , then there exists a unique positive number A∗, such that[
ατ − ατ

∫ A∗

0

K(x)dx

]
/

[
1 + τ + γτ − γτ

∫ A∗

0

K(x)dx

]
= θ.

The unique nontrivial steady-state is given by

(U(x),W (x))

=

{[
α− α

∫ A∗

0

K(x− y)dy

]
/

[
1 + τ + γτ − γτ

∫ A∗

0

K(x− y)dy

]}
(τ, 1),

and
(U ′(x),W ′(x))

=

α(1 + τ)[K(x−A∗)−K(x)]/

[
1 + τ + γτ − γτ

∫ A∗

0

K(x− y)dy

]2
 (τ, 1).

Moreover

U ′(0) =
(α− γθ)2

α(1 + τ)
[K(A∗)−K(0)] = −U ′(A∗).

If (2 + 2τ + γτ)θ = ατ , then there are precisely two monotone steady-states: (i)

(Uincreasing(x),Wincreasing(x))

=
{
α

∫ x

−∞
K(ξ)dξ/

[
1 + τ + γτ

∫ x

−∞
K(ξ)dξ

]}
(τ, 1),

and the derivative (
U ′increasing(x),W

′
increasing(x)

)
=

{
α(1 + τ)K(x)/

[
1 + τ + γτ

∫ x

−∞
K(ξ)dξ

]2}
(τ, 1),

and (ii)
(Udecreasing(x),Wdecreasing(x))

=
{
α

∫ ∞

x

K(ξ)dξ/
[
1 + τ + γτ

∫ ∞

x

K(ξ)dξ
]}

(τ, 1),

and the derivative (
U ′decreasing(x),W

′
decreasing(x)

)
=

{
−α(1 + τ)K(x)/

[
1 + τ + γτ

∫ ∞

x

K(ξ)dξ
]2}

(τ, 1).

Now we obtain

|U ′increasing(0)| = |U ′decreasing(0)| = 4(1 + τ)θ2

ατ
K(0).
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The linearization of the system (1)-(2) about each of the steady-states (U,W ) is

Pt +
[
1 + γ

∫
R
K(x− y)H(U(y)− θdy

]
P +Q

=
α− γU(x)
|U ′(0)|

K(x)P (0, t) +
α− γU(x)
|U ′(A)|

K(x−A)P (A, t),

Qt = ε(P − τQ),

where (2 + 2τ + γτ)θ 6= ατ , and A = A∗ or A = A∗ is well defined. The eigenvalue
problem is

λξ +
[
1 + γ

∫
R
K(x− y)H(U(y)− θ)

]
ξ + η

=
α− γU(x)
|U ′(0)|

K(x)ξ(0) +
α− γU(x)
|U ′(A)|

K(x−A)ξ(A),

λη = ε(ξ − τη),

equivalently, (
λ+ 1 + γ

∫
R
K(x− y)H(U(y)− θ)dy +

ε

λ+ τε

)
ξ

=
α− γU(x)
|U ′(0)|

K(x)ξ(0) +
α− γU(x)
|U ′(A)|

K(x−A)ξ(A),

η =
ε

λ+ τε
ξ.

Define Ω(ε) = {λ ∈ C: Reλ > −τε}. Define the linear operator

L(ε) : [C0(R)
⋂
L∞(R)]2 → [C0(R)

⋂
L∞(R)]2

by

L(ε)ψ = −
(

1 + γ{K ∗ [H(U − θ)]} 1
−ε τε

)
ψ

+
(

1 0
0 0

)[
α− γU(x)
|U ′(0)|

K(x)ψ(0) +
α− γU(x)
|U ′(A)|

K(x−A)ψ(A)
]
.

The essential spectrum of L(ε) consists of all complex numbers satisfying

Re λ = −1
2

(
1 + τε±

√
(1− τε)2 − 4ε

)
.

Suppose that (2 + 2τ + γτ)θ 6= ατ . Then, as before, the eigenvalues satisfy

λ+
ατ + γθ

(α− γθ)τ
+

ε

λ+ τε
= (α− γθ)

K(0)±K(A)
|U ′(0)|

≡ Ψ±,

so

λ± =
Ψ± − 1− τε±

√
(Ψ± − 1− τε)2 + 4(Ψ±γ − γ − 1)ε

2
.

Suppose that (2+2τ +γτ)θ = ατ . Then there exists no nonzero eigenvalue of L(ε)
in the right half plane{

λ ∈ C : Reλ > −1
2

(
1 + τε−

√
(1− τε)2 − 4ε

)}
.



STEADY-STATE SOLUTIONS IN NONLOCAL NEURONAL NETWORKS 87

The neutral eigenvalue λ = 0 is simple. Therefore, the steady-states are spectrally
stable.

Theorem 5. Let 0 < θ < ατ
1+(1+γ)τ < Θ < (α+β)τ

1+(1+γ+δ)τ . Then, there exist at
least four nontrivial steady-state solutions, which cross the threshold θ only, to the
equations (1)-(2). The steady-states are spectrally unstable relative to (1)-(2), if
(2 + 2τ + γτ)θ 6= ατ .

Proof. It is very similar to that of Theorem 4 and is omitted. #

Theorem 6. Let 0 < θ < ατ
1+(1+γ)τ < Θ < (α+β)τ

1+(1+γ+δ)τ . Then, there exist at
least four nontrivial steady-state solutions, which cross both thresholds θ and Θ, to
the equations (1)-(2). The steady-states are spectrally unstable relative to (1)-(2),
if (2 + 2τ + γτ)θ 6= ατ .

Proof. It is very similar to that of Theorem 4 and is omitted. #

3. Nonlinear stability and linear instability

3.1. Nonlinear exponential stability. Consider the existence and expo-
nential stability of constant solutions of the scalar integral-differential equation (8).
Obviously, if

0 < θ <
α

1 + γ
< Θ <

α+ β

1 + γ + δ
,

then

U0 ≡ 0, U1 ≡
α

1 + γ
, U2 ≡

α+ β

1 + γ + δ
,

are the constant solutions. Consider global solutions of the initial value problems
u(x, 0) = u0(x) for (8). We pay particular attention to the problems u0(x) ≡ θ and
u0(x) ≡ Θ.

Elementary Lemma. The global solution of the initial value problem

∂u

∂t
+ f(x)u = g(x), u(x, 0) = u0(x),

where f > 0 on R, is given by

u(x, t) = exp[−f(x)t]u0(x) + {1− exp[−f(x)t]} g(x)
f(x)

.

Proof. It is very easy and omitted. #
(I) If α+β

1+γ+δ > Θ and u0(x) ≥ Θ for all x ∈ R [or if α+β
1+γ+δ ≥ Θ and u0(x) > Θ

for all x ∈ R], then a global solution of the initial value problem u(x, 0) = u0(x) is
given by

u(x, t) =
α+ β

1 + γ + δ
+ e−(1+γ+δ)t

[
u0(x)−

α+ β

1 + γ + δ

]
.

Here u(x, t) > Θ for all (x, t) ∈ R× R+. Additionally

lim
t→+∞

u(x, t) =
α+ β

1 + γ + δ
.

(II) If θ < α
1+γ < Θ and θ ≤ u0(x) ≤ Θ for all x ∈ R [or if θ ≤ α

1+γ ≤ Θ and
θ < u0(x) < Θ for all x ∈ R], then a global solution of the initial value problem
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u(x, 0) = u0(x) is given by

u(x, t) =
α

1 + γ
+ e−(1+γ)t

[
u0(x)−

α

1 + γ

]
.

Here θ < u(x, t) < Θ for all (x, t) ∈ R× R+. Additionally

lim
t→+∞

u(x, t) =
α

1 + γ
.

(III) If u0(x) ≤ θ for all x ∈ R, then a global solution is

u(x, t) = e−tu0(x).

Note that u(x, t) < θ for all (x, t) ∈ R× R+. Therefore

lim
t→+∞

u(x, t) = 0.

It seems that each of the initial value problems u(x, 0) ≡ θ and u(x, 0) ≡ Θ for (8)
has at least two stable solutions. Overall, we see that the constant solutions are
exponentially stable. Nevertheless, the stability problem becomes very complicated
if the initial data cross the threshold θ or Θ. For each of the above cases, if the
initial data is even, then the solution is also even. The initial data can be bounded
or unbounded. For examples, u0(x) = Θ + coshx or u0(x) = 1 + Θ + (tanhx)2.

To investigate the nonlinear exponential stability of the steady-state solutions
of (8), we have to study the initial value problems u(x, 0) = u0(x) for the scalar
equation (8), here u0 is well defined everywhere but it is not necessarily bounded
or continuous. Theorem 7, Theorem 8 and Theorem 9 are concerned with stability
of monotone steady-states.

Theorem 7. Let (2 + γ)θ = α. (I) Suppose that the initial data satisfy
u0(x) ≤ θ for all x < 0 and θ ≤ u0(x) ≤ Θ for all x > 0. Then a global solution of
the initial value problem for (8) is

u(x, t) = exp
{
−
[
1 + γ

∫ x

−∞
K(ξ)dξ

]
t

}
u0(x)

+
{

1− exp
[
−
(

1 + γ

∫ x

−∞
K(ξ)dξ

)
t

]}{
α

∫ x

−∞
K(ξ)dξ/

[
1 + γ

∫ x

−∞
K(ξ)dξ

]}
.

u(x, t) < θ for all x < 0 and θ < u(x, t) < Θ for all x > 0. Moreover

lim
t→+∞

u(x, t) = α

∫ x

−∞
K(ξ)dξ/

[
1 + γ

∫ x

−∞
K(ξ)dξ

]
.

(II) Suppose that the initial data satisfy θ ≤ u0(x) ≤ Θ for all x < 0 and u0(x) ≤ θ
for all x > 0. Then a global solution of the initial value problem for (8) is

u(x, t) = exp
{
−
[
1 + γ

∫ ∞

x

K(ξ)dξ
]
t

}
u0(x)

+
{

1− exp
[
−
(

1 + γ

∫ ∞

x

K(ξ)dξ
)
t

]}{
α

∫ ∞

x

K(ξ)dξ/
[
1 + γ

∫ ∞

x

K(ξ)dξ
]}

.

θ < u(x, t) < Θ for all x < 0 and u(x, t) < θ for all x > 0. Moreover

lim
t→+∞

u(x, t) = α

∫ ∞

x

K(ξ)dξ/
[
1 + γ

∫ ∞

x

K(ξ)dξ
]
.
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Proof. (I) We are looking for solutions satisfying the conditions u(x, t) < θ for
x < 0 and θ < u(x, t) < Θ for x > 0. Therefore, the integral-differential equation
(8) reduces to the equation

∂u

∂t
+ u = (α− γu)

∫ x

−∞
K(ξ)dξ.

Formally, we can treat it as an ordinary differential equation in terms of t with x
being a real parameter. The integrating factor is

exp
{[

1 + γ

∫ x

−∞
K(ξ)dξ

]
t

}
.

Now it is straightforward to derive the solution formula. If x < 0, then u0(x) ≤ θ
and

α

∫ x

−∞
K(ξ)dξ/

[
1 + γ

∫ x

−∞
K(ξ)dξ

]

< α

∫ 0

−∞
K(ξ)dξ/

[
1 + γ

∫ 0

−∞
K(ξ)dξ

]
=

α

2 + γ
= θ.

Thus u(x, t) < θ. Similarly, if x > 0, then θ ≤ u0(x) ≤ Θ and

α

∫ x

−∞
K(ξ)dξ/

[
1 + γ

∫ x

−∞
K(ξ)dξ

]

< α

∫ ∞

−∞
K(ξ)dξ/

[
1 + γ

∫ ∞

−∞
K(ξ)dξ

]
=

α

1 + γ
< Θ,

and

α

∫ x

−∞
K(ξ)dξ/

[
1 + γ

∫ x

−∞
K(ξ)dξ

]

> α

∫ 0

−∞
K(ξ)dξ/

[
1 + γ

∫ 0

−∞
K(ξ)dξ

]
=

α

2 + γ
= θ.

Thus θ < u(x, t) < Θ. Other details are omitted. (II) is proved similarly. #

Theorem 8. Let (2 + 2γ + δ)Θ = 2α + β. (I) Suppose that the initial data
satisfy θ ≤ u0(x) ≤ Θ for all x < 0 and u0(x) ≥ Θ for all x > 0. Then a global
solution of the initial value problem for (8) is

u(x, t) = exp
{
−
[
1 + γ + δ

∫ x

−∞
K(ξ)dξ

]
t

}
u0(x)

+
{

1− exp
[
−
(

1 + γ + δ

∫ x

−∞
K(ξ)dξ

)
t

]}
{[
α+ β

∫ x

−∞
K(ξ)dξ

]
/

[
1 + γ + δ

∫ x

−∞
K(ξ)dξ

]}
.

θ < u(x, t) < Θ for all x < 0 and u(x, t) > Θ for all x > 0. Moreover

lim
t→+∞

u(x, t) =
[
α+ β

∫ x

−∞
K(ξ)dξ

]
/

[
1 + γ + δ

∫ x

−∞
K(ξ)dξ

]
.
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(II) Suppose that the initial data satisfy u0(x) ≥ Θ for all x < 0 and θ ≤ u0(x) ≤ Θ
for all x > 0. Then a global solution of the initial value problem for (8) is

u(x, t) = exp
{
−
[
1 + γ + δ

∫ ∞

x

K(ξ)dξ
]
t

}
u0(x)

+
{

1− exp
[
−
(

1 + γ + δ

∫ ∞

x

K(ξ)dξ
)
t

]}
{[
α+ β

∫ ∞

x

K(ξ)dξ
]
/

[
1 + γ + δ

∫ ∞

x

K(ξ)dξ
]}

.

u(x, t) > Θ for all x < 0 and θ < (x, t) < Θ for all x > 0. Moreover

lim
t→+∞

u(x, t) =
[
α+ β

∫ ∞

x

K(ξ)dξ
]
/

[
1 + γ + δ

∫ ∞

x

K(ξ)dξ
]
.

Proof. It is very similar to that of Theorem 7 and is omitted. #

Theorem 9. Suppose that (α−γΘ)[(2+δ)Θ−β] > 0 and (β−δθ)[(2+γ)θ−α] >
0, such that

(2 + γ)θ − α

2(β − δθ)
+

(2 + δ)Θ− β

2(α− γΘ)
= 1.

(I) Suppose that the initial data satisfy u0(x) ≤ θ for all x < 0 and u0(x) ≥ θ for
all x > 0; u0(x) ≤ Θ for all x < Ω∗ and u0(x) ≥ Θ for all x > Ω∗. Then a global
solution of the initial value problem for (8) is

u(x, t) = exp

{
−

[
1 + γ

∫ x

−∞
K(ξ)dξ + δ

∫ x−Ω∗

−∞
K(ξ)dξ

]
t

}
u0(x)

+

{
1− exp

[
−

(
1 + γ

∫ x

−∞
K(ξ)dξ + δ

∫ x−Ω∗

−∞
K(ξ)dξ

)
t

]}

×

{
α

∫ x

−∞
K(ξ)dξ + β

∫ x−Ω∗

−∞
K(ξ)dξ/

[
1 + γ

∫ x

−∞
K(ξ)dξ + δ

∫ x−Ω∗

−∞
K(ξ)dξ

]}
.

u(x, t) < θ for all x < 0 and u(x, t) > θ for all x > 0; u(x, t) < Θ for all x < Ω∗
and u(x, t) > Θ for all x > Ω∗. Moreover

lim
t→+∞

u(x, t) =

[
α

∫ x

−∞
K(ξ)dξ + β

∫ x−Ω∗

−∞
K(ξ)dξ

]

/

[
1 + γ

∫ x

−∞
K(ξ)dξ + δ

∫ x−Ω∗

−∞
K(ξ)dξ

]
.

(II) Suppose that the initial data satisfy u0(x) ≥ θ for all x < 0 and u0(x) ≤ θ for
all x > 0; u0(x) ≥ Θ for all x < Ω∗ and u0(x) ≤ Θ for all x > Ω∗. Then a global
solution of the initial value problem for (8) is

u(x, t) = exp
{
−
[
1 + γ

∫ ∞

x

K(ξ)dξ + δ

∫ ∞

x−Ω∗
K(ξ)dξ

]
t

}
u0(x)

+
{

1− exp
[
−
(

1 + γ

∫ ∞

x

K(ξ)dξ + δ

∫ ∞

x−Ω∗
K(ξ)dξ

)
t

]}
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×
{[
α

∫ ∞

x

K(ξ)dξ + β

∫ ∞

x−Ω∗
K(ξ)dξ

]
/

[
1 + γ

∫ ∞

x

K(ξ)dξ + δ

∫ ∞

x−Ω∗
K(ξ)dξ

]}
.

u(x, t) > θ for all x < 0 and u(x, t) < θ for all x > 0; u(x, t) > Θ for all x < Ω∗

and u(x, t) < Θ for all x > Ω∗. Moreover

lim
t→+∞

u(x, t) =
[
α

∫ ∞

x

K(ξ)dξ + β

∫ ∞

x−Ω∗
K(ξ)dξ

]
/

[
1 + γ

∫ ∞

x

K(ξ)dξ + δ

∫ ∞

x−Ω∗
K(ξ)dξ

]
.

Proof. It is very similar to that of Theorem 7 and is omitted. #

Theorem 10, Theorem 11 and Theorem 12 are concerned with stability of
steady-states with a unique maximum/minimum at some point. Recall that X∗, Y∗,
Z∗ or X∗, Y ∗, Z∗ are the numbers found in Theorem 1, Theorem 2, and Theorem
3, respectively.

Theorem 10. (I) Let (2 + γ)θ < α. Suppose that the initial data satisfy
u0(x) ≤ θ for all x < 0 and x > X∗, and θ ≤ u0(x) ≤ Θ for all 0 < x < X∗. Then
a global solution of the initial value problem for (8) is

u(x, t) = exp
{
−
[
1 + γ

∫ x

x−X∗

K(ξ)dξ
]
t

}
u0(x)

+
{

1− exp
[
−
(

1 + γ

∫ x

x−X∗

K(ξ)dξ
)
t

]}
{
α

∫ x

x−X∗

K(ξ)dξ/
[
1 + γ

∫ x

x−X∗

K(ξ)dξ
]}

.

u(x, t) < θ for x < 0 and x > X∗, and θ < u(x, t) < Θ for all 0 < x < X∗.
Moreover

lim
t→+∞

u(x, t) = α

∫ x

x−X∗

K(ξ)dξ/
[
1 + γ

∫ x

x−X∗

K(ξ)dξ
]
.

(II) Let (2 + γ)θ > α. Suppose that the initial data satisfy θ ≤ u0(x) ≤ Θ for all
x < 0 and x > X∗, and u0(x) ≤ θ for all 0 < x < X∗. Then a global solution of
the initial value problem for (8) is

u(x, t) = exp
{
−
[
1 + γ − γ

∫ x

x−X∗
K(ξ)dξ

]
t

}
u0(x)

+
{

1− exp
[
−
(

1 + γ − γ

∫ x

x−X∗
K(ξ)dξ

)
t

]}
{[
α− α

∫ x

x−X∗
K(ξ)dξ

]
/

[
1 + γ − γ

∫ x

x−X∗
K(ξ)dξ

]}
.

θ < u(x, t) < Θ for all x < 0 and x > X∗ and u(x, t) < θ for all 0 < x < X∗.
Moreover

lim
t→+∞

u(x, t) =
[
α− α

∫ x

x−X∗
K(ξ)dξ

]
/

[
1 + γ − γ

∫ x

x−X∗
K(ξ)dξ

]
.

Proof. (I) We are looking for solutions satisfying the conditions u(x, t) < θ for
x < 0 and x > X∗ and θ < u(x, t) < Θ for 0 < x < X∗. The integral-differential
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equation (8) reduces to the equation
∂u

∂t
+ u = (α− γu)

∫ x

x−X∗

K(ξ)dξ.

Formally, we can treat it as an ordinary differential equation in terms of t with x
being a real parameter. The integrating factor is

exp
{[

1 + γ

∫ x

x−X∗

K(ξ)dξ
]
t

}
.

Other details are omitted. (II) is proved similarly. #

Theorem 11. (I) Let (2 + 2γ + δ)Θ < 2α + β. Suppose that the initial data
satisfy θ ≤ u0(x) ≤ Θ for all x < 0 and x > Y∗, and u0(x) ≥ Θ for all 0 < x < Y∗.
Then a global solution of the initial value problem for (8) is

u(x, t) = exp
{
−
[
1 + γ + δ

∫ x

x−Y∗

K(ξ)dξ
]
t

}
u0(x)

+
{

1− exp
[
−
(

1 + γ + δ

∫ x

x−Y∗

K(ξ)dξ
)
t

]}
{[
α+ β

∫ x

x−Y∗

K(ξ)dξ
]
/

[
1 + γ + δ

∫ x

x−Y∗

K(ξ)dξ
]}

.

θ < u(x, t) < Θ for all x < 0 and x > Y∗, and u(x, t) > Θ for all 0 < x < Y∗.
Moreover

lim
t→+∞

u(x, t) =
[
α+ β

∫ x

x−Y∗

K(ξ)dξ
]
/

[
1 + γ + δ

∫ x

x−Y∗

K(ξ)dξ
]
.

(II) Let (2 + 2γ + δ)Θ > 2α + β. Suppose that the initial data satisfy u0(x) ≥ Θ
for all x < 0 and x > Y ∗, and θ ≤ u0(x) ≤ Θ for all 0 < x < Y ∗. Then a global
solution of the initial value problem for (8) is

u(x, t) = exp
{
−
[
1 + γ + δ − δ

∫ x

x−Y ∗
K(ξ)dξ

]
t

}
u0(x)

+
{

1− exp
[
−
(

1 + γ + δ − δ

∫ x

x−Y ∗
K(ξ)dξ

)
t

]}
{[

α+ β − β

∫ x

x−Y ∗
K(ξ)dξ

]
/[

1 + γ + δ − δ

∫ x

x−Y ∗
K(ξ)dξ

]}
.

u(x, t) > Θ for all x < 0 and x > Y ∗, and θ < u(x, t) < Θ for all 0 < x < Y ∗.
Moreover

lim
t→+∞

u(x, t) =
[
α+ β − β

∫ x

x−Y ∗
K(ξ)dξ

]
/

[
1 + γ + δ − δ

∫ x

x−Y ∗
K(ξ)dξ

]
.

Proof. It is very similar to that of Theorem 10 and is omitted. #

Theorem 12. Suppose that (α−γΘ)[(2+ δ)Θ−β] > 0 and (β− δθ)[(2+γ)θ−
α] > 0, such that

(2 + γ)θ − α

2(β − δθ)
+

(2 + δ)Θ− β

2(α− γΘ)
6= 1.
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(I) Suppose that the initial data satisfy u0(x) ≤ θ for all x < 0 and x > Z∗, and
u0(x) ≥ θ for all 0 < x < Z∗; u0(x) ≤ Θ for all x < Γ∗ and x > Λ∗, and u0(x) ≥ Θ
for all Γ∗ < x < Λ∗ Then a global solution of the initial value problem for (8) is

u(x, t) = exp

{
−

[
1 + γ

∫ x

x−Z∗

K(ξ)dξ + δ

∫ x−Γ∗

x−Λ∗

K(ξ)dξ

]
t

}
u0(x)

+

{
1− exp

[
−

(
1 + γ

∫ x

x−Z∗

K(ξ)dξ + δ

∫ x−Γ∗

x−Λ∗

K(ξ)dξ

)
t

]}

×
{[

α

∫ x

x−Z∗

K(ξ)dξ + β

∫ x−Γ∗

x−Λ∗

K(ξ)dξ

]

/

[
1 + γ

∫ x

x−Z∗

K(ξ)dξ + δ

∫ x−Γ∗

x−Λ∗

K(ξ)dξ

]}
.

u(x, t) < θ for all x < 0 and x > Z∗, and u(x, t) > θ for all 0 < x < Z∗; u(x, t) < Θ
for all x < Γ∗ and x > Λ∗, and u(x, t) > Θ for all Γ∗ < x < Λ∗ Moreover

lim
t→+∞

u(x, t) =

[
α

∫ x

x−Z∗

K(ξ)dξ + β

∫ x−Γ∗

x−Λ∗

K(ξ)dξ

]

/

[
1 + γ

∫ x

x−Z∗

K(ξ)dξ + δ

∫ x−Γ∗

x−Λ∗

K(ξ)dξ

]
.

(II) Suppose that the initial data satisfy u0(x) ≥ θ for all x < 0 and x > Z∗, and
u0(x) ≤ θ for all 0 < x < Z∗; u0(x) ≥ Θ for all x < Γ∗ and x > Λ∗, and u0(x) ≤ Θ
for all Γ∗ < x < Λ∗. Then a global solution of the initial value problem for (8) is

u(x, t) = exp

{
−

[
1 + γ − γ

∫ x

x−Z∗
K(ξ)dξ + δ − δ

∫ x−Γ∗

x−Λ∗
K(ξ)dξ

]
t

}
u0(x)

+

{
1− exp

[
−

(
1 + γ − γ

∫ x

x−Z∗
K(ξ)dξ + δ − δ

∫ x−Γ∗

x−Λ∗
K(ξ)dξ

)
t

]}

×
{[

α− α

∫ x

x−Z∗
K(ξ)dξ + β − β

∫ x−Γ∗

x−Λ∗
K(ξ)dξ

]

/

[
1 + γ − γ

∫ x

x−Z∗
K(ξ)dξ + δ − δ

∫ x−Γ∗

x−Λ∗
K(ξ)dξ

]}
.

u(x, t) > θ for all x < 0 and x > Z∗ and u(x, t) < θ for all 0 < x < Z∗; u(x, t) > Θ
for all x < Γ∗ and x > Λ∗, and u(x, t) < Θ for all Γ∗ < x < Λ∗ Moreover

lim
t→+∞

u(x, t) =

[
α− α

∫ x

x−Z∗
K(ξ)dξ + β

∫ x−Γ∗

x−Λ∗
K(ξ)dξ

]

/

[
1 + γ − γ

∫ x

x−Z∗
K(ξ)dξ + δ − δ

∫ x−Γ∗

x−Λ∗
K(ξ)dξ

]
.

Proof. It is very similar to that of Theorem 10 and is omitted. #
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3.2. Linear exponential instability. We first discuss the cases

(2 + γ)θ 6= α, or (2 + 2γ + δ)Θ 6= 2α+ β, or
(2 + γ)θ − α

2(β − δθ)
+

(2 + δ)Θ− β

2(α− γΘ)
6= 1

so that X∗, Y∗, Z∗, X∗, Y ∗, Z∗ are well defined. We then consider the cases

(2 + γ)θ = α, or (2 + 2γ + δ)Θ = 2α+ β, or
(2 + γ)θ − α

2(β − δθ)
+

(2 + δ)Θ− β

2(α− γΘ)
= 1.

Theorem 13. (I) Let (1 + γ)θ < α and (2 + γ)θ 6= α. Then, the steady-states
are linearly exponentially unstable relative to the equation

Pt +
[
1 + γ

∫
R
K(x− y)H(U(y)− θ)dy

]
P

= [α− γU(x)]
[
K(x)
|U ′(0)|

P (0, t) +
K(x−X)
|U ′(X)|

P (X, t)
]
,

where X = X∗ or X = X∗. (II) Let (1 + γ)θ < α and (2 + γ)θ = α. Then, the
steady-states are linearly exponentially stable relative to the equation

Pt +
[
1 + γ

∫
R
K(x− y)H(U(y)− θ)dy

]
P

= [α− γU(x)]
K(x)
|U ′(0)|

P (0, t).

Proof. (I) It is not difficult to solve the linear equation to obtain the global solution

P (x, t) = exp
{
−t
[
1 + γ

∫
R
K(x− y)H(U(y)− θ)dy

]}
P0(x)

+
∫ t

0

exp
{

(s− t)
[
1 + γ

∫
R
K(x− y)H(U(y)− θ)dy

]}
× [α− γU(x)]

[
K(x)
|U ′(0)|

P (0, s) +
K(x−X)
|U ′(X)|

P (X, s)
]
ds.

To find P (0, t) and P (X, t), by setting x = 0 and x = X, respectively, we obtain
the equations

Pt(0, t) =
[
(α− γθ)

K(0)
|U ′(0)|

− α

α− γθ

]
P (0, t) + (α− γθ)

K(X)
|U ′(X)|

P (X, t),

Pt(X, t) =
[
(α− γθ)

K(0)
|U ′(X)|

− α

α− γθ

]
P (X, t) + (α− γθ)

K(X)
|U ′(0)|

P (0, t).

The eigenvalues and eigenvectors of the coefficient matrix(
(α− γθ) K(0)

|U ′(0)| −
α

α−γθ (α− γθ) K(X)
|U ′(X)|

(α− γθ) K(X)
|U ′(0)| (α− γθ) K(0)

|U ′(X)| −
α

α−γθ

)
= (α−γθ) K(X)

|U ′(0)|

(
1 1
1 1

)
are

λ1 = (α−γθ)K(0)−K(X)
|U ′(0)|

− α

α− γθ
= 0, λ2 = (α−γθ)K(0) +K(X)

|U ′(0)|
− α

α− γθ
> 0,

and (
ξ1
η1

)
=
(

1
−1

)
,

(
ξ2
η2

)
=
(

1
1

)
,
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respectively. Therefore, we can obtain(
P (0, t)
P (X, t)

)
= C1

(
1
−1

)
+ C2

(
1
1

)
exp(λ2t).

To find the constants C1 and C2, we use the initial data P (x, 0) = P0(x). It is
straightforward to find that

C1 =
P (0, 0)− P (X, 0)

2
, C2 =

P (0, 0) + P (X, 0)
2

.

Therefore

P (0, t) =
P (0, 0)− P (X, 0)

2
+
P (0, 0) + P (X, 0)

2
exp(λ2t),

P (X, t) =
P (X, 0)− P (0, 0)

2
+
P (0, 0) + P (X, 0)

2
exp(λ2t).

Now the global solution of the initial value problem P (x, 0) = P0(x) for the linear
equation is given by

P (x, t) = exp
{
−t
[
1 + γ

∫
R
K(x− y)H(U(y)− θ)dy

]}
P0(x)

+
∫ t

0

exp
{

(s− t)
[
1 + γ

∫
R
K(x− y)H(U(y)− θ)dy

]}
× [α− γU(x)]

[
K(x)
|U ′(0)|

P (0, s) +
K(x−X)
|U ′(X)|

P (X, s)
]
ds.

Therefore
lim

t→+∞
|P (x, t)| = +∞.

This proves the instability of the steady-states. The case (2 + γ)θ = α is proved
similarly. #

Theorem 14. (I) Let (2 + 2γ + δ)Θ 6= 2α + β. Then, the steady-states are
linearly exponentially unstable relative to the equation

Pt +
[
1 + γ + δ

∫
R
K(x− y)H(U(y)−Θ)dy

]
P

= [β − δU(x)]
[
K(x)
|U ′(0)|

P (0, t) +
K(x− Y )
|U ′(Y )|

P (Y, t)
]
,

where Y = Y∗ or Y = Y ∗. (II) Let (2+2γ+ δ)Θ = 2α+β. Then, the steady-states
are linearly exponentially stable relative to the equation

Pt +
[
1 + γ + δ

∫
R
K(x− y)H(U(y)−Θ)dy

]
P

= [β − δU(x)]
K(x)
|U ′(0)|

P (0, t).

Proof. It is very similar to that of Theorem 13 and is omitted. #

Theorem 15. (I) Suppose that (α− γΘ)[(2 + δ)Θ− β] > 0 and (β − δθ)[(2 +
γ)θ − α] > 0, such that

(2 + γ)θ − α

2(β − δθ)
+

(2 + δ)Θ− β

2(α− γΘ)
6= 1.
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Then, the steady-states are linearly exponentially unstable relative to the equation

Pt +
[
1 + γ

∫
R
K(x− y)H(U(y)− θ)dy + δ

∫
R
K(x− y)H(U(y)−Θ)dy

]
P

= [α− γU(x)]
[
K(x)
|U ′(0)|

P (0, t) +
K(x− Z)
|U ′(Z)|

P (Z, t)
]

+ [β − δU(x)]
[
K(x− Γ)
|U ′(Γ)|

P (Γ, t) +
K(x− Λ)
|U ′(Λ)|

P (Λ, t)
]
,

where Z = Z∗, Γ = Γ∗, Λ = Λ∗; or Z = Z∗, Γ = Γ∗, Λ = Λ∗. (II) Suppose that
(α− γΘ)[(2 + δ)Θ− β] > 0 and (β − δθ)[(2 + γ)θ − α] > 0, such that

(2 + γ)θ − α

2(β − δθ)
+

(2 + δ)Θ− β

2(α− γΘ)
= 1.

Then, the steady-states are linearly exponentially stable relative to the equation

Pt +
[
1 + γ

∫
R
K(x− y)H(U(y)− θ)dy + δ

∫
R
K(x− y)H(U(y)−Θ)dy

]
P

= [α− γU(x)]
K(x)
|U ′(0)|

P (0, t)

+ [β − δU(x)]
K(x− Ω)
|U ′(Ω)|

P (Ω, t),

where Ω = Ω∗ or Ω = Ω∗.
Proof. It is very similar to that of Theorem 13 and is omitted. #

Remark . The initial value problems (u(x, 0), w(x, 0)) = (u0(x), w0(x)) for the
system (1)-(2) can be studied similarly.

Remark . Similar results may be extended to the n-dimensional nonlocal equa-
tions

∂u

∂t
+ u+ w = (α− γu)

∫
Rn

K(x− y)H(u(y, t)− θ)dy

+ (β − δu)
∫

Rn

K(x− y)H(u(y, t)−Θ)dy,

∂w

∂t
= ε(u− τw),

where n ≥ 2 is an integer.

Remark . The results in this paper strongly indicate that the linearized sta-
bility criterion is not valid at least for steady-state solutions of nonlocal equations
involving the Heaviside step function.

4. Bifurcations

To simplify our analysis, we only consider initial data identically equal to con-
stants. It was proved in Section 3 that the initial value problems for (8) with initial
data u0 ≡ θ ± κ or u0 ≡ Θ ± κ, where 0 < κ � 1, have a unique global solution,
respectively. Nevertheless, if κ = 0, then there are at least four global solutions
corresponding to the initial data u0 ≡ θ or u0 ≡ Θ, respectively. Therefore, u0 ≡ θ
and u0 ≡ Θ are bifurcation points.
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5. Appendix

We briefly discuss steady-states of the following nonlinear singularly perturbed
systems of integral-differential equations

∂u

∂t
+ φ(u) + w = (α− γu)

∫
R
K(x− y)H(u(y, t)− θ)dy,(9)

∂w

∂t
+ εw = εg(u), in R× R+.(10)

Theorem 16. Let φ(θ) < α − γθ. Suppose that the kernel is nonnegative ev-
erywhere. Then, there exists at least four steady-state solutions U = U(·) to (5).
Suppose that the kernel is a Mexican hat function such that |K(x)| ≤ C exp(−ρ|x|)
on R hold, for some positive constants C and ρ. Let φ′ > 0 and γ = 0. Then, there
is at least a steady-state. In both cases, the steady-states are unstable, in the sense
of L∞(R)-norm.

The steady-state solution serves as a slow singular homoclinic orbit for (5)-(6).
If we perturb ε > 0, then we get a slow pulse as well as a fast pulse.

There are two stable constant steady-states U ≡ 0 and U ≡ β to (5). These
stable steady-states correspond to neurons in their resting states. Let us search for
non-constant steady-states.

Proof of Theorem 16. (A) First of all, let the kernel be a nonnegative
function. The steady-state solutions U = U(·) satisfy

φ(U) = (α− γU)
∫

R
K(x− y)H(U(y)− θ)dy.

(I) If U < θ on (−∞, 0)
⋃

(X∗,+∞) and U > θ on (0, X∗), for some number X∗ > 0,
then ∫

R
K(x− y)H(U(y)− θ)dy =

∫ x

x−X∗

K(ξ)dξ ≡ g1(x).

(II) If U > θ on (−∞, 0)
⋃

(X∗,+∞) and U < θ on (0, X∗), then∫
R
K(x− y)H(U(y)− θ)dy =

∫ x−X∗

−∞
K(ξ)dξ +

∫ ∞

x

K(ξ)dξ ≡ g2(x).

(III) If U < θ on (−∞, 0) and U > θ on (0,+∞), then∫
R
K(x− y)H(U(y)− θ)dy =

∫ x

−∞
K(ξ)dξ ≡ g3(x).

(IV) If U > θ on (−∞, 0) and U < θ on (0,+∞), then∫
R
K(x− y)H(U(y)− θ)dy =

∫ ∞

x

K(ξ)dξ ≡ g4(x).

Suppose that φ′ > 0 so that it is strictly increasing and smooth. Then φ′(U) +
γgi > 0 for U > 0 and γ ≥ 0. Applying the implicit function theorem, the
existence and uniqueness of a steady-state are proved. By using the equation
φ(U) = (α − γU)gi(x), if U(Ω) > β at some Ω ∈ R, recall that β > 0 is the
solution of the equation φ(U) = α− γU , then we obtain a contradiction gi(Ω) > 1
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immediately. Therefore U ≤ β on R. We have to verify the above prescribed con-
ditions for each case.

Case 1: Let α − γθ > 2φ(θ). By using fundamental analysis, there exists a
unique number X∗ > 0, such that φ(θ) = (α− γθ)

∫X∗
0

K(x)dx. By differentiating
the equation

φ(U) = (α− γU)
∫ x

x−X∗

K(ξ)dξ,

about x, we have

φ′(U)U ′ + γ

∫ x

x−X∗

K(ξ)dξU ′ = (α− γU)[K(x)−K(x−X∗)].

Hence

U ′ = (α− γU)[K(x)−K(x−X∗)]/
[
φ′(U) + γ

∫ x

x−X∗

K(ξ)dξ
]
.

It is easy to show that α−γU ≥ α−βγ > 0 and that if K ′ < 0 on R+, then U ′ > 0
for x < X∗

2 and U ′ < 0 for x > X∗
2 . Clearly U(0) = U(X∗) = θ. The proof is

finished.

Case 2: Let α− γθ < 2φ(θ). As in Case 1, there is a unique number X∗ > 0,
such that φ(θ) = (α− γθ)

[∫ −X∗

−∞ K(x)dx+
∫∞
0
K(x)dx

]
. As in Case 1, by

φ(U) = (α− γU)

[∫ x−X∗

−∞
K(ξ)dξ +

∫ ∞

x

K(ξ)dξ

]
,

we have

U ′ = (α− γU)[K(x−X∗)−K(x)]/

{
φ′(U) + γ

∫ x−X∗

−∞
K(ξ)dξ + γ

∫ ∞

x

K(ξ)dξ

}
.

So if K ′ < 0 on R+, then U ′ < 0 for x < X∗

2 and U ′ > 0 for x > X∗

2 .

Case 3: Let α − γθ = 2φ(θ). Note that
∫ 0

−∞K(x)dx = 1
2 . By using implicit

differentiation on the equation

φ(U) = (α− γU)
∫ x

−∞
K(ξ)dξ,

we get

φ′(U)U ′ = (α− γU)K(x)− γU ′
∫ x

−∞
K(ξ)dξ.

Thus

U ′ = (α− γU)K(x)/
[
φ′(U) + γ

∫ x

−∞
K(ξ)dξ

]
≥ 0.

Case 4: Let α− γθ = 2φ(θ). Similar to Case 3,
∫∞
0
K(x)dx = 1

2 . From

φ(U) = (α− γU)
∫ ∞

x

K(ξ)dξ,

we have

U ′ = −(α− γU)K(x)/
[
φ′(U) + γ

∫ ∞

x

K(ξ)dξ
]
≤ 0.
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Therefore, altogether we have found four steady-states under different conditions.

(B). Suppose that φ(U) = U(U−1)(U−a) and 0 < a < 1. Then, the existence
problem reduces to

U3 − (1 + a)U2 + [a+ γgi(x)]U − αgi(x) = 0.

Based on a fundamental formula for third-order polynomial equations, we can find
the formal steady-state solutions for the four cases as follows

Ui(x) =
1 + a

3
− {ξ(x) + η(x)}1/3 − {ξ(x)− η(x)}1/3,

where i = 1, 2, 3, 4; and

ξ(x) = −α
2
gi(x) +

1
6
(1 + a)[a+ γgi(x)]−

1
27

(1 + a)3,

and

η(x) =
{[

−α
2
gi(x) +

1
6
(1 + a)(a+ γgi(x))−

1
27

(1 + a)3
]2

+
[
1
3
(a+ γgi(x))−

1
9
(1 + a)2

]3}1/2

.

The analysis to select the unique number X∗ or X∗ is very similar to the case φ
being strictly increasing.

Now, let the kernel be a Mexican hat function. We can prove the existence and
uniqueness of X∗ and X∗, respectively, such that

φ(θ) = (α− γθ)
∫ X∗

0

K(x)dx, if α− γθ > 2φ(θ) and X∗ < +∞,

φ(θ) = (α− γθ)

[∫ −X∗

−∞
K(x)dx+

∫ ∞

0

K(x)dx

]
, if α− γθ < 2φ(θ) and X∗ < +∞,

φ(θ) = (α− γθ)
∫ 0

−∞
K(x)dx, if α− γθ = 2φ(θ) and X∗ = +∞,

φ(θ) = (α− γθ)
∫ ∞

0

K(x)dx, if α− γθ = 2φ(θ) and X∗ = +∞.

Without loss of generality, let γ = 0 and φ be an increasing function. The existence
problem becomes φ(U) = αgi(x) and the steady-state is U = φ−1(αgi(x)), for
i = 1, 2, 3, 4.

Because of translation invariance of the steady-states, λ = 0 is a neutral eigen-
value of the differential operator L. However, unless X∗ = +∞ or X∗ = +∞, there
is a positive eigenvalue, thus the steady-states are not stable. Therefore the proof
is finished. #

Acknowledgment: The author is very grateful to Professor David Terman
(The Ohio State University) for his encouragement.



100 LINGHAI ZHANG

References

1. Shun-ichi Amari, Dynamics of pattern formation in lateral-inhibition type neural fields. Bio-
logical Cybernetics, 27(1977), 77-87.

2. Paul C. Bressloff, S. E. Folias, Alain Prat and Yue-Xian Li, Oscillatory waves in inhomoge-

neous neural media. Physical Review Letters, 91(2003), 178101.
3. Xinfu Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal

evolution equations. Advances in Differential Equations, 2(1997), 125-160.

4. Stephen Coombes, Gabriel J. Lord and M R. Owen, Waves and bumps in neuronal networks
with axo-dendritic synaptic interactions. Physica D, 178(2003), 219-241. Evans functions for

integral neural field equations with Heaviside firing rate function. SIAM Journal on Applied
Dynamical Systems. submitted.

5. G. Bard Ermentrout, Neural networks as spatio-temporal pattern-forming systems. Institute

of Physics (Great Britain) Reports on Progress in Physics, 61(1998), 353-430.
6. G. Bard Ermentrout and J. Bryce McLeod, Existence and uniqueness of travelling waves for

a neural network. Proceedings of the Royal Society of Edinburgh, 123A(1993), 461-478.
7. John W. Evans, Nerve axon equations: Indiana University Mathematics Journal, I Linear

approximations. 21(1972), 877-885. II Stability at rest. 22(1972), 75-90. III Stability of the

nerve impulse, 22(1972), 577-593. IV The stable and the unstable impulse. 24(1975), 1169-

1190.
8. David J. Pinto and G. Bard Ermentrout, Spatially structured activity in synaptically coupled

neuronal networks. I. traveling fronts and pulses, II. Lateral inhibition and standing pulses.
SIAM Journal on Applied Mathematics, 62(2001), I. 206-225, II. 226-243.

9. Clifford Henry Taubes, Modeling Defferential Equations in Biology, Prentice Hall, Inc., 2001.

10. David Terman, Dynamics of singularly perturbed neuronal networks. An introduction to math-
ematical modeling in physiology, cell biology, and immunology (New Orleans, LA, 2001), 1-

32, Proceedings of Symposium in Applied Mathematics, 59, American Mathematical Society,

Providence, RI, 2002.
11. David Terman, An introduction to dynamical systems and neuronal dynamics. to appear in

Proceedings of the MBI Program on Computational Neuroscience.

12. J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and Chaos, Second Edition, John
Wiley and Sons, 2002.

13. Linghai Zhang, On stability of traveling wave solutions in synaptically coupled neuronal net-

works. Differential and Integral Equations, 16(2003), 513-536.
14. Linghai Zhang, Existence, uniqueness and exponential stability of traveling wave solutions of

some integral differential equations arising from neuronal networks. Journal of Differential
Equations, 197(2004), 162-196.

15. Linghai Zhang, et al, Connecting orbits in nonlocal excitatory neuronal networks. Preprint.

Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania USA 18015
E-mail address: liz5@lehigh.edu


