Anti-Periodic Forced Oscillations of Damped Beams on Elastic Bearings

Sergiu Aizicovici and Michal Fečkan

Communicated by Charles Li, received June 14, 2004.

ABSTRACT. We show the existence of anti-periodic solutions for certain damped linear beam equations with anti-periodic forcing terms and resting on nonlinear elastic bearings.

Contents

1.	Introduction	339
2.	Setting of the problem	340
3.	Linear Equations	341
4.	Nonlinear Equations	345
5.	Multivalued Equations	354
References		356

1. Introduction

In this paper, we consider an anti-periodically forced and damped beam resting on two different bearings with purely elastic responses. The length of the beam is $\pi/4$. The equation of vibrations is as follows

(1.1)
$$\begin{aligned} u_{tt} + u_{xxxx} + \delta u_t + h_1(x,t) &= 0, \\ u_{xx}(0,\cdot) &= u_{xx}(\pi/4,\cdot) &= 0, \\ u_{xxx}(0,\cdot) &= -f(u(0,\cdot)) - h_2(t), \\ u_{xxx}(\pi/4,\cdot) &= g(u(\pi/4,\cdot)) + h_3(t) \end{aligned}$$

where $u = u(x, t), \delta > 0$ is a constant, $f, g \in C(\mathbb{R}, \mathbb{R})$ are odd functions and $h_1 \in X$, $h_2, h_3 \in Y$ are anti-periodic forcing terms. Here X and Y are the following Banach

¹⁹⁹¹ Mathematics Subject Classification. Primary 35B20; Secondary 47H10, 74K10.

Key words and phrases. Beam equations, anti-periodic solutions, topological degree.

The second author is partially supported by Grant GA-MS 1/6179/02. This paper was completed while the second author visited Ohio University.

spaces

$$X := \left\{ h \in C([0, \pi/4] \times \mathbb{R}, \mathbb{R}) \mid h(x, t+T) = -h(x, t) \\ \text{for any} \quad (x, t) \in [0, \pi/4] \times \mathbb{R} \right\},$$
$$Y := \left\{ h \in C(\mathbb{R}, \mathbb{R}) \mid h(t+T) = -h(t) \quad \text{for any} \quad t \in \mathbb{R} \right\}$$

endowed with the usual sup norms $\|\cdot\|$ for a fixed T > 0.

Recently, we investigated the existence of periodic solutions of (1.1) for general non-odd functions f, g and T-periodic $h_1(x,t)$ with $h_2(t) = h_3(t) = 0$. In [9] and [10], we proved existence and non-existence results for T-periodic solutions of (1.1) depending on the forcing function $h_1(x,t)$. Chaotic solutions for equations similar to (1.1) are considered in [2] and [3]. The existence of free vibrations of undamped and unforced equations like (1.1) is studied in [8] and [11] by using variational methods.

Now we study the existence of anti-periodic (weak) solutions $u \in X$ of (1.1). The plan of the paper is as follows. In Section 2, we formulate the notion of a weak T-anti-periodic solution of (1.1). We also recall some well-known results on the corresponding linear eigenvalue problem. Then in Section 3, we study linear problems and certain Poincaré type inequalities related to (1.1). Section 4 contains the main existence result for weak T-anti-periodic solutions of (1.1), when in addition $h_2, h_3 \in W^{1,2}(0, T)$. The approach relies on topological degree arguments. Some results are also presented for semilinear problems by assuming only $h_2, h_3 \in Y$. In the final Section 5, we extend the main result (Theorem 4.2) of Section 4 to a discontinuous/multivalued case (cf. (5.2)). There we suppose that the functions f and g are upper semicontinuous with compact interval values.

Finally we note (cf. [11]) that equation (1.1) is a simple analogue of a more complicated shaft dynamics model introduced in [5] and [6].

2. Setting of the problem

By a weak T-anti-periodic solution of (1.1), we mean any $u \in X$ satisfying the identity

(2.1)
$$\int_{0}^{T} \int_{0}^{\pi/4} \left[u(x,t) \left\{ v_{tt}(x,t) + v_{xxxx}(x,t) - \delta v_t(x,t) \right\} + h_1(x,t)v(x,t) \right] dx dt + \int_{0}^{T} \left\{ \left(f(u(0,t)) + h_2(t) \right) v(0,t) + \left(g(u(\pi/4,t)) + h_3(t) \right) v(\pi/4,t) \right\} dt = 0$$

for any $v \in X^{\infty}$ with

$$X^{\infty} := \left\{ v \in X \cap C^{\infty}([0, \pi/4] \times \mathbb{R}) \mid v_{xx}(0, \cdot) = v_{xx}(\pi/4, \cdot) \\ = v_{xxx}(0, \cdot) = v_{xxx}(\pi/4, \cdot) = 0 \right\}$$

The eigenvalue problem

$$w_{xxxx}(x) = \mu^4 w(x), w_{xx}(0) = w_{xx}(\pi/4) = 0, w_{xxx}(0) = w_{xxx}(\pi/4) = 0$$

is known [11] to possess a sequence of eigenvalues μ_k , $k = -1, 0, 1, \cdots$ with

$$\mu_{-1} = \mu_0 = 0$$

and

(2.2)
$$\cos(\mu_k \pi/4) \cosh(\mu_k \pi/4) = 1, \quad k = 1, 2, \cdots$$

The corresponding orthonormal system of eigenvectors in $L^2(0,\pi/4)$ is

$$w_{-1}(x) = \frac{2}{\sqrt{\pi}}, \quad w_0(x) = \frac{16}{\pi} \left(x - \frac{\pi}{8} \right) \sqrt{\frac{3}{\pi}}$$
$$w_k(x) \frac{4}{\sqrt{\pi}W_k} \Big[\cosh(\mu_k x) + \cos(\mu_k x) \\ - \frac{\cosh\xi_k - \cos\xi_k}{\sinh\xi_k - \sin\xi_k} \big(\sinh(\mu_k x) + \sin(\mu_k x) \big) \Big]$$

where the constants W_k are given by the formulas

$$W_k = \cosh(\xi_k) + \cos\xi_k - \frac{\cosh\xi_k - \cos\xi_k}{\sinh\xi_k - \sin\xi_k} (\sinh\xi_k + \sin\xi_k)$$

for $\xi_k = \mu_k \pi/4$. From (2.2) we get the asymptotic formulas

$$1 < \mu_k = 2(2k+1) + r(k) \quad \forall k \ge 1$$

along with

$$|r(k)| \le \bar{c}_1 e^{-\bar{c}_2 k} \quad \forall k \ge 1 \,,$$

where \bar{c}_1 , \bar{c}_2 are positive constants. Moreover, the eigenfunctions $\{w_i\}_{i=-1}^{\infty}$ are uniformly bounded in $C[0, \pi/4]$.

3. Linear Equations

Let $H_1 \in X, H_2, H_3 \in Y$. In order to solve (2.1), we consider the equation

(3.1)
$$\int_{0}^{T} \int_{0}^{\pi/4} \left[u(x,t) \left\{ v_{tt}(x,t) + v_{xxxx}(x,t) - \delta v_t(x,t) \right\} + H_1(x,t)v(x,t) \right] dx dt + \int_{0}^{T} \left\{ H_2(t)v(0,t) + H_3(t)v(\pi/4,t) \right\} dt = 0$$

for any $v \in X^{\infty}$. We look for u(x,t) in the form

(3.2)
$$u(x,t) = \sum_{i=-1}^{\infty} z_i(t) w_i(x) \,.$$

We formally put (3.2) into (3.1) to get a system of ordinary differential equations

(3.3)
$$\ddot{z}_i(t) + \delta \dot{z}_i(t) + \mu_i^4 z_i(t) = h_i(t),$$

where

(3.4)
$$h_i(t) = -\left(\int_0^{\pi/4} H_1(x,t)w_i(x)\,dx + H_2(t)w_i(0) + H_3(t)w_i(\pi/4)\right).$$

Clearly $h_i \in Y$ for any $i \ge -1$. Since $\mu_i > 0$ for $i \ge 1$, we reason as in [10] to conclude that equation (3.3) has a unique *T*-anti-periodic solution $z_i \in Y$, namely:

(i): for $2\mu_i^2 > \delta$, z_i is given by

(3.5)
$$z_i(t) = \frac{2}{\bar{\omega}_i} \int_{-\infty}^t e^{-\delta(t-s)/2} \sin\left(\frac{\bar{\omega}_i}{2}(t-s)\right) \times h_i(s) \, ds \,,$$

where $\bar{\omega}_i = \sqrt{4\mu_i^4 - \delta^2};$

(ii): for $2\mu_i^2 = \delta$, z_i is given by

(3.6)
$$z_i(t) = \int_{-\infty}^t e^{-\delta(t-s)/2} (t-s) \times h_i(s) \, ds;$$

(iii): for $2\mu_i^2 < \delta$, z_i is given by

(3.7)
$$z_i(t) = \int_{-\infty}^t \frac{1}{\tilde{\omega}_i} \left(e^{(-\delta + \tilde{\omega}_i)(t-s)/2} - e^{(-\delta - \tilde{\omega}_i)(t-s)/2} \right) \times h_i(s) \, ds \, ,$$

where $\tilde{\omega}_i = \sqrt{\delta^2 - 4\mu_i^4}$.

Like in [10], from (3.5)-(3.7) we get

$$\|z_i\| \le \frac{1}{\mu_i^2} \left(1 + \frac{4}{\delta}\right) \|h_i\|$$

(3.8)

 $\|\dot{z}_i\| \le \left(\frac{4}{\delta} + \delta\right) \|h_i\|,$ 0 for i = -1 and i = 0, we see

for any $i \ge 1$. Since $\mu_i = 0$ for i = -1 and i = 0, we see that (3.3) has a unique solution $z_i \in Y$ for i = -1, 0 on [0, T] given by

$$z_{i}(t) = \frac{1}{\delta} \int_{0}^{t} h_{i}(s) \, ds - \frac{1}{2\delta} \int_{0}^{T} h_{i}(s) \, ds$$
$$-\frac{1}{\delta} \int_{0}^{t} h_{i}(s) h_{i}(s) \, ds + \frac{\int_{0}^{T} e^{-\delta(T+t-s)} h_{i}(s) \, ds}{\delta(1+e^{-\delta T})},$$

which yields

$$\begin{aligned} \|z_i\| &\leq \left(\frac{3T}{2\delta} + \frac{3}{\delta^2}\right) \|h_i\|,\\ \|\dot{z}_i\| &\leq \frac{2}{\delta} \|h_i\|. \end{aligned}$$

From (3.4) we get

(3.10)
$$||h_i|| \le M_1 \left(\frac{\pi}{4} ||H_1|| + ||H_2|| + ||H_3||\right)$$

for

(3.9)

$$M_1 := \sup_{i \ge 1, x} \left| w_i(x) \right|.$$

Plugging (3.5)-(3.7) into (3.2) and using (3.8)-(3.10), we obtain

$$\begin{aligned} \|u\| &\leq \sum_{i=-1}^{\infty} \|z_i\| \|w_i\| \leq M_1^2 \Big\{ \frac{3T}{\delta} + \frac{6}{\delta^2} \\ &+ \Big(1 + \frac{4}{\delta}\Big) \sum_{i=1}^{\infty} \frac{1}{\mu_i^2} \Big\} \Big(\frac{\pi}{4} \|H_1\| + \|H_2\| + \|H_3\| \Big) \\ &\leq M_2 \Big(\|H_1\| + \|H_2\| + \|H_3\| \Big) \end{aligned}$$

for

$$M_2 := M_1^2 \left\{ \frac{3T}{\delta} + \frac{6}{\delta^2} + \left(1 + \frac{4}{\delta}\right) \sum_{i=1}^{\infty} \frac{1}{\mu_i^2} \right\}.$$

We note that $\sum_{i=1}^{\infty} \frac{1}{\mu_i^2} < \infty$. Summarizing the above results, we arrive at:

PROPOSITION 3.1. For any given functions $H_1 \in X$, $H_2, H_3 \in Y$, there is a unique solution $L(H_1, H_2, H_3) := u(x, t) \in X$ of equation (3.1). The linear mapping $L : X \times Y \times Y \to X$ is compact with the norm $||L|| \leq M_2$ when the norm on $V := X \times Y \times Y$ is given by $||v|| := ||H_1|| + ||H_2|| + ||H_3||$, $v = (H_1, H_2, H_3) \in V$.

Now let us fix $n \in \mathbb{N}$ and consider an approximating linear problem to (3.1), namely

$$(3.11) \quad \int_{0}^{T} \int_{0}^{\pi/4} \left[u_n(x,t) \left\{ v_{tt}(x,t) + v_{xxxx}(x,t) - \delta v_t(x,t) \right\} + H_1(x,t)v(x,t) \right] dx dt \\ + \int_{0}^{T} \left\{ H_2(t)v(0,t) + H_3(t)v(\pi/4,t) \right\} dt = 0$$

for any $v \in X_n^{\infty}$ with

$$X_n^{\infty} := \left\{ v \in X^{\infty} \mid v(x,t) = \sum_{i=-1}^n v_i(t)w_i(x) \quad \text{for} \quad v_i \in Y \cap C^{\infty}(\mathbb{R},\mathbb{R}) \right\}.$$

Here we look for $u_n(x,t)$ in the form

$$u_n(x,t) = \sum_{i=-1}^n z_i(t)w_i(x).$$

By repeating the above approach to (3.1) for (3.11), we arrive at the following result.

PROPOSITION 3.2. For any given functions $H_1 \in X$, $H_2, H_3 \in Y$, equation (3.11) has a unique solution $u_n \in X$ of the form

$$u_n(x,t) = \sum_{i=-1}^n z_i(t)w_i(x).$$

Such a solution satisfies the following conditions:

(a):

$$\max_{\substack{-1 \le i \le n}} \|z_i\| (i^2 + 1) \le M_3(\|H_1\| + \|H_2\| + \|H_3\|)$$
$$\max_{\substack{-1 \le i \le n}} \|\dot{z}_i\| \le M_3(\|H_1\| + \|H_2\| + \|H_3\|)$$

for

$$M_3 := \sup_{i \ge 1} \left\{ \frac{i^2 + 1}{\mu_i^2} \right\} \left(1 + \frac{4}{\delta} \right) + \frac{3T}{\delta} + \frac{6}{\delta^2} + \frac{4}{\delta} + \delta.$$

(b): The linear mapping $L_n : X \times Y \times Y \to X$ defined by $L_n(H_1, H_2, H_3) := u_n(x,t)$ is compact.

Now we recall the following result from [10]:

PROPOSITION 3.3. A sequence $\{u_n\}_{n=1}^{\infty} \subset X$ is precompact if there is a constant M > 0 such that

$$\sup_{i \ge -1, n \ge 1} \|z_{i,n}\| (i^2 + 1) < M, \quad \sup_{i \ge -1, n \ge 1} \|\dot{z}_{i,n}\| < M,$$

where $u_n(x,t) = \sum_{i=-1}^{\infty} z_{i,n}(t) w_i(x)$.

We end this section with two Poincaré inequalities.

PROPOSITION 3.4. The following Poincaré inequality holds

$$\|w\| \le \frac{\pi^{3/2}}{8\sqrt{105}} \sqrt{\int_{0}^{\pi/4} w_{xx}(x)^2 \, dx}$$

for any $w \in W^{2,2}(0, \pi/4)$ satisfying

(3.12)
$$\int_{0}^{\pi/4} w(x) \, dx = \int_{0}^{\pi/4} x w(x) \, dx = 0 \, .$$

Proof of Proposition 3.4. For any $h \in L^2(0, \pi/4)$, the solution w(x) of the differential equation

$$w_{xx}(x) = h(x)$$

which satisfies conditions (3.12) is given by

$$w(x) = \int_{0}^{\pi/4} G(x,s)h(s) \, ds$$

for a Green function G defined by

$$G(x,s) = \begin{cases} \left(\frac{48}{\pi^2}s^2 - \frac{128}{\pi^3}s^3\right)x + \frac{16}{\pi^2}s^3 - \frac{8}{\pi}s^2 & \text{for} \quad 0 \le s \le x \le \frac{\pi}{4} \\ \left(\frac{48}{\pi^2}s^2 - \frac{128}{\pi^3}s^3 - 1\right)x + \frac{16}{\pi^2}s^3 - \frac{8}{\pi}s^2 + s & \text{for} \quad 0 \le x \le s \le \frac{\pi}{4} \end{cases}$$

Thus for any $x \in [0, \pi/4]$ we have

$$|w(x)| \le \max_{x \in [0, \pi/4]} \sqrt{\int_{0}^{\pi/4} G(x, s)^2 ds} \sqrt{\int_{0}^{\pi/4} h(s)^2 ds}.$$

By using Mathematica, we compute

(3.13)
$$\int_{0}^{\pi/4} G(x,s)^2 ds = \frac{1}{6720\pi^3} \left(\pi^6 - 44\pi^5 x + 624\pi^4 x^2 - 2240\pi^3 x^3 - 8960\pi^2 x^4 + 64512\pi x^5 - 86016x^6 \right),$$

and check that the maximum of the right-hand side of (3.13) on the interval $[0, \pi/4]$ is $\pi^3/6720$, which is attained at the end points x = 0 and $x = \pi/4$. Consequently, we obtain

$$|w(x)| \le \max_{x \in [0,\pi/4]} \sqrt{\int_{0}^{\pi/4} G(x,s)^2 \, ds} \sqrt{\int_{0}^{\pi/4} h(s)^2 \, ds} \le \frac{\pi^{3/2}}{8\sqrt{105}} \sqrt{\int_{0}^{\pi/4} h(s)^2 \, ds} \, .$$

The proof is complete.

PROPOSITION 3.5. Let \widetilde{X} be a Banach space with a norm $|\cdot|$. Then the following Poincaré inequality holds

$$\max_{t \in [0,T]} |h(t)| \le \sqrt{T} \sqrt{\int_{0}^{T} |\dot{h}(t)|^2 dt}$$

for any *T*-anti-periodic function $h \in W^{1,2}(0,T;\widetilde{X})$.

For the proof of Proposition 3.5, see [1].

4. Nonlinear Equations

First, we suppose that in addition to the conditions listed in the Introduction, $h_2, h_3 \in W^{1,2}(0,T)$. Now we use the Bubnov-Galerkin approximation method. So we put the form

(4.1)
$$u_n(x,t) = \sum_{i=-1}^n z_i(t)w_i(x)$$

into (1.1) to derive the system of ordinary differential equations

(4.2)
$$\begin{aligned} \ddot{z}_i(t) + \delta \dot{z}_i(t) + \mu_i^4 z_i(t) + h_{1,i}(t) \\ + f\Big(\sum_{i=-1}^n z_i(t)w_i(0)\Big)w_i(0) + g\Big(\sum_{i=-1}^n z_i(t)w_i(\pi/4)\Big)w_i(\pi/4) \\ + h_2(t)w_i(0) + h_3(t)w_i(\pi/4) = 0, \end{aligned}$$

where

$$h(x,t) = \sum_{i=-1}^{\infty} h_{1,i}(t) w_i(x).$$

The system (4.2) is a Bubnov-Galerkin approximation of (1.1). Now we solve (4.2). For this purpose, we consider a Banach space $Z_n = Y^{n+2}$ with the norm

$$||z||_n := ||u_n||,$$

where $u_n(x,t)$ is defined by (4.1) for $z = (z_{-1}(t), z_0(t), z_1(t), \cdots, z_n(t)) \in Z_n$. Next we introduce the following nonlinear operator

$$F_n: Z_n \to Z_n
 F_n(z) := (\tilde{z}_{-1}(t), \tilde{z}_0(t), \tilde{z}_1(t), \cdots, \tilde{z}_n(t))
 \sum_{\substack{i=-1\\z=(z_{-1}(t), z_0(t), z_1(t), \cdots, z_n(t))}^n \tilde{z}_i(t) w_i(0) + h_2(t), g\left(\sum_{i=-1}^n z_i(t) w_i(\pi/4)\right) + h_3(t) \right)$$

We note that according to Proposition 3.2, the operator F_n is compact. Then (4.2) is equivalent to the fixed point problem

In order to solve (4.3) uniformly for $n \in \mathbb{N}$, by the Leray-Schauder degree theory for maps [4], [12], it is enough to show that there is a constant $c_1 > 0$ such that for any $\lambda \geq 1$ and $n \in \mathbb{N}$, every solution of the equation

(4.4)
$$\lambda z = F_n(z)$$

satisfies $||z||_n \leq c_1$. But this means that we must find an a-priori bound for the *T*-anti-periodic solutions of the system

(4.5)
$$\begin{aligned} \lambda \ddot{z}_i(t) &+ \lambda \delta \dot{z}_i(t) + \lambda \mu_i^4 z_i(t) + h_{1,i}(t) \\ &+ f \Big(\sum_{i=-1}^n z_i(t) w_i(0) \Big) w_i(0) + g \Big(\sum_{i=-1}^n z_i(t) w_i(\pi/4) \Big) w_i(\pi/4) \\ &+ h_2(t) w_i(0) + h_3(t) w_i(\pi/4) = 0 \,, \end{aligned}$$

for any $\lambda \geq 1$.

To do this, we first multiply (4.5) by $\dot{z}_i(t)$, integrate the result from 0 to T, and then sum up these equations to obtain

$$\sum_{i=-1}^{n} \lambda \int_{0}^{T} \ddot{z}_{i}(t) \dot{z}_{i}(t) dt + \sum_{i=-1}^{n} \lambda \delta \int_{0}^{T} \dot{z}_{i}(t)^{2} dt + \lambda \sum_{i=-1}^{n} \mu_{i}^{4} \int_{0}^{T} z_{i}(t) \dot{z}_{i}(t) dt + \int_{0}^{T} f \Big(\sum_{i=-1}^{n} z_{i}(t) w_{i}(0) \Big) \Big(\sum_{i=-1}^{n} \dot{z}_{i}(t) w_{i}(0) \Big) dt + \int_{0}^{T} g \Big(\sum_{i=-1}^{n} z_{i}(t) w_{i}(\pi/4) \Big) \Big(\sum_{i=-1}^{n} \dot{z}_{i}(t) w_{i}(\pi/4) \Big) dt + \int_{0}^{T} \sum_{i=-1}^{n} h_{1,i}(t) \dot{z}_{i}(t) dt + \int_{0}^{T} \sum_{i=-1}^{n} h_{2}(t) \dot{z}_{i}(t) w_{i}(0) dt + \int_{0}^{T} \sum_{i=-1}^{n} h_{3}(t) \dot{z}_{i}(t) w_{i}(\pi/4) dt = 0.$$

This implies

$$\begin{split} \lambda \delta \sum_{i=-1}^{n} \int_{0}^{T} \dot{z}_{i}(t)^{2} dt &+ \int_{0}^{T} \sum_{i=-1}^{n} h_{1,i}(t) \dot{z}_{i}(t) dt \\ &- \sum_{i=-1}^{n} \int_{0}^{T} \dot{h}_{2}(t) z_{i}(t) w_{i}(0) dt - \sum_{i=-1}^{n} \int_{0}^{T} \dot{h}_{3}(t) z_{i}(t) w_{i}(\pi/4) dt = 0 \,, \end{split}$$

and hence

$$\begin{split} \lambda \delta \sum_{i=-1}^{n} \int_{0}^{T} \dot{z}_{i}(t)^{2} dt &\leq \sqrt{\int_{0}^{T} \sum_{i=-1}^{n} h_{1,i}(t)^{2} dt} \sqrt{\int_{0}^{T} \sum_{i=-1}^{n} \dot{z}_{i}(t)^{2} dt} + \\ &+ M_{1} \left(\sqrt{\int_{0}^{T} \dot{h}_{2}(t)^{2} dt} + \sqrt{\int_{0}^{T} \dot{h}_{3}(t)^{2} dt} \right) \sqrt{2 + \sum_{i=1}^{n} \frac{1}{\mu_{i}^{4}}} \\ &\sqrt{\int_{0}^{T} \left(z_{-1}(t)^{2} + z_{0}(t)^{2} + \sum_{i=1}^{n} \mu_{i}^{4} z_{i}(t)^{2} \right) dt} \\ &\leq \tilde{K} \left(\sqrt{\int_{0}^{T} \sum_{i=-1}^{n} \dot{z}_{i}(t)^{2} dt} + \sqrt{\int_{0}^{T} \left(z_{-1}(t)^{2} + z_{0}(t)^{2} + \sum_{i=1}^{n} \mu_{i}^{4} z_{i}(t)^{2} \right) dt} \right) \\ &\leq \tilde{K} \left(\sqrt{\int_{0}^{T} \sum_{i=-1}^{n} \dot{z}_{i}(t)^{2} dt} + \sqrt{\int_{0}^{T} \left(z_{-1}(t)^{2} + z_{0}(t)^{2} \right) dt} + \sqrt{\int_{0}^{T} \sum_{i=1}^{n} \mu_{i}^{4} z_{i}(t)^{2} dt} \right). \end{split}$$

The Poincaré inequality of Proposition 3.5 gives

$$(4.6) \quad \lambda \delta \sum_{i=-1}^{n} \int_{0}^{T} \dot{z}_{i}(t)^{2} dt \leq \widetilde{K} \left((1+T) \sqrt{\int_{0}^{T} \sum_{i=-1}^{n} \dot{z}_{i}(t)^{2} dt} + \sqrt{\int_{0}^{T} \sum_{i=1}^{n} \mu_{i}^{4} z_{i}(t)^{2} dt} \right).$$

Next, we multiply (4.5) by $z_i(t)$, integrate from 0 to T, and then sum up these equations to arrive at

$$\begin{split} &\sum_{i=-1}^{n} \lambda \int_{0}^{T} \ddot{z}_{i}(t) z_{i}(t) \, dt + \sum_{i=-1}^{n} \lambda \delta \int_{0}^{T} \dot{z}_{i}(t) z_{i}(t) \, dt + \lambda \sum_{i=-1}^{n} \mu_{i}^{4} \int_{0}^{T} z_{i}(t)^{2} \, dt \\ &+ \int_{0}^{T} f\Big(\sum_{i=-1}^{n} z_{i}(t) w_{i}(0)\Big)\Big(\sum_{i=-1}^{n} z_{i}(t) w_{i}(0)\Big) \, dt + \\ &\int_{0}^{T} g\Big(\sum_{i=-1}^{n} z_{i}(t) w_{i}(\pi/4)\Big)\Big(\sum_{i=-1}^{n} z_{i}(t) w_{i}(\pi/4)\Big) \, dt \\ &+ \int_{0}^{T} \sum_{i=-1}^{n} h_{1,i}(t) z_{i}(t) \, dt + \int_{0}^{T} \sum_{i=-1}^{n} h_{2}(t) z_{i}(t) w_{i}(0) \, dt + \\ &\int_{0}^{T} \sum_{i=-1}^{n} h_{3}(t) z_{i}(t) w_{i}(\pi/4) \, dt = 0 \, . \end{split}$$

This gives

$$\begin{split} \lambda \sum_{i=-1}^{n} \mu_{i}^{4} \int_{0}^{T} z_{i}(t)^{2} dt &= \lambda \sum_{i=-1}^{n} \int_{0}^{T} \dot{z}_{i}(t)^{2} dt \\ - \int_{0}^{T} f\Big(\sum_{i=-1}^{n} z_{i}(t)w_{i}(0)\Big)\Big(\sum_{i=-1}^{n} z_{i}(t)w_{i}(0)\Big) dt - \\ \int_{0}^{T} g\Big(\sum_{i=-1}^{n} z_{i}(t)w_{i}(\pi/4)\Big)\Big(\sum_{i=-1}^{n} z_{i}(t)w_{i}(\pi/4)\Big) dt \\ - \int_{0}^{T} \sum_{i=-1}^{n} h_{1,i}(t)z_{i}(t) dt - \int_{0}^{T} \sum_{i=-1}^{n} h_{2}(t)z_{i}(t)w_{i}(0) dt - \int_{0}^{T} \sum_{i=-1}^{n} h_{3}(t)z_{i}(t)w_{i}(\pi/4) dt \,. \end{split}$$

We impose the following condition

• (H) There are non-negative constants α_f and α_g , with

(4.7)
$$(\alpha_f + \alpha_g) M_1 \left(2 + \sum_{i=1}^{\infty} \frac{1}{\mu_i^4} \right) < 1$$

and a non-negative constant β such that

(4.8)
$$f(u)u \ge -\alpha_f u^2 - \beta, \quad g(u)u \ge -\alpha_g u^2 - \beta$$

for any $u \in \mathbb{R}$.

As a result, we obtain

$$\begin{split} \sum_{i=-1}^{n} \mu_{i}^{4} \int_{0}^{T} z_{i}(t)^{2} dt &\leq \lambda \sum_{i=-1}^{n} \int_{0}^{T} \dot{z}_{i}(t)^{2} dt \\ &+ \sqrt{\int_{0}^{T} \sum_{i=-1}^{n} h_{1,i}(t)^{2} dt} \sqrt{\int_{0}^{T} \sum_{i=-1}^{n} z_{i}(t)^{2} dt + 2\beta} \\ &+ (\alpha_{f} + \alpha_{g}) M_{1} \left(2 + \sum_{i=1}^{\infty} \frac{1}{\mu_{i}^{4}}\right) \left(T^{2} \sum_{i=-1}^{n} \int_{0}^{T} \dot{z}_{i}(t)^{2} dt + \int_{0}^{T} \sum_{i=1}^{n} \mu_{i}^{4} z_{i}(t)^{2} dt\right) \\ &+ M_{1} \left(\sqrt{\int_{0}^{T} h_{2}(t)^{2} dt} + \sqrt{\int_{0}^{T} h_{3}(t)^{2} dt}\right) \sqrt{2 + \sum_{i=1}^{n} \frac{1}{\mu_{i}^{4}}} \\ (4.9) \quad \times \sqrt{\int_{0}^{T} \left(z_{-1}(t)^{2} + z_{0}(t)^{2} + \sum_{i=1}^{n} \mu_{i}^{4} z_{i}(t)^{2}\right) dt} \\ &\leq \bar{K}_{1} \left((\lambda + 1) \sum_{i=-1}^{n} \int_{0}^{T} \dot{z}_{i}(t)^{2} dt + \sqrt{\sum_{i=-1}^{n} \int_{0}^{T} \dot{z}_{i}(t)^{2} dt} + 1 \\ &+ \sqrt{\int_{0}^{T} \sum_{i=1}^{n} \mu_{i}^{4} z_{i}(t)^{2} dt} \right) + (\alpha_{f} + \alpha_{g}) M_{1} \left(2 + \sum_{i=1}^{\infty} \frac{1}{\mu_{i}^{4}}\right) \int_{0}^{T} \sum_{i=1}^{n} \mu_{i}^{4} z_{i}(t)^{2} dt \\ &\leq \bar{K} \left(\lambda \sum_{i=-1}^{n} \int_{0}^{T} \dot{z}_{i}(t)^{2} dt + \sqrt{\sum_{i=-1}^{n} \int_{0}^{T} \dot{z}_{i}(t)^{2} dt} + 1 \\ &+ \sqrt{\int_{0}^{T} \sum_{i=1}^{n} \mu_{i}^{4} z_{i}(t)^{2} dt} \right) + (\alpha_{f} + \alpha_{g}) M_{1} \left(2 + \sum_{i=1}^{\infty} \frac{1}{\mu_{i}^{4}}\right) \int_{0}^{T} \sum_{i=1}^{n} \mu_{i}^{4} z_{i}(t)^{2} dt . \end{split}$$

Here \bar{K}_1 and \bar{K} are positive constants which are independent of $z_i(t)$ and n. By denoting

$$A_n := \sqrt{\sum_{i=-1}^n \int_0^T \dot{z}_i(t)^2 dt}, \quad B_n := \sqrt{\int_0^T \sum_{i=1}^n \mu_i^4 z_i(t)^2 dt},$$

inequalities (4.6) and (4.9) take the forms

(4.10)
$$\lambda A_n^2 \leq \hat{K}(A_n + B_n) \\ B_n^2 \leq \hat{K}(\lambda A_n^2 + A_n + 1 + B_n) + (\alpha_f + \alpha_g) M_1 \Big(2 + \sum_{i=1}^{\infty} \frac{1}{\mu_i^4} \Big) B_n^2$$

for a constant \hat{K} depending on the constants α_f , α_g , β , δ , T and functions $h_1(x,t)$, $h_2(t)$, $h_3(t)$. By putting

$$\gamma := 1 - (\alpha_f + \alpha_g) M_1 \left(2 + \sum_{i=1}^{\infty} \frac{1}{\mu_i^4} \right)$$

from (4.10) we get

(4.11)
$$\lambda A_n^2 \leq \hat{K}(A_n + B_n)$$
$$B_n^2 \leq \frac{\hat{K}}{\gamma} (\lambda A_n^2 + A_n + 1 + B_n).$$

~

~

Now, (4.11) implies

$$A_n^2 \le K(A_n + B_n)$$

$$B_n^2 \le \left(\frac{\hat{K}}{\gamma} + \frac{\hat{K}^2}{\gamma}\right)(A_n + B_n) + \frac{\hat{K}}{\gamma}$$

and then

$$(A_n + B_n)^2 / 2 \le A_n^2 + B_n^2 \le \left(\hat{K} + \frac{\hat{K}}{\gamma} + \frac{\hat{K}^2}{\gamma}\right) (A_n + B_n) + \frac{\hat{K}}{\gamma},$$

which gives

$$(4.12) A_n + B_n \le \Gamma$$

for

$$\Gamma := \left(\hat{K} + \frac{\hat{K}}{\gamma} + \frac{\hat{K}^2}{\gamma}\right) + \sqrt{\left(\hat{K} + \frac{\hat{K}}{\gamma} + \frac{\hat{K}^2}{\gamma}\right)^2 + \frac{2\hat{K}}{\gamma}}.$$

Now from Section 2, we immediately obtain

(4.13)
$$\int_{0}^{\pi/4} w_{i,xx}(x)^2 dx = \mu_i^4, \quad \int_{0}^{\pi/4} w_{i,xx}(x) w_{j,xx}(x) dx = 0 \quad \text{for} \quad i \neq j.$$

Then (4.1), (4.12) and (4.13) imply

$$\int_{0}^{\pi/4} u_{n,xx}(x,t)^2 \, dx = \sum_{i=1}^{n} \mu_i^4 z_i(t)^2 \le \Gamma^2$$

for any $t \in \mathbb{R}$. Hence the Poincaré inequality of Proposition 3.4 gives

(4.14)
$$|\bar{u}_n(x,t)| \le \frac{\pi^{3/2}}{8\sqrt{105}}\Gamma$$

for any $(x,t) \in [0,\pi/4] \times \mathbb{R}$ and

$$\bar{u}_n(x,t) = \sum_{i=1}^n z_i(t)w_i(x) \,.$$

On the other hand, the Poincaré inequality of Proposition 3.5 and estimate (4.12) imply

(4.15)
$$|z_{-1}(t)w_{-1}(x) + z_0(t)w_0(x)| \le 2M_1\sqrt{T\Gamma}.$$

Consequently, estimates (4.14) and (4.15) give

(4.16)
$$||u_n|| \le \Theta := \left(2M_1\sqrt{T} + \frac{\pi^{3/2}}{8\sqrt{105}}\right)\Gamma.$$

Summarizing, we obtain the following result.

PROPOSITION 4.1. For any $n \ge 1$, every solution

$$u_n(x,t) = \sum_{i=-1}^n z_i(t)w_i(x)$$

of (4.2) satisfies (4.16).

Now returning to equations (4.3) and (4.4), and applying Proposition 4.1, we obtain the next theorem.

THEOREM 4.1. For any $n \ge 1$, there is a solution

$$u_n(x,t) = \sum_{i=-1}^n z_i(t)w_i(x)$$

of (4.2) satisfying (4.16).

Remark that

$$|h_{1,i}(t)| = \left| \int_{0}^{\pi/4} h_1(x,t) w_i(x) \, dx \right| \le \frac{\pi}{4} ||h_1|| M_1,$$

$$\left| f \Big(\sum_{i=-1}^n z_i(t) w_i(0) \Big) w_i(0) \right| + \left| g \Big(\sum_{i=-1}^n z_i(t) w_i(\pi/4) \Big) w_i(\pi/4) \right| \le 2K_4 M_1,$$

for

$$K_4 := \max_{|z| \le \Theta} \left\{ |f(z)|, |g(z)| \right\}.$$

Then Proposition 3.2 ensures the existence of a constant $K_5 > 0$ such that the solutions

$$u_n(x,t) = \sum_{i=-1}^n z_{i,n}(t)w_i(x)$$

of (4.2) from Theorem 4.1 satisfy

i

$$\sup_{\geq -1, n \geq 1} \|z_{i,n}\| (i^2 + 1) \leq K_5, \quad \sup_{i \geq -1, n \geq 1} \|\dot{z}_{i,n}\| \leq K_5$$

Then according to Proposition 3.3, there is a subsequence $\{u_{n_i}(x,t)\}_{i=1}^{\infty}$ of $\{u_n(x,t)\}_{n=1}^{\infty}$ which is uniformly convergent to a function $u \in X$ on $[0, \pi/4] \times [0, T]$. On the other hand, equation (4.2) implies that $u_n(x,t)$ solves the following approximating equation

$$\int_{0}^{T} \int_{0}^{\pi/4} \left[u_n(x,t) \left\{ v_{tt}(x,t) + v_{xxxx}(x,t) - \delta v_t(x,t) \right\} + h_1(x,t)v(x,t) \right] dx dt + \int_{0}^{T} \left\{ \left(f(u_n(0,t)) + h_2(t) \right) v(0,t) + \left(g(u_n(\pi/4,t)) + h_3(t) \right) v(\pi/4,t) \right\} dt = 0$$

for any $v \in X_n^{\infty}$. But then clearly the limit function u(x,t) satisfies (2.1) for any $v \in X_n^{\infty}$ and any $n \in \mathbb{N}$. Since $\bigcup_{n \in \mathbb{N}} X_n^{\infty}$ is dense in X^{∞} with respect to the topology of X, we see that u(x,t) satisfies (2.1) for any $v \in X^{\infty}$; in other words, u is a weak solution of (1.1). Summarizing, we obtain the following result:

THEOREM 4.2. If $f, g \in C(\mathbb{R}, \mathbb{R})$ are odd functions satisfying condition (H), and $h_1 \in X$, h_2 , $h_3 \in Y \cap W^{1,2}(0,T)$, then equation (1.1) possesses a weak T-antiperiodic solution. Theorem 4.2 is an improvement of results in [9] and [10], since we assume in [9] that the function $h_1(x,t)$ is small *T*-periodic, while in [10], we consider only functions f(u) and g(u) with at most linear growth at infinity. We also studied (1.1) in [9] and [10] with $h_2(t) = h_3(t) = 0$. Of course, now both functions f(u)and g(u) are odd and the forcing terms are *T*-anti-periodic. For instance, condition (H) holds (see inequalities (4.8)) if

(4.17)
$$\liminf_{u \to +\infty} f(u) + \liminf_{u \to +\infty} g(u) > -\infty.$$

As an example, if

$$f(u) = f_1 u + f_2 u^3, \quad g(u) = g_1 u + g_2 u^3$$

for constants f_1 , f_2 , g_1 and g_2 , then (4.17) holds if $f_2 > 0$ and $g_2 > 0$, so that both springs are hard at the ends of the beam.

Now let us consider the case when both functions f(u) and g(u) are linear, i.e.

$$f(u) = f_1 u, \quad g(u) = g_1 u.$$

Then Theorem 4.2 is applicable if

(4.18)
$$\left(\max\{-f_1,0\}+\max\{-g_1,0\}\right)M_1\left(2+\sum_{i=1}^{\infty}\frac{1}{\mu_i^4}\right)<1.$$

Then by using Proposition 3.1, we can rewrite (2.1) as the linear equation

$$(4.19) Mu = h_4$$

for

$$Mu = u - L(0, f_1u(0, \cdot), g_1u(\pi/4, \cdot)),$$

$$h_4 = L(h_1, h_2, h_3).$$

Clearly M is a linear bounded Fredholm operator from X to X with index 0. Theorem 4.2 ensures that $X^{\infty} \subset R(M)$ - the range of M. Indeed, for any $v \in X^{\infty}$, we take $h_1(x,t) = -v_{tt} - v_{xxxx} - \delta v_t$, $h_2(t) = 0$ and $h_3(t) = 0$. Then $h_4 = L(h_1, 0, 0) = v(x, t)$. On the other hand, Theorem 4.2 implies the existence of $u \in X$ such that $M(u) = h_4$. Hence $v \in R(M)$, i.e. $X^{\infty} \subset R(M)$. Since M is of Fredholm type, R(M) is closed. Since X^{∞} is dense in X and $X^{\infty} \subset R(M)$, we get R(M) = X and then $N(M) = \{0\}$ - the kernel of M. Consequently, M is a linear isomorphism from X to X. So we obtain the following result.

THEOREM 4.3. Let $f(u) = f_1u$ and $g(u) = g_1u$ for constants f_1 , g_1 satisfying (4.18). Then equation (1.1) possesses a unique weak T-anti-periodic solution $\widetilde{L}(h_1, h_2, h_3) := u \in X$ for any $h_1 \in X$ and h_2 , $h_3 \in Y$. In addition, the linear mapping $\widetilde{L} : X \times Y \times Y \to X$ is compact.

The implicit function theorem together with Theorem 4.3 yields:

THEOREM 4.4. If $f, g \in C^1(\mathbb{R}, \mathbb{R})$ are odd functions and $f_1 = f'(0), g_1 = g'(0)$ satisfy (4.18), then there are positive constants K_1, ε_0 such that for any given functions $h_1 \in X$, h_2 , $h_3 \in Y$ with $||h_1|| + ||h_2|| + ||h_3|| < \varepsilon_0$, equation (1.1) possesses a unique small weak T-anti-periodic solution $u \in X$ satisfying $||u|| \leq K_1(||h_1|| + ||h_2|| + ||h_3||)$.

Furthermore, by using Schauder's fixed point theorem [4] along with Theorem 4.3 and adapting the arguments of [10], we obtain the following result.

THEOREM 4.5. Let $f(u) = f_1 u + \tilde{f}(u)$ and $g(u) = g_1 u + \tilde{g}(u)$ with odd functions $\tilde{f}, \tilde{g} \in C(\mathbb{R}, \mathbb{R})$ and constants f_1, g_1 satisfying (4.18). If there are positive constants $c_{11}, c_{12}, c_{21}, c_{22}$ where

$$c_{12} + c_{22} < 1/\|L\|$$

and such that

$$\begin{aligned} |f(u)| &\leq c_{11} + c_{12}|u|, \quad \forall u \in \mathbb{R} \\ |\tilde{g}(u)| &\leq c_{21} + c_{22}|u|, \quad \forall u \in \mathbb{R}, \end{aligned}$$

then for any given functions $h_1 \in X$, h_2 , $h_3 \in Y$, equation (1.1) possesses a weak *T*-anti-periodic solution $u \in X$.

Of course, when $\widetilde{f}, \widetilde{g}$ have sublinear growth at infinity:

$$\lim_{|u|\to\infty}\widetilde{f}(u)/u=0,\quad \lim_{|u|\to\infty}\widetilde{g}(u)/u=0\,,$$

then the assumptions of Theorem 4.5 hold and equation (1.1) possesses a weak *T*-anti-periodic solution $u \in C([0, \pi/4] \times S^T)$ for any $h_1 \in X$, h_2 , $h_3 \in Y$.

Theorems 4.3, 4.4 and 4.5 are improvements of similar results in [10]. We note that in Theorem 4.2 we have more general odd functions f, g than in Theorems 4.3, 4.4, 4.5, but on the other hand, we suppose in Theorem 4.2 that $h_2, h_3 \in W^{1,2}(0,T)$.

Finally, we numerically estimate from above the constant

$$M_1\Big(2+\sum_{i=1}^\infty \frac{1}{\mu_i^4}\Big)$$

from condition (H). We know from [3] that

 $(4.20) M_1 \le 4.763953413.$

Now we evaluate the sum

$$\sum_{i=1}^{\infty} \frac{1}{\xi_i^4}.$$

We have from [3] that

$$\left|\xi_i - \frac{\pi(2i+1)}{2}\right| \le \frac{e^{-\pi i}}{2}$$

for any $i \ge 1$. Since $\xi_i \ge 4$ and $\pi(2i+1)/2 \ge 4$ for all $i \ge 1$, we have

(4.21)
$$\left|\frac{1}{\xi_i^4} - \frac{16}{\pi^4(2i+1)^4}\right| \le \frac{1}{256} \left|\xi_i - \frac{\pi(2i+1)}{2}\right| \le \frac{e^{-\pi i}}{512}.$$

By solving the equations

$$\cos \xi_i \cosh(\xi_i) = 1, \quad i = 1, 2, \cdots$$

with the help of Mathematica, we get

(4.22)
$$\begin{aligned} \xi_1 &= 4.730040744, \quad \xi_2 &= 7.853204624, \\ \xi_3 &= 10.995607838, \quad \xi_4 &= 14.137165491 \\ \xi_5 &= 17.278759657, \quad \xi_6 &= 20.420352245. \end{aligned}$$

By using

$$\sum_{i=0}^{\infty} \frac{1}{(2i+1)^4} = \frac{\pi^4}{96} \,,$$

(4.21) and (4.22), we obtain

$$(4.23) \qquad \sum_{i=1}^{\infty} \frac{1}{\xi_i^4} \le \sum_{i=1}^{6} \frac{1}{\xi_i^4} + \sum_{i=7}^{\infty} \left| \frac{1}{\xi_i^4} - \frac{16}{\pi^4 (2i+1)^4} \right| + \sum_{i=1}^{\infty} \frac{16}{\pi^4 (2i+1)^4} \\ - \sum_{i=1}^{6} \frac{16}{\pi^4 (2i+1)^4} \le \sum_{i=1}^{6} \frac{1}{\xi_i^4} + \frac{e^{-7\pi}}{512(1-e^{-\pi})} + \frac{1}{6} - \frac{16}{\pi^4} \\ - \frac{16}{\pi^4} \sum_{i=1}^{6} \frac{1}{(2i+1)^4} = 0.002381090 \,.$$

Consequently, from (4.20) and (4.23), we derive

$$M_1\left(2 + \sum_{i=1}^{\infty} \frac{1}{\mu_i^4}\right) = M_1\left(2 + \frac{\pi^4}{256} \sum_{i=1}^{\infty} \frac{1}{\xi_i^4}\right) \le 9.532223039.$$

Hence, the inequality (4.7) of condition (H) holds, if

 $\alpha_f + \alpha_g < 1/9.532223039 = 0.104907322$

and similarly, the inequality (4.18) holds, if

 $(\max\{-f_1, 0\} + \max\{-g_1, 0\}) < 0.104907322.$

5. Multivalued Equations

In this section, we study (1.1) when f and g are multivalued, i.e., we suppose:

- : (C1) $f, g : \mathbb{R} \to 2^{\mathbb{R}} \setminus \emptyset$ are odd and upper semicontinuous mappings with compact interval values.
- : (C2) There are non-negative constants α_f and α_g satisfying (4.7), and a non-negative constant β such that

$$\begin{aligned} vu &\geq -\alpha_f u^2 - \beta, \quad \forall v \in f(u) \\ vu &\geq -\alpha_g u^2 - \beta, \quad \forall v \in g(u) \end{aligned}$$

for any $u \in \mathbb{R}$.

REMARK 5.1. i) According to [7], condition (C1) is equivalent to the existence of lower semicontinuous functions $f_-, g_- : \mathbb{R} \to \mathbb{R}$ and upper semicontinuous functions $f_+, g_+ : \mathbb{R} \to \mathbb{R}$ such that

$$\begin{aligned} f_{-}(u) &\leq f_{+}(u), \quad g_{-}(u) \leq g_{+}(u), \\ f(u) &= [f_{-}(u), f_{+}(u)], \quad g(u) = [g_{-}(u), g_{+}(u)] \end{aligned}$$

for any $u \in \mathbb{R}$. Moreover, the oddness of f and g implies

(5.1)
$$-f_{+}(u) = f_{-}(-u), \quad -g_{+}(u) = g_{-}(-u)$$

for any $u \in \mathbb{R}$.

ii) Since (5.1) holds, condition (C2) is equivalent to the assumption that the functions f_{-} and g_{-} satisfy condition (H) with constants α_{f} , α_{g} and β , respectively.

Now the equation of vibrations is as follows

(5.2)
$$\begin{aligned} u_{tt} + u_{xxxx} + \delta u_t + h_1(x,t) &= 0, \\ u_{xx}(0,\cdot) &= u_{xx}(\pi/4,\cdot) = 0, \\ u_{xxx}(0,\cdot) &\in -f(u(0,\cdot)) - h_2(t), \\ u_{xxx}(\pi/4,\cdot) &\in g(u(\pi/4,\cdot)) + h_3(t). \end{aligned}$$

By a weak T-anti-periodic solution of (5.2), we mean any $u \in X$ satisfying the identity

(5.3)
$$\int_{0}^{T} \int_{0}^{\pi/4} \left[u(x,t) \left\{ v_{tt}(x,t) + v_{xxxx}(x,t) - \delta v_t(x,t) \right\} + h_1(x,t)v(x,t) \right] dx dt + \int_{0}^{T} \left\{ f_1(t)v(0,t) + g_1(t)v(\pi/4,t) \right\} dt = 0$$

for any $v \in X^{\infty}$ and some $f_1, g_1 \in L^2(0, T)$ with

$$f_1(t) \in f(u(0,t)) + h_2(t), g_1(t) \in g(u(\pi/4,t)) + h_3(t)$$

for a.a. $t \in (0, T)$.

We take $\tilde{\alpha}_f = \alpha_{f_-}$, $\tilde{\alpha}_g = \alpha_{g_-}$ and $\tilde{\beta} = 2\beta$ and we find the corresponding constant Θ from (4.16) for these $\tilde{\alpha}_f$, $\tilde{\alpha}_g$ and $\tilde{\beta}$. Then it is not difficult to modify the proof of Proposition 1.1 (d) of [7], p. 7 to show that for any ε , $0 < \varepsilon < 1/2$ there are continuous and odd functions

$$f_{\varepsilon}, g_{\varepsilon}: [-\Theta - 1, \Theta + 1] \to \mathbb{R}$$

such that

(5.4)
$$f_{\varepsilon}(u) \in f((u - \varepsilon, u + \varepsilon)) + (-\varepsilon, \varepsilon), \\ g_{\varepsilon}(u) \in g((u - \varepsilon, u + \varepsilon)) + (-\varepsilon, \varepsilon)$$

for any $u \in [-\Theta - 1, \Theta + 1]$. Then there is a small $\varepsilon_0 > 0$ such that for any $0 < \varepsilon < \varepsilon_0$, the functions $f_{\varepsilon}(u)$ and $g_{\varepsilon}(u)$ satisfy condition (H) with constants $\widetilde{\alpha}_f$, $\widetilde{\alpha}_g$ and $\widetilde{\beta}$ on $[-\Theta - 1, \Theta + 1]$. Now we extend f_{ε} and g_{ε} to the whole \mathbb{R} so that they are continuous and odd, and they satisfy condition (H) with constants $\widetilde{\alpha}_f$, $\widetilde{\alpha}_g$ and $\widetilde{\beta}$ on \mathbb{R} . Then we apply Theorem 4.2 to get a function $u_{\varepsilon} \in X$ satisfying (5.5)

$$\int_{0}^{T} \int_{0}^{\pi/4} \left[u_{\varepsilon}(x,t) \left\{ v_{tt}(x,t) + v_{xxxx}(x,t) - \delta v_t(x,t) \right\} + h_1(x,t)v(x,t) \right] dx dt + \int_{0}^{T} \left\{ \left(f_{\varepsilon}(u_{\varepsilon}(0,t)) + h_2(t) \right) v(0,t) + \left(g_{\varepsilon}(u_{\varepsilon}(\pi/4,t)) + h_3(t) \right) v(\pi/4,t) \right\} dt = 0$$

for any $v \in X^{\infty}$. We note that according to the choice of the constant Θ , $u_{\varepsilon}(x,t)$ satisfies (4.16), so it is a solution for nonextended f_{ε} and g_{ε} . For this reason, (5.5) holds. Moreover, we know that the sequence $\{u_{\varepsilon}\}_{0<\varepsilon<\varepsilon_0}$ is precompact in X. Then $\sup_{0<\varepsilon<\varepsilon_0} ||u_{\varepsilon}|| < \infty$. From (5.4) and (C1) we see that $\sup_{0<\varepsilon<\varepsilon_0} ||f_{\varepsilon}(u_{\varepsilon})|| < \infty$. So the sequences $\{f_{\varepsilon}(u_{\varepsilon}(0,\cdot))\}_{0<\varepsilon<\varepsilon_0}$ and $\{g_{\varepsilon}(u_{\varepsilon}(\pi/4,\cdot))\}_{0<\varepsilon<\varepsilon_0}$ are bounded in $L^2(0,T)$. Summarizing, we can find a subsequence $\{u_{\varepsilon_i}\}_{i=1}^{\infty}$ of $\{u_{\varepsilon}\}_{0<\varepsilon<\varepsilon_0}$ such that

(5.6)
$$\begin{aligned} \varepsilon_i &\to 0, \\ u_{\varepsilon_i} \to u \quad \text{in} \quad X, \\ f_{\varepsilon_i}(u_{\varepsilon_i}(0, \cdot)) \to f_0(t) \quad \text{weakly in} \quad L^2(0, T), \\ g_{\varepsilon_i}(u_{\varepsilon_i}(\pi/4, \cdot)) \to g_0(t) \quad \text{weakly in} \quad L^2(0, T) \end{aligned}$$

as $i \to \infty$ for some $u \in X$ and $f_0, g_0 \in L^2(0, T)$. Now we take $\zeta > 0$. Then the upper semicontinuity of f and g, and (5.4) imply that there is an i_0 such that for

any $i > i_0$, one has

(5.7)
$$\begin{aligned} f_{\varepsilon_i}(u_{\varepsilon_i}(0,\cdot)) &\in f(u(0,t)) + [-\zeta,\zeta] \\ g_{\varepsilon_i}(u_{\varepsilon_i}(\pi/4,\cdot)) &\in g(u(\pi/4,t)) + [-\zeta,\zeta] \end{aligned}$$

for any $t \in [0, T]$. On the other hand, it is obvious that the sets

$$\begin{cases} s \in L^2(0,T) \mid s(t) \in f(u(0,t)) + [-\zeta,\zeta] & \text{for a.a.} \quad t \in (0,T) \\ s \in L^2(0,T) \mid s(t) \in g(u(\pi/4,t)) + [-\zeta,\zeta] & \text{for a.a.} \quad t \in (0,T) \end{cases}$$

are closed and convex in the Hilbert space $L^2(0,T)$. Consequently, they are also weakly closed, so that

(5.8)
$$\begin{aligned} f_0(t) &\in f(u(0,t)) + [-\zeta,\zeta], \\ g_0(t) &\in g(u(\pi/4,t)) + [-\zeta,\zeta] \end{aligned}$$

for a.a. $t \in (0,T)$. Since $\zeta > 0$ is arbitrarily small and condition (C1) holds, from (5.8) we get

$$f_0(t) \in f(u(0,t)), \quad g_0(t) \in g(u(\pi/4,t))$$

for a.a. $t \in (0, T)$.

Now by passing to the limit as $i \to \infty$ with $\varepsilon = \varepsilon_i$ in (5.5) for a fixed $v \in X^{\infty}$, we see that the function u(x,t) from (5.6) satisfies (5.3) with

$$f_1(t) = f_0(t) + h_2(t), \quad g_1(t) = g_0(t) + h_3(t)$$

for any $v \in X^{\infty}$. Hence such u(x,t) is a weak *T*-anti-periodic solution of (5.2). Summarizing, we obtain the following result:

THEOREM 5.1. If $f, g: \mathbb{R} \to 2^{\mathbb{R}} \setminus \emptyset$ satisfy conditions (C1), (C2) and $h_1 \in X, h_2, h_3 \in Y \cap W^{1,2}(0,T)$, then equation (5.2) possesses a weak T-anti-periodic solution.

Theorem 5.1 is certainly applicable to the simplest multivalued mappings $f(u) = g(u) = \operatorname{sgn}(u)$ (cf. [7]) with

$$\operatorname{sgn}(u) = \begin{cases} -1 & \text{for } u < 0, \\ [-1,1] & \text{for } u = 0, \\ 1 & \text{for } u > 0. \end{cases}$$

The multivalued problem (5.2) was not studied in the papers mentioned in the Introduction.

References

- [1] AIZICOVICI, S. and PAVEL, N. H. Anti-periodic solutions to a class of nonlinear differential equations in Hilbert space, J. Funct. Anal. **99** (1991), 387-408.
- [2] BATTELLI, F. and FEČKAN, M. Chaos in the beam equation, preprint (2003).
- [3] BATTELLI, F. and FEČKAN, M. Homoclinic orbits of slowly periodically forced and weakly damped beams resting on weakly elastic bearings, Adv. Differential Equations 8 (2003), 1043-1080.
- [4] BERGER, M. S. Nonlinearity and Functional Analysis, Academic Press, New York 1977.
- [5] CAPRIZ, G. Self-excited vibrations of rotors, Int. Union Theor. Appl. Mech., Symp. Lyngby/Denmark 1974, Springer-Verlag 1975.
- [6] CAPRIZ, G. and LARATTA, A. Large amplitude whirls of rotors, Vibrations in Rotating Machinery, Churchill College, Cambridge 1976.
- [7] DEIMLING, K. Multivalued Differential Equations, W. De Gruyter, Berlin 1992.
- [8] FEČKAN, M. Free vibrations of beams on bearings with nonlinear elastic responses, J. Differential Equations 154 (1999), 55-72.

- [9] FEČKAN, M. Periodically forced damped beams resting on nonlinear elastic bearings, Mathematica Slovaca (to appear).
- [10] FEČKAN, M. Forced oscillations of beams on elastic bearings, Electr. J. Qualitative Theor. Differential Equations (to appear)
- [11] FEIREISEL, E. Nonzero time periodic solutions to an equation of Petrovsky type with nonlinear boundary conditions: Slow oscillations of beams on elastic bearings, Ann. Scuola Norm. Sup. Pisa 20 (1993), 133-146.
- [12] MAWHIN, J. Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces, J. Differential Equations 12 (1972), 610-636.

DEPARTMENT OF MATHEMATICS, OHIO UNIVERSITY, ATHENS, OH 45701, USA *E-mail address:* aizicovi@bing.math.ohiou.edu

Department of Mathematical Analysis, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovakia

E-mail address: michal.feckan@fmph.uniba.sk