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Closed Dressing Chains of 1D and 2D Toda Lattice
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Abstract. We apply the method of dressing chains to reproduction of Toda
lattice in the case of 1D and 2D. On the example of modified equations m0TL

and m1TL it is shown that combination of the Darboux and Schlesinger trans-
formations results in closed dressing chains.
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1. Introduction

In this work we consider the method of dressing chains of discrete symmetries
for the Toda lattice (TL) (including the two-dimensional generalization of them).
One starts with nonlinear Schrodinger equation (NLS)

iut + uxx + 2u2v = −ivt + vxx + 2v2u = 0, (1)

which admits two different types of discrete symmetries: Darboux transformation
(DT) and Schlesinger transformation (ST). The ST leads to connection between
NLS and TL models [1]. Using this circumstance and Lax pair for the NLS model
one can find Lax pair for the TL one. Then, using DT for the NLS and Lax pair
for the TL one can obtain the DT for the TL. Therefore total theory of TL (Lax
pair and DT) can be constructed starting out from the theory of NLS. Using DT for
the TL one can construct TL dressing chains to find modified TL equations which
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will be denoted as m1TL (with superscript). To do that it is enough to know L-
operator of the NLS. By repeating this procedure with A-operator of the equation
(1) one find symmetries of the m1TL (the exact definition of these symmetries
is contained in [2]). This plan is realized in the Section 2. We’ll show that it is
appears the closed dressing chains which tie together TL and Volterra equations,
in contrast to open-ended dressing chains of the KdV and NLS equations. This is
the character of the dressing chains of the TL equations.

The alternative path to ”multiply” the Toda lattice (see Sec. 3) is as follows:
One construct discrete symmetry chain for the NLS to find modified NLS equations
(we denote them by the mkNLS). Each of them inherits a ST from an initial
NLS (1) which leads to corresponding Toda-like lattice equations - mkTL (with
subscript). Since Lax pair and Darboux transformations for the mkNLS are known
(this is crucial point of the dressing chains method) then one can find Lax pairs
and DT for the mkTL. Now, if we apply the method from the previous paragraph
then one will find a new family of Toda-like equations (we denote them by the as
mn

kTL. The subscript points to the number of the modified NLS which creates this
mn

kTL equation. For example, all Toda-like equations from the Sec. 2 belong to
class m0TL, while all ones from the Sec. 3 belong to class m1TL).

In Sec. 4 we generalize our approach to 2D TL models using the Davy-
Stewartson equations (DS). Dressing chains of the first and second types are con-
structed.

There are many works which are devoted to links between integrable NLS-like
models and difference-differential Toda-like lattices (see, for example, [3]). The
classification of integrable lattice was made in [2], [4]. Our results are associated
with results in [5] and we are discussing that in Sec. 5. This work is continuation
of our research in [6], [7] which, for one’s turn, was inspired by the article [8].

2. Equations m0TL

Lax pair for the (1) has the form

Ψx = −iσ3ΨΛ + iSΨ, Ψt = −2iσ3ΨΛ2 + 2iSΨΛ +WΨ, (2)

where

S =

(

0 u
v 0

)

, Λ =

(

λ 0
0 µ

)

, W = σ3

(

iS2 − Sx

)

,

λ and µ are spectral parameters, σ3 is the third Pauli matrix, Ψ – 2 × 2 matrix
function. We denote componentry of the first matrix Ψ column by ψn, φn, u ≡ un,
v ≡ vn. Then, the L-equation of the system (2) has the form

ψn,x = −iλψn + iunφn, φn,x = iλφn + ivnψn. (3a− b)

The components of the second Ψ column are satisfying the similar system with
substitution λ→ µ.

The ST for the (1) are

un → un+1 = un [unvv + (log un)xx] , vn → vn+1 =
1

un

, (4a− b)

ψn → ψn+1 = (−2λ+ i(log un)x)ψn + unφn, φn → φn+1 =
ψn

un

, (5a− b)
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and reverse conversion:

vn → vn−1 = vn [unvv + (log vn)xx] , un → un−1 =
1

vn

,

φn → φn−1 = (2λ+ i(log vn)x)φn + vnψn, ψn → ψn−1 =
φn

vn

.
(6)

Let us denote

qn ≡ log(un), pn ≡ qn,x, Un ≡
un

un−1
= eqn−qn−1 . (7)

It is easy to examine that functions qn are solutions of the TL equations

qn,xx = eqn+1−qn − eqn−qn−1 . (8)

This remarkable point was noted in many works (see, for example, [1]-[3]). Our
first aim here is to construct Lax pair for the (8) starting out from the equations
(3). It is comfortably to introduce the shift-operator T :

Tun = un+1.

We act T−1 on the equation (5b) then substitute the expression for the φn into
(3a) to obtain the first equation of the Lax pair:

ψn,x = −iλψn + iUnψn−1. (9)

To obtain the second equation of the Lax pair we act T onto the (3b) and substitute
into this expression φn+1 (from the (5b)), vn+1 (from the (4b)) and ψn,x from the
(9). As a result one get

ψn+1 = (2λ+ ipn)ψn + Unψn−1. (10)

The consistency constraints of (9) and (10) has the form of two equations

pn,x = Un+1 − Un, Un,x = Un (pn − pn−1) ,

which can be transformed into the (8) by the (7). Thus, (9) and (10) are nothing
but Lax pair for the TL model.

Let us construct DT for the TL equation using elementary DT for the NLS
model (1) (see [9]). Let ψ1 and φ1 be the components of the first matrix Ψ column,
where Ψ is the solution of the (2) with λ = λ1. Then one can write two sorts of the
DT (the indices are omitted):

ψ → ψ(1) =

[

2(λ− λ1) +
φ1

ψ1
u

]

ψ − uφ, φ→ φ(1) = φ−
φ1

ψ1
ψ,

u→ u(1) = iux −

(

2λ1 −
φ1

ψ1
u

)

u, v → v(1) =
φ1

ψ1
,

(11)

and

ψ → (1)ψ = ψ −
ψ1

φ1
φ, φ→ (1)φ =

[

2(λ1 − λ) +
ψ1

φ1
v

]

φ− vψ,

u→ (1)u =
ψ1

φ1
, v → (1)v = ivx +

(

2λ1 +
ψ1

φ1
v

)

v.

(12)

Let’s ψ2, φ2 be components of the second matrix Ψ column with µ = λ2. Then one
make transformations (11) and (12):

u→ u(1) → (2)u(1), v → v(1) → (2)v(1),
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ψ → ψ(1) → (2)ψ(1), φ→ φ(1) → (2)φ(1). (13)

Note that the DT transformations are commutating

(2)u(1) = (1)u(2), (2)v(1) = (1)v(2).

If we’ll write (13) explicitly for the twice dressed potentials and wave functions it
is easy to see that we would obtain the ”ordinary” DT for the NLS (see [10]). This
is why we can call (11) and (12) as elemantary DTs. Unfortunately these transfor-
mations are uncomfortable in sense of getting exact solutions of the NLS because,
in the case of general position, it is impossible to conserve reduction restriction
u = ±v∗, in contrast to (13).

Now it is easy to find DT for the TL equations. Omitting simple calculations
we’ll show the result. Let {ψ1,n} be the solution of the Lax pair (9), (10) with
λ = λ1. Then we have two DTs for the TL equations which will be referred to as
R-transformation and L-transformation:

R : ψn → ψ(1)
n = −ψn+1 +

ψ1,n+1

ψ1,n

ψn, qn → q(1)n = qn + log
ψ1,n+1

ψ1,n

(14)

and

L : ψn → (1)ψn = ψn−
ψ1,n

ψ1,n−1
ψn−1, qn → (1)qn = qn−1+log

ψ1,n

ψ1,n−1
. (15)

Using (9)-(10) it is quit easy to find first modified TL equations. For this
purpose one introduce new functions τn and ξn

τn =
ψ1,n

ψ1,n+1
=

1

∂ξn
,

where ∂ ≡ −i∂/∂x, Vn ≡ ipn. The shape of the function τn is dictated from the
(14) and (15). In new dependent variables, the Lax pair for the TL equations has
the form:

∂τn = τn (τn−1Un − τnUn+1) , τn+1 =
1

2λ1 + Vn+1 + τnUn+1
. (16)

Note that the first equations has quadratic nonlinearity by fields τn, as it should
be in the method of the dressing chains ([8]).

Eliminating potentials Un, Un+1 and Vn+1 from the (16) one get equation
m1TL, which is just a Volterra equation (one can write this in more customary
form; see (17a), (52)):

∂2ξn = ∂ξn
(

eξn−ξn+1 − eξn−1−ξn

)

. (17)

To obtain dressing chains of discrete symmetries one can use either R or L
transformations (14), (15). Let us choose the (14). At the same time, the transfor-
mations regulation for the Un and Vn has the form:

Un → U (1)
n =

τn−1

τn
Un, Vn → V (1)

n = Vn + τn−1Un − τnUn+1.

Let’s take ψ2,n as the solution of (9), (10) with λ = λ2, ψ
(1)
2,n is calculated from the

(14) whereas ζn is defined by the expression:

∂ζn =
ψ

(1)
2,n+1

ψ
(1)
2,n

.
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After simple calculations one get these chains:

eζn−ζn+1 ∂ζn = eξn−ξn+1 ∂ξn+1,

∂ (ζn − ξn) = 2(λ2 − λ1) + eζn−1−ζn − eξn−ξn+1 . (18)

(18) contain Lax pair for the (17). Denoting ζn = log Ψn, we get

∂Ψn = AnΨn+1 =
(

Bn−1 + λ̃
)

Ψn + Ψn−1, (19)

where

An = eξn−ξn+1 ∂ξn+1, Bn = ∂ξn+1 − eξn+1−ξn+2 , (20)

and new spectral parameter λ̃ is connected with the λ by the proportion: λ̃ =
2(λ − λ1). We note that the consistency condition of (19) has the form of usual
Toda lattice

∂An = An(Bn−1 −Bn), ∂Bn = An+1 −An (21)

and can be reduced to the (17) by the substitution (20) into the (21). In new
dependent variable the R-transformation (14) is nothing else but L-transformation
(15). In other words, one obtain the closed chains of discrete symmetries which
connect TL equations with Volterra equations (m1TL).

To complete the picture we’ll cite the corresponding formulas. Let Ψ1,n be the

solution of (19) with λ̃ = λ̃1 6= 0. R-transformation (14) induce L-transformation
(15) for the (19) and (21) (one can examine it by the direct calculation ):

Ψn → (1)Ψn = Ψn − σnΨn+1, An → (1)An = An − ∂σn,

Bn → (1)Bn = Bn+1 + ∂ log σn+1,

where σn = Ψ1,n/Ψ1,n+1 are solutions of system (compareto (16)):

∂σn = An − (Bn + λ̃1)σn − σ2
n, σn+1 =

An+1

Bn + σn + λ̃1

. (22)

Using (21) and (22) we eliminate potentials Bn and again obtain Volterra equations:

∂ log σn = βn − βn+1, ∂ log βn = σn − σn−1, (17a)

where βn = An/σn.
Analogously, one can consider t-equations. Rewriting (1) in new variables qn,

pn, and taking (8) into account we get the known symmetry of the equations (8):

−iqn,t = p2
n + eqn+1−qn + eqn−qn−1 . (23)

It is possible to repeat all actions described above: to find Lax pair, then to apply
Darboux transformation to construct symmetry of the Volterra equations. Result-
ing formulas has been described before (with the help of another approach; see [2],
[4]) so we omit them here. Note that [2] contains the total (up to gauge, linear,
Galilean transformations) list of integrable generalization of classical and relativist
Toda lattice in the form

qn,xx =
1

2
(G(qn+1, qn, pn+1, pn) − F (qn, qn−1, pn, pn−1)) ,

with symmetries

qn,t =
1

2
(G(qn+1, qn, pn+1, pn) + F (qn, qn−1, pn, pn−1)) .
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Using the method of dressing chains we have found only two equations from this
list. In the next Section we’ll obtain new generalization of TL equations.

3. Equations m1TL

Using DT (13) and Lax pair for the NLS (1) we can construct the first modified
NLS (m1NLS) which has the form

(

β2 − 4bc
) (

ibt + bxx − 2b2c
)

+ 2α (αc+ 2icx) b2 + 2(bxc+ 2bcx)bx = 0,

(

β2 − 4bc
) (

−ict + cxx − 2c2b
)

+ 2α (αb− 2ibx) c2 + 2(bcx + 2bxc)cx = 0,
(24)

where α = λ+ µ, β = λ− µ, λ and µ are spectral parameters of (2) as before, and
b = b(x, t) with c = c(x, t) are new dependent variables which are defined by

b =
u− (2)u(1)

2
, c =

(2)v(1) − v

2
.

If α = β = 0, then the equation (24) take the elegant form

ibt + bxx − 2b2c−
bxcx
c

−
1

2

b2x
b

= 0, −ict + cxx − 2bc2 −
bxcx
b

−
1

2

c2x
c

= 0. (25)

STs for the (25) are defined by the formulas (compare to(4), (6)):

bn → bn+1 =
1

4

(2cnb
2
n,x − 2cnbnbn,xx + cn,xbn,xbn + 4c2nb

3
n)2

c2nbn(b2n,x − 4cnb3n)
,

cn → cn+1 =
4cnb

2
n

b2n,x − 4cnb3n
, bn → bn−1 =

4bnc
2
n

c2n,x − 4bnc3n
,

cn → cn−1 =
1

4

(2bnc
2
n,x − 2bncncn,xx + bn,xcn,xcn + 4b2nc

3
n)2

b2ncn(c2n,x − 4bnc3n)
, (26)

where

(bn+1)n−1 = (bn−1)n+1 = b, (cn+1)n−1 = (cn−1)n+1 = c.

Formulas (26) were obtained from the discrete symmetries chains of NLS in our
work [7]. There is another (more spontaneous) way to obtain them. This way is
based on the comparative analysis of (25) and (1). Let’s consider (for distinctness)
the transformation n→ n+1 in (26). In the case of ST (4a-b) for the NLS one can
see that new fields are expressed through old ones via formulas (most of indices are
omitted in order to prevent jamming of formulas):

un+1 = U(u, v, ux, uxx), vn+1 = V (u). (27)

By analogy with (27), one need pick out for the (25)

bn+1 = B(b, c, q, p, w), cn+1 = C(b, c, q), (28)

where values q = bx, p = cx, w = qx must be considered as independent variables
whereas B and C should be obtained. Now we should substitute (28) into mNLS
then eliminate time derivatives with the help of (25) and, at the end of this, to
equate to zero expessions attached to independent variables. In such a way, equating
to zero the factor attached to wx in the second equation (25) we get (after simple
integration by w):

B = (wCq + qCb + pCc)
2
S(b, c, q, p),
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where S(b, c, q, p) is arbitrary function of it’s arguments. By equating to zero the
factor attached to w one get

Cq = 0, Sp = 0.

The further inquiry show that we need to choose the second way so S = Z(b, c, q).
Then, the nulling of the factor attached to px results in simple PDE and the inte-
gration of this equation gives us the functional dependence for the C:

C = C

(

b,
q2

c

)

.

The factor attached to w2 leads to Riccati equation (that’s a bad news) but we can
simplify the problem (here are a good ones) using the following observation: Let

b = g1(t) + ǫf1(x, t), c = g2(t) + ǫf2(x, t). (29)

Substituting (29) into the (25) we see that if ǫ→ 0 then two last items in (25) are
negligible quantities so the equations (25) are reduced to (non-soliton) NLS. This
implies that if ǫ→ 0 then our desired ST must be reduced into ST (4). Therefore

1

C
= −b+ F

(

b,
q2

c

)

,

where F (b, 0) = 0 (ǫ → 0 mean that q → 0 and p → 0). The last condition means
that for the F one can use Taylor with respect to q2/c. Since the dimensionalities
of b, c and x are connected by the proportion [b][c] = [x]−2, we get the initial object
for the C:

1

C
= −b+

∞
∑

m=1

Gm

(

q2

c

)m

b1−3m, (30)

where Gm are dimensionless constants. In fact , it is enough to restrict ourself
to the first term of series in (30) (we can verify, comparing (30) with (26), that
G1 = 1/4 whereas the rest coefficients are zero). Using this obtained initial object
one can continue the calculation to find (26).

If α and β are nonvanishing numbers then

bn−1 =
icn(β2 − 4bncn)

i(α2 − β2)c2n − 2αcncn,x + i(4c3nbn − c2n,x)
,

cn−1 =
Z(−α, β, cn, bn)

(β2 − 4bc)
2 [

i(α2 − β2)c2n − 2αcncn,x + i(4c3nbn − c2n,x)
] ,

(31)

bn+1 =
Z(α, β, bn, cn)

(β2 − 4bc)
2 [

i(α2 − β2)b2n + 2αbnbn,x + i(4b3ncn − b2n,x)
] ,

cn+1 =
ibn(β2 − 4bncn)

i(α2 − β2)b2n + 2αbnbn,x + i(4b3ncn − b2n,x)
.

(32)

The quantity Z(α, β, b, c) has bulky form so we’ll show it in two extreme cases when
either β = 0 or α = 0:

Z(α, 0, b, c)

4b
= −i(b2cα2)2 + 2b3c(bcx − bxc)α

3 − ib2[3(bxc)
2 + (3bc)3

+4bc(bxcx − cbxx) − (bcx)2]α2 + 2b(bcx − bxc)((2cb)
2b+ bxcxb

−2bcbxx + 2b2xc)α− i
(

(2cb)2b+ bxcxb− 2bcbxx + 2b2xc
)2
,
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−iZ(0, β, b, c) = b(b3c+ b2x − bbxx)β6 + [(b2x − bbxx)bxx − 2b3bxcx

−12b2c
(

b3c+ b2x − bbxx

)

]β4 + [48b3c2
(

b2x + b3c− bbxx

)

+8c(bbxx)2 − 4bbx(3bxc+ bcx)bxx + (3cb2x + 2bcxb
2
x

+16b4ccx)bx]β2 − 4b
(

(2cb)2b + bxcxb− 2bcbxx + 2b2xc
)2
.

Formulas (31), (32) result in new Toda-like lattice. Denoting

Pn = log bn, Qn = log cn,

one find the equations m0
1TL ≡ m1TL in familiar Euclidean variables:

(∂Pn)2 + 2α∂Pn + 4ePn+Qn − β2e−Pn−Qn+1 + 4eQn−Qn+1 = β2 − α2,

(∂Qn)2 − 2α∂Qn + 4ePn+Qn − β2e−Qn−Pn−1 + 4ePn−Pn−1 = β2 − α2.
(33)

Thus we have integrable lattice composed of interaction nodes (atoms) of two kinds.
It is most simple case when α = β = 0. In this case each equation looks as a law of
each atom’s total energy conservation. In other words, in this case the equations
(33) describes zero-point oscillations of lattice.

Lax pair for the (33) can be obtained via NLS discrete symmetries chains. As
a result one get

(α− 2an)∂Ψn + 2(α1 −An)(α − 2an)Ψn − (α1 − 2An)(∂bn + 2anbn) = 0,

Ψn−1 =

(

β2
1 − 4ΨnΦn

)

Φn

(α2
1 − β2

1)Φ2
n − 2α1Φn∂Φn + 4Φ3

nΨn + (∂Φn)
2 ,

(α− 2an)∂Φn + 2 ((α− an)α1 + (4an − 3α)An) Φn − (α− 2An)∂cn = 0,

Φn+1 =

(

β2
1 − 4ΨnΦn

)

Ψn

(α2
1 − β2

1)Ψ2
n + 2α1Ψn∂Ψn + 4Ψ3

nΦn + (∂Ψn)
2 ,

(34)

where Ψn, Φn are wave functions of the spectral problem, α1, β1 are spectral
parameters (α and β are fixed) whereas functions an, An are defined as:

an =
1

2

(

α±
√

β2 − 4bncn

)

, An =
1

2

(

α1 ±
√

β2
1 − 4ΨnΦn

)

.

Equations (33), (34) are analogue of Lax pair (16) for the TL equations (8). It
is quite obvious from (34) that log Ψn, log Φn are solutions of the same m1TL
equations (33) with the change α→ α1, β → β1.

At last, using (13) it is easy to calculate corresponding Darboux transformation
for the (34). One can predict the response:

bn → Ψn, cn → Φn.

Intermediate equations m2
1TL (i.e. the analogue of the Volterra equation for the

(33)) can be obtained from the above mentioned formulas:

Ψ̂n = Ψn − bn, Φ̂n = Φn − cn. (35)

The Lax pair for the m2
1TL equation can be obtained from the (34) by the elimi-

nation of Ψn and Φn with the help of the (35). In the role of wave function one get
bn and cn (with another values of α, β). Thus, we get closed dressing chains again.
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4. 2D TL equations

Above-stated formalism is also work for the 2D TL equations. These equations
can be obtained from the DS equations:

iut + uxx +
1

α2
uyy −

2

α2
u2v + gu = 0,

−ivt + vxx +
1

α2
vyy −

2

α2
v2u+ gv = 0, gyy − α2gxx = −4 (uv)xx . (36)

Here α2 = ±1. The Lax ”pair” for the (36) is the system of four scalar equations,

ψy = αψx + uφ, φy = −αφx + vψ,

ψt = 2iψxx +
2i

α
uφx +

(

1

2

[

1

α
Fy + Fx

]

−
i

α2
uv

)

ψ +
i

α2
(αux + uy)φ,

φt = −2iφxx +
2i

α
vψx +

(

1

2

[

1

α
Fy − Fx

]

+
i

α2
uv

)

φ+
i

α2
(αvx − vy)ψ,

(37)

where g = −iFx.
Now let two twains of functions {ψ1, φ1; ψ, φ} be solution of the (37) with any

given u, v and F . Elementary Darboux transformations for the DS equations (i.e.
the analogue of the (11), (12)) has the form,

ψ → ψ(1) = −2αψx − uφ+ (2αψ1,x + uφ1)
ψ

ψ1
, φ→ φ(1) = φ−

φ1

ψ1
ψ,

u→ u(1) =
u

ψ1
(2αψ1,x + uφ1) − uy − αux, v → v(1) =

φ1

ψ1
,

F → F (1) = F + 4i
ψ1,x

ψ1

(38)

and

φ→ (1)φ = 2αφx − vψ − (2αφ1,x − vψ1)
φ

φ1
, ψ → (1)ψ = ψ −

ψ1

φ1
φ,

v → (1)v =
v

φ1
(vψ1 − 2αφ1,x) − vy + αvx, u→ (1)u =

ψ1

φ1
,

F → (1)F = F + 4i
φ1,x

φ1
.

(39)

Two-dimensional problem has larger list of discrete symmetries then single-dimensional
one. The new type of them is so called binary DT which can be obtained as follows:
DS equations has Lax pair which is ”conjugate” to (37),

py = αpx − vf, fy = −αfx − up,

pt = −2ipxx +
2i

α
vfx −

(

1

2

[

1

α
Fy + Fx

]

−
i

α2
uv

)

p+
i

α2
(αvx + vy) f,

ft = 2ifxx +
2i

α
upx −

(

1

2

[

1

α
Fy − Fx

]

+
i

α2
uv

)

f +
i

α2
(αux − uy) p.

(40)
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For accommodation we denote wave function of Lax pair (40) using Roman alphabet
p, f (Greek letters ψ, φ will be used for the Lax pair (37)), and DT for the (40)
will be marked with the help of subscripts in round paranthesis:

p→ p
(1)

= 2αpx − vf − (2αp1,x − vf1)
p

p1
, f → f

(1)
= f −

f1
p1
p,

v → v
(1)

=
v

p1
(vf1 − 2αp1,x) + vy + αvx, u→ u

(1)
=
f1
p1
,

F → F
(1)

= F + 4i
p1,x

p1
,

(41)

f →
(1)
f = −2αfx − up+ (2αf1,x + up1)

f

f1
, p→

(1)
p = p−

p1

f1
f,

u→
(1)
u =

u

f1
(up1 + 2αf1,x) + uy − αux, v →

(1)
v =

p1

f1
,

F →
(1)
F = F + 4i

f1,x

f1
.

(42)

DT (38)-(39) result in following transformations laws for the solutions of the system
(40):

p→ p(1) =
A+ Ω(ψ1, φ1; p, f)

ψ1
,

f → f (1) = 2αf +
u

ψ1
(A+ Ω(ψ1, φ1; p, f)) ,

f → (1)f =
A+ Ω(ψ1, φ1; p, f)

φ1
,

p→ (1)p = −2αp+
v

φ1
(A+ Ω(ψ1, φ1; p, f)) , (43)

where

Ω(ψ, φ; p, f) =

∫

dΩ(ψ, φ; p, f), dΩ(ψ, φ; p, f) = (ψp+ φf)dx

+α(ψp− φf)dy + 2i

[

1

α
(vψf + uφp) + pψx − pxψ + fxφ− fφx

]

dt,

A is arbitrary constant, 1-form dΩ(ψ, φ; p, f) is closed if ψ, φ, p and f are solutions
of the (37), (40) with the same potentials u, v and F . Similar formulas for ψ

(1)
,

φ
(1)

,
(1)
ψ,

(1)
φ which are induced by the transformations (41)-(42) have the form:

ψ → ψ
(1)

=
A+ Ω(ψ, φ; p1, f1)

p1
,

φ→ φ
(1)

= −2αφ+
v

p1
(A+ Ω(ψ, φ; p1, f1)) ,

φ→
(1)
φ =

A+ Ω(ψ, φ; p1, f1)

f1
,

ψ →
(1)
ψ = 2αψ +

u

f1
(A+ Ω(ψ, φ; p1, f1)) . (44)
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Using (38), (39), (41-44) one can find elemantary binary DT. These transformations
allow us to calculate potentials with two indices: one on top and one below. For
example

u(1)

(1)
= (1)

(1)
u =

1

(1)
v(1)

= u+
2αf1ψ1

A+ Ω1
, v(1)

(1)
= (1)

(1)
v =

1
(1)u

(1)

= v −
2αp1φ1

A+ Ω1
, (45)

where Ω1 = Ω(ψ1, φ1; p1, f1). We’ll not write out these formulas.

Remark. The twain of linear equations for the ψy, φy (37) (or for the py, fy

(40)) can be represented as the single linear second-order equation with variable
coefficients. Imposing the special restrictions on the potentials u, v, one can obtain
some famous equations, e.g. Laplace-Moutard equation [11] or the Goursat one
[12]. To obtain the Goursat equation one need to choose

v = ±u. (46)

The usual Darboux transformations don’t conserve the reduction restrictions (46),
while the elementary binary transformations (45) conserve them by the choice

p = ψ, f = ∓φ,

which don’t conflict with (37), (40). As a result we get a well known analog of a
Moutard transformation for the Gourst equation (see, for example, [13], [14), which
is nothing but outcome of two successive elementary DT. Similarly it is possible to
obtain usual Moutard transformation. Note that this transformation is the useful
method to construct explicit solutions of the Veselov-Novikov equation [10], [15].
In turn the Goursat equation produce 2D mKdV hierarchy so transformations (45)
(which don’t conflict with (46)) can be used to construct exact solutions of equations
from this hierarchy.

The DS equations (36) admits ST ([7], [16]):

un → un+1 = un

(

unvn + α2(log un)xx − (log un)yy

)

, vn → vn+1 =
1

un

,

gn → gn+1 = gn + 4(log un)xx

un → un−1 =
1

vn

, vn → vn−1 = vn

(

unvn + α2(log vn)xx − (log vn)yy

)

,

gn → gn−1 = gn + 4(log vn)xx,
(47)

from which one get the equations of 2D Toda lattice:

α2qn,xx − qn,yy = eqn+1−qn − eqn−qn−1 , qn = log(un). (48)

Using (48) and (36) we find symmetries of the (48) (see. (23):

−iqn,t = 2qn,xx + q2n,x +
1

α2
q2n,y −

1

α2

(

eqn+1−qn + eqn−qn−1
)

+ gn,

where gn can be expressed as:

gn(x, y, t) = g̃n(x, y) + 4

∫

∞

−∞

dx′dy′G(x′, y′;x, y)
(

eqn−qn−1
)

x′x′
,

where G(x′, y′;x, y) is the Green function satisfying the equation
(

∂2
y − α2∂2

x

)

G(x′, y′;x, y) = −δ(x− x′)δ(y − y′),

where g̃n is the solution of this equation with a zero second member of this one.
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The plan of searching of Lax pair, Darboux transformations and dressing chains
for the (48) is the same as the plan in Sec. 2: Using (37), (40) and (47) one find
two ”conjugate” Lax pairs for the (48):

ψn,y = αψn,x + eqn−qn−1ψn−1,

ψn+1 = 2αψn,x − (αqn,x + qn,y)ψn + eqn−qn−1ψn−1,
(49)

and
fn,y = −αfn,x − eqn−qn−1fn−1,

fn+1 = 2αfn,x + (qn,y − αqn,x)fn + eqn−qn−1fn−1.
(50)

Using now DT (38-39) and (41-42) it is easy to obtain requisite formulas for the
(49), (50). The result is just the same as R- and L-transformations (14-15), and
this is true for both the (49) and (50). The last statement is obvious because the
Lax pair (50) can be obtained from the (49) by the substitute

α→ −α, ψn+k → fn+k = (−1)kψn+k.

Starting out from the (49) one get 2D Volterra equations (compare to (17)):

ξn,XY
= ξn,X

(

eξn−ξn+1 − eξn−1−ξn

)

, (51)

where

∂
X

= ∂y + α∂x, ∂
Y

= ∂y − α∂x, ξn,X =
ψ1,n+1

ψ1,n

,

where ψ1,n is some particular solution of the (49). Introducing new dependent
variable an and bn:

an = ξn,X , bn = eξn−ξn+1 ,

it is possible to present (51) in more customary form

(log an)
Y

= bn − bn−1, (log bn)
X

= an − an+1. (52)

And If we start from the (50) then the resulting equations will be gage-equivalent
to (51). But we’ll not apply them here.

Finally, let apply dressing chains. Choosing Lax pair (49) andR-transformation
(14) (it can be obtained from the (38)) we have:

eζn−ζn+1 ζn,X = eξn−ξn+1 ξn+1,X , (ζn − ξn)
Y

= eζn−1−ζn − eξn−ξn+1 , (53)

where ζn is defined just as in Sec. 2.
Chains (53) are 2D generalization of chains (18). In addition , using binary

DT we can construct dressing chains of the second type. Denoting (see (43))

ηn,Y =
f

(1)
n+1

f
(1)
n

,

one get

eηn+1−ηn ηn,Y = eξn−ξn+1 ξn+1,X ,
(

ηn,X − eηn−ηn−1
)

Y

=
(

eξn−ξn+1 − ξn,Y

)

X

. (54)

Eliminating ξn from the (54) we obtain nonlinear equation for the functions ηn,
whereas chains (54) can be considered as Lax pair for this equation.
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5. Conclusion

Main results of this work are:

1. Dressing chains for the Toda lattice are constructed starting out from the NLS
theory.
2. It is shown that dressing chains for the Toda lattice are closed.
3.The methods allowing to construct the mn

kTL equations are suggested. The
particular example of equation from this set (including it’s Lax pair, (33-34)) is
studied.
4. Dressing chains of the first and second type for the 2D Toda equations are
obtained.

The links between NLS and TL were studied in [5]. Instead of traditional
system of Zakharov-Shabat (3), authors of [5] have used the single second-order
equation

Ψxx + (z − 2iλ)Ψx + pΨ = 0, (55)

which can be obtained from the (3) if one put

z = −(log u)x, p = uv, Ψ = eiλxψ.

Symmetries from the [5] are nothing but ST (6) (in [5] these transformations were
called T-transformations) and DT (S-transformations in [5]). According to lemma
which was proved in [5], S- and T-transformations are unique iso-spectral symme-
tries in the form Ψ → fΨx + gΨ, where coefficients f and g are independent from
the spectral parameter λ. It is obviously that transformations (4-5) and (11) don’t
satisfy this demand. One can show that they are connected with transformations
T−1 and S−1. It is obvious in the case (4-5). The link between S−1 and (11) has
more delicate nature, so let consider it in detail.

The straightforward calculation by the (12) result in S-transformation for the
equation (55):

Ψ → (1)Ψ = Ψ −
Ψx

Ψ1,x

Ψ1, (56)

where Ψ1 is the solution of the (55) with λ = λ1.
Let us find the inverse transformation, acting accordingly to the [5]: Differen-

tiating (56) and excluding Ψx we get,

Ψ = Ψ
(

(1)Ψ, (1)Ψx; Ψ1,Ψ1,x

)

. (57)

but it is not the ultimate result. That is because during the inversion of the
formula (56) one must have in mind that second member (57) must be expressed
via ”dressed” values only (i.e. via values with left superscript ”(1)”). To lead (57)

to this form we need to introduce solution Ψ̂ which will be linear-independent with
Ψ. The general solution of (55) (with fixed λ) will be linear combination of Ψ and

Ψ̂ with any given constant coefficients.
It is easy to find the function Ψ̂ by the standard algorithm (to multiply (55) by

the Ψ̂; to multiply the equation for the Ψ̂ by the Ψ; to subtract and to integrate).

Then one can dress Ψ̂1 (for the λ = λ1) by the formula (56) (we need to use this
roundabout way to escape the result (1)Ψ1 = 0, which we have faced by the direct
application of the (57)):

Ψ̂1 → (1)Ψ̂1.
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We differentiate this formula, then we express Ψ1 and Ψ1,x via (1)Ψ̂1,
(1)Ψ̂1,x and

substitute it into the (57). Now it is possible to determine that (57) is gage-
equivalent to (11). Let ψ and φ be solutions of the (3). The necessary for us
linear-independent functions are:

ψ̂(x) =
1

2
ψ(x)

∫

dz sgn(x−z)
u(z)

ψ2(z)
, φ̂(x) =

1

2
φ(x)

∫

dz sgn(x−z)
u(z)

ψ2(z)
−
i

ψ
.

Dressing these expessions by the formulas (12) and substituting λ = λ1, ψ = ψ1,
φ = φ1, one get

(1)ψ̂1 =
i

φ1
, (1)φ̂1 = −

iv

φ1
.

Finally, substituting obtained functions into the (11) we have

(1)u→ −u, (1)v → −v,

Q.E.D.
The calibration (55) from the [5] is suitable to research closure conditions

and for construction of potentials which are invariant with respect to S- and T-
transformations. In contrast to [5], our purpose here is the constructions of the
dressing chains, in the manner of [8]. I conclude that the standard symmetrical
calibration of Zakharov-Shabat is more comfortable and natural for this goal.
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