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Abstract. Let (A(t))t∈R be a continuous family of unbounded operators on
a UMD Banach space X, with t-independent domain W dense and compactly
embedded in X. Under these and other general technical conditions, we prove
that the operator DA = d

dt
− A(·) is a Fredholm operator between the spaces

W 1,p(R, X) ∩ Lp(R, W ) and Lp(R, X) for every p ∈ (1,∞). We also char-
acterize the index of DA by the spectral flow of A. These results generalize
those obtained by Robbin and Salamon when X and W are Hilbert spaces,
p = 2 and the family (A(t))t∈R is selfadjoint. The hypotheses involved are
satisfied by broad classes of second order elliptic differential operators with
boundary conditions and by PDE systems with a Hamiltonian-like structure.
An application to the Lp maximal regularity for the nonautonomous Cauchy
problem on the half-line is discussed in detail.
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1. Introduction

If H is a Hilbert space and (A(t))t∈R is a C1 family of unbounded selfad-
joint operators on H with invertible limits A± as t → ±∞ and a t-independent
dense domain D(A(t)) = W compactly embedded in H , Robbin and Salamon [34]
have shown that the operator DA defined by DAu := du

dt
− Au is Fredholm from

W 1,2(R, H) ∩ L2(R, W ) to L2(R, H). The index of DA generalizes the difference
between the Morse indices of A+ and A− even though these indices themselves
do not exist if both the positive and negative spectra of A± are infinite. A typi-
cal example (Atiyah, Patodi and Singer [8]), with numerous variants, arises when
(A(t))t∈R is a family of (selfadjoint) elliptic operators on a compact manifold.

In this paper, the Fredholm property of DA is established for continuous fam-
ilies of non-selfadjoint unbounded operators in suitable Banach spaces and in the
“Lp” setting. Partial results of this type (with D(A(t)) possibly t-dependent) have
recently been obtained by Di Giorgio, Lunardi and Schnaubelt [16], via exponential
dichotomies. In this spirit, see also Latushin and Tomilov [26] and Di Giorgio and
Lunardi [15] for the case of Hölder rather than Sobolev spaces. The recent work
by Abbondandolo and Majer [1] addresses the case when X is a Hilbert space and
A(t) is bounded. When dimX = ∞, this is a much different problem than the one
considered here.

Some preliminary discussion is needed before the appropriate hypotheses can be
formulated. An important generalization of Hilbert space is found in the concept of
Banach space with UMD (unconditionality of martingale differences), introduced by
Burkholder [11] in 1966. While their original definition was motivated by probabil-
ity theory, such spaces happen to provide an adequate framework for the discussion
of evolution problems. Closed subspaces, products and duals of Banach spaces with
UMD are themselves Banach spaces with UMD. Also, Banach spaces with UMD
are (super)reflexive (Maurey [28], Aldous [5]). Hilbert spaces as well as the Lq

spaces, q ∈ (1,∞), have the UMD property ([11], [12, Section 3]).
The characterization of the UMD property in terms of the Hilbert transform

(Burkholder [13], Bourgain [9]) led Bourgain [10] and later Zimmermann [40] to ob-
tain operator-valued versions of various Lp multiplier theorems, notably Mikhlin’s,
in Banach spaces with UMD, but only for scalar multiples of the identity. This
limitation was recently removed by Weis [38], which enabled the author to prove a
generalization of the Robbin-Salamon theorem in the UMD setting when the family
A(t) is constant ([32]). This generalization is one of the main tools needed here to
discuss the general case.

A key ingredient in Weis’ multiplier theorem is the combination of the UMD
property of the underlying Banach space with an emerging concept of bound-
edness for families of operators. This so-called “Rademacher boundedness” (r-
boundedness for short) is captured by the following definition, in which rk(t) :=
sgn sin 2k−1πt, k ∈ N, denotes the sequence of Rademacher functions on [0, 1].

Definition 1.1. Let X and Y be Banach spaces. The subset T ⊂ L(X, Y ) is
said to be Rademacher-bounded (r-bounded) if there is a constant C ≥ 0 such that

(1.1)

∫ 1

0

∥∥∥∥∥

κ∑

k=1

rk(τ )Tkxk

∥∥∥∥∥
Y

dτ ≤ C

∫ 1

0

∥∥∥∥∥

κ∑

k=1

rk(τ )xk

∥∥∥∥∥
X

dτ ,



INDEX THEOREM 305

for every finite collections T1, ..., Tκ ∈ T and x1, ..., xκ ∈ X. The smallest constant
C for which (1.1) holds is called the r-bound of T , denoted by r(T ) or by rL(X,Y )(T )
if it is important to specify that T is viewed as a subset of L(X, Y ).

By letting κ = 1 in Definition 1.1, every r-bounded subset T ⊂ L(X, Y ) is
bounded and supT∈T ||T || ≤ r(T ). For p, q ∈ [1,∞), the Khintchin-Kahane in-
equality (Lindenstrauss and Tzafriri [27, Part II, p. 74]) ensures the existence of a
constant Ap,q > 0 such that

(1.2)

(∫ 1

0

∥∥∥∥∥

κ∑

k=1

rk(τ )xk

∥∥∥∥∥

p

X

dτ

) 1
p

≤ Ap,q

(∫ 1

0

∥∥∥∥∥

κ∑

k=1

rk(τ )xk

∥∥∥∥∥

q

X

dτ

) 1
q

.

in any Banach space X . As a result, Definition 1.1 is unaffected if
∫ 1

0
|| · ||dτ is

replaced by
(∫ 1

0 || · ||pdτ
) 1

p

in (1.1), for any p ∈ [1,∞). In particular, with p = 2,

the orthonormality of the Rademacher functions shows that r-boundedness is the
same as boundedness if X and Y are Hilbert spaces. In general Banach spaces
(even with UMD), r-boundedness is more restrictive than ordinary boundedness.

Remark 1.1. If X = Y is an Lq space, q ∈ [1,∞), there is a more conve-
nient equivalent definition of r-boundedness which does not involve the Rademacher
functions: T ⊂ L(Lq) is r-bounded if and only if there is a constant C > 0 such
that ∥∥∥∥∥∥

(
κ∑

k=1

|Tkfk|
2

) 1
2

∥∥∥∥∥∥
Lq

≤ C

∥∥∥∥∥∥

(
κ∑

k=1

|fk|
2

) 1
2

∥∥∥∥∥∥
Lq

,

for every finite collections T1, ..., Tκ ∈ T and f1, ..., fκ ∈ Lq. This follows at once
from [27, Part II, Theorem 1.d.6, p. 49]. Evidently, the only difference with norm-
boundedness is that C must be independent of κ. More generally, a similar formu-
lation is valid in q-convex Banach lattices.

If A0 is an unbounded operator on a Banach space X , then σ(A0) and R(A0, λ)
will denote the spectrum and resolvent of A0, respectively. Because of spectral
considerations, it is convenient to work with complex spaces, but the main theorems
remain true in the real case as well (Remark 6.2).

After these preliminaries, we are now in a position to state our generalization
of the Robbin-Salamon theorem. From now on, X is a Banach space with UMD
and W ⊂ X is a normed space. Given a family (A(t))t∈R of unbounded operators
on X with common domain W , we shall assume that the following conditions hold:

(H1) W is a Banach space and the embedding W →֒ X is compact and dense.

(H2) A ∈ C0(R,L(W, X)).

(H3) There are operators A+, A− ∈ GL(W, X) such that

lim
t→∞

||A(t) − A+||L(W,X) = lim
t→−∞

||A(t) − A−||L(W,X) = 0.

The hypothesis (H3) justifies the notation A− = A(−∞), A+ = A(∞), convenient
to formulate further assumptions. As usual, R := [−∞,∞]. The operators A± are

also viewed as unbounded operators on X with domain W . The next condition
controls the behavior of the resolvent of A(t) on the imaginary axis. It is vacuous
in the selfadjoint case (see below).
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(H4) For every t ∈ R there is a constant C0(t) > 0 such that, for some n0(t) ∈
N,

(1.3) rL(X)({2
naR(i2na, A(t)) : n ≥ n0(t)}) ≤ C0(t), a ∈ R, 1 ≤ |a| ≤ 2,

where the left-hand side of (1.3) refers to the r-bound of the set {2naR(i2na, A(t)) :
n ≥ n0(t)} ⊂ L(X) (see Definition 1.1). This implies

(1.4) ||ξR(iξ, A(t))||L(X) ≤ C0(t), ξ ∈ R, |ξ| ≥ r0(t),

with r0(t) = 2n0(t). When X is a Hilbert space, (1.3) is equivalent to (1.4) holding
for some C0(t) > 0 and r0(t) > 0. For clarity, it should be pointed out that (1.3)
holds if rL(X)({ξR(iξ, A(t)) : |ξ| ≥ 2n0(t)}) ≤ C0(t), but the latter assumption is
stronger (in general, the r-bound of a union is larger than the maximum of the
r-bounds)

In our framework, the invertibility of the limits A± does not suffice. The
appropriate substitute is the stronger condition that

(H5) σ(A±) ∩ iR = ∅.

The hypotheses (H1) to (H3), plus some differentiability of A, are retained in
[34] when X and W are Hilbert spaces and A(t) is selfadjoint. If so, (H4) and
(H5) also hold: (1.3) has the form (1.4), which in turn is well known to be true for
selfadjoint operators. Thus, (H4) holds and (H5) follows from the invertibility of
A− and A+ in (H3).

Remark 1.2. The case when W = X and hence (A(t))t∈R is bounded on X
is also instructive: (H1) amounts to dimX < ∞ and the other assumptions reduce
to (H2), (H3) and (H5). On the other hand, it is not difficult to find bounded
counterexamples to Theorem 1.1 below when dimX = ∞ and the compactness of
the embedding of W = X into X is the only hypothesis that breaks down. See for
instance [1].

Except for (H4), the assumptions made above can easily be checked directly in
many concrete examples, notably from elliptic PDEs. We shall postpone comments
about the practical verification of (H4) until Section 7.

The main result of this paper may be summarized by

Theorem 1.1. If the family (A(t))t∈R of unbounded operators on X satisfies
the assumptions (H1) to (H5), then the operator DA := d

dt
− A is Fredholm from

W 1,p(R, X) ∩ Lp(R, W ) to Lp(R, X) for every p ∈ (1,∞).

The proof of Theorem 1.1 proceeds in two main steps: In Section 3, we show
that the operator DA is semi-Fredholm of index ν ∈ Z ∪ {−∞}. The proof relies
upon the isomorphism theorem of [32] via suitable estimates. While similar esti-
mates were already used in [34], they are here obtained without selfadjointness or
differentiability assumption and by a quite different line of arguments.

The second step (Section 4) consists in proving that the first step is valid for
D−A∗ and that kerD−A∗ is the annihilator of the range of DA. This is mostly
an issue of regularity of the weak solutions for D−A∗ , but it is simpler than the
analogous step in [34] in spite of the fact that our framework is much more general.
The difference lies in the choice for the adjoint operator: In this paper, A∗(t)
is the adjoint of A(t) ∈ L(W, X), so that A∗(t) ∈ L(X∗, W ∗) is viewed as an
unbounded operator on W ∗ with domain X∗. In contrast, the Robbin-Salamon
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approach leads to viewing A∗(t) as an unbounded operator on X∗ with smaller
domain D(A∗(t)) := {x∗ ∈ X∗ : A∗(t)x∗ ∈ W ∗ is continuous for the topology
of X} ⊂ X∗. This difference remains important when X is a Hilbert space and
the UMD property and Rademacher boundedness considerations are not an issue,
because working with a smaller domain requires proving stronger regularity results.
In particular, in the Hilbert and selfadjoint case, our proof is simpler than that of
Robbin and Salamon, yet valid for merely continuous families (A(t))t∈R (a question
explicitly left open in [34]) and for p ∈ (1,∞) rather than just p = 2.

Relatively elementary properties of the index of DA are established in Section
5, notably its p-independence (Theorem 5.1), sufficient conditions for DA to have
index 0 (Theorem 5.2 and Corollary 5.4) and a theorem of invariance of the index
under perturbations which may be neither compact nor limited in size (Theorem
5.3 and Remark 5.1).

In Section 6, we show that the index of DA can be viewed as the algebraic
count of the eigenvalues of A(t) crossing the imaginary axis as t runs from −∞ to
∞ (spectral flow). This generalizes the characterization given in [34] and is very
useful to calculate the index of DA in nontrivial examples. In Section 7, we discuss
how the hypotheses (H1) to (H5) can be checked when (A(t))t∈R is a family of
second order elliptic operators on a bounded domain and also stress the relevance
of Theorem 1.1 for systems of PDEs with a Hamiltonian-like structure.

The last section shows how the Fredholm properties of DA on the whole line
can be used to obtain similar properties for initial value problems on the half-line
R+ and how this has a direct impact on the famous Lp maximal regularity question
for the nonautonomous Cauchy problem.

In the next section, we develop some material needed in various places to carry
out the program outlined above. Most results there are either collected or derived
from [32].

2. Background material

We begin with a list of useful consequences of the hypotheses (H1) to (H5).

Theorem 2.1. Under the assumptions (H1) to (H4), the following properties
hold for every t ∈ R :
(i) If λ ∈ C\σ(A(t)), then, A(t) − λI ∈ GL(W, X).
(ii) A(t) has compact resolvent (hence σ(A(t)) is discrete).
(iii) The norm of W is equivalent1 to the graph norm of A(t) (hence A(t) is a closed
operator on X since W is a Banach space).
In addition,

(iv) If X is has the UMD property, then W has the UMD property.

Proof. (i) By the continuity of the embedding W →֒ X in (H1), A(t) − λI ∈
L(W, X) and A(t) − λI is a bijection of W onto X since λ /∈ σ(A(t)). Thus,
A(t) − λI ∈ GL(W, X) by the inverse mapping theorem.

(ii) From (i), (A(t)−λI)−1 ∈ L(X, W ). Since, by (H1), the embedding W →֒ X
is compact, it follows that (A(t) − λI)−1 ∈ L(X) is compact. Thus, A(t) has
compact resolvent and σ(A(t)) is discrete since σ(A(t)) 6= C by (1.4) (implied by
(H4)).

1It is not difficult to see that, due to (H3), this equivalence is in fact uniform in t ∈ R.
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(iii) Given t ∈ R, the graph norm of A(t) is equivalent to the graph norm
of A(t) − λI for every λ ∈ C. It thus follows from (i) and (ii) that we may
assume that A(t) ∈ GL(W, X) with no loss of generality. If so, there is a constant
C = C(t) > 0 such that C−1||w||W ≤ ||A(t)w||X ≤ C||w||W for every w ∈ W . This
implies C−1||w||W ≤ ||A(t)w||X + ||w||X ≤ C||w||W + ||w||X . After increasing C
if necessary, we may assume that ||w||X ≤ C||w||W since the embedding W →֒ X
is continuous by (H1). Thus, C−1||w||W ≤ ||A(t)w||X + ||w||X ≤ 2C||w||W for
w ∈ W .

(iv) If X has the UMD property, the same thing is true of X ×X and of every
closed subspace of X × X (see the Introduction). By (iii), W is isomorphic to a
closed subspace of X × X (the graph of A(t) for any chosen t) and hence has the
UMD property.

The following result is a sharpening of Theorem 1.1 when A(t) is constant.

Theorem 2.2. ([32]) Let X be a Banach space with UMD and let A0 be a
closed unbounded operator on X with domain D(A0) = W dense in X and equipped
with the graph norm of A0. Suppose that:
(i) σ(A0) ∩ iR = ∅.
(ii) There is a constant C0 > 0 such that, for some n0 ∈ N,

(2.1) rL(X)({2
naR(i2na, A0) : n ≥ n0}) ≤ C0, ∀a ∈ R, 1 ≤ |a| ≤ 2.

Then, the operator d
dt

− A0 is an isomorphism of W 1,p(R, X) ∩ Lp(R, W ) onto
Lp(R, X) for every p ∈ (1,∞).

Remark 2.1. More generally, d
dt

− A0 is an isomorphism of W k+1,p(R, X) ∩

W k,p(R, W ) onto W k,p(R, X) for every p ∈ (1,∞) and every k ∈ N∪{0}; see [32,
Remark 4.3].

Unlike Theorem 1.1, Theorem 2.2 is valid even if the embedding W = D(A0) →֒
X is not compact. Recall (see e.g. Kato [25]) that if X is a Banach space and
A0, B are unbounded linear operators on X , then B is said to be A0-bounded if
D(A0) ⊂ D(B) and there are constants α, β ≥ 0 such that

(2.2) ||Bx||X ≤ α||A0x||X + β||x||X , x ∈ D(A0).

The infimum of the possible constants α above is called the A0 -bound α(B) of B
or relative bound of B. It is rather fortunate that the technical condition (ii) in
Theorem 2.2 is unaffected by relatively bounded perturbations with small enough
relative bounds:

Theorem 2.3. ([32]) Let X be a Banach space and let A0 be a closed unbounded
operator on X. Suppose that there is a constant C0 > 0 such that, for some n0 ∈ N,

(2.3) rL(X)({2
naR(i2na, A0) : n ≥ n0}) ≤ C0, ∀a ∈ R, 1 ≤ |a| ≤ 2.

Then, there is α0 > 0 such that (2.3) continues to hold with A0 replaced by A0 +H
whenever H is an A0-bounded operator on X with A0-bound α(H) < α0. More
precisely, given (α, β) such that α ∈ (0, α0) and β ≥ 0, there are C(α) > 0 and
n(α, β) ∈ N, both independent of H satisfying (2.2), such that 2

(2.4)
rL(X)({2

naR(i2na, A0 + H) : n ≥ n(α, β)}) ≤ C(α), ∀a ∈ R, 1 ≤ |a| ≤ 2.

2Of course, C(α) and n(α, β) also depend upon A0.
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The following corollary shows that the assumptions (H1) through (H5) are
unaffected by small enough perturbations of A(t). It will be useful in Section 6.

Corollary 2.4. Suppose that (H1) to (H5) hold. There is ε > 0 such that
if H ∈ C0(R,L(W, X)) satisfies ||H(t)||L(W,X) < ε and limt→±∞ H(t) = 0, then
(H1) to (H5) hold with A replaced by A + H.

Proof. This is obvious, except for the fact that condition (H4) holds if ε > 0
is small enough. Let t0 ∈ R be given. By (H3) and the continuity of A and by the
equivalence of the norm of W with the graph norm of A(t0) (Theorem 2.1 (iii)), there
are an open interval3 Jt0 about t0 and β > 0 such that ||A(t)x+H(t)x−A(t0)x||X ≤
2ε||A(t0)x||X + β||x||X for all t ∈ Jt0 and all x ∈ W . It now follows from Theorem
2.3 with A0 = A(t0) that (H4) holds with A replaced by A+ H and t ∈ Jt0 if ε > 0
is small enough. Thus, by the compactness of R, (H4) holds with A replaced by
A + H and all t ∈ R after shrinking ε > 0 if necessary.

In Theorem 2.2, A0 may also be viewed in L(W, X) if W = D(A0) is equipped
with the graph norm, and then R(iξ, A0) ∈ L(X, W ) whenever iξ /∈ σ(A0). The
following theorem shows that condition (ii) of Theorem 2.2 can also be formulated
in this (different) setting.

Theorem 2.5. Let X be a Banach space and let A0 be an unbounded operator
on X with domain D(A0) = W equipped with the graph norm of A0. Then, condi-
tion (ii) of Theorem 2.2 holds if and only if there is a constant C0 > 0 such that,
for some n0 ∈ N,

(2.5) rL(X,W )({R(i2na, A0) : n ≥ n0}) ≤ C0, ∀a ∈ R, 1 ≤ |a| ≤ 2.

Likewise, the boundedness of ||ξR(iξ, A0)||L(X) and of ||R(iξ, A0)||L(X,W ) for |ξ| ≥
r0 and some r0 > 0 are equivalent.

Proof. We only prove the equivalence of (2.1) and (2.5) since the equivalence
of the boundedness of ||ξR(iξ, A0)||L(X) and of ||R(iξ, A0)||L(X,W ) for |ξ| ≥ r0 is
entirely similar and technically simpler.

Suppose that (2.5) holds. Given κ ∈ N and n ∈ N and xk ∈ X, 1 ≤ k ≤ κ, we
have

(2.6) i2nkaR(i2nka, A0)xk = xk + A0R(i2nka, A0)xk,

for every a ∈ R with 1 ≤ |a| ≤ 2, so that

(2.7)

∫ 1

0

∥∥∥∥∥

κ∑

k=1

rk(τ )2nkaR(i2nka, A0)xk

∥∥∥∥∥
X

dτ ≤

∫ 1

0

∥∥∥∥∥

κ∑

k=1

rk(τ )xk

∥∥∥∥∥
X

dτ+

∫ 1

0

∥∥∥∥∥A0

(
κ∑

k=1

rk(τ )R(i2nka, A0)xk

)∥∥∥∥∥
X

dτ .

Since W is equipped with the graph norm of A0,∥∥∥∥∥A0

(
κ∑

k=1

rk(τ )R(i2nka, A0)xk

)∥∥∥∥∥
X

≤

∥∥∥∥∥

κ∑

k=1

rk(τ )R(i2nka, A0)xk

∥∥∥∥∥
W

3open in R.
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and hence it follows from (2.5) that

∫ 1

0

∥∥∥∥∥A0

(
κ∑

k=1

rk(τ )R(i2nka, A0)xk

)∥∥∥∥∥
X

dτ ≤ C0

∫ 1

0

∥∥∥∥∥

κ∑

k=1

rk(τ )xk

∥∥∥∥∥
X

dτ .

if nk ≥ n0. By substitution into (2.7), we obtain

∫ 1

0

∥∥∥∥∥

κ∑

k=1

rk(τ )2nkaR(i2nka, A0)xk

∥∥∥∥∥
X

dτ ≤ (C0 + 1)

∫ 1

0

∥∥∥∥∥

κ∑

k=1

rk(τ )xk

∥∥∥∥∥
X

dτ ,

so that (2.1) holds.
Conversely, suppose that (2.1) holds. Rewrite (2.6) in the form

i2nkaR(i2nka, A0)xk − xk = A0R(i2nka, A0 − λ0I )xk.

This yields

∫ 1

0

∥∥∥∥∥A0

(
κ∑

k=1

rk(τ )R(i2nka, A0)xk

)∥∥∥∥∥
X

dτ ≤

∫ 1

0

∥∥∥∥∥

κ∑

k=1

rk(τ )2nkaR(i2nka, A0)xk

∥∥∥∥∥
X

dτ +

∫ 1

0

∥∥∥∥∥

κ∑

k=1

rk(τ )xk

∥∥∥∥∥
X

dτ ,

and hence, with C0 and n0 from (2.1),

(2.8)

∫ 1

0

∥∥∥∥∥A0

(
κ∑

k=1

rk(τ )R(i2nka, A0)xk

)∥∥∥∥∥
X

dτ ≤ (C0+1)

∫ 1

0

∥∥∥∥∥

κ∑

k=1

rk(τ )xk

∥∥∥∥∥
X

dτ ,

if nk ≥ n0.
On the other hand, since |a| ≥ 1 and n0 ∈ N, then

{R(i2na, A0) : n ≥ n0} ⊂ [0, 1]{2naR(i2na, A0) : n ≥ n0},

where the set in the right-hand side consists of the products α2naR(i2na, A0) for
some α ∈ [0, 1] and some n ≥ n0. Hence (for instance by [32]),

rL(X)({R(i2na, A0) : n ≥ n0}) ≤ rL(X)({2
naR(i2na, A0) : n ≥ n0})

so that rL(X)({R(i2na, A0) : n ≥ n0}) ≤ C0, irrespective of 1 ≤ |a| ≤ 2. Thus, if
nk ≥ n0,

∫ 1

0

∥∥∥∥∥

κ∑

k=1

rk(τ )R(i2nka, A0)xk

∥∥∥∥∥
X

dτ ≤ C0

∫ 1

0

∥∥∥∥∥

κ∑

k=1

rk(τ )xk

∥∥∥∥∥
X

dτ .

Together with (2.8) and since the norm of W is the graph norm of A0, we obtain

∫ 1

0

∥∥∥∥∥

κ∑

k=1

rk(τ )R(i2nka, A0)xk

∥∥∥∥∥
W

dτ ≤ (2C0 + 1)

∫ 1

0

∥∥∥∥∥

κ∑

k=1

rk(τ )xk

∥∥∥∥∥
X

dτ .

so that (2.5) holds.

The next result is a special case of [32], using the fact that Banach spaces with
UMD have nontrivial Rademacher type ([32]). It is the r-bounded version of the
elementary result that a subset of L(X, Y ) is bounded if and only if the subset of
the corresponding adjoints is bounded in L(Y ∗, X∗).
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Theorem 2.6. Let X and Y be Banach spaces with UMD. Given T ⊂ L(X, Y ),
denote by T ∗ the set T ∗ := {T ∗ : T ∈ T } ⊂ L(Y ∗, X∗). Then, T is r-bounded
if and only if T ∗ is r-bounded. Furthermore, there are constants c(X) > 0 and
c∗(Y ) > 0 depending only upon X and Y , respectively, such that rL(Y ∗,X∗)(T

∗) ≤
c(X)rL(X,Y )(T ) and that rL(X,Y )(T ) ≤ c∗(Y )rL(Y ∗,X∗)(T

∗).

3. The semi-Fredholm property

This section is devoted to proving Theorem 3.1 below, a first and main step
towards the proof of Theorem 1.1.

Theorem 3.1. Let X be a Banach space with UMD. If the family (A(t))t∈R of
unbounded operators on X satisfies the assumptions (H1) to (H5), then for every
p ∈ (1,∞) the operator DA := d

dt
− A is semi-Fredholm with index ν ∈ Z ∪ {−∞}

from W 1,p(R, X) ∩ Lp(R, W ) to Lp(R, X). (In other words, DA has closed range
and a finite dimensional null space.)

From now on, with X and W as in Theorem 3.1, it will be convenient to use
the notation

(3.1) X p := Lp(R, X), Wp := W 1,p(R, X) ∩ Lp(R, W )

and we shall assume throughout this section that (A(t))t∈R ⊂ L(W, X) satisfies
the assumptions (H1) to (H5) without further mention. Also, p ∈ (1,∞) is chosen
once and for all.

We need a series of lemmas, notably about the operators DA(s)−λI when both

s and λ are parameters and hence DA(s)−λI = d
dt

− (A(s) − λ I) acts on functions
u = u(t).

Lemma 3.2. (i) Let s0 ∈ R be given and let λ0 ∈ R be such that σ(A(s0)−λ0I)∩
iR = ∅. Then, there are an open interval J0 about s0 and a constant C(s0) > 0 such
that DA(s)−λ0I

∈ GL(Wp,X p) for every s ∈ J0 and that ||D−1
A(s)−λ0I

||L(X p,Wp) ≤

C(s0) for every s ∈ J0.
(ii) There is T > 0 such that DA(s) ∈ GL(Wp,X p) for every s ∈ (−∞,−T )∪(T,∞)

and there is a constant C∞ > 0 such that ||D−1
A(s)||L(X p,Wp) ≤ C∞ for every s ∈

(−∞,−T ) ∪ (T,∞).

Proof. (i) By Theorem 2.1 (iii), the operator A(s0) is a closed unbounded
operator on X with domain W equipped with a norm equivalent to the graph norm
of A(s0), also the graph norm of A(s0) − λ0I. Next, by (H4), A(s0) satisfies the
condition (2.3) of Theorem 2.3 and −λ0I is A(s0)-bounded with relative bound 0.
Thus, by Theorem 2.3, A(s0)−λ0 I also satisfies (2.3), i.e., condition (ii) of Theorem
2.2. Since W = D(A(s0)−λ0I) is dense in X by (H1) and since σ(A(s0)−λ0I)∩iR =
∅, it follows from that theorem that DA(s0)−λ0I

∈ GL(Wp,X p).
It is readily checked that (H2) implies that the mapping s ∈ R 7→ DA(s)−λ0I

∈
L(Wp,X p) is continuous. By the openness of GL(Wp,X p) in L(Wp,X p), it thus
follows that DA(s)−λ0I

∈ GL(Wp,X p) with ||D−1
A(s)−λ0I

||L(X p,Wp) bounded by a

constant C(s0) > 0 if s ∈ J0 and J0 is a small enough open interval about s0. This
proves (i).

(ii) The procedure is similar, just replacing A(s0) by A± and using (H3) instead
of (H2). The assumption (H5) ensures that Theorem 2.2 is available with A0 =
A±.
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Lemma 3.3. There are a finite set Λ ⊂ R and a constant C > 0 such that, for
every s ∈ R, the following two properties hold:

(i) There is λ0 ∈ Λ such that DA(s)−λ0 I ∈ GL(Wp,X p) and
∥∥∥D−1

A(s)−λ0I

∥∥∥
L(X p,Wp)

≤

C.
(ii) There is T > 0 such that (i) holds with λ0 = 0 whenever |s| > T , that is,

DA(s) ∈ GL(Wp,X p) and
∥∥∥D−1

A(s)

∥∥∥
L(X p,Wp)

≤ C if |s| > T .

Proof. Let T > 0 be as in part (ii) of Lemma 3.2 and let s0 ∈ [−T, T ] be
given. From Theorem 2.1 (ii), σ(A(s0)) is discrete. As a result, there is λ0 ∈ R

such that σ(A(s0)−λ0I)∩ iR = ∅ and Lemma 3.2 (i) shows that there are an open
interval J0 about s0 and a constant C(s0) > 0 such that DA(s)−λ0I

∈ GL(Wp,X p)

and
∥∥∥D−1

A(s)−λ0 I

∥∥∥
L(X p,Wp)

≤ C(s0) if s ∈ J0.

Cover [−T, T ] by finitely many such open intervals Jℓ about sℓ ∈ [−T, T ], 1 ≤
ℓ ≤ N , with corresponding λℓ ∈ R and set Λ := {0, λ1, ..., λN}. If s ∈ R, we have
either s ∈ [−T, T ] or s ∈ (−∞,−T ) ∪ (T,∞). In the first case, s ∈ Jℓ for some ℓ ∈

{1, ..., N}, whence D−1
A(s)−λℓI

∈ GL(Wp,X p) and
∥∥∥D−1

A(s)−λℓ I

∥∥∥
L(X p,Wp)

≤ C(sℓ).

In the second case, DA(s) ∈ GL(Wp,X p) and
∥∥∥D−1

A(s)

∥∥∥
L(X p,Wp)

≤ C∞ by part (ii)

of Lemma 3.2. Thus, C = max{C∞, max1≤i≤N C(si)} works in (i) and (ii).

Lemma 3.4. There is ε > 0 such that, for every θ ∈ C∞(R) and every u ∈ Wp,

(3.2) sup
s,t∈Supp θ

||A(s) − A(t)||L(W,X) ≤ ε ⇒

||θu||Wp ≤ ε−1

(
||θDAu||X p +

∥∥∥∥u
dθ

dt

∥∥∥∥
X p

+ ||θu||X p

)
.

Furthermore, there is T > 0 such that whenever Supp θ ⊂ (−∞,−T )∪ (T,∞), then

(3.3) ||θu||Wp ≤ ε−1

(
||θDAu||X p +

∥∥∥∥u
dθ

dt

∥∥∥∥
X p

)
.

Proof. Let u ∈ Wp be given and set f := DAu. The multiplication of both
sides by θ ∈ C∞(R) yields DA(θu) = u dθ

dt
+ θf . Pick s0 ∈ Supp θ and let λ0 ∈ Λ

be given by Lemma 3.3 (i). Then,

DA(s0)−λ0I
(θu) = (A − A(s0)) θu + θf + u

dθ

dt
+ λ0θu

and hence, by Lemma 3.3 (i),

(3.4) ||θu||Wp ≤ C

(
|| (A − A(s0)) θu||X p + ||θf ||X p +

∥∥∥∥u
dθ

dt

∥∥∥∥
X p

+ |λ0| ||θu||X p

)
,

where C > 0 is a constant independent of s0, u and θ. By writing

|| (A − A(s0)) θu||X p =

(∫

Supp θ

|| (A(t) − A(s0)) θ(t)u(t)||pXdt

) 1
p

,
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we obtain the estimate

|| (A − A(s0)) θu||X p ≤ sup
t∈Supp θ

||A(t) − A(s0)||L(W,X)||θu||Lp(R,W ) ≤

sup
s,t∈Supp θ

||A(s) − A(t)||L(W,X)||θu||Wp .

Since Λ is finite, we now may change C into C max{1, maxλ∈Λ |λ|} in (3.4) to
get

||θu||Wp ≤ C sup
s,t∈Supp θ

||A(s) − A(t)||L(W,X)||θu||Wp+

C

(
||θf ||X p +

∥∥∥∥u
dθ

dt

∥∥∥∥
X p

+ ||θu||X p

)
,

which yields (3.2) with ε = 1
2C

independent of u and θ since f := DAu.
The proof of (3.3) is similar, using part (ii) instead of part (i) of Lemma 3.3,

which shows that we may choose λ0 = 0 in (3.4 ) if T > 0 is large enough and
Supp θ ⊂ (−∞,−T ) ∪ (T,∞). In particular, by (H3), T can be chosen so that
||A(s) − A(t)||L(W,X) ≤ 1

2C
whenever s, t ≥ T or s, t ≤ −T . This yields (3.3)

with ε = 1
2C

when Supp θ ⊂ (−∞,−T ) or when Supp θ ⊂ (T,∞) and hence when
Supp θ ⊂ (−∞,−T ) ∪ (T,∞).

The last lemma follows readily from the uniform continuity of A on compact
intervals.

Lemma 3.5. Given ε > 0 and T > 0, there is a covering of [−T, T ] by
finitely many bounded open intervals Jℓ, 1 ≤ ℓ ≤ M , such that sups,t∈Jℓ

||A(s) −
A(t)||L(W,X) ≤ ε for every 1 ≤ ℓ ≤ M .

Proof of Theorem 3.1. By Yood’s criterion ([14, p. 78] ), it suffices to show
that DA is proper on the closed bounded subsets of Wp, i.e., that every bounded
sequence (un) ⊂ Wp such that

(3.5) DAun → f in X p,

contains a convergent subsequence.
Let ε > 0 be given by Lemma 3.4 and let T > 0 be such that ( 3.3) holds. With

this choice of ε and T , Lemma 3.5 yields finitely many bounded open intervals
J1, ..., JM covering [−T, T ] such that

(3.6) sup
s,t∈Jℓ

||A(s) − A(t)||L(W,X) ≤ ε, 1 ≤ ℓ ≤ M.

Set J0 := (−∞, T ) and JM+1 := (T,∞), so that R = ∪M+1
ℓ=0 Jℓ and let

(θℓ)0≤ℓ≤M+1 be a partition of unity subordinate to this covering. From the bound-
edness of Jℓ when 1 ≤ ℓ ≤ M , we infer that θ0(t) = 1 for −t > 0 large enough and

θM+1(t) = 1 for t > 0 large enough. Thus, Supp dθ0

dt
and Supp dθM+1

dt
are compact.

Since also Supp θℓ ⊂ Jℓ is compact when 1 ≤ ℓ ≤ M , there is 0 < T̃ < ∞ such that

(3.7) Supp θℓ ⊂ (−T̃ , T̃ ), 1 ≤ ℓ ≤ M,

Supp
dθℓ

dt
⊂ (−T̃ , T̃ ), 0 ≤ ℓ ≤ M + 1.
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Since Supp θ0 ⊂ (T,∞) and Supp θM+1 ⊂ (−∞,−T ) and due to the choice of
ε and T , it follows from (3.3) that

(3.8) ||θℓu||Wp ≤ ε−1

(
||θℓDAu||X p +

∥∥∥∥u
dθℓ

dt

∥∥∥∥
X p

)
, ℓ = 0 or M + 1,

for every u ∈ Wp. If now 1 ≤ ℓ ≤ M , we infer from ( 3.6) and Supp θℓ ⊂ Jℓ that
sups,t∈Supp θℓ

||A(s) − A(t)||L(W,X) ≤ ε. Hence, by (3.2) with θ = θℓ,

(3.9) ||θℓu||Wp ≤ ε−1

(
||θℓDAu||X p +

∥∥∥∥u
dθℓ

dt

∥∥∥∥
X p

+ ||θℓu||X p

)
, 1 ≤ ℓ ≤ M

for every u ∈ Wp. By adding up (3.8) and (3.9),

(3.10)

M+1∑

ℓ=0

||θℓu||Wp ≤ ε−1

(
M+1∑

ℓ=0

||θℓDAu||X p +

M+1∑

ℓ=0

∥∥∥∥u
dθℓ

dt

∥∥∥∥
X p

+

M∑

ℓ=1

||θℓu||X p

)
.

We shall set

(3.11) X p

T̃
:= Lp((−T̃ , T̃ ), X), Wp

T̃
:= W 1,p((−T̃ , T̃ ), X) ∩ Lp((−T̃ , T̃ ), W ).

By (3.7) and (3.10) and
∑M+1

ℓ=0 θℓ = 1 (whence u =
∑M+1

ℓ=0 θℓu), there is a constant
C > 0 independent of u such that

(3.12) ||u||Wp ≤ C(||DAu||X p + ||u||X p

T̃

), u ∈ Wp.

Since the embedding W →֒ X is compact and the interval (−T̃ , T̃ ) is bounded,
it follows from Simon [37, Theorem 1] that the embedding Wp

T̃
→֒ X p

T̃
is compact.

We may thus assume with no loss of generality that the sequence (un) (bounded in
Wp and hence in Wp

T̃
) is convergent in X p

T̃
. Then, by letting u = un − um in (3.12)

and since (DAun) is convergent in X p by (3.5), we find that (un) is convergent in
Wp. This completes the proof.

Remark 3.1. When A satisfies the hypotheses of Theorem 3.1, it follows from
(3.12) that the boundedness of u and DAu in X p implies the boundedness of u in
Wp.

4. Regularity and the Fredholm property

We continue to assume that X is a Banach space with UMD and that p ∈
(1,∞). With p′ ∈ (1,∞) denoting the Hölder conjugate of p, we introduce the
spaces

(4.1) Wp′

∗ := Lp′

(R, W ∗), X p′

∗ := W 1,p′

(R, W ∗) ∩ Lp′

(R, X∗).

The spaces Wp′

∗ and X p′

∗ correspond to the space X p and Wp in (3.1) (in that order),
upon replacing X, W and p by W ∗, X∗ and p′, respectively. It is important that

(4.2) Lp′

(R, X∗) = (Lp(R, X))∗ = (X p)∗.

For this, see Edwards [20] and recall that Banach spaces with UMD are reflexive
(see the Introduction). In fact, if 〈〈·, ·〉〉 denotes the duality pairing between X p

and (X p)∗, then

(4.3) 〈〈v, v∗〉〉 :=

∫

R

〈u(t), v∗(t)〉X,X∗dt, v ∈ X p, v∗ ∈ (X p)∗ = Lp′

(R, X∗),

where 〈·, ·〉X,X∗ is the duality pairing between X and X∗.
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With

(4.4) (rge DA)⊥ := {v∗ ∈ (X p)∗ : 〈〈v, v∗〉〉 = 0, ∀ v ∈ rge DA},

we first prove that if (A(t))t∈R satisfies (H1) to (H5), then

(4.5) (rge DA)⊥ = kerD−A∗ ,

where DA : Wp → X p and D−A∗ = d
dt

+ A∗ : X p′

∗ → Wp′

∗ . By (H2) and (H3)
and duality, A∗ : R → L(X∗, W ∗) is continuous and bounded, whence D−A∗ does

map X p′

∗ to Wp′

∗ and (4.5) makes sense since X p′

∗ ⊂ (X p)∗ by (4.1) and (4.2). Of
course, (rge DA)⊥ = ker(DA)∗ with (DA)∗ ∈ L((X p)∗, (Wp)∗) the adjoint of DA.
But (DA)∗ has no convenient explicit characterization and hence a direct proof
that dimker(DA)∗ < ∞ is not available. On the other hand, (4.5) shows that (rge

DA)⊥, a subspace of (X p)∗, is actually a subspace of X p′

∗ ⊂ (X p)∗, so that (4.5) is
a “regularity” result. We now prove it in

Lemma 4.1. Let X be a Banach space and let (A(t))t∈R be a family of un-
bounded operators on X satisfying the assumptions (H1) to (H5). Then, v∗ ∈ (X p)∗

and

(4.6) 〈〈DAu, v∗〉〉 = 0,

for every u ∈ Wp if and only if v∗ ∈ X p′

∗ and D−A∗v∗ = 0.

Proof. Suppose first that v∗ ∈ (X p)∗ = Lp′

(R, X∗) and that 〈〈DAu, v∗〉〉 = 0.
Since the embedding W →֒ X is continuous, every x∗ ∈ X∗ is in W ∗ and the
restriction of x∗ to W (dense in X) determines x∗ uniquely. Thus,

(4.7) 〈x, x∗〉X,X∗ = 〈x, x∗〉W,W∗ , ∀x ∈ W, ∀x∗ ∈ X∗ ⊂ W ∗.

In particular, the embedding X∗ ⊂ W ∗ is continuous, so that Lp′

(R, X∗) ⊂ Lp′

(R, W ∗)

and hence v∗ ∈ Lp′

(R, W ∗).

It remains to prove that dv∗

dt
∈ Lp′

(R, W ∗) and that D−A∗v∗ = 0 as distri-
butions with values in W ∗. The former property follows from the latter because
D−A∗v∗ = 0 amounts to dv∗

dt
= −A∗v∗ ∈ Lp′

(R, W ∗) since A∗ : R → L(X∗, W ∗) is

continuous and bounded (by (H2), (H3) and duality) and v∗ ∈ Lp′

(R, X∗).
Let x ∈ W ⊂ X and ϕ ∈ D(R) = C∞

0 (R) be given, so that ϕx ∈ Wp and hence

〈〈DA(ϕx), v∗〉〉 =
∫
R
〈dϕ

dt
(t)x−ϕ(t)A(t)x, v∗(t)〉X,X∗dt = 0 by (4.3) and (4.6). This

may be rewritten as
∫

R

〈x,
dϕ

dt
(t)v∗(t)〉X,X∗ −

∫

R

〈x, ϕ(t)A∗(t)v∗(t)〉W,W∗dt = 0.

Since the Bochner integral commutes with duality pairings, this is also

(4.8) 〈x,

∫

R

dϕ

dt
(t)v∗(t)dt〉X,X∗ − 〈x,

∫

R

ϕ(t)A∗(t)v∗(t)dt〉W,W∗ = 0.

It follows from (4.7) and the assumption x ∈ W that the pairing 〈·, ·〉X,X∗ in (4.8)
may be replaced by 〈·, ·〉W,W∗ . In this form, (4.8) expresses that

(4.9)

∫

R

dϕ

dt
(t)v∗(t)dt −

∫

R

ϕ(t)A∗(t)v∗(t)dt = 0,

in W ∗. By definition of the derivative in the sense of distributions and since ϕ ∈
D(R) is arbitrary, this is just D−A∗v∗ = 0 as distributions with values in W ∗.
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Conversely, suppose that v∗ ∈ X p′

∗ and D−A∗v∗ = 0. Then, v∗ ∈ (X p)∗ by
(4.1) and (4.2) and (4.9) holds for every ϕ ∈ D(R). By reversing the above steps,
it follows that 〈〈DA(ϕx), v∗〉〉 = 0 for every x ∈ W and every ϕ ∈ D(R). Thus,
by linearity, 〈〈DAu, v∗〉〉 = 0 for u ∈ D(R) ⊗ W and hence for u ∈ Wp by a
straightforward density argument (since W is dense in X).

Theorem 4.2. Let X be a Banach space with UMD and let (A(t))t∈R be a
family of unbounded operators on X satisfying the assumptions (H1) to (H5). Then,
the operator DA is Fredholm from Wp to X p for every p ∈ (1,∞). Furthermore,

D−A∗ is Fredholm from X p′

∗ to Wp′

∗ and in this setting, indexD−A∗ = −indexDA

and (rge DA)⊥ = kerD−A∗.

Proof. By Theorem 3.1, DA is semi-Fredholm with dimkerDA < ∞. To
prove that DA is Fredholm, it suffices to show that dim kerD−A∗ < ∞ when D−A∗

acts from X p′

∗ to Wp′

∗ : If so, codim rge DA = dimkerD−A∗ by Lemma 4.1 and
the closedness of rge DA. The characterization (rge DA)⊥ = kerD−A∗ also follows
from Lemma 4.1.

We shall prove the stronger result that D−A∗ is semi-Fredholm with finite

dimensional null space from X p′

∗ to Wp′

∗ . To do this, we check that we may replace
A by A∗ in Theorem 3.1, so that X becomes W ∗ and W becomes X∗. To begin
with, W is a Banach space with UMD by Theorem 2.1 (iv), whence W ∗ is a Banach
space with UMD. For convenience, in the remainder of the proof, we call (H*1),...,
(H*5) the conditions (H1),..., (H5) for A∗.

As noted in the proof of Lemma 4.1, X∗ →֒ W ∗ (continuous embedding). Let
j denote the embedding W →֒ X , so that j is compact by (H1). Then, j∗ ∈
L(X∗, W ∗) is compact and, for x∗ ∈ X∗, j∗x∗ ∈ W ∗ is the restriction of x∗ to W .
Thus, j∗ is the (compact) embedding X∗ →֒ W ∗. Since X and W are reflexive
(Theorem 2.1 (iv)), we have (j∗)∗ = j and, since j is one to one, it follows that
j∗(X∗) = X∗ is dense in W ∗. This proves (H*1). From now on, we simply denote
by “I” (identity) the embeddings j and j∗.

The conditions (H*2) and (H*3) (with A± replaced by A∗
±) are trivial from

(H2) and (H3) and duality.
Given t ∈ R, the property (H*4) requires the existence of C∗

0 (t) > 0 and of
n∗

0(t) ∈ N such that

rL(W∗)({2
naR(i2na, A∗(t)) : n ≥ n∗

0(t)}) ≤ C∗
0 (t), a ∈ R, 1 ≤ |a| ≤ 2,

where A∗(t) is viewed as an unbounded operator on W ∗ with domain X∗. This
inequality follows from (H4) and Theorems 2.5 and 2.6. Specifically, by (H4) and
Theorem 2.5 there are C0(t) > 0 and n0(t) ∈ N such that

(4.10) rL(X,W )({R(i2na, A(t)) : n ≥ n0(t)}) ≤ C0(t), a ∈ R, 1 ≤ |a| ≤ 2.

The embedding X∗ →֒ W ∗ being the adjoint of the embedding W →֒ X , we have
(λI − A)∗ = λI − A∗ and hence R(λ, A∗(t)) = R(λ, A(t))∗. Thus,

rL(W∗,X∗)({R(i2na, A∗(t)) : n ≥ n0(t)}) ≤ c(X)C0(t),

by (4.10) and Theorem 2.6, where c(X) > 0 depends only upon X . Thus, (H*4)
holds by another application of Theorem 2.5, provided that we check that the norm
of X∗ is equivalent to the graph norm of A∗(t). This is done below.

By the continuity of the embedding X∗ →֒ W ∗, the graph norm of A∗(t) is
equivalent to the graph norm of A∗(t) − λ I= (A(t) − λI)∗ for every λ ∈ C. On
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the other hand, since σ(A(t)) 6= C, there is λ such that A(t)− λI∈ GL(W, X) (see
Theorem 2.1 (i) and (iii)). As a result, it is not restrictive to prove the equivalence
of the norm of X∗ with the graph norm of A∗(t) under the additional assumption
that A(t) ∈ GL(W, X).

Given x∗ ∈ X∗ and x ∈ X , we have

|〈x, x∗〉X,X∗ | = |〈A(t)A−1(t)x, x∗〉X,X∗ | = |〈A−1(t)x, A∗(t)x∗〉W,W∗ | ≤

||A−1(t)x||W ||A∗(t)x∗||W∗ ,

so that

||x∗||X∗ ≤ ||A−1(t)||L(X,W )||A
∗(t)x∗||W∗ ≤

||A−1(t)||L(X,W )(||x
∗||W∗ + ||A∗(t)x∗||W∗).

Conversely, ||x∗||W∗+||A∗(t)x∗||W∗ ≤
(
C + ||A∗(t)||L(X∗,W∗)

)
||x∗||X∗ where C > 0

is the norm of the embedding X∗ →֒ W ∗. This proves the desired equivalence of
norms and completes the proof of (H*4).

The last condition, (H*5), is trivial from (H5) and Theorem 2.1 (i).
At this stage, we have that D−A∗ is semi-Fredholm with finite dimensional null

space from X p′

∗ to Wp′

∗ by Theorem 3.1 for −A∗. As noted at the beginning of the
proof, this yields codim rge DA = dimkerD−A∗ and hence

(4.11) indexDA = dimkerDA − dim kerD−A∗ .

In turn, if A is replaced by −A∗ in this identity (a substitution justified by the first
part of the proof), then −A∗ is replaced by A∗∗. But A∗∗ = A since X and W are
reflexive. This gives indexD−A∗ = dim kerD−A∗ − dimkerDA = −indexDA and
the proof is complete.

Theorem 4.2 raises the question of the p-independence of the index of DA,
which will be proved in Theorem 5.1.

Remark 4.1. It follows at once from Theorem 4.2 and the local constancy of
the index of Fredholm operators that the index of DA is a homotopy invariant of
the paths (A(t))t∈R satisfying the assumptions (H1) to (H5).

5. Elementary properties of the index of DA

We begin with a regularity result that also proves the p-independence of the
index of DA in Theorem 4.2.

Theorem 5.1. Let X be a Banach space with UMD and let the family (A(t))t∈R

of unbounded operators on X satisfy the assumptions (H1) to (H5). If p, q ∈ (1,∞)
and f ∈ X p ∩ X q and if u ∈ Wp satisfies DAu = f , then u ∈ Wp ∩ Wq. In
particular, the index of DA : Wp → X p is independent of p ∈ (1,∞).

Proof. We shall use a localization argument based on the fact that when
A(t) = A0 is constant and σ(A0)∩iR = ∅, then DA0 ∈ GL(Wp,X p)∩GL(Wq,X q)∩
GL(Wp ∩Wq, X p ∩ X q) ([32]).

Given T > 0 and θ ∈ D(R) with support in (T,∞) satisfying θ = 1 in [T+1,∞),
we have DA(θu) = θf + dθ

dt
u and DA(θu) = DAT

(θu) where AT (t) = A(T ) if t < T

and AT (t) = A(t) if t ≥ T . Thus, DAT
(θu) = θf + dθ

dt
u. By increasing T , DAT

is an arbitrarily small perturbation of DA+ and since σ(A+) ∩ iR = ∅ by (H5), it
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follows that DAT
∈ GL(Wp,X p) ∩ GL(Wq,X q) ∩ GL(Wp ∩ Wq, X p ∩ X q) for T

large enough. Since u ∈ Wp ⊂ C0(R, X) and dθ
dt

u has compact support (whence

θf, dθ
dt

u ∈ X p ∩ X q), this implies that θu ∈ Wp ∩ Wq. Likewise, θu ∈ Wp ∩ Wq

if θ ∈ D(R) has support in (−∞,−T ) with T > 0 large enough and θ = 1 in
(−∞,−T − 1].

Let now t0 ∈ R be fixed. Choose λ0 ∈ R such that σ(A(t0)−λ0I)∩iR = ∅ (see
Theorem 2.1 (ii)), so that DA(t0)−λ0I ∈ GL(Wp,X p)∩GL(Wq ,X q)∩GL(Wp∩Wq,
X p ∩X q). Given ε > 0, define At0,ε(t) = A(t0 − ε) if t < t0− ε, At0,ε(t) = A(t0 + ε)
if t > t0 + ε and At0,ε(t) = A(t) if t ∈ [t − ε, t + ε]. Then, DAt0,ε−λ0I is arbitrarily

close to DA(t0)−λ0I if ε > 0 is small enough, whence DAt0,ε−λ0I ∈ GL(Wp,X p) ∩
GL(Wq,X q) ∩ GL(Wp ∩ Wq, X p ∩ X q). Next, DA(θu) = DA−λ0I(θu) + λ0θu =
DAt0,ε−λ0I(θu)+λ0θu if θ ∈ D(R) has support in (t0−ε, t0+ε). Thus, DAt0,ε−λ0I(θu) =

θf + dθ
dt

u − λ0θu ∈ X p ∩ X q and hence θu ∈ Wp ∩Wq from the above.
That u ∈ Wp ∩Wq follows from the results of the previous two paragraphs via

a partition of unity similar to the one used in the proof of Theorem 3.1. We skip
the (routine) details.

With the choice f = 0, we obtain that the null space of DA : Wp → X p is
contained in Wp ∩ Wq ⊂ Wq for all 1 < q < ∞ and hence independent of p. By

replacing A by −A∗ (see the proof of Theorem 4.2), the null space of D−A∗ : X p′

∗ →

Wp′

∗ is also independent of p and hence indexDA is independent of p by (4.11).

In our next result, we give a simple condition ensuring that DA has index 0. It
will be used for the general characterization of the index in the next section.

Theorem 5.2. Let X be a Banach space with UMD and let the family (A(t))t∈R

of unbounded operators on X satisfy the assumptions (H1) to (H5). If also σ(A(t))∩
iR = ∅ for every t ∈ R, then the operator DA := d

dt
− A is Fredholm of index 0

from Wp to X p for every p ∈ (1,∞).

Proof. From Theorem 4.2, we already know that DA is Fredholm. For T ≥ 0,
let AT denote the operator AT (t) = A(t) for t ∈ [−T, T ], AT (t) = A(−T ) for t < −T
and AT (t) = A(T ) for t > T . It is obvious that AT satisfies the assumptions (H1) to
(H5), so that once again by Theorem 4.2, the operator DAT

is Fredholm from Wp

to X p. Since DAT
∈ L(Wp,X p) depends continuously upon T ,the index of DAT

is
independent of T ≥ 0. On the other hand, limT→∞ ||DAT

− DA||L(Wp,X p) = 0 by
(H3), so that indexDAT

= indexDA if T > 0 is large enough. Thus, indexDA =
indexDA0 from the above. But (A0(t))t∈R is the constant family A(0) and, since
σ(A(0)) ∩ iR = ∅, it follows from Theorem 2.2 that DA0 is an isomorphism. As a
result, indexDA = 0.

Next, we examine the effect of perturbations of A on indexDA. The proof of the
following theorem is not based on the usual argument that compact perturbations
of Fredholm operators preserve the index (see Remark 5.1).

Theorem 5.3. Let X be a Banach space with UMD and let the family (A(t))t∈R

of unbounded operators on X satisfy the assumptions (H1) to (H5). Suppose that
K ∈ C0(R,K(W, X)) where K(W, X) ⊂ L(W, X) is the subspace of compact oper-
ators and that lim|t|→∞ ||K(t)||L(W,X) = 0. Then, the operator DA+K is Fredholm
from Wp to X p for every p ∈ (1,∞) and indexDA+K = indexDA.
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Proof. It suffices to show that A + K satisfies (H1) to (H5). If so, after
replacing K by αK for α ∈ [0, 1], it follows from Theorem 4.2 that DA+αK is
Fredholm and then indexDA+K = indexDA by the local constancy of the index.

It is obvious that A + K satisfies (H1), (H2), (H3) and (H5). We prove that
A + K satisfies (H4). Observe first that, by the equivalence of the norm of W with
the graph norm of A(t) (Theorem 2.1 (iii)), the assumption that C(t) ∈ K(W, X)
(with C(±∞) = 0) implies that K(t) is A(t)-compact for t ∈ R and hence A(t)-
bounded with A(t)-bound 0 (Hess [22]; recall that X is reflexive). Therefore, (H4)
for A + K follows from (H4) for A and Theorem 2.3.

Remark 5.1. In Theorem 5.3, DA+K need not be a compact perturbation of

DA, i.e., the multiplication operator K̂ : Wp → X p induced by K in the obvious way
need not be compact. In fact, from the given proof, Theorem 5.3 remains valid if the
assumption K(t) ∈ K(W, X) is replaced by the condition that K(t) is A(t)-bounded
with A(t)-bound 0. Thus, Theorem 5.3 does not follow from the classical stability

properties of Fredholm operators. However, K̂ is compact when X is a (separable)

Hilbert space (see [34]). Also, K̂ is compact when K ∈ C0(R,L(X)) (a special case
of Theorem 5.3 since the embedding W →֒ X is compact). If so, the compactness

of K̂ can be derived from [37, Theorem 1] after replacing K by a step function with
values in L(X) and vanishing outside a compact interval. It is noteworthy that if
K ∈ C0(R,K(X)) and A(t) = A0 is constant, then Theorem 5.3 is still true even
if the embedding D(A0) = W →֒ X is not compact (see [32], or [1, Theorem B]
when X is a Hilbert space and A0 is bounded).

As a simple corollary to Theorem 5.3, we obtain another sufficient condition
for the index of DA to be 0.

Corollary 5.4. Let X be a Banach space with UMD and let the family
(A(t))t∈R of unbounded operators on X satisfy the assumptions (H1) to (H5). Sup-
pose also that A− = A+ and that A(t)−A+ ∈ K(W, X) for every t ∈ R. Then, the
operator DA is Fredholm of index 0 from Wp to X p for every p ∈ (1,∞).

Another sufficient condition for the index of DA to be 0 arises as a special case
of Theorem 6.7 later.

Remark 5.2. All the index theorems of this paper remain true if X is a real
space. This follows from a straightforward general property: If E and F are real
Banach spaces and L ∈ L(E, F ), denote by EC, FC and LC ∈ L(EC, FC) their
complexifications. Then, L and LC have closed range simultaneously, (LC)∗ =
(L∗)C and dimkerL = dimC kerLC, dimkerL∗ = dimC ker(LC)∗, so that the
indices of L and LC are simultaneously defined and equal. This property is relevant
here since passing from X to XC amounts to changing Wp,X p and DA into their
complexifications.

6. Calculation of the index of DA

In this section, we show that the index of DA coincides with the spectral flow
of A, that is, with the algebraic count of the eigenvalues of A(t) that cross the
imaginary axis when t varies from −∞ to ∞. Of course, this characterization,
which generalizes the one given in [34] in the Hilbert and selfadjoint case, makes
sense only when the crossing of the imaginary axis can be defined without ambiguity.
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Let X and W be complex Banach spaces such that W ⊂ X and the embedding
W →֒ X is compact. For the time being, we need not assume that X has the UMD
property. Every operator L ∈ L(W, X) can be viewed as an unbounded operator
on X with domain W and hence has a well defined spectrum σ(L). If σ(L) 6= C,
then L has compact resolvent and L − λI ∈ GL(W, X) for every λ ∈ C\σ(L) (see
the proof of Theorem 2.1). We set

(6.1) O := {L − λI : L ∈ L(W, X), σ(L) 6= C, λ ∈ C}

and, for k ∈ N, we define Sk ⊂ O by

(6.2) Sk := {N ∈ O : codimC rge N = k}.

Lemma 6.1. (i) The subset O is an open subset of L(W, X).
(ii) Sk is a complex analytic submanifold of O of (complex) codimension k2. Fur-
thermore, the tangent space TNSk is given by

(6.3) TNSk = {H ∈ L(W, X) : H(kerN) ⊂ rge N}.

Proof. (i) The set of those L ∈ L(W, X) such that σ(L) 6= C is open in
L(W, X) and hence, for every λ ∈ C, the set Oλ = {L − λI : L ∈ L(W, X), σ(L) 6=
C} is open in L(W, X). Thus, O = ∪λ∈COλ is open in L(W, X).

(ii) First, note that Sk is also characterized by

(6.4) Sk := {N ∈ O : dimC kerN = k}.

Indeed, if N ∈ Sk, then N = L − λI for some L ∈ L(W, X) such that σ(L) 6= C

and some λ ∈ C. Choose µ ∈ C\σ(L), so that (L − µI )−1 ∈ L(X, W ) and hence
(L−µI )−1 ∈ L(W ) is compact. Since N = (L−µI )(I +(µ−λ)(L−µI )−1), it follows
that codim rge(I+(µ−λ)(L−µI )−1) = k. Thus, dimC ker(I+(µ−λ)(L−µI )−1) = k
by the compactness of (L − µI )−1 ∈ L(W ) and so dimC kerN = k. By reversing
the above arguments, if N ∈ O and dimC kerN = k, then N ∈ Sk. This proves
(6.4).

Now, let N0 ∈ Sk and let N ∈ O be given. Let P ∈ L(X) denote a projection
onto a complement of rge N0 (recall that, in Banach spaces, bounded linear opera-
tors with finite corank have closed ranges, hence closed and complemented ranges)
so that Q := I − P projects onto rge N0. Let π ∈ L(W ) denote a projection
onto kerN0 with null-space V := kerπ. If ||N − N0||L(W,X) is small enough, then

(QN|V )−1 ∈ L(rge N0, V ) is well defined and x ∈ kerN if and only if [(I − π)x =

−(QN|V )−1QNπx AND] PN(I − (QN|V )−1QN)πx = 0 Thus, dimkerN = k (and

then N ∈ Sk by (6.4)) if and only if PN|ker N0
− PN(QN|V )−1QN|ker N0

= 0. The
left-hand side is a complex analytic function F = F (N) from O to L(kerN0, rge P )
with (surjective) derivative DF (N0)H = PH| ker N0

(H ∈ L(W, X)). It follows that,

locally near N0, Sk coincides with F−1(0), a submanifold of O of complex codi-
mension k2, and that TN0Sk = kerDF (N0) = {H ∈ L(W, X) : PH| ker N0

= 0} =
{H ∈ L(W, X) : H(kerN0) ⊂ rge N0}. This completes the proof.

Given A+, A− ∈ L(W, X), denote by M(A+, A−) the set of C1 paths A : R →
L(W, X) such that limt→±∞ A(t) = A± and limt→±∞ Ȧ(t) = 0. It is obvious that
M(A+, A−) is a closed affine subspace of the space of C1 paths R → L(W, X)
bounded along with their derivatives, equipped with the norm

(6.5) |||A||| := sup
t∈R

||A(t)||L(W,X) + sup
t∈R

||Ȧ(t)||L(W,X).
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In particular, M(A+, A−) is a manifold with tangent space M(0, 0) at each point.
We denote by U(A+, A−) the subset of M(A+, A−) of those paths A for which
there are constants C0(t) > 0 and r0(t) > 0 such that

(6.6) ||R(iξ, A(t))||L(X,W ) ≤ C0(t), ξ ∈ R, |ξ| ≥ r0(t), t ∈ R.

Remark 6.1. By the continuity of A on R and the compactness of R, the
constants C0(t) and r0(t) in (6.6) can be chosen independent of t ∈ R.

Lemma 6.2. (i) U(A+, A−) is an open subset of M(A+, A−).
(ii) Given A ∈ U(A+, A−) and ε > 0, there is a path B ∈ U(A+, A−) such that4

|||B − A||| < ε and such that the mapping (t, ξ) ∈ R2 7→ B(t) − iξI ∈ O intersects
all the manifolds Sk transversely.
(iii) Assume σ(A±) ∩ iR = ∅. If A ∈ U(A+, A−) and the mapping (t, ξ) ∈ R2 7→
A(t)−iξI ∈ O intersects all the manifolds Sk transversely, then σ(A(t))∩iR 6= ∅ for
only finitely many distinct values of t ∈ R. Furthermore, if σ(A(tj)) ∩ iR 6= ∅ for
1 ≤ j ≤ m and distinct values tj ∈ R, the operator A(tj) has only a finite number
of imaginary eigenvalues iξj,1, ..., iξj,ℓj

. These eigenvalues are algebraically simple

and, for t near tj, the spectrum of A(t) near {iξj,1, ..., iξj,ℓj
} consists of ℓj curves

λj,1(t), ..., λj,ℓj
(t) of class C1 and satisfying λj,ℓ(tj) = iξj,ℓ and Re λ̇j,ℓ(tj) 6= 0 for

1 ≤ ℓ ≤ ℓj and 1 ≤ j ≤ m.

Proof. (i) Let A ∈ U(A+, A−) and let t0 ∈ R be given. We use the notation
of (6.6). If H ∈ L(W, X) satisfies ||H ||L(W,X) < C−1

0 (t0) and if ξ ∈ R, |ξ| ≥ r0(t0),

then A(t0)+H−iξI is invertible and ||R(iξ, A(t0)+H)||L(X,W ) ≤
C0(t0)

1−C0(t0)||H||L(W,X)
.

Thus, ||R(iξ, A(t0) + H)||L(X,W ) ≤ 2C0(t0) if ||H ||L(W,X) < 1
2C−1

0 (t0). Together

with the continuity of A on R, this implies that there is an open interval Jt0

about t0 such that, if B ∈ M(A+, A−) and supt∈R ||B(t) − A(t)||L(W,X) is small
enough, then ||R(iξ, B(t))||L(X,W ) ≤ 2C0(t0) for all t ∈ Jt0 . By the compactness

of R, it follows that ||R(iξ, B(t))||L(X,W ) is uniformly bounded for all t ∈ R if
supt∈R ||B(t) − A(t)||L(W,X) is small enough (and hence if |||B − A||| in (6.5) is
small enough), so that B ∈ U(A+, A−).

(ii) Let F : U(A+, A−)×R2 → O be defined by F (A, t, ξ) := A(t)− iξI . Then,
F is of class C1 and ∂F

∂A
(A, t, ξ)H = H(t) for all H ∈ M(0, 0), so that ∂F

∂A
(A, t, ξ)

is onto L(W, X). As a result, F is transversal to Sk for all k ∈ N. Thus, by the
parametric transversality theorem (see for instance [3, p. 232], or [4]), the set of
paths A ∈ U(A+, A−) such that the mapping (t, ξ) ∈ R2 7→ A(t) − iξI ∈ O is
transversal to Sk is residual in U(A+, A−). Since U(A+, A−) is an open subset of
the complete metric space M(A+, A−), the intersection of these residual subsets is
dense in U(A+, A−). The existence of the path B follows at once from this property.

(iii) If A ∈ U(A+, A−) and the mapping (t, ξ) ∈ R2 7→ A(t)−iξI ∈ O intersects
all the manifolds Sk transversely, then A(t)−iξI /∈ Sk for every (t, ξ) ∈ R2 whenever
k ≥ 2 since, by Lemma 6.1, codimRSk ≥ 8 in this case.

Thus, if A(t0) − iξ0I ∈ ∪kSk, then A(t0) − iξ0I ∈ S1 and hence, by (6.4),
iξ0 is an eigenvalue of A(t0) with geometric multiplicity 1. We claim that, in
fact, iξ0 has algebraic multiplicity 1. Indeed, since S1 has real codimension 2 by
Lemma 6.1, the transversality condition implies that the range of the derivative

4See (6.5).
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(s, ζ) ∈ R2 7→ sA(t0) − iζI is a direct complement of TA(t0)−iξ0I
S1. By (6.3), this

means that if ker(A(t0) − iξ0I ) = span{x0}, then

(6.7) sȦ(t0)x0 − iζx0 ∈ rge (A(t0) − iξ0I ) ⇔ s = ζ = 0.

By letting s = 0 and ζ = 1, we find that ix0 /∈ rge (A(t0) − iξ0I ), whence x0 /∈ rge
(A(t0) − iξ0I ). This shows that iξ0 has algebraic multiplicity 1.

The condition x0 /∈ rge (A(t0)− iξ0I ) also means that if x∗
0 ∈ X∗ and kerx∗

0 =
rge (A(t0)−iξ0I ), then x∗

0(x0) 6= 0. It follows from this remark and from the implicit
function theorem that, for t near t0, the (unique) eigenvalue of A(t) near iξ0 is given
by a C1 function λ(t) such that λ(t0) = iξ0. Furthermore, ker(A(t) − λ(t)I ) =
span{x(t)} where x(t) ∈ W is a (nonunique) C1 function of t satisfying x(t0) =

x0. By differentiating A(t)x(t) − λ(t)x(t) = 0, we find that Ȧ(t0)x0 − λ̇(t0)x0 =

−(A(t0) − iξ0I )ẋ(t0) ∈ rge (A(t0) − iξ0I ), whence Re λ̇(t0) 6= 0 by (6.7).
To complete the proof, it suffices to show that A(t)− iξI ∈ S1 cannot occur for

more than finitely many pairs (t, ξ) ∈ R2. This follows from the fact that such pairs
are isolated (by transversality) and compact (by Remark 6.1 and the assumption
σ(A±) ∩ iR = ∅).

Under the conditions of Lemma 6.2 (iii), we define

(6.8) sf(A) = −
m∑

j=1

ℓj∑

ℓ=1

sgn Re λ̇j,ℓ(tj)

(spectral flow of A). In particular, sf(A) = 0 if σ(A(t)) ∩ iR = ∅ for all t ∈ R.

Remark 6.2. When dimX < ∞ and W = X, a different definition of the
spectral flow can be given, which is valid for merely continuous paths ([34, Sec-
tion 2]). The two definitions coincide for “transversal” C1 paths. Furthermore,
indexDA = sf(A) when DA acts from W 1,2(R, X) to L2(R, X). From the p -
independence of indexDA (Theorem 5.1), this relation still holds when DA acts
from W 1,p(R, X) to Lp(R, X) and p ∈ (1,∞).

As in [34] in the selfadjoint case, the general proof that indexDA = sf(A) will
be based on a preliminary construction. The proof of [34] is actually incomplete
and we also provide the details of the (important) missing step.

We assume that the path A satisfies the conditions of Lemma 6.2 (iii) and use
the notation of that lemma. We also assume that m ≥ 1, that is, that σ(A(t))∩iR 6=
∅ for at least one value t ∈ R. Set

(6.9) Zm := ⊕ℓm

ℓ=1 ker(A(tm) − iξm,ℓI ) ⊂ W,

so that dimZm = ℓm. Since each eigenvalue iξm,ℓ is algebraically simple, it follows

that X = Zm ⊕ Xm where Xm := ∩ℓm

ℓ=1rge (A(tm) − iξm,ℓI ) and hence that W =
Zm ⊕ Wm where Wm := Xm ∩ W . Clearly, A(tm) − iξm,ℓI is one-to-one on Wm

and maps Wm onto Xm,The latter is readily checked from the definition of Xm and
the decompositions W = Zm ⊕ Wm and X = Zm ⊕ Xm. For ξ /∈ {ξm,1, ..., ξm,ℓm

},
A(tm) − iξI is an isomorphism of W onto X and hence of Zm onto Zm and of
Wm onto Xm. Thus, A(tm) − iξI is an isomorphism of Wm onto Xm for all ξ ∈
R. Furthermore, by (6.6), ||((A(tm) − iξI )|Wm

)−1||L(Xm,Wm) is bounded for large
enough |ξ| and hence for all ξ ∈ R by continuity, say

(6.10) ||((A(tm) − iξI )|Wm
)−1||L(Xm,Wm) ≤ C, ξ ∈ R.
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In the proof of Lemma 6.2 (iii), it was observed that ker(A(t) − λm,ℓ(t)I ) =
span{xℓ(t)}, where xℓ(t) ∈ W is a (nonunique) C1 function of t near tm. Set

(6.11) Zm(t) := ⊕ℓm

ℓ=1 ker(A(t) − λm,ℓ(t)I ) = span{x1(t), ..., xℓm
(t)},

so that Zm in (6.9) is Zm(tm). We claim that

(6.12) W = Zm(t)⊕Wm and (A(t)−iξI )(Wm)∩Zm(t) = {0}, t ∈ Jtm
, ξ ∈ R.

where Jtm
is an open interval about tm. Indeed, for t close enough to tm, we

have W = Zm(t) ⊕ Wm and X = Zm(t) ⊕ Xm and the projection P (t) onto Xm

corresponding to the latter splitting is bounded in norm. In addition, by (6.10),
the operator (A(t) − A(tm))((A(tm) − iξI )|Wm

)−1 ∈ L(Xm) has arbitrarily small
norm uniformly in ξ ∈ R. It follows that the image of Xm under I + (A(t) −
A(tm))((A(tm) − iξI )|Wm

)−1 intersects Zm(t) only at {0} irrespective of ξ ∈ R.
Thus, (A(t) − iξI )(Wm) ∩ Zm(t) = {0}.

Above, we may further restrict Jtm
so that the functions λm,ℓ(t) are defined

and C1 on Jtm
. Moreover, since λm,ℓ(t) /∈ iR for 0 < |t − tm| small enough by

the condition Re λ̇m,ℓ(tm) 6= 0, we may assume with no loss of generality that

λm,ℓ(t) /∈ iR for t ∈ J tm
\{tm} and 1 ≤ ℓ ≤ ℓm. From now on, the functions λm,ℓ

are extended to all of R as C1 functions eventually constant and satisfying 5

(6.13) λm,ℓ(t) /∈ iR, t ∈ R\{tm}, 1 ≤ ℓ ≤ ℓm.

Let u∗
1, ..., u

∗
ℓm

∈ W ∗ be such that Wm = ∩ℓm

ℓ=1 keru∗
ℓ and that 〈xj(tm), u∗

ℓ 〉 = δℓj

(Kronecker delta). For t close enough to tm, say t ∈ Jtm
after shrinking once

again Jtm
if necessary, and given 1 ≤ k ≤ ℓm, the system

∑ℓm

ℓ=1 αℓk〈xj(t), u
∗
ℓ 〉 =

δjk, 1 ≤ j ≤ ℓm, has a unique solution (α1k(t), ...αℓmk(t)) ∈ Cℓm and x∗
k(t) :=∑ℓm

ℓ=1 αℓk(t)u∗
ℓ ∈ W ∗ satisfies

(6.14) 〈xj(t), x
∗
k(t)〉 = δkj .

Note that x∗
j above is a C1 function of t ∈ Jtm

. After possibly shrinking Jtm
a last

time, we can manage so that

(6.15) t1, ..., tm−1 ∈ R\Jtm
.

Let M(t) ∈ L(Cℓm) be the C1 diagonal path defined by

(6.16) M(t) := diag(−λm,1(t), ...,−λm,ℓm
(t)).

Since the functions λm,ℓ have been extended so as to be eventually constant, M is

of class C1, limt→±∞ Ṁ(t) = 0 and limt→±∞ M(t) = M± exist. By (6.13),

(6.17) σ(M±) ∩ iR = ∅.

Let now θ ∈ C1(R,R) satisfy Supp θ ⊂ Jtm
, θ ≥ 0 and θ(tm) = 1. Then, the

functions θxℓ : R → W and θx∗
ℓ : R → W ∗, 1 ≤ ℓ ≤ ℓm, are well defined and of

class C1 For s ∈ [0, 1] and t ∈ R, we set

(6.18) Ã(s, t) :=




A(t) sθ(t)x1(t) · · · sθ(t)xℓm
(t)

sθ(t)x∗
1(t)

... M(t)
sθ(t)x∗

ℓm
(t)


 .

5Evidently, λm,ℓ(t) need not be an eigenvalue of A(t) for t outside Jtm .
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Given s ∈ [0, 1], the path Ã(s, ·) : R → L(W × Cℓm , X × Cℓm) is of class C1 and

limt→∞ Ã(s, ·) = Ã+(s) := A+ × M+, limt→−∞ Ã(s, ·) = Ã−(s) := A− × M− and

limt→±∞
∂Ã
∂t

(s, ·) = 0. By (6.17), σ(Ã±(s)) ∩ iR = ∅. Two more properties of Ã

are given in the next lemma, in which Õ and S̃k denote the sets O and Sk in (6.1)
and (6.4) when W and X are replaced by W × Cℓm and X × Cℓm , respectively.

Lemma 6.3. (i) If s ∈ [0, 1], Ã(s, ·) satisfies (6.6) with W and X replaced by
W × Cℓm and X × Cℓm , respectively.

(ii) If s ∈ (0, 1] and ξ ∈ R, then iξ ∈ σ(Ã(s, t)) if and only if t = tj for some
1 ≤ j ≤ m − 1 and ξ = ξj,ℓ for some 1 ≤ ℓ ≤ ℓj. Furthermore, the mapping

(t, ξ) ∈ R2 7→ Ã(s, t)− iξI intersects all the manifolds S̃k transversely, the spectral
flow sf(A(s, ·)) is well defined and

(6.19) sf(A(s, ·)) = −
m−1∑

j=1

ℓj∑

ℓ=1

sgn Re λ̇j,ℓ(tj).

Proof. (i) When an operator in Banach spaces has the block decomposition

L =

(
L11 L12

L21 L22

)
with L22 invertible, the invertibility of L is equivalent to the

invertibility of L11 − L12L
−1
22 L21 and the norm of L−1 is controlled by ||(L11 −

L12L
−1
22 L21)

−1||, ||L−1
22 ||, ||L12|| and ||L21||. By (6.18), Ã(s, t)− iξI has such a block

decomposition with an obvious choice for the blocks. In particular, the off-diagonal
blocks L12 and L21 are uniformly bounded and

L−1
22 = (M(t) − iξ)−1 = diag

(
−1

λm,1(t) − iξ
, ...,

−1

λm,ℓm
(t) − iξ

)

so that ||L−1
22 || is uniformly bounded for t ∈ R and |ξ| large enough (recall that the

functions λm,ℓ are constant outside a finite interval). The operator L11−L12L
−1
22 L21

is given by

(6.20) A(t) − iξI + s2
ℓm∑

ℓ=1

〈·, θ(t)x∗
ℓ (t)〉

λm,ℓ(t) − iξ
θ(t)xℓ(t),

a uniformly small perturbation of A(t) − iξI when t ∈ R and |ξ| large enough.

Thus, the boundedness of ||(L11 − L12L
−1
22 L21)

−1||, i.e., (6.6) for Ã(s, ·), follows
from (6.6).

(ii) Suppose s ∈ (0, 1]. We begin by characterizing the pairs (t, ξ) such that

iξ ∈ σ(Ã(s, t)). By (6.4) for S̃k, this is equivalent to ker(Ã(s, t)− iξI ) 6= {0}. First,
we show that there is no such pair if t = tm. Since θ(tm) = 1 and λm,ℓ(tm) = iξm,ℓ,

we have that
(
Ã(s, tm) − iξI

) (
x
α

)
= 0 with α = (α1, ..., αℓm

) ∈ Cℓm if and only if

(6.21)

{
(A(tm) − iξ)x + s

∑ℓm

ℓ=1 αℓxℓ(tm) = 0,
s〈x, x∗

ℓ (tm)〉 + αℓi(ξm,ℓ − ξ) = 0, 1 ≤ ℓ ≤ ℓm.

The first relation shows that (A(tm) − iξI )x ∈ Zm (see ( 6.9)). Since A(tm) − iξI
maps Zm into Zm and is an isomorphism of Wm onto Xm, as noted earlier, it

follows that x ∈ Zm, whence x =
∑ℓm

ℓ=1 βℓxℓ(tm) with βℓ ∈ C. By substituting
into the second relation in (6.21) and by using (6.14), we find sβℓ +αℓi(ξm,ℓ − ξ) =

0, 1 ≤ j ≤ ℓm and hence βℓ = −
αℓi(ξm,ℓ−ξ)

s
, 1 ≤ j ≤ ℓm. Now, returning to the
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first relation in (6.21), we find
(

(ξm,ℓ−ξ)2

s
+ s
)

αℓ = 0, whence αℓ = 0 since s > 0.

Thus, α = 0 and x = 0. This shows that σ(Ã(s, tm)) ∩ iR = ∅.

From now on, we assume t 6= tm. We shall prove below that iξ /∈ σ(Ã(s, t))

whenever t ∈ J tm
, so that iξ ∈ σ(Ã(s, t)) only if t ∈ R\Jtm

, in which case

Ã(s, t) = A(t)×M(t). (This crucial step was omitted in the proof of [34, Theorem
4.25].) When t ∈ R\Jtm

, M(t) has no imaginary eigenvalue by (6.13), so that
the imaginary eigenvalues of A(t) × M(t) coincide with the imaginary eigenvalues
of A(t). By (6.15), these eigenvalues are obtained for (t, ξ) = (tj , ξj,ℓ) for some

1 ≤ j ≤ m − 1 and 1 ≤ ℓ ≤ ℓj. Furthermore, since Supp θ ⊂ Jtm
, Ã(s, t) coincides

with A(t) × M(t) for all t in an open neighborhood of tj and then the transver-

sality of the intersection of Ã(s, t) − iξI with S̃k at (tj , ξj,ℓ) follows at once from
the transversality of the intersection of A(t) − iξI with Sk at (tj , ξj,ℓ). Also, for
t near tj , 1 ≤ j ≤ m − 1, the eigenvalues of A(t) × M(t) and A(t) near ξj,ℓ are
the same and hence given by the functions λj,ℓ(t). Thus, from part (i) and the
comments preceding the lemma, the spectral flow sf(A(s, ·)) is well defined and
given by (6.19).

Suppose then that t ∈ J tm
\{tm}. It follows from (6.13) that M(t) − iξ is

invertible for all ξ ∈ R, so that iξ /∈ σ(Ã(s, t)) if and only if the operator (6.20)
is invertible. Since this operator is a finite dimensional perturbation of A(t) − iξ,
its invertibility is equivalent to the triviality of its null space (recall that A(t) has
compact resolvent).

Let x ∈ W be such that

(6.22) (A(t) − iξI )x + s2
ℓm∑

ℓ=1

〈x, θ(t)x∗
ℓ (t)〉

λm,ℓ(t) − iξ
θ(t)xℓ(t) = 0,

so that (A(t)− iξI )x ∈ Zm(t) (see (6.11)). By (6.12 ), we can write x = z + y with

z =
∑ℓm

ℓ=1 αℓxℓ(t) ∈ Zm(t) and y ∈ Wm and, recalling (6.14), (6.22) becomes

ℓm∑

ℓ=1

(
λm,ℓ(t) − iξ +

s2θ2(t)

λm,ℓ(t) − iξ

)
αℓxℓ(t) + (A(t) − iξI )y = 0.

From the second part of (6.11), we infer that (A(t) − iξI )y = 0 and hence that(
λm,ℓ(t) − iξ + s2θ2(t)

λm,ℓ(t)−iξ

)
αℓ = 0 for 1 ≤ ℓ ≤ ℓm. Since t ∈ J tm

\{tm}, it follows

from (6.15) that t /∈ {t1, ..., tm} and hence that A(t) − iξI is one-to-one. Thus,

y = 0. Also, λm,ℓ(t) − iξ + s2θ2(t)

λm,ℓ(t)−iξ
=

|λm,ℓ(t)−iξ|2+s2θ2(t)

λm,ℓ(t)−iξ
6= 0 by (6.13), whence

αℓ = 0 for 1 ≤ ℓ ≤ ℓm. This shows that x = 0 and the proof is complete.

Lemma 6.4. Suppose that, in addition, X is a Banach space with UMD and
that A satisfies the conditions (H1) to (H5). Then,
(i) X × Cℓm is a Banach space with UMD,

(ii) for s ∈ [0, 1], Ã(s, ·) satisfies (H1) to (H5) with X and W replaced by X ×Cℓm

and W × Cℓm , respectively.

Proof. (i) This follows from dimCℓm < ∞ and the fact that the product of
two Banach spaces with UMD has the UMD property (see the Introduction).

(ii) The conditions (H1), (H2), (H3) and (H5) for Ã(s, ·) are trivial and were

already noticed earlier. It remains to prove (1.3) for Ã(s, t), assuming the same
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for A(t). First, condition ( 6.6) holds trivially with A(t) replaced by M(t) (and X
and W replaced by Cℓm) and implies (2.5) for A0 = M(t) since finite dimensional
spaces are Hilbert spaces (so that boundedness and r-boundedness coincide). Thus,
(2.5) holds for both A(t) and M(t), the former by (1.3) and Theorem 2.5. As a
result, (2.5) holds for A0 = A(t) × M(t) since the product of two r-bounded sets
is itself r-bounded (see e.g. [32]). By using once again Theorem 2.5, it follows

that Ã(0, t) = A(t) × M(t) satisfies (1.3). Next, Ã(s, t) is a finite dimensional

perturbation of Ã(0, t). Thus, Ã(s, t) is an Ã(0, t) -bounded perturbation of Ã(0, t)

with Ã(0, t) -bound 0. That Ã(s, t) satisfies (1.3) thus follows from Theorem 2.3.

We are finally in a position to prove the desired result that indexDA = sf(A).
Recall that O and Sk are defined in (6.1) and (6.2), respectively, and the spaces
Wp to X p are defined in (3.1).

Theorem 6.5. Let X be a Banach space with UMD and let (A(t))t∈R be a fam-
ily of unbounded operators on X satisfying the assumptions (H1) to (H5). Suppose

also that A : R → L(W, X) is C1, that limt→±∞ Ȧ(t) = 0 and that the mapping
(t, ξ) ∈ R2 7→ A(t) − iξI ∈ O intersects each manifold Sk transversely. Then, the
operator DA is Fredholm from Wp to X p for every p ∈ (1,∞), the spectral flow
sf(A) is well defined and indexDA = sf(A).

Proof. That DA is Fredholm is Theorem 4.2 and that sf(A) is defined follows
from our assumptions about A. If σ(A(t)) ∩ iR = ∅ for all t ∈ R, then sf(A) = 0
while indexDA = 0 by Theorem 5.2, so that indexDA = sf(A). Next, consistent
with Lemma 6.2 (ii), assume that σ(A(t)) ∩ iR 6= ∅ for exactly one value t = t1, so
that m = 1 in Lemma 6.2. With the notation of that lemma, we have

(6.23) sf(A) = −
ℓ1∑

ℓ=1

sgn Re λ̇1,ℓ(t1).

Let Ã(s, t) be given by (6.18) with m = 1. By Lemma 6.4 and Theorem
4.2, the operator DÃ(s,·) is Fredholm from Wp to X p for all s ∈ [0, 1]. By the

local constancy of the index, it follows that indexDÃ(0,·) = indexDÃ(1,·). Now, by

Lemma 6.3 (ii), we have σ(Ã(1, ·)) ∩ iR = ∅ for all t ∈ R, so that indexDÃ(1,·) = 0

by Theorem 5.2. Thus, indexDÃ(0,·) = 0. But Ã(0, t) = A(t) × M(t), so that

indexDÃ(0,·) = indexDA + indexDM as a straightforward verification reveals, so

that

(6.24) indexDA = −indexDM .

Since M is a finite dimensional path, the relation indexDM = sf(M) holds
(Remark 6.2). Now, it is trivial from (6.16) with m = 1 that M satisfies the
conditions required for sf(M) to be given by (6.8) with m = 1 and λ1,ℓ(t) replaced

by −λ1,ℓ(t). As a result,

(6.25) indexDM =

ℓ1∑

ℓ=1

sgn Re λ̇1,ℓ(t1).

The relation indexDA = sf(A) thus follows from (6.23), (6.24) and (6.25).
To complete the proof, we consider general case and use the notation of Lemma

6.2 (iii). From the above, we may assume m > 1 and, by induction, that the
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relation indexDA = sf(A) is true whenever σ(A(t)) intersects iR at m− 1 distinct
points. Arguing as above, we obtain indexDÃ(0,·) = indexDÃ(1,·) = sf(A(s, ·)) =

−
∑m−1

j=1

∑ℓj

ℓ=1 sgn Re λ̇j,ℓ(tj) by the hypothesis of induction and Lemma 6.3 (ii).

Next, Ã(0, t) = A(t)×M(t), so that, as before, indexDÃ(0,·) = indexDA+indexDM

and indexDM = sf(M) by Remark 6.2, while sf(M) =
∑ℓ1

ℓ=1 sgn Re λ̇m,ℓ(t1).

Thus, indexDA = −
∑m

j=1

∑ℓj

ℓ=1 sgn Re λ̇j,ℓ(tj) = sf(A) by (6.8 ).

The characterization of indexDA in Theorem 6.5 along with the approxima-
tion result of Lemma 6.6 below is very useful to calculate indexDA in cases more
complicated than the ones considered in the previous section. An example is given
Theorem 6.7.

Lemma 6.6. Let (A(t))t∈R be a family of unbounded operators on X satisfying6

the assumptions (H1) to (H5). Given ε > 0, there is a C1 path Aε : R → L(W, X)
with the following properties:
(i) limt→±∞ Aε(t) = A±, limt→±∞ Ȧ(t) = 0,
(ii) sup

t∈R
||A(t) − Aε(t)||L(W,X) ≤ ε,

(iii) the mapping (t, ξ) ∈ R2 7→ Aε(t) − iξI ∈ O intersects each manifold Sk trans-
versely,
(iv) (Aε(t))t∈R satisfies the assumptions (H1) to (H5).
In particular, if X has the UMD property and ε > 0 is small enough, then indexDA =
indexDAε

= sf(Aε) when DA is viewed as an operator from Wp to X p, p ∈ (1,∞).

Proof. It is straightforward to check that a C1 path Aε can be found that
satisfies (i) and (ii). By Lemma 6.2 (ii), Aε can be modified so as to satisfy (iii) as
well. Then, after shrinking ε > 0 if necessary, it follows from Corollary 2.4 that Aε

satisfies (iv). The “in particular” part follows at once from the local constancy of
indexDA and Theorem 6.5.

Theorem 6.7. Let (A(t))t∈R be a family of unbounded operators on X satisfy-
ing the assumptions (H1) to (H5). Suppose also that A− has only a finite number of
eigenvalues with positive real part, so that the sum of the corresponding generalized
eigenspaces has finite dimension 7 ν−. Then,
(i) A+ has a finite number of eigenvalues with positive real part and the sum of the
corresponding generalized eigenspaces has finite dimension ν+.
(ii) If X has the UMD property, then indexDA = ν− − ν+ when DA is viewed as
an operator from Wp to X p, p ∈ (1,∞).

Proof. By Lemma 6.6 and the local constancy of the index of DA, we may
assume with no loss of generality that A is a C1 path such that limt→±∞ Aε(t) =

A±, limt→±∞ Ȧ(t) = 0 and the mapping (t, ξ) ∈ R2 7→ A(t) − iξI ∈ O intersects
each manifold Sk transversely. Both (i) and (ii) are trivial if σ(A(t)) ∩ iR = ∅
for all t ∈ R, so that we may assume that m ≥ 1 in Lemma 6.2 (iii). Evidently,
we may also assume that t1 < · · · < tm in that lemma. Denote by ν(t) the
dimension (finite or infinite) of the sum of the generalized eigenspace associated with
the eigenvalues of A(t) with positive real part. Since A(t) has compact resolvent
and limt→−∞ A(t) = A−, it follows from standard perturbation theory of isolated

6Here, there is no need to assume that X has the UMD property.
7Because A− has compact resolvent.
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eigenvalues (Kato [25]) that ν(t) = ν− as t → −∞. In fact, similar arguments
easily show that ν(t) = ν− for t ∈ (−∞, t1).

As t crosses t1, the set of eigenvalues of A(t) with positive real part loses (ex-

actly) the algebraically simple eigenvalues λ1,ℓ(t) with λ̇1,ℓ(t1) < 0 and gains (ex-

actly) those with λ̇1,ℓ(t1) > 0. The justification of this statement requires using con-
dition (1.4) for t = t1 (in the equivalent form given in Theorem 2.5) showing that if

λ(k) is a sequence of eigenvalues of A(t(k)) approaching the imaginary axis as t(k) →

t1, then λ(k) must tend to the set {iξ1,1, ..., iξ1,ℓ1
} (hence cannot escape to infinity).

Thus, as t crosses t1, ν(t) passes from ν− to ν− +
∑ℓ1

ℓ=1 λ̇1,ℓ(t1). By the same argu-

ments, ν(t) remains constant in (t1, t2), ..., (tm,∞) and increases by
∑ℓj

ℓ=1 λ̇j,ℓ(tj)

when t crosses tj . This shows that ν+ = ν− +
∑m

j=1

∑ℓj

ℓ=1 sgn Re λ̇j,ℓ(tj) =

ν− − sf(A), so that ν+ < ∞ and ν− − ν+ = sf(A) = indexDA.

There is an obvious variant of Theorem 6.7 if A+ rather than A− is assumed to
have only a finite number of eigenvalues with positive real part. An equally obvious
variant is given by the case when A− or A+ has only a finite number of eigenvalues
with negative real part.

Remark 6.3. It should not be inferred from Theorem 6.7 that indexDA always
depends only upon the endpoints A±. This was proved only when A± have finitely
many eigenvalues with positive or negative real parts.

7. The case of differential operators

We complement the previous sections with some comments regarding the veri-
fication of the assumptions (H1) to (H5) when (A(t))t∈R is a family of second order
elliptic differential operators on a bounded open subset Ω ⊂ RN with sufficiently
smooth boundary ∂Ω. We choose X = Lq(Ω) for some q ∈ (1,∞) and let W
denote a closed subspace of W 2,q(Ω) incorporating boundary conditions such that
D(Ω) ⊂ W .

As pointed out in the Introduction, X = Lq(Ω) has the UMD property. In the
setting just outlined above, (H1) holds and the same thing is true of (H2) and (H3)
under self-evident simple conditions about the coefficients of A(t). Since σ(A±) is
discrete when (H1) to (H4) hold (Theorem 2.1 (ii)), (H5) is not a severe additional
restriction. The verification of (H4) is more delicate. Since (H4) is just condition
(2.3) of Theorem 2.3 with A0 = A(t) and t ∈ R, it will be clearer to discuss the
verification of (2.3), first in the abstract setting and next when, as above, A0 is a
second order elliptic differential operator.

Assume that ||λR(λ, A0)||L(X) is bounded in the complement of a sector Σσ0

with angle σ0 < π
2 around the negative real axis (so that A0 generates a bounded

holomorphic semigroup) and that A0 has a bounded H∞(Σσ0
) functional calculus.

As shown by Kalton and Weis 8 [24, Theorem 5.3, part 3], if ν > σ0 the set
{2nsR(2nse±iν , A0) : n ∈ Z} is r-bounded with r-bound independent of s > 0. (In
[24], A0 is −A0 so that Σσ0

is a sector around the positive real axis.) Thus, (2.3)
follows by choosing ν = π

2 , which is possible since σ0 < π
2 , and s = |a|. More

generally, from the above and Theorem 2.3, (2.3) continues to hold if A0−ω0 I has
a bounded H∞(Σσ0

) functional calculus for some ω0 > 0 and σ0 < π
2 .

8In the terminology of [24], this requires “property ∆”, which holds in all spaces with UMD,
and even in the more general class of spaces with “analytic UMD” ([24, Proposition 3.2]).
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The above changes the problem into finding conditions ensuring that A0 or,
more generally, A0 − ω0I, has a bounded H∞(Σσ0) functional calculus, an issue
investigated by Duong and Robinson [19] for abstract operators A0 on X = Lq(Ω).
They show that the question can be reduced to the existence of suitable bounds
for the kernel of the semigroup generated by A0. The specialization of these ideas
to the case of a second order elliptic differential operator A0 was subsequently
considered by Arendt and ter Elst [7] (see also Duong and McIntosh [18]). The
net result is that A0 − ω0I has a bounded H∞(Σσ0

) functional calculus for some
ω0 > 0 and σ0 < π

2 under familiar boundedness and regularity assumptions about
the coefficients of A0 and various boundary conditions on ∂Ω. See [7, Theorems
3.1 and 4.4]; that the desired functional calculus properties hold follows from [7,
Theorems 5.4 and 5.7].

In summary, just like the other hypotheses, the assumption (H4) is quite rea-
sonable when A(t) is a second order elliptic operator for t ∈ R. While the justifi-
cation given here is rather convoluted, a more direct argument, if any, remains to
be found. In that regard, it may be helpful to observe that since X = Lq(Ω), the
simpler formulation of the r-boundedness condition in Remark 1.1 is available.

Remark 7.1. Theorem 5.3 is relevant in the above setting since, due to the
compactness of the embedding W 1,q(Ω) →֒ Lq(Ω), the operator C(t) may represent
a lower order perturbation of A(t). This is to say that, if convenient, the verification
of (H1) to (H5) for A(t) may be done after modifying the lower order terms.

Remark 7.2. Little seems to be available for higher order elliptic boundary
value problems, but elliptic systems on RN and on compact manifolds also have a
bounded H∞ functional calculus; see Amann, Hieber and Simonett [6]. However,
when X = Lq(RN) and W = W 2,q(RN ), the embedding W →֒ X is not compact
and (H1) fails to hold.

A trivial but important remark is that the assumptions (H1) to (H5) are un-
affected by changing A into −A. As a result, if (A1(t))t∈R ⊂ L(W1, X1) and
(A2(t))t∈R ⊂ L(W2, X2) satisfy (H1) to (H5) then also (A(t))t∈R ⊂ L(W1 ×

W2, X1 × X2) defined by A(t) := A1(t) × (−A2(t)) =

(
A1(t) 0

0 −A2(t)

)
, sat-

isfies (H1) to (H5) with W = D(A(t)) = W1 × W2. In general, neither A(t) nor
−A(t) generates a semigroup and hence the previous arguments cannot be used
directly to justify the validity of (H4), but this follows at once from the elementary
fact that the product of two r-bounded subsets is r-bounded (see for instance [32]).
Since X1 × X2 has the UMD property along with X1 and X2, the index theorems

of this paper are available with the operator DA = d
dt

−

(
A1 0
0 −A2

)
and hence

with the Hamiltonian-like operator

JDA = J
d

dt
−

(
0 A2

A1 0

)
,

where J =

(
0 −I
I 0

)
. More generally, Theorem 5.3 shows that the index of DA

above is unaffected by suitable lower order perturbations.



330 PATRICK J. RABIER

8. Initial value problems on the half-line and Lp maximal regularity

Given p ∈ (1,∞) and a family A := (A(t))t∈R̄+
of generators of semigroups

on a Banach space X, where R+ := (0,∞), the so-called Lp maximal regularity
question for the Cauchy problem may be phrased as follows: Find conditions about
A ensuring the existence of a constant C > 0 such that

(8.1) ||u||W 1,p(R+,X) + ||Au||Lp(R+,X) ≤ C||f ||Lp(R+,X),

for all f ∈ Lp(R+, X) and corresponding solutions u of the Cauchy problem

(8.2)

{
du
dt

= Au + f in R+,
u(0) = 0.

A frequently discussed variant and indeed a simpler problem, arises when R+ is
replaced by a finite interval (0, T ).

There is by now a fairly large literature about Lp maximal regularity, especially
when A(t) = A0 is constant. If X is a Hilbert space and A0 generates a holomorphic
semigroup on X , the issue was resolved by de Simon [36] in 1964, but in spite of
various subsequent results in special cases, a broader treatment remained elusive
until Dore and Venni [17] found a generalization in Banach spaces with UMD. In
such spaces, a necessary and sufficient condition for Lp maximal regularity in prob-
lems with constant coefficients was finally obtained by Weis [38] as an application
of his operator-valued generalization of Mikhlin’s multiplier theorem.

Most treatments of the variable coefficients case introduce Hölder type assump-
tions about the coefficients via commutator conditions and are limited to finite in-
tervals. The domains may or may not depend upon t. See for instance Acquistapace
and Terreni [2], Giga, Giga and Sohr [21], Yamamoto [39], Monniaux and Prüss
[29], Hieber and Monniaux [23], Prüss and Schnaubelt [31], among others. In
some of these works, a special structure of X , for example Hilbert or Lq space, is
assumed. In [31], the Lp maximal regularity problem is discussed assuming only
the continuity of the coefficients, but only on finite intervals.

In this section, we establish the Lp maximal regularity on the half-line for
problems with continuous coefficients as an application of the earlier results. This
approach shows that, in general, the inequality (8.1) can only hold when f satisfies
a finite number of “compatibility” condition obtained via the null-space of D−A∗

on the whole line, which can hardly be discovered by confining the attention to the
interval R+.

We begin with a local uniqueness result.

Lemma 8.1. Let X be a Banach space with UMD and let (A(t))t∈R be a family
of unbounded operators on X satisfying the assumptions (H1) to (H5).
(i) If A(0) generates a holomorphic semigroup, there is ε > 0 such that the only
solution u ∈ W 1,p((0, ε), X) ∩ Lp((0, ε), W ) of

(8.3)

{
du
dt

= Au in (0, ε),
u(0) = 0,

is u = 0.
(ii) If A(t) generates a holomorphic semigroup for all t ≥ 0, then the only solution
u ∈ W 1,p(R+, X) ∩ Lp(R+, W ) of

(8.4)

{
du
dt

= Au in R+,
u(0) = 0,



INDEX THEOREM 331

is u = 0.

Proof. (i) By (H4) with t = 0 and the assumption that A(0) generates a
holomorphic semigroup, the operator du

dt
−A(0) has maximal Lp regularity on finite

intervals (see [38, Remark 4.7] or [32]) and hence there is a constant CT > 0 such
that

(8.5) ||u||W 1,p((0,T ),X) + ||A(0)u||Lp((0,T ),X) ≤ CT ||f ||Lp((0,T ),X),

for all f ∈ Lp((0, T ), X) and corresponding (unique) solution u ∈ W 1,p((0, T ), X)∩
Lp((0, T ), W ) of the Cauchy problem

(8.6)

{
du
dt

= A(0)u + f in (0, T ),
u(0) = 0.

The uniqueness property with T = ε implies that if 0 < ε < 1 and f ∈
Lp((0, 1), X), then the solution u of (8.6) on (0, ε) is simply the restriction to (0, ε)
of the solution on (0, 1) and then

(8.7) ||u||W 1,p((0,ε),X) + ||A(0)u||Lp((0,ε),X) ≤ C1||f ||Lp((0,1),X),

where C1 > 0 is the constant corresponding to T = 1 in (8.5). Now, if f ∈
Lp((0, ε), X), extend f by 0 outside (0, ε), so that ||f ||Lp((0,ε),X) = ||f ||Lp((0,1),X)

and, by (8.7)

(8.8) ||u||W 1,p((0,ε),X) + ||A(0)u||Lp((0,ε),X) ≤ C1||f ||Lp((0,ε),X),

with no modification of C1.
Let then u ∈ W 1,p((0, ε), X) ∩ Lp((0, ε), W ) solve (8.3), so that u solves (8.6)

with T = ε and f = (A − A(0))u. By (8.8),

(8.9) ||u||W 1,p((0,ε),X) + ||A(0)u||Lp((0,ε),X) ≤ C1||(A − A(0))u||Lp((0,ε),X) ≤

C1 sup
t∈[0,ε]

||A(t) − A(0)||L(W,X)||u||Lp((0,ε),W ).

Since the norm of W is (equivalent to) the graph norm of A(0), we have

||u||Lp((0,ε),W ) ≤ 2
p−1

p

(
||u||LP ((0,ε),X) + ||A(0)u||Lp((0,ε),X)

)
≤

2
p−1

p

(
||u||W 1,p((0,ε),X) + ||A(0)u||Lp((0,ε),X)

)

and hence, by (8.9),

2
p

p−1 ||u||Lp((0,ε),W ) ≤ C1 sup
t∈[0,ε]

||A(t) − A(0)||L(W,X)||u||Lp((0,ε),W ).

By (H2), C1 supt∈[0,ε] ||A(t) − A(0)||L(W,X) < 2
p

p−1 if ε > 0 is small enough and
then u = 0.

(ii) By contradiction, suppose that u ∈ W 1,p(R+, X)∩Lp(R+, W ) is a nonzero
solution of (8.4). It follows from part (i) that u = 0 on some subinterval (0, t0),
so that and we may assume that (0, t0) is the largest subinterval of R+ in which
u = 0. Note that t0 < ∞ since u 6= 0 and that u(t0) = 0 by continuity.

Given ε > 0, we have u ∈ W 1,p((t0, t0 + ε), X) ∩ Lp((t0, t0 + ε), W ) and
{

du
dt

= Au in (t0, t0 + ε),
u(t0) = 0

and since A(t0) generates a holomorphic semigroup, it follows from part (i) with
A(t) replaced by A(t + t0) (which does not affect (H1) to (H5)) that u = 0 in
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(t0, t0 + ε) if ε > 0 is small enough. A contradiction is then reached with the
maximality of (0, t0).

Remark 8.1. Instead of (ii) in Lemma 8.1, assume that −A(t) generates a
holomorphic semigroup for all t ≤ 0. Then, the only solution u ∈ W 1,p(R−, X) ∩
Lp(R−, W ) of {

du
dt

= Au in R−,
u(0) = 0,

is u = 0. This follows from Lemma 8.1 after setting u(t) = v(−t).

Lemma 8.2 below is the bridge between problems on the whole line and prob-
lems on the half line.

Lemma 8.2. Let X be a Banach space with UMD and let (A(t))t∈R be a family
of unbounded operators on X satisfying not only the assumptions (H1) to (H5) but
also
(i) A(t) = A(0) for every t ≤ 0.
(ii) A(0)(= A−) generates a holomorphic semigroup on X.
Denote by X+

0 the direct sum of the generalized eigenspaces of A(0) associated with
eigenvalues with positive real part. Then, dimX+

0 < ∞ and, given p ∈ (1,∞), the
following property holds: If u ∈ Wp and DAu = 0 a.e. on R−, then u(t) ∈ X+

0 for

every t ∈ R−. In particular, if A(0) generates a bounded holomorphic semigroup
on X, then u = 0 on R−.

Proof. That dimX+
0 < ∞ follows from condition (ii) since A(0) has compact

resolvent.
For the second part, we begin with the remark that, by (i), DA(0)u = 0 on R−

and that u(t0) ∈ X is well defined since Wp ⊂ W 1,p(R, X) ⊂ C0(R, X). Denote
by P+ ∈ L(X) the spectral projection onto X+

0 , so that X = X+
0 ⊕ X−

0 , where
X−

0 := P−(X) and P− := I −P+. Set u− := P−u. Notice that X+
0 ⊂ W and that

P−(W ) ⊂ W , so that P− and A(0) commute and hence u− := P−u ∈ Wp and u−

satisfies

(8.10)
du−

dt
− A(0)u− = 0 on R−.

To prove that u(t0) ∈ X+
0 for every t0 < 0, it suffices to show that (u−)|(−∞,t0]

can be extended to ũ− ∈ Wp such that DA(0)ũ
− = 0. If so, ũ− = 0 by Theorem 2.2

for A(0), so that u−(t0) = ũ−(t0) = 0. That u(0) ∈ X+
0 then follows by continuity

since X+
0 is closed in X. To see that A(0) does satisfy the hypotheses of Theorem

2.2, recall that the norm of W = D(A(0)) is equivalent to the graph norm of A(0)
and note that σ(A(0)) ∩ iR = ∅ by (H5) since A(0) = A− by condition (i) of the
lemma. Of course, (H4) with t = 0 is just (1.3).

We thus pass to the proof that (u−)|(−∞,t0] has the desired extension property
when t0 < 0. Consider the autonomous initial value problem

(8.11)

{
dv
dt

= A(0)v in (t0,∞),
v(t0) = u−(t0),

with the solution

(8.12) v(t) = S0(t − t0)u
−(t0), ∀t ≥ t0,

where S0 is the semigroup generated by A(0).
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Our first task will be to show that not only u(t0) ∈ X but in fact u(t0) ∈ W .
Since P−(W ) ⊂ W, this shows that u−(t0) ∈ W , which endows the solution v
in (8.12) with better properties. Set f := DAu ∈ X p and choose ϕ ∈ D(R)
with Supp ϕ ⊂ R− and ϕ(t0) = 1. By multiplying DAu = f by ϕ, we obtain

DA(ϕu) = ϕf + u dϕ
dt

= u dϕ
dt

since f = 0 a.e. on Supp ϕ ⊂ R−. Also, by condition
(i) of the lemma and Supp(ϕu) ⊂ R−, we have DA(ϕu) = DA(0)(ϕu). Thus,

DA(0)(ϕu) = u
dϕ

dt
∈ Wp ⊂ W 1,p(R, X)

and by Remark 2.1 for A(0), it follows that ϕu ∈ W 1,p(R, W ) ⊂ C0(R, W ). In
particular, ϕ(t0)u(t0) = u(t0) ∈ W , as claimed.

Note that, in (8.12), S0 may be viewed as a holomorphic semigroup on the closed
invariant subspace X−

0 . By condition (H5) for A− = A(0) and the compactness of
the resolvent of A(0), it follows that S0 is a bounded holomorphic semigroup on
X−

0 generated by A(0)|X−

0
. Thus, sup Reσ(A(0)|X−

0
) < 0, so that ||S0(t)||L(X−

0 ) has

exponential decay on [0,∞) (Pazy [30, Theorem 4.3, p. 118]).
By (8.12) and the exponential decay of ||S0(t)||L(X−

0 ), it follows at once that v ∈

Lp((t0,∞), X−
0 ) ⊂ Lp((t0,∞), X). In addition, since u−(t0) ∈ W = D(A(0)), we

have v(t) ∈ D(A(0)) for t ≥ t0 and A(0)v(t) = A(0)S0(t)u
−(t0) = S0(t)A(0)u−(t0).

Thus, A(0)v ∈ Lp((t0,∞), X), once again by exponential decay, and then dv
dt

∈
Lp((t0,∞), X) by (8.11). Since the norm of W is equivalent to the graph norm
of A(0), the relations v ∈ Lp((t0,∞), X) and A(0)v ∈ Lp((t0,∞), X) amount to
v ∈ Lp((t0,∞), W ). Altogether, we have obtained

(8.13) v ∈ W 1,p((t0,∞), X) ∩ Lp((t0,∞), W ).

From (8.10), (8.11) and (8.13), it is clear that the function ũ− ∈ C0(R, X)
defined by ũ− = u on (−∞, t0] and ũ− = v on (t0,∞) satisfies ũ− ∈ Wp and
DA(0)ũ

− = 0 on R, as desired.

The “in particular” part is obvious since X+
0 = {0} when A(0) generates a

bounded holomorphic semigroup. This completes the proof.

Lemma 8.3. Let X be a Banach space with UMD and let the family (A(t))t∈R

of unbounded operators on X satisfy not only the assumptions (H1) to (H5) but
also
(i) A(t) = A(0) for every t ≤ 0.
(ii) A(0)(= A−) generates a bounded holomorphic semigroup on X.
(iii) A(t) generates a holomorphic semigroup on X for every t ≥ 0.
Then, given p ∈ (1,∞), the operator DA := d

dt
− A is Fredholm and one-to-one

from Wp to X p(so that indexDA = −ν ≤ 0). In addition, if g∗1 , ..., g∗ν ∈ X p′

∗ is a

basis of kerD−A∗ when D−A∗ is viewed as a linear operator from X p′

∗ to Wp′

∗ (see
(4.1) and Theorem 4.2), then the restrictions of g∗1 , ..., g

∗
ν to R+ remain linearly

independent in Lp′

(R+, X∗).

Proof. That DA is Fredholm follows from Theorem 2.3. To prove that DA is
one-to-one, let u ∈ Wp be such that DAu = 0. By Lemma 8.2, u = 0 on R−, so
that u ∈ W 1,p(R+, X)∩ Lp(R+, W ) solves the initial value problem

{
du
dt

= Au in R+,
u(0) = 0,
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whose only solution is u = 0 by Lemma 8.1 (ii). This shows that u = 0 on R.

Next, let g∗ =
∑ν

i=1 µig
∗
i be a linear combination such that g∗ = 0 in Lp′

(R+, X∗)

and hence a.e. on R+. Since g∗ ∈ X p′

∗ ⊂ C0(R, W ∗), it follows that g∗(t) = 0 for all

t ≥ 0. In particular, g∗(0) = 0. Since also g∗ ∈ kerD−A∗ means that dg∗

dt
= −A∗g∗,

it follows from Remark 8.1 for −A∗ that g∗ = 0 in R− (and hence g∗ = 0, so that
µ1 = · · · = µν = 0), provided that A∗(t) generates a holomorphic semigroup on W ∗

for all t ≤ 0.
Since A(t) = A(0) for all t ≤ 0, this amounts to showing that A∗(0) generates a

holomorphic semigroup on W ∗. Because this statement involve W ∗ and not X∗, it
is not the classical one and some justification is needed, which is as follows. Since
A(0) generates a bounded holomorphic semigroup on X and 0 /∈ σ(A(0)), there is a
constant M > 0 such that ||R(λ, A(0))||L(X) ≤

M
|λ|+1 for λ ∈ C in some large enough

sector Σ containing the positive real axis. Since W is equipped with the graph norm
of A(0), this implies ||R(λ, A(0))||L(X,W ) ≤ M after possibly changing M and then
||R(λ, A∗(0))||L(W∗,X∗) = ||R(λ, A(0))∗|| L(W∗,X∗) ≤ M . (Here, we used the fact
that the embedding X∗ →֒ W ∗ is the adjoint of the embedding W →֒ X.) In turn,
since the norm of X∗ is equivalent to the graph norm of A∗(0) (this was seen in the
proof of Theorem 4.2), this yields, after changing M once again if necessary, that
||R(λ, A∗(0))||L(W∗) ≤

M
|λ|+1 for λ ∈ Σ, which proves the claim.

Theorem 8.4. Let X be a Banach space with UMD and let the family (A(t))t∈R

of unbounded operators on X satisfy not only the assumptions (H1) to (H5) but also
(i) A(t) = A(0) for every t ≤ 0 (so that A− = A(0)).
(ii) A(0)(= A−) generates a bounded holomorphic semigroup on X.
(iii) A(t) generates a holomorphic semigroup on X for every t ≥ 0.
For p ∈ (1,∞), let −ν ≤ 0 denote the index9 of DA : Wp → X p (see Lemma
8.3). Then, ν equals the dimension of the sum of the generalized eigenspaces of
A+ corresponding to eigenvalues with positive real part. Furthermore, there are ν

linearly independent elements g∗1 , ..., g∗ν ∈ Lp′

(R+, X∗) with the following property:
Given f ∈ Lp(R+, X), the initial value problem

(8.14)

{
du
dt

= Au + f in R+,
u(0) = 0,

has a solution u ∈ W 1,p
0 (R+, X)∩Lp(R+, W ) if and only if

∫∞

0
〈f, g∗i 〉X,X∗ = 0 for

1 ≤ i ≤ ν. If so, the solution u is unique and there is a constant C > 0 independent
of f such that

(8.15) ||u||W 1,p(R+,X) + ||u||Lp(R+,W ) ≤ C||f ||Lp(R+,X).

Proof. The characterization of ν follows from Theorem 6.7 since, here, ν− = 0
by (i) and (ii). If u exists, then the extension ũ of u by 0 in R− is in Wp and

solves DAũ = f̃ where f̃ ∈ X p is the extension of f by 0 in R−. From Theo-

rem 4.2, this is possible if and only if
∫
R
〈f̃ , g∗i 〉X,X∗ = 0 for 1 ≤ i ≤ ν where

g∗1 , ..., g
∗
ν ∈ X p′

is a basis of kerD−A∗ . Since f̃ = 0 on R−, this condition reduces
to
∫∞

0 〈f, g∗i 〉X,X∗ = 0. By Lemma 8.3, ν = indexDA, g∗1 , ..., g∗ν remain linearly

independent in Lp′

(R+, X∗) and the solution ũ (hence also u) is unique.

9Independent of p by Theorem 5.1.
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Conversely, by reversing the above steps, we find that if
∫∞

0
〈f, g∗i 〉X,X∗ = 0

for 1 ≤ i ≤ ν, then
∫
R
〈f̃ , g∗i 〉X,X∗ = 0 and hence there is a unique ũ ∈ Wp

such that DAũ = f̃ . But then ũ = 0 in R− by Lemma 8.2, so that u = ũ|R+

satisfies (8.14). All this shows that the operator d
dt

− A is an isomorphism of

W 1,p
0 (R+, X)∩Lp(R+, W ) onto the closed subspace of Lp(R+, X) of those f such

that
∫∞

0
〈f, g∗i 〉X,X∗ = 0 for 1 ≤ i ≤ ν. The existence of a constant C > 0 such that

(8.15) holds is a mere translation of this property.

In practice, the operators A(t) are only given for t ≥ 0, but it suffices to
define A(t) = A(0) for t < 0 to be in a position to use Theorem 8.4. Clearly, it
answer the Lp maximal regularity question in the nonautonomous case when A(0)
generates a bounded holomorphic semigroup (otherwise, see Corollary 8.5 below).
The relevance of the functions g∗1 , ..., g∗ν (depending upon the operator D−A∗ on the
whole line) is a new feature, even when p = 2 and X and W are Hilbert spaces.

As a corollary, we now obtain a generalization of Theorem 8.4 when condi-
tion (ii) and (H5) for A− = A(0) are dropped. To our best knowledge, this was
previously known only when A(t) = A is constant and nu = 0.

Corollary 8.5. Let X be a Banach space with UMD and let the family
(A(t))t∈R of unbounded operators on X satisfying the assumptions (H1) to (H4)
and also
(i) A(t) = A(0) for every t ≤ 0 (so that A− = A(0)).
(ii) σ(A+) ∩ iR = ∅.
(iii) A(t) generates a holomorphic semigroup on X for every t ≥ 0.
Let ν ≥ 0 denote the dimension of the sum of the generalized eigenspaces of A+

corresponding to eigenvalues with positive real part. Then, ν < ∞ and for every
p ∈ (1,∞), the operator

(8.16)
d

dt
− A : W 1,p

0 (R+, X) ∩ Lp(R+, W ) → Lp(R+, X),

is one to one and Fredholm of index −ν. In particular, it is an isomorphism if
ν = 0.

Proof. Given δ > 0, let ϕ : R+ → [ 12 , 1] be a smooth function such that
ϕ(0) = 1, ϕ̇(0) = −δ and ϕ(t) = 1 for t ≥ 1. Then, the multiplication by ϕ

is an isomorphism of W 1,p
0 (R+, X) ∩ Lp(R+, W ) and of Lp(R+, X), with inverse

the multiplication by 1
ϕ
. It follows that the Fredholm properties (and index) of

the operator (8.16) are unchanged when A is replaced by Aϕ, where Aϕ(t) :=

A(t)− ϕ̇(t)
ϕ(t)I. Now, Aϕ(t) has exactly the same properties as A(t) and even coincides

with it for t ≥ 1, so that A+ is unchanged, except that Aϕ(0) = A(0) − δI. (That
Aϕ satisfies (H4) follows from (H4) for A and Theorem 5.3 since the embedding of
W into X is compact.) Clearly, if δ > 0 is large enough, then σ(Aϕ(0)) ∩ iR = ∅
and Aϕ(0) generates a bounded holomorphic semigroup. The conclusion follows
from Theorem 8.4 for Aϕ.

Naturally, Corollary 8.5 implies that (8.15) continues to hold for every right-
hand side f for which du

dt
= Au + f is solvable.

It is obvious how to derive an existence and uniqueness result for the problem
(8.2) from Corollary 8.5 when the initial condition u(0) = 0 is replaced by u(0) =
u0 ∈ W , by using a lifting of u0 in W 1,p(R+, X)∩Lp(R+, W ). Actually, it is clear
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that the “right” space for u0 is not W but, rather, the space of traces {u(0) : u ∈
W 1,p(R+, X) ∩ Lp(R+, W )}, intermediate between W and X. We do not know if
this space coincides with more classical interpolation spaces between W and X, but
it contains the real interpolation space (X, W )1− 1

p
,p; see [16, Lemma 2.1].

It is also a simple exercise to obtain the Lp maximal regularity over finite
intervals from Corollary 8.5). In this problem, a family A(t) is given for t ∈ [0, T ]
with T ∈ (0,∞) and then extended by setting A(t) = A(0) for t < 0 and A(t) =
A(T ) for t > T , so that A− = A(0) and A+ = A(T ). This extended family is
assumed to satisfy the assumptions of Corollary 8.5. Since attention is confined
to solutions on (0, T ) and right-hand sides in Lp((0, T ), X) (i.e., in Lp(R+, X)
that vanish a.e. in (T,∞)) and since the multiplication by eµt is an isomorphism

of all three spaces Lp((0, T ), X), W 1,p
0 ((0, T ), X) and Lp((0, T ), W ), A(t) may be

changed into A(t)−µI for any µ > 0 upon setting u = eµtv. Thus, the problem can
always be reduced to the case when A(T ) = A+ generates a bounded holomorphic
semigroups, so that ν = 0 and the isomorphism property of Corollary 8.5 can be
used (no compatibility condition arises).

Remark 8.2. According to [33], the Fredholm property of (8.16) has an im-
mediate impact on the asymptotic behavior of the solutions u of (8.2) depending
upon the asymptotic behavior of f ∈ Lp(R+, X). See also Schnaubelt [35] for other
results of this type, by a different approach.
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