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Arithmetic and geometry of a K3 surface
emerging from virtual corrections to

Drell–Yan scattering∗

Marco Besier, Dino Festi,

Michael Harrison, and Bartosz Naskręcki

We study a K3 surface, which appears in the two-loop mixed
electroweak-quantum chromodynamic virtual corrections to Drell–
Yan scattering. A detailed analysis of the geometric Picard lattice
is presented, computing its rank and discriminant in two indepen-
dent ways: first using explicit divisors on the surface and then
using an explicit elliptic fibration. We also study in detail the el-
liptic fibrations of the surface and use them to provide an explicit
Shioda–Inose structure.

1. Introduction

Given the advancing precision of measurements carried out at modern parti-
cle colliders, equally precise theoretical predictions are required. To perform
these computations, one has to solve the most complicated Feynman inte-
grals. It turns out that the rationality problem for hypersurfaces often marks
an essential step in the calculation of these integrals [11, 26, 17, 92, 40, 46].
As a consequence, methods from algebraic and arithmetic geometry are be-
coming increasingly important for theoretical particle physics.

In this paper, we study the rationality problem for a hypersurface derived
from Feynman integrals contributing to the mixed electroweak-quantum
chromodynamics corrections to Drell–Yan scattering. The preferred method
of solving these Feynman integrals is to solve them in terms of multiple
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polylogarithms (MPLs), as these functions are well understood and imple-
mented for numerical evaluation [90, 6]. To achieve this, one would ideally
want to find a rational parametrisation of the projective surface given by

(1) XDY : w2 = 4xy2z(x− z)2 + (x+ y)2(xy + z2)2

in the weighted projective space P(1, 1, 1, 3) over Q with coordinates x, y, z, w
of weights 1, 1, 1, 3, respectively.

Remark 1.1. For the reader who never encountered weighted projective
spaces before, these can be regarded as a generalisation of projective spaces
by arbitrarily changing the weight of the coordinates of the space and hence
changing the condition for a polynomial to be homogeneous. For example, in
a space in which the coordinates x0 and x1 have weight 1 and 2, respectively,
the polynomial x20 − x1 is homogeneous of degree 2. A classical reference for
this topic is [31].

As a first result, we prove the following theorem.

Theorem 1.2. The surface XDY defined in (1) is birationally equivalent to a
K3 surface. Its Picard lattice has rank 19, discriminant 24 and discriminant
group isomorphic to Z/2Z × Z/2Z × Z/6Z. The surface XDY admits an
explicit Shioda-Inose structure which is related to a classical modular form
of level 160 and weight 2.

The first two statements of the theorem are proven in Section 3, cf.
Proposition 3.7 and Theorem 3.10; the third statement is proven in Section 5,
cf. Corollary 5.10 and Theorem 5.11.

Let us recall the definition of a K3 surface and its Picard lattice and
Picard number.

Definition 1.3. Let Y be a smooth, projective, geometrically integral sur-
face over a field k. We say that Y is a K3 surface if it has first cohomology
group H1(Y,OY ) = 0 and trivial canonical class KY = 0.

Remark 1.4. Alternatively, Definition 1.3 is equivalent to saying that a K3
surface is a simply connected Calabi–Yau manifold of dimension 2, i.e., a
smooth, simply connected surface admitting a nowhere vanishing holomor-
phic 2-form.

Definition 1.5. Let Y be a K3 surface over a field k and let k be an algebraic
closure of k. With Y we denote the change of base Y ×k k of Y to k. We
denote by PicY the Picard lattice of Y (see [51, Chapter 17] for more details);
PicY denotes the geometric Picard lattice of Y , that is, the Picard lattice
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of Y . The Picard number of Y , denoted by ρ(Y ), is defined to be the rank
of the Picard lattice of Y , i.e., ρ(Y ) = rkPicY ; analogously, the geometric
Picard number of Y is ρ(Y ), the Picard number of Y .

As noted in [36], also the two-loop virtual corrections to Bhabha scatter-
ing give rise to a K3 surface, and so one might ask if the surfaces arising from
the Bhabha and the Drell–Yan scatterings are related, or even the same. We
prove that this is not the case, by showing that the Picard lattices of the two
surfaces have different rank.

Theorem 1.6. Let XDY be the surface defined by (1), and let B be the sur-
face defined in [36]. Then XDY is neither birationally equivalent nor isoge-
nous to B; furthermore, it is not birationally equivalent to any of the defor-
mations of B considered in [36].

Although the surface XDY is not parametrisable by rational functions
and it is not isomorphic to the surface arising from Bhabha scattering, some-
thing can still be done to solve the integrals: for example, one can leave the
non-rationalisable square root untouched and express the result in terms of
MPLs with algebraic arguments [46].

Alternatively, one may hope to solve the integrals in terms of elliptic
multiple polylogarithms (eMPLs). This approach has recently led to a very
compact result for the master integrals of the two-loop Bhabha corrections
[86], and involved elliptic fibrations of the Bhabha K3 surface. Therefore,
we believe that elliptic fibrations on XDY might enable physicists to find a
compact result of the Drell–Yan master integrals in terms of eMPLs. For this
reason, we present a computational method to find many elliptic fibrations
of XDY in Section 4, and explicitly describe three of them.

In order to prove Theorems 1.2 and 1.6, it is enough to consider a smooth
model SDY (cf. Definition 3.2) of XDY and study its (geometric) Picard
lattice. Finding elliptic fibrations on XDY is equivalent to finding elliptic
fibrations on SDY . The methods used are not new, but this paper repre-
sents an attempt to establish an algorithmic and concrete approach to these
problems.

We proceed as follows: a physical motivation for our results and the
proof of Theorem 1.6 (cf. Corollary 2.2) are given in Section 2. In Section 3
and 6 we compute the Picard lattice of SDY in two different ways: exhibiting
explicit divisors, and using an elliptic fibration, respectively. Furthermore,
we use the computations in Section 3 to deduce some information about the
Brauer group of SDY (Subsection 3.3). The computation of elliptic fibrations
of SDY is provided in Section 4. Besides being useful for (re-)computing the
geometric Picard lattice of the K3 surface, these elliptic fibrations allow
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us to explicitly describe a Shioda–Inose structure of SDY , which is done
in Section 5. Consequently, we also compute the number of points on the
reduction of the surface SDY to positive characteristic.

Some proofs in this paper are aided by explicit computations using the
software package Magma (cf. [15]). This is explicitly stated in the proofs where
such computations are performed. The code used in the proofs can be found
in the ancillary file [10] available online.

2. Physical background and motivation

2.1. Particle physics and Drell–Yan scattering

In physics, all possible interactions of matter can be reduced to four fun-
damental forces. On the one hand, one has gravitational and electromag-
netic interactions, whose effects we experience in our everyday life. On the
other hand, one has the strong and the weak interactions that produce
forces at subatomic distances. While the gravitational force is successfully
described by Einstein’s general theory of relativity, the strong, weak, and
electromagnetic interactions are described by the Standard Model (SM) of
particle physics—a term which has become a synonym for a quantum field
theory (QFT) based on the gauge group SU(3)×SU(2)×U(1). The groups
SU(3), SU(2), and U(1) constitute the gauge groups for the strong, weak,
and electromagnetic force, respectively. Accordingly, the SM contains three
coupling constants g1, g2 and g3—one for each of the three fundamental inter-
actions described by the SM. The respective QFTs that are used for the theo-
retical description of these interactions are quantum chromodynamics (QCD)
and electroweak (EW) theory, the latter being the unification of weak theory
and quantum electrodynamics (QED).

To test the validity of the SM, experimental physicists investigate scat-
tering processes, i.e., collisions of particles generated by electron or proton
beams. In the search for new elementary particles, these collisions are per-
formed at very high energies in huge particle colliders, the world’s most
famous being the Large Hadron Collider (LHC) at the CERN laboratory in
Geneva, Switzerland.

In the regime of high energies, the aforementioned coupling constants
g1, g2, g3 of the SM are very small and perturbation theory, i.e., regarding
physical observables as power series in the coupling constants, turns out to be
a valuable tool to obtain theoretical predictions. For this reason, perturbative
QFT is often referred to as theoretical high energy particle physics.
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One of the most critical scattering processes studied at the LHC is the
Drell–Yan production of Z and W bosons [32]. Due to their clean experi-
mental signature, Drell–Yan processes can be measured with comparatively
small experimental uncertainty, allowing for very precise tests of the SM
and numerous applications in other scattering experiments. For instance,
the Drell–Yan mechanism provides valuable information about the parton
distribution functions, which are essential for theoretical studies of processes
at virtually any hadron collider around the globe. Because of the sharp ex-
perimental signal, Drell–Yan scattering is also used for detector calibration
of the LHC itself and for the determination of its collider luminosity. Fi-
nally, Drell–Yan processes are crucial in searches for physics beyond the SM
involving new, yet to discover elementary particles such as Z ′ and W ′ that
originate from Grand Unified Theory (GUT) extensions of the SM. For all
these reasons, an accurate and reliable experimental setup as well as very
precise theoretical descriptions of the Drell–Yan mechanism are of vital im-
portance for contemporary particle physics at the LHC.

Latest theoretical predictions for this scattering process are in reason-
able agreement with the experimental data. Nevertheless, even more precise
computations are indispensable. To improve theoretical accuracy, one needs
to take into account higher-order perturbative corrections. Currently, the
theoretical description of Drell–Yan processes includes QCD corrections of
second order [2, 1, 62, 43] as well as EW corrections up to first order of the
respective perturbation series [93, 7]. Second-order corrections to the Drell–
Yan process in QED with massive fermions were recently considered in [12].
Moreover, there are some other significant second-order perturbative contri-
butions, whose full analytic structure was also studied only recently, one of
the most difficult being the mixed EW-QCD corrections [13, 46, 91]. It is of
maximum importance to get a solid understanding of these newly discovered
contributions to match future experimental requirements, especially in view
of run III of the LHC, starting in 2021.

2.2. Feynman integrals via differential equations

The crux of a typical computation in theoretical particle physics is the fact
that, in order to determine the sought after coefficients of the relevant pertur-
bation series, one has to solve certain integrals, often referred to as Feynman
integrals. For this reason, these integrals may be regarded as the building
blocks for the study of any scattering process in perturbative QFT. Unfor-
tunately, Feynman integrals are usually extremely difficult to compute and
often even divergent under the assumption of a four-dimensional space-time.
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In order to deal with these divergences, one needs to introduce a regular-
isation parameter. While there are several ways to do this, the method of
dimensional regularisation has become standard. Roughly speaking, one re-
places a four-dimensional integral by an integral in D dimensions, where D

depends on a small regularisation parameter ε > 0. In practice, one usually
assumes D = 4− 2ε such that the “physical limit” is recovered when putting
ε → 0.

Despite the extreme complexity of Feynman integral calculations, the
last decades have witnessed an impressive advancement in the identifica-
tion of mathematical tools that can be put into action to perform these
complicated computations. One method that has proven itself to be spec-
tacularly successful is the utilisation of differential equations satisfied by
the Feynman integrals: solving a system of differential equations for a given
set of Feynman integrals, one can obtain the final result while circumvent-
ing the need to perform the original integrations [53, 8, 75, 41]. These
days, solving Feynman integrals via differential equations has become one
of the standard ways to compute higher-order corrections for scattering pro-
cesses.

Let us see how this method works in practice through a simple example.
Therefore, consider the following two Feynman integrals that are needed for
a certain first-order correction in QED:

I1 =
(
m2

)2−D

2

∫
dDk

iπ
D

2

1

[m2 − k2]2
,

I2 =
(
m2

)3−D

2

∫
dDk

iπ
D

2

1

[m2 − k2]2 [m2 − (k − p)2]
.

(2)

In the above, m denotes a real constant referring to a particle mass, whereas
p should be viewed as a variable referring to a particle momentum that may
vary depending on the experimental setup. In this sense, one may view I1
and I2 as functions depending on p. Working in dimensional regularisation,
we assume D = 4 − 2ε. The two integrals I1 and I2 represent a particu-
lar choice of what is called a basis of master integrals. More precisely, this
means that all Feynman integrals that are relevant for computing the sought
after perturbative correction can be reduced to I1 and I2. It is an important
fact that the choice of a basis of master integrals for a given perturbative
correction is not unique. As we will see below, for practical purposes, there
are some choices of master integrals that are more appropriate than oth-
ers.
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Viewing I1 and I2 as functions of x ··= p2/m2, we find the following
differential equation for �I = (I1, I2)

T :

(3)
d

dx
�I =

(
0 0

ε
4x − ε

4(x−4) − 1
2x − 1+2ε

2(x−4)

)
�I.

Notice that all entries of the matrix on the right-hand side are rational
functions of x.

Next, one tries to find what is called an ε-decoupled basis of master
integrals [47, 54]. Recall that we have some freedom in choosing a basis of
master integrals for the perturbative correction at hand. More precisely, it
would be beneficial to bring the differential equation into a form, where the
only explicit ε-dependence is through a prefactor on the right-hand side. To
achieve this, we divide I1 and I2 by their maximal cuts [60, 73, 39, 14, 44,
59, 27]. Changing our basis of master integrals from I1 and I2 to

(4) J1 = 2εI1, J2 = 2ε
√

−x(4− x)I2,

the differential equation (3) becomes

(5)
d

dx
�J = ε

(
0 0

− 1√
−x(4−x)

− 1
x−4

)
�J.

The differential equation is now in ε-decoupled form. Notice that, in order to
obtain the ε-decoupled form, we had to pay the price of introducing a square
root in the matrix entries. We may, however, change variables [4] setting

(6) x = −(1− t)2

t
.

This substitution turns the matrix entries into rational functions of the new
variable t. Indeed, we find

(7)
d

dt
�J = ε

(
0 0
−1

t
1
t −

2
t+1

)
�J.

Having the differential equation in ε-decoupled form and all matrix entries
given as rational functions, it is straightforward to write down the final result
for J1 and J2 in terms of MPLs.

Though comparatively simple, the above considerations provide a typical
example for the calculation of a given basis of master integrals. While most
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steps can naturally be carried over to more complicated physical use cases,
it turns out that one of the most demanding tasks is to find a change of
variables like (6) that transforms the square roots appearing in the matrix
entries into rational functions. In the case of more ambitious perturbative
corrections, this rationalisation problem often marks an insurmountable dif-
ficulty for most practitioners.

2.3. The problem of rationalising square roots

Besides the success of momentum twistor variables [17, 49, 40, 24], it was
only recently that a systematic approach to the rationalisation problem was
brought from mathematics to the physics community [11]. This approach
relies on the fact that square roots can readily be associated with algebraic
hypersurfaces. For instance, a reasonable choice of a hypersurface associated
with the above square root is the algebraic curve

(8) C : y2 + x(4− x) = 0.

Notice that, if we are able to find a rational parametrisation of this curve,
then we can use this parametrisation to turn the square root

√
−x(4− x)

into a rational function of t. Indeed, a possible parametrisation for C is

(9) x(t) = −(1− t)2

t
, y(t) =

1− t2

t
,

corresponding to the change of variables given in (6).
In the above example, we are dealing with a plane conic curve. Thus,

finding a rational parametrisation is an easy task. Computing more sophis-
ticated perturbative corrections, however, one is likely to encounter square
roots for which the rationalisation problem is much more difficult. For a long
time, it was, for example, not clear to physicists how to find a change of
variables that transforms the square root

(10)

√
(x+ y)(1 + xy)

x+ y − 4xy + x2y + xy2

into a rational function. This square root shows up in the context of second-
order corrections to Bhabha scattering [48], and it was recently proved to be
non-rationalisable by showing that its associated hypersurface is birational
to a K3 surface [36].
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Besides examples involving a K3, many perturbative corrections of the
last years led to square roots associated with elliptic curves. Such Feynman
integrals can, in general, no longer be solved in terms of MPLs [58]. It was
only recently that the notion of eMPLs was introduced [20, 22], which fi-
nally enabled physicists to compute perturbative corrections whose analytic
structure was previously out of reach.

2.4. Motivation for a mathematical investigation of the
Drell–Yan square root

When trying to compute the master integrals for the mixed EW-QCD cor-
rections to Drell–Yan scattering, one encounters the following square root
[13]:

(11)
√

4xy2(1 + x)2 + (x(1 + y)2 + y(1 + x)2) · (x(1− y)2 + y(1− x)2) .

In an attempt to solve the integrals in terms of MPLs, one wants to know
whether there exists a change of variables that turns (11) into a rational
function. The answer to this question is an important physical motivation
for this paper, and follows from Theorem 1.2.

Corollary 2.1. The square root (11) cannot be rationalised by a rational
variable change.

Proof. Suppose there would exist a rational variable change that rationalises
(11). Then, it would be straightforward to write down a rational parametri-
sation for the surface XDY as defined in (1). In other words, XDY would
be unirational. However, Theorem 1.2 tells us that XDY is birational to a
K3 surface, i.e., its Kodaira dimension is 0. Therefore, by the Enriques–
Kodaira classification, XDY is not a rational surface; since unirationality
and rationality are equivalent for surfaces over fields of characteristic 0 [45,
Remark V.6.2.1], XDY is not unirational.

While this result provides very practical information, also other aspects
of this paper might turn out to be useful for physicists. For example, given
that (11) is not rationalisable by a rational variable change, one could hope
that the geometry we encounter in the Drell–Yan case relates to a geometry
in another physical process, e.g., to the K3 appearing in Bhabha scatter-
ing. Finding such a correspondence could probably allow one to reuse some
known techniques from the computation of the Bhabha correction and apply
them in the context of the Drell–Yan correction. A reasonable first attempt
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to formulate such a correspondence mathematically would be to ask for a bi-
rational map or, at least, an isogeny between the two K3 surfaces. One way
to answer this question is to compute the Picard lattice of the Drell–Yan
K3 and compare it to the Picard lattice of the Bhabha K3. In this respect,
Theorem 3.10 tells us that this not the case, as shown by the following result
(cf. Theorem 1.6).

Corollary 2.2. The surface XDY is neither birationally equivalent nor isoge-
nous to the surface B arising from Bhabha scattering in [36]; furthermore,
it is not birationally equivalent to any of the deformations of B considered
in [36].

Proof. The surface XDY is birationally equivalent to its desingularisation
S := SDY (cf. Definition 3.2), which is a K3 surface with geometric Picard
number equal to 19 (cf. Proposition 3.3 and Theorem 3.10). The surface B
in [36] is a K3 surface with geometric Picard number 20 (cf. [36, Main Theo-
rem]). For K3 surfaces, being birational and being isomorphic is equivalent.
Furthermore, being isomorphic implies being isogenous. This means that it
is enough to show that S and B are not isogenous. For two K3 surfaces over a
field of characteristic 0 to be isogenous, their geometric Picard numbers have
to be equal (see [78, Proposition 13]). Thus, there cannot exist an isogeny
between B and S.

To prove the second statement, it is enough to notice that the geomet-
ric Picard lattice of the generic deformation of B considered in [36] is not
isometric to the geometric Picard lattice of S.

Finally, another aspect of our studies that might turn out to be useful for
physicists is the investigation of elliptic fibrations. On the one hand, we will
see in Section 6 that elliptic fibrations of the Drell–Yan K3 can be used to
compute its Picard lattice. On the other hand, the aforementioned Bhabha
correction was recently computed in terms of eMPLs [86], and, to the best
of our knowledge, this computation was only possible because the Bhabha
K3 has a certain elliptic fibration. This suggests that a thorough study of
elliptic fibrations could also give new insights to the Drell–Yan integrals and
other perturbative corrections in QCD—especially in view of the increasing
number of physical computations that involve K3 surfaces [21, 23, 18, 16].

3. The Drell–Yan K3 surface and its Picard lattice

Section 2 left us with some questions about the square root (11): is it pos-
sible to find a change of variables turning it into a rational function? Is it
possible to find a change of variables such that the surface associated with it
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is birational to the K3 surface emerging from the Bhabha scattering? In this
section, we are going to show that both questions have a negative answer,
hence proving the first two statements of Theorem 1.2 and Theorem 1.6.

3.1. The Drell–Yan K3 surface

If f(X,Y ) is a polynomial of even degree 2d, then there is a natural way
to associate a surface with the square root

√
f(X,Y ). Let f̃(x, y, z) be the

homogenisation of f via the substitution X := x/z and Y := y/z. If u =√
f(X,Y ), then uzd =

√
f̃(x, y, z). Substituting uzd with w and squaring

both sides, we get the equation

w2 = f̃(x, y, z),

which defines a surface in the weighted projective space P(1, 1, 1, d) with
coordinates x, y, z, and w, respectively.

Using the procedure above and rearranging the summands of the polyno-
mial, one can easily see that (11) is associated with the surface XDY defined
by

(12) w2 = 4xy2z(x− z)2 + (x+ y)2(xy + z2)2

in the weighted projective space P := P(1, 1, 1, 3) with coordinates x, y, z, w.
We define the map π : XDY → P2 by π : (x : y : z : w) → (x : y : z).

Lemma 3.1. The surface XDY has five singular points, namely:

• P1 := (1 : 1 : −1 : 0), of type A1;
• P2 := (0 : 0 : 1 : 0), of type A2;
• P3 := (1 : −1 : 1 : 0), of type A3;
• P4 := (1 : 0 : 0 : 0), of type A4;
• P5 := (0 : 1 : 0 : 0), of type A4.

Proof. The surface XDY is a double cover of P2 branched above the plane
curve B : f = 0. Therefore, the singularities of XDY come from the singu-
larities of B, which can easily be found by direct computations. In order
to find the type of singularity, it is enough to consider a double cover of
the resolution of the singularities of B (see, e.g., II, Sec. 8 and III, Sec. 7
of [5]).

Definition 3.2. Let S := SDY be the desingularisation of XDY . Notice that
S is defined over Q. Let Q denote the algebraic closure of Q inside C. Then
S denotes the change of base S ×Q Q of S to Q.
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Proposition 3.3. S is a K3 surface.

Proof. This follows from the theory of invariants of double covers with simple
singularities as described in V, Sec. 22 of [5]. The map π gives X = XDY the
structure of a double cover of P2, hence H1(X,OX) = 0. It ramifies above the
plane curve defined by f(x, y, z) := 4xy2z(x−z)2+(x+y)2(xy+z2)2 = 0. As
XDY is normal, its canonical divisor KX is defined as the canonical divisor
of its smooth locus. As f has degree six, π is a double cover of P2 ramified
above a sextic, and hence KX = 0.

Because S is the desingularisation of X, it is smooth. We also have
that H1(S,OS) = 0 and that the canonical divisor is unchanged by the
resolutions, since all the singular points are of A-type (DuVal singularities).
Therefore, KS = 0. It follows that S is a K3 surface.

Corollary 3.4. The square root (11) is not rationalisable by a rational
change of variables.

Proof. Rationalising the square root (11) by a rational change of variables
is equivalent to finding a rational parametrisation of XDY , i.e., proving that
XDY is a rational surface. The desingularisation S of XDY is a K3 surface,
hence not a rational surface. This implies that XDY is not a rational surface
either.

3.2. Computing the geometric Picard lattice

In this subsection, we are going to compute the geometric Picard lattice of
S = SDY , that is, the Picard lattice of S. In doing so we follow the strategy
explained in [35] and we start by giving an upper bound of the Picard number
of S using van Luijk’s method with Kloosterman’s refinement, cf. [88, 52].

Proposition 3.5. The surface S has geometric Picard number ρ(S) ≤ 19.

Proof. By Weil and Artin–Tate conjectures (both proven true for K3 surfaces
over finite fields, cf. [29] for the proof of the Weil conjectures, and see for
example [3, 25] for the proof of the Tate conjecture for K3 surfaces over finite
fields of characteristic p ≥ 5), we have that for a K3 surface Y over a finite
field with q elements:

• the Picard number equals the number of roots of the Weil polynomial
of the surface which are equal to ±q;

• the discriminant of the Picard lattice is equal, up to squares, to the
product

±q ·
22∏

i=1+ρ(Y )

(1− αi/q) ,
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where the αi’s denote the roots of the Weil polynomial. They are or-
dered so that αi = ±q for i = 1, . . . , ρ(Y ) and αi �= ±q for i =

1 + ρ(Y ), . . . , 22 (cf. [51, Theorem 4.4.1]).

After checking that 31 and 71 are primes of good reduction for S, we use
Magma to compute the Weil polynomial of the reduction Sq of S over the
finite field Fq, for q = 31, 71. This led us to the following results:

• ρ(S31) = 20 and
∣∣disc PicS31

∣∣ ≡ 3 mod (Q∗)2;
• ρ(S71) = 20 and

∣∣disc PicS71

∣∣ ≡ 35 mod (Q∗)2.

Recall that the Picard lattice of a K3 surface over a number field injects
into the Picard lattice of its reduction modulo a prime via a torsion-free-
cokernel injection ([34, Proposition 13]). Then, if we assume that ρ(S) = 20,
it follows that disc PicS = discPicS31 = disc PicS71 which is impossible, as
the discriminants of PicS31 and PicS71 are not equivalent up to squares and
therefore cannot be equal.

Remark 3.6. As shown in Subsection 5.2, there are infinitely many primes
of ordinary (i.e., not supersingular) reduction for S; let q denote one of them.
As the Picard number of S is 19 and q is of regular reduction, the 20 algebraic
eigenvalues of the action of the Frobenius on the second cohomology group
of Sq will be equal to ±q. If one chooses q so that the reduction mod q of
the divisors in Σ (see below) is defined directly on Fq and no extension is
needed (this just means that Fq contains a square root of 5), then nineteen
of the 20 algebraic eigenvalues will be equal to q, with the last one left
uncertain. A priori it is not possible to determine its sign and, after a short
search, the primes q = 31, 71 turned out to be the smallest ones for which
also the twentieth eigenvalue equals q. Nevertheless, a posteriori, one can use
Theorem 5.11 to determine the sign of the twentieth eigenvalue: it equals the
Kronecker symbol

(
10
q

)
.

We show that the geometric Picard number ρ(S) is exactly 19 by consid-
ering the sublattice generated by the following divisors. As S is the resolution
of XDY , on S we have the exceptional divisors lying above the singular points
of XDY , namely:

• E1,1 above the point P1;
• E2,−1 and E2,1 above P2;
• E3,−1, E3,0, and E3,−1 above P3;
• Ei,−2, Ei,−1, Ei,1, and Ei,2 above Pi, for i = 4, 5.
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Furthermore, consider the following nine divisors of XDY .

L′
1 : x = 0, w − yz2 = 0 ;

L′
2 : x− z = 0, w − z(y + z)2 = 0 ;

L′
3 : y +

3−
√
5

2
z = 0, w +

3−
√
5

2
z(x2 − xz + z2) = 0 ;

L′
4 : y +

3 +
√
5

2
z = 0, w +

3 +
√
5

2
z(x2 − xz + z2) = 0 ;

L′
5 : y = 0, w − xz2 = 0 ;

L′
6 : y + z = 0, w − z(x− z)(x+ z) = 0 ;

L′
7 : z = 0, w − xy(x+ y) = 0 .

C ′
1 : x

2 +
−1 +

√
5

2
(xy + xz) + yz = 0,

xy2 +
5 +

√
5

2
xyz +

5 + 3
√
5

2
y2z +

3 +
√
5

2
xz2+

+
5 + 3

√
5

2
yz2 +

3 +
√
5

2
w = 0

C ′
2 : x

2 +
−1−

√
5

2
(xy + xz) + yz = 0,

xy2 +
5−

√
5

2
xyz +

5− 3
√
5

2
y2z +

3−
√
5

2
xz2+

+
5− 3

√
5

2
yz2 +

3−
√
5

2
w = 0

For i = 1, . . . , 7 and j = 1, 2, we define Li and Cj to be the strict transform
of L′

i and C ′
j , respectively, on S. Finally, let H ′ denote the hyperplane section

on XDY ; we define H to be the pullback of H ′ on S. Let Σ be the set of the
24 divisors of S defined so far, and let Λ ⊆ PicS be the sublattice of PicS
generated by the classes of the elements in Σ. Recall that the discriminant
group of a lattice L is defined to be the quotient AL := Hom(L,Z)/L.

Proposition 3.7. The sublattice Λ has rank 19, discriminant 23 · 3 and
discriminant group isomorphic to Z/2Z× Z/2Z× Z/6Z.

Proof. The intersection matrix of these divisors has been computed using a
built-in Magma function to determine the intersection numbers between the
strict transforms of surface divisors and the exceptional divisors and a custom
function for the local intersection numbers between the strict transforms over
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the singular points. This function can be found in the accompanying file [10].
See also Remark 4.6.

Remark 3.8. Proposition 3.7 can be proven also in a different way, less
explicit but also involving fewer coding skills. Indeed, notice the following
properties.

• H2 = 2; for every i, j, H.Ei,j = 0; for every i, H.Li = 1; for every
j, H.Cj = 2.

• For every i, j, C2
j = L2

i = −2. The intersection numbers Li.Lj , Li.Cj ,
and Ci.Cj can be explicitly computed as we have the explicit defining
equations.

• The intersection numbers of the exceptional divisors are completely
determined by the type of singularity.

• A few intersection numbers between the exceptional divisors and the
divisors Li, Cj can be determined by an ad hoc labelling of the excep-
tional divisors. (See Example 3.9 for an instance of this labelling.)

These remarks still leave some intersection numbers undetermined. These
undetermined numbers can either be 1 or 0. Using a computer, one can go
through all the combinations and find that only one satisfies the condition
rkΛ ≤ 20. This combination returns the quantities in the statement. These
computations can be found in the accompanying file.

Example 3.9. The line �2 := {x = 0} ⊂ P2 passes through the point
(0 : 0 : 1), this means that one of the exceptional divisors E2,1 and E2,1

intersects L2: we denote by E2,−1 the one intersecting it, hence E2,−1.L2 = 1.
As {x = 0} is not in the tangent cone of the branch curve at (0 : 0 : 1), it
follows that E2,1.L2 = 0.

Theorem 3.10. PicS = Λ.

Proof. In this proof, we denote PicS by simply P . From Propositions 3.5
and 3.7 it immediately follows that P has rank 19 and hence Λ is a finite-
index sublattice of P . As the discriminant of Λ is 24 = 23 ·3, the index [P : Λ]

is either 1 or 2.
For a contradiction, assume [P : Λ] = 2 and let ι : Λ ↪→ P be the

inclusion map. Then the induced map ι2 : Λ/2Λ → P/2P has exactly one
non-zero element in its kernel ker ι2 = Λ∩2P

2Λ . Let Λ2 be the set

{[x] ∈ Λ/2Λ : ∀ [y] ∈ Λ/2Λ, x.y ≡ 0 mod 2 and x2 ≡ 0 mod 8}.
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Notice that Λ2 contains ker ι2 and it can be explicitly computed as it only
depends on Λ, which we know. Then one can see that Λ2 contains two non-
zero elements, say v1, v2. As we assumed [P : Λ] = 2, only one between v1
and v2 is in ker ι2.

As P is defined over Q(
√
5), the Galois group

G := Gal(Q(
√
5)/Q) = 〈σ〉 ∼= Z/2Z

acts on P and the kernel ker ι2 is invariant under this action. By explicit
computations, one can show that v1 and v2 are conjugated under the action
of G, hence if one is in ker ι2 also the other is, getting a contradiction.

We can then conclude that [P : Λ] = 1, that is, Λ = PicS.

3.3. An application: computation of the Brauer group

In this subsection, we obtain information about the algebraic part of the
Brauer group of S = SDY using the Galois module structure of PicS. Let
BrS denote the Brauer group of S and recall the filtration

Br0 S ⊆ Br1 S ⊆ BrS,

where Br0 := im(Br(Q) → Br(S)) and Br1 := ker(BrS → (BrS)G), the
algebraic part of BrS.

Earlier in Section 3 we have explicitly given a set of divisors Σ generat-
ing the whole geometric Picard lattice of S. In particular it turns out that
PicS is defined over the field Q(

√
5), a quadratic extension of Q. It follows

that there is an action of the Galois group G := Gal(Q(
√
5)/Q) ∼= Z/2Z

over PicS. As Σ is invariant under the action of G, after choosing a basis
of PicS, it becomes straightforward to explicitly describe the action using
19 × 19 matrices. Using this description it is then possible to compute the
cohomology groups H i(G,PicS) for every i.

Proposition 3.11. The following isomorphisms hold:

1. H0(G,PicS) ∼= Z18;
2. H1(G,PicS) ∼= 0;
3. H2(G,PicS) ∼= (Z/2Z)17.

Proof. Explicit computations, see the attached file [10].

Corollary 3.12. The quotient Br1 S/Br0 S is trivial.
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Proof. As S is defined over Q, a global field, from the Hochschild–Serre
spectral sequence we have an isomorphism

Br1 S/Br0 S ∼= H1(G,PicS).

(See, for example, [72, Corollary 6.7.8 and Remark 6.7.10].) From Proposi-
tion 3.11 it follows that H1(G,PicS) = 0, proving the statement.

4. Elliptic fibrations on the surface

In this section, we explicitly describe some elliptic fibrations of the surface
S which are used in Section 6 to re-obtain the full geometric Picard lattice
of S in a different way.

After briefly recalling some basic notions concerning elliptic fibrations
in Subsection 4.1, we present a general method to find elliptic fibrations on
K3 surfaces with many −2-curves (i.e., curves whose self-intersection is −2)
in Subsection 4.2. We apply this method to the surface S, deriving some
statistics about elliptic fibrations on S. In the last three subsections, we give
the explicit description of three elliptic fibrations of S. The second fibration
given in Subsection 4.4 is the one used in Section 6; the third fibration,
given in Subsection 4.5 is the one used to give an explicit description of the
Shioda–Inose structure of S (see Section 5). The first fibration is the simplest
to compute and is the one that we originally used for the computations in
Section 6. We include it here as another useful example although the second
fibration is more straightforward to use for our purposes.

4.1. Background on elliptic fibrations

The elliptic fibrations of S are of interest for several reasons. We already
touched upon their role in physics in Section 2. Apart from that, they can also
be used to provide an alternative proof of the full structure of PicS, as will
be demonstrated in Section 6, and to compute other important arithmetic
structures (Section 5).

Definition 4.1. An elliptic fibration is a morphism φ of S onto the projective
line P1 (over Q) with general fibre a non-singular genus 1 curve, which has
a section. A section of φ is a curve in S which maps isomorphically down to
P1 under φ.

Equivalently, a section of φ is an irreducible curve in S whose intersection
number with a fibre of φ (all of which are rationally equivalent) is 1. Two
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fibrations φ and φ1 are said to be equivalent if there is an automorphism of
P1, α, such that φ1 = α ◦ φ. Any such α is given by the standard x �→ (ax+

b)/(cx+ d) action of an invertible 2-by-2 matrix
(
a b
c d

)
which is determined

by α up to multiplication by a non-zero scalar. If only the morphism φ is
given, without any section (and possibly having no section), then we call φ
a genus 1 fibration.

Theorem 4.2 ([74]). Let Y be a K3 surface. Then, genus 1 fibrations of Y
(up to equivalence) are in 1-1 correspondence with divisor classes E in PicS

which satisfy

1. E.E = 0 (E has self-intersection 0),
2. E is primitive (i.e., the class E is not divisible by any n ≥ 2 in PicS),
3. E lies in the nef cone (i.e., E has non-negative intersection number

with all classes in PicS that represent effective divisors).

Under this correspondence, a genus 1 fibration φ is associated with the class
of its fibres; conversely, a divisor class E satisfying the conditions 1,2,3 cor-
responds to the fibration map class given by the map to P1 associated with
the Riemann–Roch space of its global sections.

Proof. This is [74, Theorem 1].

For general results relating maps to projective space, invertible sheaves
and divisor classes up to rational equivalence see [45, Section II.7], for specific
results about general linear systems of K3 surfaces see [76].

If φ is a genus 1 fibration, the condition for the existence of a section is
that there is another class D such that the intersection number E.D is 1.
From this, it can then be seen that pairs of (fibration, section) correspond
to 2-dimensional hyperbolic direct summands of the PicS lattice. For a fixed
fibration, any two distinct sections are mapped to each other under an iso-
morphism of S that preserves the fibration, viz. a translation map on the
generic fibre extended to an automorphism of S. Since, ultimately, we are
only interested in elliptic fibrations up to AutS, we will not worry too much
about differentiating between different sections of an elliptic fibration. The
method we use (which dates back in the literature to at least [83]) for ex-
plicitly constructing fibrations gives genus 1 fibrations, although it also finds
explicit sections in the majority of cases.

Definition 4.3. The generic fibre of a fibration φ : S → P1 over a field k, is
the genus 1 curve St/k(t) defined as the pullback of φ under the generic point
inclusion Spec(k(t)) ↪→ P1. That is, St is the fibre product S×P1 Spec(k(t)).
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If s is a section of φ, then the analogous pullback gives a point st ∈
St(k(t)) which we can take as the O-point for an elliptic curve structure
on St. When we talk about a fibration with a section, it is to be assumed
that we are considering St as an elliptic curve with st as O. The surface S

can be recovered from the generic fibre St, being isomorphic to the Minimal
(Curve) Model over P1 of St/k(t), which is characterised as a non-singular
flat, proper scheme over (the Dedekind scheme) P1, whose generic fibre is
isomorphic to St/k(t) and which has no −1-curve as a component of any fibre.
For more information on minimal models of curves, see [28, Chapter XIII].

As we shall see shortly, S has infinitely many elliptic fibrations up to
equivalence. For any K3 surface, however, there are only finitely many classes
of elliptic fibrations up to the action of AutS. There are some cases, using
lattice computations on the full PicS, where a complete set of classes have
been calculated (e.g. [69, 70, 71] or more recent papers [19] and [9]), but
we have not attempted to carry out such a computation here. Instead, we
have used a method, described in the next subsection, for computing elliptic
fibrations, which is independent of the knowledge of the full Picard group,
and produces a large number of inequivalent fibrations when applied to S

and the set of −2-curves from the last section. An interesting subset of
these fibrations, which we have used for various computations, will be given
explicitly in the following subsections.

4.2. General method and results for the Drell–Yan surface

Consider a collection of −2-curves, {Ci}i∈I , on a smooth projective surface.
Let

D =
∑
i∈I

miCi

be an effective divisor supported on a subset of the {Ci}. We refer to D

as a Kodaira fibre when the configuration of the curves occurring in D is
that of one of Kodaira’s singular fibres for an elliptic fibration and they
occur in D with the correct multiplicities for that type of fibre (see, e.g., [5,
Section V.7]). For example, C1 + C2 + C3 is a Kodaira fibre of type I3 if Ci

and Cj meet transversally in a single point, for 1 ≤ i < j ≤ 3, and the three
intersection points are distinct.

The terminology that we use to refer to the type of a Kodaira fibre is
primarily the Dynkin style (apart from using In+1 rather than Ãn) In, D̃n

and Ẽn. Types II, III and IV do not occur in this paper.
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Lemma 4.4. (a) A Kodaira fibre D on a K3 surface X is always a sin-
gular fibre for an elliptic fibration of the surface. The associated linear
system |D| is base-point free of dimension 1 and the associated map
φD : X → P1 gives the elliptic fibration.

(b) Distinct Kodaira fibres D1, . . . , Dn lead to the same elliptic fibration
up to equivalence if and only if they are pairwise disjoint (i.e., non-
intersecting), in which case they give different singular fibres of that
fibration.

Proof. (a) Essentially, this is just [83, Lemma 1.1], following easily from
Theorem 4.2, cf. [19, Theorem θ, p. 13].

(b) Consider the fibration determined by D1. Since the curves in the
other Di do not intersect D1, they cannot cover the base P1 of the fibration.
Thus they lie in fibres distinct from D1. Each Di is connected, so lies in a
single fibre. By Lemma 1.2 loc. cit (essentially Zariski’s lemma for fibres),
and the facts (from the definition of a Kodaira fibre) that Di.Di = 0 and Di

has an irreducible component of multiplicity 1, so can’t be a multiple of a
fibre, each Di is the entire fibre. The fibres are distinct because the Di are
pairwise disjoint.

Remark 4.5. Equivalent elliptic fibrations have the same set of fibres and
are completely determined by any one of those fibres. The fibres are all ra-
tionally equivalent and are the effective divisors of a single linear system |D|.
The fibration is the one corresponding to that linear system up to equiva-
lence: φ is the map to P1 associated to |D|.

The method. Let Y be a K3 surface on which many −2-curves are known.
The method consists in constructing elliptic fibrations by searching for Ko-
daira fibres supported on these curves. Additionally, we hope to find explicit
sections for a fibration from amongst the same set of curves.

1. Let S be a finite set of known −2-curves on Y .
2. Compute the intersection matrix M of the curves in S.
3. Find all the Kodaira fibres supported by curves in S (purely combina-

torial).
4. Compute the elliptic fibration for interesting Kodaira fibres D, i.e.,

compute the Riemann–Roch space for D.
5. For a Kodaira fibre D, find a section in S of the elliptic fibration

determined by D, i.e., find a −2-curve C supported in S such that
D.C = 1.
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Remark 4.6. For the computations on the surface S in this paper, the set S
is defined below. The matrix M has been computed using a Magma function-
ality to determine the intersection numbers between the strict transforms
of divisors on the singular surface model and the exceptional divisors and
also the local intersection numbers between the strict transforms over the
singular points. We automated Step 3 of this method with a function that
takes M as argument. Step 4 was achieved using a slightly adapted version of
Magma’s standard Riemann–Roch functionality. The computations also made
use of the Magma function to impose additional Riemann–Roch conditions
at singular points on the surface in order to handle the exceptional divisors
correctly. See the file attached [10].

We have the −2-curves Li, 1 ≤ i ≤ 7, and C1, C2 along with the fourteen
Ei,j exceptional divisors from the last section. Also, we have the transforms
of the Li and Cj under the w �→ −w automorphism of S. We denote these
transforms by L̃i and C̃j . Finally, we consider one final curve C3 and its
transform C̃3, where C3 was also found as in Section 3 and is the strict
transform on S of

C ′
3 : x

2 + yz = 0, xy2 − y2z − xz2 − yz2 − w = 0.

Then we define

S := {Li, L̃i : 1 ≤ i ≤ 7} ∪ {Ci, C̃i : 1 ≤ i ≤ 3} ∪ {Ei,j},

a set of thirty-four −2-curves on S. In summary, we found the following
results for S.

Theorem 4.7. Let Γ ⊂ AutS be the subgroup of automorphisms generated
by w �→ −w and

√
5 �→ −

√
5. Then on S there are

• 105,856 Kodaira fibres supported on S, leading to
• 104,600 different genus 1 fibrations, 86,416 having a section in S;
• 29,111 fibrations inequivalent up to action of Γ, of which 27,807 have

a section and 24,270 have a section in S.

There are Kodaira fibres of types In, 2 ≤ n ≤ 14 and n = 16; D̃n, n ≤ 4 ≤ 10

and n ∈ {12, 14, 16}; and Ẽ6, Ẽ7, Ẽ8.

Proof. By explicit computations. See the file attached [10]. We note that our
program for finding configurations of (−2) curves in S that give Kodaira
fibres would label any type III fibres as I2 and any type IV fibres as I3.
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These pairs of type configurations are indistinguishable purely from inter-
section numbers. However, as explained in the attached file, we checked that
no three curves in S meet in a single point and no pair intersect tangentially.
Thus, no type III or IV fibres can occur here.

Remark 4.8. The number of distinct bad fibres entirely supported on S in
the various cases ranges from 1 to 5. The four-fibre cases have I10, I2, I2, I2
or I8, D̃5, I2, I2 type S-supported fibres and the single five-fibre case has
I6, I6, I6, I2, I2 type S-supported fibres. We have not computed the full sets
of bad fibres in every case or attempted to determine how many classes of
fibrations the 104,600 give under the full action of AutS (and Gal(Q/Q)).
They surely are many fewer in number than 29,111.

The following lemma gives the S-Kodaira fibre data for three particular
fibrations to be used in the next section of the paper. Explicit forms are given
in the next three subsections. We note now that the first two have infinite
Mordell–Weil groups, so by a result of Nikulin (cf. [68, Theorem 9]), there
are infinitely many inequivalent elliptic fibrations!

Lemma 4.9. (a) There is an elliptic fibration of S over Q with three bad
fibres consisting entirely of curves in S:

(i) an I6 fibre, L1 + E2,1 + E2,−1 + L̃1 + E5,−1 + E5,1;
(ii) an I6 fibre, L̃7 + L7 + E4,2 + E4,1 + E4,−1 + E4,−2;
(iii) a D̃4 (I∗0 ) fibre, L2 + L̃2 + E3,−1 + E3,1 + 2E3,0;

where the sums for the I6 fibres give the components in cyclic order.
The Li and L̃i not occurring in one of these fibres along with the Ci, C̃i

and E5,−2, E5,2 all give sections of the fibration.

(b) There is an elliptic fibration of S over Q with four bad fibres consisting
entirely of curves in S:

(i) an I10 fibre, L6+L1+E5,1+E5,−1+L̃1+L̃6+E4,2+E4,1+E4,−1+E4,−2;
(ii) an I2 fibre, C1 + C̃1;
(iii) an I2 fibre, C2 + C̃2;
(iv) an I2 fibre, C3 + C̃3;

where the sum for the I10 fibre give the components in cyclic order.
The curves L5, L̃5, L7, L̃7, E2,1, E2,−1, E3,1, E3,−1, E5,2, E5,−2 all give sec-

tions of the fibration. All other curves in S apart from these and the ones
occurring in the above fibres give 2-sections or lie in other bad fibres.

(c) There is a genus 1 fibration of S over Q(
√
5) with two bad fibres consisting

entirely of curves in S:
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(i) an Ẽ8 (II∗) fibre, 6E4,−2+5E4,−1+4E4,1+4L6+3L̃3+3L5+2E1,1+
2E2,1 + E2,−1;

(ii) another Ẽ8 (II∗) fibre, 6L̃2 +5E5,−2 +4E5,−1 +4E3,0 +3L4 +3E5,1 +
2E3,−1 + 2E5,2 + L7.

The fibration has no sections. However, there are a number of 2-sections
provided by curves in S: in particular, L̃6.

Proof. This follows from the computations described above. The fact that
the fibration in (c) has no section comes from the intersection matrix M ,
which shows that the intersection number of each curve in S with either
fibre is even. Note that S generates PicS (cf. Theorem 3.10).

4.3. First elliptic fibration

Proposition 4.10. (a) The generic fibre St/Q(t) of the elliptic fibration of
Lemma 4.9 (a) has a Weierstrass equation

E1 : y
2 = x3 + (t− 1)2(t2 + 6t+ 1)x2 − 16t3(t− 1)2x.

(b) The full set of bad fibres for this fibration is given by the following fibres.

• The I6, I6, I
∗
0 fibres (i),(ii) and (iii) of Lemma 4.9.

They lie over t = ∞, 0, 1, respectively.
• An I2 fibre over t = −1 with components E1,1 and the strict transform

on S of the pullback on X of the plane curve x+ z = 0.
• Four I1 fibres over the points satisfying t4 + 8t3 − 2t2 + 8t+ 1 = 0.

(c) The group of points on E1(Q(
√
5)(t)) generated by the S-sections listed

in Lemma 4.9 is isomorphic to

Z/2Z⊕ Z⊕ Z ,

where the first summand is generated by the 2-torsion point (0, 0) and the
two free ones are generated by the points

P1 = (4t(t−1),−4t(t+1)(t−1)2) and P2 = (4t3(t−1),−4
√
5t3(t+1)(t−1)2).

Proof. (a) Using Magma, the Riemann–Roch space for Kodaira fibre (i) of
Lemma 4.9(a) gives the fibration map

S −→ P1 [x : y : z : w] �→ [z : x] .
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Letting t = z/x, we computed a singular plane model of St in weighted
projective space P(1, 2, 1) over Q(t) with variables a, b, c via the substitution
x = (1/t)c, y = a, z = c, w = bc of the form b2 = f(a, c) for a homoge-
neous quartic f . We also computed the Q(t)-rational (non-singular) point
corresponding to the L5 section on this model of St. Then a curve Riemann–
Roch computation using Magma’s function field machinery gives a Weierstrass
model for St, which is easily simplified to the E1 model given. The explicit
isomorphism from the singular plane model to E1 is messy, and we do not
write it down here, but it can be derived from the computations in the at-
tached file [10], which contains full details of all of the above.

(b) This follows easily from applying Tate’s algorithm to the E1 model.
(c) The points in E1(Q(

√
5)(t)) corresponding to the sections were com-

puted firstly on the plane model of St via the variable substitution given in
(a), and then on E1 using the explicit map from St to it. The result is then
an easy lattice computation given the canonical height pairings between the
points, which were computed for simplicity with the standard Magma intrinsic
HeightPairingMatrix. Note that we could have also just used the intersec-
tion pairings from the matrix M , from which canonical heights are easily
deduced since S is the minimal model of St. More computational details are
in the attached file [10]

Remark 4.11. There is a t �→ 1/t symmetry and setting s = t+ (1/t)− 2,
we see that E1 is the base change under Q(s) ↪→ Q(t) of Y 2 = X3 + s(s +

8)X2 − 16sX, which is the generic fibre of a rational elliptic surface.

4.4. Second elliptic fibration

Proposition 4.12. (a) The generic fibre St/Q(t) of the elliptic fibration of
Lemma 4.9 (b) has a Weierstrass equation

E2 : y
2 = x3 − (3t4 + 8t3 − 2t2 − 1)x2 + 16t5(t2 + t− 1)x.

(b) The full set of bad fibres for this fibration is given by the following fibres.

• The I10, I2, I2, I2 fibres (i),(ii),(iii) and (iv) of Lemma 4.9.
They lie over t = 0,−(

√
5 + 1)/2, (

√
5− 1)/2,∞, respectively.

• An I4 fibre over t = 1 with components L2, L̃2, E3,0 and the strict
transform on S of the pullback on X of the plane curve x− y = 0.

• An I2 fibre over t = −1.
• Two I1 fibres over the points satisfying t2 + (2/9)t+ (1/9) = 0.
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(c) The group of points on E2(Q(t)) generated by the S-sections listed in the
lemma (all images are defined over Q(t)) is isomorphic to

Z/2Z⊕ Z ,

where the first summand is generated by the 2-torsion point (0, 0) and the
free one is generated by the point

P3 = (4t3, 4t3(t2 − 1)) .

Proof. Entirely analogous to the proof of Proposition 4.10. Here we find the
elliptic fibration map

S −→ P1 [x : y : z : w] �→ [x(y + z) : x2 + yz]

and use the P1 parameter t = x(y + z)/(x2 + yz) and the E2,−1 section to
give a Q(t)-point on St. Again, see [10] for computational details and explicit
transformation maps.

4.5. Third elliptic fibration

The third example of Lemma 4.9 is a genus 1 fibration with no section.
As shown in Section 5, however, this fibration provides a Shioda–Inose-type
structure that furnishes much useful arithmetic and geometric information
about S.

Proposition 4.13. (a) The generic fibre St/Q(
√
5)(t) of the genus 1 fibra-

tion of Lemma 4.9 (c) is given by the quartic equation

ty2 = x4 + ((−116
√
5 + 272)t2 + (66

√
5− 148)t− 34

√
5 + 76)x3+

((−23664
√
5 + 52974)t4 + (62037

√
5− 138785)/2t3+

(−71882
√
5 + 160725)/2t2 + (39297

√
5− 87871)/2t+

(−3876
√
5 + 8667)/2)x2 + ((−2096932

√
5 + 4689008)t6+

(8789895
√
5− 19655187)/2t5 + (−14213809

√
5 + 31783015)/2t4+

(14281062
√
5− 31933423)/2t3 + (−10526810

√
5 + 23538663)/2t2+

(5316367
√
5− 11887758)/2t+ (−98209

√
5 + 219602)/2)x+

((−69643152
√
5 + 155726921)t8 + (191265401

√
5− 427682729)t7+

(−1317057443
√
5 + 2945029977)/4t6+
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(2349501743
√
5− 5253645563)/8t5+

(−1901993416
√
5 + 4252986577)/16t4+

(19147095
√
5− 42814206)/4t3 + (−250668666

√
5 + 560512177)/8t2+

(610197963
√
5− 1364444125)/8t+ (−7465176

√
5 + 16692641)/16) .

(b) The full set of bad fibres for this fibration is given by the following fibres.

• The II∗ fibres (i) and (ii) of Lemma 4.9. They lie over t = ∞, 0,
respectively.

• Four I1 fibres over the points satisfying t4 − (1118
√
5 + 2598)/27t3 −

(89700
√
5 + 200362)/27t2 − (1118

√
5 + 2598)/27t+ 1 = 0.

Proof. Note that there is no fibration over Q in this case since the image of
Kodaira fibre (i) D under

√
5 �→ −

√
5 is not a fibre of the same fibration (it

has non-zero intersection with D).
(a) The Riemann–Roch computation for Kodaira fibre (i) in Lemma 4.9

is much longer and harder in this case than in the previous two. A fibration
map was returned of the form S → P1, (x : y : z : w) �→ (b1 : b2), where b1
and b2 are two degree 9 weighted polynomials in x, y, z, w which we do not
write down here, but are in [10].

As usual, letting t = b1/b2, we then computed a model for the generic
fibre St of the fibration as a degree 10 plane curve C over Q(

√
5)(t). Us-

ing the degree 2 divisor D on C provided by L̃6, and performing another
Riemann–Roch computation for D on a non-singular embedding of C in P9,
we explicitly determined the 2-to-1 cover St → P1 corresponding to D. Fi-
nally, a standard computation using differentials gave us the equation for St

in the statement. This is laid out in [10].
(b) By the choice of b1, b2, the bad fibres over 0 and ∞ are the two

II∗ fibres. To compute the other bad fibres, a t = s2 substitution (giving
a base change unramified over 0,∞) allows the transformation to a Weier-
strass cubic model over Q(s) and standard application of Tate’s algorithm.
This shows that the only other bad fibres of St are I1 fibres at the stated
points.

Remark 4.14. Shioda–Inose structures associated with this fibration are
made explicit in Section 5. We briefly include some extra information on
that topic here.

There is a Nikulin involution ι [63, Section 5], which is an involution of S
over Q(

√
5) which swaps the two II∗ fibres and for which the desingularised

quotient Y = S/〈ι〉 is a Kummer surface.
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From the explicit quartic equation of Proposition 4.13 (a), it is not too
hard to show that ι is the involution of S associated with the isomorphism
ι∗ of the function field k(S) = k(t, x, y) (k = Q(

√
5))

ι∗ : k(t, x, y) ∼= k(t, x, y)

t �→ 1/t x �→ αx+ β y �→ −γy

where

α = t−2

(
t+ e

et+ 1

)
,

β = ((3035− 1302
√
5)/38)

(
(t− 1)(t2 + ft+ 1)

t2(et+ 1)

)
,

γ = tα2,

with

e = (138 + 67
√
5)/19 f = (2770 + 1324

√
5)/355 .

The following diagram commutes

S
ι−→ S

↓ ↓
P1 t �→1/t−→ P1

and Y has a genus 1 fibration with generic fibre over k(s), s = t+ (1/t)− 2,
with quartic equation sy21 = F (x1) for a degree 4 monic polynomial F over
k(s). Here x1 = x+ ι∗(x) and y1 is an element of k(s) times y+ ι∗(y). We do
not write down the polynomial F but it comes from the explicit computation
of k(s, x1, y1) = k(t, x, y)〈ι

∗〉. This computation and the explicit F are in [10].
The surface Y is the minimal model over P1 of this genus 1 curve over k(s).

5. Computation of the Shioda–Inose structure

In this section, we exhibit an explicit Shioda–Inose structure of the surface
SDY ; in doing so, we closely follow the exposition in [63] and [66].

Let X be any smooth algebraic surface over C. The singular cohomology
group H2(X,C) admits a Hodge decomposition

H2(X,C) ∼= H2,0(X)⊕H1,1(X)⊕H0,2(X).
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The Néron–Severi group NS(X) of line bundles modulo algebraic equiva-
lences naturally embeds into H2(X,Z) and can be identified with H2(X,Z)∩
H1,1(X). This induces a structure of a lattice on NS(X). Its orthogonal com-
plement in H2(X,Z) is denoted by TX and is called the transcendental lattice
of X. We denote by Λ(n) the lattice with bilinear pairing 〈·, ·〉Λ(n) = n〈·, ·〉Λ.
Recall that for a K3 surface the notions of Picard group and Néron–Severi
group coincide (cf. [51, Proposition .2.4]).

If X is a K3 surface the lattice H2(X,Z) is isometric to the lattice
U3 ⊕ E8(−1)2 where E8(−1) denotes the standard E8–lattice with oppo-
site pairing, corresponding to the Dynkin diagram E8. The lattice U is the
hyperbolic lattice which is generated by vectors x, y such that x2 = y2 = 0

and x.y = 1. Moreover, dimH2,0(X) = 1. Any involution ι on X such that
ι∗(ω) = ω for a non–zero ω ∈ H2,0(X) is called a Nikulin involution.

It follows from [67, Section 5] (see also [63, Lemma 5.2]) that every
Nikulin involution has eight isolated fixed points and the rational quotient
π : X ��� Y by a Nikulin involution gives a new K3 surface Y .

A given lattice L has a Hodge structure if L⊗C has a Hodge decomposi-
tion, cf. [89, Chapter 7]. There exists a Hodge isometry between two lattices
with a Hodge structure if they are isometric and the isometry preserves the
Hodge decompositions, cf. [63, Definition 1.4].

Definition 5.1 ([63, Definition 6.1]). A K3 surface X admits a Shioda–
Inose structure if there is a Nikulin involution on X and the quotient map
π : X ��� Y is such that Y is a Kummer surface and π∗ induces a Hodge
isometry TX(2) ∼= TY .

Every Kummer surface admits a degree 2 map from an abelian surface A.
It follows from [63, Theorem 6.3] that if X admits a Shioda–Inose structure
(Figure 1) then TA

∼= TX . This follows from the fact that the diagram induces

A X

Y

Figure 1: Shioda–Inose structure.

isometries TA(2) ∼= TY and TX(2) ∼= TY . Alternatively, this is equivalent to
the existence of an embedding E8(−1)2 ↪→ NS(X).
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5.1. Shioda–Inose structure on the Drell–Yan K3 surface

Let S be the model of the Drell–Yan K3 surface introduced in Section 4 in
Proposition 4.13. The pullback of the generic fibre St by the map t �→ t2

produces a Kummer surface K with an explicit elliptic fibration I. The fiber
It above the point t has equation

y2 = x3 +
1

6

(
−45

√
5− 71

)
t4x+

1

2

(
3−

√
5
)
t8+

1

27

(
−189

√
5− 551

)
t6 +

1

2

(
3−

√
5
)
t4.

Let E(a, b) and E(c, d) be the two elliptic curves defined by

E(a, b) : y2 = x3 + ax+ b ,

E(c, d) : y2 = x′ 3 + cx′ + d .

Consider the abelian surface E(a, b) × E(c, d) given by the product of the
two elliptic curves defined above, and let [−1] denote the automorphism
of E(a, b) × E(c, d) given by multiplication by −1. Taking the quotient of
E(a, b)× E(c, d) by [−1], we obtain a Kummer surface which has a natural
elliptic fibration with parameter u:

x3 + ax+ b− u2(x′ 3 + cx′ + d) = 0.

This can be converted into the following Weierstrass model, cf. [55, §2.1]

(13) Y 2 = X3 − 3acX +
1

64
(ΔE(a,b)u

2 + 864bd+
ΔE(c,d)

u2
) .

The elliptic fibration I is isomorphic to (13). Hence, we obtain the following
system of equations:

A2 − 5 = 0 ,

1411985089− 631459755A+ 18ac = 0 ,

131587540863282− 58847737271814A+ 108c3 + 729d2 = 0 ,

−238992218766044 + 106880569389324A− 1458bd = 0 ,

131587540863282 + 108a3 − 58847737271814A+ 729b2 = 0 .
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Let P be the scheme defined by the above system of equations. Let K =
Q(α, β) denote the number field where

α =

√√
5 + 1

2
, β =

3

√√
2− 1.

Remark 5.2. K is isomorphic to Q[x]/
(
x24 − 24x18 − 18x12 + 24x6 + 1

)
.

The scheme P has exactly four K-rational points Pi = (ai, bi, ci, di), i =
1, 2, 3, 4, ai, bi, ci, di ∈ K. Each point Pi determines a pair of elliptic curves
E(ai, bi), E(ci, di) and an abelian surface A(Pi) = E(ai, bi) × E(ci, di). For
any two i, j ∈ {1, 2, 3, 4} there exists exactly one automorphism σi,j : K → K
such that A(Pi) is equal to the conjugate abelian surface A(Pj)

σi,j . Assume
that S admits a Shioda-Inose structure with the abelian variety A(Pj) for
some j ∈ {1, 2, 3, 4}. Thus TS is Hodge isometric to TA(Pj). Since S is defined
over Q it is equal to all conjugates Sσi,j . Hence TS = TSσi,j

∼= TA(Pj)
σi,j =

TA(Pi) for every i �= j. It follows that the lattices TA(Pi) are Hodge isometric
to each other. Hence, we fix one Shioda-Inose structure given by the following
coordinates:

A =
√
5 ,

a =
1

6

(
10611

√
2− 18087

√
5− 4775

√
10 + 40515

)
β ,

b =
1

27

(
−4779461

√
5 + 26

√
2
(
113888− 50921

√
5
)
+ 10686297

)
α ,

c =
1

6

(
16

(
832

√
5− 1869

)√
2 + 8537

√
5− 19293

)
β2 ,

d =
1

27

(
26

(
50921

√
5− 113888

)√
2− 4779461

√
5 + 10686297

)
α .

Let E(d) denote the quadratic twist by d of an elliptic curve E . Let Eμ,ν

denote the elliptic curve given by

y2 = x3 + 4x2 + 2(1− 4μ
√
2− 3ν

√
5)x ,

with μ, ν = ±1. The elliptic curve E(a, b) is isomorphic to E1 := E1,1 and
E(c, d) is isomorphic to E2 := E

(−1)
−1,1 ; both isomorphisms are a priori only

defined over Q. Let K4 = Q(
√
2,
√
5).

Proposition 5.3. The Kummer surface K = Kum(E1, E2) attached to the
abelian variety E1 × E2 is isomorphic to the elliptic surface I over the
quadratic extension K4(η)/K4, where η =

√
117

√
2 + 74

√
5 + 37

√
10 + 117.
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Proof. The natural elliptic fibration on K is provided by the genus 1 curve

Kt : x
3 +4x2 +2(1− 4

√
2− 3

√
5)x− t2(y3 − 4y2 +2(1+ 4

√
2− 3

√
5)y) = 0.

It follows from a direct computation that the Weierstrass form of Kt·η is
isomorphic over K4(t) to It.

Let E256.1−i2 denote the elliptic curve defined in [61, Elliptic Curve
4.4.1600.1-256.1-i2]. Its Weierstrass equation is

E256.1−i2 : y
2 = x3 + 2

(√
2 + 1

)
x2 +

1

2

(
−10

√
2− 9

√
5− 6

√
10− 13

)
x.

The curve E256.1−i2 is a quadratic twist of E1,1 by the element κ = 1
2+

1√
2
. Let

L1 denote the degree 8 L-function over Q of the elliptic curve E256.1−i2. Let ρ
denote the unique 2-dimensional Artin representation of the field Q(1/

√
κ) =

Q[x]/(−4+4x2+x4) and let Lρ be the degree 2 L-function over Q associated
with ρ. Let L2 denote the degree 8 L-function over Q associated with E1,1.
We denote by Lp(L) the p-th Euler factor of the L-function L.

Proposition 5.4. For each prime p �= 2, 5 we have the equality

Lp(L1 ⊗ Lρ, s) = Lp(L2, s)
2.

Proof. The conclusion follows from the fact that both elliptic curves are
related by a quadratic twist by κ. Hence, the tensor product of the L-function
L1 by the Artin L-function Lρ is equal to a square of the L-function of E1,1

up to finitely many factors. We verify by a direct computation that those
factors correspond to primes p = 2, 5.

We are now ready to prove that E1 is modular in two different ways, i.e.
it corresponds to a certain Hilbert modular form and since it is a Q-curve
it also corresponds to a classical modular form over Q. Since the curve E1

is a twist of E256.1−i2 and the latter curve has smaller conductor norm we
explicitly prove the modularity of that curve instead.

Lemma 5.5. The elliptic curve E1 is a Q-curve, i.e. it is isogenous over Q

to every Galois conjugate curve Eσ
1 for an automorphism σ ∈ Gal(Q/Q).

Proof. We have the following isomorphisms over K4:

E1,1 = E1, E−1,1
∼= E

(−1)
2

E1,−1
∼= G(2), E−1,−1

∼= F (−2)

https://www.lmfdb.org/EllipticCurve/4.4.1600.1/256.1/i/2
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To prove the lemma it is enough to find an isogeny from E1 to each curve
E2, G and F .

Consider the map φ : E1 → E2 defined by

(14) φ(x, y) = (φx(x), φy(x, y))

where

φx(x) :=
x

(
7x2 + 6

(√
2 + 5

)
x− 2

√
5(x+ 3)

(√
2x+ 3

)
+ 54

)
9x2−6

(
3
√
5+

√
2
(√

5+3
)
+1

)
x+18

√
5 + 4

√
2
(
5
√
5 + 9

)
+ 74

,

φy(x, y) :=
1

Dy(x)

(
(63x+ 142)x−

√
5(((11x+ 23)x+ 34)x+ 72) +

+
√
2
(
((17x+38)x+82)x− 2

√
5((9x+ 19)x+ 12) + 72

)
+ 192

)
y,

Dy(x) := −27x3 + 27
(
3
√
5 +

√
2
(√

5 + 3
)
+ 1

)
x2 +

− 18
(
9
√
5 + 2

√
2
(
5
√
5 + 9

)
+ 37

)
x+

+ 8
(
54
√
5 +

√
2
(
32
√
5 + 81

)
+ 95

)
.

The map φ is an isogeny of degree 3; the kernel of φ is generated by a
point with x-coordinate 1/3(

√
5 + 3)

√
2 + 1/3(3

√
5 + 1).

The isomorphism E1[2](K4) ∼= Z/2Z implies that there exists a unique
2-isogeny ψ : E1 → F over K4. Similarly, since E2[2](K4) ∼= Z/2Z, it follows
that there exists a unique 2-isogeny ψ′ : E2 → G over K4 from E2 with
kernel E2[2].

Remark 5.6. There exists also a 7-isogeny from E1,1 to the elliptic curve

Ẽ : y2 = x3 + 4
(
18
√
10 + 49

)
x2+(

−7888
√
2− 5046

√
5 + 3528

√
10 + 11282

)
x,

which is induced by the cyclic subgroup generated by the point with x-
coordinate (

√
5− 5)

√
2− 3

√
5 + 3. In total we have a cubic configuration of

2, 3, 7 isogenies, cf. Figure 2.

An elliptic curve E over a totally real field K is Hilbert modular if there
exists a Hilbert newform f over K of parallel weight 2 and rational Hecke
eigenvalues such that the L-functions L(E, s) and L(f, s) are equal.
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Ẽ ∗

E1,1 E
(−1)
−1,1

∗ ∗

E
(−2)
−1,−1 E

(2)
1,−1

Figure 2: Left-to-right maps: degree 3; top-to-bottom maps: degree 2; back-
to-front maps: degree 7. A star denotes an explicit elliptic curve which can
be computed from the given isogeny.

Lemma 5.7. The elliptic curve E256.1−i2 is Hilbert modular. The corre-
sponding Hilbert modular form has conductor norm 256 and is identified by
the following label [61, Hilbert form 4.4.1600.1-256.1-i].

Proof. The field K4(ζ5) is a quadratic extension of K4 = Q(
√
2,
√
5) where

ζ5 is a primitive root of unity of degree 5. The 5-division polynomial of
E256.1−i2 is irreducible over K4(ζ5), hence the image of the modulo 5 Galois
representation ρ = ρE256.1−i2,5 associated with E256.1−i2 is not contained in
the Borel subgroup and thus the image of ρ is absolutely irreducible, cf. [38,
Prop. 2.1]. It follows from [30, Thm. 1] that the elliptic curve E256.1−i2 is
Hilbert modular. For the conductor norm 256 there are exactly 9 Hilbert
newforms which could correspond to E256.1−i2. A comparison of the L-series
coefficients of E256.1−i2 with those of the list of modular forms for several
small primes reveals that the correct match is the form with a label [61,
Hilbert form 4.4.1600.1-256.1-i].

Definition 5.8. A Hilbert modular form H defined over F is a base change
of a form f defined over E if the L-functions satisfy the condition

L(H, s) =
∏

χ∈Gal(F/E)∨

L(f ⊗ χ, s).

Remark 5.9. The definition of a base change is extracted from a general
notion of a base change for GL(2) forms, cf. [57].

https://www.lmfdb.org/ModularForm/GL2/TotallyReal/4.4.1600.1/holomorphic/4.4.1600.1-256.1-i
https://www.lmfdb.org/ModularForm/GL2/TotallyReal/4.4.1600.1/holomorphic/4.4.1600.1-256.1-i
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Corollary 5.10. The Hilbert modular form H identified with the label [61,
Hilbert form 4.4.1600.1-256.1-i] is a base change of the classical modular
form f of weight 2 and level 160 (identifier [61, Newform 160.2.f.a]). In
particular the Weil restriction ResK4

Q E256.1−i2 of E256.1−i2 is isogenous to
the Q-factor Af of the modular Jacobian J(X1(160)) which corresponds to f .
Moreover for every prime number p and a prime ideal p over p it follows that
ap(H) = aσ(p)(H) for every σ ∈ Gal(K4/Q).

Proof. The Hilbert newform H has trivial character and is defined over K4 =
Q(

√
2,
√
5), a biquadratic extension of Q. Hence, if it came from a base

change of a form f without twist, the character of the form f is of order at
most 2. The field K4 is ramified only at 2 and 5 and the level norm of H
is a power of 2. The weight of the form f is 2. Assuming K4 is a minimal
splitting field, the dimension of the abelian variety attached to f over Q is 4.
The trace of each coefficient of the form f is 4 times the Hecke eigenvalue
of H. The primes 31, 41, 71 and 79 are totally split in K4 and so it would
follow that

(15) a31(f) = −16, a41(f) = 0, a71(f) = 48, a79(f) = 16.

There exists a unique newform f of level 160 with character (10/·) and such
that (15) holds.

The group of inner twists of the form f is isomorphic to C2 × C2 and
that implies the modular abelian fourfold Af attached to f defined over Q is
isogenous over Q to a product

∏
σ∈Gal(K4/Q)E

σ
256.1−i2, cf. [42]. By base change

of f to H, the elliptic curve E256.1−i2 is modular over K4. The conductor
of the imprimitive L-function of f is 220 · 54 and the conductor of an L-
function of E1,1 over K4 is Δ(K4)

2 · Nm(N) where N is the level of the
Hilbert modular form. By comparison we conclude that Nm(N) = 256. This
restricts the search to 9 isogeny classes of Hilbert modular forms and the
computation of the eigenvalues for the primes of norm 9 allows us to decide
on the correct class.

Theorem 5.11. Let E1, E2 be the two elliptic curves defined over the field
K4 = Q(

√
2,
√
5) by the following equations:

E1 : y
2 = x3 + 4x2 + 2(1− 4

√
2− 3

√
5)x ,

E2 : y
2 = x3 − 4x2 + 2(1 + 4

√
2− 3

√
5)x .

They are 3-isogenous over K4. There is a Shioda–Inose structure on S with
the Kummer surface Kum(E1 ×E2). Let p ≥ 7 be a prime number. We have

https://www.lmfdb.org/ModularForm/GL2/TotallyReal/4.4.1600.1/holomorphic/4.4.1600.1-256.1-i
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/160/2/f/a/
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that

|S(Fp)| = 1 + 17p+

(
1 +

(
5

p

))
p+ μ(p) + p2

with μ(p) = ap(f)
2 − ε(p)p satisfying where ε(p) = (10p ) is a Kronecker

quadratic character.
Moreover, for p ≥ 7 the number of points over Fp2 satisfies the formula

|S(Fp2)| = 1 + 18p2 + t(p)2 + p4,

where t(p) is the trace of the Frobenius on Fp2 acting on the reduction of the
curve E1.

Proof. It follows from Proposition 4.12 that there exists a basis of the Néron–
Severi group of S in which all the elements of the basis are defined over Q

except for the components not intersecting the zero section of the singular
fibres above t = 1

2(−1±
√
5). Under the action of an element σ ∈ Gal(Q/Q)

such that σ(
√
5) = −

√
5 the two components are permuted. Hence we con-

clude by Grothendieck–Lefschetz trace formula [45, Appendix C §4] that for
a prime number p of good reduction for S we have

|S(Fp)| = 1 + 17p+

(
1 +

(
5

p

))
p+ μ(p) + p2.

Let H = HQ�
denote the orthogonal complement of the image of NS(SQ,Q	)

in H2
et(SQ,Q	). For a prime p �= � of good reduction for S there is a natural

isomorphism s : H2
et(SQ,Q	) ∼= H2

et(SFp
,Q	). The number μ(p) is the trace of

the Frobenius endomorphism Frobp acting on the space s(H) of dimension 3.
From the existence of the Shioda–Inose structure on S we know that

the structure is determined by two elliptic curves Ea,b and Ec,d. We find
isomorphic (over Q) models of Ea,b and Ec,d, respectively E1 and E2. It
follows from Proposition 5.3 that the space s(H) and Sym2H1

et((E1)Fp
,Q	)

are isomorphic as Gal(Fp/Fp4)-modules. This follows from the existence of
the 3-isogeny between E1 and E2.

The surface S is isomorphic to the Inose fibration over K8=Q(
√
2,
√
5, η)

due to Proposition 5.3. The Galois group of the field K8 is C2 ×D4. So, if
the eigenvalues of the Frobenius Frobp2 acting on H1

et((E1)Fp
,Q	) are α, β,

then the eigenvalues of Frobp2 acting on Sym2H1
et((E1)Fp

,Q	) are α2, β2, αβ

and hence the trace of Frobp2 on Sym2H1
et((E1)Fp

,Q	) is the same as the
trace of Frobp2 on H. Hence, the formula for the number of points in S(Fp2)
follows.
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The elliptic curves E1 and E2 are quadratic twists by 1
2 +

1√
2

of E256.1−i2

and E256.1−i1, respectively. A Kummer surface Kum(E × F) associated to
two elliptic curves E , F is provided as a resolution of the double sextic
y2 = fE(x)fF (x′) where fE , fF are the cubic polynomials attached to the
Weierstrass equation of E and F . A simultaneous twist of E and F by an
element d provides a Kummer surface Kum(E(d)×F (d)) which is isomorphic
to Kum(E ×F) over the base field. It can be verified by a suitable change of
coordinates.

Hence, we can replace in our considerations the product E1×E2 with the
product E256.1−i2×E256.1−i1. Since the elliptic curves E256.1−i1 and E256.1−i2

are Hilbert modular and the corresponding form is a base change of the
form f it follows that ap(f)

2 ∈ Z. Therefore the symmetric square motive
M = Sym2(M(f)) of the modular motive M(f) is defined over Q and
has coefficients in Q, cf. [77, Theorem 1.2.4]. Its �-adic realisation has trace
μ(p) = ap(f)

2 − (10p )p.

5.2. Supersingular reduction

The Drell–Yan K3 surface has Picard rank 19 in characteristic 0. When
we reduce to characteristic p the Picard rank can jumps to 20 (ordinary
reduction) or 22 (supersingular reduction). We describe here under what
conditions we have a supersingular reduction.

Conjecturally, based on the Lang–Trotter heuristic [56], [33, Remark] the
set of supersingular primes has density zero among all primes. However, the
result of Elkies [33] proves that the there are infinitely many supersingular
primes for the surface S. The sparseness of the set of supersingular primes
provides a quantitative reason for why the proof of Proposition 3.5 was pos-
sible with a choice of two small primes of non-supersingular reduction. In
contrast, an argument such as that in Proposition 3.5 for a given K3 surface
of Picard rank 20 might require to use much larger prime numbers since the
Picard rank jumps from 20 to 22 happen for a positive density of primes, cf.
[81, Theorem 1].

Corollary 5.12. For primes p such that j ∈ Fp2 is a supersingular j-
invariant, we have that NS(SFp

) is of rank 22, i.e., the prime p is of super-
singular reduction. The set of primes of supersingular reduction is infinite.

Proof. The rank ρ(p) of the group NS(SFp
) is equal to 18+rankHom(Ẽ1, Ẽ2)

for a reduction modulo p of the curves E1, E2, cf. [80, §12.2.4]. Since the
curves E1, E2 are linked by an isogeny and they do not have complex multi-
plication, it follows that rankHom(Ẽ1, Ẽ2) = 2 unless they have supersingu-
lar reduction at p. Since E1, E2 are defined over a field with at least one real
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embedding, it follows from [33] that there are infinitely many supersingular
primes.

Supersingular primes computation To compute the primes of supersingular
reduction in practice, we perform the following algorithm. First, we compute
the minimal polynomial of the j-invariant of the curve E1, namely

P (T ) = T 4 − 6416768T 3 + 12470497280T 2+

27021904707584T − 34447407894757376.

The elliptic curve E1 has supersingular reduction at a prime ideal p above a
rational prime p if the polynomial P (T ) modulo p has a common root with
the polynomial Sp(T ) =

∏
j(T − j), where the product is over supersingular

j-invariants. The latter is computed effectively, cf. [84, V], [37]. In fact, we
checked all the odd primes p smaller than 104729 and the elliptic curve E1

modulo p is supersingular for the following values of p:

13, 29, 41, 113, 337, 839, 853, 881, 953, 1511, 1709, 1889,2351, 3037, 3389, 4871,

5557, 5711, 5741, 6719, 6733, 7237, 8821, 14489, 14869, 14951, 15161, 15791,

15973, 18229, 18257, 18313, 18341, 20021, 21517, 23197, 24359, 26921, 27749,

28559, 33349, 33461, 33599, 34649, 37813, 40151, 44101, 45389, 47629, 49057,

50077, 50231, 52919, 54277, 54377, 58631, 60689, 64679, 65269, 68879, 69761,

70237, 70309, 72269, 72911, 78791, 91309, 101501.

Remark 5.13. It is worth pointing out that the explicit construction of a
Shioda-Inose structure allows one to compute in practice the list of super-
singular primes to a much higher bound than the approach through point
counts discussed in Proposition 3.5. In particular, our threshold of primes
p ≤ 104729 for the algorithm above becomes completely infeasible for the
approach in Proposition 3.5.

6. Computing the Picard lattice via elliptic fibrations

This is the section on the computation of PicS based on elliptic fibrations
on S. Recall that: S is the desingularisation of the surface XDY ⊂ P(1, 1, 1, 3)
defined in (1); the map π : S → P1 is the elliptic fibration defined in Propo-
sition 4.12; we denote by T the image in PicS of a torsion section of π
(for example (0, 0)), by F the image of the general fiber E2, and by O the
image of the zero section; finally we denote by N := NS(S) the geometric
Néron–Severi group of S.
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Remark 6.1. As already noted on a K3 surface the notions of Picard group
and Néron–Severi group coincide, hence PicS = N . In this section, we use
the latter notion instead of the former, and we rely essentially upon the
results contained in [82].

Every singular fibre π−1(v) of the fibration π has type In and we order the
components in a cyclic order, cf. [82], i.e., θvi for i = 0, . . . , n− 1, component
θiv intersects once the components θi−1

v and θi+1
v (enumeration modulo n).

The component θ0v is the unique component that intersects the zero fibre.
The Néron–Severi group of an elliptic surface is generated by the follow-

ing divisors:

• all components of the singular fibres,
• images of sections which correspond bijectively to points in the

Mordell–Weil group of the generic fibre.

Since the numerical and algebraic equivalence coincide on an elliptic surface
[82], it follows that it is enough for the Néron–Severi group to consider the
spanning set which contains only the components of the reducible fibres
which do not intersect the zero component.

Proposition 6.2. The Néron–Severi group N of S is a lattice of rank 19
and discriminant 24. It is spanned by P = P3, T, F,O, and the components
of the singular fibres in fibration π which do not intersect the zero section O
and lie above the following points:

• t = 0: components ai = θit=0 for i = 1, . . . , 9;
• t = −1: component θ1t=−1;
• t = 1

2(−1±
√
5): components θ1±;

• t = 1: components bi = θit=1, i = 1, 2, 3.

The dual graph of the −2-curves which generate the Néron–Severi group
is represented in Figure 3. We include for completeness also the component
of the fibre above t = ∞ which is not used in the basis. Each edge A − B
represents a unique transversal intersection between curves A and B.

6.1. A different proof

In this subsection we prove Proposition 6.2. For the convenience of the reader,
we split the proof in four main steps, each corresponding to a subsection.
The computation of the rank still relies on Proposition 3.5, but not on the
divisors exhibited in Section 3; the computation of the discriminant only
relies on the elliptic fibration presented in Subsection 4.4.
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a9 a8 a7 a6 a5 a4 a3 a2 a1

b1 b2 b3

θ1−1

θ1∞

θ1+

θ1− T P

O

F

Figure 3: The dual graph of the −2-curves which generate the Néron–Severi
group.

The Shioda–Tate formula [82] tell us that the rank of the group N is
bounded from below by 19 and by Lefschetz theorem on (1,1)-classes [50,
Theorem 3.3.2] it is bounded by 20 from above. To conlude that the rank of
N equals 19 we reprove Proposition 3.5 using an elliptic fibration on S. Let
p be a prime of good reduction for S. The number of points in S(Fpn) equals
G+B where G is the total number of points on the elliptic curves over Fpn

in the fibres of good reduction and B is the total number of points in the
components defined over Fpn of the fibres of bad reduction. This last step is
done through a simple application of the Tate algorithm [87]. In our case it
is enough to compute the numbers |S(Fpn)| for n = 1, 2, 3 or 4 to reconstruct
the characteristic polynomial of the Frobenius morphism acting on the etale
cohomology group H2

et(SFp
,Q	) for � �= p, cf. [88, 64, 65].

6.2. Height pairing computations

Shioda [82, Theorem 8.6] defined the quadratic positive semi-definite height
pairing 〈·, ·〉 on the group E2(Q(t)) which explicitly on the point P is

〈P, P 〉 = 4− a0(10− a0)

10
−

4∑
i=1

ai(2− ai)

2
− a5(4− a5)

4
,

where the correction values ai, a0 ∈ {0, . . . , 9}, a1, a2, a3, a4 ∈ {0, 1}, a5 ∈
{0, 1, 2, 3, 4} are determined from the intersection of P with components of
reducible fibres cf. [82, p. 22]. It follows from the Tate algorithm [87], [85, IV,
§9] that for the point P3 = (4t3, 4t3(t2 − 1)) the height 〈P3, P3〉 equals 3/20.
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The minimal positive theoretically possible height of the point in E2(Q(t))
is equal to 1/20 which follows from the height formula described above. The
free part of E2(Q(t)) is of rank 1. Hence if P3 + T were m-divisible for a
suitable choice of a torsion point T , then the height of the point Q such that
mQ = P3+T would be equal to 3

20m2 < 1
20 for any m ≥ 2, in contradiction to

the minimality of height. Hence, the point P3 spans the free part of E2(Q(t)).

6.3. Discriminant formula

As E2 is the generic fibre of the elliptic fibration S → P1, the discriminant
of N can be computed from the discriminant formula, cf. [79, §11.10]

discN = (−1)r discTriv · discMW(S)/|MW(S)tors|2

where r is the rank of the group E2(Q(t)), discTriv is the discriminant of
the trivial sublattice with respect to the natural intersection pairing on N ,
discMW(S) is the discriminant of the lattice E2(Q(t))/E2(Q(t))tors with
respect to the height pairing 〈·, ·〉 and MW(S)tors is E2(Q(t))tors. In our case
we obtain discN = 96/T 2 where the integer T ≥ 1 is the order of the torsion
subgroup in E2(Q(t)). Since discN is an integer, it follows that T |22. We
have a unique point of order 2 in E2(Q(t)) since the cubic polynomial which
defines E2 has only one root in Q(t). If there is a point P4 of order 4 on this
curve, then 2P4 = (0, 0). For a general point (x, y) on E2 the x-coordinate
of the point 2(x, y) is (

16t7 + 16t6 − 16t5 − x2
)2

4x (16t7 + 16t6 − 16t5 − 3t4x− 8t3x+ 2t2x+ x2 + x)
.

Hence if (0, 0) were 2-divisible, the polynomial x2 − 16t5
(
t2 + t− 1

)
would

have a root over Q(t), which is impossible.
Hence we conclude that the Néron–Severi group N is spanned by the

components of the trivial sublattice (root sublattice generated by compo-
nents of the fibres and the image of the zero section) and by the curve in N
representing P3 and the torsion section (0, 0). Its discriminant is equal to 24.

Corollary 6.3. It follows that

E2(Q(t)) = E2(Q(
√
5)(t)) ∼= Z⊕ Z/2Z

and the group is generated by two points P3 = (4t3, 4t3(t2−1)) and T = (0, 0).
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6.4. Néron–Severi group basis

The group N is spanned by the components of the reducible fibres, the
general fibre F , the image of the zero section O and the images of the non-
zero sections which generate the Mordell–Weil group of the generic fibre. In
our case, we have two points P and T , where P is of infinite order, and T is a
generator of the torsion subgroup (2-torsion point). We consider a generating
set B for N , which contains only the following curves:

• the components θiv for i > 0 of the reducible fibres (we skip the com-
ponent which meets the zero section),

• the zero section O,
• the general fibre F ,
• the sections P and T .

The intersection pairing matrix for the tuple of curves above has dimension
20 and rank 19. The curves satisfy the following linear relation:

a1+2a2+3a3+4a4+5a5+4a6+3a7+2a8+a9+θ1t=∞+θ1++θ1− = 4F+2O−2T,

where ai = θit=0 for i ∈ {1, . . . , 9} and θ1± denotes the unique component
which does not intersect zero in the fibre above t = 1

2(−1±
√
5). The set of

components B0 = B \ {θ1t=∞} is a basis of the Néron–Severi group. Indeed,
we check by a direct computation based on the intersection graph that the
determinant of the sublattice spanned by B0 is 24.

We can also replace the generators P and T by P−O−2F and T−O−2F ,
respectively, to obtain the following decomposition

N = L⊕ U,

where L is positive definite of rank 17 and discriminant −24 and U is spanned
by F and O and indefinite of rank 2 and discriminant −1.

Remark 6.4. We checked with Magma that the lattice L is not a direct sum
of proper sublattices. In the language of [82, 79, 80], the lattice L is the
essential sublattice of N with respect to the given elliptic fibration.
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