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Abstract. We show the existence of anti-periodic solutions for certain damped
linear beam equations with anti-periodic forcing terms and resting on nonlinear
elastic bearings.
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1. Introduction

In this paper, we consider an anti-periodically forced and damped beam resting
on two different bearings with purely elastic responses. The length of the beam is
π/4. The equation of vibrations is as follows

(1.1)

utt + uxxxx + δut + h1(x, t) = 0 ,
uxx(0, ·) = uxx(π/4, ·) = 0 ,
uxxx(0, ·) = −f(u(0, ·))− h2(t) ,
uxxx(π/4, ·) = g(u(π/4, ·)) + h3(t) ,

where u = u(x, t), δ > 0 is a constant, f, g ∈ C(R, R) are odd functions and h1 ∈ X ,
h2, h3 ∈ Y are anti-periodic forcing terms. Here X and Y are the following Banach
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spaces

X :=
{
h ∈ C([0, π/4] × R, R) | h(x, t + T ) = −h(x, t)

for any (x, t) ∈ [0, π/4]× R

}
,

Y :=
{
h ∈ C(R, R) | h(t + T ) = −h(t) for any t ∈ R

}

endowed with the usual sup norms ‖ · ‖ for a fixed T > 0.
Recently, we investigated the existence of periodic solutions of (1.1) for general

non-odd functions f , g and T -periodic h1(x, t) with h2(t) = h3(t) = 0. In [9] and
[10], we proved existence and non-existence results for T -periodic solutions of (1.1)
depending on the forcing function h1(x, t). Chaotic solutions for equations similar
to (1.1) are considered in [2] and [3]. The existence of free vibrations of undamped
and unforced equations like (1.1) is studied in [8] and [11] by using variational
methods.

Now we study the existence of anti-periodic (weak) solutions u ∈ X of (1.1).
The plan of the paper is as follows. In Section 2, we formulate the notion of a weak
T -anti-periodic solution of (1.1). We also recall some well-known results on the
corresponding linear eigenvalue problem. Then in Section 3, we study linear prob-
lems and certain Poincaré type inequalities related to (1.1). Section 4 contains the
main existence result for weak T -anti-periodic solutions of (1.1), when in addition
h2, h3 ∈ W 1,2(0, T ). The approach relies on topological degree arguments. Some
results are also presented for semilinear problems by assuming only h2, h3 ∈ Y .
In the final Section 5, we extend the main result (Theorem 4.2) of Section 4 to a
discontinuous/multivalued case (cf. (5.2)). There we suppose that the functions f
and g are upper semicontinuous with compact interval values.

Finally we note (cf. [11]) that equation (1.1) is a simple analogue of a more
complicated shaft dynamics model introduced in [5] and [6].

2. Setting of the problem

By a weak T -anti-periodic solution of (1.1), we mean any u ∈ X satisfying the
identity

(2.1)

T∫
0

π/4∫
0

[
u(x, t)

{
vtt(x, t) + vxxxx(x, t) − δvt(x, t)

}
+ h1(x, t)v(x, t)

]
dx dt

+
T∫
0

{(
f(u(0, t)) + h2(t)

)
v(0, t) +

(
g(u(π/4, t)) + h3(t)

)
v(π/4, t)

}
dt = 0

for any v ∈ X∞ with

X∞ :=
{
v ∈ X ∩ C∞([0, π/4]× R) | vxx(0, ·) = vxx(π/4, ·)

= vxxx(0, ·) = vxxx(π/4, ·) = 0
}

The eigenvalue problem

wxxxx(x) = µ4w(x) ,
wxx(0) = wxx(π/4) = 0,
wxxx(0) = wxxx(π/4) = 0

is known [11] to possess a sequence of eigenvalues µk, k = −1, 0, 1, · · · with

µ−1 = µ0 = 0
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and

(2.2) cos(µkπ/4) cosh(µkπ/4) = 1, k = 1, 2, · · · .

The corresponding orthonormal system of eigenvectors in L2(0, π/4) is

w−1(x) =
2√
π

, w0(x) =
16

π

(
x − π

8

)√ 3

π

wk(x)
4√

πWk

[
cosh(µkx) + cos(µkx)

−cosh ξk − cos ξk

sinh ξk − sin ξk

(
sinh(µkx) + sin(µkx)

)]

where the constants Wk are given by the formulas

Wk = cosh(ξk) + cos ξk − cosh ξk − cos ξk

sinh ξk − sin ξk

(
sinh ξk + sin ξk

)

for ξk = µkπ/4. From (2.2) we get the asymptotic formulas

1 < µk = 2(2k + 1) + r(k) ∀k ≥ 1

along with

|r(k)| ≤ c̄1e
−c̄2k ∀k ≥ 1 ,

where c̄1, c̄2 are positive constants. Moreover, the eigenfunctions {wi}∞i=−1 are
uniformly bounded in C[0, π/4].

3. Linear Equations

Let H1 ∈ X , H2, H3 ∈ Y . In order to solve (2.1), we consider the equation

(3.1)

T∫
0

π/4∫
0

[
u(x, t)

{
vtt(x, t) + vxxxx(x, t) − δvt(x, t)

}
+ H1(x, t)v(x, t)

]
dx dt

+
T∫
0

{
H2(t)v(0, t) + H3(t)v(π/4, t)

}
dt = 0

for any v ∈ X∞. We look for u(x, t) in the form

(3.2) u(x, t) =

∞∑

i=−1

zi(t)wi(x) .

We formally put (3.2) into (3.1) to get a system of ordinary differential equations

(3.3) z̈i(t) + δżi(t) + µ4
i zi(t) = hi(t) ,

where

(3.4) hi(t) = −
( π/4∫

0

H1(x, t)wi(x) dx + H2(t)wi(0) + H3(t)wi(π/4)
)

.

Clearly hi ∈ Y for any i ≥ −1. Since µi > 0 for i ≥ 1, we reason as in [10] to
conclude that equation (3.3) has a unique T -anti-periodic solution zi ∈ Y , namely:
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(i): for 2µ2
i > δ, zi is given by

(3.5) zi(t) =
2

ω̄i

t∫

−∞

e−δ(t−s)/2 sin
( ω̄i

2
(t − s)

)
× hi(s) ds ,

where ω̄i =
√

4µ4
i − δ2;

(ii): for 2µ2
i = δ, zi is given by

(3.6) zi(t) =

t∫

−∞

e−δ(t−s)/2(t − s) × hi(s) ds ;

(iii): for 2µ2
i < δ, zi is given by

(3.7) zi(t) =

t∫

−∞

1

ω̃i

(
e(−δ+ω̃i)(t−s)/2 − e(−δ−ω̃i)(t−s)/2

)
× hi(s) ds ,

where ω̃i =
√

δ2 − 4µ4
i .

Like in [10], from (3.5)-(3.7) we get

(3.8)

‖zi‖ ≤ 1

µ2
i

(
1 +

4

δ

)
‖hi‖

‖żi‖ ≤
(4

δ
+ δ
)
‖hi‖ ,

for any i ≥ 1. Since µi = 0 for i = −1 and i = 0, we see that (3.3) has a unique
solution zi ∈ Y for i = −1, 0 on [0, T ] given by

zi(t) =
1

δ

t∫

0

hi(s) ds − 1

2δ

T∫

0

hi(s) ds

−1

δ

t∫

0

hi(s)hi(s) ds +

T∫
0

e−δ(T+t−s)hi(s) ds

δ(1 + e−δT
,

which yields

(3.9)

‖zi‖ ≤
(3T

2δ
+

3

δ2

)
‖hi‖ ,

‖żi‖ ≤ 2

δ
‖hi‖ .

From (3.4) we get

(3.10) ‖hi‖ ≤ M1

(π

4
‖H1‖ + ‖H2‖ + ‖H3‖

)

for

M1 := sup
i≥1,x

|wi(x)| .
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Plugging (3.5)-(3.7) into (3.2) and using (3.8)-(3.10), we obtain

‖u‖ ≤
∞∑

i=−1

‖zi‖ ‖wi‖ ≤ M2
1

{3T

δ
+

6

δ2

+
(
1 +

4

δ

) ∞∑

i=1

1

µ2
i

}(π

4
‖H1‖ + ‖H2‖ + ‖H3‖

)

≤ M2

(
‖H1‖ + ‖H2‖ + ‖H3‖

)

for

M2 := M2
1

{3T

δ
+

6

δ2
+
(
1 +

4

δ

) ∞∑

i=1

1

µ2
i

}
.

We note that
∞∑

i=1

1
µ2

i

< ∞. Summarizing the above results, we arrive at:

Proposition 3.1. For any given functions H1 ∈ X, H2, H3 ∈ Y , there is a

unique solution L(H1, H2, H3) := u(x, t) ∈ X of equation (3.1). The linear mapping

L : X × Y × Y → X is compact with the norm ‖L‖ ≤ M2 when the norm on

V := X × Y × Y is given by ‖v‖ := ‖H1‖ + ‖H2‖ + ‖H3‖, v = (H1, H2, H3) ∈ V .

Now let us fix n ∈ N and consider an approximating linear problem to (3.1),
namely

(3.11)

T∫
0

π/4∫
0

[
un(x, t)

{
vtt(x, t) + vxxxx(x, t) − δvt(x, t)

}
+ H1(x, t)v(x, t)

]
dx dt

+
T∫
0

{
H2(t)v(0, t) + H3(t)v(π/4, t)

}
dt = 0

for any v ∈ X∞
n with

X∞
n :=

{
v ∈ X∞ | v(x, t) =

n∑

i=−1

vi(t)wi(x) for vi ∈ Y ∩ C∞(R, R)
}

.

Here wee look for un(x, t) in the form

un(x, t) =

n∑

i=−1

zi(t)wi(x) .

By repeating the above approach to (3.1) for (3.11), we arrive at the following
result.

Proposition 3.2. For any given functions H1 ∈ X, H2, H3 ∈ Y , equation

(3.11) has a unique solution un ∈ X of the form

un(x, t) =
n∑

i=−1

zi(t)wi(x) .

Such a solution satisfies the following conditions:

(a):

max
−1≤i≤n

‖zi‖(i2 + 1) ≤ M3(‖H1‖ + ‖H2‖ + ‖H3‖)

max
−1≤i≤n

‖żi‖ ≤ M3(‖H1‖ + ‖H2‖ + ‖H3‖)
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for

M3 := sup
i≥1

{ i2 + 1

µ2
i

}(
1 +

4

δ

)
+

3T

δ
+

6

δ2
+

4

δ
+ δ .

(b): The linear mapping Ln : X×Y ×Y → X defined by Ln(H1, H2, H3) :=
un(x, t) is compact.

Now we recall the following result from [10]:

Proposition 3.3. A sequence {un}∞n=1 ⊂ X is precompact if there is a constant

M > 0 such that

sup
i≥−1,n≥1

‖zi,n‖(i2 + 1) < M, sup
i≥−1,n≥1

‖żi,n‖ < M ,

where un(x, t) =
∞∑

i=−1

zi,n(t)wi(x).

We end this section with two Poincaré inequalities.

Proposition 3.4. The following Poincaré inequality holds

‖w‖ ≤ π3/2

8
√

105

√√√√√
π/4∫

0

wxx(x)2 dx

for any w ∈ W 2,2(0, π/4) satisfying

(3.12)

π/4∫

0

w(x) dx =

π/4∫

0

xw(x) dx = 0 .

Proof of Proposition 3.4. For any h ∈ L2(0, π/4), the solution w(x) of the
differential equation

wxx(x) = h(x)

which satisfies conditions (3.12) is given by

w(x) =

π/4∫

0

G(x, s)h(s) ds

for a Green function G defined by

G(x, s) =






(48

π2
s2 − 128

π3
s3
)
x +

16

π2
s3 − 8

π
s2 for 0 ≤ s ≤ x ≤ π

4

(48

π2
s2 − 128

π3
s3 − 1

)
x +

16

π2
s3 − 8

π
s2 + s for 0 ≤ x ≤ s ≤ π

4
.

Thus for any x ∈ [0, π/4] we have

|w(x)| ≤ max
x∈[0,π/4]

√√√√√
π/4∫

0

G(x, s)2 ds

√√√√√
π/4∫

0

h(s)2 ds .
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By using Mathematica, we compute

(3.13)

π/4∫

0

G(x, s)2 ds =
1

6720π3

(
π6 − 44π5x + 624π4x2 − 2240π3x3

−8960π2x4 + 64512πx5 − 86016x6
)

,

and check that the maximum of the right-hand side of (3.13) on the interval [0, π/4]
is π3/6720, which is attained at the end points x = 0 and x = π/4. Consequently,
we obtain

|w(x)| ≤ max
x∈[0,π/4]

√√√√√
π/4∫

0

G(x, s)2 ds

√√√√√
π/4∫

0

h(s)2 ds ≤ π3/2

8
√

105

√√√√√
π/4∫

0

h(s)2 ds .

The proof is complete.

Proposition 3.5. Let X̃ be a Banach space with a norm |·|. Then the following

Poincaré inequality holds

max
t∈[0,T ]

|h(t)| ≤
√

T

√√√√√
T∫

0

|ḣ(t)|2 dt

for any T -anti-periodic function h ∈ W 1,2(0, T ; X̃).

For the proof of Proposition 3.5, see [1].

4. Nonlinear Equations

First, we suppose that in addition to the conditions listed in the Introduction,
h2, h3 ∈ W 1,2(0, T ). Now we use the Bubnov-Galerkin approximation method. So
we put the form

(4.1) un(x, t) =

n∑

i=−1

zi(t)wi(x)

into (1.1) to derive the system of ordinary differential equations

(4.2)

z̈i(t) + δżi(t) + µ4
i zi(t) + h1,i(t)

+f
( n∑

i=−1

zi(t)wi(0)
)
wi(0) + g

( n∑

i=−1

zi(t)wi(π/4)
)
wi(π/4)

+h2(t)wi(0) + h3(t)wi(π/4) = 0 ,

where

h(x, t) =

∞∑

i=−1

h1,i(t)wi(x) .

The system (4.2) is a Bubnov-Galerkin approximation of (1.1). Now we solve (4.2).
For this purpose, we consider a Banach space Zn = Y n+2 with the norm

‖z‖n := ‖un‖ ,
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where un(x, t) is defined by (4.1) for z =
(
z−1(t), z0(t), z1(t), · · · , zn(t)

)
∈ Zn. Next

we introduce the following nonlinear operator

Fn : Zn → Zn

Fn(z) :=
(
z̃−1(t), z̃0(t), z̃1(t), · · · , z̃n(t)

)
n∑

i=−1

z̃i(t)wi(x) := Ln

(
h1, f

( n∑

i=−1

zi(t)wi(0)
)

+ h2(t), g
( n∑

i=−1

zi(t)wi(π/4)
)

+ h3(t)

)

z =
(
z−1(t), z0(t), z1(t), · · · , zn(t)

)
.

We note that according to Proposition 3.2, the operator Fn is compact. Then (4.2)
is equivalent to the fixed point problem

(4.3) z = Fn(z) .

In order to solve (4.3) uniformly for n ∈ N, by the Leray-Schauder degree theory
for maps [4], [12], it is enough to show that there is a constant c1 > 0 such that
for any λ ≥ 1 and n ∈ N, every solution of the equation

(4.4) λz = Fn(z)

satisfies ‖z‖n ≤ c1. But this means that we must find an a-priori bound for the
T -anti-periodic solutions of the system

(4.5)

λz̈i(t) + λδżi(t) + λµ4
i zi(t) + h1,i(t)

+f
( n∑

i=−1

zi(t)wi(0)
)
wi(0) + g

( n∑

i=−1

zi(t)wi(π/4)
)
wi(π/4)

+h2(t)wi(0) + h3(t)wi(π/4) = 0 ,

for any λ ≥ 1.
To do this, we first multiply (4.5) by żi(t), integrate the result from 0 to T ,

and then sum up these equations to obtain

n∑

i=−1

λ

T∫

0

z̈i(t)żi(t) dt +

n∑

i=−1

λδ

T∫

0

żi(t)
2 dt + λ

n∑

i=−1

µ4
i

T∫

0

zi(t)żi(t) dt

+

T∫

0

f
( n∑

i=−1

zi(t)wi(0)
)( n∑

i=−1

żi(t)wi(0)
)

dt+

T∫
0

g
( n∑

i=−1

zi(t)wi(π/4)
)( n∑

i=−1

żi(t)wi(π/4)
)

dt

+

T∫

0

n∑

i=−1

h1,i(t)żi(t) dt +

T∫

0

n∑

i=−1

h2(t)żi(t)wi(0) dt+

T∫
0

n∑
i=−1

h3(t)żi(t)wi(π/4) dt = 0 .

This implies

λδ

n∑

i=−1

T∫

0

żi(t)
2 dt +

T∫

0

n∑

i=−1

h1,i(t)żi(t) dt

−
n∑

i=−1

T∫

0

ḣ2(t)zi(t)wi(0) dt −
n∑

i=−1

T∫

0

ḣ3(t)zi(t)wi(π/4) dt = 0 ,
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and hence

λδ

n∑

i=−1

T∫

0

żi(t)
2 dt ≤

√√√√√
T∫

0

n∑

i=−1

h1,i(t)2 dt

√√√√√
T∫

0

n∑

i=−1

żi(t)2 dt+

+M1

(
√√√√√

T∫

0

ḣ2(t)2 dt +

√√√√√
T∫

0

ḣ3(t)2 dt

)√√√√2 +

n∑

i=1

1

µ4
i

√
T∫
0

(
z−1(t)2 + z0(t)2 +

n∑
i=1

µ4
i zi(t)2

)
dt

≤ K̃

(
√√√√√

T∫

0

n∑

i=−1

żi(t)2 dt +

√√√√√
T∫

0

(
z−1(t)2 + z0(t)2 +

n∑

i=1

µ4
i zi(t)2

)
dt

)

≤ K̃

(
√√√√√

T∫

0

n∑

i=−1

żi(t)2 dt +

√√√√√
T∫

0

(
z−1(t)2 + z0(t)2

)
dt +

√√√√√
T∫

0

n∑

i=1

µ4
i zi(t)2 dt

)
.

The Poincaré inequality of Proposition 3.5 gives

(4.6) λδ
n∑

i=−1

T∫

0

żi(t)
2 dt ≤ K̃

(
(1 + T )

√√√√√
T∫

0

n∑

i=−1

żi(t)2 dt +

√√√√√
T∫

0

n∑

i=1

µ4
i zi(t)2 dt

)
.

Next, we multiply (4.5) by zi(t), integrate from 0 to T , and then sum up these
equations to arrive at

n∑

i=−1

λ

T∫

0

z̈i(t)zi(t) dt +

n∑

i=−1

λδ

T∫

0

żi(t)zi(t) dt + λ

n∑

i=−1

µ4
i

T∫

0

zi(t)
2 dt

+

T∫

0

f
( n∑

i=−1

zi(t)wi(0)
)( n∑

i=−1

zi(t)wi(0)
)

dt+

T∫
0

g
( n∑

i=−1

zi(t)wi(π/4)
)( n∑

i=−1

zi(t)wi(π/4)
)

dt

+

T∫

0

n∑

i=−1

h1,i(t)zi(t) dt +

T∫

0

n∑

i=−1

h2(t)zi(t)wi(0) dt+

T∫
0

n∑
i=−1

h3(t)zi(t)wi(π/4) dt = 0 .
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This gives

λ

n∑

i=−1

µ4
i

T∫

0

zi(t)
2 dt = λ

n∑

i=−1

T∫

0

żi(t)
2 dt

−
T∫

0

f
( n∑

i=−1

zi(t)wi(0)
)( n∑

i=−1

zi(t)wi(0)
)

dt −

T∫

0

g
( n∑

i=−1

zi(t)wi(π/4)
)( n∑

i=−1

zi(t)wi(π/4)
)

dt

−
T∫

0

n∑

i=−1

h1,i(t)zi(t) dt −
T∫

0

n∑

i=−1

h2(t)zi(t)wi(0) dt −
T∫

0

n∑

i=−1

h3(t)zi(t)wi(π/4) dt .

We impose the following condition

• (H) There are non-negative constants αf and αg, with

(4.7) (αf + αg)M1

(
2 +

∞∑

i=1

1

µ4
i

)
< 1

and a non-negative constant β such that

(4.8) f(u)u ≥ −αfu2 − β, g(u)u ≥ −αgu
2 − β

for any u ∈ R.
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As a result, we obtain

(4.9)

n∑

i=−1

µ4
i

T∫

0

zi(t)
2 dt ≤ λ

n∑

i=−1

T∫

0

żi(t)
2 dt

+

√√√√√
T∫

0

n∑

i=−1

h1,i(t)2 dt

√√√√√
T∫

0

n∑

i=−1

zi(t)2 dt + 2β

+(αf + αg)M1

(
2 +

∞∑

i=1

1

µ4
i

)(
T 2

n∑

i=−1

T∫

0

żi(t)
2 dt +

T∫

0

n∑

i=1

µ4
i zi(t)

2 dt
)

+M1

(
√√√√√

T∫

0

h2(t)2 dt +

√√√√√
T∫

0

h3(t)2 dt

)√√√√2 +

n∑

i=1

1

µ4
i

×

√√√√√
T∫

0

(
z−1(t)2 + z0(t)2 +

n∑

i=1

µ4
i zi(t)2

)
dt

≤ K̄1

(
(λ + 1)

n∑

i=−1

T∫

0

żi(t)
2 dt +

√√√√√
n∑

i=−1

T∫

0

żi(t)2 dt + 1

+

√√√√√
T∫

0

n∑

i=1

µ4
i zi(t)2 dt

)
+ (αf + αg)M1

(
2 +

∞∑

i=1

1

µ4
i

) T∫

0

n∑

i=1

µ4
i zi(t)

2 dt

≤ K̄

(
λ

n∑

i=−1

T∫

0

żi(t)
2 dt +

√√√√√
n∑

i=−1

T∫

0

żi(t)2 dt + 1

+

√√√√√
T∫

0

n∑

i=1

µ4
i zi(t)2 dt

)
+ (αf + αg)M1

(
2 +

∞∑

i=1

1

µ4
i

) T∫

0

n∑

i=1

µ4
i zi(t)

2 dt .

Here K̄1 and K̄ are positive constants which are independent of zi(t) and n. By
denoting

An :=

√√√√√
n∑

i=−1

T∫

0

żi(t)2 dt, Bn :=

√√√√√
T∫

0

n∑

i=1

µ4
i zi(t)2 dt ,

inequalities (4.6) and (4.9) take the forms

(4.10)

λA2
n ≤ K̂(An + Bn)

B2
n ≤ K̂(λA2

n + An + 1 + Bn) + (αf + αg)M1

(
2 +

∞∑

i=1

1

µ4
i

)
B2

n

for a constant K̂ depending on the constants αf , αg, β, δ, T and functions h1(x, t),
h2(t), h3(t). By putting

γ := 1 − (αf + αg)M1

(
2 +

∞∑

i=1

1

µ4
i

)
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from (4.10) we get

(4.11)
λA2

n ≤ K̂(An + Bn)

B2
n ≤ K̂

γ
(λA2

n + An + 1 + Bn) .

Now, (4.11) implies

A2
n ≤ K̂(An + Bn)

B2
n ≤

(K̂

γ
+

K̂2

γ

)
(An + Bn) +

K̂

γ

and then

(
An + Bn

)2
/2 ≤ A2

n + B2
n ≤

(
K̂ +

K̂

γ
+

K̂2

γ

)
(An + Bn) +

K̂

γ
,

which gives

(4.12) An + Bn ≤ Γ

for

Γ :=
(
K̂ +

K̂

γ
+

K̂2

γ

)
+

√
(
K̂ +

K̂

γ
+

K̂2

γ

)2

+
2K̂

γ
.

Now from Section 2, we immediately obtain

(4.13)

π/4∫

0

wi,xx(x)2 dx = µ4
i ,

π/4∫

0

wi,xx(x)wj,xx(x) dx = 0 for i 6= j .

Then (4.1), (4.12) and (4.13) imply

π/4∫

0

un,xx(x, t)2 dx =
n∑

i=1

µ4
i zi(t)

2 ≤ Γ2

for any t ∈ R. Hence the Poincaré inequality of Proposition 3.4 gives

(4.14) |ūn(x, t)| ≤ π3/2

8
√

105
Γ

for any (x, t) ∈ [0, π/4]× R and

ūn(x, t) =

n∑

i=1

zi(t)wi(x) .

On the other hand, the Poincaré inequality of Proposition 3.5 and estimate (4.12)
imply

(4.15) |z−1(t)w−1(x) + z0(t)w0(x)| ≤ 2M1

√
TΓ .

Consequently, estimates (4.14) and (4.15) give

(4.16) ‖un‖ ≤ Θ :=
(
2M1

√
T +

π3/2

8
√

105

)
Γ .

Summarizing, we obtain the following result.
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Proposition 4.1. For any n ≥ 1, every solution

un(x, t) =

n∑

i=−1

zi(t)wi(x)

of (4.2) satisfies (4.16).

Now returning to equations (4.3) and (4.4), and applying Proposition 4.1, we
obtain the next theorem.

Theorem 4.1. For any n ≥ 1, there is a solution

un(x, t) =

n∑

i=−1

zi(t)wi(x)

of (4.2) satisfying (4.16).

Remark that

|h1,i(t)| =
∣∣∣

π/4∫

0

h1(x, t)wi(x) dx
∣∣∣ ≤ π

4
‖h1‖M1 ,

∣∣∣f
( n∑

i=−1

zi(t)wi(0)
)
wi(0)

∣∣∣+
∣∣∣g
( n∑

i=−1

zi(t)wi(π/4)
)
wi(π/4)

∣∣∣ ≤ 2K4M1 ,

for

K4 := max
|z|≤Θ

{
|f(z)|, |g(z)|

}
.

Then Proposition 3.2 ensures the existence of a constant K5 > 0 such that the
solutions

un(x, t) =
n∑

i=−1

zi,n(t)wi(x)

of (4.2) from Theorem 4.1 satisfy

sup
i≥−1,n≥1

‖zi,n‖(i2 + 1) ≤ K5, sup
i≥−1,n≥1

‖żi,n‖ ≤ K5 .

Then according to Proposition 3.3, there is a subsequence {uni
(x, t)}∞i=1 of {un(x, t)}∞n=1

which is uniformly convergent to a function u ∈ X on [0, π/4]× [0, T ]. On the other
hand, equation (4.2) implies that un(x, t) solves the following approximating equa-
tion

T∫
0

π/4∫
0

[
un(x, t)

{
vtt(x, t) + vxxxx(x, t) − δvt(x, t)

}
+ h1(x, t)v(x, t)

]
dx dt

+
T∫
0

{(
f(un(0, t)) + h2(t)

)
v(0, t) +

(
g(un(π/4, t)) + h3(t)

)
v(π/4, t)

}
dt = 0

for any v ∈ X∞
n . But then clearly the limit function u(x, t) satisfies (2.1) for any

v ∈ X∞
n and any n ∈ N. Since ∪n∈NX∞

n is dense in X∞ with respect to the
topology of X , we see that u(x, t) satisfies (2.1) for any v ∈ X∞; in other words, u
is a weak solution of (1.1). Summarizing, we obtain the following result:

Theorem 4.2. If f , g ∈ C(R, R) are odd functions satisfying condition (H),
and h1 ∈ X, h2, h3 ∈ Y ∩W 1,2(0, T ), then equation (1.1) possesses a weak T -anti-

periodic solution.
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Theorem 4.2 is an improvement of results in [9] and [10], since we assume in
[9] that the function h1(x, t) is small T -periodic, while in [10], we consider only
functions f(u) and g(u) with at most linear growth at infinity. We also studied
(1.1) in [9] and [10] with h2(t) = h3(t) = 0. Of course, now both functions f(u)
and g(u) are odd and the forcing terms are T -anti-periodic. For instance, condition
(H) holds (see inequalities (4.8)) if

(4.17) lim inf
u→+∞

f(u) + lim inf
u→+∞

g(u) > −∞ .

As an example, if

f(u) = f1u + f2u
3, g(u) = g1u + g2u

3

for constants f1, f2, g1 and g2, then (4.17) holds if f2 > 0 and g2 > 0, so that both
springs are hard at the ends of the beam.

Now let us consider the case when both functions f(u) and g(u) are linear, i.e.

f(u) = f1u, g(u) = g1u .

Then Theorem 4.2 is applicable if

(4.18)
(
max{−f1, 0} + max{−g1, 0}

)
M1

(
2 +

∞∑

i=1

1

µ4
i

)
< 1 .

Then by using Proposition 3.1, we can rewrite (2.1) as the linear equation

(4.19) Mu = h4

for
Mu = u − L

(
0, f1u(0, ·), g1u(π/4, ·)

)
,

h4 = L(h1, h2, h3) .

Clearly M is a linear bounded Fredholm operator from X to X with index 0.
Theorem 4.2 ensures that X∞ ⊂ R(M) - the range of M . Indeed, for any v ∈ X∞,
we take h1(x, t) = −vtt − vxxxx − δvt, h2(t) = 0 and h3(t) = 0. Then h4 =
L(h1, 0, 0) = v(x, t). On the other hand, Theorem 4.2 implies the existence of
u ∈ X such that M(u) = h4. Hence v ∈ R(M), i.e. X∞ ⊂ R(M). Since M is of
Fredholm type, R(M) is closed. Since X∞ is dense in X and X∞ ⊂ R(M), we get
R(M) = X and then N(M) = {0} - the kernel of M . Consequently, M is a linear
isomorphism from X to X . So we obtain the following result.

Theorem 4.3. Let f(u) = f1u and g(u) = g1u for constants f1, g1 satisfy-

ing (4.18). Then equation (1.1) possesses a unique weak T -anti-periodic solution

L̃(h1, h2, h3) := u ∈ X for any h1 ∈ X and h2, h3 ∈ Y . In addition, the linear

mapping L̃ : X × Y × Y → X is compact.

The implicit function theorem together with Theorem 4.3 yields:

Theorem 4.4. If f , g ∈ C1(R, R) are odd functions and f1 = f ′(0), g1 =
g′(0) satisfy (4.18), then there are positive constants K1, ε0 such that for any given

functions h1 ∈ X, h2, h3 ∈ Y with ‖h1‖ + ‖h2‖ + ‖h3‖ < ε0, equation (1.1)
possesses a unique small weak T -anti-periodic solution u ∈ X satisfying ‖u‖ ≤
K1(‖h1‖ + ‖h2‖ + ‖h3‖).

Furthermore, by using Schauder’s fixed point theorem [4] along with Theorem
4.3 and adapting the arguments of [10], we obtain the following result.
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Theorem 4.5. Let f(u) = f1u+ f̃(u) and g(u) = g1u+ g̃(u) with odd functions

f̃ , g̃ ∈ C(R, R) and constants f1, g1 satisfying (4.18). If there are positive constants

c11, c12, c21, c22 where

c12 + c22 < 1/‖L̃‖
and such that

|f̃(u)| ≤ c11 + c12|u|, ∀u ∈ R

|g̃(u)| ≤ c21 + c22|u|, ∀u ∈ R ,

then for any given functions h1 ∈ X, h2, h3 ∈ Y , equation (1.1) possesses a weak

T -anti-periodic solution u ∈ X.

Of course, when f̃ , g̃ have sublinear growth at infinity:

lim
|u|→∞

f̃(u)/u = 0, lim
|u|→∞

g̃(u)/u = 0 ,

then the assumptions of Theorem 4.5 hold and equation (1.1) possesses a weak
T -anti-periodic solution u ∈ C([0, π/4] × ST ) for any h1 ∈ X , h2, h3 ∈ Y .

Theorems 4.3, 4.4 and 4.5 are improvements of similar results in [10]. We note
that in Theorem 4.2 we have more general odd functions f , g than in Theorems 4.3,
4.4, 4.5, but on the other hand, we suppose in Theorem 4.2 that h2, h3 ∈ W 1,2(0, T ).

Finally, we numerically estimate from above the constant

M1

(
2 +

∞∑

i=1

1

µ4
i

)

from condition (H). We know from [3] that

(4.20) M1 ≤ 4.763953413 .

Now we evaluate the sum
∞∑

i=1

1

ξ4
i

.

We have from [3] that
∣∣∣ξi −

π(2i + 1)

2

∣∣∣ ≤ e−πi

2
for any i ≥ 1. Since ξi ≥ 4 and π(2i + 1)/2 ≥ 4 for all i ≥ 1, we have

(4.21)
∣∣∣
1

ξ4
i

− 16

π4(2i + 1)4

∣∣∣ ≤ 1

256

∣∣∣ξi −
π(2i + 1)

2

∣∣∣ ≤ e−πi

512
.

By solving the equations

cos ξi cosh(ξi) = 1, i = 1, 2, · · ·
with the help of Mathematica, we get

(4.22)
ξ1 = 4.730040744, ξ2 = 7.853204624,
ξ3 = 10.995607838, ξ4 = 14.137165491
ξ5 = 17.278759657, ξ6 = 20.420352245 ,

By using
∞∑

i=0

1

(2i + 1)4
=

π4

96
,
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(4.21) and (4.22), we obtain

(4.23)

∞∑

i=1

1

ξ4
i

≤
6∑

i=1

1

ξ4
i

+

∞∑

i=7

∣∣∣
1

ξ4
i

− 16

π4(2i + 1)4

∣∣∣+
∞∑

i=1

16

π4(2i + 1)4

−
6∑

i=1

16

π4(2i + 1)4
≤

6∑

i=1

1

ξ4
i

+
e−7π

512(1 − e−π)
+

1

6
− 16

π4

−16

π4

6∑

i=1

1

(2i + 1)4
= 0.002381090 .

Consequently, from (4.20) and (4.23), we derive

M1

(
2 +

∞∑

i=1

1

µ4
i

)
= M1

(
2 +

π4

256

∞∑

i=1

1

ξ4
i

)
≤ 9.532223039 .

Hence, the inequality (4.7) of condition (H) holds, if

αf + αg < 1/9.532223039 = 0.104907322

and similarly, the inequality (4.18) holds, if
(
max{−f1, 0} + max{−g1, 0}

)
< 0.104907322 .

5. Multivalued Equations

In this section, we study (1.1) when f and g are multivalued, i.e., we suppose:

: (C1) f, g : R → 2R \ ∅ are odd and upper semicontinuous mappings with
compact interval values.

: (C2) There are non-negative constants αf and αg satisfying (4.7), and a
non-negative constant β such that

vu ≥ −αfu2 − β, ∀ v ∈ f(u)
vu ≥ −αgu

2 − β, ∀ v ∈ g(u)

for any u ∈ R.

Remark 5.1. i) According to [7], condition (C1) is equivalent to the exis-
tence of lower semicontinuous functions f−, g− : R → R and upper semicontinuous
functions f+, g+ : R → R such that

f−(u) ≤ f+(u), g−(u) ≤ g+(u) ,
f(u) = [f−(u), f+(u)], g(u) = [g−(u), g+(u)]

for any u ∈ R. Moreover, the oddness of f and g implies

(5.1) −f+(u) = f−(−u), −g+(u) = g−(−u)

for any u ∈ R.
ii) Since (5.1) holds, condition (C2) is equivalent to the assumption that the

functions f− and g− satisfy condition (H) with constants αf , αg and β, respectively.

Now the equation of vibrations is as follows

(5.2)

utt + uxxxx + δut + h1(x, t) = 0 ,
uxx(0, ·) = uxx(π/4, ·) = 0 ,
uxxx(0, ·) ∈ −f(u(0, ·)) − h2(t) ,
uxxx(π/4, ·) ∈ g(u(π/4, ·)) + h3(t) .
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By a weak T -anti-periodic solution of (5.2), we mean any u ∈ X satisfying the
identity

(5.3)

T∫
0

π/4∫
0

[
u(x, t)

{
vtt(x, t) + vxxxx(x, t) − δvt(x, t)

}
+ h1(x, t)v(x, t)

]
dx dt

+
T∫
0

{
f1(t)v(0, t) + g1(t)v(π/4, t)

}
dt = 0

for any v ∈ X∞ and some f1, g1 ∈ L2(0, T ) with

f1(t) ∈ f(u(0, t)) + h2(t) ,
g1(t) ∈ g(u(π/4, t)) + h3(t)

for a.a. t ∈ (0, T ).

We take α̃f = αf
−

, α̃g = αg
−

and β̃ = 2β and we find the corresponding

constant Θ from (4.16) for these α̃f , α̃g and β̃. Then it is not difficult to modify
the proof of Proposition 1.1 (d) of [7], p. 7 to show that for any ε, 0 < ε < 1/2
there are continuous and odd functions

fε, gε : [−Θ − 1, Θ + 1] → R

such that

(5.4)
fε(u) ∈ f((u − ε, u + ε)) + (−ε, ε) ,
gε(u) ∈ g((u − ε, u + ε)) + (−ε, ε)

for any u ∈ [−Θ − 1, Θ + 1]. Then there is a small ε0 > 0 such that for any
0 < ε < ε0, the functions fε(u) and gε(u) satisfy condition (H) with constants α̃f ,

α̃g and β̃ on [−Θ− 1, Θ+1]. Now we extend fε and gε to the whole R so that they
are continuous and odd, and they satisfy condition (H) with constants α̃f , α̃g and

β̃ on R. Then we apply Theorem 4.2 to get a function uε ∈ X satisfying
(5.5)

T∫
0

π/4∫
0

[
uε(x, t)

{
vtt(x, t) + vxxxx(x, t) − δvt(x, t)

}
+ h1(x, t)v(x, t)

]
dx dt

+
T∫
0

{(
fε(uε(0, t)) + h2(t)

)
v(0, t) +

(
gε(uε(π/4, t)) + h3(t)

)
v(π/4, t)

}
dt = 0

for any v ∈ X∞. We note that according to the choice of the constant Θ, uε(x, t)
satisfies (4.16), so it is a solution for nonextended fε and gε. For this reason, (5.5)
holds. Moreover, we know that the sequence {uε}0<ε<ε0

is precompact in X . Then
sup

0<ε<ε0

‖uε‖ < ∞. From (5.4) and (C1) we see that sup
0<ε<ε0

‖fε(uε)‖ < ∞. So the

sequences {fε(uε(0, ·))}0<ε<ε0
and {gε(uε(π/4, ·))}0<ε<ε0

are bounded in L2(0, T ).
Summarizing, we can find a subsequence {uεi

}∞i=1 of {uε}0<ε<ε0
such that

(5.6)

εi → 0 ,
uεi

→ u in X ,
fεi

(uεi
(0, ·)) → f0(t) weakly in L2(0, T ) ,

gεi
(uεi

(π/4, ·)) → g0(t) weakly in L2(0, T )

as i → ∞ for some u ∈ X and f0, g0 ∈ L2(0, T ). Now we take ζ > 0. Then the
upper semicontinuity of f and g, and (5.4) imply that there is an i0 such that for
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any i > i0, one has

(5.7)
fεi

(uεi
(0, ·)) ∈ f(u(0, t)) + [−ζ, ζ]

gεi
(uεi

(π/4, ·)) ∈ g(u(π/4, t)) + [−ζ, ζ]

for any t ∈ [0, T ]. On the other hand, it is obvious that the sets
{
s ∈ L2(0, T ) | s(t) ∈ f(u(0, t)) + [−ζ, ζ] for a.a. t ∈ (0, T )

}
{
s ∈ L2(0, T ) | s(t) ∈ g(u(π/4, t)) + [−ζ, ζ] for a.a. t ∈ (0, T )

}

are closed and convex in the Hilbert space L2(0, T ). Consequently, they are also
weakly closed, so that

(5.8)
f0(t) ∈ f(u(0, t)) + [−ζ, ζ] ,
g0(t) ∈ g(u(π/4, t)) + [−ζ, ζ]

for a.a. t ∈ (0, T ). Since ζ > 0 is arbitrarily small and condition (C1) holds, from
(5.8) we get

f0(t) ∈ f(u(0, t)), g0(t) ∈ g(u(π/4, t))

for a.a. t ∈ (0, T ).
Now by passing to the limit as i → ∞ with ε = εi in (5.5) for a fixed v ∈ X∞,

we see that the function u(x, t) from (5.6) satisfies (5.3) with

f1(t) = f0(t) + h2(t), g1(t) = g0(t) + h3(t)

for any v ∈ X∞. Hence such u(x, t) is a weak T -anti-periodic solution of (5.2).
Summarizing, we obtain the following result:

Theorem 5.1. If f , g : R → 2R \ ∅ satisfy conditions (C1), (C2) and h1 ∈
X, h2, h3 ∈ Y ∩ W 1,2(0, T ), then equation (5.2) possesses a weak T -anti-periodic

solution.

Theorem 5.1 is certainly applicable to the simplest multivalued mappings f(u) =
g(u) = sgn (u) (cf. [7]) with

sgn (u) =





−1 for u < 0 ,
[−1, 1] for u = 0 ,
1 for u > 0 .

The multivalued problem (5.2) was not studied in the papers mentioned in the
Introduction.
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