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We analyze aspects of extant examples of 2d extremal chiral (su-
per)conformal field theories with c ≤ 24. These are theories whose
only operators with dimension smaller or equal to c/24 are the vac-
uum and its (super)Virasoro descendants. The most prototypical
example is the monster CFT, whose famous genus zero property
is intimately tied to the Rademacher summability of its twined
partition functions, a property which also distinguishes the func-
tions of Mathieu and umbral moonshine. However, there are now
several additional known examples of extremal CFTs, all of which
have at least N = 1 supersymmetry and global symmetry groups
connected to sporadic simple groups. We investigate the extent
to which such a property, which distinguishes the monster moon-
shine module from other c = 24 chiral CFTs, holds for the other
known extremal theories. We find that in most cases, the special
Rademacher summability property present for monstrous and um-
bral moonshine does not hold for the other extremal CFTs, with
the exception of the Conway module and two c = 12, N = 4 su-
perconformal theories with M11 and M22 symmetry. This suggests
that the connection between extremal CFT, sporadic groups, and
mock modular forms transcends strict Rademacher summability
criteria.
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1. Introduction

An extremal 2d (super)conformal field theory ((S)CFT) is a (S)CFT which
has the minimal spectrum of primary operators consistent with both the (su-
per)Virasoro algebra and modular invariance [1, 2]. For the case of bosonic
and N = 1 CFTs, Witten [2] derived partition functions for putative ex-
tremal (S)CFTs assuming holomorphic factorization. Modular invariance
and holomorphicity constrains the allowed values of the central charge to be
c = 24k or c = 12k∗, k, k∗ ∈ N, for bosonic and N = 1 CFTs, respectively.
These CFTs, if they exist, were furthermore proposed to be holographically
dual to pure (super)gravity in AdS3.

1 The authors of [15] similarly derived
elliptic genera for putative extremal SCFTs with N = 2 and N = 4 super-
conformal symmetry and conjectured theories with such elliptic genera, if
they exist, would be dual to pure (N = 2 and N = 4) supergravity in AdS3.
Furthermore, they found that such theories can only exist for a finite set of
small central charges due to constraints coming from the modular and ellip-
tic properties of the elliptic genus. In particular, parameterizing the central
charge for these theories as c = 6m, m ∈ N,2 such Jacobi forms exist only
for m ≤ 13, m �= 6, 9, 10, 12 and m ≤ 5, in the N = 2 and N = 4 cases,
respectively.3

Therefore one motivation for studying properties of extremal CFTs
(ECFT) is to better understand three-dimensional quantum gravity. Given
the minimal mathematical input arising from physical reasoning via
AdS/CFT, one surprise is that there are a number of known (chiral) CFTs
with small central charge and extremal spectrum. Furthermore, they each
have global symmetry groups related to sporadic finite simple groups. We

1There have been numerous works investigating this conjecture further (see, e.g.,
[3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14]); however as of now it has neither been proven
nor disproven.

2It would be interesting to consider a generalization to half-integer m in the
N = 2 case.

3One interesting question is whether one can define a notion of “near-extremal”
CFT which extends to arbitrarily high central charge. See [15, 13] for attempts in
this direction.
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summarize the existing extremal CFTs here and introduce notation we will
use throughout the text. In the bosonic case, there is one known ECFT
at k = 1 [2], usually denoted as V�; this is the famous CFT with global
symmetry group the monster group (M), which was constructed by Frenkel,
Lepowsky, and Meurman (FLM) in [16]. In the case of N = 1 chiral CFTs,
it was pointed out in [2] that there are ECFTs with k∗ = 1, 2 and symmetry
related to the sporadic group Co0 (“Conway zero”) first built in [16, 17] and
[18], respectively. We refer to these as EN=1

k∗=1 := Vs� and EN=1
k∗=2.

Moreover, a number of additional extremal SCFTs with extended su-
persymmetry were constructed recently: N = 2 and N = 4 SCFTs with
m = 2 [19] (EN=2

m=2 (G) and EN=4
m=2 (G)), SCFTs with c = 12 and SW (3/2, 2)

superconformal symmetry [20] (ESpin(7)(G)), an m = 4, N = 2 SCFT with
M23 symmetry [21] (EN=2

m=4 ), and an m = 4, N = 4 SCFT with M11 symme-
try [22] (EN=4

m=4 ). Because there exist multiple extremal SCFTs with central
charge 12 and extended superconformal symmetry, we distinguish them by
specifying their global symmetry group G. We will describe these theories
in much greater detail in §4 and §5.

Finally, we would like to point out that the K3 non-linear sigma model
is also an extremal N = 4 CFT with m = 1 (EK3(G)) according to the
definition of [15]. However, unlike the other known examples of ECFTs, it
is not chiral. Interestingly, this theory also has a connection with sporadic
groups, beginning with the connection between the character decomposition
of its elliptic genus and the Mathieu group M24 first observed in [23]. Sym-
metry groups of K3 non-linear sigma models have since been classified [24]
and are in one-to-one correspondence with subgroups G ⊂ Co0 such that G
preserves a 4-plane in the non-trivial 24-dimensional irreducible representa-
tion of Co0, denoted as 24. In Table 1 we present the list of known extremal
CFTs, including their central charges, chiral algebras, and global symmetry
groups.

Besides the potential connection to quantum gravity in AdS3, another
motivation for studying ECFTs stems from the appearance of sporadic
groups as symmetry groups. One of the most impressive mathematical re-
sults of the 20th century was the classification of finite simple groups. The
result is that there are 18 infinite families of simple groups as well as the 26
so-called sporadic simple groups, which do not arise as part of any infinite
family. Though they are known to exist, there is not yet a deep under-
standing of the role of sporadic groups in physics. Other places where these
particular finite groups and their representation theory naturally arise are
in connection to automorphism groups of error-correcting codes, unimodu-
lar lattices [25] and as coefficients of automorphic forms (“moonshine”; e.g.
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Table 1: Known extremal CFTs with central charge c, chiral algebra A,
and global symmetry group G. An n-plane corresponds to an n-dimensional
subspace in the representation 24 of Co0

ECFT c A Symmetry Group (G)

V�

24

Virasoro M

EN=1
k∗=2 N = 1 Co0

EN=2
m=4 N = 2 M23

EN=4
m=4 N = 4 M11

Vs�

12

N = 1 Co0

ESpin(7) SW(3/2, 2) {G ⊂ Co0|G fixes a 1-plane}
EN=2
m=2 N = 2 {G ⊂ Co0|G fixes a 2-plane}

EN=4
m=2 N = 4 {G ⊂ Co0|G fixes a 3-plane}
EK3 6 N = 4 {G ⊂ Co0|G fixes a 4-plane}

[17, 23, 26, 27, 28], and [29] for a recent review). Furthermore, all known ex-
amples of extremal CFTs have some large finite automorphism group which
is either a sporadic simple group or very closely related to one. So studying
such theories may give us hints as to the underlying role of sporadic groups
within physics.

For a 2d chiral conformal field theory with Hilbert space H and discrete
symmetry group G, it is interesting to consider the so-called twined partition
function, defined as

(1.1) φg(τ) := TrH gqL0−c/24, ∀ g ∈ G

where4 q = e(τ) = e2πiτ . This is a class function, as it only depends on
the conjugacy class [g] of the element g, and reduces to the usual partition
function of the theory when g is the identity element of the group. Fur-
thermore, the functions φg are highly constrained as they must transform
under the subgroup of the modular group Γ which preserves the correspond-
ing g-twisted boundary condition on the torus, as we review in §2.2. Thus
they naturally provide a link between the representation theory of G and a
distinguished set of modular forms.

The best-studied ECFT is the FLM monster module, V�. As we will
review in §3, it enjoys a number of striking properties, including the fact that
its twining functions as defined in (1.1) (and known as “McKay-Thompson
series”) furnish Hauptmoduln for genus zero groups. This is the famous

4This short-hand notation will be valid throughout the text.
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“genus zero” property of monstrous moonshine [26], which was shown in
[30] to be equivalent to a particular feature of their Rademacher sums: each
of these functions can be expressed as a Rademacher sum with only a simple
pole at the infinite cusp. That is to say, one can represent these functions
as a sum over representatives of Γ∞\Γ about the pole

(
q−1
)
, where Γ∞ is

the subgroup of Γ that fixes the i∞-cusp. A similar property is crucial in
the formulation of umbral moonshine [31, 27, 28], where again the polar
structure at the infinite cusp is sufficient to recover almost all the functions.
Thus a natural question is: can the twining functions of the other examples
of ECFTs be expressed as Rademacher sums at the infinite cusp?

This question is particularly compelling given the proposed connection
between the Rademacher sum and the path integral of quantum gravity in
AdS3, beginning with [32]. Via the AdS3/CFT2 correspondence, one asso-
ciates the partition function of the 2d CFT on a torus with the Euclidean
quantum gravity path integral in three dimensions with asymptotically AdS
boundary conditions. The bulk path integral is evaluated on a solid torus
whose boundary is the torus of the 2d CFT; its semi-classical saddle points
correspond to representatives of equivalence classes of contractible cycles
of the solid torus and are thus labeled by elements of the coset Γ∞\Γ for
Γ = SL2(Z) and Γ∞ the subgroup which stabilizes the contractible cycle.
The sum over saddle points precisely appears in the Rademacher expansion
of the CFT partition function, as noted above in the case of the monster
CFT, suggesting a physical interpretation of this expression via holography.
An explicit connection between the monster CFT and a family of 3d chiral
gravities [10] was proposed in [33, 30]. One caveat to a holographic interpre-
tation of Rademacher sums appearing in monstrous moonshine, however,
is that the AdS radius in three dimensions is proportional to the central
charge of the CFT. Thus only for very large c does one have reason to trust
the semi-classical bulk path integral, which is decidedly not the case for the
monster CFT, which has c = 24. Nevertheless, it is striking that such an
interpretation seems to remain valid in this context.

In this work we propose to investigate the extent to which the other
known cases of extremal CFTs have similar Rademacher summability prop-
erties. We study the N = 1 ECFT with Conway symmetry, and a number of
ECFTs with extended superconformal algebras. In the former case, as proven
in [34], all of the McKay-Thompson series of the theory can be formulated
as Rademacher sums at the infinite cusp. In the latter case, we consider
graded representations of G-modules arising from these theories which are
encapsulated in vector-valued mock modular forms whose pole structures
have not been studied in detail as of yet. This generalization of the usual
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twined partition functions defined in (1.1) is motivated by the decomposi-
tion of the partition function into characters of the relevant superconformal
algebra. In particular, we answer the question: is it possible to reconstruct
the twining functions of these ECFTs implementing a Rademacher sum at
the infinite cusp?

Our results, summarized in Table 5 in section §7, are as follows. We find
that the N = 1 ECFT with Conway symmetry satisfies very similar prop-
erties to that of the monster module: all of its twined partition functions
can be written as Rademacher sums at the infinite cusp for a subgroup Γg

of SL2(R). This arises from the fact observed in [34] that these functions
are all normalized Hauptmoduln for genus zero groups. On the other hand,
when we consider the known extremal theories with extended supersym-
metry at central charge 12 and 24, we find that very few of them satisfy
such a Rademacher summability property. With the exception of certain
c = 12, N = 4 ECFTs with symmetry groups M22 and M11, all other
ECFTs we investigate have at least one conjugacy class whose correspond-
ing graded character cannot be written as a Rademacher sum at the infinite
cusp. These results suggest that the connection between sporadic symmetry
groups, mock modular forms, and 2d CFTs does not hinge on the strict
Rademacher summability properties at the infinite cusp present in most
cases of moonshine.

The outline of the rest of the paper is as follows. In §2, we discuss aspects
of Rademacher sums and holomorphic orbifold CFTs relevant for our subse-
quent discussion of ECFTs. In §3, we review the construction of the monster
CFT, the genus zero property, and its connection with the Rademacher sum.
In §4 and 5 we review the other known ECFTs, in central charge 12 and
24 respectively. We present our results in §6 on the Rademacher summa-
bility of the twined partition functions of these other ECFTs. Finally, we
conclude with a summary and discussion of open questions in §7. A number
of appendices contain additional details which complement the main text.

2. Mathematical background

In this section we briefly describe some mathematical background relevant
to the properties of extremal CFTs we will discuss. We start with an in-
troduction to the Rademacher sum, and continue with a short review of
(holomorphic) orbifolds. As described in the next section, the Rademacher
sum is a powerful tool which allows to completely reconstruct a mock modu-
lar form once its modular transformations and q-polar terms at the different
cusps of the modular group are known.
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2.1. Rademacher sum

Consider Γ to be a subgroup of SL2(R) commensurable5 with SL2(Z) and
containing −I. The action of a generic element γ ∈ Γ on the upper half-plane

is given by γτ = aτ+b
cτ+d , where γ =

(
a b
c d

)
, τ ∈ H. We denote by h ∈ Z>0 the

width of Γ at infinity, that is to say the minimal positive integer such that

T h =
(
1 h
0 1

)
∈ Γ. Furthermore, a cusp of Γ is defined as a point in Q∪ {i∞}

fixed by an element of the modular group Γ.6 The subgroup of Γ fixing the

infinite cusp is then generated by Γ∞ = 〈T h,−I〉.
Given a modular group Γ, a modular function is a complex-valued func-

tion defined on the quotient space Γ\H. A generalization of this concept is

provided by modular forms.

Definition 2.1. A vector-valued7 modular form of weight w and multiplier

system ρ with respect to the modular group Γ is a map ϕ : H → Cd which

obeys the functional equation

(2.1) ϕ(γτ) = jw(γ, τ)ρ(γ). ϕ(τ), ∀ γ =
(
a b
c d

)
∈ Γ, τ ∈ H .

Here jw(γ, τ) denotes the automorphic factor (cτ + d)w, which, together

with the multiplier system ρ : Γ → SU(d), satisfies the consistency condition

jw(αβ, τ)ρ(αβ) = jw(α, βτ)jw(β, τ)ρ(α).ρ(β).

We write the entries of the unitary diagonal matrix ρ(T h) as e(μi), where

i = 1, . . . , d, 0 ≤ μi < 1. The Fourier expansion around the infinite cusp of

a vector-valued modular form takes the form

(2.2) ϕ(τ) =

⎛⎜⎜⎝
q(μ1−n1)/h(a1 + b1q + . . .)

q(μ2−n2)/h(a2 + b2q + . . .)
. . .

q(μd−nd)/h(ad + bdq + . . .)

⎞⎟⎟⎠
5The group Γ1 is said to be commensurable with Γ2 when the index of Γ1 ∩ Γ2

in Γ1 and Γ2 is finite.
6Throughout the paper, when we refer to a cusp at τ = ζ we mean all cusps

equivalent to ζ under the action of Γ.
7Here a vector is represented by an underlined greek letter and the dot stands

for matrix multiplication. In the rest of the text we do not use an explicit vector
notation, to avoid cluttered notation, but the nature of the object will be clear from
the context.
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where ni ∈ Z≥0. The modular form is bounded at infinity and it is called a
cusp form when the Fourier expansion of each component has solely positive
q-powers.

Lastly, we introduce one of the central objects in our subsequent discus-
sion: vector-valued mock modular forms. Although mock modular forms were
first considered by Ramanujan at the beginning of 19th century [35], it was
not until the work of Zwegers [36] that a complete mathematical framework
was established.

Definition 2.2. A vector-valued mock modular form of weight w and mul-
tiplier system ρ with respect to Γ is a holomorphic vector-valued function
ϕ(τ) with at most exponential growth at the infinite cusp and such that
there exists a non-holomorphic function

(2.3) ϕ̂(τ) = ϕ(τ) + g ∗(τ),

called the completion of ϕ, which transforms as a modular form of weight
w and multiplier system ρ with respect to Γ.

The completion ϕ̂(τ) is related to the mock modular form by the addition
of the (non-holomorphic) Eichler integral of the so-called shadow, g(τ),

(2.4) g ∗(τ) :=
( i

2π

)w−1
∫ i∞

−τ̄
(z + τ)−w g(−z̄) dz ,

where g(τ) is a cusp form of weight 2− w and multiplier system conjugate
to the one of ϕ(τ). Even though more general definitions are allowed, see
for instance [37], we restrict to the case where g(τ) is a cusp form, and in
particular a unary theta series as defined in (A.35). Clearly, a modular form
is simply a special case of a mock modular form with vanishing shadow.

Once the polar q-terms at the different cusps and the modular prop-
erties (i.e. the data appearing in equations (2.1) and/or (2.3)) are known,
a modular object can be completely reconstructed through the so-called
Rademacher sum. The origin of the Rademacher sum can be traced back to
the Poincaré sum

(2.5) P(n)
Γ,w,ρ(τ) :=

∑
γ∈Γ∞\Γ

jw(γ, τ)
−1ρ(γ)−1e(nγτ).

This expression encodes the simple idea that the function e(nτ) can be made
invariant under Γ by averaging over the images of the Γ-action. The sum is
well-defined as a sum over elements of the right-coset Γ∞\Γ so long as the



618 Francesca Ferrari and Sarah M. Harrison

summands are invariant under the action of Γ∞. This holds for (nh−μ) ∈ Z,
where h and μ are defined as above. Due to the absolute convergence of

the sum in (2.5), for particular weights and multiplier systems, the above

expression can easily be shown to transform under the action of Γ as a

modular form of weight w and multiplier system ρ.

The analysis of Poincaré [38] was restricted to modular forms of even

weight greater than two and trivial multiplier system with respect to the full

modular group, SL2(Z).8 However, the absolute convergence of the series,

which holds for w > 2, is lost for smaller weights. Already at w = 2 the sum

requires a regularization procedure to be conditionally convergent. It was not

until the studies of Rademacher [41, 42, 43] and Rademacher, Zuckermann in

[44] that a compact formula, later defined as Rademacher sum, appeared for

smaller weights. In particular, for w = 0 Rademacher obtained a regularized

expression which encodes the Fourier coefficients of the J-function

(2.6) J(τ) + 12 = e(−τ) + limK→∞
∑

γ∈Γ∞\Γ∗
K,K2

(
e(−γτ)− e(−γ∞)

)
.

Here J(τ) is the unique modular function with respect to SL2(Z) with ex-

pansion

q−1 +O(q) as τ → i∞ ,

that is

(2.7) J(τ) = q−1 + 196884q + . . . .

The sum in (2.6) is taken over representatives of the right coset of Γ∗
K,K2 =

{
(
a b
c d

)
∈ Γ | 0 < c < K,−K2 < d < K2} by Γ∞. Due to the conditional

convergence of the series, the sum has to be taken in a particular order:

specifically the summands are chosen with increasing c. This form was later

generalized by Niebur in [45] for w ≤ 0

(2.8) R(n)
Γ,w,ρ(τ) := Δ +

∑
γ∈Γ∞\ΓK,K2

Rn
w(γ, τ) jw(γ, τ)

−1ρ(γ)−1e(nγτ) .

In contrast to (2.6), here the sum over coset representatives includes a term

with vanishing c and a constant Δ, which vanishes for μ �= 0 and it is

8Later Petersson [39, 40] generalized this discussion to different groups and mul-
tipliers.
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otherwise defined in (2.12). Lastly, the regularization factor is

Rn
w(γ, τ) =

γ̄(1− w, 2πin(γτ − γ∞))

Γ(1− w)
,

where γ̄ denotes the lower incomplete gamma function. Specializing this
compact formula to the case with w = 0, n = −1, and trivial multiplier
system we recover the Rademacher expression for the J-function up to the
constant Δ. The addition of a constant in this case does not modify the
modular properties of the function at hand; however for general weights it is
a necessary ingredient to simplify the modular transformation of the object.9

Niebur proved that the Rademacher construction defined by the above
regularization gives rise to a conditionally convergent series, that he referred
to as automorphic integral. The latter is defined as a holomorphic map ϕ :
H → C satisfying

(2.9) ϕ(γτ) = (cτ + d)wρ(γ)
(
ϕ(τ)− p(w, γ−1, g)

)
where

p(w, γ−1, g) :=
1

Γ(1− w)

∫ i∞

−τ̄
(z + τ)−wg(−z̄)dz ,

and g is a cusp form of weight (2− w) and conjugate multiplier system,
ρ̄(γ). The regularization procedure was thus proven to lead to what is now
known as a mock modular form. Consequently, if the space of cusp forms of
dual weight is empty the automorphic integral reduces to a modular form.
This happens, for instance, in the case of the J-function and more generally
for all the McKay-Thompson series arising in monstrous moonshine.

In addition, Niebur showed that the Rademacher sum gives a basis for
the vector space of automorphic integrals of negative weight w and multiplier
system ρ for a generic modular group Γ. The technique was further developed
in [46, 47, 48] to quote just a few, and generalized to weight 1/2 mock
modular forms in [49, 31, 50, 51, 52].

Although until now we focused on scalar-valued Rademacher sums, the
main objects of the next sections are vector-valued Rademacher sums, re-
cently constructed in [53, 54, 27, 55, 56]. Following these results, the defini-
tion (2.8) can readily be generalized to the vector-valued case

(2.10) R(ni)
Γ,w,ρ(τ)j = Δj +

∑
γ∈Γ∞\ΓK,K2

Rni
w (γ, τ)jw(γ, τ)

−1ρ(γ)−1
ji e(niγτ) .

9A detailed analysis on the role of the constant term is presented in [30].
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This corresponds to the contribution of the ni-th pole at the infinite cusp10

to the j-th component of the Rademacher sum. If multiple polar terms

are present in the Fourier expansion of the mock modular form then all

polar contributions must be taken into account. This sum was proved to be

convergent for negative weights in [54] and for w = 1/2 and a particular

multiplier system with respect to the modular groups Γ0(N) in [55, 56]. The

latter results are the ones that we will mostly use in the following.

Through the Lipschitz summation formula, the Fourier expansion of
�R(ni)
Γ,w,ρ(τ) can be recovered from (2.10),

R(ni)
Γ,w,ρ(τ)j = δijq

ni + 2Δj

(2.11)

+
∑
kj>0

hkj∈Z+μj

qkj

∑
c>0

Sni,kj
(c, ρ)ji

−2πi

ch

(
−kj
ni

)w−1

2

J1−w(
4πi

c

√
−kjni)

where Js(x) is the J-Bessel function and

(2.12) Δj =

{
− (2πi)2−w (−ni)1−w

2hΓ(2−w) Kni,0(1− w
2 ) μj = 0 ,

0 μj �= 0 .

The Kloosterman Selberg Zeta function and the Kloosterman sum are de-

fined respectively by

Kni,0(1− w/2)ji =
∑
c>0

Sni,0(c, ρ)ji

c2(1−w/2)
,(2.13)

Sni,kj
(c, ρ)ji =

∑
γ∈Γ∞\Γ/Γ∞

e(nγ∞− kjγ
−1∞)ρ(γ)−1

ji .(2.14)

Equation (2.11) expresses once again the contribution of the i-th component,

which has a pole of order ni at the infinite cusp, to the j-th component.

Apart from furnishing an efficient method to reconstruct (mock) modular

forms, the Rademacher sum prescription underlies the (re)formulation of

monstrous moonshine in [30] as well as umbral moonshine [27, 28].

10The definition of the Rademacher sum at different cusps of Γ can be found in
[30, 54].
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2.2. Holomorphic orbifolds

In this section we briefly review aspects of holomorphic orbifold CFTs which
are relevant to chiral CFTs with a discrete symmetry group. Denote by φ(τ)
the partition function of a chiral CFT with Hilbert space H and central
charge c,

(2.15) φ(τ) = TrH(q
L0−c/24) ,

where L0 represents the Virasoro generator. The above partition function
corresponds to a path integral on a torus with complex structure parameter
τ and periodic boundary conditions along the two cycles. Given an auto-
morphism group G of the theory, it is possible to define twining functions

(2.16) φg(τ) = TrH(g q
L0−c/24), ∀g ∈ G

where the g-insertion stands for the representation of the element g acting
on the Hilbert space of the theory. Moreover, one can build the invariant
subspace with respect to the action of g by defining a projection operator,
P , whose action for an element of order n is

(2.17) TrH(P qL0−c/24) =
1

n

n−1∑
i=0

TrH(g
i qL0−c/24),

This is the first step in the construction of an orbifold partition function.

Additionally, one must include states arising from the g-twisted sectors,
i.e.

(2.18) φe,g(τ) = TrHg
(qL0−c/24), ∀ g ∈ G .

The latter are defined as traces over twisted Hilbert spaces,Hg, which consist
of states defined modulo a g-transformation. Throughout we denote by e the
identity element of the group under consideration. Analogously, on the torus
twisting and twining correspond to changing the boundary conditions along
one of the cycles of the torus. Thus, we are led to define a twisted-twined
function, whose boundary conditions along the two cycles are dictated by
elements of the group G. From a Hamiltonian approach, the twisted-twined
function is defined as

(2.19) φg,h(τ, z) = TrHh
(g qL0−c/24), g ∈ CG(h), h ∈ G .
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Since the action on the spectrum is well defined so long as g and h commute,

the twining element g belongs to the centralizer of h in G, CG(h) = {g ∈
G|gh = hg} . In the case of chiral CFTs these functions are class functions

up to a phase. In order to obtain a consistent orbifold one has to impose

certain constraints which prevent anomalous phases from appearing under

modular transformations which fix the boundary conditions.

Different twisted-twined functions can be related to each other by mod-

ular transformations. In fact, φg,h satisfies the following functional equation

(2.20) φg,h(γτ) = ρg,h
(
a b
c d

)
φhbgd,hagc(τ), γ =

(
a b
c d

)
∈ Γg,h ,

defining a modular function with multiplier system ρ with respect to the

modular group Γg,h which fixes the pair (g, h).

The complete 〈h〉-orbifold partition function therefore takes the form

(2.21) φorb(τ) =
1

|CG(h)|
∑
[h]

∑
g∈CG(h)

φg,h(τ),

where the first sum is over representatives of the conjugacy classes of h, and

the second sum is over elements commuting with h.

Examples of holomorphic orbifolds are the ones obtained from the mon-

ster CFT, coined by Norton as Generalized moonshine. Before considering

their properties in the next section, we generalize the above concepts to

superconformal field theories.

A similar reasoning can be applied to SCFTs with a non-trivial current

algebra. Instead of focusing on its partition function, we consider the elliptic

genus (EG). The latter is defined for an N = 2 SCFT by

(2.22) ψ(τ, z) = TrH((−1)F qL0−c/24q̄L0−c/24yJ0)

where z is the U(1)-chemical potential and y = e(z). Once again the modular

properties of ψ(τ, z) and its twisted-twined companion ψg,h(τ, z) can be used

to define the EG of the orbifolded theory, which this time depends on the

two variables τ and z. Under a modular transformation γ ∈ Γg,h, ψg,h(τ, z)

transforms as a weight 0 index m Jacobi form

(2.23) ψg,h(γτ, γz) = e
( mcz2

cτ + d

)
ψhbgd,hagc(τ, z) .
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3. Properties of the monster CFT

In this section we review the construction of the monster CFT and dis-
cuss some of its defining properties, which include the genus zero property,
the Rademacher summability of its twining functions and the connection
between these properties and holomorphic orbifolds of the theory.

Given a positive-definite even unimodular lattice Λ of rank 24k one can
construct a bosonic chiral conformal field theory with modular invariant
partition function by compactifying the theory of 24k chiral bosons on the
torus R24k/Λ. In the case of k = 1, there are 24 such lattices, the so-called
Niemeier lattices: these are a union of simply-laced root systems with the
same Coxeter number and of total rank 24. Among the 24 lattices we differ-
entiate between the Leech lattice, ΛL, which has no roots, and the other 23
Niemeier lattices, ΛN , which can be uniquely specified by their root systems.
We will call the 23 chiral bosonic CFTs on R24/ΛN the Niemeier CFTs, and
the theory on R24/ΛL the Leech CFT. We label their associated modules as
VN and VL, respectively.

The partition function of each of these theories is simply given by

(3.1) ZΛN (τ) := TrVN qL0−c/24 =
ΘΛN

(τ)

η24(τ)
= J(τ) + 24(h+ 1),

where ΘΛN
is the lattice theta function and h is the Coxeter number associ-

ated to ΛN . The constant comprises the contribution of the length-squared
two vectors (roots) and the level-one bosonic states. In the case of the Leech
lattice, we define h = 0 for ΛL so that the partition function of the Leech
CFT is simply

(3.2) ZΛL(τ) := TrVL qL0−c/24 =
ΘΛL

(τ)

η24(τ)
= J(τ) + 24.

The monster CFT [16] is constructed from a Z2 orbifold of the Leech CFT.
The Z2 acts on the 24 coordinates as

h : xi �→ −xi, ∀i = 1, . . . , 24,

and the Hilbert space H of the Leech CFT splits into two Hilbert spaces
H± consisting of states which are either invariant or anti-invariant under
the orbifold action:

(3.3) H± := {ψ ∈ H|hψ = ±ψ}.
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Furthermore, there is a twisted sector Hilbert space Htw arising from the
fixed points of the orbifold action; this is once again the direct sum of two
Hilbert spaces comprised of twisted sector states which are invariant or anti-
invariant under the orbifold action:

(3.4) Htw
± := {ψtw ∈ Htw|hψtw = ±ψtw}.

The resulting Hilbert space of V� is

(3.5) HV� := H+ ⊕Htw
+ .

The partition function of the theory is given by

(3.6) ZV�(τ) = TrV� qL0−c/24 = J(τ).

Following [2], this is the partition function of a bosonic ECFT with smallest
possible central charge.

The action of the monster group on V� allows one to define, for each
conjugacy class g ∈ M, the so-called “McKay-Thompson” series Tg(τ), by

(3.7) Tg(τ) = TrV� gqL0−c/24 ,

which is a modular function for Γg, an Atkin-Lehner type subgroup of
SL2(R). See Appendix A.1 for the precise definition of Γg. Therefore, it
follows that one can interpret V� as an infinite-dimensional Z-graded M-
module,

V� =

∞⊕
n=−1

V�
n

whose graded trace reproduces the McKay-Thompson series via

Tg(τ) =

∞∑
n=−1

(TrV�
n
g)qn

and where one gets J(τ) by taking g = e, the identity element of M. More-
over, each Tg(τ) is a Hauptmodul for Γg; i.e. it defines an isomorphism
between the compactified fundamental domain11 and the Riemann sphere
as

(3.8) Tg : F → C ∪ {i∞},
11The compactified fundamental domain is constructed from the fundamental

domain F = H/Γg adding the cusps of Γg.
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such that any meromorphic Γg-invariant function can be expressed as a
rational function of Tg(τ). Due to the isomorphism in (3.8), Γg is called a
genus zero group. This distinguishing feature of the McKay-Thompson series
(genus zero property) was first conjectured by Conway and Norton in [26],
later confirmed via an explicit construction of the module [16] and finally
proved in [57].

The genus zero property reflects the pole structure of Tg(τ) in the fol-
lowing way. For any element g ∈ M, Tg(τ) has a unique simple pole at
the infinite cusp and is bounded at all the other cusps of Γg, or in other
words has exponential growth in H := H ∪ Q ∪ i∞ only at the images of
i∞ under Γg. These extends the defining property of the J-function (2.7) to
non-trivial conjugacy classes of the monster group.

There are many more beautiful properties which distinguish the mon-
ster CFT from, say, the Leech and Niemeier CFTs or other bosonic chi-
ral CFTs with central charge 24. We focus specifically on the following re-
sults, which elucidate the connection between the genus zero property of the
McKay-Thompson series, their Rademacher summability, and the nature of
g-orbifolds of V�.

Firstly, in [30], Duncan and Frenkel showed that the Hauptmodul prop-
erty could be rephrased in terms of the Rademacher summability of Tg

around the infinite cusp as long as the modular group has width one at the
infinite cusp.

Theorem 3.1 (Duncan-Frenkel). For all g ∈ G, there is a (Atkin-Lehner
type) Γg < SL2(R) and a multiplier system εg : Γg → C× such that

(3.9) Tg(τ) = R(−1)
Γg,0,εg

(τ)− 2Δ(g) ,

is the normalized Hauptmodul for Γg.

In the above, the constant Δ(g) depends on the conjugacy class of g and
is given by the formula in equation (2.12). In addition, they proved that Γg

has genus zero if and only if the Rademacher sum R(−1)
Γg,0,εg

(τ) is a function
invariant under Γg. Therefore, for each Γg the associated Rademacher sum
reduces to a modular function, specifically the Hauptmodul.12 As discussed
in §2.1, this must be due to the absence of a cusp form for dual weight
(weight two) and conjugate multiplier system. In fact, the space of cusp
forms of weight two is isomorphic to the space of holomorphic differentials
on F̄ , which is empty when F̄ is a Riemann sphere.

12A Hauptmodul is said to be normalized when no constant term appears in its
Fourier expansion.
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Secondly, besides constraining the Fourier expansion of Tg(τ), the genus
zero property was shown to correspond to a condition on the vacuum struc-
ture of sectors twisted by elements of the monster group, [58]. This is a
consequence of the modular properties of a twisted-twined function, which
connect the expansion of a twining function at a particular cusp to the
ground state energy of a twisted sector. That is to say, depending on the
group Γg, the g-twisted sector is related to the g-twined function by either
an element of Γg or an element belonging to the normalizer group of Γ0(N)
in SL2(R), defined in Appendix A.1. In [58] it was proved that the former
case corresponds to a twisted sector with one negative energy state, while
in the latter case no negative energy state appears.

Therefore, for all g ∈ M the g-twisted sector of the 〈g〉-orbifold theory
is either completely determined by the untwisted sector and the cusp corre-
sponding to the g-twisted sector is equivalent to the infinite cusp (under the
action of Γg) or the g-twisted sector spectrum has no negative energy states
and the cusp corresponding to the g-twisted sector is inequivalent to the cusp
at ∞. This condition together with a closure condition (cf. Appendix A.1)
which relates the different cusps is sufficient to ensure that Tg is a Haupt-
modul for Γg. Again this property is directly encoded in the Rademacher
expression for Tg.

Finally, another result by Tuite [59] relates the orbifold partition function
for several conjugacy classes in M to the (conjectured) uniqueness of the
module.

Theorem 3.2 (Tuite). Assuming the uniqueness of V�, then the genus zero
property holds if and only if orbifolding V� with respect to a monster element
reproduces the monster module itself or the Leech theory.

We would like to understand the extent to which (suitable generaliza-
tions of) the above mentioned properties hold in other cases of extremal
CFTs. Specifically, one can ask if there is an analogue of Theorem 3.1 for
the twining functions of other extremal CFTs. We investigate this question
in §6 and comment on a possible extension of Theorem 3.2 in §7.

4. Central charge 12

In this section we discuss a family of extremal superconformal field theories
with central charge 12. Each of the theories discussed in this section arises
from the same underlying chiral SCFT whose Neveu-Schwarz (NS) and Ra-
mond (R) sectors are vertex operator algebras which, following [34], we will

refer to as Vs� and Vs�
tw, respectively. As we will see, Vs� is in many senses
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the supersymmetric analogue of the monster CFT, V�. In §4.1 we review the

construction of Vs�. In §4.2 we describe a number of extremal SCFTs which

arise upon viewing Vs� as a module for a c = 12 superconformal algebra

(SCA) with extended supersymmetry. We discuss the symmetry groups of

each of these theories in §4.3, as well as the mock modular forms whose

coefficients encode the graded character of the corresponding G-module for

each of these extremal CFTs. The material reviewed in this section primarily

arises from the papers [17, 34, 19, 60, 20].

4.1. The Conway ECFT

Before defining Vs�, we begin by describing a closely related theory, VsE8 ,

which we call the super–E8 CFT. The latter is the N = 1 SCFT ob-

tained by compactifying eight chiral bosons on the eight-dimensional torus

R8/ΛE8
with their eight chiral fermionic superpartners, where ΛE8

is the

E8 root lattice. The theory has two sectors corresponding to whether the

fermions have 1/2-integer (NS) or integer (R) grading along the spatial di-

rection. From this description the partition functions are easily determined

to be

ZsE8

NS (τ) = TrNS q
L0−c/24 =

E4(τ)θ3(τ, 0)
4

η12(τ)
=

1
√
q
+8 + 276q1/2 + 2048q + . . .

(4.1)

in the NS sector, and

(4.2) ZsE8

R (τ) = TrR qL0−c/24 =
E4(τ)θ2(τ, 0)

4

η12(τ)
= 16+4096q+98304q2+. . .

in the R sector. The functions (4.1) and (4.2) are invariant under the mod-

ular groups Γθ and Γ0(2), respectively, and they are part of a vector-valued

representation of SL2(Z).13

The super–E8 CFT is not extremal because of the eight fermions of

dimension 1/2 in the NS sector. However, by taking a Z2 orbifold of the

theory, one can remove these states and construct an extremal N = 1 theory,

Vs�. This is analogous to the Z2 orbifold which removes the 24 dimension

one currents of the Leech CFT in the construction of V�. In fact, Vs� has

two distinct but equivalent constructions:

13See Appendix A.1 for the definitions of the relevant modular groups.
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(A) A Z2 orbifold of the theory on the eight-torus R8/ΛE8
which acts as

Xi → −Xi on the eight chiral bosons and as ψi → −ψi on their eight

fermionic superpartners.

(B) A Z2 orbifold of 24 free chiral fermions, λα, which acts as λα → −λα.

Construction (A) was first discussed in [16]. Construction (B) was first dis-

cussed in [17], where the two constructions were shown to be equivalent as

vertex operator superalgebras, and further in [34], where it was shown that

certain graded traces in this theory furnish normalized Hauptmoduln analo-

gous to the McKay-Thompson series in monstrous moonshine. It is apparent

that (A) is an N = 1 supersymmetric extension of the E8 current algebra.

Furthermore, (B) enjoys a hidden N = 1 superconformal symmetry as well.

In particular, there are 212 = 4096 dimension–3
2 twist fields arising from zero

modes of the λi acting on the twisted sector ground state. In [17] it is shown

that there exists a linear combination of these twist fields that satisfies the

OPEs for a supercurrent of an N = 1 SCA with central charge 12. Moreover,

the subgroup of Spin(24) which preserves this choice of supercurrent is the

discrete subgroup Co0 [34].

The partition function of Vs� can be computed using either construction.

In the NS sector, the result is

Zs�
NS(τ) = TrNS q

L0−c/24 =
1

2

(
E4(τ)θ3(τ, 0)

4

η12(τ)
+ 16

θ44(τ, 0)

θ42(τ, 0)
+ 16

θ42(τ, 0)

θ44(τ, 0)

)
=

1

2

4∑
i=2

θ12i (τ, 0)

η12(τ)

=
1
√
q
+ 276q1/2 + 2048q + 11202q3/2 + . . .(4.3)

= K(τ)− 24,

where the formula in the first line arises from construction (A) and that

in the second from construction (B). In the last line we have introduced

an expression in terms of K(τ), a Hauptmodul for the modular subgroup

Γθ (cf. Appendix A.1). The lack of constant term in this partition function

indicates that Vs� furnishes an example of an extremal N = 1 SCFT with

k∗ = 1, according to [2]; i.e., there are no primary fields of dimension smaller

than or equal to c/24 = 1/2. For more details on the moonshine properties

of Vs�, see the papers [17, 34].
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4.2. More extremal theories

Focusing on construction (B) of Vs�, it is straightforward to construct a num-
ber of additional extremal SCFTs where the chiral algebra is an extension of
the N = 1 superconformal algebra. In [20] theories with an SW(3/2, 2) SCA
are discussed, whereas in [19], theories with N = 2 and N = 4 SCAs are dis-
cussed. In each case the approach is the same: given a choice of supercurrent
W which generates an N = 1 SCA with c = 12, one can pick an additional
one, two, or three fermions to generate a chiral algebra which enhances the
N = 1 SCA to an extended version. That each of these theories furnishes
an example of an ECFT is straightforward to see from the character de-
composition of their (flavored) partition functions. At c = 12, the extremal
constraint forces the states of conformal dimension smaller than 1 in the NS
sector to be superconformal descendants of the identity. We review this for
each of these cases in turn.

1. If one chooses one of the 24 fermions, say λ1, one can generate a
chiral c = 1/2 Ising model. This enhances the N = 1 SCA to a c =
12 SW(3/2, 2), i.e. the SCA which arises on the worldsheet theory
of a non-linear sigma model with target space a manifold of Spin(7)
holonomy [61]. See Appendix B.1 for a summary of the representation
theory and characters of this algebra. It follows from the discussion
in [20] and the appendix that the partition function of Vs� has the
following decomposition into Spin(7) characters,

Zs�
NS(τ)= χ̃NS

0 (τ)+0χ̃NS
1

16

(τ)+23χ̃NS
1

2

(τ)+

∞∑
n=1

bnχ
NS
0,n(τ) +

∞∑
n=1

cnχ
NS
1

16
,n(τ),

(4.4)

where the constraint of extremality is satisfied by the fact that the
coefficient in front of χNS

1

16

(τ) is zero. We will denote this theory by

ESpin(7)(G), where the group G is the symmetry group of the theory,
and depends on the choice of fermion λ1.

2. If one chooses two of the 24 fermions, one can generate a û(1)2 current
algebra which, together with the N = 1 supercurrent, satisfies the
OPEs of a c = 12 N = 2 SCA [19]. The partition function of Vs�

graded by this additional U(1) is a weak Jacobi form for SL2(Z) of
weight zero and index two, which takes the form

Zs�
R (τ, z) = TrR(−1)F qL0−c/24yJ0(4.5)
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=
1

2

1

η12(τ)

4∑
i=2

(−1)i+1θi(τ, 2z)θ
11
i (τ, 0) ,

and admits the following decomposition into c = 12, N = 2 characters

Zs�
R (τ, z) = 23 chN=2

3

2
; 1
2
,0 + chN=2

3

2
; 1
2
,2(4.6)

+
(
770 (chN=2

3

2
; 3
2
,1 + chN=2

3

2
; 3
2
,−1)

+ 13915 (chN=2
3

2
; 5
2
,1 + chN=2

3

2
; 5
2
,−1) + . . .

)
+
(
231 chN=2

3

2
; 3
2
,2 + 5796 chN=2

3

2
; 5
2
,2 + . . .

)
.

From the discussion of the representation theory of the N = 2 su-

perconformal algebra in Appendix B.2, one sees from this character

decomposition that the theory is an extremal N = 2 theory. We will

denote this theory by EN=2
m=2 (G) where G is the global symmetry group

of the theory and depends on the choice of N = 2 superconformal

algebra.

3. Finally, by choosing three fermions one can generate an ŝu(2)2 current

algebra which becomes part of a c = 12 N = 4 SCA when combined

with the N = 1 supercurrent [19]. The partition function of the theory

with an additional grading by the Cartan of the SU(2) coincides with

the expression in (4.5). Furthermore, it admits the following decom-

position into c = 12, N = 4 superconformal characters

Zs�
R (τ, z) = 21 chN=4

2; 1
2
,0 + chN=4

2; 1
2
,1(4.7)

+
(
560 chN=4

2; 3
2
, 1
2

+ 8470 chN=4
2; 5

2
, 1
2

+ 70576 chN=4
2; 7

2
, 1
2

+ . . .
)

+
(
210 chN=4

2; 3
2
,1 + 4444 chN=4

2; 5
2
,1 + 42560 chN=4

2; 7
2
,1 + . . .

)
.

The representation theory of the N = 4 SCA is reviewed in Ap-

pendix B.3; with this information one can check that the above theory

furnishes an extremal N = 4 superconformal theory. We will denote

this theory by EN=4
m=2 (G), where again G is the global symmetry group

of the theory and depends on the choice of N = 4 superconformal

algebra.

See Table 2 for a summary of the relation between Vs� and these different

superconformal algebras.
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Table 2: Superconformal algebras (with central charge 12) generated by a
subset of fermions using construction (B) of Vs�

ESCFT Fermions Chiral algebra A
ESpin(7) 1 Ising SW(3/2, 2)

EN=2
m=2 2 û(1)2 N = 2

EN=4
m=2 3 ŝu(2)2 N = 4

4.3. Symmetry groups and twining functions

In this section we consider the above mentioned ECFTs in more detail,
beginning with an analysis of their global discrete symmetry groups. In order
to do this, we restrict to construction (B), where the discrete symmetries
are most transparent.

The 24 dimension-32 twist fields in the Ramond sector form a represen-
tation of the 24-dimensional Clifford algebra, which is acted on by the group
Spin(24). Thus, viewed as a theory with no supersymmetry, the theory of
24 fermions has a symmetry group Spin(24). In [17] it was shown that the
choice of N = 1 supercurrent in Vs� breaks the Spin(24) symmetry of the 24
fermions to the discrete group Co0, the group of automorphisms of the Leech
lattice. Likewise, for each choice of superconformal algebra A introduced in
the previous section, there is a distinct ECFT whose global symmetry group
G is the subgroup of Co0 which preserves the choice of fermions used to con-
struct A. There is moreover a geometrical interpretation of these symmetry
groups: the distinct choices of superconformal algebra constructed from n
fermions are in one-to-one correspondence with subgroups G < Co0 which
preserve an n-dimensional subspace in the unique non-trivial irreducible 24-
dimensional representation of Co0 (24) [20, 19]. We refer to such a group as
n-plane preserving if it preserves an n-dimensional subspace in the represen-
tation 24. In the following table we have listed examples of G which arise
as subgroups of Co0 preserving a choice of relevant superconformal algebra.

ESCFT A Symmetry group (G)

Vs� N = 1 Co0

ESpin(7)(G) SW(3/2, 2) M24, Co2, Co3

EN=2
m=2 (G) N = 2 M23,M12,McL,HS

EN=4
m=2 (G) N = 4 M22,M11, U4(3)

For each of these theories one can construct character-valued twined parti-
tion functions for each conjugacy class [g] ∈ G. The twined functions are
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completely characterized by the action of g on the 24 fermions, and thus by
the eigenvalues of g in the irreducible representation 24.

Firstly, for every [g] ∈ G, where G is either Co0 or a subgroup of Co0
preserving a vector in the 24, the corresponding g-twined partition function
in the NS sector is

(4.8) Zs�
NS,g(τ) = TrNS gq

L0−c/24 =
1

2

4∑
i=1

εi(g)

12∏
k=1

θi(τ, ρg,k)

η(τ)

where the definition of the εi(g) can be found in [34]. Also, we have defined
e(ρg,k) = λg,k, where k = 1, . . . , 24, ρg,k ∈ [0, 1/2] and λg,k is an eigenvalue
of g. The latter corresponds to one of the 24 roots of the rational polynomial

(4.9)
∏

|n

(t
 − 1)k� ,

where n = o(g) is the order of g, �’s are the positive divisors of n, and k
’s
are integers defined by the 24-dimensional irreducible representation of g.
The data encoded in (4.9) can be succinctly written in terms of a formal
product: the Frame shape of [g],

(4.10) πg :=
∏

|n

�k� .

In [34] it was proved that, similar to the case of V�, Vs� furnishes a 1
2Z-graded

Co0-module, whose graded characters are encoded in the coefficients of the
twined functions Zs�

NS,g(τ). Furthermore, for all g ∈ Co1, the functions (4.8)

together with Zs�
R,g(τ) and Zs�,−

NS,g(τ),
14 form a vector-valued representation

of a modular group Γg < SL2(R) with Γ0(o(g)) ⊆ Γg.
15

For every [g] ∈ G where G is a subgroup of Co0 preserving (at least)
a 2-plane in 24, the corresponding U(1)-graded g-twined function in the R
Hilbert space reads

Zs�
R,g(τ, z) = TrR(−1)F qL0−c/24yJ0(4.11)

=
1

2

1

η(τ)12

4∑
i=1

(−1)i+1εg,i θi(τ, 2z)

12∏
k=2

θi(τ, ρg,k) .

14The upper index “−” stands for the insertion of (−1)F in the trace over the
NS Hilbert space.

15For g ∈ Co0 but g /∈ Co1, a slightly different set of functions forms a vector-
valued representation of Γg.
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Moreover, it was shown in [20, 19] that Vs�, equipped with a choice of ex-
tended superconformal algebra A (either SW(3/2, 2), N = 2, or N = 4)
furnishes a G-module for the discrete group G which preserves A and whose
graded characters are encoded in the coefficients of a set of vector-valued
mock modular forms whose corresponding shadows are (vector-valued)
unary theta series. We summarize these results here and report the nec-
essary definitions in Appendix A and B.

1. ESpin(7)(G): Let A be the choice of Spin(7) algebra, and G the symme-
try group preserving A. G is a subgroup of Co0 which fixes a one-plane.
From the discussion in Appendix B.1 on the representation theory of
the Spin(7) algebra, it is apparent that one can rewrite the graded
partition function of equation (4.4) as

Zs�
NS(τ) = P(τ)

(
24μNS(τ) + h

Spin(7)
1 (τ)ΘNS

1

16

(τ) + h
Spin(7)
7 (τ)ΘNS

0 (τ)
)
,

(4.12)

where hSpin(7) is a weight 1/2 vector-valued mock modular form for
SL2(Z) with shadow given by 24S̃, multiplier system given by the
inverse of S̃. The definition of S̃ is given in (B.14). Moreover, the
g-twined functions for all conjugacy classes g ∈ G have a similar ex-
pansion given by

Zs�
NS,g(τ) = P(τ)

(
χgμ

NS(τ) + h
Spin(7)
g,1 (τ)ΘNS

1

16

(τ) + h
Spin(7)
g,7 (τ)ΘNS

0 (τ)
)
,

(4.13)

where χg = Tr24g, and h
Spin(7)
g is a weight 1/2 vector-valued mock

modular form for Γ0(n), n = o(g) with shadow χgS̃ and, whenever
χg �= 0, multiplier system given by the inverse multiplier system of S̃
restricted to Γ0(n).

16

2. EN=2
m=2 (G): Now we let A be a choice of N = 2 superconformal algebra,

and G the two-plane preserving subgroup of Co0 which preserves A.
In [19] it was shown that one can rewrite equation (4.6) as

ZN=2
m=2 (τ, z) = e

(3
4

)
(Ψ1,− 1

2
(τ, z))−1

(
24 μ̃ 3

2
;0(τ, z)

(4.14)

16When χg = 0, the multiplier system is more complicated. This case is described
in [20].
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+
∑

j− 3

2
∈Z/3Z

hN=2
j (τ)θ 3

2
,j(τ, z)

)
,

where hN=2 is a weight 1/2 vector-valued mock modular form. Fur-
thermore, hN=2 has shadow given by 24S3/2 and inverse multiplier
system to that of S3/2, where S3/2 is defined in (A.35). For all conju-
gacy classes g ∈ G, one can also write

ZN=2
m=2,g(τ, z) = e

(3
4

)
(Ψ1,− 1

2
(τ, z))−1

(
χg μ̃ 3

2
;0(τ, z)

(4.15)

+
∑

j− 3

2
∈Z/3Z

hN=2
g,j (τ)θ 3

2
,j(τ, z)

)
,

where hN=2
g is a weight 1/2 vector-valued mock modular form for Γ0(n)

with shadow χgS3/2 and multiplier given by the inverse multiplier of

S3/2 restricted to Γ0(n) whenever χg �= 0. When χg = 0, hN=2
g is

modular and has a more complicated multiplier system (cf. [19]).
3. EN=4

m=2 (G): Finally, let A be a choice of N = 4 superconformal algebra,
and G the three-plane preserving subgroup of Co0 which preserves A.
It follows from [19] that equation (4.7) can be rewritten as

ZN=4
m=2 (τ, z) = (Ψ1,1(τ, z))

−1

(
24μ3;0(τ, z) +

∑
j∈Z/6Z

hN=4
j (τ)θ3,j(τ, z)

)
,

(4.16)

where hN=4 is a weight 1/2 vector-valued mock modular form and
with shadow given by 24S3 and inverse multiplier system to that of
S3, (A.35). For all conjugacy classes g ∈ G, one can also write

ZN=4
m=2,g(τ, z) = (Ψ1,1(τ, z))

−1

(
χg μ3;0(τ, z) +

∑
j∈Z/6Z

hN=4
g,j (τ)θ3,j(τ, z)

)
,

(4.17)

where hN=4
g is a weight 1/2 vector-valued mock modular form for Γ0(n)

with shadow χgS3 and multiplier given by the inverse multiplier of S3

restricted to Γ0(n) whenever χg �= 0. When χg = 0, hN=4
g is modular

and again has a more complicated multiplier system (cf. [19]).
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5. Central charge 24

In this section we discuss three extremal superconformal field theories with
central charge 24. Each of these SCFTs can be constructed as a nonlocal
Z2 orbifold of bosons on a 24-dimensional torus given by R24/Λ where Λ is
either the Leech lattice or one of two other Niemeier lattices (cf. §3).

5.1. Extremal theories

In [18] it was discussed how to construct an N = 1 SCFT from a Z2 orbifold
of the Leech (or a Niemeier) CFT, where the Z2 acts on the 24 coordinates
xi as h : xi → −xi, ∀i. As discussed in §3, the original Hilbert space H and
the twisted Hilbert space Htw split respectively into subspaces H±,Htw

± of
invariant and anti-invariant states under the h action (cf. equations (3.3),
(3.4)).

The key observation in [18] is that in the twisted sector Hilbert space
Htw

− there are 212 ground states of dimension 3/2; this is precisely the di-
mension of an N = 1 supercurrent. In fact, the authors show that one can
construct a consistent chiral N = 1 SCFT by choosing a linear combination
of dimension-3/2 twist fields as a supercurrent. Furthermore, this theory has
NS sector Hilbert space given by

HNS = H+ ⊕Htw
− ,

and Ramond sector Hilbert space given by

HR = H− ⊕Htw
+ .

The partition function in the NS sector is then given by

ZN=1
NS (Λ; τ) = TrNS q

L0−c/24

=
1

2

ΘΛ(τ)

η24(τ)
+ 211

(
η12(τ)

θ122 (τ)
− η12(τ)

θ123 (τ)
+

η12(τ)

θ124 (τ)

)
= K(τ)2 − 48K(τ) + 12(h+ 2)

=
1

q
+ 12h+ 4096q

1

2 + 98580q + 1228800q
3

2 + . . .(5.1)

where ΘΛ(τ) is the lattice theta function, h is the Coxeter number of the
root system and the functionK(τ) defined in equation (A.8). Again, together
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with the characters TrR qL0−c/24 and TrNS(−1)F qL0−c/24, the partition func-
tion of equation (5.1) transforms in a three-dimensional representation of
SL2(Z). Furthermore, the function TrR(−1)F qL0−c/24 = 12(h+2) computes
the Witten index of the corresponding N = 1 SCFT.

In the case where Λ = ΛL, the Leech lattice, this is precisely the par-
tition function of an extremal N = 1 SCFT with k∗ = 2 (which we call
EN=2
k∗=2) as defined in [2]. The orbifold removes all dimension 1 currents in

the NS sector; this fact both ensures extremality and precludes the possibil-
ity of constructing a superconformal algebra with extended supersymmetry.
However, in the case where Λ is any of the other Niemeier lattices, a nontriv-
ial current algebra survives the orbifold. The authors of [21] show that for

N = A24
1 , one can construct a û(1)4 current algebra, which, together with

the supercurrent, satisfies the OPEs of an N = 2 superconformal algebra
with central charge 24. Furthermore, they show that the graded partition
function in the Ramond sector is precisely the weak Jacobi form which cap-
tures the spectrum of an extremal N = 2 SCFT with m = 4 (which we call
EN=2
m=4 ) according to [15]:

ZN=2
m=4 (ΛA24

1
; τ, z) = TrR(−1)F yJ0qL0−c/24 =

1

y4
+ 46 + y4 + . . .(5.2)

= 47ch 7

2
;1,0(τ, z) + ch 7

2
;1,4(τ, z)

+ (32890 + 2969208q + . . .)(ch 7

2
;2,1(τ, z) + ch 7

2
;2,−1(τ, z))

+ (14168 + 1659174q + . . .)(ch 7

2
;2,2(τ, z) + ch 7

2
;2,−2(τ, z))

+ (2024 + 485001q + . . .)(ch 7

2
;2,3(τ, z) + ch 7

2
;2,−3(τ, z))

+ (23 + 61984q + . . .)ch 7

2
;2,4(τ, z),

where ch
;h,Q denotes the N = 4 character of central charge c = 3(2� + 1),
dimension h, and charge Q in the Ramond sector (cf. Appendix B.2), and
we use the fact that the ch
;h+1,Q = qch
;h,Q for the non-BPS characters.

Similarly, when N = A12
2 , in [22] it is shown that one can construct

an ŝu(2)4 current algebra which, along with the supercurrent, generates an
N = 4 superconformal algebra with c = 24. A straightforward computation
of the graded partition function illustrates that this theory furnishes an
example of an extremal N = 4 SCFT with c = 24 (which we call EN=4

m=4 :

ZN=4
m=4 (ΛA12

2
; τ, z) = TrR(−1)F yJ3qL0−c/24 =

1

y4
+

1

y2
+ 56 + y2 + y4 + . . .

(5.3)
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= 55ch4;1,0(τ, z) + ch4;1,2(τ, z)

+ (18876 + 1315512q + . . .)(ch4;2, 1
2
(τ, z) + ch4;2,− 1

2
(τ, z))

+ (12045 + 1152943q + . . .)(ch4;2,1(τ, z) + ch4;2,−1(τ, z))

+ (1980 + 391974q + . . .)(ch4;2, 3
2
(τ, z) + ch4;2,− 3

2
(τ, z))

+ (33 + 45990q + . . .)ch4;2,2(τ, z),

where the details of the characters can be found in Appendix B.3.

5.2. Symmetry groups and twining functions

Like the extremal theories with central charge 12 discussed in §4, the theories
in the previous subsection furnish modules for a number of sporadic groups.
We first consider EN=1

k∗=2. The symmetry group of this theory arises from
the automorphism group of the Leech lattice and a quantum symmetry
coming from the Z2 orbifold. As discussed in [18], this is an extension of the
group Co0 by a finite abelian group. We do not discuss this theory in more
detail here, though it would be interesting to investigate the properties of
its twining functions.

Similarly, the discrete symmetry groups of the other two extremal the-
ories we consider in this section arise from the automorphism group of the
underlying Niemeier lattice ΛN . The Niemeier lattices contain vectors gen-
erated by the root systems and additional so-called glue vectors. For the
lattices with root systems A24

1 and A12
2 , the glue vectors are specified by

elements of the extended binary Golay code and extended ternary Golay
code, respectively. See, e.g., [25], for a detailed description.

The automorphism group of the A24
1 Niemeier lattice is the Mathieu

group M24. It acts naturally on the 24 copies of the A1 root system in
its 24-dimensional (reducible) permutation representation. Furthermore, its
action on the glue vectors is inherited from its natural action on the binary
Golay code as automorphisms. Note that we must choose a particular A1

root system to construct the affine û(1)4 current algebra which becomes
part of the N = 2 SCA with c = 24. The choice of this root system breaks
the M24 symmetry of the theory to an M23 subgroup, where the M23 fixes
the distinguished coordinate direction, say x1, associated with this A1, and
acts as a subgroup of S23 on the remaining coordinates. In Appendix C, we
discuss the derivation of the twining functions

(5.4) ZN=2
m=4,g(τ, z) = TrR g (−1)F yJ0qL0−c/24
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for conjugacy classes g ∈ M23. These functions are weak Jacobi forms of
weight zero and index 4 for the group Γ0(n) where n = o(g), and they have
the expansion

(5.5) ZN=2
m=4,g(τ, z) =

1

y4
+ 2Tr23g + y4 +O(q) ,

where 23 = 1+22 is the 23-dimensional permutation representation of M23.
On the other hand, the automorphism group of the A12

2 Niemeier lattice
is 2.M12, an extension of the Mathieu group M12, where the M12 acts as
a subgroup of S12 on the 12 root systems, and the extension includes the
order two automorphism of the A2 Dynkin diagram. The action of 2.M12 on
the glue vectors of the lattice follows from its action on the ternary Golay

code, which specifies the glue vectors. In order to construct an affine ŝu(2)4
current algebra which becomes part of an N = 4 SCA with c = 24, one
chooses a distinguished A2 root system corresponding to two directions, say
x1, x2. The subgroup of 2.M12 which preserves the N = 4 SCA is then a
copy of M11 which fixes x1, x2 and permutes the other 11 root systems. We
discuss the twining functions

(5.6) ZN=4
m=4,g(τ, z) = TrRg(−1)F yJ0qL0−c/24

for certain conjugacy classes g ∈ M11, in Appendix C. These functions are
weak Jacobi forms of weight zero and index 4 for Γ0(n), n = o(g), and they
have the expansion

(5.7) ZN=4
m=4,g(τ, z) =

1

y4
+

1

y2
+ (5Tr11g + 1) + y2 + y4 +O(q),

where 11 = 1+10 is the 11-dimensional permutation representation of M11.
Just as discussed in the previous section for central charge 12, the two

ECFTs EN=2
m=4 , EN=4

m=4 with central charge 24 furnish G-modules whose graded
characters are encoded in the coefficients of certain vector-valued modular
forms, where G is the global symmetry group of the theory. We discuss the
properties of these mock modular forms for each case below.

1. EN=2
m=4 : From the discussion in Appendix B.2, it is clear that we can

rewrite the graded partition function of equation (5.2) as

ZN=2
m=4 (τ, z) = e

(3
4

)
(Ψ1,− 1

2
(τ, z))−1

(
48 μ̃ 7

2
;0(τ, z)

(5.8)
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+
∑

j− 7

2
∈Z/7Z

h̃N=2
j (τ)θ 7

2
,j(τ, z)

)
,

where h̃N=2 is a weight 1
2 vector-valued mock modular form for SL2(Z)

with shadow 48S 7

2
, defined in (A.35), and multiplier system inverse to

that of S 7

2
. Similarly, the g-twined functions of equation (5.4) have an

expansion

ZN=2
m=4,g(τ, z) = e

(3
4

)
(Ψ1,− 1

2
(τ, z))−1

(
2χg μ̃ 7

2
;0(τ, z)

(5.9)

+
∑

j− 7

2
∈Z/7Z

h̃N=2
g,j (τ)θ 7

2
,j(τ, z)

)
,

where χg = Tr24g and h̃N=2
g is a weight 1

2 vector-valued mock modular

form for Γ0(n), n = o(g), shadow 2χgS 7

2
, and multiplier system inverse

to that of S 7

2
. In Appendix D.2, we present tables of the first several

coefficients of the h̃N=2
j for all g ∈ M23, as well as their decompositions

into irreducible M23 representations.

2. EN=4
m=4 : Similarly, the discussion in Appendix B.3 indicates that we can

write the graded partition function in (5.3) as

ZN=4
m=4 (τ, z) = (Ψ1,1(τ, z))

−1

(
60μ5;0(τ, z) +

∑
j∈Z/10Z

h̃N=4
j (τ)θ5,j(τ, z)

)
,

(5.10)

where h̃N=4 is a weight 1
2 vector-valued mock modular form for SL2(Z)

with shadow 60S5 and multiplier system the inverse to that of S5.

The g-twined functions (5.6) for conjugacy classes g ∈ M11 similarly

give rise to vector-valued mock modular forms through the expan-

sion

ZN=4
m=4,g(τ, z) = (Ψ1,1(τ, z))

−1

(
5(Tr12g)μ5;0(τ, z)(5.11)

+
∑

j∈Z/10Z
h̃N=4
g,j (τ)θ5,j(τ, z)

)
,
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where h̃N=4
g is a weight 1

2 vector-valued mock modular form for Γ0(n),
n = o(g), with shadow 5(Tr12g)S5 where 12 = 1 + 11 and multiplier
system the inverse of that of S5.

6. Rademacher summability

Inspired by the relation between the genus zero property of monstrous moon-
shine and the Rademacher sum construction of the McKay-Thompson series
underlined in [30, 31], we examine the Rademacher expansion at the infi-
nite cusp for the twined functions of the ECFTs introduced in §4 and §5.
We begin in section 6.1 by discussing the Co0-module Vs�, and analyze the
other c = 12 and c = 24 theories in §6.2 and §6.3, respectively. The results
presented in §6.2 and §6.3 are obtained by numerically computing the coef-
ficients in equation (2.11) to high accuracy and comparing with the known
twining functions described in §4 and §5, respectively.

Finally, in §6.4 we discuss the following curious property of the the twin-
ing functions for the theory EN=2

m=2 (M23). The functions which cannot be
expressed as Rademacher sums at the infinite cusp precisely correspond to
conjugacy classes g ∈ M23 such that 3|o(g). In this case, however, the expan-
sion of these functions about cusps inequivalent to i∞ either has no pole,
or the coefficients in such an expansion can be directly related to the coef-
ficients which appear in the expansion of the function at i∞. This property
might be interpreted as a generalization of the results of Tuite [58] reviewed
in §3 for McKay-Thompson series for genus zero groups with Atkin-Lehner
involutions.

6.1. The Conway module

The Conway theory Vs� [34] furnishes a 1
2Z-graded Co0-module, i.e.,

(6.1) Vs� =

∞⊕
n=−1

Vs�
n

2

.

In [17] it was shown that the action of Co0 is entirely dictated by the eigen-
values of g in its 24-dimensional irreducible representation (24) and there-
fore only depends on the conjugacy class [g]. In the following, we refer to
the latter via the Frame shape πg defined in (4.10). For each conjugacy class
[g] ∈ Co0, one can define a set of character-valued twined partition func-
tions by taking traces in the NS Hilbert space with and without insertion of
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(−1)F . These correspond to the previously defined Zs�,−
NS,g(τ), Z

s�
NS,g(τ) and

take the form

Zs�,−
NS,g(τ) =

∞∑
n=−1

(TrVs�
n
2

(−1)ng)q
n

2 .(6.2)

Zs�
NS,g(τ) =

∞∑
n=−1

(TrVs�
n
2

g)q
n

2 .(6.3)

As it was previously mentioned, the Conway module Vs� and the monster

module V� have many common features. First of all, in both of these theo-

ries the graded traces associated to the particular module are simply related

to the Hauptmoduln of the corresponding modular group. However, the

fermionic nature of the Conway module is reflected in its half-integer grad-

ing, in contrast to the Z-graded monster module. As a result, normalized

Hauptmoduln arise only after rescaling the twining functions Zs�,−
NS,g(2τ) and

Zs�
NS,g(2τ). This genus zero property of Vs� was shown to hold in [34]; from

this the analogue of Theorem 3.1 for V� directly follows (cf. Theorem 4.9 in

[34]).

Specifically, all twining functions can be expressed as Rademacher sums

at the infinite cusp both (i) as scalar-valued Rademacher sums with re-

spect to appropriate subgroups of genus zero groups appearing in monstrous

moonshine, and (ii) as vector-valued Rademacher sums where the vector in-

cludes (6.2), (6.3) and Zs�
R,g(τ) and transforms under a modular group con-

taining Γ0(N) and contained in N (N). The explicit modular properties of

the twining functions can be found in [34].

6.2. Modules with c = 12

Following §4.3 and [19], it is clear that the extremal SCFTs ESpin(7)(G),

EN=2
m=2 (G), EN=4

m=2 (G) with central charge 12 furnish G-modules for the global

symmetry group G of the theory. We will denote these G-modules by VA,G,

where A denotes the extended superconformal algebra and

(6.4) VA,G =
⊕

r∈{α}A

∞⊕
n=1

V A,G
r,n , A ∈ {Spin(7), N = 2, N = 4}.
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The corresponding graded characters are the coefficients of certain vector-
valued mock modular forms hAg , defined by

(6.5) hAg,r(τ) = arq
− r2

bA +

∞∑
n=1

(TrVA,G
r,n

g)q
n− r2

bA .

The constants ar, bA, {α}A appearing in the expansion are displayed below
together with the symmetry groups G on which we focus in this section.
In particular, in the case of the N = 4 theories, we consider two different

embeddings of M11 into Co0, which we refer to as M
(1)
11 and M

(2)
11 . M

(1)
11 can

be described as the subgroup ofM12 which fixes a point in its 12-dimensional

permutation representation; on the other hand, M
(2)
11 is the subgroup of M12

which fixes a certain length-12 vector in its 12-dimensional permutation
representation.

A {α}A bA {ar} G
Spin(7) {1, 7} 120 {−1, 1} M24

N = 2
{
±1

2 ,
3
2

}
6 {−1, 1} M23,M12

N = 4 {1, 2} 12 {−2,−1} M22,M
(1)
11 ,M

(2)
11

The functions hAg,r comprise a vector-valued mock modular form of weight
1/2 and multiplier system ρg with respect to Γg a congruence subgroup
of SL2(Z). Denoting by n the order of g, Γg equals Γ0(n). Moreover, we
denote by ξ the smallest cycle in (4.10). Note that we choose to focus on
the Mathieu groups, which are distinguished as all of their twined Jacobi
forms have particularly nice behavior at other cusps according to [19]. How-
ever, as reviewed in §4.3, there exists an extremal Spin(7), N = 2, and
N = 4 CFTs for each subgroup of Co0 which preserves a one-, two-, or
three-plane, respectively. We leave a general analysis of such cases to future
work.

In the following we report the necessary data for the construction of the
functions hAg via a Rademacher sum

(6.6) hAg (τ) = R({ar})
Γg, 1/2, ρg

(τ) ,

and the conjugacy classes of G whose twining function cannot be reproduced
by a Rademacher expansion at the infinite cusp.

1. ESpin(7)(G): The weight 1/2 vector-valued mock modular form hSpin(7)

for SL2(Z) is derived from equation (4.12). We report here the first
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few Fourier coefficients

h
Spin(7)
1 (τ) = q−

1

120 (−1 + 1771q + 35650q2 + 374141q3 + . . .) ,(6.7)

h
Spin(7)
7 (τ) = q−

49

120 (1 + 253q + 7359q2 + 95128q3 + . . .) .

These expressions fix the coefficients of the negative q-power terms

for all the twined versions h
Spin(7)
g ; these polar terms arise from the

G-invariant NS ground state. The multiplier system of these mock
modular forms is the inverse multiplier of the vector-valued unary
theta series S̃, defined in (B.14), as long as χg �= 0. The latter is
completely specified by its representation on the generators of SL2(Z)

ρ(T ) =

(
e( 1

120) 0

0 e( 49
120)

)
, ρ(S) =

⎛⎜⎝−
√

2
5+

√
5

√
2

5−
√
5√

2
5−

√
5

√
2

5+
√
5

⎞⎟⎠ .

(6.8)

When the element g has no fixed points the multiplier system is not
constrained by that of the shadow; it is given by the inverse of (6.8)
times a Frame shape-dependent phase

(6.9) νg = e

(
− c d

n ξ

)
.

The Rademacher series defined in (2.11) reproduces h
Spin(7)
g for all

conjugacy classes in M24 except for the conjugacy classes reported in
Table 3 and the one with Frame shape 122 for which it has not been
found the correct multipler system.

2. EN=2
m=2 (G): From equation (4.14) hN=2 is a weight 1/2 vector-valued

mock modular form whose first few coefficients are given by

hN=2
1

2

(τ) = hN=2
− 1

2

(τ) = −q−1/24 + 770q23/24 + 13915q47/24 + . . .

(6.10)

hN=2
3

2

(τ) = q−9/24 + 231q15/24 + 5796q37/24 + . . . .

The multiplier system is given by the inverse of the half-index theta
function multiplier, defined in equation (A.21).
In the case G = M23, the Rademacher expression (2.11) coincides
with the vector-valued mock modular form hN=2

g for all the conjugacy
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classes except those for which 3|o(g). However, see §6.4 for an analysis
of the structure of these functions at the other poles of Γg.
Similarly, in the case G = M12 the functions hN=2

g corresponding
to the conjugacy classes for which 3|g cannot be reproduced by the
Rademacher series at the infinite cusp, except for the Frame shape 38.
Additionally, the Rademacher expansion at the infinite cusp also fails
in the case where g has Frame shape 4282. The multiplier system for the
conjugacy classes in πg with no fixed points and that can be reproduce
using the Rademacher expansion is given by the inverse of (A.21) times
the phase

(6.11) νg = e

(
− c d

n ξ

)
.

3. EN=4
m=2 (G): Equation (4.16) defines hN=4, a vector-valued mock modu-

lar form whose first few coefficients are given by

hN=4
1 (τ) = −hN=4

−1 (τ) = −2q−1/12 + 560q11/12 + 8470q23/12 + . . .

(6.12)

hN=4
2 (τ) = −hN=4

−2 (τ) = −q−4/12 − 210q8/12 − 4444q16/12 + . . . .

The multiplier system of these weight 1/2 mock modular forms with
respect to Γ0(n) is the conjugate of the shadow χgS3, (cf. [19]). Due
to the symmetry of the theta function and the modular properties of
the Jacobi form, it follows that hN=4

m,r = −hN=4
m,−r. Thus, among the 6

components of the mock modular form only three of them are linearly
independent.
In this case we find that the Rademacher sum (2.11) coincides with

hN=4
g for all conjugacy classes g ∈ G where G = M22,M

(1)
11 . For

G = M
(2)
11 , the conjugacy class labelled by the Frame shape 24 44 has

multiplier system given by the inverse of the theta multiplier (A.20)
times (6.11) whereas for 42 82 there is no match between the
Rademacher sum and the twining function.

To summarize, we report below the conjugacy classes corresponding to the
mock modular forms that cannot be reconstructed using solely the informa-
tion at the infinite cusp for these c = 12 theories.

6.3. Modules with c = 24

In analogy to the theories with central charge 12, the two extremal CFTs
EN=2
m=4 , EN=4

m=4 with central charge 24 furnish G-modules whose graded charac-



Properties of extremal CFTs with small central charge 645

Table 3: Pole structure of hAg (τ) for certain extremal theories with central
charge 12

ECFT Frame shapes with additional poles

ESpin(7) (M24) 16 36 − 14 54 − 12 22 32 62 − 22 102 − 2.4.6.12− 1.3.5.15
EN=2
m=2 (M23) 16 36 − 12 22 32 62 − 1.3.5.15

EN=2
m=2 (M12) 16 36 − 12 22 32 62 − 64 − 42 82

EN=4
m=2 (M22) None

EN=4
m=2 (M

(1)
11 ) None

EN=4
m=2 (M

(2)
11 ) 4282

ters are encoded in the coefficients of certain vector-valued modular forms.
We will denote these modules by ṼA,G,

(6.13) ṼA,G =
⊕

j∈{α̃}A

∞⊕
n=1

Ṽ A,G
j,n , A ∈ {N = 2, N = 4},

where G = M23 and M11, respectively. From these considerations and the
description given in §4.3, we see that the mock modular forms can be written
as

(6.14) h̃Ag,j(τ) = ãjq
− j2

b̃A +

∞∑
n=1

(TrṼA,G
j,n

g)q
n− j2

b̃A ,

where the data appearing above can be summarized succinctly in the fol-
lowing table:

A {α̃}A b̃A {ar} G
N = 2

{
±1

2 ,±
3
2 ,±

5
2 ,

7
2

}
14 {−1, 1,−1, 1} M23

N = 4 {1, 2, 3, 4} 20 {−4,−3,−2,−1} M11

Furthermore, for all g ∈ G, there is a modular group Γg < SL2(Z) with
Γg = Γ0(n), where n = o(g), such that h̃Ag (τ) is a vector-valued mock
modular form of weight 1/2 and multiplier system ρg : Γg → C× with
respect to Γg. In Appendix C we explicitly compute the functions h̃N=2

g .

Furthermore, we discuss the computation of h̃N=4
g for three conjugacy classes

in M11.
17

17For the other conjugacy classes inM11, we compare h̃N=4
g with the Rademacher

formula by computing the first couple coefficients of the twined function and seeing
already that they do not match.
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1. EN=2
m=4 : The first few Fourier coefficients of the mock-modular form

h̃N=2 are

h̃N=2
1

2

(τ) = h̃N=2
− 1

2

(τ) = −q−1/56 + 32890q55/56 + 2969208q111/56 + . . .

(6.15)

h̃N=2
3

2

(τ) = h̃N=2
− 3

2

(τ) = q−9/56 + 14168q47/56 + 1659174q103/56 + . . .

h̃N=2
5

2

(τ) = h̃N=2
− 5

2

(τ) = −q−25/56 + 2024q31/56 + 485001q87/56 + . . .

h̃N=2
7

2

(τ) = q−49/56 + 23q7/56 + 61894q63/56 + . . . .

As before, the coefficients multiplying the polar q-terms are singlets
under the action of g. The multiplier system is constrained by the
multiplier system of the unary theta series S 7

2
and corresponds to the

inverse of the half-integral index theta function (A.21). We find that
the functions can be reproduced by a Rademacher sum at the infinite
cusp only for πg ∈ {124, 12 112, 1.23}.

2. EN=4
m=4 : The vector-valued mock modular form h̃N=4 has the first few

coefficients,

h̃N=4
1 (τ) = −h̃N=4

−1 (τ) = −4q−1/20 + 18876q19/20 + 1315512q39/20 + . . .

(6.16)

h̃N=4
2 (τ) = −h̃N=4

−2 (τ) = −3q−4/20 − 12045q16/20 − 1152943q36/20 + . . .

h̃N=4
3 (τ) = −h̃N=4

−3 (τ) = −2q−9/20 + 1980q11/20 + 391974q31/20 + . . .

h̃N=4
4 (τ) = −h̃N=4

−4 (τ) = −q−16/20 − 33q4/20 − 45990q24/20 + . . . ,

where h̃N=4
0 (τ) = h̃N=4

5 (τ) = 0. The multiplier system is given by the
conjugate multiplier system of 5(Tr12g)S5 and therefore equals the
inverse of the theta function multiplier system (A.20). We find that
the Rademacher sum (2.11) correctly reproduces the twining function
h̃N=4
g only for πg ∈ {124, 12 112}.

To summarize, we report in Table 4 the conjugacy classes which can be
reconstructed from solely the information of the infinite cusp and thus do
not have poles at any additional cusps.

6.4. Cusp behavior of hN=2
g

In this section we discuss an intriguing property of the vector-valued mock
modular forms hN=2

g of EN=2
m=2 (M23) for πg ∈ {16 36, 12 22 32 62, 1.3.5.15}, i.e.
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Table 4: Pole structure of h̃Ag (τ) for the two extremal theories with central
charge 24. In contrast to Table 3, we report the conjugacy classes where the
only pole is at the infinite cusp

ECFT Frame shapes with no additional poles

EN=2
m=4 124 − 12 112 − 1.23

EN=4
m=4 124 − 12 112

g ∈ {3A, 6A, 15AB} using the standard ATLAS notation [62] for these con-

jugacy classes. These are precisely the functions which are not Rademacher

sums at the infinite cusp. They have poles at the cusp at zero, 1
2 , and

1
5 ,

respectively. However, the coefficients in the expansion of these functions

around these cusps can be related to the coefficients in the expansion at the

infinite cusp, via a relation with functions appearing in the M24 (� = 2) case

of umbral moonshine. First, let

(6.17) H1A(τ) :=
1

2
Ĥ

(2)
1A (τ) = q−1/8(−1 + 45q + 231q2 + 770q3 . . .),

be the function such that Ĥ
(2)
1A (τ) is the single independent component of

a weight 1
2 vector-valued mock modular form for SL2(Z) whose coefficients

encode the graded dimensions of an M24 module [23, 27, 28]. Furthermore,

let

(6.18) Hg′(τ) :=
1

2
Ĥ

(2)
g′ (τ)

be the corresponding (weight 1
2 , vector-valued) mock modular forms for Γg′

encoding the graded traces of g′ in this module for all conjugacy classes

g′ ∈ M24, where Γg′ is just equal to Γ0(o(g
′)). We also use below the fact

that

(6.19) H3A(τ) :=
1

2
Ĥ

(2)
3A (τ) = q−1/8(−1 + 0q +−3q2 + 5q3 . . .)

for the conjugacy class g′ = 3A in M24. Note the following interesting rela-

tion between the functions hN=2
g for all g ∈ M23 and the functions Hg′(τ).

We introduce the notation h∞g,r to denote the rth component of hN=2
g

expanded about the cusp of Γg at τ = i∞. Similarly, we will use the notation

hζg,r to denote the rth component of hN=2
g expanded about the cusp of Γg
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at τ = ζ. Our first observation is that

h∞1A, 1
2

(τ) =
1

3

2∑
α=0

e
( α

24

)
H1A

(
τ + α

3

)
(6.20)

= q−1/24(−1 + 770q + 13915q2 + 132825q3 . . .)

h∞1A, 3
2

(τ) =
1

3

2∑
α=0

e

(
−15α

24

)
H1A

(
τ + α

3

)
−H1A(3τ)

= q−9/24(1 + 231q + 5796q2 + 65505q3 . . .)

and

h∞3A, 1
2

(τ) =
1

3

2∑
α=0

e
( α

24

)
H3A

(
τ + α

3

)
(6.21)

= q−1/24(−1 + 5q + 10q2 + 21q3 . . .)

h∞3A, 3
2

(τ) = −2

3

2∑
α=0

e

(
−15α

24

)
H3A

(
τ + α

3

)
−H1A(3τ)

= q−9/24(1 + 6q + 18q2 − 15q3 . . .).

This encodes the relation of the 1A and 3A twining functions of EN=2
m=2 (M23)

to those of M24 umbral moonshine.18

Now let’s look at the expansion of hN=2
3A at ζ = 0. In Appendix A.3 we

report the method we implemented to compute these q-series. We find that

the components h0
3A, 1

2

(τ), h0
3A, 3

2

(τ) can be expressed as linear combinations

of the functions h∞
3A, 1

2

(τ), h∞
3A, 3

2

(τ) and H1A(τ). Explicitly, the relation is

h03A, 1
2

(τ) = H1A

(τ
3

)
− 3h∞3A, 1

2

(τ)

(6.22)

= 2q−1/24 + 45q7/24 + 231q15/24 + 755q23/24 + 2277q31/24 + . . .

h03A, 3
2

(τ) = −h∞3A, 1
2

(τ)− h∞3A, 3
2

(τ)−H1A(3τ)

(6.23)

= q−1/24 − 6q15/24 − 5q23/24 − 18q39/24 + . . . .

18The above equations in (6.20) and (6.21) look very much like the action of a
Hecke operator on Hg. It would be interesting to explore this connection further.
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Similarly, consider the following pairs of conjugacy classes: (g′, g) = (2A, 6A)
and (g′, g) = (5A, 15AB) for g′ ∈ M24 and g ∈ M23. Then we have a similar
relation for the two other functions with additional poles given by

h
ζg
g, 1

2

(τ) = Hg′

(τ
3

)
− 3h∞g, 1

2

(τ)

h
ζg
g, 3

2

(τ) = −h∞g, 1
2

(τ)− h∞g, 3
2

(τ)−Hg′(3τ),(6.24)

where ζg = 1
2 for g = 6A and ζg = 1

5 for g = 15AB.

It would be very interesting to understand the origin of these proper-
ties, and in particular why they behave similarly to the Hauptmoduln of
monstrous moonshine for groups with Atkin-Lehner involutions. For exam-
ple, consider the McKay-Thompson series for conjugacy class g = 3A in the
monster group, expanded at the infinite cusp

(6.25) T3A(τ) =
1

q
+ 783q + 8672q2 + 65367q3 + . . . .

This is a Hauptmodul for the group Γ0(3) + 3, which is defined in Ap-
pendix A.1 and in particular contains the Fricke involution which takes
τ �→ − 1

3τ . Such an involution relates the cusp at infinity to the cusp at
τ = 0, and thus these cusps are equivalent with respect to Γ0(3) + 3. As
a result, the expansion of the Hauptmodul at τ = 0, which we will denote
T 0
3A(τ), is given by

T 0
3A(τ) = T3A

(
− 1

3τ

)
= q−

1

3 + 783q
1

3 + 8672q
2

3 + 65367q + . . . = T3A

(τ
3

)
.

(6.26)

The properties we observe for certain hN=2
g in equation (6.24) in this section

are strikingly similar to this behavior.

7. Discussion

In this work we have investigated the Rademacher summability properties of
the twining functions of known extremal CFTs. Inspired by the genus zero
property of monstrous moonshine, and its connection to the Rademacher
summability of the monstrous McKay-Thompson series at the infinite cusp,
we consider a similar expansion for the twined graded characters associated
with the other extremal CFTs. Similarly to V� and Vs�, we find that EN=4

m=2 (G)
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for G = M22 and M
(1)
11 have the property that all associated twining func-

tions can be written as Rademacher sums at the infinite cusp. However, all
of the other cases we consider have at least one conjugacy class whose graded
character has pole at additional cusps of the corresponding modular group
which are inequivalent to infinity.

In studying the Rademacher properties of hAg and h̃Ag , in §6 we exam-
ined the Rademacher sum of the corresponding polar term for the group
Γg = Γ0(n). However, in the case of V� and Vs� it is the case that many
of the McKay-Thompson series are Hauptmoduln for subgroups of SL2(R)
with additional Atkin-Lehner involutions (cf. Appendix A.1). One obvious
question is whether those functions which, according to the results of §6.2
and §6.3, have poles at cusps inequivalent to i∞ under Γg are nevertheless
Rademacher sums at infinity for a different modular group with more gen-
eral Atkin-Lehner involutions. However, in the case of half-integral index
theta functions it does not seem possible to extend the multiplier system to
these groups.

More generally, in the case of V� and Vs�, the Rademacher summability
property applies directly to the twined partition functions. In the cases of
the other ECFTs we consider, we study the mock modular forms which arise
only after decomposing the partition function into superconformal charac-
ters. Though these objects are natural to consider both from a physical and
algebraic point of view, one could also consider the Rademacher properties
of the twined (flavored) partition function itself. In the Spin(7) case, the
(twined) partition function is simply the (twined) partition function of Vs�;
from this point of view the functions of the Spin(7) theory are naturally
related to Rademacher summable functions (though for different modular
groups and with different polar structure).

On the other hand, in the case of the theories with N = 2 and N = 4
supersymmetry, the flavored partition function is a Jacobi form of index m
and has a natural theta expansion into length 2m vector-valued modular
forms of weight w = −1/2. However, these functions in general have at least
as many poles as the mock modular forms we studied.

In Table 5 we summarize the Rademacher summability of the different
ECFTs. In particular, in the third column we report the number of conju-
gacy classes in the global symmetry group of the theory whose corresponding
twining function is a Rademacher sum at the infinite cusp. We have indi-
cated in bold those theories for which all twining functions are Rademacher
summable in this sense.

Our work suggests that the surprising connection between ECFTs and
sporadic groups is in fact more general than the connection between ECFTs
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Table 5: Extremal CFTs whose Rademacher summability properties have
been proven already (V� and Vs�) or are considered in §6. In the second
column we list the twining functions and in the third column we report our
main results

ESCFT Twining function Rademacher summable [g]

V� Tg(τ) All [g] ∈ M [30]

Vs� Zs�
NS,g(τ) All [g] ∈ Co0 [34]

ESpin(7)(M24) h
Spin(7)
g (τ) All but 6 [g] ∈ M24

EN=2
m=2 (M23) hN=2

g (τ) All but 3 [g] ∈ M23

EN=2
m=2 (M12) hN=2

g (τ) All but 4 [g] ∈ M12

EN=4
m=2 (M22) hN=4

g (τ) All [g] ∈ M22

EN=4
m=2 (M

(1)
11 ) hN=4

g (τ) All [g] ∈ M
(1)
11

EN=4
m=2 (M

(2)
11 ) hN=4

g (τ) All but 1 [g] ∈ M
(2)
11

EN=2
m=4 h̃N=2

g (τ) 3 classes [g] ∈ M23

EN=4
m=4 h̃N=4

g (τ) 2 classes [g] ∈ M11

and Rademacher summability. We end with the following comments and
open questions inspired by our work:

• It would be interesting to understand more deeply the origin of the
curious connection described in §6.4, which relates the mock modular
forms arising from EN=2

m=2 (M23) and the twining functions of Mathieu
moonshine. More specifically, we have observed a precise relation be-
tween the coefficients in the expansion of hN=2

g at two inequivalent
cusps of Γ0(n) where it has poles in the case of g ∈ {3A, 6A, 15AB}.
Is this indicative of a larger symmetry of these functions?

• Furthermore, in the case of c = 12, as explained in §4.2 there exist
ECFTs corresponding to all 1-, 2-, and 3-plane preserving subgroups
of Co0. We did not analyze all such ECFTs which arise in this way; it
would be interesting to study the Rademacher summability properties
of the mock modular forms which arise for all corresponding conjugacy
classes of Co0 which preserve a 1-, 2-, or 3-plane in the 24. We leave
such an analysis to future work.

• The form of the partition functions for holomorphic orbifolds of the
monster CFT turn out to be highly constrained by the Hauptmodul
property and the uniqueness conjecture of the vacuum. In fact, given
a generic element g ∈ M, 〈g〉-orbifold is either V� or VL, as proved in
[59]. We expect a similar reasoning to hold for the Conway module,
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whose uniqueness was proved in [63], and its relation to the two other

c = 12,N = 1 SCFTs, the super-E8 theory and the theory of 24 free

fermions.

Most of the other examples of c = 12 ECFTs analyzed here are dif-

ferent from V� and Vs� in that not all the mock modular forms ap-

pearing in the decomposition of the twining functions are Rademacher

summable. However, after a preliminary analysis in the case of

EN=2
m=2 (M23) we found that the holomorphic 〈g〉-orbifolds for which

g ∈ M23 and πg ∈ {18 28, 16 36, 14 54, 13 73} reproduce the original

partition function (4.5). It would be interesting to explore this further

for the other theories considered in this paper.

• In this work we did not analyze the case of the EN=1
k∗=2, the ECFT

with Co0 symmetry first constructed in [18]. One question for the fu-

ture is to derive the corresponding twining functions of this

theory and consider whether they have any special Rademacher sum-

mability properties at the infinite cusp of the appropriate modular

groups.

• Another example one could consider is K3 non-linear sigma models

(NLSM). These theories are extremal according to the definition of

[15]; however, they are not chiral CFTs. Their symmetry groups and

possible twined elliptic genera have been classified; they are related to

four-plane-preserving subgroups of the group Co0 [24, 64]. It would be

interesting to consider in general the Rademacher summability prop-

erties of all possible twining functions which can arise for K3 NLSMs.

In the case where the symmetry element belongs to the Mathieu group

M24, it follows from [31] that these twining functions19 are Rademacher

sums about the infinite cusp. However, a general analysis has yet to

be performed.

One interesting point to note is that in [64] it was conjectured20 that

all possible twining functions of K3 CFTs arise from either umbral

moonshine or Conway moonshine in a precise way proposed in [66]

and [67], respectively. So in this (roundabout) sense they arise from

functions which are Rademacher summable at the infinite cusp due to

this property of umbral and Conway moonshine.

19By twining functions here we mean mock modular forms which arise from a

decomposition of the form (B.28).
20In [65] this conjecture was proved in a physical sense via a derivation from

string theory.
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It is also the case that the elliptic genus of a 〈g〉-orbifold of a K3 CFT

either reproduces the K3 elliptic genus or the elliptic genus of T 4.21

One could investigate in this case whether there is a connection be-

tween the Rademacher summability of the g-twined functions and

whether the 〈g〉-orbifold yields a K3 or a torus theory.

• The connection between the Rademacher expansion of a CFT partition

function and the path integral of 3d quantum gravity in AdS first

suggested in [32] primarily served as a source of motivation for our

analysis. However, in the case of a g-twined partition function of a

CFT with discrete symmetry group G, a physical interpretation of its

Rademacher summability at the infinite cusp is lacking. It would be

interesting to find a physical interpretation in instances where such a

property holds.

• The authors of [68] considered a certain compactification of heterotic

string theory to two dimensions to provide a physical derivation of

the genus zero property of monstrous moonshine. The Hauptmodul

property of the monstrous McKay-Thompson series was shown to arise

from T -duality symmetries which arise upon considering CHL orbifolds

of this string compactification. An interesting question is whether the

additional ECFTs we consider in this work have any connection with

2d string compactifications, and if this point of view can shed any light

on the properties considered in this paper.

• We can certainly construct infinite families of 2d CFTs with arbitrar-

ily high central charge and sporadic symmetry groups by considering

symmetric products of the theories studied in this paper; however,

they will no longer be extremal [15]. Do these symmetric product

theories have any special properties? Are there other theories (ex-

tremal or not) with large sporadic group symmetry and c > 24 which

don’t arise from this symmetric product construction? Assuming a

connection between Rademacher sums and sporadic groups, can one

use Rademacher summability techniques to search for such CFTs at

higher central charge?

• Finally, given the previous point, we raise the following question: how

ubiquitous are 2d CFTs with sporadic group symmetries? Do such

theories play a special role in physics, i.e. in 3d gravity and/or string

theory?

21This is just zero due to fermionic zero modes.
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Appendix A. Modular definitions

A.1. Modular groups

In this section we introduce different modular groups encountered in the
main text. We denote by Γ0(N) the Hecke congruence subgroup of level N ,

(A.1) Γ0(N) =

{
γ =

(
a b
cN d

)
∈ SL2(Z)

∣∣∣ det(γ) = 1, c ∈ Z

}
.

The Atkin-Lehner involution for Γ0(N) is

(A.2) We =

{
γ =

(
ae b
cN de

)
∈ GL2(Z)

∣∣∣det(γ) = e, e||N
}
,

where || denotes that e is an exact divisor of N , i.e. e divides N , e|N , and(
e, Ne

)
= 1. Moreover the set of matrices Wei satisfies

W 2
e = 1mod(Γ0(N)),(A.3)

We1We2 = We2We1 = We3 mod(Γ0(N)), e3 =
e1e2

(e1e2)2
.(A.4)

An important example of Atkin-Lehner involution is the so-called Fricke
involution WN , which generates the transformation τ → −1/Nτ .

Next we introduce the modular group Γ0(n|h), defined by

(A.5) Γ0(n|h) =
{
γ =

(
a b

h
cn d

) ∣∣∣ det(γ) = 1

}
where a, b, c, d ∈ Z, h ∈ Z, h2|N and N = nh. For h the largest divisor of
24, Γ0(n|h) is a subgroup of the normalizer group N (N) (defined below).
The corresponding Atkin-Lehner involution is

(A.6) we =

{
γ =

(
ae b

h
cN de

) ∣∣∣ det(γ) = e, e||n
h

}
;

this satisfies a closure condition similar to equation (A.4) forWe with respect
to to Γ0(n|h) instead of Γ0(N). The normalizer group of Γ0(N) in SL2(R)
is

(A.7) N (N) = {ρ ∈ SL2(R)|ρΓ0(N)ρ−1 = Γ0(N)} .
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N (N) is generated by Γ0(n|h) and its Atkin-Lehner involutions. For an
explicit description of the normalizer group the reader is referred to [26].

The groups Γg with g ∈ M are subgroups of N (N) of the form Γ0(n|h)+
e1, e2,.. where n = o(g) is the order of g, h|24, h|n and N = nh. Here
Γ0(n|h) + e1, e2,.. stands for the union of a particular set of Atkin-Lehner
involutions (we1 , we2 , . . .) and Γ0(n|h). From this description it is apparent
that Γg is a subgroup of N (N) and contains Γ0(N).

Lastly, we define the group Γθ, whose Hauptmodul is

K(τ) =

(
η2(τ)

η
(
τ
2

)
η(2τ)

)24

= q−1/2 + 24 + 276q1/2 + . . . ,(A.8)

Γθ =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣ c− d ≡ a− b ≡ 1 (mod 2)

}
.(A.9)

A.2. Modular and Jacobi forms

We start by defining the Dedekind eta function,

(A.10) η(τ) = q1/24
∞∏
n=1

(1− qn),

and the Jacobi theta functions θi(τ, z) as follows,

θ1(τ, z) = −iq1/8y1/2
∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn−1) ,(A.11)

θ2(τ, z) = q1/8y1/2
∞∏
n=1

(1− qn)(1 + yqn)(1 + y−1qn−1) ,(A.12)

θ3(τ, z) =

∞∏
n=1

(1− qn)(1 + y qn−1/2)(1 + y−1qn−1/2) ,(A.13)

θ4(τ, z) =

∞∏
n=1

(1− qn)(1− y qn−1/2)(1− y−1qn−1/2) .(A.14)

A fundamental object in our discussion is the weight 1/2 index m theta
series, whose components are defined by

(A.15) θm,r(τ, z) =
∑
k∈Z

k≡r (mod 2m)

qk
2/4m yk ,
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when m ∈ Z>0 and are otherwise given by

(A.16) θm,r(τ, z) =
∑

k=r (mod 2m)

e(k2 ) q
k2/4myk,

for half integer-index m, and with 2m ∈ Z>0 and r −m ∈ Z. The modular
properties of the theta series are dictated by its transformation under the
generators of the modular group SL(2,Z)

(A.17) T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
,

and are thus represented by

�θm(τ + 1, z) = ρ(T ). �θm(τ, z) ,(A.18)

�θm

(
−1

τ
,
z

τ

)
= e
(mz2

τ

)√
−iτ ρ(S). �θm(τ, z) ,(A.19)

where the 2m-dimensional matrices ρ(S) and ρ(T ) define its multiplier sys-
tem.

For m ∈ Z, these take the form

(A.20) ρ(T )r,r′ = e

(
r2

4m

)
δr,r′ , ρ(S)r,r′ =

1√
2m

e

(
− rr′

2m

)
,

whereas for m ∈ 1
2Z,

(A.21) ρ(T )r,r′ = e

(
r2

4m

)
δr,r′ , ρ(S)r,r′ =

1√
2m

e

(
− rr′

2m

)
e

(
r − r′

2

)
.

A.3. Expansions at cusps

In the section we introduce the generalized Eichler-Zagier operator22 used
in the computation of the expansion of certain Jacobi modular forms at the
different cusps.

The Eichler-Zagier operator Wm(n) with n||m (n is an exact divisor of
m) is defined by its action on Jacobi forms of index m as

φ|Wm(n)(τ, z) =
1

n

n−1∑
A,B=0

e

(
m
(A2

n2
τ + 2

A

n
z +

AB

n2

))
φ
(
τ, z +

A

n
τ +

B

n
z
)
.

(A.22)

22We thank Daniel Whalen for sharing his unpublished note.
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This operator is an involution on the space of Jacobi modular forms of index

m, see [69] for more details. Consider the different summands separately; for

a point λ = Aτ +B with A,B ∈ Q we define

(A.23) φ|Wm(λ)(τ, z) := e
(
mA(λ+ 2z)

)
φ(τ, z + λ)

An important property of the so-called generalized Eichler-Zagier operator

Wm(λ) is that it commutes with the slash operator defined as

(A.24) φ|γ,k,m(τ, z) = (cτ + d)−ke−2πimcz2

cτ+d φ(γτ, γz) .

Indeed, we have

(A.25) φ|Wm(λ)|γ,k,m(τ, z) = φ|γ,k,m|Wm(γλ)(τ, z)

where we have used the fact that γA = aA + cB and γB = bA + dB.

Thanks to this identity, we can recast the expansion around different cusps

of Zs�
R,g(τ, z) as q-series.

The weight 0, index 2 Jacobi form Zs�
R,g(τ, z), given in (4.11), can be

written as

(A.26) Zs�
R,g(τ, z) =

∑
r∈Z/4Z

kg,r(τ)θ2,r(τ, z),

where kg,r(τ) is the modular form of weight −1/2 defined by the theta

decomposition of Zs�
R,g. To expand this twining function at a different cusp

we define

Zs�,cusp
R,g (τ, z) = e−2πi 2cz2

cτ+dZs�,∞
R,g (γτ, γz)(A.27)

= e−2πi 2cz2

cτ+d

∑
r∈Z/4Z

kg,r(γτ)θ2,r(γτ, γz)(A.28)

= ψg,r(γτ) θ2,r(τ, z)(A.29)

where the explicit form of ψg,r can be derived from equation (4.11), and it

turns out to be a combination of index m theta functions θm,r(τ, ρg,k). From

equation (A.23), for A = z = 0 and B = ρg,k we have

(A.30) �θm(τ, ρg,k) = �θm|Wm(ρg,k)(τ, 0) .
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Then, using (A.25) we obtain

�θm|Wm(ρg,k)|γ(τ, 0) = �θm|γ |Wm(γρg,k)(τ, 0) = ρ(γ).�θm|Wm(γρg,k)(τ, 0) ,(A.31)

where ρ(γ) is the multiplier system of the theta function of integer index

given in (A.20). The expression on the the right hand side of (A.31) allows

us to derive the q-series expansion of ψg,r(γτ), and thus of Zs�,cusp
R,g (τ, z).

A.4. Mock and meromorphic Jacobi forms

The first instance of mock Jacobi form we consider is the so-called Appell–

Lerch sum, defined as

(A.32) f (m)
u (τ, z) =

∑
k∈Z

qmk2

y2mk

1− yqke−2πiu
.

Its completion, following [36], is

(A.33) f̂ (m)
u (τ, τ̄ , z) = f (m)

u (τ, z)− 1

2

∑
r∈Z/Z

Rm,r(τ, u)θm,r(τ, z)

with

Rm,r(τ, u) =
∑

k≡r (mod 2m)

(
sgn(k + 1

2)+

− E

(√
Imτ

m

(
k + 2m

Imu

Imτ

)))
q−

k2

4m e−2πiku,

E(z) = sgn(z)

(
1−
∫ ∞

z2

dt t−1/2 e−πt

)
.

Moreover, f̂
(m)
u (τ, τ̄ , z) transforms as a (non-holomorphic) Jacobi form of

weight 1 and index m.

We denote by μm;0(τ, z) = f
(m)
0 (τ,−z) − f

(m)
0 (τ, z). This specialization

of the Appell–Lerch sum has the following relation to the modular group

SL2(Z): let the (non-holomorphic) completion of μm;0(τ, z) be

μ̂m;0(τ, τ̄ , z) = μm;0(τ, z)−
1√
2m

∑
r∈Z/2mZ

θm,r(τ, z)×(A.34)
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×
∫ i∞

−τ̄

(
i(τ ′ + τ)

)−1/2
Sm,r(−τ̄ ′) dτ ′.

Then μ̂m;0 transforms like a Jacobi form of weight 1 and indexm for SL2(Z)�
Z2 and it has a simple pole at z = 0. Here Sm = (Sm,r) is the vector-valued
cusp form for SL2(Z) whose components are given by the unary theta series

(A.35) Sm,r(τ) =
1

2πi

∂

∂z
θm,r(τ, z)|z=0.

Note that the explicit form of the theta series Sm,r(τ) changes depending
on whether m is integer or half-integer because of equations (A.15), (A.16).

For later use, we define two weight one meromorphic Jacobi forms, Ψ1,1

of index one, defined as

(A.36) Ψ1,1(τ, z) = −i
θ1(τ, 2z) η(τ)

3

(θ1(τ, z))2
=

y + 1

y − 1
− (y2 − y−2)q + · · · ,

and Ψ1,− 1

2
of index −1

2 , defined as

Ψ1,− 1

2
(τ, z) = −i

η(τ)3

θ1(τ, z)
=

1

y1/2 − y−1/2
+ q (y1/2 − y−1/2) +O(q2).

Appendix B. Superconformal characters and modules

In this appendix we review the representation theory and character formulas
of the N = 4, N = 2, and Spin(7) SCAs.

B.1. Characters of the Spin(7) algebra

Here we briefly review the representation theory of the SW(3/2, 2) super-
conformal algebra with central charge 12—this is the algebra which arises on
the worldsheet of type II string theory compactified on a manifold of Spin(7)
holonomy [61].23 This algebra is an extension of the c = 12 N = 1 SCA by
two additional generators: the stress-energy tensor of a c = 1/2 Ising model
(of dimension 2) and its superpartner (of dimension 5/2).

In [70] the unitary representations of the SW(3/2, 2) SCA were classi-
fied. There are two algebras—NS and R—which correspond to whether the
fermions are 1/2-integer (NS) or integer (R) graded. For our purposes it suf-
fices to work in the NS sector; here the representations are uniquely specified

23Throughout this section, we follow the notation used in [20].
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by two quantum numbers and will be labelled |a, h〉, where a is the dimen-
sion of the internal Ising factor, a ∈ {0, 1/16, 1/2}, and the total dimension
is h. The result is that there are three massless (BPS) representations with
quantum numbers |0, 0〉, |1/16, 1/2〉, and |1/2, 1〉, and two continuous fami-
lies of massive (non-BPS) representations with quantum numbers |0, n〉, and
|1/16, 1/2 + n〉, where n ≥ 1/2.

Conjectural characters for each of these representations were computed
in [60], to which we refer for more details and derivations, including a dis-
cussion of the characters in the Ramond sector. We define the following
combination of functions from (A.15),

(B.1) θ̃m,r(τ) = θm,r(τ) + θm,r−m(τ)

which satisfies θ̃m,r = θ̃m,−r = θ̃m,r+m, θ̃m,r(τ) = θm/2,r(τ/2), and

(B.2) f̃ (m)
u (τ, z) = f (m)

u (τ, z)− f (m)
u (τ,−z).

We denote the character of the a non-BPS representation |a, h〉 by χNS
a,h (τ),

and the characters of the BPS representations by χ̃NS
a (τ), as they are

uniquely specified by their a eigenvalue. The result is that the non-BPS
characters are given by

χNS
0,h (τ) = qh−

49

120 P(τ)ΘNS
0 (τ) = qh (q−1/2 + 1 + q1/2 + 3 q + . . . )(B.3)

and

(B.4) χNS
1

16
,h(τ) = qh−

61

120 P(τ)ΘNS
1

16

(τ) = qh (q−1/2 + 2 + 3 q1/2 + 5 q + . . . )

where

P(τ) =
η2(τ)

η2( τ2 )η
2(2τ)

,

and we have defined

ΘNS
0 (τ) =

(
θ̃30,2(τ)− θ̃30,8(τ)

)
,(B.5)

ΘNS
1

16

(τ) =
(
θ̃30,4(τ)− θ̃30,14(τ)

)
.(B.6)

Furthermore, the BPS character of total dimension h = 1
2 is given by

(B.7) χ̃NS
1

2

(τ) = P(τ)μNS(τ) ,
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where,

(B.8) μNS(τ) =
(
q

5

8 f̃
(5)
τ

2
+ 1

2

(6τ, τ) + q
25

8 f̃
(5)
τ

2
+ 1

2

(6τ,−2τ)
)
,

and the other two BPS characters can be found using the BPS relations
which relate massless and massive characters:

(B.9) χ̃NS
0 + χ̃NS

1

16

= q−nχNS
0,n , χ̃NS

1

16

+ χ̃NS
1

2

= q−nχNS
1

16
, 1
2
+n .

Spin(7) modules The partition function for a module of the Spin(7)
superconformal algebra, i.e.

(B.10) ZSpin(7)
NS (τ) = TrNS qL0−c/24,

transforms as a weight zero modular function for the congruence subgroup
Γθ. Furthermore, it follows from the explicit description of the Spin(7) char-
acters above that such a function admits an expansion of the form

(B.11) ZSpin(7)
NS (τ) = P(τ)

(
A0μ

NS(τ) + F 1

16
(τ)ΘNS

1

16

(τ) + F0(τ)Θ
NS
0 (τ)

)
where we can expand the function (Fj) as

F 1

16
(τ) =

∑
n≥0

bj(n)q
n−1/120(B.12)

F0(τ) =
∑
n≥0

cj(n)q
n−49/120.(B.13)

From the properties of the Appell–Lerch sums detailed in Appendix A.4, it
follows that F := (Fj) is a weight 1/2 vector-valued mock modular form for
SL2(Z) with shadow given by A0S̃(τ), where we have defined

S̃ =

(
S1

S7

)
(B.14)

and S̃α(τ) =
∑

k∈Z kε
R
α (k)q

k2/120 for α = 1, 7 and

εR1 (k) =

⎧⎪⎨⎪⎩
1 k = 1, 29 (mod 60)

−1 k = −11,−19 (mod 60)

0 otherwise

(B.15)
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εR7 (k) =

⎧⎪⎨⎪⎩
1 k = −7,−23 (mod 60)

−1 k = 17, 13 (mod 60)

0 otherwise

.(B.16)

See [20] for more details.

B.2. N = 2 superconformal characters

The N = 2 SCA with central charge c = 3(2� + 1) = 3ĉ, � ∈ 1
2Z, contains

an affine û(1) current algebra of level � + 1
2 . In this notation m = � + 1

2 .
The unitary irreducible highest weight representations are labeled by the
eigenvalues of L0 and J0, which we call h and Q, respectively [71, 72], and
which we denote by VN=2


;h,Q. There are 2�+1 massless (BPS) representations

with eigenvalues h = c
24 = ĉ

8 and Q ∈ {− ĉ
2+1,− ĉ

2+2, . . . , ĉ2−1, ĉ2}, whereas
there are 2� + 1 continuous families of massive (non-BPS) representations
with eigenvalues h > ĉ

8 and Q ∈ {− ĉ
2 +1,− ĉ

2 +2, . . . , ĉ2 −2, ĉ2 −1, ĉ2}, Q �= 0.
We focus on the graded characters in the Ramond sector, which are

defined as

(B.17) chN=2

;h,Q(τ, z) = trVN=2

�;h,Q

(
(−1)J0yJ0qL0−c/24

)
.

In terms of functions in Appendix A, the massive characters are

(B.18) chN=2

;h,Q(τ, z) = e( 
2)(Ψ1,− 1

2
(τ, z))−1qh−

c

24
− j2

4� θ
,j(τ, z) ,

for j = sgn(Q) (|Q| − 1/2), and the massless ones (with Q �= ĉ
2) are

(B.19) chN=2

;c/24,Q(τ, z) = e( 
+Q+1/2

2 )(Ψ1,− 1

2
(τ, z))−1 yQ+ 1

2 f (
)
u (τ, z + u) .

for u = 1
2 + (1+2Q)τ

4
 . Furthermore, the character chN=2

;c/24,Q(τ, z) for Q = ĉ

2
can be determined by the relation

chN=2

;c/24, ĉ

2

= q−n
(
chN=2


;n+c/24, ĉ
2

+

ĉ

2
−1∑

k=1

(−1)k
(
chN=2


,n+c/24, ĉ
2
−k + chN=2


,n+c/24,k− ĉ

2

))(B.20)

+ (−1)
ĉ

2 chN=2

;c/24,0 ,

due to the fact that at the unitary bound, several BPS multiplets can com-
bine into a non-BPS multiplet.
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N = 2 modules The graded partition function of a module for the c =
6m N = 2 superconformal algebra in the Ramond sector, i.e.

(B.21) ZN=2
m (τ, z) = TrR

(
(−1)J0yJ0qL0−c/24

)
,

transforms as a weak Jacobi form of weight zero and index m for SL2(Z) as
in the N = 4 case. Furthermore, from the representation theory discussed
above we expect such a partition function to have an expansion

ZN=2
m (τ, z) = e( 
2)(Ψ1,− 1

2
)−1

⎛⎝C0 μ̃
;0(τ, z) +
∑

j−
∈Z/2
Z
F̃

(
)
j (τ)θ
,j(τ, z)

⎞⎠
(B.22)

when the N = 2 SCA has even central charge, c = 3(2� + 1). (See [19] for
more details.) In the last equation, we have defined

μ̃
;0 = e(14) y
1/2f (
)

u (τ, u+ z), u =
1

2
+

τ

4�
,

and the function F̃
(
)
j (τ) satisfies

(B.23) F̃
(
)
j (τ) = F̃

(
)
−j (τ) = F̃

(
)
j+2
(τ).

Through its relation to the Appell–Lerch sum, μ̃
;0 admits a completion
which transforms as a weight one, half-integral index Jacobi form under the
Jacobi group. Defining ̂̃μ
;0 by replacing μm;0 with μ̃
;0 and the integer m

with the half-integral � in (A.34), we see that ̂̃μ
;0 transforms like a Jacobi
form of weight 1 and index � under the group SL2(Z)�Z2. Following the same

computation as in the previous section, we hence conclude that F̃ (
) = (F̃
(
)
j ),

where j−1/2 ∈ Z/2�Z, is a vector-valued mock modular form with a vector-
valued shadow C0 S
 = C0(S
,j(τ)).

B.3. N = 4 superconformal characters

Let m = m̃ − 1.The N = 4 SCA with central charge c = 6(m̃ − 1), m̃ > 1,

contains a level m̃− 1 ŝu(2) current algebra (cf. [73]). We will label the uni-
tary irreducible highest weight representations by the eigenvalues of L0 and
1
2J

3
0 , which we denote by h and j, respectively. We discuss representations

in the Ramond sector, where a representation with quantum numbers (h, j)
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will be denoted VN=4
m;h,j . There are two types of representations: a discrete

set of m̃ massless (BPS) representations, and m̃ − 1 continuous families of
massive (non-BPS) representations (cf. [74]).

The BPS representations have h = c
24 = m̃−1

4 and j ∈ {0, 12 , . . . ,
m̃−1
2 },

and the non-BPS represenations have h > m̃−1
4 and j ∈ {1

2 , 1, . . . ,
m̃−1
2 }.

Their graded characters, defined as

(B.24) chN=4
m;h,j(τ, z) = TrVN=4

m;h,j

(
(−1)J

3
0 yJ

3
0 qL0−c/24

)
,

were computed in [75] and can be written in terms of functions defined in
Appendix A as

(B.25) chN=4
m;h,j(τ, z) = (Ψ1,1(τ, z))

−1μm̃;j(τ, z)

and

(B.26) chN=4
m;h,j(τ, z) = (Ψ1,1(τ, z))

−1 qh−
c

24
− j2

m̃

(
θm̃,2j(τ, z)− θm̃,−2j(τ, z)

)
in the massless and massive cases, respectively.

N = 4 modules The graded partition function of a module for the c =
6(m̃− 1) N = 4 SCA in the Ramond sector, i.e.

(B.27) ZN=4
m (τ, z) = TrR

(
(−1)J

3
0 yJ

3
0 qL0−c/24

)
,

transforms as a weak Jacobi form of weight zero and index m for SL2(Z).
Moreover, the representation theory of the N = 4 SCA discussed above and
the explicit description of the μ and θ functions in Appendix A allows one
to rewrite the graded partition function as

ZN=4
m (τ, z) = (Ψ1,1(τ, z))

−1
(
c0 μm̃;0(τ, z) +

∑
r∈Z/2m̃Z

F (m̃)
r (τ) θm̃,r(τ, z)

)
,

(B.28)

where the F (m̃) = (F
(m̃)
r ), r ∈ Z/2m̃Z obey

(B.29) F (m̃)
r (τ) = −F

(m̃)
−r (τ) = F

(m̃)
r+2m̃(τ).

See, for example, [19].
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The way in which the functions ZN=4
m (τ, z) and μ̂m̃;0 transform under

the Jacobi group shows that the non-holomorphic function∑
r∈Z/2m̃Z

F̂ (m̃)
r (τ) θm̃,r(τ, z)

transforms as a Jacobi form of weight 1 and index m̃ under SL2(Z) � Z2,
where

F̂ (m̃)
r (τ) = F (m̃)

r (τ) + c0 e(−1
8)

1√
2m̃

∫ i∞

−τ̄
(τ ′ + τ)−1/2Sm̃,r(−τ̄ ′) dτ ′.

In other words, F (m̃) = (F
(m̃)
r ), r ∈ Z/2m̃Z is a vector-valued mock modular

form with a vector-valued shadow c0 Sm̃, whose r-th component is given by
Sm̃,r(τ), with the multiplier for SL2(Z) given by the inverse of the multiplier
system of Sm̃ (cf. (A.20)).

Appendix C. Twining functions

In this section we derive the twined partition functions of EN=2
m=4 for all con-

jugacy classes [g] ∈ M23, and we discuss a few such cases for EN=4
m=4 and

[g] ∈ M11. The approach is similar, so we discuss the two cases in parallel,
pointing out distinctions when they occur.

The starting point for each is the Niemeier CFT with target R24/ΛN ,
for N = A24

1 and A12
2 in the N = 2 and N = 4 cases, respectively. The

partition function of the CFT consists primary states coming from lattice
vectors, primary states coming from the 24 currents i∂xi, and the Virasoro
descendants; i.e. it is just given by equation (3.1). For Λ = A24

1 , it will be
useful to think of this CFT in the following way. The ith copy of the A1 root

system furnishes an affine ŝu(2)1 current algebra, generated by the vertex
operators

(C.1) e±i
√
2xi , i∂xi,

and therefore the partition function ZΛN (τ) of the theory has a natural

decomposition into characters of
(
ŝu(2)1

)24
.

There are two irreducible modules of ŝu(2)1—one arising from the vac-
uum representation, which has a ground state of conformal weight zero, and
a second from a highest weight state of conformal weight 1

4 . We will denote
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these representations as [0] and [1], respectively. The characters of these
irreducible modules are given by

ch0(τ) = Tr[0]q
L0−c/24 =

θ3(2τ)

η(τ)
,(C.2)

ch1(τ) = Tr[1]q
L0−c/24 =

θ2(2τ)

η(τ)
,(C.3)

where c = 1 is the Sugawara central charge of the current algebra. The full
lattice theta function for ΛN with N = A24

1 consists of all lattice vectors
which are linear combinations of root vectors and glue vectors. The glue
vectors can be specified in terms of elements of the extended binary Golay
code. This is a length-24 binary code with weight enumerator

(C.4) x24 + 759x16y8 + 2576x12y12 + 759x8y16 + y24,

where the coefficient of the term xnym gives the number of vectors in the
code with n zeros and m ones. Thus we can rewrite the partition function

in terms of ŝu(2)1 characters as

ZΛN (τ) = ch240 (τ) + 759(ch160 (τ)ch81(τ) + ch80(τ)ch
16
1 (τ))(C.5)

+ 2576ch120 (τ)ch121 (τ) + ch241 (τ)

for N = A24
1 .

Similarly, in the case of N = A12
2 , the partition function can naturally

be written in terms of characters of
(
ŝu(3)1

)12
, as each of the 12 A2 root

systems furnishes a copy of ŝu(3)1. There are three irreducible ŝu(3)1 mod-
ules we will call [i] and with characters we refer to as χi(τ), i = 0, 1, 2. The
vacuum module [0] has conformal dimension h = 0 and the two nontrivial
primaries both have conformal dimension h = 1

3 . Furthermore, the glue vec-
tors are now specified in terms of elements of the extended ternary Golay
code, which is a length-12 ternary code with weight enumerator

(C.6) x12+y12+z12+22(x6y6+y6z6+z6x6)+220(x6y3z3+y6z3x3+z6x3y3).

Therefore, forN = A12
2 we can write the partition function in terms of ŝu(3)1

characters by replacing x, y, z in the weight enumerator with χ0, χ1, χ2, re-
spectively. Furthermore, the formulas for these characters are given by

(C.7) χ0(τ) = Tr[0]q
L0−c/24 =

θ3(2τ)θ3(6τ) + θ2(2τ)θ2(6τ)

η2(τ)
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for the vacuum character, and

(C.8) χi(τ) = Tr[i]q
L0−c/24 =

θ3(2τ)θ3
(
2τ
3

)
+ θ2(2τ)θ2

(
2τ
3

)
2η2(τ)

− χ0(τ)

2

for the nontrivial primaries with i = 1, 2, where in this case c = 2. Thus the
partition function of the theory can be written as

(C.9) ZΛN (τ) = χ12
0 (τ) + 264χ6

0(τ)χ
6
1(τ) + 440χ3

0(τ)χ
9
1(τ) + 24χ12

1 (τ)

for N = A12
2 .

Now we consider a Z2 orbifold of the above theories. We will call the
Z2 symmetry h, which acts with a minus sign on the 24 coordinates of the
torus:

(C.10) h : xi → −xi.

In the case of N = A24
1 , the orbifold preserves a

(
û(1)4

)24
current algebra

out of the
(
ŝu(2)1

)24
and, similarly, for N = A12

2 , the orbifold preserves an(
ŝu(2)4

)12
within the

(
ŝu(3)1

)12
. We choose one copy of û(1)4 and ŝu(2)4

to generate the R-symmetry of the N = 2 and N = 4 algebras, respectively.
In the NS sector the corresponding level-4 current is given by the h-invariant
linear combination

(C.11) J0 = 2
(
ei
√
2x1 + e−i

√
2x1

)
for the N = 2 case and by

(C.12) J3 =
√
2
(
ei
√
2x1 + e−i

√
2x1

)
for the N = 4 case [21, 22].

We consider the Ramond sector partition function graded by these cur-
rents and by (−1)F . The Hilbert space is composed of the anti-invariant
states in the untwisted sector and the invariant states in the twisted sector.
Thus we will compute the trace

ZN=2(4)
m=4 (τ, z) = TrHR

(−1)F qL0− c

24 yJ0(J3)(C.13)

= TrH

(
1− h

2

)
(−1)F qL0− c

24 yJ0(J3)

+TrHtw

(
1 + h

2

)
(−1)F qL0− c

24 yJ0(J3)
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where the first term in the second line implements a projection onto the anti-
invariant states in the untwisted sector Hilbert space, H, and the second
term a projection onto the invariant states in the twisted sector Hilbert
space, Htw. Furthermore, we will also consider the twining functions

(C.14) ZN=2(4)
m=4,g (τ, z) = TrHR

g(−1)F qL0− c

24 yJ0(J3)

defined for g ∈ M23,M11, respectively. These functions are weak Jacobi
forms of weight zero and index four for Γ0(n) where n = o(g). Let

F un.
g (Λ; τ, z) :=TrH

(
1− h

2

)
g(−1)F qL0− c

24 yJ0(J3)(C.15)

= TrH

(
1− h

2

)
gqL0− c

24 yJ0(J3)

be the g-twined trace which is the contribution of the untwisted sector to

the partition function ZN=2(4)
m=4 (τ, z), and

(C.16) F tw
g (Λ; τ, z) := TrHtw

(
1 + h

2

)
g(−1)F qL0− c

24 yJ0(J3)

be the corresponding g-twined contribution of the twisted sector. Note that
all states in the Hilbert space Hun. are bosonic so we can drop the (−1)F

in (C.15). We will discuss the explicit computation of each of these terms in
the next two subsections.

The untwisted sector

We start with Λ = A24
1 . To implement the trace in the untwisted sector,

we need to know the action of h on the ŝu(2)1 modules, as well as their
characters with the U(1) charge included, which we will denote by ch0(τ, z)
and ch1(τ, z). It is straightforward to see that these are given by

ch0(τ, z) = Tr[0]q
L0−c/24yJ0 =

θ3(2τ, 4z)

η(τ)
:= (z)+, and(C.17)

ch1(τ, z) = Tr[1]q
L0−c/24yJ0 =

θ2(2τ, 4z)

η(τ)
:= (z̃),(C.18)

where J0 is the zero mode of the U(1) current in equation (C.11). Fur-
thermore, using the explicit description of h, it is easy to check that the
characters with an h-insertion are given by

ch−0 (τ, z) = Tr[0]hq
L0−c/24yJ0 =

θ4(2τ, 4z)

η(τ)
:= (z)−, and(C.19)
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ch−1 (τ, z) = Tr[1]hq
L0−c/24yJ0 = 0.(C.20)

In order to write the (twined) partition function in terms of these characters,
we introduce the following notation,

(n)m+ := ch0(nτ, 0)
m(C.21)

(n)m− := ch−0 (nτ, 0)
m

(ñ)m := ch1(nτ, 0)
m.

Given this we can evaluate the trace in equation (C.15) with g = 1 to
compute the contribution of the untwisted states to the Ramond sector
partition, which is

F un.(Λ; τ, z) =
1

2

(
(z)+(1)

23
+ − (z)−(1)

23
−
)

+
253

2

(
(z)+(1)

7
+(1̃)

16 + (z̃)(1̃)7(1)16+
)

+ 253
(
(z)+(1)

15
+ (1̃)8 + (z̃)(1̃)15(1)8+

)
+ 644

(
(z)+(1)

11
+ (1̃)12 + (z̃)(1̃)11(1)12+

)
+

1

2
(z̃)(1̃)23,

where we note that all of the untwisted states are bosonic and thus invariant
under (−1)F .

Furthermore, we can compute the g-twined trace of equation (C.15)
using an explicit description of the action of M23 on the binary Golay code,
which we obtain from GAP.24 From this we compute the invariant vectors of
the Golay code under the 24-dimensional permutation representation of g.
The results for all conjugacy classes g in M23 are given in Table 6.

Similarly, we now consider the functions F un.
g (Λ; τ, z) for Λ = A12

2 . First

we need the ŝu(3) characters including a chemical potential for the Cartan

J3 of the invariant ŝu(2)4. These are given by

χ0(τ, z) = Tr[0]q
L0−c/24yJ3 =

θ3(2τ, 4z)θ3(6τ) + θ2(2τ, 4z)θ2(6τ)

2η2(τ)
:= [z]+

(C.22)

for the vacuum character and

χi(τ, z) = Tr[i]q
L0−c/24yJ3(C.23)

24This open source program lives at https://www.gap-system.org/.

https://www.gap-system.org/
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Table 6: The twining functions F un.
g (A24

1 ; τ, z) of the untwisted sector of

EN=2
m=4 under for all conjugacy classes [g] ∈ M23. We label them by their

Frame shapes corresponding to their embedding into the 24 of Co0

M23 [g] Frame shape Fun.
g (Λ; τ, z)

2A 1828

1
2

(
(z)+(1)

7
+ − (z)−(1)

7
− + (z̃)(1̃)7

) (
(2)8+ + (2̃)8

)
+7
(
(z)+(1)

7
+ − (z)−(1)

7
− + (z̃)(1̃)7

)
(2)4+(2̃)

4

+14
(
(z)+(1)

3
+(1̃)

4 + (z̃)(1̃)3(1)4+
)
×

×(2)2+(2̃)
2
(
(2)2+ + (2̃)2

)2

3A 1636

1
2

(
(z)+(1)

5
+(3)

6
+ − (z)−(1)

5
−(3)

6
−
)
+ 1

2 (z̃)(1̃)
5(3̃)6

+1
2

(
(1)5+(3)+(z̃)(3̃)

5 + (1̃)5(3̃)(z)+(3)
5
+

)
+5
(
(z)+(1)

3
+(3)

4
+(1̃)

2(3̃)2 + (z̃)(1̃)3(3̃)4(1)2+(3)
2
+

)
+5

2

(
(z)+(1)+(3)

2
+(1̃)

4(3̃)4 + (z̃)(1̃)(3̃)2(1)4+(3)
4
+

)
+5

2

(
(z)+(1)

4
+(3)+(1̃)(3̃)

5 + (z̃)(1̃)4(3̃)(1)+(3)
5
+

)
+5
(
(z)+(1)

2
+(1̃)

3 + (z̃)(1̃)2(1)3+
)
(3)3+(3̃)

3

4A 142244

1
2

((
(z)+(1)

3
+ − (z)−(1)

3
−
)
(2)2+ + (z̃)(1̃)3(2̃)2

)
×

×
(
(4)2+ + (4̃)2

)2
+2
((
(z)+(1)

3
+ − (z)−(1)

3
−
)
(2̃)2 + (z̃)(1̃)3(2)2+

)
×

×(4)2+(4̃)
2

+2
(
(z)+(1)+(1̃)

2 + (z̃)(1̃)(1)2+
)
×

×(2)+(2̃)
(
(4)+(4̃)

3 + (4)3+(4̃)
)

5A 1454

1
2

(
(z)+(1)

3
+(5)

4
+ − (z)−(1)

3
−(5)

4
−
)
+ 1

2 (z̃)(1̃)
3(5̃)4

+1
2

(
(1)3+(5)+(z̃)(5̃)

3 + (1̃)3(5̃)(z)+(5)
3
+

)
+3

2

(
(z)+(1)

2
+(5)+(1̃)(5̃)

3 + (z̃)(1̃)2(5̃)(1)+(5)
3
+

)
+3

2

(
(z)+(1)+(1̃)

2 + (z̃)(1̃)(1)2+
)
(5)2+(5̃)

2

=
θ3(2τ, 4z)θ3

(
2τ
3

)
+ θ2(2τ, 4z)θ2

(
2τ
3

)
2η2(τ)

− χ0(τ, z)

2
:= [z̃]

for the nontrivial primaries with i = 1, 2. Finally, we also need the trace of
h in these modules, which we compute to be

(C.24) χ−
0 (τ, z) = Tr[0]hq

L0−c/24yJ3 =
θ4(2τ, 4z)θ4(2τ)

η2(τ)
:= [z]−

and

(C.25) χ−
i (τ, z) = Tr[i]hq

L0−c/24yJ3 = 0, i = 1, 2.
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Table 7: The twining functions F un.
g (A24

1 ; τ, z) of the untwisted sector of

EN=2
m=4 under for all conjugacy classes [g] ∈ M23. We label them by their

Frame shapes corresponding to their embedding into the 24 of Co0

M23 [g] Frame shape Fun.
g (Λ; τ, z)

6A 12223262

1
2

(
(z)+(1)+(3)

2
+ − (z)−(1)−(3)

2
− + (z̃)(1̃)(3̃)2

)
×

×
(
(2)+(6)+ + (2̃)(6̃)

)2
+1

2

(
(z)+(1̃) + (z̃)(1)+

)
(3)+(3̃)

(
(2)+(6̃) + (2̃)(6)+

)2
7A 1373

1
2

(
(z)+(1)

2
+(7)

3
+ − (z)−(1)

2
−(7)

3
−
)
+ 1

2 (z̃)(1̃)
2(7̃)3

+1
2

(
(z)+(1̃)

2(7̃)+(z̃)(1)2+(7)+
)
(7)+(7̃)

+
(
(z)+(7)+ + (z̃)(7̃)

)
(1)+(7)+(1̃)(7̃)

8A 122.4.82

1
2

(
(z)+(1)+ − (z)−(1)−

)
(2)+(4)+(8)

2
+

+1
2 (z̃)(1̃)(2̃)(4̃)(8̃)

2

+1
2

(
(z)+(1)+ − (z)−(1)−

)
(2)+(4)+(8̃)

2

+1
2 (z̃)(1̃)(2̃)(4̃)(8)

2
+

+1
2

(
(z)+(1)+ − (z)−(1)−

)
(2)+(4̃)(8)+(8̃)

+1
2 (z̃)(1̃)(2̃)(4)+(8)+(8̃)

11AB 12112

1
2

(
(z)+(1)+(11)

2
+ − (z)−(1)−(11)

2
−
)

+1
2 (z̃)(1̃)(1̃1)

2

+1
2

(
(z)+(1̃)(11)+(1̃1) + (z̃)+(1)+(11)+(1̃1)

)

14AB 1.2.7.14

1
2 ((z)+(2)+(7)+(14)+ − (z)−(2)+(7)−(14)+)

+1
2 (z̃)(2̃)(7̃)(1̃4)

+1
2

(
(z)+(2̃)(7)+(1̃4)− (z)−(2̃)(7)−(1̃4)

+(z̃)(2)+(7̃)(14)+

)

15AB 1.3.5.15

1
2 ((z)+(3)+(5)+(15)+ − (z)−(3)−(5)−(15)−)

+1
2 (z̃)(3̃)(5̃)(1̃5)

+1
2

(
(z)+(3̃)(5̃)(15)+ + (z̃)(3)+(5)+(1̃5)

)
23AB 1.23 1

2 ((z)+(23)+ − (z)−(23)−)
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Table 8: The twining functions F un.
g (A12

2 ; τ, z) of the untwisted sector of

EN=4
m=4 for certain conjugacy classes [g] ∈ M11. We label them by their Frame

shapes corresponding to their embedding into the 24 of Co0

L2(11) [g] Frame shape Fun.
g (Λ; τ, z)

3A 1636

1
2

(
[z]+[1]

2
+[3]

3
+ − [z]−[1]

2
−[3]

3
−
)

+3[z̃][1̃]2[3̃]3 + 3[z]+[1]
2
+[3]+[3̃]

2 + 3[z̃][1̃]2[3̃][3]2+

+3[z̃][1̃]2[3̃]2[3]+ + [z]+[1]
2
+[3̃]

3

5A 1454
1
2

(
[z]+[1]+[5]

2
+ − [z]−[1]−[5]

2
−
)
+ 2[z̃][1̃][5̃]2

+[z]+[5]+[1̃][5̃] + [1]+[5]+[z̃][5̃]

11AB 12112 1
2

(
[z]+[11]+ − [z]−[11]−

)
+ [z̃][1̃1]

Putting all of these components together, we compute the partition func-
tion of the orbifold theory in the untwisted sector with a projection onto
anti-invariant states under h to be

F un.(Λ; τ, z) =
1

2

(
[z]+[1]

11
+ − [z]−[1]

11
−
)
+ 66

(
[z]+[1]

5
+[1̃]

6 + [z̃][1̃]5[1]6+
)

+ 55[z]+[1]
2
+[1̃]

9 + 165[z̃][1]3+[1̃]
8 + 12[z̃][1̃]11.

As an example, we consider elements in conjugacy classes [g] ∈
{3A, 5A, 11AB} of M11. Again we use GAP to obtain an action of M11 in
its 11-dimensional permutation representation on the ternary Golay code,
which we then use to compute the invariant vectors of the theory under this
action. The results are reported in Table 8.

The twisted sector

Finally, we need a description of the twisted sector Hilbert space, and the
action of h on the twisted states. After we include the U(1) grading, the
contribution of the twisted sector in (C.16) to the full partition function is

F tw(Λ; τ, z) = 211
θ2(τ, 2z)

θ2(τ, 0)

(
θ3(τ, 2z)

θ3(τ, 0)

η24(τ)

η24(τ/2)
− θ4(τ, 2z)

θ4(τ, 0)

η24(2τ)η24(τ/2)

η48(τ)

)(C.26)

for both Λ = A24
1 and Λ = A12

2 .

The twisted sector Hilbert spaces of all Z2 orbifolds of a Niemeier CFT
are isomorphic and have an action of the group Co0. Once we grade by the
additional U(1) charge as in equation (C.26), the Co0 symmetry is broken to
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subgroups which preserve a two-plane in the 24-dimensional representation.
In particular, since both M23 and L2(11) satisfy this constraint, we can
define a consistent action of elements of these groups on the twisted sector
Hilbert spaces. The action for a given conjugacy class g of these groups
follows from the 24-dimensional permutation representation of g as follows.
Define

(C.27) ηg(τ) := q
∏
n>0

12∏
i=1

(1− λ−1
i qn)(1− λiq

n)

and

(C.28) η−g(τ) := q
∏
n>0

12∏
i=1

(1 + λ−1
i qn)(1 + λiq

n)

where {λi} are the 24 eigenvalues of g in its 24-dimensional permutation
representation, specified by the Frame shape πg as in equation (4.10). Then
the trace of g in the twisted sector is given by

F tw
g (Λ; τ, z) = cg

θ2(τ, 2z)

θ2(τ, 0)

(
θ3(τ, 2z)

θ3(τ, 0)

ηg(τ)

ηg(τ/2)
− θ4(τ, 2z)

θ4(τ, 0)

η−g(τ)

η−g(τ/2)

)(C.29)

where the constant cg is defined by

(C.30) cg := 2
1

2
(# of cycles of πg)−1.

From this and the results in the previous section we can reconstruct
all the twining functions of EN=2

m=4 under elements of M23. We present the
first several coefficients of these functions and their decompositions into
irreducible M23 representations in the tables in the next section.

Appendix D. Tables

In this section we present certain useful tables. In §D.1 we present character
tables of certain groups mentioned in the text. In §D.2 we present the first
several coefficients and decompositions of the vector-valued mock modular
forms arising from EN=2

m=4 for conjugacy classes [g] ∈ M23.

D.1. Irreducible characters

Below, we make use of the following standard notation: bn = (−1+ i
√
n)/2,

bn = (−1 − i
√
n)/2, βn = (−1 +

√
n)/2, βn = (−1 − √

n)/2 and an =
i
√
n, an = −i

√
n.
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Table 9: Character table of M23

[g] 1A 2A 3A 4A 5A 6A 6B 7AB 8A 11A 11B 14A 14B 15A 15B 23A 23B

[g2] 1A 1A 3A 2A 5A 3A 7A 7B 4A 11B 11A 7A 7B 15A 15B 23A 23B

[g3] 1A 2A 1A 4A 5A 2A 7B 7A 8A 11A 11B 14B 14A 5A 5A 23A 23B

[g5] 1A 2A 3A 4A A 6A 7B 7A 8A 11A 11B 14B 14A 3A 3A 23B 23A

[g7] 1A 2A 3A 4A 5A 6A 1A 1A 8A 11B 11A 2A 2A 15B 15A 23B 23A

[g11] 1A 2A 3A 4A 5A 6A 7A 7B 8A 1A 1A 14A 14B 15B 15A 23B 23A

[g23] 1A 2A 3A 4A 5A 6A 7A 7B 8A 11A 11B 14A 14B 15A 15B 1A 1A

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 22 6 4 2 2 0 1 1 0 0 0 −1 −1 −1 −1 −1 −1

χ3 45 −3 0 1 0 0 b7 b7 −1 1 1 −b7 −b7 0 0 −1 −1

χ4 45 −3 0 1 0 0 b7 b7 −1 1 1 −b7 −b7 0 0 −1 −1

χ5 230 22 5 2 0 1 −1 −1 0 −1 −1 1 1 0 0 0 0

χ6 231 7 6 −1 1 −2 0 0 −1 0 0 0 0 1 1 1 1

χ7 231 7 −3 −1 1 1 0 0 −1 0 0 0 0 b15 b15 1 1

χ8 231 7 −3 −1 1 1 0 0 −1 0 0 0 0 b15 b15 1 1

χ9 253 13 1 1 −2 1 1 1 −1 0 0 −1 −1 1 1 0 0

χ10 770 −14 5 −2 0 1 0 0 0 0 0 0 0 0 0 b23 b23
χ11 770 −14 5 −2 0 1 0 0 0 0 0 0 0 0 0 b23 b23
χ12 896 0 −4 0 1 0 0 0 0 b11 b11 0 0 1 1 −1 −1

χ13 896 0 −4 0 1 0 0 0 0 b11 b11 0 0 1 1 −1 −1

χ14 990 −18 0 2 0 0 b7 b7 0 0 0 b7 b7 0 0 1 1

χ15 990 −18 0 2 0 0 b7 b7 0 0 0 b7 b7 0 0 1 1

χ16 1035 27 0 −1 0 0 −1 −1 1 1 1 −1 −1 0 0 0 0

χ17 2024 8 −1 0 −1 −1 1 1 0 0 0 1 1 −1 −1 0 0

Table 10: Character table of M11

[g] 1A 2A 3A 4A 5A 6A 8A 8B 11A 11B

[g2] 1A 1A 3A 2A 5A 3A 4A 4A 11B 11A

[g3] 1A 2A 1A 4A 5A 2A 8A 8B 11A 11B

[g5] 1A 2A 3A 4A 1A 6A 8B 8A 11A 11B

χ1 1 1 1 1 1 1 1 1 1 1

χ2 10 2 1 2 0 −1 0 0 −1 −1

χ3 10 −2 1 0 0 1 a2 a2 −1 −1

χ4 10 −2 1 0 0 1 a2 a2 −1 −1

χ5 11 3 2 −1 1 0 −1 −1 0 0

χ6 16 0 −2 0 1 0 0 0 β11 β11

χ7 16 0 −2 0 1 0 0 0 β11 β11

χ8 44 4 −1 0 −1 1 0 0 0 0

χ9 45 −3 0 1 0 0 −1 −1 1 1

χ10 55 −1 1 −1 0 −1 1 1 0 0

D.2. Coefficients and decompositions
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Table 11: The twined series for M23. The table displays the Fourier coefficients multiplying q−D/56 in the q-
expansion of the function h̃N=2

g,1 (τ)

[g] 1A 2A 3A 4A 5A 6AB 7AB 8A 11AB 14AB 15AB 23AB
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
79 32890 490 76 22 10 4 4 0 0 0 1 0
159 2969208 10136 585 80 18 17 4 0 0 0 0 0
239 101822334 88670 3192 374 54 −16 5 2 −2 1 −3 0
319 2065775107 636803 12550 947 132 74 11 −1 0 −1 0 0
399 29747513059 3408531 42757 2399 269 −15 12 5 0 0 2 0
479 334821538370 16448690 136784 5582 530 80 11 −4 0 −1 −1 0
559 3122115821404 68126268 386305 12996 824 33 20 −4 −3 0 5 0
639 25061866943436 262901388 1026324 26780 1586 360 29 4 4 1 −1 1
719 177895424302751 922681999 2615528 53771 2666 −320 29 −7 1 1 −7 0
799 1138785187015234 3070987058 6274135 104846 4574 1079 31 4 0 −1 5 −1
879 6672991048411185 9574047505 14472639 201593 7415 −401 57 9 3 1 −1 0
959 36211921311763437 28624358621 32442711 369065 11122 1079 58 −5 −2 −2 1 0
1039 183681040795024267 81543759179 70065910 662651 17967 −70 61 19 0 1 0 −1
1119 877475502920966100 224506987348 147298461 1169604 27740 3409 88 −16 −3 0 −4 0
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Table 12: The twined series for M23. The table displays the Fourier coefficients multiplying q−D/56 in the q-
expansion of the function h̃N=2

g,2 (τ)

[g] 1A 2A 3A 4A 5A 6AB 7AB 8A 11AB 14AB 15AB 23AB
−9 1 1 1 1 1 1 1 1 1 1 1 1
71 14168 392 74 20 8 2 0 2 0 0 −1 0
151 1659174 6278 465 94 24 5 −1 2 0 −1 0 0
231 63544239 70287 2367 279 59 27 −4 −1 0 0 2 0
311 1373777350 471990 10699 786 125 −21 1 0 0 1 −1 0
391 20649050170 2768410 36727 2114 200 115 −7 2 1 1 2 0
471 239838441957 13053893 113958 5229 457 −34 −5 −3 4 −1 −2 −1
551 2291638384937 56517657 337376 11397 842 120 −8 −1 0 0 −4 0
631 18760451739204 216334868 899886 23784 1479 50 −7 −6 −1 1 6 0
711 135352127137850 778525770 2278664 48830 2600 528 −7 12 −4 1 −1 0
791 878471971333176 2585630360 5566971 97056 3901 −469 −18 8 0 −2 1 1
871 5209082274923427 8188169219 12900135 183083 6807 1475 −9 −5 −1 −1 0 0
951 28562269988425239 24491271063 28872441 336679 10799 −567 −32 3 0 0 −4 1
1031 146211017617763307 70510224443 62961633 610623 17107 1481 −15 −3 0 1 −2 0
1111 704198296122633807 194427334975 132796005 1086555 26522 −191 −37 −15 0 −1 5 0
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Table 13: The twined series for M23. The table displays the Fourier coefficients multiplying q−D/56 in the q-
expansion of the function h̃N=2

g,3 (τ)

[g] 1A 2A 3A 4A 5A 6AB 7AB 8A 11AB 14AB 15AB 23AB
−25 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
55 2024 120 26 12 4 6 1 2 0 1 1 0
135 485001 2953 234 41 11 −2 −1 1 0 −1 −1 0
215 23912778 37850 1704 206 38 8 1 −4 −1 1 −1 0
295 594404250 276954 7008 634 105 12 −1 −2 0 −1 3 1
375 9795220335 1719215 25389 1679 215 77 5 3 −1 1 −1 0
455 121610515928 8440360 85280 3852 333 −56 6 2 0 −2 0 0
535 1223045193953 37766625 248780 9089 693 264 9 1 0 1 0 −1
615 10431487439956 148238340 677512 19744 1221 −96 2 2 0 −2 −3 0
695 77848480769761 545254705 1771723 40485 2236 259 2 7 −2 2 −2 0
775 519869748402405 1843176725 4327128 78673 3720 56 2 3 5 −2 3 0
855 3159048430391220 5930043604 10148229 152428 5665 1033 10 −20 4 2 4 0
935 17694698437501954 17975169890 23094682 285770 9394 −910 15 −14 0 −1 −8 0
1015 92296742373818321 52381498417 50515790 519049 14871 2710 31 13 −2 3 0 0
1095 452022567897804867 145967611235 107402373 917355 23372 −1123 26 −1 −4 −2 8 −1
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Table 14: The twined series for M23. The table displays the Fourier coefficients multiplying q−D/56 in the q-
expansion of the function h̃N=2

g,4 (τ)

[g] 1A 2A 3A 4A 5A 6AB 7AB 8A 11AB 14AB 15AB 23AB
−49 1 1 1 1 1 1 1 1 1 1 1 1
31 23 7 5 3 3 1 2 1 1 0 0 0
111 61984 1008 109 36 14 9 6 −2 −1 0 −1 −1
191 4994473 12841 814 105 23 −2 8 1 0 −4 −1 0
271 159121844 126116 3851 384 79 47 14 6 2 4 1 1
351 3066459912 791976 14742 1104 107 −18 12 4 −1 −4 2 0
431 42526230351 4396655 52188 2871 301 44 24 −5 0 4 −2 0
511 465019661864 19995832 157790 6236 549 34 −19 −2 −1 3 0 0
591 4237704983457 83898753 443403 14105 1002 267 36 −3 0 8 3 0
671 33383739990645 313694485 1187433 29821 1780 −215 44 1 0 −8 −2 0
751 233270628632745 1105509481 2962041 60217 2700 769 60 −7 0 −8 6 −1
831 1473401102910159 3610317407 7067235 114659 4804 −289 66 −3 −6 4 −5 0
911 8534324476198088 11260342856 16341254 218344 7803 758 92 24 7 0 −6 0
991 45845203718962384 33250870352 36222793 402864 12389 −31 100 16 0 0 8 0
1071 230465514424059585 94612982465 77950314 723905 19565 2570 −99 −15 0 1 −1 1
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Table 15: The table shows the decomposition of the Fourier coefficients multiplying q−D/56 in the function h̃N=2
g,1 (τ)

into irreducible representations χn of M23 for 1 ≤ n ≤ 6

[g] χ1 χ2 χ3 χ4 χ5 χ6

−1 −1 0 0 0 0 0
79 3 6 0 0 8 4
159 13 50 4 4 172 109
239 75 520 361 361 3132 2637
319 555 6234 8431 8431 52201 48823
399 4516 72901 127496 127496 699946 683877
479 39919 762273 1458831 1458831 7687965 7629252
559 334018 6894918 13697115 13697115 70963150 70890020
639 2561300 54661450 110264073 110264073 567249277 568242219
719 17798711 385781306 783730795 783730795 4018617602 4030917545
799 112816113 2462973668 5020155321 5020155321 25701388426 25795911388
879 657802189 14413077161 29426216833 29426216833 150534019095 151134807838
959 3560695812 78161432884 159711506399 159711506399 816701680872 820091947106
1039 18036997856 396321128501 810190283194 810190283194 4142106992628 4159658528152
1119 86103293155 1892920594014 3870600609373 3870600609373 19786191912051 19870958706758
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Table 16: The table shows the decomposition of the Fourier coefficients multiplying q−D/56 in the function h̃N=2
g,1 (τ)

into irreducible representations χn of M23 for 7 ≤ n ≤ 12

[g] χ7 χ8 χ9 χ10 χ11 χ12

−1 0 0 0 0 0 0
79 1 1 4 1 1 2
159 84 84 128 184 184 249
239 2474 2474 2975 7288 7288 8876
319 48214 48214 54404 152910 152910 181177
399 681735 681735 754547 2228718 2228718 2611937
479 7622433 7622433 8384529 25191152 25191152 29406002
559 70870712 70870712 77765357 235322052 235322052 274222110
639 568190993 568190993 622851914 1890404790 1890404790 2201283134
719 4030786690 4030786690 4416567105 13423360272 13423360272 15625363600
799 25795597950 25795597950 28258570095 85943199892 85943199892 100024910245
879 151134084106 151134084106 165547158795 503648520358 503648520358 586120983088
959 820090325240 820090325240 898251754417 2733239573184 2733239573184 3180668696724
1039 4159655024839 4159655024839 4555976147351 13864390059718 13864390059718 16133598865348
1119 19870951342688 19870951342688 21763871927454 66233398639795 66233398639795 77072943845016



P
ro
p
erties

o
f
ex
trem

a
l
C
F
T
s
w
ith

sm
a
ll
cen

tra
l
ch
a
rg
e

6
8
1

Table 17: The table shows the decomposition of the Fourier coefficients multiplying q−D/56 in the function h̃N=2
g,1 (τ)

into irreducible representations χn of M23 for 13 ≤ n ≤ 17

[g] χ13 χ14 χ15 χ16 χ17

−1 0 0 0 0 0
79 2 1 1 7 7
159 249 225 225 400 614
239 8876 9311 9311 11209 20448
319 181177 196277 196277 215961 411688
399 2611937 2864311 2864311 3052375 5912176
479 29406002 32384527 32384527 34136386 66480999
559 274222110 302544979 302544979 317457009 619667980
639 2201283134 2430487575 2430487575 2545442969 4973369259
719 15625363600 17258520366 17258520366 18058720902 35299442572
799 100024910245 110498190645 110498190645 115573171916 225958546463
879 586120983088 647547609561 647547609561 677144766331 1324034573732
959 3180668696724 3514164059458 3514164059458 3674386668984 7184990032658
1039 16133598865348 17825641954808 17825641954808 18637288293732 36444893250715
1119 77072943845016 85157221728649 85157221728649 89031831245163 174102949680701
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g,2 (τ)
into irreducible representations χn of M23 for 1 ≤ n ≤ 6

[g] χ1 χ2 χ3 χ4 χ5 χ6

−9 1 0 0 0 0 0
71 2 5 0 0 7 3
151 10 37 3 3 108 67
231 60 371 211 211 2094 1692
311 401 4320 5558 5558 35182 32682
391 3347 51686 88067 88067 489393 475958
471 29191 549308 1043607 1043607 5517942 5468790
551 247970 5076761 10046497 10046497 52142001 52052092
631 1925413 40964481 82518209 82518209 424787070 425421787
711 13572600 293700302 596218175 596218175 3058208800 3067141035
791 87112694 1900466946 3872364194 3872364194 19828140356 19899850416
871 513770437 11252794339 22969949734 22969949734 117516030536 117981038495
951 2809241950 61654430595 125970832520 125970832520 644191847539 646855266217
1031 14359666110 315486247432 644909227030 644909227030 3297183714290 3311123599862
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Table 19: The table shows the decomposition of the Fourier coefficients multiplying q−D/56 in the function h̃N=2
g,2 (τ)

into irreducible representations χn of M23 for 7 ≤ n ≤ 12

[g] χ7 χ8 χ9 χ10 χ11 χ12

−9 0 0 0 0 0 0
71 0 0 2 0 0 0
151 45 45 74 100 100 137
231 1580 1580 1932 4481 4481 5533
311 32142 32142 36420 101485 101485 120436
391 474150 474150 525770 1545133 1545133 1812904
471 5463084 5463084 6012239 18038594 18038594 21063676
551 52035254 52035254 57111733 172694257 172694257 201278319
631 425376804 425376804 466340794 1414993671 1414993671 1647801950
711 3067027234 3067027234 3360726669 10212802503 10212802503 11888586088
791 19899571950 19899571950 21800037596 66296462153 66296462153 77160348340
871 117980393857 117980393857 129233185927 393155335789 393155335789 457538780532
951 646853822454 646853822454 708508249448 2155841669413 2155841669413 2508762643117
1031 3311120452151 3311120452151 3626606693880 11036094133318 11036094133318 12842424391871
1111 15947023462552 15947023462552 17466176597842 53154055601266 53154055601266 61853163157258
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Table 20: The table shows the decomposition of the Fourier coefficients multiplying q−D/56 in the function h̃N=2
g,2 (τ)

into irreducible representations χn of M23 for 13 ≤ n ≤ 17

[g] χ13 χ14 χ15 χ16 χ17

−9 0 0 0 0 0
71 0 0 0 5 3
151 137 125 125 229 343
231 5533 5714 5714 7145 12797
311 120436 130213 130213 144101 273914
391 1812904 1985578 1985578 2122817 4105045
471 21063676 23189159 23189159 24465217 47625182
551 201278319 222025040 222025040 233079356 454856422
631 1647801950 1819248831 1819248831 1905627188 3722950603
711 11888586088 13130671614 13130671614 13740785934 26857884945
791 77160348340 85238123579 85238123579 89156647614 174307658489
871 457538780532 505484997007 505484997007 528601141162 1033572367727
951 2508762643117 2771795449104 2771795449104 2898203583666 5667189790804
1031 12842424391871 14189261724139 14189261724139 14835429985991 29010332044013
1111 61853163157258 68340924042730 68340924042730 71450643678386 139722462064585
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Table 21: The table shows the decomposition of the Fourier coefficients multiplying q−D/56 in the function h̃N=2
g,3 (τ)

into irreducible representations χn of M23 for 1 ≤ n ≤ 6

[g] χ1 χ2 χ3 χ4 χ5 χ6

−25 −1 0 0 0 0 0
55 2 2 0 0 3 0
135 4 17 0 0 44 26
215 35 192 70 70 910 692
295 228 2109 2333 2333 15904 14401
375 1815 25661 41343 41343 235739 227084
455 15674 283294 527166 527166 2813624 2778595
535 135681 2728183 5353413 5353413 27892476 27802131
615 1082201 22844512 45852109 45852109 236430984 236628378
695 7845613 169151973 342809579 342809579 1759756137 1764351037
775 51675284 1125397975 2291272507 2291272507 11736660597 11777354738
855 311949208 6826465150 13929053191 13929053191 71275567395 71552199331
935 1741436074 38202099659 78037446817 78037446817 399108330301 400742735902
1015 9067633922 199170750739 407094744895 407094744895 2081435347715 2090191121215
1095 44366697752 975187152952 1993866656330 1993866656330 10192904243304 10236401971933
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Table 22: The table shows the decomposition of the Fourier coefficients multiplying q−D/56 in the function h̃N=2
g,3 (τ)

into irreducible representations χn of M23 for 7 ≤ n ≤ 12

[g] χ7 χ8 χ9 χ10 χ11 χ12

−25 0 0 0 0 0 0
55 0 0 1 0 0 0
135 14 14 27 25 25 38
215 609 609 788 1643 1643 2065
295 14053 14053 16128 43581 43581 52061
375 225834 225834 251423 731026 731026 859812
455 2774317 2774317 3057500 9137701 9137701 10679771
535 27789758 27789758 30517710 92128896 92128896 107420534
615 236594479 236594479 259438583 786646427 786646427 916233373
695 1764262516 1764262516 1933413743 5873450857 5873450857 6837772000
775 11777138395 11777138395 12902535131 39231891343 39231891343 45662596088
855 71551692177 71551692177 78378155440 238424129443 238424129443 277474384470
935 400741580942 400741580942 438943677467 1335557549215 1335557549215 1554211032206
1015 2090188596103 2090188596103 2289359341885 6966572026982 6966572026982 8106871287186
1095 10236396601532 10236396601532 11211583746696 34119303660620 34119303660620 39703341303712
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Table 23: The table shows the decomposition of the Fourier coefficients multiplying q−D/56 in the function h̃N=2
g,3 (τ)

into irreducible representations χn of M23 for 13 ≤ n ≤ 17

[g] χ13 χ14 χ15 χ16 χ17

−25 0 0 0 0 0
55 0 0 0 1 0
135 38 30 30 78 103
215 2065 2080 2080 2799 4845
295 52061 55872 55872 63071 118714
375 859812 939215 939215 1011049 1948452
455 10679771 11745983 11745983 12423389 24153700
535 107420534 118443822 118443822 124470503 242778649
615 916233373 1011381183 1011381183 1059877938 2070176920
695 6837772000 7551522153 7551522153 7904063364 15447739906
775 45662596088 50440859848 50440859848 52765036392 103154220956
855 277474384470 306544968511 306544968511 320579896279 626812915588
935 1554211032206 1717144636530 1717144636530 1795503032799 3510906233262
1015 8106871287186 8957019447270 8957019447270 9365049511187 18313001324552
1095 39703341303712 43867672430453 43867672430453 45864145536600 89687451269313
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Table 24: The table shows the decomposition of the Fourier coefficients multiplying q−D/56 in the function h̃N=2
g,4 (τ)

into irreducible representations χn of M23 for 1 ≤ n ≤ 6

[g] χ1 χ2 χ3 χ4 χ5 χ6

−49 1 0 0 0 0 0
31 1 1 0 0 0 0
111 4 10 0 0 15 6
191 15 69 10 10 245 172
271 109 746 572 572 4753 4045
351 719 8794 12676 12676 76096 71969
431 6211 102911 182780 182780 996449 976116
511 54133 1051489 2029244 2029244 10653186 10587505
591 449634 9337434 18600800 18600800 96246988 96195371
671 3396944 72726076 146918168 146918168 755302028 756828089
751 23297382 505622990 1027806326 1027806326 5268663130 5285372319
831 145823768 3185848487 6495661454 6495661454 33250375888 33374695435
911 840907061 18431146756 37635327650 37635327650 192515167760 193289021419
991 4506789615 98947558783 202202119656 202202119656 1033940285159 1038249102575
1071 22628187385 497248672021 1016558364226 1016558364226 5197058914779 5219123838308
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Table 25: The table shows the decomposition of the Fourier coefficients multiplying q−D/56 in the function h̃N=2
g,4 (τ)

into irreducible representations χn of M23 for 7 ≤ n ≤ 12

[g] χ7 χ8 χ9 χ10 χ11 χ12

−49 0 0 0 0 0 0
31 0 0 0 0 0 0
111 3 3 8 1 1 4
191 131 131 192 326 326 422
271 3864 3864 4584 11441 11441 13896
351 71227 71227 79986 227680 227680 269022
431 973518 973518 1076328 3188386 3188386 3734146
511 10579624 10579624 11630930 35000973 35000973 40841472
591 96173267 96173267 105510368 319449559 319449559 372208482
671 756768664 756768664 829494146 2518305187 2518305187 2932230208
751 5285224408 5285224408 5790846500 17602308990 17602308990 20489229802
831 33374342002 33374342002 36560188886 111198256076 111198256076 129415838256
911 193288204547 193288204547 211719348700 644138990502 644138990502 749610922070
991 1038247291426 1038247291426 1137194846082 3460365519723 3460365519723 4026806724990
1071 5219119941435 5219119941435 5716368606934 17395758923417 17395758923417 20242906870222
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Table 26: The table shows the decomposition of the Fourier coefficients multiplying q−D/56 in the function h̃N=2
g,4 (τ)

into irreducible representations χn of M23 for 13 ≤ n ≤ 17

[g] χ13 χ14 χ15 χ16 χ17

−49 0 0 0 0 0
31 0 0 0 0 0
111 4 1 1 14 14
191 422 405 405 632 1024
271 13896 14621 14621 17398 31919
351 269022 292364 292364 319046 610695
431 3734146 4097893 4097893 4358824 8450520
511 40841472 44996504 44996504 47382036 92324399
591 372208482 410707009 410707009 430804236 841061633
671 2932230208 3237782827 3237782827 3390298956 6624684857
751 20489229802 22631442859 22631442859 23678982898 46287128401
831 129415838256 142968950388 142968950388 149529067462 292352194117
911 749610922070 828178149562 828178149562 866014527476 1693351770023
991 4026806724990 4449040146378 4449040146378 4651835981222 9096369338035
1071 20242906870222 22365973077886 22365973077886 23384220869164 45727565759616
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