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A Hopf Bifurcation in a Free Boundary Problem with an
Inhomogeneity
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Abstract. We shall consider a two-component reaction-diffusion system with

spatial inhomogeneous media. In this paper, we shall explore the dynamics

of interfaces in the problem with spatial inhomogeneous media in order to
investigate the existence of time periodic solutions as a parameter vary and to

examine the effect of a spatial inhomogeneity.
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1. Introduction

Nonlinear reaction-diffusion equation models have been used to study impulses
propagating in nerve axon [5], to describe pattern formation [17] and to model
spiral waves in the Belousov-Zhabotinsky reaction [23]. In most models for such
waves, the medium is assumed to be homogeneous. The effect of an inhomoge-
neous diffusion process was studied for one component system in [18, 24] and a
two component system close to a singular limit in [6, 7]. The most simple but sub-
stantial model is given by the following reaction-diffusion equations with a spatial
inhomogeneity [1, 10, 19, 21]:

(1)

{
εσut − ε2uxx = H(u− a0)− u− v + κ ≡ f(u, v) + κ

vt − vxx = u− µv ≡ g(u, v) , x ∈ (−∞,∞) , t > 0
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where ε, σ, µ are all positive constants, 0 < a0 < 1 and H(z) is a Heaviside step
function ([11]). The equation (1) represents a basic model of bistable medium
which is relevant for fertilization calcium waves [10] and current density dynamics
in large area bistable semiconductor systems [3, 22].

When ε is sufficiently small and κ = 0 in the equation (1), a motionless localized
solution [9] and a spatially periodic solution [12, 16] can be formed. In this cases,
the authors in [2, 15, 20] showed that in the limit the stationary solutions of this
system, being smooth, exhibits an abrupt change but continuously differentiable
transition at the location of the internal layers. This transition takes place with
in an x-interval of length O(ε) and converges to interfacial curves in x, t-space as
ε ↓ 0. When ε = 0 in the first equation (1), an analysis of the dynamics of this
process has been shown (see for example [2, 13, 14, 15]) to lead a free boundary
problem consisting of the initial-boundary value problem
(2)

vt = vxx − (µ+ 1)v +H(x− η+)−H(x− η−) + κ, (x, t) ∈ Ω+(t) ∪ Ω−(t)

v(x, 0) = v0(x)

v(−∞, t) = 0 = v(∞, t), t > 0

η±
′(t) = ±C(v(η±(t))), t > 0

η±(0) = ± η0, η0 ∈ (0,∞)

where η±(t) are interfaces and the domains are Ω+(t) = {(x, t) : η−(t) < x <
η+(t), t > 0} and Ω−(t) = {(x, t) : x < η−(t), x > η+(t), t > 0}. From [2, 8, 15,
22], the trajectory with a unique value of C = C(v0) exists and the velocity of
the interface is a continuously differentiable function defined on an interval I :=
(−a0, 1− a0) and thus the velocity of the interface can be normalized by

C(z) =
2z − 1 + 2a0 − 2κ

σ
√

(z + a0 − κ)(1− a0 + κ− z)
.

The purpose of this paper is to explore the dynamics of interfaces in the problem
(2) in order to examine the effects of the a spatial inhomogeneity κ.

The organization of the paper is as follows. In section 2 we show the existence
of the periodic solutions and the bifurcation of the interface problem as the param-
eter σ and κ vary by invoking the regular setting of the problem (2). In section
3, we examine the occurences of Hopf bifurcation as the parameter σ varies and
investigate the effects of the spatial inhomogeneity.

2. Regularized equation

For the application of semigroup theory to (2), we choose the space X := L2(R)
with norm ‖ · ‖2 and let A be a differential operator − d2

dx2 + µ+ 1 with the domain
D(A) = {v ∈ H2,2((−∞,∞)) : v(−∞) = v(∞) = 0}.

Definition 2.1. We call (v, η−, η+) a solution of (2), if it satisfies the following
natural properties: There exists T > 0 such that v(x, t) is defined for (x, t) ∈
R× [0, T ), η± ∈ R and v(η±(t), t) ∈ I for t ∈ [0, T ),

a) v(·, t) ∈ C1(R) for t > 0 with v(±∞, t) = 0,
b) η−, η+ ∈ C0([0, T )) ∩ C1((0, T )) with η±(0) = ±η0, η0 ∈ (0,∞),
c) (Av)(x, t) and vt(x, t) exist for x ∈ R\{{η−(t)}∪{η+(t)}} and t ∈ (0, T ),
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d) t 7→ v(·, t) ∈ C0([0, T ), X) with v(·, 0) = v0 ∈ X and
e) v, η− and η+ solve the differential equation for t ∈ (0, T ) and x ∈ R \

{{η−(t)} ∪ {η+(t)}}.

We define g : R3 −→ R,

g(x, η−, η+) := A−1(H(·−η−)−H(·−η+)+κ)(x) =
∫ η+

η−

G(x, y) dy+κ
∫

R
G(x, y) dy,

where G : R2 → R is a Green’s function of A satisfying the Dirichlet boundary
conditions. Applying the transformation u(t)(x) = v(x, t)− g(x, η−(t), η+(t)) then
we obtain an equivalent abstract evolution equation of (2) :

(3)


d

dt
(u, η−, η+) + Ã(u, η−, η+) = f(u, η−, η+)

(u, η−, η+)(0) = (u0(x),−η0, η0)

where Ã is a 3× 3 matrix whose (1,1)-entry is an operator A and all the others are
zero. The nonlinear forcing term f is

f(u, η− , η+ ) =


−C(u(η−) + γ(η−, η+))G(x, η−)− C(u(η+) + ζ(η−, η+))G(x, η+)

−C(u(η−) + γ(η−, η+))

C(u(η+) + ζ(η−, η+))


where the functions γ : R×R −→ R and ζ : R×R −→ R are defined by γ(η−, η+) :=
g(η−, η−, η+) and ζ(η−, η+) := g(η+, η−, η+) .

The well posedness of solutions are shown in [4] applying the semigroup theory
using domains of fractional powers α ∈ (3/4, 1] of A and Ã. Moreover, they obtained
that the nonlinear term f is a continuously differentiable function from W ∩D(Ãα)
to D(Ã) where D(Ã) = D(A)× R× R and

W := {(u, η−, η+) ∈ C1(R)× R× R : u(η−) + γ(η−, η+) ∈ I, u(η+) + ζ(η−, η+) ∈ I}

⊂open C
1(R)× R× R .

3. Existence of steady-states and Linearized equation

In this section, we shall examine the stationary solutions of (3) and shall study
the dependency of κ on the existence of solutions. We now consider the stationary
problem of (3) for (u∗, η∗−, η

∗
+) ∈ D(Ã) ∩W. This system is equivalent to the pair

of equations

(4) u∗ = 0, C(γ(η∗−, η
∗
+) ) = 0 and C(ζ(η∗−, η

∗
+) ) = 0

which implies that

(5) 1
2 − a0 − γ(η∗−, η

∗
+) + κ = 0 and 1

2 − a0 − ζ(η∗−, η
∗
+) + κ = 0 .

Proposition 3.1. Suppose that 0 < 1
2 − a0 + µκ

µ+1 <
1

2(µ+1) , then the equation
(3) has at least one stationary solutions (0, η∗−, η

∗
+) for all σ 6= 0 satisfying that

η∗+ − η∗− = 1√
µ+1

ln
(

1
2(µ+1)a0−µ−2µκ

)
.
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The linearization of f at the stationary solution (0, η∗− , η
∗
+) is

Df(0, η∗−, η
∗
+)(û, η̂−, η̂+)

=


4
σ

(
û(η∗−) + γη−(η∗−, η

∗
+)η̂− + γη+(η∗−, η

∗
+)η̂+

)
G(·, η∗−)

+ 4
σ

(
û(η∗+) + ζη−(η∗−, η

∗
+)η̂− + ζη+(η∗−, η

∗
+)η̂+

)
G(·, η∗+)

4
σ

(
û(η∗−) + γη−(η∗−, η

∗
+)η̂− + γη+(η∗−, η

∗
+)η̂+

)
− 4

σ

(
û(η∗+) + ζη−(η∗−, η

∗
+)η̂− + ζη+(η∗−, η

∗
+)η̂+

)

 .

The pair (0, η∗−, η
∗
+) corresponds to a unique steady state (v∗, η∗−, η

∗
+) of (2) for

σ 6= 0 with v∗(x) = g(x, η∗−, η
∗
+) .

Proof. From (4) and (5), the steady states (0, η∗−, η
∗
+) are solutions of the

following equation :

(6) 1
2 − a0 + κ− γ(η−, η+) = 0 .

The equation (6) implies that 1
2(µ+1)

(
1−e−

√
µ+1 (η+−η−)

)
+ κ

µ+1 = 1
2 −a0 +κ. Thus

(η∗−, η
∗
+) satisfies that η∗+ − η∗− = 1√

µ+1
ln

(
1

2(µ+1)a0−µ−2µκ

)
if 0 < 1

2 − a0 + µκ
µ+1 <

1
2(µ+1) .

The formula for Df(0, η∗−, η
∗
+) follows from the relation C ′(0, η∗−, η

∗
+) = 4/σ

and Lemma 4 in [4]. The corresponding steady state (v∗, η∗−, η
∗
+) for (2) is obtained

using the transformation and Proposition 7 in [4]. �

We state the linearized eigenvalue problem of (3) :

−Ã(u, η−, η+) + τB(u, η−, η+) = λ(u, η−, η+)

which is equivalent to

(7)



(A+ λ)u = τ
(
u(η∗−) + γη− η− + γη+ η+

)
G(·, η∗−)

+τ
(
u(η∗+) + γη− η− + γη+ η+

)
G(·, η+)

λ η− = τ
(
u(η−∗) + γη− η− + γη+ η+

)
−λ η+ = τ

(
u(η∗+) + γη− η− + γη+ η+

)
where γη− := γη−(η∗−, η

∗
+), γη+ := γη+(η∗−, η

∗
+) and τ = 4/σ.

4. Effects of an inhomogeneity for a Hopf bifurcation

Definition 4.1. Under the assumptions of Proposition 3.1, define (for 1 ≥
α > 3/4) the linear operator B from X̃α to X̃

B := σ
4 Df(0, η∗−, η

∗
+) .

We then define (0, η∗−, η
∗
+) to be a Hopf point for (3) if and only if there exists an

ε0 > 0 and a C1-curve

(−ε0 + τ∗, τ∗ + ε0) 7→ (λ(τ), φ(τ)) ∈ C× X̃C

(YC denotes the complexification of the real space Y ) of eigendata for −Ã + τB
with

(i) (−Ã+ τB)(φ(τ)) = λ(τ)φ(τ), (−Ã+ τB)(φ(τ)) = λ(τ)φ(τ);
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(ii) λ(τ∗) = iβ with β > 0;
(iii) Re (λ) 6= 0 for all λ ∈ σ(−Ã+ τ∗B) \ {±iβ};
(iv) Reλ′(τ∗) 6= 0 (transversality).

We shall show that the steady states become a Hopf point under the same
condition in Proposition 3.1.

Theorem 4.2. Assume 0 < 1
2 − a0 + µκ

µ+1 < 1
2(µ+1) , the operator −Ã + τ∗B

as a unique pair {±iβ} of purely imaginary eigenvalues for some τ∗ > 0. Then
(0, η∗−, η

∗
+, τ

∗) is a Hopf point for (3).

Proof. We assume without loss of generality that β > 0, and φ∗ is the (nor-
malized) eigenfunction of −Ã + τ∗B with eigenvalue iβ. We have to show that
(φ∗, iβ) can be extended to a C1-curve τ 7→ (φ(τ), λ(τ)) of eigendata for −Ã+ τB
with Re(λ′(τ∗)) 6= 0.

For this let φ∗ = (ψ0, %0, ρ0) ∈ D(A) × R × R. First, we see that %0 6= 0 and
ρ0 6= 0, for otherwise, if %0 = 0 = ρ0 then, by (7), (A + iβ)ψ0 = iβ (%0G(·, η∗− ) −
ρ0G(·, η∗+ )) = 0, which is not possible because A is symmetric. So without loss of
generality, let %0 = 1. Then E(ψ0, ρ0, iβ, τ

∗) = 0 by (7), where

E : D(A)C × R× C× R −→ XC × C× C,

E(u, η+ , λ, τ) =
(A+ λ)u− τ

(
u(η∗−) + γη+(η+ − 1)

)
G(·, η∗−)− τ

(
u(η∗+) + γη+(η+ − 1)

)
G(·, η∗+)

λ− τ
(
u(η−∗) + γη+ (η+ − 1)

)
−λη+ − τ

(
u(η∗+) + γη+ (η+ − 1)

)


since γη−(η∗−, η

∗
+) = −γη+(η∗−, η

∗
+). The equation E(u, η+, λ, τ) = 0 is equivalent

to λ being an eigenvalue of −Ã + τB with eigenfunction (u, 1, η+). We shall here
apply the implicit function theorem to E, and therefore have to check that E is C1

and that

(8) D(u,η+,λ)E(ψ0, ρ0, iβ, τ
∗) ∈ L(D(A)C × R× C× R, XC × C× C)

is an isomorphism. It is easy to see that E is C1. In addition, the mapping

D(u,η+,λ)E(ψ0, ρ0, iβ, τ
∗)(û, η̂+, λ̂) =

(A+ iβ)û− τ∗ (û(η∗−) + γη+ η̂+)G(·, η∗−)− τ∗ (û(η∗+) + γη+ η̂+)G(·, η∗+) + λ̂ ψ0

λ̂− τ∗ (û(η∗−) + γη+ η̂+)

−λ̂ ρ0 − iβ η̂+ − τ∗(û(η∗+) + γη+ η̂+ )


is a compact perturbation of the mapping

(û, η̂+, λ̂) 7−→
(
(A+ iβ)û, η̂+, λ̂

)
which is invertible. Thus D(u,η+,λ)E(ψ0, ρ0, iβ, τ

∗) is a Fredholm operator of index
0. Therefore in order to verify (8), it suffices to show that the system

D(u,η+,λ)E(ψ0, ρ0, iβ, τ
∗)(û, η̂+, λ̂) = 0
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which is equivalent to

(9)



(A+ iβ)û+ λ̂ψ0 = τ∗ (û(η∗−) + γη+ η̂+)G(·, η∗−) + τ∗ (û(η∗+)

+γη+ η̂+)G(·, η∗+)

λ̂ = τ∗ (û(η∗−) + γη+ η̂+)

−λ̂ρ0 − iβ η̂+ = τ∗ (û(η∗+) + γη+ η̂+)

necessarily implies that û = 0 , η̂+ = 0 and λ̂ = 0. We define ψ1 := ψ0 −G(·, η∗−) +
G(·, η∗+) ρ0 then the first equation of (9) is given by

(10) (A+ iβ)û+ λ̂ψ1 = −iβG(·, η∗+) η̂+ .

On the other hand, since E(ψ0, ρ0, iβ, τ
∗) = 0, we have

(A+ iβ)ψ0 = iβ
(
G(·, η∗−)−G(·, η∗+) ρ0

)
and ψ1 is a solution to the equation

(11) (A+ i β)ψ1 = − δη∗− + δη∗+ ρ0

and

(12)
iβ = τ∗

(
ψ1(η∗−) +G(η∗−, η

∗
−)−G(η∗−, η

∗
+)ρ0 + γη+ (ρ0 − 1)

)
−iβρ0 = τ∗

(
ψ1(η∗+) +G(η∗+, η

∗
−)−G(η∗+, η

∗
+)ρ0 + γη+ (ρ0 − 1)

)
.

From these equations,

τ∗ Im
(
ψ1(η∗−)− ψ1(η∗+) ρ0

)
= β(1 + ρ2

0).

Equation (11) implies that

(13) −ψ1(η∗−) + ψ1(η∗+) ρ0 =
∫

R
|A1/2ψ1|2 + iβ

∫
R
|ψ1|2 ,

so that

Im
(
ψ1(η∗−)− ψ1(η∗+) ρ0

)
= β

∫
R
|ψ1|2 .

Hence we have

(14)
∫

R
|ψ1|2 =

1
τ∗

(1 + ρ2
0) .

From (11), we now can then calculate û(η∗±) as
∫

R(A+iβ)û ψ1 = −û(η∗−)+ û(η∗+)ρ0 ,
which together with (9), (10) and (14) implies that

λ̂

∫
ψ2

1 + i β η̂+

∫
G(x, η∗+)ψ1(x)dx = û(η∗−)− û(η∗+)ρ0

= λ̂
1 + ρ2

0

τ∗
− ψ0(η∗+)η̂+ = λ̂

∫
R
|ψ1|2 − ψ0(η∗+)η̂+ .

Since from (11)

iβ

∫
G(x, η∗+)ψ1(x)dx = −

∫
Aψ1(x)G(x, η∗+)dx

−G(η∗−, η
∗
+) +G(η∗+, η

∗
+) ρ0 = −ψ0(η∗+),
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and thus iβ
∫
G(x, η∗+)ψ1(x)dx = −ψ0(η∗+). Hence we have

λ̂
( ∫

R
(ψ1

2 − |ψ1|2 )
)

= 0

which implies that λ̂ = 0.
In order to show that û = 0 and η̂+ = 0 we multiply û and G(·, η∗+) to (10),

then we obtain∫
|A1/2û|2 + iβ

∫
|û|2 = −iβ η̂+

∫
G(x, η∗+) û(x)dx

= −û(η∗+) η̂+ + i β (η̂+)2
∫
G2(x, η∗+)dx

=
(
iβ

∫
G2(x, η∗+)dx+ γη+ −

iβ
τ∗

)
(η̂+)2

which implies that

(15)
∫
|û|2 +

( 1
τ∗

−
∫
G2(x, η∗+)dx

)
(η̂+)2 = 0.

From (12) and (13) µ+1
τ∗ (1 + ρ2

0) = (G(η∗+, η
∗
+) + γη+)(1 + ρ2

0), which together with
(15) implies that∫

|û|2 +
(G (η∗+, η

∗
+) + γη+

µ+ 1
−

∫
G2(x, η∗+)dx

)
(η̂+)2 = 0.

This is equivalent to the equation∫
|û|2 +

γη+

µ+ 1
(η̂+)2 = 0.

So we conclude that û = 0 and η̂+ = 0.
We have shown (8), and thus get a C1-curve τ 7→ (φ(τ), λ(τ)) of eigendata such

that φ(τ∗) = φ∗ and λ(τ∗) = iβ.
It remains to be shown that the transversality condition Reλ′(τ∗) 6= 0 holds.

Implicit differentiation of E(ψ0(τ), η+(τ), λ(τ), τ) = 0 implies that

D(u,η+,λ)E(ψ0, ρ0, iβ, τ
∗)(ψ′0(τ

∗), η+′ (τ∗), λ′(τ∗))

=


(
ψ0(η∗−) + γη+ (ρ0 − 1 )

)
G(·, η∗−) +

(
ψ0(η∗+) + γη+ (ρ0 − 1)

)
G(·, η∗+)

ψ0(η∗−) + γη+ (ρ0 − 1)

ψ0(η∗+) + γη+ (ρ0 − 1)

 .

This means that the function ũ := ψ′(τ∗), η̃+ := η+
′(τ∗) and λ̃ := λ′(τ∗) satisfy

the equations

(16)


(A+ iβ) ũ+ λ̃ψ1 = −i β η̃+ G(·, η∗+)

λ̃− τ∗( ũ(η∗−) + γη+ η̃+ ) = ψ0(η∗−) + γη+ (ρ0 − 1 )

−λ̃ ρ0 − i β η∗+ − τ∗( ũ(η∗+) + γη+ η̃+) = ψ0(η∗+) + γη+ (ρ0 − 1 )
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where ψ1 := ψ0 −G(·, η∗−) +G(·, η∗+) ρ0. The equations (12) and (16) implies that

(17)
ũ(η∗−) =

λ̃

τ∗
− iβ

τ∗2
− γη+ η̃+

ũ(η∗+) = − λ̃ ρ0

τ∗
−
iβ η∗+
τ∗

+
iβ

(τ∗)2
ρ0 − γη+ η̃+ .

We first show that λ̃ 6= 0. Suppose that λ̃ = 0 in the system (16). Multiplying
ψ1 by (16) and ũ by (11) and then integrating,∫

R(A+ iβ) ũ ψ1 = η̃+ ψ0(η∗+)∫
R(A+ iβ)ψ1 ũ = −(ũ(η∗−)− ũ(η∗+)ρ0)

which implies that
iβ

τ∗2
(1 + ρ2

0) = η̃+
(
ψ0(η∗+) +

iβ

τ∗
ρ0 + γη+(ρ0 − 1)

)
= 0.

This is a contradiction since β(1 + ρ2
0) 6= 0 and hence λ̃ 6= 0.

Multiplying ũ by (11) and integrating, and then comparing with (16), we obtain

(18) λ̃

∫
R
ψ2

1 + i β η̃+

∫
R
G(x, η∗+)ψ1(x) dx = ũ(η∗−)− ũ(η∗+)ρ0 .

Applying the (17), then we have

(19) λ̃
( ∫

(ψ2
1 − |ψ1|2 )

)
= − i β

(τ∗)2
(1 + ρ2

0)

which implies that

(20) Reλ̃
(
Re

∫
ψ2

1 −
∫
|ψ1|2

)
− Imλ̃

(
Im

∫
ψ2

1

)
= 0

and

(21) Imλ̃
(
Re

∫
ψ2

1 −
∫
|ψ1|2

)
+ Reλ̃

(
Im

∫
ψ2

1

)
= − β

(τ∗)2
(1 + ρ2

0 ).

We now suppose that Reλ̃ = 0 in the equation (20). Then we have Im
∫
ψ2

1 = 0
which implies that Reψ1 = 0 or Imψ1 = 0. If Imψ1 = 0 then Re

∫
ψ2

1 =
∫
|ψ1|2

and thus from the equation (21) we have β
(τ∗)2 (1 + ρ2

0 ) = 0. Therefore we have
Reψ1 = 0 and from the equation (12), we obtain

G(η∗−, η
∗
−)(1 + ρ2

0)− 2G(η∗−, η
∗
+)ρ0 − γη+ (1− ρ0)2 = 0

implies that (G(η∗−, η
∗
−)−γη+)(1+ρ2

0) = 0 and this contradicts to Reψ1 = 0. Hence
Reλ̃ 6= 0 and is given by((

Re
∫
ψ2

1 −
∫
|ψ1|2

)2 +
(
Im

∫
ψ2

1

)2
)

Reλ̃ = − β

(τ∗)2
(1 + ρ2

0 )
(
Im

∫
ψ2

1

)
.

Hence the transversality condition holds. �

We shall show that there exists a unique τ∗ such that the linearization−Ã+τ∗B
has a purely imaginary pair of eigenvalues. To do this, we have to show that the
function (u, η+, β, τ) 7→ E(u, η+, iβ, τ) has a unique zero with β > 0 and τ > 0.
This means solving the system (7) with λ = iβ and u = v+G(·, η∗−)−G(·, η∗+) η+ ,

(22) (A+ iβ)v = −δη∗− + δη∗+ · η+
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and
iβ

τ∗
= v(η∗−) +G(η∗−, η

∗
−)−G(η∗−, η

∗
+) η+ + γη+ (η+ − 1)(23)

− iβ
τ∗

η+ = v(η∗+) +G(η∗+, η
∗
−)−G(η∗+, η

∗
+)η+ + γη+ (η+ − 1).(24)

The equation (22) has, for fixed β ≥ 0, the unique solution v = −Gβ(·, η∗−) +
Gβ(·, η∗+)η+ where Gβ is the Green’s function for the operator A + iβ. The real
and imaginary parts of the equation (23) and (24) imply that

(25)


0 = −Re

(
Gβ(η∗−, η

∗
−)(1 + η2

+)− 2Gβ(η∗−, η
∗
+) η+

)
+G(η∗−, η

∗
−)(1 + η2

+)

−2G(η∗−, η
∗
+) η+ − γη+(1− η+)2

β
τ (1 + η2

+) = −Im
(
Gβ(η∗−, η

∗
−)(1 + η2

+)− 2Gβ(η∗−, η
∗
+) η+

)
.

Lemma 4.3. Let Gβ be a Green function of the differential operator A + iβ.
Then the expression Re

(
Gβ(η∗−, η

∗
−)(1+η2

+)−2Gβ(η∗−, η
∗
+) η+

)
is strictly decreasing

in β ∈ R+ with

ReG0(η∗±, η
∗
±) = G(η∗±, η

∗
±), lim

β→∞
ReGβ(η∗±, η

∗
±) = 0 ,

and Im
(
Gβ(η∗−, η

∗
−)(1 + η2

+)− 2Gβ(η∗−, η
∗
+) η+

)
< 0 for any β > 0.

Proof. First we have (A+ iβ)−1 = (A− iβ)(A2 +β2)−1, so if L(β) := Re (A+
iβ)−1 and T (β) := Im (A+ iβ)−1, then

L(β) = A(A2 + β2)−1 and T (β) = −β(A2 + β2)−1 .

Since (A2 +β2)−1 is a positive operator, it follows that −T (β) is positive for β > 0,
which implies that Im

(
Gβ(η∗−, η

∗
−)(1 + η2

+) − 2Gβ(η∗−, η
∗
+) η+

)
< 0. Moreover,

L(β) −→ A−1 as β → 0 and L(β) −→ 0 as β → ∞, which results in the corre-
sponding limiting behavior for Re(Gβ(η∗±, η

∗
±)).

Now to show that β 7→ Re
(
Gβ(η∗−, η

∗
−)(1 + η2

+) − 2Gβ(η∗−, η
∗
+) η+

)
is strictly

decreasing, define h(β)(x) := Gβ(x, η∗−) − Gβ(x, η∗+) η+ − G(x, η∗−) + G(x, η∗+) η+.
Then (in the weak sense at first)

(A+ iβ)h(β) = −iβ (G(·, η∗−)−G(·, η∗+) η+).

As a result h(β) ∈ D(A)C and h : R+ → D(A)C is differentiable with ih(β) + (A+
iβ)h′(β) = −i

(
G(·, η∗−)−G(·, η∗+)η+

)
, therefore

(A+ iβ)h′(β) = −i
(
Gβ(·, η∗−)−Gβ(·, η∗+) η+

)
.

We thus get

−i
(
h′(β)(η∗−)− h′(β)(η∗+) η+

)
=

∫
R
(A+ iβ)2h′(β)h′(β)(x) dx

=
∫

R
(A+ iβ)h′(β) · (A+ iβ)h′(β) dx

=
∫

R
|Ah′(β)|2 − β2|h′(β)|2 dx+ 2iβ

∫
R
Ah′(β)h′(β) dx .
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It follows that

Re
(
h′(β)(η∗−)− h′(β)(η∗+) η+

)
= −2β

∫
R
|A1/2h′(β)|2 < 0

and thus

Re
(
h′(β)(η∗−)− h′(β)(η∗+) η+

)
= Re

(
G′β(η∗−, η

∗
−)(1 + η2

+)− 2G′β(η∗−, η
∗
+) η+

)
< 0.

�

Theorem 4.4. Assume 0 < 1
2 − a0 + µκ

µ+1 <
1

2(µ+1) , then for a unique critical
point τ∗ > 0, there exists a unique, purely imaginary eigenvalue λ = iβ of (7) with
β > 0.

Proof. From the equation (25) we now define

K(β) := −Re
(
Gβ(η∗−, η

∗
−)(1 + η2

+)− 2Gβ(η∗−, η
∗
+) η+

)
+G(η∗−, η

∗
−)(1 + η2

+)
−2G(η∗−, η

∗
+) η+ − γη+(1− η+)2.

Then we have K(0) = −γη+(1 − η+)2 < 0 and lim
β→∞

K(β) = G(η∗−, η
∗
−)(1 + η2

+) −

2G(η∗−, η
∗
+) η+−γη+(1−η+)2 = (G(η∗−, η

∗
−)−γη+)(1+η+)2 > 0. Moreover, K ′(β) >

0 by Lemma 4.3. Therefore, there exists a unique β and from this β the unique
τ∗ > 0 can be found using (25). �

The main result of effects on the inhomogeneity states as follows:

Theorem 4.5. Assume that 0 < 1
2 − a0 + µκ

µ+1 <
1

2(µ+1) . Then (3), respectively
(2), has at least one stationary solutions (u∗, η∗−, η

∗
+) where u∗ = 0, respectively

(v∗, η∗−, η
∗
+) for all τ . Then there exists a unique τ∗ such that the linearization

−Ã+ τ∗B has a purely imaginary pair of eigenvalues. The point (0, η∗−, η
∗
+, τ

∗) is
then a Hopf point for (3) and there exists a C0-curve of nontrivial periodic orbits for
(3), respectively (2), bifurcating from (0, η∗−, η

∗
+, τ

∗), respectively (v∗, η∗−, η
∗
+, τ

∗).
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