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Abstract. We prove dispersive estimates for Schrödinger equations in three
dimensions without making any assumptions on zero energy.
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1. Introduction

Consider the Schrödinger operator H = −∆ + V in R3, where V is a real-valued
potential. Let Pac be the orthogonal projection onto the absolutely continuous
subspace of L2(R3) which is determined by H . In [JouSofSog], [Yaj1], [RodSch],
[GolSch] and [Gol], L1(R3) → L∞(R3) dispersive estimates for the time evolution
eitHPac were investigated under various decay assumptions on the potential V and
the assumption that zero is neither an eigenvalue nor a resonance of H . Recall
that zero energy is a resonance iff there is f ∈ L2,−σ(R3) \ L2(R3) for all σ > 1

2

so that Hf = 0. Here L2,−σ = 〈x〉σL2 are the usual weighted L2 spaces and

〈x〉 := (1 + |x|2)
1
2 .
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In the first part of this paper we investigate dispersive estimates when there is a reso-
nance at energy zero. It is well-known, see Rauch [Rau], Jensen and Kato [JenKat],

and Murata [Mur], that the decay in that case is t−
1
2 . Moreover, these authors

derived expansions of the evolution into inverse powers of time in weighted L2(R3)
spaces. Here, we obtain such expansions with respect to the L1 → L∞ norm, albeit

only in terms of the powers t−
1
2 and t−

3
2 . Our results will require decay of the form

|V (x)| ≤ C〈x〉−β ,(1)

for some β > 0. Our goal was brevity rather than optimality. In particular, it
was not our intention to obtain the minimal value of β, and our results can surely
be improved in that regard. Our first result is for the case when zero is only a
resonance, but not an eigenvalue.

Theorem 1. Assume that V satisfies (1) with β > 10 and assume that there
is a resonance at energy zero but that zero is not an eigenvalue. Then there is a
time dependent rank one operator Ft (see (28) below) such that

∥∥∥eitHPac − t−1/2Ft

∥∥∥
1→∞

≤ Ct−3/2,

for all t > 0 and Ft satisfies

sup
t

‖Ft‖L1→L∞ <∞, lim sup
t→∞

‖Ft‖L1→L∞ > 0.(2)

The following case allows for any combination of resonances and/or eigenvalue

at energy zero. It is important to note that the t−
3
2 bound is destroyed by an

eigenvalue at zero, even if zero is not a resonance and even after projecting the zero
eigenfunction away (this was discovered by Jensen and Kato [JenKat]).

Theorem 2. Assume that V satisfies (1) with β > 10 and assume that there is
a resonance at energy zero and/or that zero is an eigenvalue. Then there is a time
dependent operator Ft such that

sup
t

‖Ft‖L1→L∞ <∞,
∥∥∥eitHPac − t−1/2Ft

∥∥∥
1→∞

≤ Ct−3/2.

In all cases, the operators Ft can be given explicitly, and they can of course be ex-
tracted from our proofs. The methods of this paper also apply to matrix Schrödinger
operators, as considered for example in Cuccagna [Cuc] or [Sch]. Details of this
will be given elsewhere.

2. Scalar case

Let Kλ0 be the operator with kernel

Kλ0(x, y) =
1

πi

∫ ∞

0

eitλ2

λχλ0 (λ)[R
+
V (λ2) −R−

V (λ2)](x, y)dλ,

where
R±

V (λ2) = RV (λ2 ± i0) = (H − (λ2 ± i0))−1

is the perturbed resolvent. By the limiting absorption principle, these boundary
values are bounded operators on weighted L2-spaces, see e.g. [Agm]. Here χ is an
even smooth function supported in [−1, 1] and χ(x) = 1 for |x| < 1/2; χλ0(λ) =
χ(λ/λ0). The high energies were studied in [GolSch]:
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Theorem 3. [GolSch] Assume that V satisfies (1) with some β > 3, then for
any λ0 > 0 ∥∥eitHPac −Kλ0

∥∥
1→∞

≤ Cλ0t
−3/2.

Hence, in the proof of Theorem 1 and Theorem 2, it suffices to consider the operator
Kλ0 for some λ0. One can rewrite the kernel of Kλ0 as

Kλ0(x, y) =
1

πi

∫ ∞

−∞

eitλ2

λχλ0(λ)RV ((λ+ i0)2)(x, y)dλ,(3)

Note that R((λ+ i0)2)(x, y) is not an even function of λ; rather, we have

RV ((λ+ i0)2)(x, y) = RV ((−λ+ i0)2) (x, y).

2.1. Resolvent expansions at zero energy. In this section, following [JenNen],
we obtain resolvent expansions at the threshold λ = 0 in the presence of a reso-
nance. This is of course similar to Jensen and Kato [JenKat], but we prefer to
work with the L2-based approach from [JenNen]. For j = 0, 1, 2, ..., let Gj be the
operator with the kernel

Gj(x, y) =
1

4πj!
|x− y|j−1.

Recall that for each J = 0, 1, 2, ...,

R0(λ
2) =

J∑

j=0

(iλ)jGj + o(λJ ), as λ→ 0.(4)

This expansion is valid in the space, HSL2,σ→L2,−σ , of Hilbert-Schmidt operators
between L2,σ and L2,−σ for σ > max((2J + 1)/2, 3/2).

Let U(x) = 1 if V (x) ≥ 0 and U(x) = −1 if V (x) < 0, v = |V |1/2 and w = vU . We
have

V = Uv2 = wv.

We use the symmetric resolvent identity, valid for ℑλ > 0:

RV (λ2) = R0(λ
2) −R0(λ

2)vA(λ)−1vR0(λ
2),(5)

where

A(λ) = U + vR0(λ
2)v = (U + vG0v) + λ

v[R0(λ
2) −G0]v

λ
(6)

=: A0 + λA1(λ).

A1(λ) has the kernel

A1(λ)(x, y) =
1

λ
v(x)

eiλ|x−y| − 1

4π|x− y|
v(y),

|A1(λ)(x, y)| ≤
1

4π
|v(x)| |v(y)|.

Therefore, A1(λ) ∈ HS := HSL2→L2 provided 〈x〉
3
2 +v(x) ∈ L∞. Also note that

A1(0) = ivG1v =
iα

4π
Pv, α = ‖V ‖1,

where Pv is the orthogonal projection onto span(v). It is important to realize that
A(λ) has a natural meaning for λ ∈ R via the limit R + i0.
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First, we consider the expansions of A(λ)−1 for λ close to zero as in [JenNen]. The
following lemma (Corollary 2.2 in [JenNen]) is our main tool. Note the similarity
between (7) and the symmetric resolvent identity.

Lemma 4. [JenNen] Let F ⊂ C \ {0} have zero as an accumulation point. Let
A(z), z ∈ F , be a family of bounded operators of the form

A(z) = A0 + zA1(z)

with A1(z) uniformly bounded as z → 0. Suppose that 0 is an isolated point of
the spectrum of A0, and let S be the corresponding Riesz projection. Assume that
rank(S) <∞. Then for sufficiently small z ∈ F the operators

B(z) :=
1

z
(S − S(A(z) + S)−1S)

are well-defined and bounded on H. Moreover, if A0 = A∗
0, then they are uniformly

bounded as z → 0. The operator A(z) has a bounded inverse in H if and only if
B(z) has a bounded inverse in SH, and in this case

A(z)−1 = (A(z) + S)−1 +
1

z
(A(z) + S)−1SB(z)−1S(A(z) + S)−1.(7)

Proof. It is a standard fact that

Ran(S) ⊃

∞⋃

n=1

ker(An
0 ).

By our assumption rank(S) < ∞ we have equality here, and (A0 + S)−1 has a
bounded inverse. Hence, A(z) + S also has a bounded inverse for small z, as can
be seen from the usual Neuman series. Therefore, B(z) is well-defined for small z
and bounded. Moreover, if A0 is self-adjoint, then

S − S(A0 + S)−1S = 0

which implies that B(z) = O(1) as z → 0. Suppose B(z) is invertible on SH.
Denote the right-hand side of (7) by T (z). Then

T (z)A(z) = A(z)T (z)

= I +
1

z
SB(z)−1S(A(z) + S)−1 − S(A(z) + S)−1

−
1

z
S(A(z) + S)−1SB(z)−1S(A(z) + S)−1

= I +
1

z
SB(z)−1S(A(z) + S)−1 − S(A(z) + S)−1

−
1

z
(S − zB(z))B(z)−1S(A(z) + S)−1 = I.

Conversely, suppose that A(z) is invertible. Define

D(z) := z(S + SA(z)−1S) = z(A(z) + S)[A(z)−1 − (A(z) + S)−1](A(z) + S).

Then

B(z)D(z) = D(z)B(z)

= S + SA(z)−1S − S(A(z) + S)−1S − S(A(z) + S)−1SA(z)−1S

= S + S(A(z) + S)−1SA(z)−1S − S(A(z) + S)−1SA(z)−1S = S,

so that D(z) is the inverse of B(z) on SH. �
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Note that A0 as in (6) is a compact perturbation of U and that the essential
spectrum of U is contained in {−1, 1}. Moreover, A0 is self adjoint. Therefore,
0 is an isolated point of the spectrum of A0 and dim(kerA0) < ∞. Let S1 be
the corresponding Riesz projection. Since A0 is self adjoint, S1 is the orthogonal
projection onto the kernel of A0 and we have

S1 = (A0 + S1)
−1S1 = S1(A0 + S1)

−1.(8)

Remark 1. By the resolvent identity we have

(A0 + S1)
−1 = U − (A0 + S1)

−1(vG0v + S1)U.

Since |V (x)| . 〈x〉−3− and S1 is a finite rank operator, we have (vG0v+S1)U ∈ HS,
and hence (A0 +S1)

−1 is the sum of U and a Hilbert-Schmidt operator. Therefore,
the operator with kernel |(A0 + S1)

−1(x, y)| is bounded in L2. This remark will be
useful below when we consider dispersive estimates.

We choose λ0 > 0 sufficiently small so that A(λ) + S1 is invertible for |λ| < λ0.
Using Lemma 4, we see that, for |λ| < λ0, A(λ) is invertible if and only if

m(λ) =
S1 − S1 (A(λ) + S1)

−1
S1

λ

is invertible on S1L
2 and in this case

A(λ)−1 = (A(λ) + S1)
−1 +

1

λ
(A(λ) + S1)

−1S1m(λ)−1S1(A(λ) + S1)
−1.(9)

If λ0 is sufficiently small, then

(A(λ) + S1)
−1

= (A0 + S1)
−1 +

∞∑

k=1

(−1)kλk(A0 + S1)
−1

(
A1(λ)(A0 + S1)

−1
)k
.

Plugging this into the definition of m(λ) and using (8), we obtain

m(λ) = S1A1(λ)S1 +

∞∑

k=1

(−1)kλkS1

(
A1(λ)(A0 + S1)

−1
)k+1

S1

= m(0) + λm1(λ),

where

m(0) = S1A1(0)S1 =
iα

4π
S1PvS1,

m1(λ) = S1
A1(λ) −A1(0)

λ
S1 +

∞∑

k=1

(−1)kλkS1

(
A1(λ)(A0 + S1)

−1
)k+1

S1.(10)

If m(0) is invertible in S1L
2, then we can invert m(λ) for small λ using Neuman

series and hence obtain an expansion for A(λ)−1. Since m(0) has rank one, this
can only occur if rank(S1) = 1.

Otherwise, let S2 : S1L
2 → S1L

2 be the orthogonal projection onto the kernel of
m(0) where the latter operates on S1L

2. As above, m(λ) +S2 is invertible in S1L
2

for |λ| < λ0 (we choose a smaller λ0 if necessary), and

S2 = S2(m(0) + S2)
−1 = (m(0) + S2)

−1S2.(11)
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Lemma 4 asserts that m(λ) is invertible on S1L
2 if and only if

b(λ) =
S2 − S2 (m(λ) + S2)

−1
S2

λ

is invertible on S2L
2 and

m(λ)−1 = (m(λ) + S2)
−1 +

1

λ
(m(λ) + S2)

−1 S2b(λ)
−1S2 (m(λ) + S2)

−1 .(12)

Note that

(m(λ) + S2)
−1 = (m(0) + S2)

−1 +
∞∑

k=1

(−1)kλk(m(0) + S2)
−1

(
m1(λ)(m(0) + S2)

−1
)k
.

Plugging this into the definition of b(λ) and using (11), we obtain

b(λ) = S2m1(λ)S2 +

∞∑

k=1

(−1)kλkS2

(
m1(λ)(m(0) + S2)

−1
)k+1

S2

=: b(0) + λb1(λ),

where b(0) = S2m1(0)S2 and
(13)

b1(λ) =
S2[m1(λ) −m1(0)]S2

λ
+

1

λ

∞∑

k=1

(−1)kλkS2

(
m1(λ)(m(0) + S2)

−1
)k+1

S2.

A simple calculation using (4) (with J = 2) and S2S1 = S1S2 = S2 shows that

(14) b(0) = −S2vG2vS2.

Since G2 ∈ HSL2,σ→L2,−σ for σ > 5/2, we have b(0) ∈ HS if |V (x)| . 〈x〉−5−ε.

Below, we characterize the spaces S1L
2, S2L

2 and also prove that b(0) is always
invertible on S2L

2. Therefore, for small λ, b(λ) is invertible. This proves that A(λ)
is invertible for 0 < |λ| < λ0. Using (9) and (12), we obtain

A(λ)−1 = Γ1(λ)(15)

+
1

λ
Γ1(λ)S1Γ2(λ)S1Γ1(λ)

+
1

λ2
Γ1(λ)S1Γ2(λ)S2b(λ)

−1S2Γ2(λ)S1Γ1(λ),

where

Γ1(λ) = (A(λ) + S1)
−1
, and Γ2(λ) = (m(λ) + S2)

−1
.

Note that this formula is also valid in the case S2 = 0.

Lemma 5. Assume |V (x)| . 〈x〉−3−ε. Then f ∈ S1L
2\{0} if and only if

f = wg for some g ∈ L2,− 1
2−\{0} such that

−∆g + V g = 0 in S′.(16)

Proof. First recall that, for g ∈ L2,− 1
2−, (16) holds if and only if

(I +G0V )g = 0,
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see Lemma 2.4 in [JenKat]. Suppose f ∈ S1L
2\{0}. Then

(A0f)(x) = U(x)f(x) +
v(x)

4π

∫
v(y)f(y)

|x− y|
dy = 0

⇒ f(x) +
w(x)

4π

∫
v(y)f(y)

|x− y|
dy = 0.(17)

Let

g(x) = −
1

4π

∫

R3

v(y)f(y)

|x− y|
dy.(18)

Note that g ∈ L2,− 1
2− and f(x) = w(x)g(x) for each x. Moreover, (16) holds since

g(x) = −
1

4π

∫

R3

v(y)f(y)

|x− y|
dy = −

1

4π

∫

R3

V (y)g(y)

|x− y|
dy = −[G0V g](x).

Conversely, assume f = wg for some g as in the hypothesis. Then f ∈ L2,1+ and

A0f(x) = U(x)f(x) +
v(x)

4π

∫
v(y)f(y)

|x− y|
dy

= v(x)g(x) +
v(x)

4π

∫
V (y)g(y)

|x− y|
dy = v(I +G0V )g = 0.

Note that since g is not identically zero, V g 6= 0, and hence f 6= 0. �

By Lemma 5, we see that f ∈ S1L
2 implies f ∈ L2,1+.

Lemma 6. Assume |V (x)| . 〈x〉−3−ε. Then f ∈ S2L
2\{0} if and only if

f = wg for some g ∈ L2\{0} such that

−∆g + V g = 0 in S′.

Proof. Suppose f ∈ S2L
2\{0}. Note that S2L

2 ⊂ S1L
2 and, by Lemma 5,

we have f = wg for some g ∈ L2,− 1
2−\{0} such that −∆g + V g = 0 in S ′. By the

definition of S2, we have

S1Pvf = 0.

Note that S1Pvf = 0 if and only if

S1v = 0 or Pvf = 0.

In the first case, S2 = S1 and Pvf = 0 for any f ∈ S2L
2. We have the same

conclusion in the second case. Thus,
∫

R3

v(y)f(y) dy = 0.

Using this and (18), we obtain

g(x) = −
1

4π

∫

R3

[
1

|x− y|
−

1

1 + |x|

]
v(y)f(y) dy ∈ L2, 12−.

This is because ∣∣∣∣
1

|x− y|
−

1

1 + |x|

∣∣∣∣ ≤
1 + |y|

|x− y|(1 + |x|)
(19)

and f ∈ L2,1+.
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Conversely, assume f = wg for some g as in the hypothesis. Then

g(x) = −
1

4π

∫

R3

[
1

|x− y|
−

1

1 + |x|

]
v(y)f(y) dy −

1

4π(1 + |x|)

∫

R3

v(y)f(y) dy.

By (19) the first summand is in L2. Therefore
[∫

R3

v(y)f(y) dy

]
1

1 + | · |
∈ L2(R3).

Thus,
∫
v(y)f(y) dy = 0 and f ∈ S2L

2\{0}. �

Lemma 7. Assume |V (x)| . 〈x〉−5−ε. Then, as an operator in S2L
2, the kernel

of b(0) is trivial.

Proof. Assume that for some f ∈ S2L
2, b(0)f = 0, i.e.,

〈G2vf, vf〉 = 0.

From the proof of Lemma (6), we have
∫

R3

f(y)v(y)dy = 0.

Using this and (4) (with J = 2), we obtain

0 = 〈G2vf, vf〉

= lim
λ→0

〈
R0(λ

2) −G0

λ2
vf, vf

〉

= lim
λ→0

1

λ2

∫ (
(ξ2 + λ2)−1 − ξ−2

)
v̂f(ξ)v̂f (ξ)dξ

= lim
λ→0

∫
1

ξ2(ξ2 + λ2)
|v̂f(ξ)|2dξ

=

∫
|v̂f(ξ)|2

ξ4
dξ (by the Monot. Conv. Thm.)

= 〈R0(0)vf,R0(0)vf〉 ⇒ v̂f = 0 ⇒ vf = 0.

Using this in (17), we obtain f = 0. �

2.2. Dispersive estimate when zero is not an eigenvalue. In this section,
we prove Theorem 1. When zero is not an eigenvalue, S2 = 0 and (15) reduces to

A(λ)−1 = (A(λ) + S1)
−1 +

1

λ
(A(λ) + S1)

−1S1m(λ)−1S1(A(λ) + S1)
−1,(20)

where

(A(λ) + S1)
−1

= (A0 + S1)
−1 +

∞∑

k=1

(−1)kλk(A0 + S1)
−1

[
A1(λ)(A0 + S1)

−1
]k

=: (A0 + S1)
−1 + λE1(λ),

m(λ)−1 = m(0)−1 +
∞∑

k=1

(−1)kλkm(0)−1
[
m1(λ)m(0)−1

]k
(21)

=: m(0)−1 + λE2(λ).
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Thus, using (8), we obtain

A(λ)−1 =
1

λ
S1m(0)−1S1(22)

+ (A(λ) + S1)
−1

+ E1(λ)S1m(λ)−1S1 (A(λ) + S1)
−1

+ (A(λ) + S1)
−1
S1E2(λ)S1 (A(λ) + S1)

−1

+ (A(λ) + S1)
−1 S1m(λ)−1S1E1(λ)

=:
1

λ
S + E(λ).

Note that S is a rank one operator. Plugging (22) into (5), we have

RV (λ2) = −
1

λ
R0(λ

2)vSvR0(λ
2)

+R0(λ
2) −R0(λ

2)vE(λ)vR0(λ
2).

Using this in (3), we get

Kλ0(x, y) = K1(x, y) +K2(x, y) −K3(x, y),

where

K1(x, y) =
−i

16π3

∫ ∞

−∞

∫

R6

eitλ2

χλ0(λ)
eiλ(|x−u1|+|y−u2|)

|x− u1||y − u2|
v(u1)S(u1, u2)v(u2)du1du2dλ,

K2(x, y) =

∫ ∞

−∞

eitλ2

λχλ0(λ)R0(λ
2)(x, y)dλ

K3(x, y) =

∫ ∞

−∞

eitλ2

λχλ0(λ)[R0(λ
2)vE(λ)vR0(λ

2)](x, y)dλ.

(23)

First, we deal with K1. Note that

K1(x, y) =

(24)

−i

16π3

∫

R6

∫ ∞

−∞

eitλ2

χλ0(λ)
cos(λ(|x − u1| + |y − u2|))

|x− u1||y − u2|
v(u1)S(u1, u2)v(u2)du1du2dλ.
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We have

∫ ∞

−∞

t1/2eitλ2

χλ0(λ) cos(λa)dλ =

∫ ∞

−∞

(
t1/2eit(·)2

)∨

(u)(χλ0(·) cos(·a))
∧
(u)du

(25)

= c

∫ ∞

−∞

eiu2/4t(χ̂λ0 (u+ a) + χ̂λ0(u − a))du

= c

∫ ∞

−∞

ei(u2+a2)/4t cos(
ua

2t
)χ̂λ0(u)du

= c

∫ ∞

−∞

ei(u2+a2)/4tχ̂λ0(u)du

+ c

∫ ∞

−∞

ei(u2+a2)/4t(cos(
ua

2t
) − 1)χ̂λ0(u)du

=: C1(t, a) + C2(t, a).

Using this in (24), we obtain

K1(x, y) =
−it−1/2

16π3

∫

R6

C1(t, |x− u1| + |y − u2|)

|x− u1||y − u2|
v(u1)S(u1, u2)v(u2)du1du2

+
−it−1/2

16π3

∫

R6

C2(t, |x− u1| + |y − u2|)

|x− u1||y − u2|
v(u1)S(u1, u2)v(u2)du1du2

=: K11(x, y) +K12(x, y).

Note that

|C2(t, a)| ≤ c
|a|

t
.

Thus,

|K12(x, y)| ≤ ct−3/2

∫

R6

(
1

|x− u1|
+

1

|y − u2|

)
|v(u1)||v(u2)||S(u1, u2)|du1du2

(26)

. t−3/2

[∥∥∥∥
v(·)

|x− ·|

∥∥∥∥
2

+

∥∥∥∥
v(·)

|y − ·|

∥∥∥∥
2

]
‖|S|‖2→2‖v‖2

. t−3/2.

The last inequality follows from the fact that S is a rank one operator and the
following calculation which holds for v ∈ L2 ∩ L∞;

∥∥∥∥
|v(·)|

|x− ·|

∥∥∥∥
2

2

=

∫

|x−u|<1

|v(u)|2

|x− u|2
du+

∫

|x−u|>1

|v(u)|2

|x− u|2
du(27)

.

∫

|u|<1

1

|u|2
du+

∫

R3

|v(u)|2du . 1.

Now, we consider K11. Note that

C1(t, a) = eia2/4th(t),
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where h(t) is a smooth function which converges to c as t tends to ∞. We have

K11(x, y) =
−ih(t)

16π3t1/2

∫

R6

ei|x−u1|
2/4tei|y−u2|

2/4t

|x− u1||y − u2|
v(u1)S(u1, u2)v(u2)du1du2

−
ih(t)

16π3t1/2

∫

R6

e
i(|x−u1|+|y−u2|)2

4t − e
i(|x−u1|2+|y−u2|2)

4t

|x− u1||y − u2|
v(u1)S(u1, u2)v(u2)du1du2

=: t−1/2Ft(x, y) +K112(x, y).

(28)

Since S is a rank one operator, for each t, Ft is a rank one operator. Also note that
by a calculation similar to (26), we obtain supt,x,y |Ft(x, y)| . 1. Finally, Ft 6= 0
for all t, and limt→∞ Ft exists in the weak sense and does not vanish:

lim
t→∞

〈Ftf, g〉 =
−ic

16π3

∫

R12

f(x)ḡ(y)

|x− u1||y − u2|
v(u1)S(u1, u2)v(u2) du1du2 dxdy

for any f, g ∈ S. By a similar calculation, the term K112 is dispersive since

∣∣∣ei(|x−u1|+|y−u2|)
2/4t − ei(|x−u1|

2+|y−u2|
2)/4t

∣∣∣ .
|x− u1||y − u2|

t
.

K2 is the low energy part of the free evolution and hence it is dispersive. The rest
of this section is devoted to the proof of

(29) sup
x,y

|K3(x, y)| . t−3/2.

Denote
d

dλ

(
χλ0(λ)R0(λ

2)vE(λ)vR0(λ
2)

)

by Fx,y(λ). By integration by parts we obtain

K3(x, y) =
1

2it

∫ ∞

−∞

eitλ2

Fx,y(λ)dλ.

Using Parseval’s formula, we obtain

(30) K3(x, y) =
c

t3/2

∫ ∞

−∞

eiξ2/4tF̂x,y(ξ)dξ.

Thus, it suffices to prove that

sup
x,y

‖F̂x,y‖L1 <∞.(31)

Recall that

Fx,y(λ) =

∫

R6

d

dλ

[
χλ0(λ)E(λ)(u1, u2)v(u1)v(u2)

eiλ(|x−u1|+|y−u2|)

|x− u1||y − u2|

]
du1du2.

Let us concentrate on the term where the derivative hits χλ0(λ)E(λ) (the term
where the derivative hits the exponential is similar):

F̃x,y(λ) =

∫

R6

[χλ0(λ)E(λ)]′(u1, u2)v(u1)v(u2)
eiλ(|x−u1|+|y−u2|)

|x− u1||y − u2|
du1du2.
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Note that

‖ ̂̃Fx,y(ξ)‖L1 =

∫ ∞

−∞

∣∣∣∣
∫

R6

̂(χλ0E)′(ξ + |x− u1| + |y − u2|)(u1, u2)

v(u1)v(u2)

|x− u1||y − u2|
du1du2

∣∣∣∣dξ

≤

∫

R6

∫ ∞

−∞

∣∣∣ ̂(χλ0E)′(ξ + |x− u1| + |y − u2|)(u1, u2)
∣∣∣

|v(u1)||v(u2)|

|x− u1||y − u2|
dξdu1du2

=

∫

R6

∫ ∞

−∞

∣∣∣ ̂(χλ0E)′(ξ)(u1, u2)
∣∣∣ |v(u1)||v(u2)|

|x− u1||y − u2|
dξdu1du2

≤

∥∥∥∥
|v(·)|

|x− ·|

∥∥∥∥
2

∥∥∥∥
|v(·)|

|y − ·|

∥∥∥∥
2

∫ ∞

−∞

∥∥∥
∣∣∣ ̂(χλ0E)′(ξ)

∣∣∣
∥∥∥

L2→L2
dξ

.

∫ ∞

−∞

∥∥∥
∣∣∣ ̂(χλ0E)′(ξ)

∣∣∣
∥∥∥

L2→L2
dξ.

The second line follows from Minkowski’s inequality and Fubini’s theorem, the third
line follows from a change of variable, and the last line follows from the calculation
(27). Therefore, for F̃x,y, (31) follows from

(32)

∫ ∞

−∞

∥∥∥
∣∣∣ ̂(χλ0E)′(ξ)

∣∣∣
∥∥∥

L2→L2
dξ <∞.

We shall use the following elementary lemma.

Lemma 8. For each λ ∈ R, let F1(λ) and F2(λ) be bounded operators from
L2(R3) to L2(R3) with kernels K1(λ) and K2(λ). Suppose that K1,K2 both have
compact support in λ and that Kj(·)(x, y) ∈ L1(R) for a.e. x, y ∈ R3. Let F (λ) =
F1(λ) ◦ F2(λ) with kernel K(λ). Then

∫ ∞

−∞

∥∥∥
∣∣∣K̂(ξ)

∣∣∣
∥∥∥

2→2
dξ ≤

[∫ ∞

−∞

∥∥∥
∣∣∣K̂1(ξ)

∣∣∣
∥∥∥

2→2
dξ

] [∫ ∞

−∞

∥∥∥
∣∣∣K̂2(ξ)

∣∣∣
∥∥∥

2→2
dξ

]
.

Proof. Without loss of generality we can assume that the right hand side is
finite. Note that

∥∥∥
∫ ∞

−∞

|K̂j(ξ)|dξ
∥∥∥

2→2
≤

∫ ∞

−∞

∥∥∣∣K̂j(ξ)
∣∣∥∥

2→2
dξ <∞, j = 1, 2.

This implies that
∫ ∞

−∞

|K̂j(ξ)(x, y)|dξ <∞, j = 1, 2,

∫

R3

∫

R2

|K̂1(ξ)(x, x1)||K̂2(η)(x1, y)| dξdηdx1 <∞(33)

sup
λ∈R

∫

R3

|K1(λ)(x, x1)K2(λ)(x1, y)| dx1 <∞(34)

for a.e. x, y ∈ R3. By definition, for a.e. x1, x3 ∈ R3,

K(λ)(x1, x3) =

∫

R3

K1(λ)(x1, x2)K2(λ)(x2, x3) dx2
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and K(·)(x1, x3) ∈ L∞(R) ∩ L1(R) by (34) and the compact support assumption
in λ. Moreover, for a.e. ξ ∈ R,

(35) K̂(ξ)(x1, x3) =

∫

R3

∫ ∞

−∞

K̂1(ξ − η)(x1, x2)K̂2(η)(x2, x3) dηdx2.

To see this final identity, denote the right-hand side by F (ξ;x1, x3). Then F (·;x1, x3) ∈
L1(R) for a.e. choice of x1, x3 by (33), and

∫ ∞

−∞

e2πiξF (ξ;x1, x3) dξ =

∫ ∞

−∞

∫

R3

∫ ∞

−∞

e2πi(ξ−η)

K̂1(ξ − η)(x1, x2)e
2πiηK̂2(η)(x2, x3) dηdx2dξ

=

∫

R3

K1(λ)(x1, x2)K2(λ)(x2, x3) dx2dλ.

The final equality sign here follows by Fubini and since K̂j(·)(x, y) ∈ L1(R) for
a.e. choice of x, y by (33). Hence, (35) holds by uniqueness of the Fourier transform.
The lemma now follows by putting absolute values inside of (35) and duality. �

Note that d
dλ [χλ0(λ)E(λ)] is a sum of operators each of which is a composition

of operators from the list below (here χ(λ) is a suitably chosen smooth cutoff
supported in [−λ0, λ0]):

F1(λ) = χ(λ)(A(λ) + S1)
−1,

F2(λ) = χ(λ)E1(λ),

F3(λ) = χ(λ)S1m(λ)−1S1,

F4(λ) = χ(λ)S1E2(λ)S1,

and their λ derivatives. Moreover, we leave it to the reader to check that for each of
the combinations that contribute to E(λ) the hypotheses of Lemma 8 are fulfilled.
Therefore, in light of Lemma 8, the following lemma completes the analysis of K3.

Lemma 9. For each of the operators Fj, j = 1, 2, 3, 4 above,
∫ ∞

−∞

∥∥∥
∣∣∣F̂j(ξ)

∣∣∣
∥∥∥

2→2
dξ <∞.

The same statement is valid for their λ derivatives, too.

Proof. We omit the analysis of F1 and F3. Recall that

F2(λ) = χ(λ)E1(λ) = χ(λ)
(A(λ) + S1)

−1
− (A0 + S1)

−1

λ

= χ(λ)
∞∑

k=1

(−1)kλk−1(A0 + S1)
−1

[
A1(λ)(A0 + S1)

−1
]k
.

Let χ1 be a smooth cut off function which is equal to 1 in [−1, 1]. Note that the
support of χ is contained in [−1, 1]. We have

F2(λ) =

∞∑

k=1

(−1)kχ(λ)λk−1(A0 + S1)
−1

[
χ1(λ)A1(λ)(A0 + S1)

−1
]k
.
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Using Lemma 8 and Young’s inequality, we obtain
∫ ∞

−∞

∥∥∥
∣∣∣F̂2(ξ)

∣∣∣
∥∥∥

2→2
dξ ≤(36)

∞∑

k=1

‖ ̂(χ(λ)λk−1)‖L1‖|(A0 + S1)
−1|‖k+1

2→2

[∫ ∞

−∞

‖| ̂(χ1A1)(ξ)|‖2→2dξ

]k

.

By Remark 1, |(A0 + S1)
−1| is bounded on L2. Also note that

‖ ̂(χ(λ)λk−1)‖L1 . ‖(1 + |ξ|) ̂(χ(λ)λk−1)(ξ)‖L2

. ‖χ(λ)λk−1‖2 + ‖
d

dλ
(χ(λ)λk−1)‖2

. λk
0 .(37)

Below, we prove that
∫ ∞

−∞

‖| ̂(χ1A1)(ξ)|‖2→2dξ . 1.(38)

If λ0 is chosen sufficiently small, using (37) and (38) in (36) completes the proof of
the lemma for F2. Recall that

A1(λ)(x, y) = v(x)
eiλ|x−y| − 1

4πλ|x− y|
v(y)

=
1

4πi
v(x)v(y)

∫ 1

0

eiλ|x−y|b db.

Therefore,

̂(χ1A1)(ξ)(x, y) =
1

4πi
v(x)v(y)

∫ 1

0

χ̂1(ξ − |x− y|b) db.

Hence by Schur’s test, we have

∫ ∞

−∞

∥∥∥
∣∣∣χ̂1A1(ξ)

∣∣∣
∥∥∥

2→2
dξ ≤

∫ ∞

−∞

sup
x

∫

R3

∫ 1

0

|χ̂1(ξ − |x− y|b)||v(x)||v(y)|db dy dξ.

(39)

Since χ1 is a Schwarz function, we have (for each N ∈ N)
∫ 1

0

|χ̂1(ξ − |x− y|b)|db .

{
〈x− y〉−1, |ξ| < |x− y|
〈ξ〉−N , |ξ| > |x− y|

(40)

We also have

|v(x)||v(y)| . 〈x〉−β/2〈y〉−β/2 . 〈x− y〉−β/2(41)

Using this inequality and (40) in (39), we obtain

(39) .

∫ ∞

−∞

sup
x

∫

R3

〈x− y〉−β/2

{
〈x − y〉−1, |ξ| < |x− y|
〈ξ〉−N , |ξ| > |x− y|

}
dy dξ

=

∫ ∞

−∞

∫

R3

〈y〉−β/2

{
〈y〉−1, |ξ| < |y|
〈ξ〉−N , |ξ| > |y|

}
dy dξ

<∞

provided β > 6, i.e. |V (x)| . 〈x〉−6−. To see the last inequality, fix ξ and consider
the integral in y in the regions {|y| < |ξ|} and {|y| > |ξ|} separately.
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Next, we consider F4:

F4(λ) = χ(λ)S1E2(λ)S1 = χ(λ)S1

∞∑

k=1

(−1)kλk−1m(0)−1
[
m1(λ)m(0)−1

]k
S1.

Arguing as in the case of F2, it suffices to prove that

(42)

∫ ∞

−∞

‖| ̂(χ1m1)(ξ)|‖2→2dξ . 1,

where χ1 is a smooth cut off function which is equal to 1 in the support of χ (i.e.
in [−λ0, λ0]) and which is supported in [−λ1, λ1]. Recall that

m1(λ) = S1
A1(λ) −A1(0)

λ
S1 +

∞∑

j=1

S1(−1)jλj−1
(
A1(λ)(A0 + S1)

−1
)j+1

S1.

The second summand can be analyzed as above (here λ1 is chosen sufficiently small
to guarantee the convergence of the series, and than we choose λ0 even smaller).
Now, we consider the first summand. Note that

A2(λ)(x, y) :=
A1(λ) −A1(0)

λ
(x, y)(43)

= v(x)
eiλ|x−y| − iλ|x− y| − 1

λ2|x− y|
v(y)

∫ 1

0

(1 − b)eiλ|x−y|b db.

Therefore, using (40) and (41), we obtain

∣∣∣ ̂χ1S1A2S1(ξ)(x, y)
∣∣∣ =

∣∣∣∣v(x)|x − y|v(y)

∫ 1

0

(1 − b)χ̂1(ξ − b|x− y|) db

∣∣∣∣

. 〈x− y〉1−β/2

{
〈x− y〉−1, |ξ| < |x− y|
〈ξ〉−N , |ξ| > |x− y|

Using this and Schur’s test as before, we have
∫ ∞

−∞

∥∥∥
∣∣∣ ̂χ1S1A2S1(ξ)

∣∣∣
∥∥∥

2→2
dξ .

∫ ∞

−∞

sup
x

∫

R3

〈x− y〉1−β/2

{
〈x− y〉−1, |ξ| < |x− y|
〈ξ〉−N , |ξ| > |x− y|

}
dy <∞

provided β > 8, i.e. |V (x)| . 〈x〉−8−.

Next, we deal with d
dλFj(λ). Once again we omit the analysis of F1 and F3. Note

that

d

dλ
F2(λ) =

∞∑

k=1

(−1)k d

dλ

(
χ(λ)λk−1

)
(A0 + S1)

−1
[
A1(λ)(A0 + S1)

−1
]k

+
∞∑

k=1

(−1)kχ(λ)λk−1(A0 + S1)
−1×

×

k∑

j=1

[A1(λ)(A0 + S1)
−1]j−1[

d

dλ
A1(λ)(A0 + S1)

−1][A1(λ)(A0 + S1)
−1]k−j



374 M. BURAK ERDOĞAN AND WILHELM SCHLAG

Arguing as above, it suffices to prove that
∫ ∞

−∞

‖| ̂(χ1(A1)′)(ξ)|‖2→2dξ . 1.(44)

Note that

d

dλ
A1(λ)(x, y) = −v(x)

eiλ|x−y| − iλ|x− y|eiλ|x−y| − 1

λ2|x− y|
v(y)

= −v(x)
eiλ|x−y| − iλ|x− y| − 1

λ2|x− y|
v(y) + iv(x)

eiλ|x−y| − 1

λ
v(y)

= −A2(λ) + iÃ1(λ)

These are similar to the terms treated above. Therefore (44) holds provided
|V (x)| . 〈x〉−8−.

Finally, we analyze d
dλF4(λ). In view of the preceding, it suffices to prove that

∫ ∞

−∞

‖| ̂(χ1(A2)′)(ξ)|‖2→2dξ . 1.(45)

We have

d

dλ
A2(λ)(x, y) =v(x)i

eiλ|x−y| − 1

λ2
v(y) − 2v(x)

eiλ|x−y| − iλ|x− y| − 1

λ3|x− y|
v(y)

= − 2v(x)
eiλ|x−y| + 1

2λ
2|x− y|2 − iλ|x− y| − 1

λ3|x− y|
v(y)

+ iv(x)
−iλ|x − y| + eiλ|x−y| − 1

λ2
v(y)

These are treated as before; (45) holds provided |V (x)| . 〈x〉−10−. �

2.3. The general case. We now turn to the proof of Theorem 2. In view
of (5), (14), and (15), the coefficient of the λ−2 power in (5) equals

R0(0)vΓ1(0)S1Γ2(0)S2b(0)−1S2Γ2(0)S1Γ1(0)vR0(0) = −G0vS2[S2vG2vS2]
−1S2vG0.

Lemma 10. The operator G0vS2[S2vG2vS2]
−1S2vG0 equals the orthogonal po-

jection in L2(R3) onto the eigenspace of H = −∆ + V at zero energy.

Proof. Let {ψj}
J
j=1 be an orthonormal basis in Ran(S2). By Lemmas 5 and 6,

ψj + wG0vψj = 0 ∀ 1 ≤ j ≤ J

and we can write ψj = wφj for 1 ≤ j ≤ J where φ2 ∈ L2, and
∫
V φj dx =

∫
vψj dx = 0.

Moreover, the {φj}
J
j=1 are linearly independent and they satisfy

φj +G0V φj = 0

for all 1 ≤ j ≤ J . Since for any f ∈ L2(R3), S2f =
∑J

j=1〈f, ψj〉ψj , we conclude
that

S2vG0f =

J∑

j=1

〈f,G0vψj〉ψj = −

J∑

j=1

〈f, φj〉ψj .
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Let A = {Aij}
J
i,j=1 denote the matrix of the Hermitian operator

S2vG2vS2 =
1

8π
S2v(x)|x − y|v(y)S2

relative to the basis {ψj}
J
j=1. Since

∫
R3 vψj dx = 0, the proof of Lemma 7 shows

that

Aij = 〈ψi, S2vG2vS2ψj〉 = 〈G0vψi, G0vψj〉

= 〈G0V φi, G0V φj〉 = 〈φi, φj〉.

Let

Q := G0vS2[S2vG2vS2]
−1S2vG0.

Then for any f ∈ L2(R3),

Qf = −

J∑

j=1

G0vS2[S2vG2vS2]
−1ψj〈f, φj〉

= −
J∑

i,j=1

G0vS2ψi(A
−1)ij〈f, φj〉 =

J∑

i,j=1

φi(A
−1)ij〈f, φj〉.

In particular,

Qφk =

J∑

i,j=1

φi(A
−1)ij〈φk, φj〉 =

J∑

i,j=1

φi(A
−1)ijAjk = φk

for all 1 ≤ k ≤ J . The conclusion is that RanQ = span{φj}
J
j=1, and that Q = Id

on RanQ. Since Q is Hermitian, it is the orthogonal projection onto span{φj}
J
j=1,

as claimed. �

This has the following simple and standard consequence for the spectral measure.

Corollary 11. Let −∞ < λN < λN−1 < . . . < λ1 < λ0 ≤ 0 be the finitely
many eigenvalues of H = −∆ + V . Let Pλj

denote the orthogonal projection in

L2(R3) onto the eigenspace of H corresponding to the eigenvalue λj . Then

(46) eitH =

N∑

j=0

eitλjPλj
+

1

2πi

∫ ∞

0

eitλ[R+
V (λ) −R−

V (λ)] dλ.

Moreover,

(47) R+
V (λ) −R−

V (λ) = OL2(λ−
1
2 )

as λ→ 0+ so that the integral in (46) is absolutely convergent at λ = 0.

Proof. Start from the expression

eitH =
1

2πi

∫ ∞

0

eitλ[RV (λ+ iǫ) −RV (λ− iǫ)] dλ,

which is valid for all ǫ > 0 (via the spectral theorem, for example). The formula (46)
follows by passing to the limit ǫ → 0. Indeed, the projections arise as Cauchy
integrals

Pλj

1

2πi

∮

γj

dz

z − λj
= Pλj
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where γj is a small circle surrounding λj . We need to invoke Lemma 10 in case
λ0 = 0, since it determines the coefficient of the z−1 singularity in the asymptotic
expansion of the resolvent. Once we subtract that singularity, what remains is

O(|z|−
1
2 ), as claimed. �

The point of Lemma 10 and Corollary 11 is really to prove (47), since (46) is of
course obvious. One can also deduce Lemma 10 from the proof of the corollary
starting from (46), since the most singular power z−1 must lead to the projection
onto the eigenspace. However, we have chosen to give these direct proofs.

Proof of Theorem 2. In view of (15),

A(λ)−1 = Γ1(λ)

+
1

λ
Γ1(λ)S1Γ2(λ)S1Γ1(λ)

+
1

λ2
[Γ1(λ)S1Γ2(λ)S2b(λ)

−1S2Γ2(λ)S1Γ1(λ) − S2b(0)−1S2]

+
1

λ2
S2b(0)−1S2.

Inserting this into (5) leads to

RV (λ2) = R0(λ
2) −R0(λ

2)vΓ1(λ)vR0(λ
2)

−
1

λ
R0(λ

2)vΓ1(λ)S1Γ2(λ)S1Γ1(λ)vR0(λ
2)

(48)

−
1

λ2
R0(λ

2)v[Γ1(λ)S1Γ2(λ)S2b(λ)
−1S2Γ2(λ)S1Γ1(λ) − S2b(0)−1S2]vR0(λ

2)

(49)

−
1

λ2
(R0(λ

2) −G0)vS2b(0)−1S2vR0(λ
2) −

1

λ2
G0vS2b(0)−1S2v(R0(λ

2) −G0)

(50)

−
1

λ2
P0.

(51)

The three terms up to and including (48) have already been covered in Subsec-
tion 2.2. Indeed, the only difference here is that we need to incorporate S2 into the
expression (21):

m(λ)−1 = (m(0) + S2)
−1 +

∞∑

k=1

(−1)kλk(m(0) + S2)
−1

[
m1(λ)(m(0) + S2)

−1
]k

=: (m(0) + S2)
−1 + λE2(λ).

The term (51) has been dealt with in Corollary 11. Now, we consider (50). Note
that when we plug RV into (3), then the term corresponding to the first summand in
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(50) is (with the notation S = S2b(0)−1S2, a1 = |y−y1| and a2 = |x−x1|+ |y−y1|)

−1

πi

∫ ∞

−∞

∫

R6

eitλ2

χλ0(λ)
eiλ|x−x1| − 1

λ4π|x − x1|

eiλ|y−y1|

4π|y − y1|
v(x1)S(x1, y1)v(y1)dx1dy1dλ

=
−1

16π3

∫ ∞

−∞

∫

R6

eitλ2

χλ0(λ)
sin(λa2) − sin(λa1)

λ|x− x1||y − y1|
v(x1)S(x1, y1)v(y1)dx1dy1dλ

=
−1

16π3

∫ ∞

−∞

∫

R6

eitλ2

χλ0(λ)

∫ a2

a1

cos(λb)db
v(x1)S(x1, y1)v(y1)

|x− x1||y − y1|
dx1dy1dλ

=: t−1/2F1,t(x, y).

Arguing as in (25), we obtain

|F1,t(x, y)|

= c

∣∣∣∣
∫ ∞

−∞

∫

R6

eiu2/4t

∫ a2

a1

[χ̂λ0(u+ b) + χ̂λ0(u− b)]db
v(x1)S(x1, y1)v(y1)

|x− x1||y − y1|
dx1dy1du

∣∣∣∣

.

∫

R6

∫ a2

a1

∫ ∞

−∞

|χ̂λ0(u+ b) + χ̂λ0(u− b)|
|v(x1)||S(x1, y1)||v(y1)|

|x− x1||y − y1|
du db dx1dy1

. ‖χ̂λ0‖1

∫

R6

|v(x1)||S(x1, y1)||v(y1)|

|y − y1|
dx1dy1

. 1

This inequality holds independently of t, x and y. Therefore,

sup
t

‖F1,t‖L1→L∞ . 1 and lim
t→∞

F1,t(x, y) = c

∫

R6

v(x1)S(x1, y1)v(y1)

|y − y1|
dx1dy1.

The second summand in (50) can be treated similarly.

Now, we consider (49); it can be written as

(49) = λ−1R0(λ
2)vE3(λ)vR0(λ

2)

with

λE3(λ) := −Γ1(λ)S1Γ2(λ)S2b(λ)
−1S2Γ2(λ)S1Γ1(λ) + S2b(0)−1S2.

Clearly, the terms resulting from E3 resemble K3 from (23). However, we do not
have an extra λ at our disposal, which implies that instead of (29) we will only

obtain a t−
1
2 power. The details are as follows: if we plug RV into (3), then the

term corresponding to (49) is (up to constants)

∫ ∞

−∞

∫

R6

eitλ2

χλ0(λ)
eiλ|x−x1|

|x− x1|

eiλ|y−y1|

|y − y1|
v(x1)E3(λ)(x1, y1)v(y1) dx1dy1dλ.

By the arguments that lead from (30) to (32), we conclude that the absolute value
of this expression does not exceed

|t|−
1
2

∫ ∞

−∞

∥∥∥
∣∣∣χ̂λ0E3(ξ)

∣∣∣
∥∥∥

L2→L2
dξ.
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uniformly in x, y ∈ R3. To bound this integral, we use Lemma 8. Write

E3(λ) = −λ−1(Γ1(λ) − Γ1(0))S1Γ2(λ)S2b(λ)
−1S2Γ2(λ)S1Γ1(λ)

− S1λ
−1(Γ2(λ) − Γ2(0))S2b(λ)

−1S2Γ2(λ)S1Γ1(λ)

− S2λ
−1(b(λ)−1 − b(0)−1)S2Γ2(λ)S1Γ1(λ)

− S2b(0)−1S2λ
−1(Γ2(λ) − Γ2(0))S1Γ1(λ)

− S2b(0)−1S2λ
−1(Γ1(λ) − Γ1(0)).

Consequently, we need to prove the bound of Lemma 9 for the following basic
building blocks (we dropped the subscript λ0):

F1(λ) = χ(λ)Γ1(λ) = χ(λ)(A(λ) + S1)
−1

F2(λ) = χ(λ)λ−1(Γ1(λ) − Γ1(0)) = χ(λ)λ−1((A(λ) + S1)
−1 − (A0 + S1)

−1)

F3(λ) = χ(λ)S1Γ2(λ)S1 = χ(λ)S1(m(λ) + S2)
−1S1

F4(λ) = χ(λ)λ−1S1(Γ2(λ) − Γ2(0))S1 = χ(λ)λ−1S1((m(λ) + S2)
−1

− (m(0) + S2)
−1)S1

as well as

F5(λ) = χ(λ)S2b(λ)
−1S2 = χ(λ)S2(b(0) + λb1(λ))

−1S2

F6(λ) = χ(λ)S2λ
−1(b(λ)−1 − b(0)−1)S2.

The functions Fj with 1 ≤ j ≤ 4 were already discussed in Lemma 9. The only
difference here is the appearance of S2 in F3 and F4 (for the function E2 see (21)).
But this does not effect the bounds from Lemma 9, which implies that we only need
to prove the following claims concerning the new terms F5 and F6:

(52) max
j=5,6

∫ ∞

−∞

∥∥∥
∣∣∣F̂j(ξ)

∣∣∣
∥∥∥

2→2
dξ <∞.

Recall that, see (13),

b(0) = −S2vG2vS2

b(λ) = b(0) + λb1(λ) = b(0)(1 + λb(0)−1b1(λ))

b1(λ) =
S2[m1(λ) −m1(0)]S2

λ
+

1

λ

∞∑

k=1

(−1)kλkS2

(
m1(λ)(m(0) + S2)

−1
)k+1

S2

(53)

b(λ)−1 =

∞∑

j=0

(−1)jλj(b(0)−1b1(λ))
jb(0)−1.

(54)

Applying Lemma 8 to the Neuman series in (54) shows that in order to obtain (52),
we need to prove that

∫ ∞

−∞

∥∥∥
∣∣∣χ̂1b1(ξ)

∣∣∣
∥∥∥

2→2
dξ <∞.
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Another application of Lemma 8, this time to the Neuman series (53), reduces
matters to proving ∫ ∞

−∞

∥∥ ∣∣χ̂2m1(ξ)
∣∣ ∥∥

2→2
dξ <∞,

which was already done in (42). In both these cases, the cut-off functions χ1, χ2

need to be taken with sufficiently small supports. This leaves the term

S2[m1(λ) −m1(0)]S2

λ

from (53) to be considered. In view of (10) and (43),

S2
m1(λ) −m1(0)

λ
S2

= S2
A2(λ) −A2(0)

λ
S2 +

∞∑

k=1

(−1)kλk−1S2

(
A1(λ)(A0 + S1)

−1
)k+1

S2.

By (38), and Lemma 8, the Neuman series makes a summable contribution to (52).
On the other hand, the contribution of

S2
A2(λ) −A2(0)

λ
S2

to (52) is controlled by the bound (45), and we are done. �
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