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Abstract. We study localization of spectra (Counting Lemma) and Lp con-
vergence of spectral decompositions of 1D periodic Dirac operators. The main
technical tool is estimates of the resolvent norms in their dependence on the
smoothness of a potential.
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1. Introduction; Statement of the Problem and Main Results.

We consider 1D periodic Dirac operators

(1.1) L = iJ
d

dx
+ V ; J =

(
1 0
0 −1

)
, V =

(
0 p
q 0

)
,
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126 B. MITYAGIN

where p, q are L2-functions on [0, 1]. The operators

(1.2) L0 = iJ
d

dx

and L act in H = H ×H , H = L2[0, 1], being certainly defined on H1 ×H1 by

(1.3) LF =

(
Df1 + pf2
qf1 −Df2

)
,

where F =

(
f1
f2

)
, fi ∈ H1, i = 1, 2 and D = id/dx.

After Zakharov-Shabat [22, 23, 24] such operators are infinitely related to
analysis of the complete integrability of a dynamic system — nonlinear (cubic)
Schroedinger equation

i
∂ψ

∂t
= −∂

2ψ

∂2x
+ αfψ2ψ, f = ±1

with the initial condition
ψ(x, t)

∣∣
t=0

= ψ(x).

See details in [1].
2. In this paper we study the structure (or localization) of the spectrum σ(Lbc)

under different boundary conditions. Three types of bc are most important.
(a) periodic, or Per+: F (0) = F (1), i.e. f1(0) = f1(1), f2(0) = f2(1),
(b) antiperiodic, or Per−: F (0) = −F (1), i.e. f1(0) = −f1(1), f2(0) = −f2(1),
(c) Dirichlet bc, or Dir:

f1(0) = f2(0), f1(1) = f2(1).

Each of these bc’s defines the operator Lbc, the closure of L from a domain

Dombc = {F ∈ H1 ×H1 : F ∈ bc}
in a Hilbert space H = L2 × L2 with a scalar product

〈F,G〉 =
1

2

1∫

0

(f1g1 + f2g2) dx.

We could consider other regular bc; see the details in Section 6.1.

In the case of L0 =

(
D 0
0 D

)
the following table tells everything about eigen-

values and eigenvectors (eigenfunctions) of L0
bc.

complete system spectrum multiplicity of
bc of eigenvectors in H σ(Lbc) eigenvalues πp

p even p odd
Per+ e±p ,p even πn, n even 2 0
Per− e±p , p odd πn, n odd 0 2
Dir uk, k ∈ Z πn, n ∈ Z 1 1

In this table and later on we use the following notations.

e+p =
√

2

(
e−iπpx

0

)
, e−p =

√
2

(
0

eiπpx

)
, up =

1√
2
(e+p + e−p ),(1.4)

vp =
1√
2
(e+p − e−p ).(1.5)
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3. If V is not zero, it is expected that σ(Lbc) is ”close” to σ(L0
bc). Under the

assumption that V ∈ H1 Y. Li and D. McLaughlin gave the following version of
Counting Lemma (for convenience, they talk about the case p = −q.)

Form = ‖V ‖2, M = ‖v|H1‖ setN = 2[m2 coshm+3M sinhm]. Then σ(Lbc) ⊂
D0 ∪

⋃
|k|>N

Dk where D0 = {λ ∈ C : |λ| < (2N + 1)π/2}, and Dk = {λ ∈ C :

|λ− kπ| < π/4}.
The dimensions of corresponding projectors are the same as for V = 0.
The restriction V ∈ H1 is critical. Such a statement cannot be given just in

terms of m = ‖V ‖2. In general context of operators Lbc, p. 1–3, let us make the
following remark, an apologue of Y. Li and D. McLaughlin observation [14], p. 183,
Remark 2. The potential

Ṽ =

[
0 pe2iax

qe−2iax 0

]
, a even,

is 1-periodic and it has the same L2-norm m(Ṽ ) = m(V ) as V .

If LF = λF then for L̃ = iJ d
dx + W̃ we have

L̃F̃ = (λ + a)F̃ with F̃ =

(
f1e

iax

f2e
−iax

)
.

Moreover, a is even, and it guarantees that

F ∈ bc⇒ F̃ ∈ bc, bc = Per± or Dir.

Therefore, σbc(L̃) = σbc(L) + a. It means, that L2-control on the initial disk D0

(or another shape) is hardly possible.
4. But we can eliminate counterexample of this type of the multiplication by

eiax, a real, would not be a uniformly bounded family of operators in a correspond-
ing (Hilbert) space of potentials. It leads us with necessity to Hilbert weighted
norms

(1.6) ‖V |H(Ω)‖2 =
∑

(|pk|2 + |qk|2)Ω2(k) <∞,

where

(1.7) Ω(0) = 1, Ω(k) = Ω(−k), Ω(k) 6 Ω(k + 1), Ω(k) → ∞ (k → ±∞).

We’ll prove a Counting Lemma just assuming that V ∈ H(Ω).
Moreover, the choice of the initial domain D0 in [21], [14] and [9] as a disc does

not distinct roles of real and imaginary parts of spectral points, or how m = ‖v‖2

and M = ‖V |H1‖ or ‖V |H(Ω)‖ restrict spectrum in the directions of real and
imaginary axes. Instead of a disc D0 we talk about rectangles

Π = {z ∈ C : |Re z| 6 X, |Im z| 6 Y }
and try to give much smaller restrictions on Y than on X in Counting Lemma.
One of our main results in this paper is the following Theorem.

Theorem 1.1. Let V be a periodic potential, V (x+1) = V (x), and V ∈ H(Ω),
where Ω is a weight sequence in (1.6).

Then for all bc = Per±, Dir

σ(Lbc) ⊂ Π(X ;Y ) ∪
⋃

|k|>N

Dk(δk)
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where Y = K1(mM)1/2, X = N +1/2, N depending on m, M and B, and δk → 0,

(1.8) Dk(r) = {z ∈ C : |z − πk| 6 r}.
The dimensions of all projectors for Π and Dk are the same as in the case of zero
potential.

The precise statement is given in Section 4, Theorems 4.1 and 4.2.
5. With complex-valued entries p and q of potential V , the operator Lbc is not

necessarily selfadjoint. Spectral expansions of elements F ∈ H are defined now in
terms of projectors

(1.9) P =
1

2πi

∫

∂Π

(z − Lbc)
−1 dz,

and

(1.10) Pk =
1

2πi

∫

∂Dk

(z − Lbc)
−1 dz.

Theorem 1.2. If (log k)2/Ωk → 0 the series

PΠF +
∑

|k|>N

PkF = F

converges uniformly for any F satisfying Dini condition.
If
∑

Ω−2
k <∞ and V ∈ H(Ω) this series converges unconditionally.

See details in Prop. 7.3 and Thm. 7.4, and Prop. 8.7 and Thm. 8.8.

Theorem 1.3. Under weak assumption Ωk → ∞, the eigenfunctions of Lbc,
normalized in H, are uniformly L∞-bounded. Moreover, for some K = K({Ω};M)
if F ∈ ImPn or ImPΠ its L∞-norm

‖F‖∞ 6 K‖F‖1.

See details in Thm. 8.4 and Cor. 8.5.
Proofs of these statements have many technical details which could be of certain

interest by themselves. The central role belongs to Proposition 2.4, Ineq. (2.27),
which provides estimates of the resolvent norms in complex plane.

1.1. Acknowledgments. Many collegues helped me in this work. In September–
October 2001, when the analytic core of this work was done, Plamen Djakov (of
Sofia Univ., Bulgaria) was a very patient listener of different reasons of the construc-
tions in Sect. 2–4 and a valuable advisor. Charles Li (of Univ. Missouri, Columbia,
MO) explained to me some results on Counting Lemma and further developments.
Evgeni Semenov (of Voronezh State University, Voronezh, Russia) consulted me on
a series of inequalities for Fourier coefficients.

My course on Spectral Analysis of Differential Operators, April–May 2002, in
CIMAT, Guanajuato, Mexico, contained a few lecftures with presentation of this
work. An advice and shrude questions of listeners, in particular, of Steve Sontz and
Maite Fernández Unzueta, led to improvement of this exposition. I am thankful to
Victor M. Perez-Abreu and Xavier Gomes-Montes for their hospitality during my
visit to CIMAT in Spring 2002 when I wrote a significant part of this paper.



SPECTRAL EXPANSIONS 129

2. How to Evaluate the Norms of Resolvents of Perturbed Operators

Elementary methods of perturbation theory of linear operators are based on
resolvent identity

(λ−A− T )−1 = (λ−A)−1(1 − T (λ−A)−1)−1.

In our context, if

(2.1) Rλ = (λ− L0 − V )−1, R0
λ = (λ − L0)−1

then

(2.2) Rλ = R0
λ(1 − V R0

λ)−1 = (1 −R0
λV )−1R0

λ.

We will use only the first representation.
We omit the subscript bc with understanding that both L0 and L are considered

in (2.1), (2.2) with the same boundary conditions. Of course these identities are
valid only if all the operators are well-defined, or can be properly interpreted.

(2.3) R0
λ is well defined

for λ /∈ σ(L0
bc), see Table, p. 126.

Moreover, by Parseval’s identity

(2.4) ‖R0
λ : L2 → L2‖ = max

s∈σ(L0
bc)

1

|λ− s| 6 max
k∈Z

1

|λ− πk| .

Of course, by (2.2) Rλ would be well defined if

(2.5) ‖V R0
λ‖2 6

1

2

and therefore

(2.6) ‖(1 − V R0
λ)−1‖2 6 2.

But there are two obstacles here. A potential V is an L2-function, so an operator
of multiplication

(2.7) V F =

(
pf2
qf1

)

does not act in L2 although there is a bounded operator from L2 × L2 → L1 × L1

and from L∞ × L∞ → L2 × L2 with norms

(2.8) ‖V ‖2→1 = ‖V ‖∞→2 = ‖v‖2 6 m.

We could compensate (2.8) to get (2.5) by treating R0
λ as an operator from L2 to

L∞ so

(2.9) ‖V R0
λ‖2 6 ‖R0

λ‖2→∞‖V ‖∞→2.

Indeed, the following is true.

Proposition 2.1. For any

(2.10) λ /∈ πZ, λ = πµ,

(2.11) ‖R0
λ‖2→∞ 6

2

π
A(µ), A2(µ) =

∑

k∈Z

1

|µ− k|2 .
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Proof. Whatever bc is, the orthonormal eigenfunctions ϕk of an operator L0

are uniformly bounded, say

(2.12) ‖ϕk‖∞ 6 2

(see Table, p. 126). For any

(2.13) (ξk) ∈ l2,
∑

|ξk|2 6 1,

if ξ =
∑
ξkϕk

R0
λξ =

∑ ξk
λ− πk

ϕk,

and

(2.14) ‖R0
λξ‖∞ 6

∑∣∣∣∣
ξk

λ− πk

∣∣∣∣ ‖ϕk‖∞ 6
2

π

(∑
|ξk|2

)1/2

A(µ)

i.e. (2.11) holds. �

This is a nice inequality but

(2.15) A(−µ) = A(µ) = A(µ+ 1) and inf
0<µ<1

A2(µ) >
1

(1/2)2
+

1

(1/2)2
= 8.

Even moving along real line, we cannot make ‖V R0
λ‖ small just by (2.9) although

if Imλ is large enough we can guarantee (2.5).

Lemma 2.2. Let

(2.16) µ = x+ iy, |x| 6
1

2
, ρ = |µ|.

Then

(2.17) A2(µ) 6
3

ρ2
+

10

1 + ρ
.

Proof of the Lemma and other inequalities for spectral sums of this type is
given in Section 3.

This lemma leads us imediately to the following

Proposition 2.3. The spectrum σ(Lbc) lies in the horizontal strip

(2.18) {z ∈ C
∣∣ |Im z| 6 4(1 + 4m)2}.

Proof. Inequalities (2.9), (2.11) and (2.17) give us for ρ > 1

(2.19) ‖V R0
λ‖2 6

2

π

(√
3

ρ
+

√
12

ρ1/2

)m

<
3.5

ρ1/2
m,

where m > ‖v‖2. Therefore, (2.5) holds if

(2.20) ρ > (1 + 4m)2.

But if λ /∈ (2.18), i.e. |Imλ| > 4(1 + 4m)2, then certainly ρ = 1
π |λ| > 4(1 + 4m)2.

It means that (2.20) and (2.5) hold, and Rλ = R0
λ(1 − V R0

λ)−1 is well defined. �

We cannot get more (see (2.15) and arguments there) from the function A(µ)
and any attempts to use (2.5). But von Neumann series can still help us if we notice
that

(2.21) (1 −K)−1 = (1 +K)(1 −K2)−1
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is well defined if K is a bounded operator, and

(2.22) ‖K2‖ < 1, say 6
1

2
.

We know by (2.11) and (2.17) that K = V R0
λ is bounded in L2 and

(2.23) ‖K‖ 6
2

π

(
3

ρ2
+

12

1 + ρ

)1/2

m.

As before (compare (2.9))

(2.24) ‖K2‖2 = ‖V R0
λV R

0
λ‖2 6 m‖R0

λV R
0
λ‖2→∞.

If (2.24) 6 1/2 then λ is a regular point, i.e. λ /∈ σ(Lbc). It makes important for
us good estimates of the norm ‖R0

λV R
0
λ‖2→∞.

Proposition 2.4. Let a potential V in (1.1) be H(Ω) function, and

(2.25) ‖V |H(Ω)‖ 6 M <∞.

Then, with

(2.26) λ = π(n+ w), |Rew| 6
1

2
, |w| = ρ

we have

(2.27) ‖R0
λV R

0
λ‖2→∞ 6 CMA(2;µ)Abc

1 (2;ω;µ)

where

(2.28) ADir
1 (2;ω;µ) =

(
∑

p even

ω2
p

log2(2 + |2n− p| + ρ)

(2n− p)2 + ρ2

)1/2

and

(2.29) APer
1 (2;ω;µ) =

(
∑

p even

ω2
p

(2n− p)2 + ρ2

)1/2

.

Proof. First, we’ll write all the details in a more complicated case, the Dirich-
let case, and then analyze bc = Per± with simpler inequalities.

In Dirichlet case (c), Sect. 1.2, components of vector function F =

(
f1
f2

)
are

coupled in boundary conditions so we cannot reduce analysis to blocks and one-
component decompositions. (We will do just that in Per± cases and even in Dir-
case when q(x) = p(−x)).

We know that

(2.30) {uk, k ∈ Z} ∈ (1.5)

is an orthonormal basis in H = L2 × L2. With this basis R0
λ acts as a multiplier-

operator, i.e. it is diagonal:

(2.31) R0
λuj =

1

λ− πj
uj , ∀j ∈ Z, λ /∈ πZ.

Potentials

(2.32) V =

(
0 p
q 0

)
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with a loose language could also be constructed as elements ofH, or

(2.33) (p, q) ∈ H(Ω) = H(Ω) ×H(Ω),

but for our analysis of V another decomposition of H is important. We put

(2.34) H+ = {p(x), p(−x)}, p ∈ H(Ω), H− = {p(x),−p(−x)}, p ∈ H(Ω).

These two subspaces in H (or in H(Ω)) are orthogonal, and

(2.35) H = H+ ⊕H−.

They have orthonormal bases

(2.36) U+
m =

(
0 e−iπmx

eiπmx 0

)
, m even,

and

(2.37) U−
m =

(
0 e−iπmx

−eiπmx 0

)
, m even,

and any V ∈ H(Ω) has a decomposition

V =

(
0 p(x)

q(x) 0

)
=(2.38)

=
1

2

[
0 p(x) + q(−x)

p(−x) + q(x) 0

]
+

1

2

[
0 p(x) − q(−x)

−p(−x) + q(x) 0

]
=

= V + + V − =
∑

m even

v+
mU

+
m +

∑
v−mU

−
m,

and

(2.39) ‖V ‖2
Ω ≍

∑

m

(|v+
m|2 + |v−m|2)Ω2(m).

Now

(2.40) R0
λV R

0
λ = R0

λV
+R0

λ +R0
λV

−R0
λ

and we’ll analyze these two terms separately. Put g±m = v±mΩ(m) so

(2.41) v±m = g±mωm where ωm =
1

Ω(m)

and by (2.25)

(2.42) M2 > ‖V ‖2
Ω = ‖g|l2‖2 = ‖g+|l2‖2 + ‖g−|l2‖2.

To continue (2.31) we need to know U±
muj.

Case H+ as we see from (2.36) and (1.5)

(2.43) U+
muj = um−j.

Therefore

(2.44) uj
R0

λ−→ 1

λ− πj
uj

ωmU+
m−→ ωm

λ− πj
um−j

R0
λ−→ ωm

λ− πj
· 1

λ− π(m− j)
um−j

For

(2.45) F =
∑

fjuj , ‖F‖2
2 =

∑
|fj |2 6 1,

and

(2.46) V + =
∑

qmωmU
+
m, ‖V +‖2

Ω =
∑

|qm|2 6 1
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the image-vector is (λ = πµ)

(2.47) R0
λV

+R0
λF =

1

π2

∑

m,j

fjqm
ωm

(µ− j)(µ−m+ j)
um−j.

To avoid problems of convergence, we can consider in (2.45) and (2.46) only finite
sums. Any constants (norms) independent on F , V + with norms 6 1 will give us
the norm of R0

λV R
0
λ anyway. As in (2.12) we know

(2.48) ‖uk‖∞ 6 2;

therefore,

(2.49) π2‖R0
λV

+R0
λF‖∞ 6 S ≡

∑

m,j

∣∣∣∣fjqm
ωm

(µ− j)(µ−m+ j)

∣∣∣∣ .

Notice that

(2.50)
1

(µ− j)(µ−m+ j)
=

[
1

µ− j
+

1

µ−m+ j

]
· 1

2µ−m
,

and define

(2.51) cm =
∑

j

fj

(
1

µ− j
+

1

µ−m+ j

)
.

By Cauchy inequality

(2.52) |cm|2 6


∑

j

|fj|2


(

2
∑ 1

|µ− j|2
)

6 2A2(µ).

Therefore
(2.53)

S =
∑

m

cm|qm| ωm

|2µ−m| 6

(∑
c2mg

2
m

)1/2
(∑ ω2

m

|2µ−m|2
)1/2

6
√

2A(µ)A1(n,w)

where

(2.54) µ = n+ w, |Rew| 6
1

2
,

and

(2.55) A2
1(n,w) =

∑

m even

ω2
m

|2n−m− 2w|2 .

It proves (2.27) in the Dir-case, V ∈ H+.
Case H−. Now the images (m even)

(2.56) U−
muj = vm−j

are not basis elements, and we need their Fourier decomposition. Notice

(2.57) vk =
∑

〈vk, ul〉ul,

and

(2.58) 〈vk, ul〉 =
1

2
· 1

2

1∫

0

[
e−i(k−l)πx − ei(k−l)πx

]
dx =

{
i
π · 1

k−l if k − l odd,

0 if k − l even,
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so

(2.59) U−
muj =

i

π

∑

l+j odd

1

m− j − l
ul.

The sequence (2.44) has a little bit different from now:

uj
R0

λ−→ 1

λ− πj
uj

ωmU−
m−→ ωm

λ− πj
vm−j =(2.60)

=
ωm

π(µ− j)

i

π

∑

l+j odd

1

m− j − l
ul

R0
λ−→ i

π2

∑ 1

m− j − l

ωm

µ− j
· 1

µ− l
ul.(2.61)

Again, as in (2.48) ‖ul‖∞ 6 2, and with F ∈ (2.45) and analogue of (2.46)

(2.62) V − =
∑

qmωmU
−
m, ‖V −‖2 =

∑
|qm|2 6 1,

the L∞-norm of R0
λV

−R0
λF does not exceed (compare (2.49)) 1

π3S where

(2.63) S =
∑

m,j,l

∣∣∣∣fjqm · 1

µ− j
· 1

µ− l
· ωm

m− j − l

∣∣∣∣ .

As in (2.50) we use the identity

(2.64)
1

µ− j
· 1

µ− j − l
=

1

m− l − µ
·
(

1

µ− j
− 1

m− j − l

)

and later

(2.65)
1

µ− l
· 1

m− l− µ
=

1

m− 2µ
·
(

1

µ− l
− 1

m− l − µ

)
.

For fixed m (even) and l, put

(2.66) cml =
∑

j

fj

(
1

µ− j
− 1

m− l − j

)
= c′ml + c′′ml.

The estimates of two parts of this sum cml are done differently because we need to
preserve dependence on ω,

(2.67) µ = n+ w, |Rew| 6
1

2
, w = x+ iy,

and specially, on y = Imw, in the final inequality.
For the first term c′, as in (2.51), (2.52), we have

(2.68) |c′ml|2 6 A2(µ) = A2(ω).

For the second sum c′′ we use the Hilbert transform’s boundedness in l2, i.e. if

(2.69) Hf = h, ha =
∑

j

fj ·
1

a− j
,

then

(2.70) h ∈ l2 and ‖h‖ 6 3‖f‖
(see [25], Ch. 4, Thm. 9.18 and Exm. 9.23). Therefore,

(2.71) c′′ml = hm−l, and
∑

|hi|2 6 10.
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Now

(2.72) S =
∑

m,l

∣∣∣∣qm(c′ml + c′′ml)
ωm

m− l − µ
· 1

µ− l

∣∣∣∣ .

Put, keeping (2.65) in mind,

(2.73) D′
m =

∑

l

∣∣∣∣c
′
ml

(
1

µ− l
− 1

m− l− µ

)∣∣∣∣ .

Then by (2.68)

(2.74) |D′
m| 6 A(µ) · Bm(µ),

where

(2.75) Bm(µ) =
∑

l

∣∣∣∣
1

µ− l
+

1

µ−m+ l

∣∣∣∣ .

This function Bp will be estimated in Lemma 3.4.
Another part of the sum S in (2.72) comes from

(2.76) D′′
p =

∑

l

∣∣∣∣c
′′
pl

(
1

µ− l
+

1

µ+ l − p

)∣∣∣∣ ,

and by (2.71) for any p

(2.77) D′′
p 6

(∑
|hi|2

)1/2

(2A(µ)) 6 5A(µ).

Now, with (2.77), (2.74) and (2.65),

(2.78) S = S′ + S′′

with

(2.79) S′′ =
∑

p

∣∣∣∣qp
ω(p)

p− 2µ

∣∣∣∣D − p′′ 6 5A(µ)A1(µ).

This is an apologue of (2.53) in the case H+. But to estimate

(2.80) S′ =
∑

p

∣∣∣∣qp
ω(p)

p− 2µ

∣∣∣∣D
′
p 6 A(µ)

(
∑

p

|qp|2
)1/2(∑

p

ω2(p)

|p− 2µ|2B
2
p(µ)

)1/2

we need good inequalities for Bp(µ) provided by Lemma 3.4 in Sect. 3 and (2.51).
They lead to the estimate

(2.81) S′
6 A(µ)32 [A1(µ) +A2(µ)]

where

(2.82) A2
2(µ) =

∑ ω2(p)

|2n− p+ 2w|2 log2(2 + 2|2n− p|).

Now we can conclude the case H−. We proved (up to Lemmas 3.5, 3.7c in
Section 3) that for V ∈ H−

(2.83) ‖R0
λV R

0
λ‖ 6 40MA(µ)

[(
1

ρ
+ 1

)
A1(µ) +A2(µ)

]
.

Together with (2.53) it proves Proposition 2.4 for Dirichlet bc.
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The cases Per± are simpler; they could be split to the component’s bc. Tech-
nically, the inequalities we need in these cases are essentially the same as in the
case V ∈ H+, bc = Dir. But to avoid any misunderstanding, let us write details,
at least in the case Per−.

Case Per−. Eigenvectors for L0
bc (see Table, p. 126, line Per−) are pairs of

functions

(2.84) e+k =
√

2

(
e−iπkx

0

)
, e−k =

√
2

(
0

eiπkx

)

for each odd k. For any potential V instead of decomposition (2.38), which fits to
Dirichlet bc, we have a much simpler decomposition

(2.85) H = (H × {0}) × ({0} ×H)

with basis

(2.86) E+
p =

(
0 e−iπpx

0 0

)
, E−

p =

(
0 0

eiπpx 0

)
, p even.

Any V =

(
0 p
q 0

)
∈ H(Ω) has a decomposition V = P +Q,

(2.87) P =

(
0 p
0 0

)
, Q =

(
0 0
q 0

)
,

and

P =
∑

q+p ωpE
+
p , Q =

∑
q−p ωpE

−
p ,(2.88)

M2 := ‖V |H(Ω)‖2 =
∑(

|q+p |2 + |q−p |2
)
.(2.89)

Notice that for any p even, k ∈ Z

(2.90) E+
p e

+
k = 0, E−

p e
−
k = 0, E+

p e
−
k = e+p−k, E−

p e
+
k = e−p−k.

If

(2.91) F =
∑

f − k+e+k +
∑

f−
k e

−
k ≡ F+ + F−

then V F = QF+ + PF− and

(2.92) R0
λV R

0
λF = R0

λQR
0
λF

+ +R0
λPR

0
λF

−.

L∞-norms of two terms in (2.92) are estimated in the same way. Let us do details
for the first term. Write as in (2.44) or (2.60)

(2.93) e+k
R0

λ−→ 1

λ− πk
e+k

ωpE−
p−→ 1

π

ωp

µ− k
e−p−k

R−λ0

−→ 1

π2

ωp

µ− k
· 1

µ− p+ k
e−p−k;

therefore, with ‖e−p−k‖ 6 2, ∀p, k

(2.94) ‖R0
λQR

0
λF

+‖∞ 6
2

π2

∑

p

∣∣∣∣f
+
k q

−
p

ω(p)

(µ− k)(µ− p+ k)

∣∣∣∣

(compare (2.47)). It has already been proven in (2.47)–(2.55) that this quantity
does not exceed MA(µ)A1(µ).

Of course, a second term in (2.92) can be controlled in the same way. All the
decompositions are orthogonal so we even do not need to double the constant to
claim

(2.95) ‖R0
λV R

0
λF‖∞ 6 MA(µ)A1(µ).
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It completes the proof of Proposition 2.4. �

Its part (2.28) incorporates estimates of a functionB ∈ (2.75) given in Lemma 3.4
from the next Section. Of course, we need more information about behavior
(growth, decay) of all these functions A, B, A1, A2. This is a goal of the next
Section to find good inequalities for them.

3. Inequalities for Sums of Series Which Majorize the Norms of

Resolvent Operators

0. In Section 2 we assumed that V ∈ L2 and V ∈ H(Ω). Later in Sections 4–6
we’ll explain that our constructionsand results can be carried on for V ∈ Lb, b > 1
(or V ∈ L logL, see Sect. 9.1). Keeping this in mind, now we’ll consider and
estimate more general sums that A(µ) and A1(µ) of Sect. 2.In this section we do
technical analysis and found good inequalities for the following functions.

(3.1) A(σ;µ) =

(
∑

k∈Z

1

|k − µ|σ

)1/σ

, 1 < σ 6 ∞

with understanding that

(3.2) A(∞;µ) = max
k∈Z

1

|k − µ| .

Next

(3.3) A1(σ, ω;µ) =

(
∑

p even

ωσ(p)

|2µ− p|σ

)1/σ

, 1 < σ 6 ∞,

where µ = n+ ω and

(3.4) A2(σ, ω;µ) =

(
∑

m even

ωσ(m)

(
log(2 + 2|2n− p|)
|2n− p+ 2ω|

)σ
)1/σ

, 1 < σ 6 ∞.

Finally, for a even, |Rew| 6 1
2 , define

(3.5) B∗(a,w) =
∑

k∈Z

∣∣∣∣
1

a− k + w
+

1

k + w

∣∣∣∣ .

Often, we will omit the sequence {ω} in notations (3.3), (3.4) with understanding
that a subscript ’1’ or ’2’ reminds us on its presence.

Functions in Section 2 came from V ∈ L2, i.e.,

(3.6) A(µ) = A(2, µ), A1(µ) = A1(2, µ), etc.

So inequalities of this Section will imply the mentioned in Sect. 2 inequalities if we
put σ = 2.

1. First, we deal with A(σ;µ) ∈ (3.1). For any fixed σ, this is a periodic and
even function

(3.7) A(σ;µ) = A(σ;−µ)A(σ;µ + 1)

so let us consider µ = ω = x+ iy, |x| 6 1/2. Then

(3.8) |µ− k|2 = (k − x)2 + y2,
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and if |k| > 2

(3.9)
1

2
(k2 + x2) 6 (k − x)2 6

3

2
(k2 + x2).

Therefore

(3.10)
∑ 1

|k − µ|σ 6
3

σρ
+
∑

|k|>2

6
3

ρσ
+ 2.2σ ·

∑
,

where

(3.11)
∑

=

∞∑

k=2

(k2 + ρ2)−σ/2.

Then

(3.12)
∑

<

∞∫

1

dk

kσ
=

1

σ − 1

for any ρ > 0, but if ρ > 1 we can do better:

(3.13)
∑

6

∞∫

1

(k2 + ρ2)−σ/2 dk 6 ρ1−σ

∞∫

1/ρ

dξ

(1 + ξ2)σ/2
<

σ

σ − 1
ρ1−σ.

In any case

(3.14)
∑

<
1

σ − 1
min{1;σρ1−σ} 6

σ

σ − 1
· 2

σ + ρσ−1
.

For σ > 1, u, v > 0 one has

(3.15) (uσ + vσ)1/σ
6 u+ v 6 21−1/σ(uσ + vσ)1/σ.

By (3.10) and (3.14)

(3.16) A(σ;µ) 6
3

ρ
+ 4

(
2σ

σ − 1

)1−σ

(σ + ρσ−1)−1/σ.

If ρ 6 1/2, σ > 1,

(3.17) A(σ;µ) 6
3

ρ
+ C1(σ).

If ρ > 1/4 the second term in (3.16) majorizes the first one, up to the factor
depending on σ, 1 < σ 6 ∞, so

(3.18) A(σ;µ) 6 C2(σ)ρ1−1/σ ,

with

(3.19) C2(σ) 6 C∗ 6 ∞
if σ > 2, but for 1 < σ 6 2 it is continuous, and

(3.20) (σ − 1)C2(σ) 6 C∗ <∞.

We can write, after (3.16), these functions C1(σ) and C2(σ) explicitly but we
do not need it and we will not use it. (3.17) or (3.18) will suffice. We have proven
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Lemma 3.1. If 1 < σ 6 ∞ then for C3(σ) <∞, C3 ∈ (3.19)&(3.20),

(3.21) A(σ;µ) 6 C3(σ)

[
1

ρ
+

1

ρ1−1/σ

]
.

Corollary 3.2. If σ = 2 then

(3.22) A(µ) ≡ A(2;µ) 6
2

ρ
+

6√
1 + ρ

.

Proof. If we follow (3.10)–(3.16) but put there σ = 2 from the outset we’ll
come to (3.22), an analogue of (3.16). �

2. Now we go to A − 1 ∈ (3.3). Monotonicity of {ω}, ωp ց 0 (p → ±∞), as
we assume in (1.7), implies the decay of A1(σ;πn + πω) when n→ ±∞ as well.

Lemma 3.3. For A1 ∈ (3.3) and 1 6 r 6 n, 2 6 n the following inequality
holds.

(3.23) A1(σ, ω;µ) 6
ω(2n)

ρ
+ C4(σ)

ω(r)

1 + ρ1−1/σ
+

3r1/σ

n+ ρ
.

In particular, if r = n, an inequality (3.29) below holds.

Proof. WLOG we can assume n > 0 so n > 2. We analyze the sum
∑

p even
in

the brackets in (3.8). For any a,

(3.24) 0 < a 6 n 6 2n− 2

we write

(3.25)
∑

p

=
∑

|p|6a

+
∑

|p|>a

≡ s1 + s2.

With ω(p) 6 ω(0) = 1

s1 6
∑

|p|6a

|2µ− p|−σ =
∑

|p|6a

|2n− p+ ω|−σ <(3.26)

< (2a+ 1)|2n− a+ ω|−σ
6

2a+ 1

|n+ ω|σ .l

On another side, ω(p) 6 ω(a) if |p| > a so

(3.27) s2 6 ωσ(a)
∑

|p|>a

6 ωσ(a)
∑

+
ωσ(2n)

(2ρ)σ

(where
∑

is defined in (3.11).)

6 ωσ(a) · σ

σ − 1
· 2

σ + ρσ−1
+
ωσ(2n)

(2ρ)σ

by (3.12)–(3.13). Again, we use (3.15) and combine (3.25)–(3.27) to conclude that

(3.28) A1 = (s1 + s2)
1/σ

6
3a1/σ

n+ ρ
+
C − 3(σ)ω(a)

1 + ρ1−1/σ
+
ω(2n)

ρ
.

In particular, if we coose a = n, — it is consistant with (3.24), — we have for
µ = n+ ω, |Reω| 6 1/2, ρ = |ω|

(3.29) A1 ≡ A1(σ, ω;µ) 6
ω(2n)

ρ
+ C − 1(σ)

ω(n)

1 + ρ1−1/σ
+

3n1/σ

n+ ρ
.
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�

3. Functions B and A2 came into play in (2.74), (2.75), (2.81). We need to
analyze B first, and than it becomes clear that (3.4) is a proper explicit form for
A2.

As it appear in (2.74)–(2.75),

Bp(µ) =
∑

l

∣∣∣∣
1

µ− l
+

1

µ− p+ l

∣∣∣∣ =
∑

l

∣∣∣∣
1

n− l + w
+

1

n− p+ l + w

∣∣∣∣ =(3.30)

=
∑

k

∣∣∣∣
1

k + w
+

1

(2n− p) − k + w

∣∣∣∣ = B∗(2n− p;w).

This is our function B∗ ∈ (3.5).

Lemma 3.4. For w, |Rew| 6 1
2 , ρ = |w| and a even we have

(3.31) B∗(a;w) 6 10 +
2

ρ
+ 8

|a| + ρ

|a| log
|a| + 1 + ρ

1 + ρ
, |a| > 4,

or

(3.32) B∗(a;w) 6 16

(
2 +

1

ρ

)
, |a| 6 2.

Remark. We’ll use its simplified form (3.46).

Proof. As in (3.7) we have

(3.33) B∗(−a;w) = B∗(a;−w)

so WLOG we can assume a > 0.
Let us consider the case a > 4.
We can split B∗ into four sums

(3.34) B∗ = b0 + b1 + b2 + b3 =
∑

k=0,±1

k=a,a±1

+
∑

26k6a−2

+
∑

k6−2

+
∑

k>a+2

.

Then a > 4 and |w| 6 1/2 imply

(3.35) b0 6 2

[
1

ρ
+

2

7
+ 2 +

2

5
+ 2 +

2

9

]
< 2

(
1

ρ
+ 5

)
.

For b1, with a > 4 and 2 6 k 6 a− 2 we have a− k > 2 and as in (3.8)–(3.9)

|k + w|2 >
1

2
(k2 + ρ2),(3.36)

|a− k + w|2 >
1

2
((a− k)2 + ρ2).(3.37)

It gives us simplified inequalities

|k + w| > (k + ρ),(3.38)

|a− k + w| >
1

2
((a− k) + ρ).(3.39)
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Therefore, with a > 4,

b1 6

a−2∑

k=2

(
2

k + ρ
+

2

a− k + ρ

)
= 4

a−2∑

2

1

k + ρ
6(3.40)

6 4

a−2∫

1

dk

k + ρ
= 4 log

(a− 2) + ρ

1 + ρ
.

For b2, with k 6 −2 and a > 0 a − k > 2, so again we can use (3.38), (3.39)
with |k| instead of k, i.e.

(3.41) |k + w| >
1

2
(−k + ρ).

Therefore,

b2 =

−2∑

−∞

∣∣∣∣
1

a− k + w
+

1

k + w

∣∣∣∣ =

−2∑

−∞

|a+ 2w|
|a− k + w| · |k + w| 6(3.42)

6 |a+ 2w| ·
−2∑

−∞

4

(a− k + ρ)(−k + ρ)
6 4(a+ 2ρ)

∞∑

2

1

a

(
1

k + ρ
− 1

a+ k + ρ

)
=

= 4
(
1 + 2

ρ

a

) a+1∑

2

1

k + ρ
6 4

(
1 +

2ρ

a

)
log

a+ 1 + ρ

1 + ρ
.

The sum b3 is equal to b2 as we can easily see by changing the summation index
k to j = a− k, so

(3.43) b3 = b2 6 (3.42)’s right side.

Now we can combine (3.35), (3.40), (3.42) and (3.43) and claim (3.31)!
We omit explicit analysis, i.e., the same lines with a few simplifications, which

leads to (3.32). Lemma 3.4 is proven. �

4. Let us simplify (3.31). If ρ 6 |a| then (|a| > 4)

(3.44) B∗(a;w) 6 10 +
2

ρ
+ 16 log

1 + 2|a|
1 + ρ

.

If ρ > |a| (recall log(1 + u) 6 u if u > 0) then

(3.45) B∗(a;w) 6 10 +
2

ρ
+ 8 · 2ρ

|a| ·
|a|

1 + ρ
< 2

(
1

ρ
+ 13

)
.

In all cases, (3.32) included,

(3.46) B∗(a;w) 6 16

(
1

ρ
+ 2

)
+ 16 log(1 + 2|a|).

The second term on the right side justifies our definition (2.82) and (3.4) of the
functions A2(µ) and A2(σ, ω;µ).

5. Now we’ll give for A2 ∈ (3.4) an analogue of Lemma 3.3, or of its inequalities
(3.23) and (3.29).

Lemma 3.5. For A2 ∈ (3.4) and 1 6 a 6 n, 2 6 n the following inequality
holds, µ = n+ w, |Rew| 6 1

2
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(3.47) A2(σ, ω;µ) 6 3a1/σ · log(1 + 2|n|)
|n+ 2w| + ω(a)D(σ;w)

where

(3.48) D =

[
∑

k even

(
log(1 + 2|k|)
|k + 2w|

)σ
]1/σ

, |Rew| 6
1

2
.

Proof. It follows the same scheme as inequalities (3.24)–(3.27), (3.28) in
Lemma 3.3. It is possible because the structure of the sums (compare (3.25)),
i.e.,

(3.49) T (n) =
∑

ωσ(ρ)b(2n− ρ)

where b is an even l1-sequence.
Therefore,

(3.50) T (n) =
∑

|ρ|6a

+
∑

|ρ|>a

6
∑

|ρ|6a

b(2n−ρ)+ωσ(a)·‖b‖1 6 (2a+1)b(n)+β ·ωσ(a),

where β = ‖b‖1 =
∞∑
−∞

b(2k).

We omit further details in explaining inequalities (3.47). �

6. Of course, it was an easy part. If we want to apply Lemma 3.5 (and we
will do it in Sect. 4–7) we need for D the analogue of inequalities (3.21), (3.22), or
Lemma 3.1, Corr. 3.2.

Lemma 3.6. For 1 < σ 6 ∞ there exists constant J(σ) < ∞ such that for
D ∈ (3.48), ρ = |M |

(3.51) D ≡ D(σ;µ) 6 J(σ)
1 + log(1 + ρ)

1 + ρ1−1/σ
, 0 < ρ <∞.

Proof. Notice, like in (3.8), (3.9) that

(3.52) |1 + w|2 = (1 + x)2 + y2
>

1

5
(1 + ρ2)

so

(3.53)
1

|1 ± w| 6

√
5√

1 + ρ2
6

√
10

1 + ρ
.

We use it and (3.8)–(3.12) in the following sequence of inequalities.

∑

k even

(
log(1 + 2|k|)
|k + 2w|

)σ

= 2−σ
∑

|q|>1

(
log(1 + 4|q|)

|q + w|

)σ

=(3.54)

= 2−σ


∑

q=±1

+
∑

|q|>2


 6 2−σ · 2

(
101/2 log 5

1 + ρ

)
+ 21−σ

∞∑

q=2

(
log(1 + 4q)

1
2 (q + ρ)

)σ

6

(3.55)

6 2

(
(5/2)1/2 log 5

1 + ρ

)σ

+ 2

∞∫

1

(
log(1 + x)

x+ ρ

)σ

dx+ 2h2(ρ) ≡ h0 + 2h1 + 2h2.

(3.56)
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We specify h2 ≡ h2(ρ) later. We use an integral comparision but

(3.57) ϕ(x) =
log(1 + 4x)

x+ ρ
,

and (ϕ(x))σ , are not always monotone on [1,∞). Indeed

(3.58) ϕ′(x) = (x+ ρ)−2

[
x+ ρ

x+ 1/4
− log(1 + 4x)

]
.

If ρ 6 1
4 then (x + ρ)/(x + 1/4) 6 1 but log(1 + 4x) > log 5 > 1 so ϕ′(x) < 0

(x > 1). This is true as long as

(3.59)
1 + ρ

1 + 1/4
< log 5, i.e., ρ < ρ∗ =

5

4
log 5 − 1.

(For curiosity, let us notice that ρ∗ = 1.011797..., i.e.

(3.60) ρ∗ > 1.)

Therefore, we do not need an extra term h2 when the sum is majorized by the
integral h1, i.e., we can choose

(3.61) h2(ρ) = 0 if 0 < ρ 6 ρ∗.

If however ρ > ρ∗ there is ONE and ONLY ONE root x∗ > 1

(3.62) ϕ′(x∗) = 0, and
ϕ′(x) > 0, 1 6 x < x∗

ϕ′(x) < 0, x∗ < x <∞
as it follows from (3.58). Explicitly, an equation for x∗ is

(3.63) ρ = 1/4 + (x∗ + 1/4)[log(1 + 4x∗) − 1].

(3.55)–(3.56) will be correct if we’ll choose h2(ρ) > (max
x>1

ϕ(x))σ for ρ > ρ∗.

But for any ρ

(3.64) ϕ(x) =
log(1 + 4x)

x+ ρ
6

log(1 + 4ρ)

ρ
if 0 6 x 6 ρ.

If x > ρ we use another inequality

(3.65) ϕ(x) 6
log(1 + 4x)

x
6

log(1 + 4ρ)

ρ
, x > ρ.

It is correct because for x > 1

(3.66)

(
1

x
log(1 + 4x)

)′

= x−2

[
x

x+ 1/4
− log(1 + 4x)

]
< x−2[1 − log 5] < 0,

and max
x>ρ

ϕ(x) = ϕ(ρ).

Finally, we choose

(3.67) h2(ρ) =

{(
log(1+4ρ)

ρ

)σ

, ρ > ρ∗

0, 0 < ρ 6 ρ∗.

Then (3.55)–(3.56) holds.
7. Now, for any ρ > 0

(3.68) h1 6 I1(σ) =

∞∫

1

(
log(1 + 4x)

x

)σ

dx <∞ (σ > 1).
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We need a better estimate for large ρ.

h1 =

∞∫

1

(
log(1 + 4x)

x+ ρ

)σ

dx < ρ1−σ

∞∫

0

(
log(1 + 4ρξ)

1 + ξ

)σ

dξ 6(3.69)

6 2σ−1ρ1−σ

∞∫

0

[(
log(1 + 4ξ)

1 + ξ

)σ

+

(
log(1 + ρ)

1 + ξ

)σ]
dξ.

We used (3.15) for the second inequality, and an obvious inequality

(3.70) 1 + 4ρξ 6 (1 + 4ξ)(1 + ρ).

Therefore,

(3.71) h1 6 [I2(σ) + I3(σ)(log(1 + ρ))σ ] · ρ1−σ

where

I3(σ) =
2σ−1

σ − 1
,(3.72)

I2(σ) = 2σ−1

∞∫

0

(
log(1 + 4ξ)

1 + ξ

)σ

dξ.(3.73)

For curiosity, we can notice that

(3.74) I2(σ) < 8σ−1

∞∫

1

(
log y

y

)σ

dy = 8σ−1

(
1

σ − 1

)σ+1

Γ(σ + 1).

By Young inequality (3.15) and (3.71)

(3.75) h
1/σ
1 6

[
i
1/σ
2 (σ) + I

1/σ
3 (σ)(log(1 + ρ))

]
ρ1/σ−1, ∀ρ,

and by (3.68)

(3.76) h
1/σ
1 6 I

1/σ
1 (σ), ∀ρ.

Although specific form of Ij(σ), j = 1, 2, 3, is not essential.

It is important to point out that functions (Ij(σ))1/σ , j = 1, 2, 3, are bounded
at +∞. For example

(3.77) I
1/σ
3 = 2 · 2−1/σ

(σ − 1)1/σ
→ 2 (σ → ∞)

and by (3.74)

(3.78) I
1/σ
2 (σ) 6 81−1/σ Γ1/σ(σ + 1)

(σ − 1)1+1/σ
→ 8

e
(σ → ∞).

We can choose min of the right sides in (3.75) or (3.76) and with proper choice
of a continuous J1(σ), 1 < σ <∞, lim sup

σ→∞
J1(σ) <∞.

(3.79) h
1/σ
1 6 J1(σ) · 1 + log(1 + ρ)

1 + ρ1−1/σ
.

An inequality (3.67) and an observation (3.60) imply that

(3.80) h
1/σ
2 6 2

log(1 + 4ρ)

1 + ρ
, ∀ρ
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and

(3.81) h
1/σ
2 6 3

1 + log(1 + ρ)

1 + ρ1−1/σ
, ∀ρ, ∀σ.

The case h0 is easy; by (3.55)

(3.82) h
1/σ
0 6

7

1 + ρ
<

14

1 + ρ1−1/σ
.

Now we collect inequalities (3.82), (3.79) and (3.81) into (3.55) and use Young
inequality for three terms

(uσ + vσ + wσ)
1/σ

6 (u + v + w), σ > 1, u, v, w > 0.

This leads to our main inequality

(3.83) D 6 2(h
1/σ
0 + h

1/σ
1 + h

1/σ
2 ) 6 J(σ) · 1 + log(1 + ρ)

1 + ρ1−1/σ

with

(3.84) J(σ) = J1(σ) + 17, J1 ∈ (3.79).

Lemma 3.6 is proven. �

Remark. Looking more carefully into I1 ∈ (3.68), I2 ∈ (3.72)&(3.74) we can
explain that

(3.85) sup
1<σ62

(σ − 1)2J(σ) <∞.

8. We will use Lemma 3.5 in Section 6.7 with different choices of a, 1 6 a 6

n, but let us write its specification with a = n and estimates for D in (3.51),
Lemma 3.6.

Lemma 3.7. For A2 ∈ (3.4) and |n| > 2, µ = n + w, |Rew| < 1
2 , ρ = |w| the

following inequality holds

(3.86) A2(σ, ω;µ) 6 3
|n|1/σ log(1 + 2|n|)

|n| + ρ
+ ω(|n|)J(σ)

1 + log(1 + ρ)

1 + ρ1−1/ρ

where J(σ) defined in Lemma 3.6

It is interesting to compare this inequality with (3.29) for A1 where the term
1/ρ in (3.86) and (3.47) has the same power 1/σ − 1.

4. Trapping the Spectrum

0. Now, with the estimates of Section 3, we are ready to construct contours Γ
containing σ(L0

bc) (see Table, p. 126) and
(*) such that Γ cannot be crossed – either from inside or from outside – by

eigenvalues of

(4.1) Lbc, L(t) = L0 + tV

when t, 0 6 t 6 1, changes from 0 to 1.
Γ will have the following structure.
For each n, |n| > N , N to be chosen later, and δ, 0 < δ < π, we define

(4.2) D(n; δ) = {z
∣∣ |z − πn| 6 δ}
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and

(4.3) C(n; δ) = ∂D(n; δ) = {z
∣∣ |z − πn| = δ}.

With N chosen, we construct a rectangle

(4.4) R(X ;Y ) = {z ∈ C
1
∣∣ |Re z| 6 X, |Im z| 6 Y },

(4.5) X = πN +
π

2
.

Then

(4.6) Γ = ∂R ∪
⋃

|n|>N

C(n; δn).

Its parameters N , Y and {δn}, δn ց 0, are to be choosen to guarantee (*).
In this Section we’ll write all the detail for the case V ∈ L2. All necessary

adjustements for more general case V ∈ Lb, 1 < b, are explained in the conclusion
of this Section although technical inequalities come from Section 3 and Section 5.

In this Section, at least until Subsection 4.7, we use functions A, A1, A2 only
in the case σ = 2 so the index is omitted in the same way as in Section 2.

1. As before, see (2.1), (2.2), (2.21) we (want to) use the representations

(4.7) Rλ = (λ − L)−1 = R0
λ(1 − V R0

λ)−1,

or

(4.8) Rλ = R0
λ(1 + V R0

λ)(1 − V R0
λV R

0
λ)−1.

R0
λ is well-defined for λ /∈ σ(L0

bc), certainly for λ 6= πn, n ∈ Z, and therefore on
Γ ∈ (4.6).

(4.7) defines Rλ if

(4.9) ‖V R0
λ‖ 6

1

2
,

and (4.8) gives good representation of Rλ if

(4.10) ‖V R0
λV R

0
λ‖ 6

1

2
.

We proved in Proposition 2.3, Section 2 (see (2.19)) that

(4.11) ‖V R0
λ‖ 6

15

ρ1/2
‖V ‖2 6

30m

|Imλ|1/2
.

Therefore (4.9) holds if

(4.12) |Imλ| > (60m)2, m > ‖V ‖2,

and (4.9) holds on horizontal intervals

(4.13) {z ∈ C
1
∣∣ |Re z| 6 X, Imz = ±Y } ⊂ ∂R ⊂ Γ

for any X if Y > (60m)2.
It is nice to observe that the height of the rectangle R ∈ (4.4) is controlled by

L2-norm of the potential V , not by ‖V |H(Ω)‖.
2. On other pieces of Γ, we need (4.10) and all the inequalities from Sections 3

and 2.
First, let us do necessary evaluations for Per±, or Dir when the potential

V ∈ H+ (see Section 2, (2.34), and case H+ there).By Proposition 2.4, in all these
cases the inequalitites (2.27), or (2.53), (2.95) holds, i.e.
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(4.14) ‖R0
λV R

0
λ‖2→∞ 6 2MA(µ)A1(n,w)

where λ = πµ, µ = n+w, |Rew| 6 1/2, and A ∈ (3.1), A1 ∈ (3.2), M > ‖V |H(Ω)‖.
If

(4.15) λ = (n+ x)π + iv, |x| 6
1

2

then by (3.6), or Lemma 2.2, (2.17), ρ > 1
2 , and

(4.16) A2(µ) 6
3

ρ2
+

10

1 + ρ

and

A(µ) <
2

ρ
+

4√
1 + ρ

.

By Lemma 3.5, (3.3),

(4.17) A2
1(n, ω) 6 3

[
ω2(n)

(
1

ρ2
+

1

1 + ρ

)
+

|n|
n2 + ρ2

]

and

(4.18) A1(n, ω) 6 2

[
ω(n)

(
1

ρ
+

1√
1 + ρ

)
+

|n|1/2

√
n2 + ρ2

]
.

If

(4.19) λ ∈ ∂R, λ = ±(N +
1

2
π + iv), |v| 6 Y,

then ρ = 1
2 , and

(4.20) A(µ) < 4 + 4 = 8,

(4.21) A1(n, ω) 6 6

(
ω(n) +

1√
n

)
.

Therefore for λ ∈ (4.19)

(4.22) ‖R0
λV R

0
λ‖2→∞ 6 100M

(
ω(n) +

1√
|n|

)
.

Let us define

(4.23) N1(ε) = min{k : ω(k) + k−1/2 6 ε}.
By (1.7) ω(k) = 1/Ω(k) → 0 monotonically so N1 is well-defined and

(4.24) N1(ε) ր ∞ when εց 0.

(4.10) holds if

(4.25) ‖V ‖2 · ‖R0
λV R

0
λ‖2→∞ 6 100mM

(
ω(n) +

1√
n

)
<

1

2
,

or (4.10) holds if

(4.26) |n| > Ñ1(mM) = N1

(
1

200mM

)
,
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(4.27) Ñ1(x) = N1

(
1

200x

)
.

3. If we did not care to choose δn ց 0 but take δn ≡ ρ > 0, |n| > N , we could
take

(4.28) N = Ñ1(ρ
−2mM),

and the inequalities of the prevoius subsection would guarantee that (4.10) held on
C(n, δ), |n| > N , N ∈ (4.28).

If however we want the sequence of radiuses δn ց 0 decaying to zero we need
to compensate such a decay in inequalities (4.16) and (4.18). If ρ is small, let us
say ρ 6 1

2 , then by (4.14)–(4.18)

‖V R0
λV R

0
λ‖ 6 m · 2M · 2

(
1

ρ
+ 2

)
· 2
(
ω(n)

(
1

ρ
+ 1

)
+

1√
|n|

)
6(4.29)

6 30mM

(
ω(n)

ρ2
+

|n|−1/2

ρ

)
.(4.30)

If

(4.31) ρ = δn = (ω1/2(n) + |n|−1/2)γ , 0 < γ < 1,

then the factor on the right side of (4.30)

(4.32)
ω(n)

(ω1/2(n) + |n|−1/2)2γ
+

|n|−1/2

δn
6 ω1−γ(n) + |n|−1/2(1−γ) → 0.

Let us define (by choosing γ = 7/8)

(4.33) N2(ε) = min{k : ω1/8(k) + k−1/16
6 ε}.

Then (4.29)–(4.32) guarantee that for n, |n| > Ñ2(mM), where

(4.34) Ñ2(x) = N2

(
1

60x

)
,

our dream-inequality (4.10) holds.
With ω(k) 6 1, (4.23) and (4.33) imply that

(4.35) N2(ε) > N1

(ε
4

)
.

Now we define Γ ∈ (4.6) by choosing

(4.36) N = Ñ2(mM), δn =

(
ω1/2(n) +

1√
n

)7/8

.

4. With (4.9) on the part (4.13) of Γ and (4.10) on Γ \ (4.13), we succeeded to
explain that Rλ = (λ− Lbc)

−1 is well-defined on Γ. Therefore, we have proven the
following statement.

Theorem 4.1. Let us consider Lbc, bc = Per±, or bc = Dir but V ∈ H+, and
assume that

(4.37) ‖V ‖2 6 m, ‖V |H(Ω)‖ 6 M.

Define contour Γ ∈ (4.4)–(4.6) by choosing

(4.38) Y = (60m)2, X = πN +
π

2
,
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and N and {δn} being defined by (4.36). Then

(4.39) σ(Lbc) ⊂ R(X ;Y ) ∪
⋃

|n|>N

D(n; δn).

5. The twin-statement for Dir, H− case, can be proven along the same lines
but with proper adjustment of the inequality (4.14). According to Proposition 4
— see (2.27), (2.28) and in particular (2.79) — in bc = Dir case we have instead
of (4.14) the following inequality

(4.40) ν = ‖R0
λV R

0
λ‖2→∞ 6 40MA(µ)

[(
1

ρ
+ 1

)
A1(µ) +A2(µ)

]
.

Now, together with (4.16), (4.18) we need to use (3.42). This inequality implies
for ρ 6 1/2

(4.41) A2(µ) 6 5

[
2ω(µ) +

log(1 + 2|n|)
n1/2

]
.

If we use (4.16), (4.18) and (4.41) in (4.40) we get

ν = ‖R0
λV R

0
λ‖2→∞ 6 40M · 2

(
2 +

1

ρ

)
×(4.42)

[(
1

ρ
+ 1

)(
2ω(n)

(
1

ρ
+ 1

)
+

1√
n

)
+ 10ω(n) + 5

log(1 + 2|n|)
n1/2

]
6

6 40M · 6
[

8

ρ3
+

2

ρ2
|n|−1/2 +

10

ρ

(
ω(n) +

log(1 + 2|n|)
n1/2

)]
.

If ρ = 1/2

(4.43) ν 6 C∗

[
ω(n) +

log(1 + 2|n|)
|n|1/2

]
,

C∗ being an absolute constant.
Let us define

N1(ε) = min

{
k > 0

∣∣∣∣ω(k) +
log(1 + k)

k1/2
< ε

}

and

(4.44) Ñ1(ε) = N1

(
1

2C∗x

)
.

Then for

(4.45) N > Ñ1(mM)

and any potential V with

(4.46) ‖V ‖2 6 m, ‖V |H(Ω)‖ 6 M.

The inequality (4.10), bc = Dir, holds on the vertical sides of a rectangle R ∈
(4.4) + (4.5).

Next, like in (4.31) we’ll choose

(4.47) ρ = δn = (ω1/3(n) + n−1/4)γ , 0 < γ < 1.

Then on ∂D(n; δn) = Cn (4.42) implies

(4.48) ν 6 MC∗∗[ω1−γ + n−1/2(1−γ)].
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Again, we can put γ = 7/8 and take the same definition of N2(ε) as in (4.33)
but

(4.49) Ñ2(x) = N2

(
1

2C∗∗x

)
.

For n, |n| > Ñ2(mM), (4.48) and (4.47) guarantee that on Cn (4.10) holde, i.e.

‖V R0
λV R

0
λ‖ 6

1

2
.

Therefore, (4.8) tells us that Rλ is well-defined on
⋃

|n|>N

Cn. Moreover, if

λ = nπ + w, |Rew| 6 π/2,

(4.50) ‖Rλ‖ 6 ‖R0
λ‖(1 +m‖R0

λ‖2→∞) · 2 6
2

|w| (1 +mA(µ)).

We have proven the following

Theorem 4.2. Let bc = Dir, and V ∈ (4.37). Define contour Γ ∈ (4.4)–(4.6)

by choosing Y = (60m)2, X = πN + π/1 with N = Ñ2(mM), Ñ2 ∈ (4.49), and
{δn} ∈ (4.47). Then

(4.51) σ(Lbc) ⊂ R(X,Y ) ∪
⋃

|n|>N

D(n; δn).

6. Let us notice that Γ, the contour in Theorem 1 or 2, depends on m and M ,
and the conclusion (4.39) or (4.51) is valid for ANY potential V ∈ (4.37). If we
consider a family

(4.52) Lbc = L(t) = L0
bc + tV, 0 6 t 6 1,

then of course all of its potentials tV , 0 6 t 6 1, are in the ball (4.37). So

(4.53) R(λ; t) = (λ− L0
bc − tV )−1, 0 6 t 6 1

is a family of operator-valued functions and for each piece γ of the contour Γ

(4.54) γ = ∂R or γ = Cn, |n| > N

it depends continuously on t in the norm

(4.55) ‖A‖γ = max{‖A(λ)‖ : λ ∈ γ}

on the space of the continuous operator-valued functions on γ.
Therefore, projectors

(4.56) P∗(t) =
1

2πi

∫

∂R

(λ− L0
bc − tV )−1dλ

and

(4.57) Pn(t) =
1

2πi

∫

Cn

R(λ; t) dλ

depends continuously on t, 0 6 t 6 1, as well.
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If t = 0 these projectors are orthogonal, and we show their values explic-
itly by Table. Certainly, for each γ ∈ (4.54) dimPγ(0) < ∞ and by M. Krein–
M. Krasnoselski–D. Milman Theorem (see M. Naimark [20], Sect. 14.10, Thm. 11)
dimP∗(t), dimPn(t) are constant functions, and if Pγ = Pγ(1)

dimP∗ = dimP∗(0),(4.58)

dimPn = dimPn(0).(4.59)

It means that we have proven the following complement to Lemma 3.7 and
Theorems 4.1 and 4.2.

Proposition 4.3. Under assumptions and notations of Lemma 3.7 and The-
orem 4.1, dimensions of Riecz spaces ImPγ are given by the following Table 4.2.

bc Per+ Per− Dir
N even 2N + 1 2N 2N + 1

dimP∗

N odd 2N − 1 2N + 2 2N + 1
dimPn n even 2 0 1
|n| > N n odd 0 2 1

7. So far in this Section we’ve done all the estimates and proofs in the case of
L2-potential V and in L2-space. Now we’ll assume that V is in Lb, 1 < b 6 2, V ∈
K(m,M) ∈ (5.13) and extend this Section’s results. We use technical inequalities
from the next Section 5.

As in Section 4.1 we use two representations (4.7) and (4.8) of the resolvent
Rλ. But each element there should be well-defined or understood.

First, let us use (4.7) to define Rλ in Ld, b 6 d 6 ∞. The formula

(4.60) Rλ = R0
λ(I − V R0

λ)−1

gives the factorization

(4.61) Ld I→ Lb (I−V R0
λ)−1

−→ Lb R0
λ−→ Ld

if d > 2, or the last step is split into

(4.62) Lb R0
λ−→ L2 I→ Ld

if d < 2, i.e., we do not hope to have better estimates that coming from an inequality

(4.63) ‖T : Lb → Ld‖ 6 ‖T : Lb → L2‖ if d 6 2.

The operator (I − V R0
λ)−1 is defined in Lb if

(4.64) ‖V R0
λ : Lb → Lb‖ < 1.

We can achieve this restriction by using inequalities of Section 5 (Lemma 5.2;
(5.21))
(4.65)

‖V R0
λ : Lb → Lb‖ 6 ‖ν‖ · ‖R0

λ : Lb → L∞‖ 6 mA(b;µ) 6 c(b)m

(
1

ρ
+

1

ρ1−1/b

)
.

The right side is 6 1/2 if ρ is large enough; more precisely, if

(4.66) ρ > (2c(b)m)
b

b−1 .
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The right side of (4.65) is 6 1/2, and

(4.67) ‖V R0
λ : Lb → Lb‖ 6

1

2
if λ ∈ (4.66)

and

(4.68) (V R0
λ)−1 is defined in Lb and its norm 6 2.

But we have to return to Ld.
The last step in (4.61) is R0

λ : Lb → Ld.
According to Lemma 5.2, inequality (5.21), and final remark (4.63),

(4.69) ‖R0
λ : Lb → Ld‖ 6 A(σ;µ)

where

(4.70)
1

σ
=

{
1
b − 1

d if d > 2,
1
b − 1

2 if d < 2.

In any case, 1 < σ 6 ∞ and A(σ;µ) is well-defined and finite, µ /∈ Z.
It leads us to an analogue of Lemma 2.2.

Lemma 4.4. If (4.66) holds λ is a regular point in the space Ld, and

(4.71) ‖Rλ‖ 6 2‖R0
λ : Lb → Ld‖ 6 2A(σ;µ), σ ∈ (4.70).

The spectrum σ(Lbc;L
d), b 6 d 6 ∞, lies in the strip

(4.72) {z ∈ C
1 : |Im z| 6 (C̃(b)m)

1
b−1 }.

8. As in Subsections 4.1–4.2, to analyze Rλ in the strip (4.72) we use repre-
sentation (4.8). Norms of factors R0

λ and I + V R0
λ have already been estimated in

(4.69) and (4.65) soto make the third factor (I − K2)−1 = (I − V R0
λV R

0
λ)−1 be

well-defined as an operator in Lb, 1 < b, it will suffice to guarantee an inequality

(4.73) ‖V R0
λV R

0
λ : Lb → Lb‖ 6

1

2
,

or

(4.74) w∗ = ‖R0
λV R

0
λ : Lb → L∞‖ 6

1

2m
.

Proposition 5.4 gives estimates on this norm w∗. By (5.31) and (5.34)

(4.75) w∗
6 K4(b)A(b;µ)A1(b;µ)

if bc = Per±, DirH+, and

(4.76) w∗ 6 K5(b)A(b;µ)A2(b;µ)

if bc = Dir.
Therefore if the right side in (4.75) (or (4.76) for bc = Dir) is less than 1/2m

the condition (4.74) holds and the third factor (I −K2)−1 is well-defined and its
norm in Lb does not exceed 2. To be more specific about regular λ in the strip, or
for small ρ, we need Lemma 3.3, inequality (3.29) for A1 and Lemma 3.7, inequality
(3.86) for A2. They imply that in the case (4.75)

(4.77) w∗ 6
C

ρ

[
ω(2n)

ρ
+ C4(b)ω(b) + 3n−(1−1/b)

]
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and in the case (4.76)

(4.78) w∗ 6
C5M

ρ

[
ω(2n)

ρ
+ ω(n) + n−(1−1/b) log(1 + 2n)

]
.

The factor 1/ρ comes from the estimate of the function A given by inequality
(3.47).

For ρ > 1/4 and adjusting a constant factor C we choose now N = Ñ(CmM)
in such a way that for all n, |n| > N ,

(4.79) ‖V R0
λV R

0
λ : Lb → Lb‖ 6

1

2
, λ = πn+ πw, |w| = ρ.

Indeed, put

(4.80) Ñ(x) = inf

{
k : ω(k) + k−(1−1/b) log(e+ k) 6

1

x

}
.

Then the right sides in (4.77), (4.78) are smaller than 1/2m, and (4.74) and (4.73)
hold. Therefore, we have proven that in the vertical strips

(4.81) Tn = {z = πn+ πw : |Rew| 6 1/2},
the resolvent Rλ is well-defined outside disks

(4.82) Dn = {z ∈ C
1 : |z − πn| 6 1/4}.

Of course, by adjusting a constant C in the definition (4.80) we can make the
same conclusion by choosing any fixed r > 0 instead of 1/4, i.e., take disks

(4.83) Dn(r) = {z ∈ C
1 : |z − πn| 6 r}.

But inequalities (4.77)–(4.78) help us to trap the spectrum σ(Lbc) into disks
with radiuses δn → 0; compare Section 4.3, (4.29)–(4.32). Indeed, put for example
(4.84)

δn =
[
ω(n) + n−1−1/b log(1 + 2n)

]1/3

, N > n > N1 = 4, N1 = Ñ1(C28mM)

with

(4.85) Ñ1(x) = Ñ(x3), x > 1.

Then (4.80) guarantees, — together with (4.77)–(4.78) that (4.79) holds in the
strip Tn, |n| > N1, outside of the disks

(4.86) Dn(δn) = {z ∈ C
1 : |z − πn| 6 δn}.

9. Therefore, we have proven a more general that Theorem 4.1 statement:

Theorem 4.5. Let us consider Lbc defined by (1.1) and bc = Per± or Dir with
a potential V ∈ Lb, 1 < b and

(4.87) V ∈ H(b,Ω), V ∈ K(m,M)

(see (5.10)—(5.13)). Define contour Γ by (4.4)–(4.6) where

(4.88) Y = (C(b)m)
1
b −1, X = πN +

π

2
,

and N = Ñ(C28mM), {δn} are deined in (4.80) and (4.84). Then

(4.89) σ(Lbc) ⊂ R(X ;Y ) ∪
⋃

|n|>N

D(n; δn).
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10. Remarks in Section 4.6 are general and can be applied under assumptions
of Theorem 4.5 as soon as this theorem has been proven. Therefore, we have the
same Counting Lemma as Proposition 4.3, i.e.

Proposition 4.6. Under assumptions and notations of Theorem 4.5, the di-
mensions of Riecz spaces ImP∗ and ImPn, |n| > N ,

P∗ =
1

2πi

∫

∂R(X,Y )

(λ− Lbc)
−1 dλ,

Pn =
1

2πi

∫

∂Dn

(λ− Lbc)
−1 dλ,

are given by Table 2 (see Prop. 4.3).

5. Estimates of Norms of Resolvent and Related Operators in Complex

Plane

0. Proposition 4, inequalities (2.27) and (2.83), were important to make the
norm of the square K2, K = V R0

λ, small if λ = πn + πw, |Rew| 6 1/2, and n
large enough. This led us to main results (Counting Lemma) of Section 4 about
the contour, or domain, which traps the spectrum σ(Lbc). For further results
on convergence of spectral decompositions, completeness or uniform boundedness
of eigenfunctions (Riesz subspaces), given in the next Section 6, we need more
inequalities for norms of resolvents and other operator-valued functions. Of course,
we’ll repeat basic scheme of Section 2 but now a potential is an Lb-function, 1 <
b 6 2, and operators act from Lc into La, with c and a more general than 2 or ∞.

1. Notations and general scheme.
If V ∈ Lb, 1 < b 6 2, as in (2.8)

(5.1) ‖V : L∞ → Lb‖ = ‖v‖b 6 m

but an analogue of the norm (2.30), or the space H(Ω) if b = 2, is defined on the
basis of Hausdorff–Young Theorem ([25], Sect. 12.2, Thm. 2.3):

Lemma 5.1. (i) If v ∈ Lb, 1 6 b 6 2, then its Fourier coefficients sequence

(5.2) ṽ ∈ (ṽ(k)) ∈ lb
′

,
1

b
+

1

b′
= 1,

and

(5.3) ‖ṽ|lb′‖ 6 C‖v|Lb‖.
(ii) If a sequence f = (fk) ∈ ld, 1 6 d 6 2, then a function

(5.4) F (x) =
∑

fkEk(x) ∈ Ld′

,

and

(5.5) ‖F |Ld′‖ 6 C‖f |ld‖.
These statements hold for standard Fourier series and more generally for any

complete orthogonal system {Ek} which is uniformly bounded in L∞, i.e.

(5.6) ‖Ek|L∞‖ 6 a <∞.
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A constant C = C(a) in (5.3) and (5.5) depends on a only.
See the proofs and further details in Zygmund, Ch. 12.
Therefore, for V ∈ Lb, 1 < b 6 2,

(5.7)
∑

|ṽ(k)|b′ 6 Cb′mb′ ,

and for a given compact K ⊂ Lb these series converges uniformly for v ∈ K. It
follows that for some sequence

(5.8) Ωk ր ∞, Ω(0) = 1, Ω(−k) = Ω(k),

still

(5.9) M =
∑{(∑

(|ṽ(k)|Ω(k))b′
)1/b′

: v ∈ K

}
<∞.

See details on the choice of Ω in Lemma 8.2, Sect. 8 below.
With this motivation, as in (1.6)–(1.7) for any sequence (5.8) we define the

space

(5.10) H(b; Ω) = {v ∈ Lb : ‖ṽ|lb′(Ω)‖ <∞}

where

(5.11) ‖ṽ|lb′(Ω)‖ =
(∑

(|ṽ(k)|Ω(k))b′
)1/b′

, 1 6 b 6 2,

and

(5.12) ‖v|H(b; Ω)‖ = ‖v|Lb‖ + ‖ṽ|lb′(Ω)‖.

¿From now on we assume that a potential V is in a bounded set

(5.13) K(m,M) = {V ∈ Lb
∣∣ ‖v|Lb‖ 6 m, ‖v|H(b; Ω)‖ 6 M}.

For curiosity, let us notice that (5.8) does not guarantee that K(m,M) is a
compact set in Lb, 1 < b < 2, although this is certainly true if b = 2.

2. Hölder inequality implies that

(5.14) ‖V : La → Ld‖ = ‖v‖b

if

(5.15)
1

a
+

1

b
=

1

d
,

bd

b− d
6 a 6 ∞, 1 6 d 6 b.

Of course,

(5.16) ‖V |L∞ → Lb‖ = ‖v‖b, 1 6 b 6 2.

For a multiplier-operator R = (rk),

(5.17) REk = rkEk, k ∈ Z,

Lemma 5.1, (ii) and (i), implies

Lemma 5.2. If 1 6 a 6 2, 2 6 c 6 ∞, then

(5.18) ‖R : La → Lc‖ 6 C2‖r|lσ‖, 1

σ
=

1

a
− 1

c
.
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Proof. R can be factorized by Lemma 5.1 as

(5.19) La J(i)→ la
′ r→ lc

′ J(ii)→ Lc

with

(5.20) ‖r : la
′ → Lc′‖ = ‖r|lσ‖

(compare (5.14)) where J are Young operators from Lemma 5.1. It implies (5.18)
with C2 coming from (5.3). �

If R = R0
λ is a resolvent of L0 then Lemma 5.2 tells us that

(5.21) ‖R0
λ : La → Lc‖ 6 C2‖r0λ|lσ‖ 6 C2A(σ;µ), 1 6 a 6 2 6 c 6 ∞,

where 1 > 1/σ = 1/a− 1/c > 0.
Of course, in the case a = 1, c = ∞ an operator R0

λ is unbounded. The
inequality (5.21) holds with A(1;µ) = ∞ but it is meaningless.

(3.1), (5.14) and (5.21) lead us to

Lemma 5.3. For 1 6 a 6 2, 1 6 d 6 b 6 2

(5.22) ‖V R0
λ : La → Ld‖ 6 C2‖r0λ|lσ‖m 6 C2A(σ;µ)m,

where

(5.23)
1

σ
=

1

a
− 1

d
+

1

b
.

Proof. As in (5.15) we factorize V R0
λ in the following sequence with c′, 1 6

c′ 6 2

(5.24) La J(i)→ la
′ r→ lc

′ J(ii)→ Lc V→ Ld.

By (5.14)–(5.15) (a there should be changed to c) we can choose c by

(5.25)
1

c
+

1

b
=

1

d

so 1
c 6 1

d 6 1
2 , ∞ > c > 2 and 1 6 c′ 6 2 permits us to apply Lemma 5.1 (ii).

Notice that 1 > 1/d > 1/b > 1/2 so

(5.26)
1

d
− 1

b
6 1 − 1

2
6

1

2
and 0 6

1

σ
=

1

a
−
(

1

d
− 1

b

)
< 1.

By Lemma 5.2 factorization (5.24) leads to (5.22). �

3. Now we’ll estimate the norm

(5.27) ‖R0V R0 : Lb → Lc‖, 1 < b 6 2 6 c 6 ∞.

We could consider the index a 6= b but with complete understanding of our
method it can be easily adjusted. The choice of b (with V ∈ Lb and V ∈ K(m,M)
from (5.13)) is important for further applications.

Of course, keeping in mind inequalities (5.14) and (5.21) we can factorize
R0V R0 as

(5.28) Lb R0
λ→ L∞ L→ Lb R0

λ→ Lc

and it leads to estimates (1/τ = 1/b− 1/c)
(5.29)

‖R0
λV Rλ

0 : Lb‖ 6 ‖R0
λ : Lb → L∞‖×m×‖R0

λ : Lb → Lc‖ 6 C4mA(b;µ)A(τ ;µ).
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But functions A are periodic, A(µ) = A(µ + 1), and (5.29) does not give any
decay along real axis when n → ∞ (µ = n + w, |Rew| 6 1/2, |µ| = ρ). Still, by
Lemma 3.1, inequality (3.21), we get from (5.29)

‖R0
λV R

0
λ : Lb → Lc‖ 6 C4 · C3(b)C3(τ)m ·

(
1

ρ
+

1

ρ1−1/b

)(
1

ρ
+

1

ρ1−1/τ

)
6

(5.30)

6 C(b; c)m

(
1

ρ2
+

1

ρ2(1−1/b)+1/c

)
.

Now we’ll give an analogue of Proposition 2.4, Section 2, in the case of Lb-potential.

Proposition 5.4. Let a potential V in (1.1) be from the set K(m,M) ∈ (5.13).
Then (1 < b 6 2) with 0 6 1/τ = 1/a− 1/c < 1

(5.31) w∗ = ‖R0
λV R

0
λ : La → Lc‖ 6 K1(a, b, c)A(τ, µ)A1(b, µ)

if
(a) 1 6 a 6 2 6 c 6 ∞ but {a, c} 6= {1,∞} with

(5.32) 0 < K1(a, b, c) <∞
and

(b) bc = Per± or DirH−.
In the case DirH− or general Dir the estimate (5.33) holds

(5.33) ‖R0
λV R

0
λ : La → Lc‖ 6 K2(a, b, c)[A(τ, µ) +A(a, µ)A(c′, µ)]A1(b, µ)

with 0 < K2 <∞ if
(c) 1 < a 6 2 6 c <∞.
Finally, if c = ∞, 1 < a 6 2, 1 < b 6 2,

(5.34) ‖R0
λV R

0
λ : La → L∞‖ 6 K3(a, b)A(a, µ)A2(b, µ).

(Functions A, A1 and A2 are defined in Section 3.)

Proof. As in Section 2, — see the proof of Proposition 2.4, — we give an alge-
braic representation of this operator W = R0

λV R
0
λ and factorize it in the following

way

(5.35) La J1→ la
′ W→ lc

′ J2→ Lc

so by (5.3), (5.5)

(5.36) ‖W : La → Lc‖ 6 C2‖w : la
′ → Lc′‖.

But W = Wλ(V ) depends in a linear way on V ∈ H(b,Ω) and it is not just a
multiplier like R in lemma 5.2.

But we know (see (2.44) and (2.61)) how this operator acts on eigenvectors of
L0

bc. There are two cases, and we’ll consider them separately.
Case 1 (Per± or DirH+). By (2.44) or (5.81)

Wej = α
∑

k

1

µ− j
gkωk

1

µ− (k − j)
ek−j

where

(5.37) V =
∑

gkωkEk ∈ K(m,M), ωk =
1

Ωk
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so

(5.38)
(∑

|gk|b
′
)1/b′

6 M.

By (5.36) and (5.38) and duality for lc
′

, the norm ‖W : La → Lc‖
(5.39) ‖W : La → Lc‖ 6 C2Mαw∗

does not exceed C2Mω∗α where

(5.40) w∗ = sup{W (f, g, t) | ‖f |la′‖ 6 1, ‖g|lb′‖ 6 1, ‖t|lc‖ 6 1},

(5.41) W (f, g, t) =
∑

j,k

fjgkωk
1

µ− j
· 1

µ− (k − j)
tk−j ,

and sequences f , g, t are finite so there is no problems with (convergence of) infinite
series. Let us majorize this ternary form (5.41). As in (2.50)

(5.42)
1

µ− j
· 1

µ− (k − j)
=

1

2µ− k

[
1

µ− j
+

1

µ− (k − j)

]
,

and

(5.43) W (f, g, t) =
∑

k

gk
ωk

2µ− k
xk,

where

(5.44) xk =
∑

j

fjtk−j

(
1

µ− j
+

1

µ− (k − j)

)
.

For any k ‖tk−·|lc‖ = ‖t|lc‖ 6 1, and sequences
{

1
µ−·

}
and

{
1

µ−(k−·)

}
have

the same norms in lp-spaces, in particular in lτ ,

(5.45)
1

τ
=

1

a
− 1

c
.

Notice that with 1 < a 6 2 6 c 6 ∞ we have

(5.46) 1 >
1

a
>

1

2
>

1

c
> 0

so 0 6 1/τ 6 1/a < 1 and τ 6= 1.
Hölder inequality for the factors in (5.44) guarantees that for any k ∈ Z, m /∈ Z

(5.47) |xk| 6 ‖f | la′‖ · ‖t | lc‖ · 2A(τ, µ) 6 2A(τ, µ)

because

(5.48)
1

a′
+

1

c
+

1

τ
= 1

by (5.45).
Now, by (5.43)

(5.49) |W (f, g, t)| 6 2A(τ, µ)
∑

k

ωk

|2µ− k| · |gk| 6 2A(τ, µ)‖g | lb′‖A1(b;µ) 6

(5.50) 6 2A(τ, µ)A1(b, µ).
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Like in (5.30) we use Lemmas 3.1 and 3.3, or inequalities (5.21) and (5.25) to
write (5.50) in terms n and ρ more explicitly:
(5.51)

|W (f, g, t)| 6 K18C3(τ)

(
1

ρ
+

1

ρ1−1/τ

)
·
(
ω(2n)

ρ
+ C4(b)

ω(n)

1 + ρ1+ρ1−1/b
+

3n1/b

n+ ρ

)

or if ρ > 1
4

(5.52) ‖R0
λV R

0
λ : La → Lc‖ 6 K(a, b, c)ρ(1/a−1/c)−1

[
ω(n)ρ−(1−1/b) +

n1/b

n+ ρ

]
.

Case 2 (DirH−). By (2.60) or (2.61)

(5.53) Wuj = β
∑

k l

ωkgk
1

k − j − l
· 1

µ− j
· 1

µ− l
ul

where

(5.54) V =
∑

gkωkUk

(see (2.37), (2.59), (2.62)) and V ∈ K(m,M). As in (5.38)–(5.41) (5.39) holds but
instead of (5.41) we need analyze a ternary form

(5.55) W (f, g, t) =
∑

j k l

fjgktlωk
1

µ− j
· 1

µ− l
· 1

k − j − l
.

As we do often (j + l − k are odd), write
(5.56)

1

µ− j
· 1

µ− l
· 1

k − j − l
=

1

2µ− k

[(
1

µ− l
+

1

µ− (k − l)

)(
1

k − j − l
− 1

µ− j

)]

so

(5.57) w = W (f, g, t) =
∑

k

gk
ωk

2µ− k
xk,

where

(5.58) xk = x1
k + x2

k + x3
k + x4

k

and xγ
k , γ = 1, 2, 3, 4 are written explicitly below in (5.59), (5.64), (5.66).

Terms x1
k.

(5.59) x1
k =

∑

j l

fjtl
1

µ− l
· 1

k − j − l
=
∑

l

tl
(µ− l

∑

j

fj

k − l − j
=
∑ tl

µ− l
·f̃(k−l)

where f̃ is a Hilbert transform of f .
With 1 < a 6 2 and 2 6 a′ <∞

(5.60) ‖f̃ | la′‖ 6 h(a)‖f | la′‖ and ‖f̃(k − ·) | la′‖ = ‖f̃ | la′‖, ∀k.
Therefore, by Hölder inequality

(5.61) |x1
k| 6 ‖t | lc‖ · ‖f̃ | la′‖ ·A(τ, µ)

with

(5.62)
1

c
+

1

a′
+

1

τ
= 1, i.e.

1

τ
=

1

a
− 1

c
6

1

a
< 1,

and

(5.63) |x1
k| 6 h(a)A(τ, µ).



160 B. MITYAGIN

Terms x2
k.

(5.64) x2
k = −

∑
fktl

1

µ− l
· 1

µ− j
= −

(∑ fj

µ− j

)(∑ tl
µ− l

)

and

(5.65) |x2
k| 6 A(a, µ) · A(c′, µ)

with 1 < a 6 2 and 1 6 c′ 6 ∞.
This inequality is good if 1 < c′, i.e. c <∞, but the case c = ∞ will require a

special statement.
Terms x3

k are estimated in the same way as x1
k.

x3
k =

∑

j k

fjtl
1

µ− (k − l)
· 1

k − j − l
=(5.66)

=
∑

l

tl
µ− (k − l)

∑

j

fj

(k − l) − j
=
∑

l

tl ·
1

µ− (k − l)
· f̃(k − l),

and as in (5.60)–(5.61) for x1
k

(5.67) |x3
k| 6 ‖t | lc‖ · h(a)‖f | la′‖A(τ, µ) 6 h(a)A(τ, µ),

with τ from (5.62).
Terms x4

k are estimated as x2
k

(5.68) x4
k = −

∑
fjtl

1

µ− (k − l)
· 1

µ− j
= −

(∑ fj

µ− j

)(∑ tl
µ− (k − l)

)

and

(5.69) |x4
k| 6 A(a, µ)A(c′, µ).

If we collect (5.63), (5.65), (5.67) and (5.69), with τ ∈ (5.62), we come to the
inequality

(5.70) |xk| 6 C15[A(a, µ) · A(c′, µ) +A(τ, µ)] <∞
if c 6= ∞.

Now, by (5.57) — like in (5.43) and (5.49)

(5.71) |w| 6 X · ‖g | lb′‖ · A(b, µ).

It leads to inequalities (compare (5.50)–(5.52))

|w| 6 C23

[(
1

ρ
+

1

ρ1−1/a

)(
1

ρ
+

1

ρ1/c

)
+

(
1

ρ
+

1

ρ1−1/τ

)]
×(5.72)

×
(
ω(n)

ρ
+

ω(n)

ρ1−1/b
+

n1/b

n+ ρ

)
,

and if ρ > 1/4

(5.73) ‖R0
λV R

0
λ : La → Lc‖ 6 C24ρ

−1+(1/a−1/c)

[
ω(n)ρ−(1−1/b) +

n1/b

n+ ρ

]
.

It looks as (5.52) but the difference comes if c = ∞. In (5.52) a constant K(a, b, c)
is finite if

(5.74) 1 < a 6 2 6 c 6 ∞, 1 < b 6 2 or 1 6 a 6 2 6 c <∞
(see (5.46)), but in (5.65) and (5.69) c = ∞ is not acceptable so C24 = ∞ if c = ∞.
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But the case c = ∞ is important for us and we now consider (5.55) for c = ∞
so

(5.75) |tl| 6 1.

Now instead of (5.57) we use a representation

(5.76) w =
∑

k

gk
ωk

2µ− k
· xk,

where

(5.77) xk =
∑

l

tl

(
1

µ− l
+

1

µ− (k − l)

)∑

j

fj

(
1

k − l − j
− 1

µ− j

)
.

Notice as in (5.59)–(5.60) that

(5.78)
∑

j

fj
fj

k − l − j
= f̃(k − l),

and

(5.79)
∑

j

fj
1

µ− j
= f̃(µ),

so

(5.80) |f̃(µ)| 6 ‖f | la′‖A(a, µ).

But the sequence (5.78) for each k can be considered as a shift

(5.81) {f̃(k − ·)} ∈ la
′

, 1 6 a′ <∞,

of a Hilbert transform of f , and

(5.82) ‖f̃(k − ·) | la′‖ 6 h(a), ∀k.
Therefore, with (5.75)

|xk| 6

∣∣∣∣∣
∑

l

tl

(
1

µ− l
+

1

µ− (k − l)

)(
f̃(k − l) + f̃(µ)

)∣∣∣∣∣ 6(5.83)

6
∑

l

|f̃(k − l)|
(

1

|µ− k| +
1

|µ− (k − l)|

)
+ |f̃(µ)|

∑

l

∣∣∣∣
1

µ− l
+

1

µ− (k − l)

∣∣∣∣ 6 X,

(5.84) X = 2h(a)A(a, µ) +A(a, µ)B∗(2n− k;ω).

The last factor B∗ comes from the sum

∑

l

∣∣∣∣
1

n+ w − l
+

1

n+ w − k + l

∣∣∣∣ =(5.85)

=
∑∣∣∣∣

1

w + j
+

1

(2n− k) − j + w

∣∣∣∣ = B∗(2n− k;w).

We use (5.83)–(5.84) to estimate w in (5.76); we have
(5.86)

|w| 6 CA(a, µ)
∑

k

|gk|
ωk

|2n− k + 2ω|B∗(2n− k;ω) 6 A(a, µ)A2(b, µ), 1 < b 6 2.

It completes the proof of Proposition 5.4. �
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Inequalities (5.51), (5.52) simplified (5.31) by writing the right side of this
inequality as a function of ρ = |µ|. Let us do the same for (5.33) and (5.34).

Corollary 5.5. If (5.32) holds and bc = Per± or DirH+ then for ρ > 1/4

(5.87) ω∗
6 K(a, b, c)ρ−2+(1/a+1/b)−1/c

[
ω(n) +

(
n

ρ

)1/b

· 1

1 + n/ρ

]
.

If

(5.88) 1 < a 6 2 6 c <∞
and bc = Dir then the same inequality (5.87) holds with K7(a, b, c) finite in (5.88).

Finally, if c = ∞, for ρ > 1/4

(5.89) ω∗ 6 K8ρ
−(1−1/a)

[
ω(n)

1 + log(1 + ρ)

1 + ρ1−1/b
+
n1/b log(1 + 2n)

n+ ρ

]
.

If ρ is small such estimates are important for us (see Sections 4.3, 4.4, 4.5 in-
equalities (4.29)–(4.32) or (4.40), (4.41)–(4.43)) if we want to localize the spectrum
σ(Lbc). It has been used and explained in Sections 4.7–4.9.

Corollary 5.6. For small ρ

(5.90) w∗ ≤ Kg
1

ρ

[
ω(2n)

ρ
+ ω(n) + n

1
b −1

]
.

Now we are ready to analyze problems mentioned in Section 5.0. It is done in
the next Sections 6 and 7.

6. Spectral Expansions and Their Convergence

0. Proposition 2.4, inequalities (2.27) and (2.83) in Section 2, have been impor-
tant in making the norm of the square K2, K = V R0

λ, small if n large enough. This
led us to main results of the previous section (Theorem 4.1, 4.2 and Proposition 4.3).

Now we will use Proposition 5.4 to get L2- and L∞-estimates of deviations
Pf−P 0f where P , P 0 are Riesz projections (6.4). It will allow us to prove a series
of statements on convergence of spectral expansions

(6.1) f = P∗f +
∑

|n|>N

Pnf

where (see (4.56) and (4.57), Section 4 or (1.9), (1.10), Section 1)

(6.2) P∗ = P∗(1), Pn = Pn(1).

At the same time we use notations

(6.3) P 0
∗ = P∗(0), P 0

n = Pn(0)

for projections in the case of zero potential V (see Section 1.2).
1. Projections for Riescz subspaces are defined by Cauchy integral

(6.4) P =
1

2πi

∫

C

Rλ dλ

where C is a properly chosen contour,

(6.5) C ∩ σ(Lbc) = ∅ and C ∩ σ(0bc) = ∅.
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Therefore

(6.6) P − P 0 =
1

2πi

∫

C

(Rλ −R0
λ) dλ.

As through this paper we follow the perturbation scheme so

Rλ −R0
λ = Rλ(I − V R0

λ)−1 −R0
λ =(6.7)

= R0
λV R

0
λ(I − V R0

λ)−1 = R0
λV R

0
λ(I + V R0

λ)(I − V R0
λV R

0
λ)−1.

Put

(6.8) a(λ) = ‖V R0
λ‖.

(6.9) f(λ) = ‖R0
λV R

0
λ : L2 → L∞‖,

and

(6.10) f0(λ) = ‖R0
λV R

0
λ : L2 → L2‖.

(By Lemma 5.2

(6.11) f(λ) 6 a(λ)A(µ),

and

(6.12) f0(λ) 6 a(λ)A(∞, µ).

Then if (compare (4.9))

(6.13) a(λ) 6
1

2
, λ ∈ γ

we have

(6.14)

∥∥∥∥∥∥
1

2πi

∫

γ

(Rλ −R0
λ) dλ

∥∥∥∥∥∥
2→∞

6
2

2π

∫

γ

f(λ) |dλ|

and the norm of the same operator in L2

(6.15)

∥∥∥∥∥∥
1

2πi

∫

γ

(Rλ −R0
λ) dλ

∥∥∥∥∥∥
2→2

6
1

π

∫
f0(λ) dλ.

If we need to use (compare (4.10)) an assumption

(6.16) ‖K2‖ = ‖V R0
λV R

0
λ‖ 6

1

2
, λ ∈ γ,

or just this fact when it holds, then a second representation in (6.7) implies

(6.17)

∥∥∥∥∥∥
1

2πi

∫

γ

(Rλ −R0
λ) dλ

∥∥∥∥∥∥
2→∞

6
2

2π

∫

γ

(1 + a(λ))f(λ) |dλ|

and the norm of the same operator in L2 is majorized in the following way

(6.18) ‖Pγ − P 0
γ ‖2→2 6

1

π

∫

γ

(1 + a(λ))f0(λ) |dλ|.
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By (6.6)

(6.19) ‖P − P 0‖2→∞ =
1

2π

∫

C

‖Rλ −R0
λ‖2→∞ d|λ|,

(6.20) ‖P − P 0‖2→2 6
1

2π

∫

C

‖Rλ −R0
λ‖2→2|dλ|,

and if we succeed to split C into pieces γ where (6.13) or (6.16) holds we could use
(6.14) and (6.17) to get a good estimate of the right side in (6.19) or (6.20). This
is our approach to finding estimates of the norms ‖P − P 0‖2→2 or ‖P − P 0‖2→∞

for different contours C in (6.6).
2. With notations (6.1)–(6.3) let us define partial sums (k, n > N)

(6.21) SknF = P∗F +
∑

−k 6 j 6 n
|j| > N

PjF

and

(6.22) S0
knF = P∗F +

∑

−k 6 j 6 n
|j| > N

P 0
j F

of spectral decompositions for Lbc and L0
bc.

Theorem 6.1. Under the assumptions and notations of Theorems 4.1 and 4.2
there exist a sequence {εn > 0}, εn ց 0 (n→ ∞) such that

(6.23) ‖(Skn − S0
kn)F‖2 6 (ε(k) + ε(n))‖F‖2.

The series (6.21) converges in L2, i.e.

(6.24) lim
k → ∞
n→ ∞

SknF = F, ∀F ∈ H.

Proof. We’ve used to consider bc = Per± and DirH+ or bc = DirH−and
general Dir differently but now the argument is the same. Only more complicated
inequalities (2.83) and (2.94) than (2.27) or (2.53) give a little bit different sequences
{εn} for (6.23).

By Theorems 4.1 and 4.2 we can choose

(6.25) C = Γkn = ∂Π ∪
⋃

−k 6 j 6 n
|j| > N

Cj

in (6.6) to present

(6.26) Skn − S0
kn =

1

2πi

∫

Γkn

(Rλ −R0
λ) dλ, n > k > N.

The contour Γkn lies in the vertical strip

(6.27) Lkn = {z ∈ C
1 : −(k +

1

2
)π 6 Re z 6 (n+

1

2
)π}
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and both resolvents Rλ and R0
λ are analytic there (by Theorems 4.1 and 4.2) outside

of the set

(6.28) Dkn = Π ∪
⋃

j∈J(k,n)

D(πj; δj)

where

(6.29) J(k, n) = {j : |j| > N, −k 6 j 6 n}.
Therefore, we can transform — without leaving Lkn \Dkn — this contour to

∆ preserving the representation (6.26) but choosing ∆ in such a way that it will
enable us to give good estimates of the type (6.15) or (6.20) on different pieces of
∆.

3. To realize this approach let us choose (wlog we assume k 6 n)

(6.30) ∆ = ∂Πkn(H)

where

(6.31) Πkn(H) = {z ∈ C
1 : −(k +

1

2
)π 6 Re z 6 (n+

1

2
)π, |Im z| 6 H}

so ∆ is a union of six intervals

(6.32) γ± = {z ∈ Πkn(H) : Im z = ±H},

(6.33) γ±j = {z ∈ C
1 : Re z = (j +

1

2
)π, 0 6 ±Im z 6 H}, j = −k or n.

If H is large, certainly we want

(6.34) H > 4(1 + 50m)2, m = ‖V ‖2,

Proposition 2.3 of Section 2 guarantees that γ± lie outside of the horizontal strip
(2.19), i.e. |Im z| > Y and by (2.19)

(6.35) a(λ) 6
4m

H1/2
<

1

2

and by (6.12)

(6.36) f0(λ) 6 4mH−3/2.

Therefore, by (6.13) and (6.15)

(6.37)

∥∥∥∥∥∥∥

1

2πi

∫

γ±

(Rλ −R0
λ) dλ

∥∥∥∥∥∥∥
6 π(1 + n+ k) · 1

π
· 4mH−3/2.

On γ±j we are under inequalities (6.16) and (6.18) — don’t forget that |i| > N

— so by (6.18) and (6.35)

(6.38)

∥∥∥∥∥∥∥∥

1

2πi

∫

γ±

j

(Rλ −R0
λ) dλ

∥∥∥∥∥∥∥∥
6

1

π

H∫

0

2fo(xj + it) dt

and by (6.12) and (2.11)

(6.39) f0(λ) 6 2A(∞, µ)A(2, µ) ·m if bc = Per± or DirH−
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or by (2.95) for bc = Dir

(6.40) f0(λ) 6 [10A(∞, µ)A(µ) + 2A2(µ)A1(n,w)] ·M.

The right side in (6.40) is larger than the right side in (6.39) so we’ll use in any
case the inequality (6.40). It guarantees that (xj = (k + 1

2 )π)

(6.41) f0(xj + it) 6 C̃

{
ω(j)

(1 + t)3/2
+

1

j + t

(
j1/2

1 + t
+

1

(1 + t)1/2

)}
.

Let us deal with each of three integrals we’ll get when we substitute (6.41) into
the right side of (6.38). For any H > 0

(6.42)

H∫

0

ω(j)

(1 + t)3/2
dt < ω(j)

∞∫

0

dt

(1 + t)3/2
= 2ω(j).

Next, for any H > 0

H∫

0

j1/2 dt

(j + t)(1 + t)
=

H/j∫

0

j1/2 · j dξ
j(1 + ξ)j(1

j + ξ)
<(6.43)

j−1/2

∞∫

0

dξ

(1 + ξ)(1
j + ξ)

< j−1/2




∞∫

1

dξ

ξ2
+

1∫

0

dξ
1
j + ξ


 = j−1/2(1 + log(1 + j)).

Finally, for any H > 0

H∫

0

dt

(j + t)(1 + t)1/2
=

H/j∫

0

j dξ

j(1 + ξ)(1/j + ξ)1/2 · j1/2
<(6.44)

< j−1/2

∞∫

0

dξ

(1 + ξ)ξ1/2
< 4j−1/2.

Now we combine inequalities (6.41)–(6.44) and come to

(6.45) (6.38) 6 C̃

(
ω(j) +

log(1 + j)√
1 + j

)
.

Together with (6.37) it brings us to
(6.46)∥∥∥∥∥∥

1

2πi

∫

∆

(Rλ −R0
λ) dλ

∥∥∥∥∥∥
6 (6.45)right(n) + (6.45)right(k) + 2(n+ k)(n+ k)H−3/2 ·m

and with H → ∞ we conclude that

(6.47) ‖Skn − S0
kn‖ 6 ε(k) + ε(n)

where

(6.48) εj = C̃

(
ω(j) +

log(1 + j)

(1 + j)1/2

)
.

A part (6.23) of Theorem 6.1 has been proven!
4. Of course it immediately leads to a part (6.24).
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The decomposition (6.22) is orthogonal so for any F ∈ H
(6.49) lim

k → ∞
n→ ∞

S0
knF = F

but

(6.50) Skn = S0
kn + Tkn

where

(6.51) Tkn = Skn − S0
kn

and by (6.23)

(6.52) ‖Tkn‖ 6 ε(k) + ε(n).

But ε(j) ց 0 (j → ∞), therefore (6.49)–(6.52) imply (6.24).
Theorem 6.1 is proven. �

5. Trigonometric Fourier series (6.21) converges in ALL Lp-spaces, 1 < p <∞,
i.e.

(6.53) ‖S0
knF − F‖p → 0, ∀F ∈ Lp,

so it is natural to ask (and prove!) whether an analogue of (6.23) holds in Lp,
1 < p < ∞. We’ll present related results under general assumption V ∈ Lb, 1 < b,
V ∈ K(m,M).

Theorem 6.2. Under the assumptions and notations of Theorem 6.1,

(a) if b >
4

3
, 1 < a 6 2 6 c <∞,(6.54)

(b) if a < b 6 2,
1

a
+

1

b
− 1

c
< 1,(6.55)

(b′) if 2 > a > b,
2

b
− 1

c
< 1,(6.56)

there exists a sequence {εn > 0}, εn ց 0 (n → ∞) depending on {Ω} and a, b, c,
such that

(6.57) ‖(Skn − S0
kn) : La → Lc‖ 6 ε(k) + ε(n).

Proof. Proof follows the same lines as the proof of Theorem 6.1. We choose
a contour ∆ ∈ (6.30), k, n > N , N and H large enough so

(6.58) (Skn − S0
kn) =

1

2πi

∫

∆

(Rλ −R0
λ) dλ.

On horizonthal sides γ± ∈ (6.32) we use a representation

(6.59) Rλ −R0
λ = R0

λV R
0
λ(I − V R0

λ)−1.

By Lemma 5.3, inequality (5.22) for

(6.60) e = min{a, b}

(6.61) ‖V R0
λ : Le → Le‖ 6 C30mA(b;µ)

and if (compare (4.65)–(4.68))

(6.62) |Imµ| > H > (C31m)b/(b−1)
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the norm in (6.61) is less than 1
2 . Therefore, with H ∈ (6.62) and λ ∈ γ±

(6.63) ‖(Rλ −R0
λ) : La → Lc‖ 6 2 · C35A(e;µ)mA(σ;µ),

1

σ
=

1

b
− 1

c

as it follows from Lemma 5.2, inequality (5.18), and the following factorization
(compare (4.61), (4.62))

(6.64) La I→ Le (I−V R0
λ)−1

−→ Le R0
λ→ L∞ V→ Lb V R0

λ−→ Lc

(where I is an identity-embedding by (6.60)).
By inequality (3.17) the norm (6.63) does not exceed

(6.65) Cmρ−(1−1/e) · ρ−(1−1/σ) = Cmρ−α,

(6.66) α = 2 −
(

1

b
+

1

e
− 1

c

)
> 2

(
1 − 1

e

)
> 0.

Finally,

(6.67)

∫

γ±

‖(Rλ −R0
λ) : La → Lc‖ |dλ| 6 l(γ±) · CH−α,

where l(γ±) = n + k. (Notice that this step (6.59)–(6.67) is possible if c = ∞ as
well. We applied twice the inequality (5.18) with σ = e > 1 and 1/σ = 1/b−1/c < 1
even if c = ∞.)

6. On the vertical sides (6.33), p. 165 we use a representation

(6.68) Rλ −R0
λ = R0

λV R
0
λ(I + V R0

λ)(I − V R0
λV R

0
λ)−1.

The estimates in Section 4.7 have been written for a = b; if a < b we need first
to analyze (in the same way) K2, K = V R0

λ in Le.
Case 1. Choose d by 1

d + 1
b = 1

e . Then

(6.69) w∗ = ‖V R0
λV R

0
λ : Le → Ld‖ 6 K1A(τ, µ)A1(b, µ)M,

1

τ
=

1

e
− 1

d
=

1

b
.

By the choice of d, and Lemma 3.1, inequality (3.21), Lemma 3.3, inequality
(3.29)

‖V ·W : Le → Le‖ 6 mMK2 · ρ−(1−1/b)

[
ω(n)ρ−(1−1/b) +

n1/b

n+ ρ

]
6(6.70)

6 K3mM [ω(n) + n−(1−1/b)], ρ >
1

4
,

and for n > Ñ2(mM) this norm 6 1/2 so

(6.71) ‖(I − V R0
λV R

0
λ)−1 : Le → Le‖ 6 2.

The norm of second factor I + V R0
λ has been evaluated in (6.61); it does not

exceed

(6.72) 1 + CmA(b;µ) 6 K4 <∞.

Therefore by (6.68) and (6.71), (6.72)

(6.73) ‖(Rλ −R0
λ) : Le → Lc‖ 6 2K4‖R0

λV R
0
λ : Le → Lc‖
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and we can readily use Proposition 5.4, inequality (5.31) with {e, c} 6= {1,∞} by
(6.60), and 1/τ = 1/e− 1/c. It implies

(6.74) β = ‖(Rλ −R0
λ) : Le → La‖ 6 KMA(τ ;µ)A1(b;µ)

and as in (6.69–(6.70), for ρ > 1/5,

(6.75) 6 MKρ−(1−1/c)

[
ω(n)ρ−(1−1/b) +

n1/b

n+ ρ

]
.

Notice that

(6.76)
1
τ = 1

a − 1
c if a < b,

1
τ = 1

b − 1
c if a > b.

Now we have the same α ∈ (6.65), i.e.

(6.77) −
(

1 − 1

τ

)
−
(

1 − 1

b

)
=

{
−2 + 1

a + 1
b − 1

c if a < b,
−2 + 2

b − 1
c if a > b.

Inequality (6.74) gives us the same estimates of pieces in (6.58) which come
from vertical sides of ∆. Indeed,

(6.78)

∥∥∥∥∥∥∥∥

∫

γ±

j

. . .

∥∥∥∥∥∥∥∥
6 KM

H∫

1/2

[
ω(j)t−α +

j1/bt−(1−1/τ)

j + t

]
dt

(compare with (6.41)–(6.45)). If (6.54)–(6.56) holds then α > 1 and

(6.79)

H∫

1/2

t−α dt 6
2α−1

α− 1
<∞.

A second integral
(6.80)

H∫

1/2

j1/bt−(1−1/τ)

j + t
dt 6 j1/b−(1−1/τ)

H/j∫

0

dξ

(1 + ξ)ξ1−1/τ
6 Kj−α+1 → 0 (j → ∞).

Collect inequalities (6.67), (6.78) and (6.80) and we have
(6.81)

‖(Skn −S0
kn) : La → Lc‖ 6 (n+k)C37H

−α + K̃M(ω(n)+ω(k)+n−α+1 +k−α+1).

if H → ∞ we get

(6.82) ε(k) = K̃M(ω(k) + k−(α−1)).

Case 2 — i.e. DirH−, or general Dir.
We have to repeat the same proof from (6.58) to (6.81) with one minor adjust-

ment.
If c < ∞ in inequalities (6.73)–(6.74) we can use (5.33) of Proposition 5.4

instead if inequality (5.31). The right side in (5.33) has the same majorant (6.75),
— just change constants K. So we can choose ε(k) as (6.82) with another constant

K. instead of K̃. It completes the proof of Theorem 6.2 �
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7. Some steps of the proof are valid even for c = ∞ but the second condition in
(6.54) excludes c = ∞ anyway. Indeed if 1 < a, b 6 2 then 1/a+1/b > 1/2+1/2 = 1
and (6.55) cannot hold if c = ∞. This condition makes possible the estimates
(6.78)–(6.79) and (6.80) with right sides independent on H so we can go from
(6.81) to (6.57) by sending H to infinity. But we can try to choose a finite H to get
good estimates. This is a way to analyze uniform convergence, and we got through
all the details in Section 7.

The condition (6.54) is written because the Young inequality (to both directions
— see Lemma 5.1) has been applied in Proposition 5.4 in this range of parameters.
But an obvious identity-embedding

(6.83) Ld I→ Le, ‖I‖ = 1 if d > e

gives us an extension of inequality (6.57) to other a and c, however, without im-
provement of the right side in (6.57) defined by (6.82) where

(6.84) K̃ = K̃(a, b, c) <∞
if (6.54), (6.55) hold.

More accurately, for any a, c let us define

(6.85) a = min{a, 2} and c = max{c, 2},

then of course La I→ La and Lc I→ Lc and for any operator T

(6.86) ‖T : La → Lc‖ 6 ‖T : La → Lc‖.
If for example,

(6.87) a > 2 and c 6 2

we write (6.57) after (6.86) as

(6.88) ‖(Skn − S0
kn : La → Lc‖ 6 ‖(Skn − S0

kn : L2 → L2‖ 6 ε(k) + ε(n)

where by (6.82)

(6.89) ε(j) = M · K̃(2, b, 2)(ω(j) + j−(α−1))

with α coming from (6.77) or (6.65), where e = min(b, a) = b, i.e.

(6.90) α = 2 −
(

1

b
+

1

b
− 1

2

)
=

5

2
− 2

b
.

Condition (6.55) should hold but it takes the form

(6.91)
1

a∗
+

1

b
− 1

c∗
< 1 if a∗ = a < b

and

(6.92)
2

b
− 1

c∗
< 1 if a > b.

In the case (6.87) it means

(6.93) α > 1, or
3

2
− 2

b
> 0, or b >

4

3
.

Let us write explicitly the restriction (6.91) in two other cases

(6.94) a > 2, c > 2 [a∗ = 2, c∗ = c],

(6.95) a 6 2, c 6 2, [a∗ = a, c∗ = 2].
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Therefore, we want (see (6.77))

(6.96)
2

b
− 1

c
< 1, or

1

b
− 1

c
<

1

2
,

or

(6.97)
1

c
+

1

b
− 1

2
< 1, or

1

c
+

1

b
<

3

2
.

(6.98)
1

a
+

1

b
<

3

2
if a 6 b

and

(6.99)
2

b
<

3

2
, or b >

4

3
if b 6 a.

These inequalities (6.93), (6.96), (6.97) put restrictions on parameters in the
cases (6.87), (6.94), (6.95) correspondingly. But if they hold, the statement (6.57)
is correct with K <∞ and

(6.100) ε(k) = K(ω(k) + k−β), β = α− 1 > 0.

We do not write explicitly the observations and results of this subsection in the
form of Proposition or Theorem but let us collect an arithmetic of this subsection
into the following table which shows the value of β = α− 1 in (6.100).

Table 6.3 for β = α− 1

a < b b 6 a 6 2 2 6 a

c > 2 1 + 1
c − 1

a − 1
b 1 + 1

c − 1
b 1 + 1

c − 2
b

c 6 2 3
2 − 1

a − 1
b

3
2 − 2

b
3
2 − 2

b

c = a 3
2 − 1

a − 1
b

3
2 − 2

b 1 + 1
a − 2

b

We have proven

Corollary 6.3. Under notations of Theorem 6.2, if β of the Table 6.3 is
positive then

(6.101) ‖(Skn − S0
kn) : La → Lc‖ 6 ε(k) + ε(n)

where ε is defined by (6.100) with 0 < K58 <∞, i.e.

(6.102) ε(k) = K58(ω(k) + k−β).

8. May be, it was not obvious why in Theorem 6.2 we have a condition b > 4/3.
Simple inequalities show that if b 6 4/3, in ALL six cases of the two first lines in
Table 6.3 the set {(a, c) |β > 0} is empty. If 2 > b > 4

3 , i.e. 1
2 6 1

b < 3
4 , put

δ = 1
b − 1

2 , the third line defines

(6.103)

{
1

a
: β > 0 for (a, 0)

)

as an interval

(6.104) 2δ <
1

a
< 1 − δ.

In particular, if b = 2 and δ = 0 all a’s, 1 < a <∞, lie in the interval (6.103). This
observation leads us to the following statement.
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Theorem 6.4. If a potential V in (1.1) is a L2-function then spectral expansion
(6.21), or

(6.105) P∗F +

∞∑

−∞

PjF = F, ∀F ∈ Lp,

converges in Lp, 1 < p <∞.

Proof. For an individual V ∈ L2 we can choose {Ωk} ∈ (1.7) in such a way
that V ∈ H(Ω) ≡ H(2,Ω) defined in (1.6) of (5.10). This elementary fact is
explained in detail in Section 8, Lemma 8.2. For b = 2 as we observed just in the
line after (6.103) β > 0 for any a = c, 1 < a <∞. Then

(6.106) F − SknF = F − S0
knF + (S0

kn − Skn)F

and by Corollary 6.3, inequation (6.101), a = c = ρ

(6.107) ‖F − SknF‖p 6 ‖F − S0
knF‖p + (ε(k) + ε(n))‖F‖p

with ε(k) → 0 (k → ∞).
But trigonometric Fourier series S0

kn converges in every Lp, 1 < p <∞, — see
Zygmund [25], Ch.7, Thm. 6.4. Therefore, both terms on the right side (6.107) go
to zero when k, n→ ∞. It proves Theorem 6.4. �

Remark . (Warning). All expansions we are talking about are defined by
Riesz projections Pj , see Proposition 4.3, Section 4. In the case of Dirichlet-type bc
they are one-dimensional so putting aside a projector P∗ we have an eigenfunction

expansion, i.e. (6.105) has a form

(6.108) F = P∗F +
∑

|k|>N

fkΦk

where

(6.109) LΦk = λkΦk, λk ∈ Dk ∈ (4.86).

But in Per± cases dimPj = 2. Even if there are two eigenfunctions Φ, Ψ such
that

(6.110) PjF = ϕj(F )Φj + ψj(F )Ψj ,

ϕj , ψj being coefficient linear functionals

(6.111) LΦk = λkΦk, LΨk = λ′kΨk, {λk, λ
′
k} ∈ (4.86)

Theorem 6.4, or (6.105) does not tell us that we can split Pj and sum (6.105) by
adding one term from (6.110) at the time.In other words, we have no control over
the norms of these linear functionals ϕj , ψj although we can control even L∞-norms
of eigenfunctions (see Thm. 8.4, (8.33) and Cor. 8.5, (8.45) in Section 8).

7. Uniform Convergence of Spectral Decompositions

Estimates of elementary functions A,A1, A2 (Sect 3) and the resolvents of Dirac
operator (Sect 5) lead us to the series of further results on convergence of spectral
expensions. In this analysis and in the proofs we sometime need to repeat routine
developed in the previous sections, in particular, our basic scheme in the estimates
of the norm of R0

λV R
0
λ from the proof of Proposition 2.4; see (2.44)) and (2.60)-

(2.61).
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1. First, we explain that the system of Riesz projectors is complete; more
precisely, the following is true.

Proposition 7.1. Let

(7.1) V ∈ Lb, b > 1,

and bc = Per± or Dir. Put

(7.2) Ek = ImPk, |k| > N, E∗ = ImP∗;

then the linear span

(7.3) E =

∞⋃

m=N+1

Em, Em = Span{E∗; Ek, N < |k| ≤ m}

is dense in the space Cbc([0, 1]) of continuous functions with bc = Per±, Dir.

Proof. If V = 0, then we know the systems of eigenfunctions (1.4), (1.5) for
each bc. These systems {fj} are complete, i.e., the proposition’s claim holds. Notice
that

Snfj ∈ En, n > N, ∀j.
The general case will be done if we show that

(7.4) ‖Snfj − fj‖ → 0 as n→ ∞ ∀j,
where

(7.5) Sn = Snn, S0
n = S0

nn

of (6.21), (6.22). For n > 2j + 1

(7.6) S0
nfj = fj,

so as in (6.58)

(7.7) Snfj − fj = Snfj − S0
nfj =

1

2πi

∫

∆

(Rλ −R0
λ)fjdλ

for a properly chosen countor ∆. Now, we will use a second factorization in (2.2),
i.e.,

(7.8) Rλ = (1 −R0
λV )−1R0

λ = (1 + (1 −R0
λV )−1R0

λV )R0
λ

so

(7.9) Rλ −R0
λ = (1 −R0

λV )−1R0
λV R

0
λ =

= (1 −R0
λV R

0
λV )−1(1 +R0

λV )R0
λV R

0
λ.

Of course, as in (2.5) or (2.24), this formula (7.9) is valid if

(7.10) λ 6∈ πZ, ‖R0
λV ‖ < 1, or ‖(R0

λV )2‖ < 1.

The advantage of this factorization is that for an individual vector f the first
factor acting on f is the operator R0

λV R
0
λ. We have a special procedure to evaluate

R0
λV R

0
λf if f is a standard exponential - see the proof of Proposition 2.4.

We want to prove (7.4). Let us normalize f ’s so that ‖fj‖2 = 1, ∀j; they are
eigenvectors of L0

bc. As in Sect 2 we have two cases:
(1) bc = Per± or Dir for H+;
(2) Dir for H−.
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As in Sect 6.3, (6.30)-(6.33), we choose a counter ∆ in (7.7) in the following
way.

(7.11) ∆ = ∂Πn(H),

where

(7.12) ∆ = ∂Πn(H), Πn(H) = {z ∈ C : |Re z| ≤ (n+ 1/2)π, |Im z| ≤ H},
so ∆ is a union of six intervals

(7.13) γ± = {z ∈ Πn(H) : Im z = ±H}

(7.14) Γ±
±n = {z ∈ Πn(H) : Re z = ±(n+ 1/2)π, 0 ≤ ±Im z ≤ H}.

By Lemma 4.4, (4.72), and Lemma 3.1, (3.21),

(7.15) ‖R0
λ : Lb → L∞‖ ≤ A(b;µ) ≤ C(b) ·

(
1

|Imµ| + 1

)1−1/b

.

Therefore, for λ ∈ γ±, we have |Imµ| = H, so

(7.16) ‖R0
λV : L∞ → L∞‖ ≤ mC(b)H1/b−1,

(7.17) ‖R0
λV R

0
λ : Lb → L∞‖ ≤ ‖R0

λ : Lb → L∞‖2‖V |Lb‖ = mC2(b)H2(1/b−1)

and

(7.18) ‖R0
λV R

0
λV : L∞ → L∞‖ ≤ m2C2H2(1/b−1).

These inequalities guarantee that both lines in (7.9) are valid on γ±, with

(7.19) ‖(1 −R0
λV )−1 : L∞ → L∞‖ ≤ 2

if mC(b)H2(1/b−1) ≤ 1/2, and

(7.20) ‖Rλ −R0
λ : Lb → L∞‖ ≤ 2mC2(b)H2(1/b−1), λ ∈ γ±.

On intervals Γ±
±n we use (7.9), the second line, and evaluate the norm of vectors

(7.21) R0
λV R

0
λfj,

see table in Sect 1.2, and (1.4), (1.5). As in Prop 2.4 we have two cases:
(1) bc = Per± or Dir for H+;
(2) Dir for H−.
We follow the same scheme as in Prop 2.4; we’ll use in the estimates only the

assumption

(7.22) V ∈ Lb, b > 1, m = ‖V |Lb‖ <∞.

Still we need the condition V ∈ K(m,M) ∈ (5.3) to guarantee that Rλ is well-
defined on Γ±

±n if

(7.23) λ = πn+ πw, |Rew − 1/2| ≤ 1/3, |n| ≥ N∗.

We use notations of the proof of Prop. 2.4.

Case 1. We consider a potential V ∈ H+ and bc = Dir. If bc = Per± and
V ∈ H then the proof is the same. The decomposition (2.35), (2.38) holds in all
Lp-spaces, 1 ≤ p ≤ ∞, and by (2.38)

‖V ±|Lp‖ ≤ ‖V |Lp‖.
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Put V =
∑
gqU

+
q . By Lemma 5.1 and (7.0)

(7.24)
∑

|gq|b
′ ≤ C′mb′

as in (2.44), with ωq = 1,

(7.25) uj
R0

λ−→ 1

λ− πj
uj

U+
q−→ 1

λ− πj
uq−j

R0
λ−→ 1

π2

1

µ− j

1

m− (q − j)
uq−j ,

so

(7.26) R0
λV R

0
λuj =

α

µ− j

∑

q

gq

µ− (q − j)
uq−j , α =

1

π2
,

and for L∞-norm νj of this vector we have by (2.12), and Lemma 3.1, (3.21), if
|µ| ≥ 1 + 2j,

νj(λ) ≤
α

|µ− j|
∑

q

gq

|µ− (q − j)| ‖uq−j‖∞(7.27)

≤ 2α

|µ− j|

(
∑

q

|gq|b
′

)1/b′

· A(b, µ)

≤ 4αm

|n+ w|A(b;w) ≤ Cm

|n| + |m| + |v| ·
1

1 + |v|1−1/b
.(7.28)

Analogue of Prop 2.4 for b, 1 < b < 2, would give us - instead of (2.27) -

(7.29) ‖R0
λV R

0
λ‖b→∞ ≤ C(b)MA(b;µ)Abc

1 (b, ω;µ),

and therefore,

(7.30) ‖R0
λV R

0
λ‖∞→∞ ≤ C(b)MmA(b;µ)Abc

1 (b, ω;µ).

We will not use this inequality to estimate the norm of Rλ −R0
λ in (7.9), but (7.30)

guarantees that the first factor in the second line is well defined and its norm in L∞

does not exceed 2 if |n| > N∗(M), i.e., if the right side in (7.30) does not exceed
1/2 in the strip

(7.31) Qn = {λ = πµ = π(n+ w) : |Rew − 1/2| ≤ 1/3}.
With (7.15)

(7.32) ‖R0
λV : L∞ → L∞‖ ≤ Cm(1 + |v|)1/b−1 ≤ Cm.

Now we collect these inequalities (7.32), (7.28) and conclude by (7.9), that in the
upper strip Sn, |n| ≥ N∗,

(7.33) ‖(Rλ −R0
λ)uj‖∞ ≤ 2(1 + Cm)

Cm

|n| + 1 + |v| ·
1

1 + |v|1−1/b
.

Recall that |n| ≥ 1 + 2j. We succeeded to get (7.33) on Γ±
±n. For γ± we have a

simpler estimate (7.21). Finally, by (7.7)

(7.34) Snuj − uj =
1

2πi

∫

∆

(Rλ −R0
λ)ujdλ =

1

2πi

(∫ +

γ

+

∫ −

γ

+

∫

Γ+
+n

+

∫

Γ+
−n

+

∫

Γ−

+n

+

∫

Γ−

−n

)
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with proper orientations of these six intervals. By (7.21) for fixed n ≥ N∗(M) with
length γ± = 2n

(7.35)

∥∥∥∥
1

2πi

∫

γ±

∥∥∥∥ ≤ C(b)mH2(1/b−1) · 2n.

If we choose

(7.36) H = nr, 1 >
1

2r
+

1

b
, i.e. r >

b

2(b− 1)
,

then

(7.37) H2(1/b−1) → 0 (n→ ∞),

and

(7.38)

∥∥∥∥
∫

γ±

∥∥∥∥→ 0 (→ ∞).

Four remaining integrals have the same upper estimate by (7.33), with β = 1−1/b,

(7.39)

∥∥∥∥∥‖
∫

Γ+
+n

∥∥∥∥∥ ≤ C(1 +m)2εn, εn =

∫ ∞

0

1

1 + vβ
· dv

n+ v
.

We omit an elementary exercise to explain that with 1 > β > 0

(7.40) εn → 0 (n→ ∞),

more precisely,

(7.41) limnβεn = D(β) =

∫ ∞

0

dξ

ξβ(1 + ξ)
<∞.

By (7.34), the limits (7.38), (7.40) guarantee that

(7.42) lim ‖Snfj − fj‖ = 0, ∀j.
Therefore, fj ∈ E, E ∈ (7.3) and

E ⊃ LinSpan(fj) = Cbc[0, 1].

Proposition 7.1 is proven in Case 1.

Case 2. V ∈ H, bc = Dir.
We follow the same scheme. The formulas (7.21) and (7.38) hold anyway. But

(7.25) - (7.28) need to be adjusted and substituted by analogue of (2.60)-(2.61)
instead of (2.44).

Put

(7.43) V =
∑

q even

gqU
−
q ∈ Lb ∩H−.

As in (7.24)

(7.44)
∑

|gq|b
′ ≤ (2m)b′ .

By (2.60), with ωq = 1,

(7.45) uj
R0

λ−→ 1

λ− πj
uj

U−
q−→ 1

λ− πj
vq−j =

1

λ− πj

i

π

∑

ℓ+j odd

1

q − j − ℓ
uℓ
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R0
λ−→ i

π2

1

µ− j

∑

ℓ+j odd

1

q − j − ℓ
· 1

µ− ℓ
uℓ

and instead of (7.26) we have, with α = i
π2 ,

(7.46) R0
λV R

0
λuj =

α

µ− j

∑

q

∑

ℓ+j odd

1

q − j − ℓ
· 1

µ− ℓ
uℓ.

Let νj be L∞-norm of this vector (7.46), and introduce a function

(7.47) B∗(s) =
∑

k∈Z\{0}

∣∣∣∣
1

k(k + s)

∣∣∣∣ , s 6∈ Z,

which is similar to the function B in (2.75) and (3.30).

Lemma 7.2. If

(7.48) |s− ρ| ≥ 1/4, ∀p ∈ Z,

then

(7.49) B∗(s) ≤ D
1 + log(|s| + 1)

1 + |s| ,

where D is an absolute constant.

Proof is an analogue of the proof of Lemma 3.4, and we omit technical details.
Again, if

(7.50) |µ| ≥ 1 + 2j,

then

(7.51)
1

2
(1 + |µ|) ≤ |µ± j| ≤ 2|µ|.

By (7.46) and (2.12)

(7.52) νj ≤ C

|µ|
(∑

|gq|b
′
)1/b′

·
(
∑

q

(B∗(µ+ j − q))b

)1/b

.

By Lemma 7.2

(7.53) B∗(µ+ j − q) ≤ D2
1 + log(1 + |µ+ j − q|

1 + |µ+ j − q| .

With

(7.54) µ = n+ w, 1/4 ≤ |Rew| ≤ 3/4

this inequality (7.53) implies that

∑

q

(B∗(µ+ j − q))b ≤ D3

∑

k

(
1 + log(1 + |µ| + k|)

(1 + |w| + k|)b−1

)b

Therefore, in (7.52) we have by Lemma 3.6

(7.55) νj(n) ≤ D(j)

1 + |n| + |w| ·
1 + log(1 + |w|)
(1 + |w|)1−1/b

.
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This is an anlogue of (7.33). Now we can repeat the scheme (7.34-7.42); the only
adjustment that is required is (7.39). We have

(7.56)

∥∥∥∥∥

∫

Γ±

±n

· · ·
∥∥∥∥∥ ≤ C(1 +m2)ε′n,

(7.57) ε′n =

∫ ∞

0

dv

n+ v
· log(1 + v)

(1 + v)1−1/b
.

Of course,

(7.58) lim
n→∞

ε′n = 0 if b > 1.

This completes the proof of the claim (comp. (7.42))

(7.59) lim ‖Snuj − uj‖ = 0, ∀j
in Case 2. Proposition 7.1 is proven. �

3. This propositions claim the completeness of the system of eigenvalues and
associated vectors of Dirac operators for any potential V ∈ Lb, b > 1. Now we’ll
show that if V ∈ L2 then the partial sums

SnF = P∗F +
∑

N∗<|k|≤n

PkF

of a continuous vector-function F ∈ Cbc[0, 1] behave, roughly speaking, in the same
way as partial sums of standard Fourier series, i.e., S0

nF.

Proposition 7.3. If V ∈ L2 and V ∈ H(Ω) with

(7.60) (a) ωn logn→ 0 (n→ ∞)

or

(7.61) (b) ωn(logn)2 → 0 (n→ ∞)

then

(7.62) σ∗ = sup ‖(Sn − S0
n) : L2 → L∞‖ <∞

(i) for bc = Per± and Dir if V ∈ H+ and (a) holds;
(ii) for bc = Dir if (b) holds.

Proof. Again we use the representation

(7.63) Sn − S0
n =

1

2πi

∫

∆

(Rλ −R0
λ)dλ

with a countor ∆ ∈ (7.11) − (7.14), and Rλ − R0
λ as in (7.9) or (6.7). Factor-

operators in (7.9) or (6.7), besides of R0
λV R

0
λ, are uniformly bounded, and we need

good estimates of the norms

(7.64) ν(λ) = ‖R0
λV R

0
λ : L2 → L∞‖

if we want to get (7.62). More precisely, say by (6.7),

(7.65) ‖(Rλ −R0
λ) : L2 → L∞‖ ≤ ‖(1 − V R0

λ)−1‖2→2 · ν(λ)
or

(7.66) ≤ ‖(1 −R0
λV R

0
λ)−1‖2(1 + ‖V R0

λ‖) · ν(λ) ≤ 2(1 + Cm)ν(λ).



SPECTRAL EXPANSIONS 179

In (7.35) we gave the estimate of an operator norm, not just the norm of a special
vector. If b = 2 we have

(7.67)

∥∥∥∥
1

2πi

∫

γ±

· · ·
∥∥∥∥ ≤ C(2)mH−1n.

On the intervals Γ± we use Prop. 5.4, (5.31) of (5.34), so

‖R0
λV R

0
λ : L2 → L∞‖ ≤(7.68)

KA(2, µ)A1(2, µ) if (i),(7.69)

KA(2, µ)A2(2, µ) if (ii).(7.70)

(7.71)

Under condition (7.31) for λ = πµ, µ = n+ w,

(7.72) A(2, µ) ≤ C

(1 + v)1/2
, |v| = |Imµ| (by Lemma 3.1, (3.22));

(7.73) A1(2, µ) ≤ C

(
ω(n)

(1 + v)1/2
+

n1/2

n+ v

)

(by Lemma 3.3, (3.23) or (3.28));

(7.74) A2(2, µ) ≤ C

(
ω(n)

(1 + v)1/2
log(1 + v) +

n1/2 log(1 + n)

n+ v

)

(by Lemma 3.7, (3.86)).
In the case (i) under the conditions (7.60) we evaluate ‖

∫
Γ± ‖; Compare (7.39)

and (15.2). We have by (7.69) and (7.72)-(7.73)
∥∥∥∥∥

∫

Γ±

±n

· · ·
∥∥∥∥∥ ≤ C1(m)

∫

Γ

ν(λ)|dλ| ≤

≤ C2

∫ H

0

1

(1 + v)1/2

[
ω(n)

(1 + v)1/2
+

n1/2

n+ v

]
dv(7.75)

≤ C3

[
ω(n)(logH) +

∫ ∞

0

dξ

ξ1/2(1 + ξ)

]

If we choose H = n2, then the inequalities (7.67) and (7.75) together with (7.60)
imply (7.62) in the case (i).

In the case (ii), even under the conditions (7.61), the direct analogue of the
above argument with an inequality (7.74) would not work because the sequence∫H

0
n1/2 log n

(1+v)1/2(n+v)
dv is unbounded. But instead of using (7.74), or (3.86) in Lemma

3.7, let us incorporate the condition (7.61) into the estimates of a(µ) = A2(2, ω;µ) ∈
(3.4) and accordingly adjust (3.86). We have for λ ∈ Qn ∈ (7.31)

(7.76) a(µ) =

[
∑

m even

ω2(m)

[
log(2 + 2|2n−m|)

(1 + |2n−m+ 2w|)

]2]1/2

≤ C

[
∑

m even

ω̃2(m)

[
log(2 + 2|2n−m|)

(1 + |2n−m| + 2|w|)(1 + log(2 + |m|)

]2]1/2

,
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where

(7.77) ω̃(m) = max
|k|≥|m|

ω(k)(1 + log(2 + |k|)) ≤ C3/(1 + log(2 + |m|))

by (7.61). As in the proof of Lemma 3.5, the sum σ on the right side in (7.76) can
be estimated in the following way (assume n > 0 large enough)

(7.78)
∑

≤
∑

m≤n

+
∑

m≥n

with

(7.79)
∑

m≥n

≤ ω̃2(n) ·D1(µ),

(7.80) D1(µ) =
∑

k≥0

[
log(2 + 2k)

(1 + k + v) log(2 + |2n− k|)

]2
,

and

(7.81)
∑

k≥n

≤ D2(µ) =
∑

k≥0

[
log(2 + 2k)

(1 + k + n+ v) log(2 + |2n− k|)

]2
.

Let us do D2 first. With v in the interval [0, H ], H ≤ 3n and k ≥ n

(7.82) 1 + k ≤ 1 + k + n+ v ≤ 1 + k + 4n ≤ 1 + 5k,

and

(7.83) |2n− k| ≥ k/3 if k ≥ 3n.

Under the condition (7.83)

(7.84)
log(2 + 2k)

1 + log(2 + |2n− k|) ≤ log(2 + 2k)

1 + log(2 + k/3)
≤ C <∞

and this part of D2

(7.85)
∑

k≥3n

≤ C
∑

k≥3n

1

(1 + k)2
≤ C/n.

If n ≤ k ≤ 3n then the factor (7.82) is between 1+2n and 1+5n when 0 ≤ v ≤ H ;
therefore [n, 3n]-part of D2

(7.86)
∑

n≤k≤3n

≤ C
log2(2 + 2n)

(1 + 2n)2

3n∑

n

(1 + log(2 + |2n− k|)−2.

The second factor D′
2 can be evaluated as

(7.87) D′
2 ≤ C

∫ 3n

n

dx

[1 + log(2 + |2n− x|)]2 ≤

≤ 2C

∫ 3n

n

dx

[1 + log(2 + 2x)]2
= 2C

∫ 1

0

ndξ

[1 + log(2 + 2nx)]2

≤ 2Cn

(∫ n−1/8

0

+

∫ 1

n−1/8

)
≤ C̃

[
n7/8 +

n

(1 + log(2 + n))2

]
.



SPECTRAL EXPANSIONS 181

The last term comes from an observation

(7.88) 0 < inf
n≥0

log(2 + 2n7/8)

log(2 + n)
≤ sup

n≥0

log(2 + 2n7/8)

log(2 + n)
<∞

with limn→∞ · · · = 7/8. Now, if we collect the inequalities (7.85), (7.86) and (7.87)
we conclude that

(7.89) D2(µ) ≤ C/n if 0 ≤ v ≤ 3n.

We still have to evaluate D1(µ) ∈ (7.80). Subdivide [0,∞) into three intervals

(7.90) 0 ≤ k ≤ n, n < k ≤ 3n, 3n < k

and accordingly the sum (7.80) into three parts

(7.91) d0 =

n∑

0

, d1 =

3n∑

n+1

, d2 =

∞∑

3n+1

.

Parts d1, d2 have been really done in analysis of D2, and we got

(7.92) d1 + d2 ≤ C/n.

For d0

(7.93) log(2 + |2n− k|) ≥ log(2 + n),

so

(7.94) d0 ≤
(

log(2 + 2n)

log(2 + n)

)2 n∑

k=0

1

(1 + k + v)2

and

(7.95) d0 ≤ C

1 + v
.

It follows from (7.92) and (7.95) that

(7.96) D1(µ) ≤ C

(
1

n
+

1

1 + v

)
, 0 ≤ v ≤ 3n.

After taking square root in the right side of (7.76), with (7.78), (7.96) and
(7.89) we have

(7.97) a(µ) ≤ C

(
ω̃(n) ·

[
1√
n

+
1√

1 + v

]
+

1√
n

)
.

We have another factor A(2, µ) in (7.68), so with H = n

(7.98)

∥∥∥∥
∫

Γ±

∥∥∥∥ ≤ C

∫ H

0

dv

(1 + v)1/2
·
[
ω̃(n)√
1 + v

+
1√
n

]

≤ C
[
ω̃(n) logn+ (1 +H)1/2n−1/2

]

and (7.77) guarantees that with some constant independent on n these integrals
(7.98) are uniformly bounded. For intervals γ± the inequality (7.67) holds in the
case (ii) as well. It completes the proof of the statement (7.62). Proposition 7.3 is
proven. �
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4. These results lead to our main statement in this section. Let us remind that
F satisfies Dini condition if

(7.99)

∫ π

0

τ(h)

h
dh <∞,

where τ is a modulus of continuity

(7.100) τ(h) = sup{|F (x+ h′) − F (x)| : |h′| ≤ h}, 0 < h ≤ π.

Theorem 7.4. Let F satisfies Dini condition. Its spectral decomposition P∗F+∑
k>N PkF uniformly converges,i.e.,

(7.101) lim
n→∞

‖SnF − F‖∞ = 0,

where

(7.102) SnF = P∗F +
∑

N<|k|≤n

PkF,

if hypotheses if Proposition 7.3 holds, i.e., V ∈ L2 and V ∈ H(Ω), and

(7.103) (a) ω(n) logn→ 0

if bc = Per±, or Dir with V “even”, i.e., q(x) = p(−x);
(7.104) (b) ω(n)(log n)2 → 0

if bc = Dir with any V.

Proof. Notice, that for any “polynomial” G, i.e., with {uk} being complete
o.n.s. of eigenfunctions for L0

bc (see Table, Sect. 1.2),

(7.105) G =
∑

k∈K

ξkuk, #K <∞,

we have

(7.106) SnF − F = (S0
nF − F ) + (Sn − S0

n)G+ (Sn − S0
n)(F −G).

By Proposition 7.1 we know that “polynomials” are dense in Cbc([0, 1]), but we
need only to know that polynomials are dense in L2 to choose for any δ > 0 such
G ∈ (7.105) that

(7.107) ‖F −G‖ < δ,

and by (7.62) of Proposition 7.3

(7.108) ‖(Sn − S0
n)(F −G)‖∞ < σ∗ · δ, ∀n ≥ N∗.

By (7.4) of Proposition 7.1

(7.109) ‖(Sn − S0
n)G‖∞ → 0 (n → ∞).

For standard Fourier series, Dini condition guarantees uniform convergence (see
[25], Sect. 2.6, Thm. 6.8), so

(7.110) ‖S0
nF − F‖∞ → 0 (n → ∞).

These claims (7.110), (7.109) and (7.108) imply for (7.106)

(7.111) lim sup
n

‖SnF − F‖∞ ≤ σ∗ · δ.

But δ in (7.107) could be any positive number, so by (7.111)

(7.112) SnF → F uniformly,
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i.e., in Cbc([0, 1]). Theorem 7.4 is proven. �

8. L2-Unconditional Convergence; Uniform Boundedness of

Eigenfunctions

In the previous section the estimates of operator norms of R0
λV R

0
λ on the

boundary of large rectangles Π ∈ (7.12) helped us to analyze partial sums

(8.1) SnF = P∗F +
∑

N<|k|≤n

PkF

of the spectral decomposition and prove a series of results on uniform convergence.
But analysis of individual projectors Pk could be quite useful and informative as
well.

First, we state the following.

Proposition 8.1. Let V ∈ Lb, 1 < b and 1 < a. For bc = Per±, Dir, there
exists δn → 0 depending on V such that

(8.2) ‖(Pn − P 0
n) : La → L∞‖ ≤ δn, n ≥ N∗.

Proof. Assume for a while that

(8.3) V ∈ H(b; Ω), V ∈ K(m,M) (see (5.13))

with Ω ∈ (1.7). As in (7.7)

(8.4) Pn − P 0
n =

1

2πi

∫

Dn

(Rλ −R0
λ)dλ

with

(8.5) Dn = {z ∈ C : z = π(n+ w), |w| = 1/4}.
Again, we use a representation

(8.6) Rλ −R0
λ = R0

λV R
0
λ(1 + V R0

λ)(1 − V R0
λV R

0
λ)−1.

For |n| > N the first and second factors from the right have uniform estimates of
their norms in La on ∂Dn, i.e.,

(8.7) ‖(1 + V R0
λ)‖a, ‖(1 − V R0

λV R
0
λ)−1‖a ≤ C, λ ∈ ∂Dn, |n| > N,

where C depends on a, b,Ω but not on n and λ. Therefore, by (8.6) and (8.7),

(8.8) ‖(Rλ −R0
λ : La → L∞‖ ≤ C‖R0

λV R
0
λ : La → L∞‖ ≤ Cw∗,

where by Proposition 5.4

(8.9) w∗ ≤ KA(a, µ)A1(b, µ) in the Case 1,

or

(8.10) w∗ ≤ KA(a, µ)A2(b, µ) in the Case 2.

By Lemma 3.1 [put ρ = 1/4 there]

(8.11) A(a;µ) ≤ C(a) if λ ∈
⋃

|k|>N

∂Dk.

The second factor in (8.10) or (8.11) is evaluated in Lemma 3.3, (3.23), or Lemma
3.5, (3.47). We have

(8.12) A1(b, µ) ≤ C[ω(n) + n1/b−1],
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or

(8.13) A2(b, µ) ≤ C[ω(n) + n1/b−1 logn].

In either case [with logn ≥ 1 for n > N ] it implies by (8.8)

(8.14) w∗ ≤ C[ω(n) + n1/b−1 logn]

and by (8.4)

(8.15) ‖(Pn − P 0
n) : La → L∞‖ ≤ C[ω(n) + n1/b−1 logn] → 0.

To complete the proof, we need to explain that the assumption V ∈ H(b,Ω) is
not restrictive. Indeed, the following is true.

Lemma 8.2. Let Q be a compact set in Lb, 1 < b. Then, a sequence Ω ∈ (1.7)
could be chosen in such a way that

(8.16) Q ⊂ H(b,Ω) and Q ∈ K(m,M) for some m,M > 0.

Proof. Of course, we can choose

(8.17) m = sup{‖V ‖b : V ∈ Q} <∞.

By Hausdorff–Young inequality [Lemma 5.1]

(8.18)
∑(

|pk|β + |qk|β
)
≤ 2‖V ‖β

b , V =

(
0 p
q 0

)
,

1

b
+

1

β
= 1.

These series converge uniformly (!) on a compact Q so with a notation

(8.19) (τn(V ))2 =
∑

|k|≥n

(
|pk|β + |qk|β

)

we define

(8.20) τn = sup{τn(V ) + e−n |V ∈ Q}.
[We include an artificial term e−n to avoid an unnecessary talk about possible
zeroes.] This is a positive sequence

(8.21) τn > 0, τn ↓ 0 (n → ∞), 0 < τ0 ≤
√

2mβ/2 + 1.

Put

(8.22) Ω(−n) = Ω(n) = (τ0/τn)1/β , n ≥ 0.

Then for V ∈ Q

(8.23)
∑

Ωβ(k)
(
|pk|β + |qk|β

)
= τ0

∑ |pk|β + |qk|β
τk

≤

≤ τ0
∑

n≥0

τn(V )2 − τn+1(V )2

τn

≤ 2τ0
∑

n≥0

τn(V )2 − τn+1(V )2

τn(V ) + τn+1(V )
· τn(V ) + τn+1(V )

τn + τn+1

≤ 2τ0
∑

n≥0

(τn(V ) − τn+1(V )) ≤ 2τ2
0 .

Therefore,

(8.24) Q ∈ K(m,M), with M = (2τ2
0 )1/β ≤ [4(2m1/β + 1)]1/β .

Lemma 8.2 is proven. �
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Now we can apply (8.15), and choose

(8.25) δn = C
[
ω(n) + (1 + n)−1/β log(1 + n)

]
, n ≥ 0.

Proposition 8.1 is proven. �

By duality it implies the following

Proposition 8.3. Under the conditions of Proposition 8.1 (α = a′)

(8.26) ‖(Pn − P 0
n) : L1 → Lα‖ ≤ δn, n ≥ N∗.

Proof. By duality (8.2) of Proposition 8.1 implies that for any potential in
Lb, 1 < b,

(8.27) ‖(Pn − P 0
n)∗ : L1 → Lα‖ ≤ δn.

But

(8.28) Pn = Pn(V ) =
1

2πi

∫

∂Dn

Rλ(V )dλ

so

(8.29) P ∗
n = − 1

2πi

∫

∂Dn

Rλ(V )dλ =
1

2πi

∫

∂Dn

Rz(V )dz = Pn(V ∗),

where

(8.30) V ∗F =

[
0 q(x)

p(x) 0

](
f1
f2

)
=

[
q(x)f2(x)

p(x)f1(x)

]
.

Therefore,

(8.31) Pn(V )∗ = Pn(V ∗), Pn(V ) = Pn(V ∗)∗.

Of course, (P 0
n)∗ = P 0

n in L2 and on polynomials; it does not depend on V so

(8.32) (Pn(V ∗) − P 0
n)∗ = Pn(V ) − P 0

n .

A change V → V ∗ in (8.30) does not change Lb-norm of the potential so (8.2)
of Proposition 8.1 written for a potential V ∗ implies (8.27) for the potential V.
Proposition 8.3 is proven. �

Now we are ready to prove the uniform L∞-boundedness of L2-normalized
eigenfunctions of Lbc. More precisely, the following holds.

Theorem 8.4. Let V ∈ Lb, 1 < b, and V ∈ K(m,M). Let {P∗;Pn, n ≥ N} be
the projectors defined in Proposition 4.6. Then for some B > 0 depending only on
Ω and m,M,

(8.33) ‖F‖∞ ≤ B‖F‖1, if F ∈ ImPn, |n| > N, or F ∈ ImP∗.

Proof. We’ll use Propositions 8.1 and 8.3 with a = 2 so

(8.34) ‖(Pn − P 0
n) : L2 → L∞‖ ≤ δn → 0,

and

(8.35) ‖(Pn − P 0
n) : L1 → L2‖ ≤ δn.

The structure of P 0
n , see Tables in Sect 2.2 and Proposition 4.3, guarantess that

(8.36) ‖P 0
nF‖∞ ≤ 2‖F‖1, |n| ≥ N,
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and with dimP 0
∗ ≤ 2N + 1

(8.37) ‖P 0
∗F‖∞ ≤ 2(2N + 1)‖F‖1.

These observations show that (8.33) holds if

(8.38) V = 0, B0 = 2(2N + 1).

Let F ∈ ImPn and ‖F‖1 = 1. Then

(8.39) F = P 0
nF + (Pn − P 0

n)F

and

(8.40) ‖F‖2 ≤ ‖P 0
nF‖2 + ‖(Pn − P 0

n) : L1 → L2‖.

By (8.36) and (8.35)

(8.41) ‖F‖2 ≤ 2 + δn ≤ 2 + δ∗, δ∗ = sup
|n|≥N

δn.

If F ∈ ImP∗ the same argument shows that

(8.42) ‖F‖2 ≤ ‖P 0
∗F‖2 + ‖(P∗ − P 0

∗ ) : L1 → L2‖ ≤ B0 +R,

where

R = ‖(P∗ − P 0
∗ ) : L1 → L2‖.

With B∗ = B0 + 2 + δ∗ +R we have

(8.43) ‖F‖2 ≤ B∗‖F‖1, if F ∈ ImPn, n ≥ N, or F ∈ ImP∗.

The same analysis, with (8.34) used instead of (8.35) leads to the following claim

(8.44) ‖G‖∞ ≤ B∗‖G‖2 if G ∈ ImPn, n ≥ N, or G ∈ ImP∗.

The inequality (8.33) holds with B = (B∗)2.
It should be pointed out that R in (8.42) comes from the estimates of the

integrals
∫

∂Π · · · , see (6.25)-(6.30), and Thm 6.2, and it depends on Ω,m,M but
not on an individual V in K(m,M).

Theorem 8.4 is proven. �

Corollary 8.5. If {fj} is a system of eigenfunctions of Lbc, V ⊂ Lb, 1 < b,
then for some constant B

(8.45) ‖fj‖∞ ≤ B‖fj‖1, ∀j.

Proof. As in Lemma 8.2 we can choose Ω and m,M such that

(8.46) V ∈ K(m,M) ∈ (5.13).

For any j fj ∈ ImPn for some n, |n| > N, fj ∈ ImP∗. So, Theorem 8.4 implies
(8.45). Corollary 8.5 is proven. �

A special case of Proposition 8.1 with a = 2 plays an important role in our
analysis [P. Djakov and B. Mityagin, [5], Theorems 2,3] of smoothness of a complex-
valued potential V in terms of the decay rate of diameters of spectral triangles. We
used it in (8.34) but let us state it as the following.
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Corollary 8.6. If V ∈ L2 and V ∈ H(Ω) then for any bc = Per±, Dir

(8.47) ‖Pn − P 0
n : L2 → L∞‖ ≤ Cδn, |n| > N,

where

(8.48) δ(−n) = δ(n) → 0 (n→ ∞).

Moreover, we can choose

(8.49) δ(n) = ω(n) + (1 + n)−1/2 log(1 + n), |n| > N.

This choice does not guarantee that
∑
δ2n < ∞ even if

∑
ω(n)2 < ∞. But if

we consider norms

(8.50) αn = ‖Pn − P 0
n : L2 → L∞‖

we can claim the following.

Proposition 8.7. If V ∈ L2, V ∈ H(Ω) then

(8.51)
∑

α2
n ≤ C2

∑
ω2

n.

Proof. Again we use the representation

(8.52) Pn − P 0
n =

1

2πi

∫

∂Dn

(Rλ −R0
λ)dλ, |n| > N,

with

(8.53) Dn = {z = π(n+ w) : |w| ≤ 1/4},
and Proposition 2.4. We get with (8.6)

(8.54) ‖Rλ −R0
λ‖2→2 ≤ 2(1 + 4m)‖R0

λV R
0
λ‖2→2,

and by (2.27), Proposition 2.4, for λ ∈ ∂Dn

(8.55) ‖R0
λV R

0
λ‖2→2 ≤ CMBn,

where

(8.56) B2
n =

∑

p even

ω2
p

log2(3 + |2n− p|)
1/16 + (2n− p)2

.

Of course, (8.52)-(8.55) imply

(8.57) αn = ‖Pn − P 0
n‖2→2 ≤ C(1 +m)MBn.

But

(8.58)
∑

B2
n =

∑

n

∑

p

=
∑

p

ω2
p

∑

n

log2(3 + |2n− p|)
1/16 + (2n−)2

= β2
∑

p

ω2
p,

where

(8.59) β2 ≤ 2

∞∑

k=0

log2(3 + 2k|)
1/16 + 4k2

<∞.

Therefore, by (8.57)-(8.59)

(8.60)
∑

α2
n ≤ C̃2

∑
ω2

p, C̃ = C(1 +m)Mβ.

Proposition 8.7 is proven. �
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By A. Markus version ([16, 17, 7]) of N. Bari theorem on unconditional con-
vergence we can go from Proposition 8.7 to the following.

Theorem 8.8. If V ∈ L2 and V ∈ H(Ω) with

(8.61)
∑

ω2
n <∞

then the spectral decompositions

(8.62) F = P∗ +
∑

|n|>N

PnF, ∀F ∈ L2

converge unconditionally.

Proof. This decomposition (6.105) converges in L2, according to Theorem
6.4. Then (8.61) and (8.51) of Proposition 8.7 imply

(8.63)
∑

α2
n <∞,

and by Bari–Markus Theorem, the series (8.62) converge in L2 unconditionally.
Theorem 8.8 is proven. �

6. We conclude this section by a comment to Theorem 6.4 and condition
(6.104). If in Cor. 6.3

(8.64) a = c, 4/3 < b ≤ 2

then (6.104) and (6.101) imply that spectral expansions (6.105) converge in La for
any F ∈ La if

(8.65) 2δ < 1/a < 1 − δ, 0 ≤ δ = 1/b− 1/2 < 1/4.

This subinterval of (0, 1) is not symetric around 1/2. However, the duality type
argument we used in the proof of Proposition 8.3 could explain that if there is a
convergence in (6.105) for a, 1/2 ≤ 1/a < 1 − δ, 0 ≤ δ < 1/4, then for a′ such that

(8.66) δ < 1/a′ ≤ 1/2,

the spectral decompositions (6.105) converge in all La′

-spaces if (8.66) holds. It
extends the interval (2δ, 1 − δ) in (8.65) to the interval (δ, 1 − δ). Therefore, the
following refinement of Theorem 6.4 holds.

Proposition 8.9. If a potential V ∈ Lb, 4/3 ≤ b ≤ 2, then spectral expansions
(6.21), or (6.105), converge in La,

(8.67) δ ≤ 1/a ≤ 1 − δ, δ = 1/b− 1/2,

for any F ∈ La if δ > 0.

Remark. The case δ = 0, i.e., b = 2, is covered by Theorem 6.4 and Theorem
7.4.

Proof. In the case of strict inequality 1/2 ≤ 1/a < 1 − δ we can repeat the
argument in the proof of Theorem 6.4. If 1/a = 1− δ we need to look carefully into
the proof of Cor. 6.3 and realize that if β = 0 then we can claim

(8.68) ‖(Skn − S0
kn) : La → La‖ ≤ C(a) <∞, ∀k, n; n ≥ N.

Then by the density theorem (Proposition 7.1) and convergence of standard Fourier
series in Lp,

S0
nF → F, ∀F ∈ Lp, 1 < p <∞,
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together with routine approximation theory scheme (see the proof of Theorem 7.4,
(7.105)-(7.112)) guarantee that by (8.68) we have

(8.69) limSknF = F, ∀F ∈ La, a =
1

1 − δ
=

3b− 2

2b
.

¿From 1/2 ≤ 1/a ≤ 1 − δ we go to 1/a′ ∈ [δ, 1/2] by duality. Therefore, if 4/3 ≤
b ≤ 2, the convergence

(8.70) lim
kn

SknF = F, ∀F ∈ La,

takes place in La for all a ∈
[

2b

3b− 2
,

2b

2 − b

]
. Proposition 8.9 is proven. �

9. Comments; Conclusion.

In conclusion of this paper we make a few observations on how far its results
could be extended.

1. A potential

(
0 p
q 0

)
was assumed to be in L2, or in Lb, 1 < b. Young

inequality (Lemma 5.1) helped to guarantee that the series

(9.1)
∑ |pk| + |qk|

1 + |k| ,
∑ |pk| + |qk|

1 + |k| · log(2 + |k|)

converge; it was a crucial element of the proof of Prop. 2.4 and what followed. But
it happens even if we weaken assumptions on V and use the following.

Lemma 9.1. Let (ϕk) be a complete orthonormal system on [0, 1] which is uni-
formly bounded, i.e., ‖ϕk‖∞ ≤ A <∞. Then for any function f ∈ L(logL)α, α ≥ 1

(9.2)
∑ |fk|

1 + |k| · (log(2 + |k|))α−1 ≤ K <∞,

K depend on
∫ 1

0 |f |(log |f |)α
+dx only.

See Zygmund [25], v.2, Ch. 12, Misc. # 8.
If we consider Banach-Orlicz spaces L(logL) or L(logL)2 we can state an ana-

logue of Lemma 8.2.

Lemma 9.2. Let Q be a compact set in L(logL)α, α ≥ 1. Then a sequence
Ω ∈ (1.7) and M <∞ could be chosen in such a way that

(9.3)
∑ Ωk|fk|

1 + |k| · (log(2 + |k|))α−1 ≤M <∞

for any f ∈ Q.

Proof is an analogue of the proof of Lemma 8.2, and we omit details.

2. Lemma 9.1 and its incorporation into our construction of Sections 1-4 lead
to slight improvement of Thm 4.1 and 4.2.

Proposition 9.3. (comp. Thm 4.1). Let us consider Lbc, bc = Per± or
bc = Dir but V ∈ H+, and assume that

(9.4) ‖V |L(logL)‖ ≤ m, ‖V |H(Ω;L logL‖ ≤M.
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There are functions g = g(m) and N = N(Ω;m,M) and a sequence {δn}, δn →
0 (n → ±∞) depending on Ω,m,M such that for anuy V ∈ (9.4) the spectrum of
its Dirac operator lies in

(9.5) R(X,Y ) ∪
⋃

|n|>N

D(n; δn),

where R,D are defined in (4.2)-(4.5), with Y = g(m), X = πN + π/2.

If we consider Lbc, bc = Dir, without any assumptionon “evenness” of the
potential V, we have the same statement with L(logL) changed to L(logL)2.

3. Other statements on convergence of spectral expansions in Sect. 6-8 put
restrictions on V ∈ Lb, with b sometimes not close to 1 anyway. For example, the
conditions (6.54)-(6.56) of Thm 6.2 imply the following.

Proposition 9.4. ) If V ∈ Lb then the spectral expansions (6.21), or (6.105)
converge in La if

(i) b ≥ 4/3, 1 < a <∞,
(ii) 1 < b < 4

3 ,
∣∣ 1
a − 1

2

∣∣ < 2
(

1
b − 3

4

)
.

Are restrictions (ii) sharp? For example, let b = 8/7; then (ii) becomes 1/4 <
1/a < 3/4. Is it true that for any ε > 0 there exists such a potential V ∈ L8/7 that
its projectors ‖Sn : L4/3−ε → L4/3−ε‖ are unboundeed in L4/3−ε?

In the same way we can ask questions whether restrictions (a) and (b) in Prop.
7.3 are sharp. We do not write these questions explicitly. But we’ll ask whether
Thm 8.8 is sharp.

Let us consider

Q = {V ∈ L2 : ‖V |L2‖ ≤ m, ‖V |H(Ω]| ≤M}
and assume that for any V ∈ Q the spectral decompositions (6.105) converge in L2

unconditionally for any F ∈ L2. Does it imply that

(9.6)
∑

1/Ω2
k <∞?
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