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We study the E1-degeneration of the logarithmic Hodge to de
Rham spectral sequence of the special fiber of a proper semistable
family over a discrete valuation ring. On the one hand, we prove
that the E1-degeneration property is invariant under admissible
blowups. Assuming functorial resolution of singularities over Z,
this implies that the E1-degeneration property depends only on the
generic fiber. On the other hand, we show by explicit examples that
the decomposability of the logarithmic de Rham complex is not
invariant under admissible blow-ups, which answer negatively an
open problem of L. Illusie (Problem 7.14 [3]). This shows that the
decomposability of the de Rham complex is strictly stronger than
the E1-degeneration of the Hodge to de Rham spectral sequence.
We also give an algebraic proof of an E1-degeneration result in
characteristic zero due to Steenbrink and Kawamata-Namikawa.
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1. Introduction

Let R be a discrete valuation ring with perfect residue field k, set S =
Spec(R), and let X → S be a proper flat scheme over R which is a semistable
family (Definition A.6). Logarithmic geometry in the sense of Fontaine-
Illusie-Kato upgrades the structural morphism X → S naturally to a log
smooth morphism between log schemes [15, Example 3.7 (2)]. Restricting
to the closed point of S, one obtains a smooth morphism X0 → k of log
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schemes. The following is a basic problem in the Hodge theory of semistable
families:

Problem 1.1. When does the logarithmic Hodge to de Rham spectral se-
quence

Ei,j
1 = Hj(X0,Ω

i
X0/k

) =⇒ H i+j
dR (X0/k)

degenerate at E1, where H i+j
dR (X0/k) is the hypercohomology of the relative

logarithmic de Rham complex Ω•
X0/k

associated to the morphism X0 → k of
log schemes?

Classical Hodge theory gives the affirmative answer to the simplest case
of the above problem, namely the case where char k = 0 and X0 is smooth
over k. Keeping the assumption char k = 0, work of Steenbrink [28, Corollary
4.20 (ii)] implies

Theorem 1.2 (Steenbrink, char k = 0). Notation as above. Then the above
spectral sequence degenerates at E1 when X is a strictly semistable family
over S.

While the existence of a smooth proper generic fiber degenerating to X0

is crucial to Steenbrink’s argument, it is unnecessary for the truth of Problem
1.1 when char k = 0. Recall that a normal crossing variety X over k is d-
semistable if the infinitesimal normal bundle T 1

X is isomorphic to OD, where
D ⊂ X is the singular locus of X. We shall give an algebraic proof of the
following result, which is essentially due to Kawamata-Namikawa Lemma
4.1 [16].

Proposition 1.3 (Kawamata-Namikawa, Proposition 2.13). For a proper
d-semistable normal crossing variety over a field k of characteristic 0, the
Hodge to de Rham spectral sequence in Problem 1.1 degenerates at E1.

Remark 1.4. Work of Friedman [9] and Persson-Pinkham [25] imply that
Proposition 2.13 is strictly more general than Theorem 1.2.

Next, we consider the case where R is the ring of integers of a complete
valued field K of mixed characteristic. It is not clear what the correct ana-
logue of Theorem 1.2 is. First, the analogue of the stronger Proposition 1.3 is
false, as shown by the example constructed by M. Raynaud [26]. Second, W.
Lang [17] constructed negative examples to Problem 1.1 with K/Qp wildly
ramified andX has smooth reduction over k. Thirdly, we construct examples
of semistable families over Witt rings which are not de Rham-decomposable
but have the E1-degeneration property, as asked in Problem 1.1. The last
point answers negatively an open problem (Problem 1.5, see below) of L. Il-
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lusie posed in [3] that is the starting point of our research in this paper. It is
still unknown whether negative examples to Problem 1.1 over the Witt rings
exist or not. On the other hand, we shall provide a sufficient condition in
the case of p-adic local rings under which Problem 1.5 has a positive answer.

The fundamental work of Deligne-Illusie [6] provides us the affirmative
answer of Problem 1.1 for the case that R is the Witt ring W (k) and X
is proper smooth over R of relative dimension ≤ char k = p. Let us briefly
recall their method: for a variety X0 over the field k, one has the following
commutative diagram of Frobenii

X0
FX0/k

X ′
0

π
X0

Spec k
σ

Spec k,

where σ is the absolute Frobenius of Spec k, X ′
0 is the base change of X0 by

σ and F = FX0/k : X0 → X ′
0 is the relative Frobenius. The variety X0 is said

to be de Rham-decomposable (DR-decomposable) if the complex τ<pF∗Ω•
X0/k

is decomposable in D(X ′
0), namely it is quasi-isomorphic to

⊕p−1
i=0 Ωi

X′
0/k

[−i],
where Ω•

X0/k
is the de Rham complex of X0. The decomposition theorem of

Deligne-Illusie states that for smooth varieties, X0 is W2(k)-liftable if and
only if it is DR-decomposable. As a consequence, if X0 is further assumed
to be proper over k and dimX0 < p, then the Hodge to de Rham spectral
sequence attached to X0 degenerates at E1. Now for a semistable family X
over R = W (k) (which is not necessarily smooth over R), L. Illusie raised
the following problem:

Problem 1.5 (Illusie, Problem 7.14 [3]). Is the truncated logarithmic de
Rham complex τ<pF∗Ω•

X0/k
decomposable in D(X ′

0)?

We say that X0 is DR-decomposable if the answer to Problem 1.5
is affirmative on X0. This problem for the curve case is affirmative for co-
homological reason (Remark 2.10 (1)). Beyond this case, our answer to the
problem is surprisingly NO. See §4 for counterexamples of arbitrarily large
dimension.

The construction of our examples belongs to one of the simplest kinds
of operations in algebraic geometry: blowups. In the setting of semistable
families, we introduce the following

Definition 1.6. Let Z a semistable family over S. A blow-up of Z with the
center Y0 ⊂ Z is said to be admissible if Y0 is contained in Z0, regular and
has normal crossings with Z0 (Definition A.5).
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It is clear that an admissible blowup of a semistable family over S is again
a semistable family over S. We prove that the E1-degeneration property is
invariant under admissible blow-ups.

Theorem 1.7 (Theorem 2.3). Let R be a discrete valuation ring and Z a
semistable family over Spec(R). Let X be an admissible blow-up of Z. Then
Problem 1.1 holds true for Z0 if and only if it holds true for X0.

On the other hand, the behavior of Problem 1.5 under admissible blowups
is more subtle.

Theorem 1.8 (Corollary 2.8 and §4). Let R be a discrete valuation ring
and Z a semistable family over Spec(R). Let X be an admissible blow-up of
Z. The DR-decomposability of X0 implies that of Z0, but not vise-versa.

Therefore, our examples show that, even when the dimension of X0 is
strictly less than the characteristic of k, DR-decomposability is definitely
stronger than E1 degeneration of the Hodge to de Rham spectral sequence,
a fact that seems to have been previously unknown.

By assuming the functorial embedded resolution of singularities over Z,
we can make a step further.

Corollary 1.9 (Corollary 2.7). Notation as above and assume that the
functorial embedded resolution of singularities applies over Z. Then the E1-
degeneration property of the special fiber of X/S depends only on the generic
fiber Xη. Namely, for another semistable integral model Y over S of Xη, E1-
degeneration for X0/k holds if and only if it holds for Y0/k.

The counterexamples of Lang [17] and those constructed in §4 to DR-
decomposability motivate us to introduce a stronger lifting condition on log
schemes, which shall guarantee the truth of Problem 1.5 over a general p-
adic base. Let V be the ring of integers of a p-adic local field. Equipping
Spec(V ) with the log structure given by m, the maximal ideal of V , and
Spec(W (k)[[t]]) with the one by the divisor (t), one finds that Spec(V ) is
naturally a closed log subscheme of Spec(W (k)[[t]]) by mapping t to a uni-
formizer of V (see §3).
Proposition 1.10 (Proposition 2.14). Notation as above. Let X be a semi-
stable family over Spec(V ). If X is liftable to the Spec(W (k)[[t]]) as log
schemes, then X0/k is DR-decomposable. Consequently, if X has relative
dimension < p, then the answer to Problem 1.1 is affirmative for X0/k.

The paper is organized as follows: In Section §2, we prove the invariance
of E1-degeneration for admissible blow-ups (Theorem 2.3). In Section §3, we
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provide a criterion for the DR-decomposability (Theorem 2.9) and then a
sufficient condition for DR-decomposability (Proposition 2.14). We deduce
Proposition 1.3 from the criterion by mod p reduction (Proposition 2.13).
Two conterexamples to Illusie’s Problem 1.5 is proposed in Section 4. In the
Appendix, we include some preliminaries on semistable reductions which are
mainly used in §2.

2. An E1-degeneration theorem for admissible blow-ups

It is E1-degeneration of the Hodge to de Rham spectral sequence, rather
than the DR-decomposability which we shall study in this section, accounts
for Kodaira’s vanishing theorem [7]. In this section, we aim to establish an
E1-degeneration property for semistable families. Let us start with recalling
the basic notion in log geometry, namely log structure, as introduced in [15].

Definition 2.1. Let X be a scheme (equipped with the étale topology). A
pre-log structure on X is a homomorphism α : M → OX of sheaves of
monoids, where OX is regarded as a sheaf of monoids with respect to the
ring multiplication. A pre-log structure (M,α) is called a log structure if α
induces an isomorphism

α−1(O∗
X) ∼= O∗

X ,

where O∗
X ⊂ OX is the subsheaf of invertible elements. A log scheme is a

triple (X,M,α), where X is a scheme equipped with a log structure (M,α)
on X. When the meaning of α is clear, we shall omit it from the definition
of a log scheme.

To a pre-log structure (M,α), one associates canonically a log structure
Ma [15, §1.3]. For any morphism P → Γ(X,OX) of monoids, we attach
the pre-log structure (and hence the associated log structure): PX → OX ,
where PX denotes for the constant sheaf on X corresponding to P [15, §1.5
(3)]. This type of log structure is important for us to elucidate different
log structures on base schemes in our setting. In our context, we shall only
apply P = N, the additive monoid of nonnegative integers. Thus, in order
to specify a morphism of the above type, it suffices to indicate an element of
Γ(X,OX) which is the image of 1 ∈ N. When there is no danger of confusion,
a log scheme of the form (X, 1 	→ a), for some a ∈ Γ(X,OX), shall mean a
log structure on X arising from this way.

Example 2.2. Let k be an arbitrary field. The log scheme (Spec(k), 1 	→ 0)
is called the standard log point that is denoted by k throughout the pa-
per. For k a perfect field of characteristic p > 0 and n a natural num-
ber, (Spec(Wn(k)), 1 	→ pm), 0 ≤ m ≤ n are mutually non-isomorphic
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log schemes. For m = 0, the log structure is trivial [15, §1.5 (2)]. For
n = m = 1, we get the standard log point k. In the following, the log scheme
W2 which is defined to be the case n = 2,m = 2 is especially important.
Note both W2 and (Spec(W2), 1 	→ p) are the first-order thickenings of k.

Let R be a DVR with the residue field k and X be a semistable reduction
over R (Definition A.6). Let MX0

be the log structure on X attached to X0

[15, §1.5 (1)]. Then, the structural morphism X → Spec(R) extends to a
log smooth morphism of log schemes f : (X,MX) → (Spec(R), 1 	→ π)
[15, §3], where π is a uniformizer of R. Let f0 : X0 := (X0,MX0

|X0
) → k

be the base change of f via the exact closed immersion of log schemes
k ↪→ (Spec(W ), 1 	→ π). The most important property of f0 is that it is of
Cartier type ([15, Definition 4.8]). Thus Kato’s decomposition theorem ([15,
Theorem 4.12]) applies to f0.

Let R be a DVR with perfect residue field k and Z a semistable family
over R (Definition A.6). Let X/R be an admissible blow-up of Z with the
blow-up center Y0 ⊂ Z0 (Definition 1.6). Let Z0 → k and X0 → k be the
naturally associated log schemes.

Theorem 2.3. Notation as above. The following statements are equivalent:

1. the logarithmic Hodge to de Rham spectral sequence

Eij
1 = Hj(Z0,Ω

i
Z0/k

) ⇒ Hi+j(Z0,Ω
•
Z0/k

)

degenerates at E1.
2. the logarithmic Hodge to de Rham spectral sequence

Eij
1 = Hj(X0,Ω

i
X0/k

) ⇒ Hi+j(X0,Ω
•
X0/k

)

degenerates at E1.

The blow-up induces the morphism π : X0 → Z0 of log schemes over k.
It induces the following morphism for each i ≥ 0:

π∗i : Ωi
Z0/k

→ Rπ∗Ω
i
X0/k

.

Our main technical result in the proof of Theorem 2.3 is the following

Proposition 2.4. For each i,

π∗i : Ωi
Z0/k

→ Rπ∗Ω
i
X0/k

.

is an isomorphism in the derived category D(Z0).
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Proof of Theorem 2.3. By Proposition 2.4, we have the following
consequences

1. the natural morphism

Ω≥l
Z0/k

→ π∗Ω
≥l
X0/k

is an isomorphism of complexes, for each l ≥ 0.
2. the natural morphism

π∗Ω
≥l
X0/k

→ Rπ∗Ω
≥l
X0/k

is an isomorphism in D(X), for each l ≥ 0.

This proves that for each l ≥ 0, the vertical morphisms in the diagram

Hi(Z0,Ω
≥l
Z0/k

)

π∗
k

Hi(Z0,Ω
•
Z0/k

)

π∗

Hi(X0,Ω
≥l
X0/k

) Hi(X0,Ω
•
X0/k

)

(1)

are isomorphisms. This proves the theorem.

The following Lemma is well known but the authors cannot find a suit-
able reference. We give a proof for the convenience of the readers.

Lemma 2.5. Let Y be a smooth variety and Z ⊂ Y be the smooth closed
subvariety. Let p : Y ′ := BlZY → Y be the blowing up. Then the canonical
morphism

OY � Rp∗OY ′

is a quasi-isomorphism.

Proof. Since the statement is étale locally, we may assume that Y =
Spec(k[x1, . . . , xn]) and Z is defined by the ideal (x1, . . . , xr). Then Y ′ is
isomorphic to the subvariety of Y × Pr−1 defined by

xiyj = xjyi, i, j = 1, . . . , r

under the coordinates (x1, . . . , xn, [y1, · · · , yr]).
By Zariski’s Main theorem [11, Corollary 11.4], we have

OY � p∗OY ′ .
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Therefore it suffices to show that

H i(Y ′,OY ′) = 0, i > 0.

Let E = Y ′ ∩ {x1 = · · · = xr = 0} ⊂ Y ′ be the exceptional divisor. Then
the morphism

Y ′ → E, (x1, . . . , xn, [y1, · · · , yr]) 	→ (0, . . . , 0, xr+1, . . . , xn, [y1, · · · , yr])

makes Y ′ be a line bundle over E � An−r×Pr−1. Local calculations indicate
that the line bundle is isomorphic to p∗2O(1) where p2 : An−r×Pr−1 → Pr−1

is the projection. Therefore

H i(Y ′,OY ′) � H i(An−r × Pr−1, p∗2SymO(1)) = 0, i > 0

and we proved the lemma.

Proof of Proposition 2.4. Let D � Z0 be a strict normal crossing divisor in
Z, such that D ∪ Z0 is normal crossing and has normal crossings with Y0
(Definition A.5). Denote D̃ for the strict transform on X. We will show, by
induction on dimZ and the number of components of D, that the canonical
morphism

Ωi
Z/S(log(Z0 +D))|Z0

→ Rπ∗
(
Ωi
X/S(log(X0 + D̃))|X0

)
(2)

is a quasi-isomorphism. That is,

Ωi
Z/S(log(Z0 +D))|Z0

�→ π∗
(
Ωi
X/S(log(X0 + D̃))|X0

)
(3)

and

Rjπ∗
(
Ωi
X/S(log(X0 + D̃))|X0

)
= 0, j > 0.(4)

Notice that when D = ∅, these isomorphisms are nothing but the statements
of Proposition 2.4.

Since these isomorphisms can be checked étale locally, we assume, in the
rest of the proof, that Z is affine and is a strictly semistable reduction over
R. The proof is divided into two cases.

Case I: i = 0 It suffices to show

OZ0
� Rπ∗OX0

.(5)
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Denote the irreducible decomposition by Z0 = ∪r
i=1Zi, then X0 =

⋃r+1
i=1 Xi.

The restriction morphism πi : Xi → Zi is the blowing up along Y0 ∩ Zi.
Xr+1 = P(NY0/Z) and the restriction morphism πr+1 : P(NY0/Z) → Y0 is the
canonical projection.

For convenience, denote Zr+1 = Y0. Given I ⊂ {1, . . . , r + 1}, denote

ZI =
⋂
i∈I

Zi.

The same notation applies to X0. If r + 1 /∈ I, the restriction morphism
πI : XI → ZI is the blowing up morphism along the smooth center ZI ∩ Y0.
If r + 1 ∈ I, then πI : XI → ZI is a projective bundle.

We have the exact sequence

0 → OX0
→

⊕
|I|=1

OXI
→

⊕
|I|=2

OXI
→ · · · ,(6)

and

0 → OZ0
→

⊕
|I|=1

OZI
→

⊕
|I|=2

OXI
→ · · · .(7)

Applying Rπ∗ to (6) we obtain the spectral sequence

Eij
1 =

⊕
|I|=i

RjπI∗OXI
⇒ Ri+jπ∗OX0

.

By Lemma 2.5 and the fact that Xr+1 → Y0 is a projective bundle, we have

Eij
1 �

{⊕
|I|=i

OZI
, j = 0

0, j �= 0
.

Combining with the exactness of (7), we obtain that (5) is an quasi-isomor-
phism.

Case II: i> 0 For convenience, we denote the claimed quasi-isomorphism
(2) by Cn,r, where n = dimZ and r = l(D) is the number of the compo-
nents of D. Certainly the assertion Cn,r depends on the geometric setting
(Z/W, Y0). We abuse this notation when (Z/W, Y0) is clear in the context.

Denote lY0
(Z0) for the number of components of Z0 that contain Y0.

Since D ∪ Z0 is strict normal crossing, we have

0 ≤ r ≤ dimZ − lY0
(Z0)− dimY0(8)
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in the assertion Cn,r. When r reach its maximum, i.e. r = dimZ− lY0
(Z0)−

dimY0, the defining functions of D and of the components of Z0 that contain
Y0 form a local frame of the conormal bundle IY0,Z/I

2
Y0,Z

.
The assertion C1,0 is trivial. The remaining proof is divided into two

inductive steps:
Step 1: In this step we prove Cn,r(n) for each n > 0. Here

r(n) = dimZ − lY0
(Z0)− dimY0

is the maximum of r in (8) under the geometric setting (Z/W, Y0).
We are going to show that the canonical morphism

π∗ΩZ/S(log(Z0 +D)) → ΩX/S(log(X0 + D̃)).(9)

is an isomorphism. As a consequence, the projection formula reads

Rπ∗
(
ΩX/S(log(X0 + D̃))|X0

)
� Rπ∗π

∗ (ΩZ/S(log(Z0 +D))|Z0

)
� ΩZ/S(log(Z0 +D))|Z0

⊗Rπ∗OX0
.

By case 1, Rπ∗OX0
� OZ0

. This finishes the proof of step 1.
It remains to prove the isomorphism (9). Since (9) is generically an

isomorphism between locally free sheaves, it is injective. Without loss of
generality, we assume that

1. Z = Spec(A) for a Noetherian regular local ring A.
2. Y0 is defined by the ideal (x1, . . . , xm) where x1, . . . , xm ∈ A are the

defining sections of the components of Z0 ∪D that contains Y0.
3. X = Spec (A[y1, . . . , ym−1]/(xmy1 − x1, . . . , xmym−1 − xm−1)).

Denote X = (X,X0 ∪ D̃) and Z = (Z,Z0 ∪D). Then the cokernel of (9) is
given by

ΩX/Z �
m−1⊕
i=1

OX
dyi
yi

⊕ OX
dxm
xm

/

m−1⊕
i=1

OX(π∗(
dxi
xi

))⊕ OX
dxm
xm

�
m−1⊕
i=1

OX
dyi
yi

⊕ OX
dxm
xm

/

m−1⊕
i=1

OX(
dyi
yi

+
dxm
xm

)⊕ OX
dxm
xm

= 0.

Hence (9) is an isomorphism.
Step 2: Assume that r < dimZ−lY0

(Z0)−dimY0. By Lemma A.9 there
is a regular divisor D′ � Z0 on Z such that D′ ∪ D ∪ Z0 is strict normal

crossing. Denote by D̃′ the strict transform on X and by D̃′
0 its central
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fiber. Then D′ and D̃′ have semistable reductions over S. By Lemma A.10
we have the following exact sequence

0 → Ωi
X/S(log(X0 + D̃))|X0

→ Ωi
X/S(log(X0 + D̃ + D̃′))|X0

(10)

Res
D̃′ |X0→ Ωi−1

D̃′/S
(log(X0 + D̃)|D̃′)|D̃′

0
→ 0.

If CdimZ,l(D)+1 and CdimZ−1,∗ hold true, we have the exact sequence

0 → π∗
(
Ωi
X/S(log(X0 + D̃))|X0

)
→ π∗

(
Ωi
X/S(log(X0 + D̃ + D̃′))|X0

)(11)

π∗(Res
D̃′ |X0 )→ π∗

(
Ωi−1
D̃′/S

(log((X0 + D̃)|D̃′))|D̃′
0

)
→ R1π∗

(
Ωi
X/S(log(X0 + D̃))|X0

)
→ 0,

and

Rj+1π∗
(
Ωi
X/S(log(X0 + D̃))|X0

)
� Rjπ∗

(
Ωi−1
D̃/S

(log((X0 + D̃)|D̃′))|D̃′
0

)
= 0, j > 0.

By CdimZ,l(D)+1 and CdimZ−1,∗, we have

π∗
(
Ωi
X/S(log(X0 + D̃ + D̃′))|X0

)
� Ωi

Z/S(log(Z0 +D +D′))|Z0
,

and

π∗
(
Ωi−1
D̃′/S

(log((X0 + D̃)|D̃′))|D̃′
0

)
� Ωi−1

D′/S(log(Z0 +D))|D′
0
.

Therefore (11) is isomorphic to

0 → π∗
(
Ωi
X/S(log(X0 + D̃))|X0

)
→ Ωi

Z/S(log(Z0 +D +D′))|Z0

ResD′ |D′
0→ Ωi−1

D′/S(log((Z0 +D)|D′))|D′
0
→ R1π∗

(
Ωi
X/S(log(X0 + D̃))|X0

)
→ 0.

As a consequence,

π∗
(
Ωi
X/S(log(X0 + D̃))|X0

)
� Ωi

Z/S(log(Z0 +D))|Z0

and

R1π∗
(
Ωi
X/S(log(X0 + D̃))|X0

)
= 0.
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In summary, we obtain that

Cn,r+1 and Cn−1,r imply Cn,r.

Together with step 1, the proposition is proved.

To make a step further, we make the following conjecture.

Conjecture 2.6. Let X and Y be two semistable families over S with an
isomorphism α : Xη � Yη of generic fibers. Then, there is a sequence of
rational maps

ϕ : X = V0
ϕ1��� V1

ϕ2��� V2
ϕ3��� · · · ϕn��� Vn = Y,

such that

1. ϕ|η = α,
2. For each i, Vi is a semistable family over S,
3. For each i, either ϕi or ϕ−1

i is an admissible blow-up.

The conjecture follows if we assume that the functorial embedded reso-
lution of singularities applies over Z ([2, Theorem 1.3.3 (2)]). In particular,
it holds when char(k) = 0 ([1, Theorem 0.3.1]). As a consequence

Corollary 2.7. Notation as above and assume that the functorial embedded
resolution of singularities applies over Z. Then the E1-degeneration property
of the special fiber of X/S depends only on the generic fiber Xη. Namely,
for another semistable integral model Y over S of Xη, E1-degeneration for
X0/k holds if and only if it holds for Y0/k.

To conclude this section, we shall deduce an important consequence from
Proposition 2.4 on DR-decomposability, a topic on which we shall concen-
trate in the next two sections. Together with Examples constructed in §4,
the following result forms the corresonding picture on DR-decomposability
under admissible blow-ups.

Corollary 2.8. Notations as above. Assume moreover that char(k) = p > 0.
Denote by FX0

: X0 → X0 and FZ0
: Z0 → Z0 the Frobenius morphism. If

τ<pFX0∗Ω
•
X0/k

is decomposable in D(X0), then τ<pFZ0∗Ω
•
Z0/k

is decompos-

able in D(Z0).

Proof. By the assumption we have an isomorphism

τ<pFX0∗Ω
•
X0/k

�
p−1⊕
i=0

Ωi
X0/k

[−i](12)
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in D(X0). Applying Rπ∗ on (12) we get

Rπ∗τ<pFX0∗Ω
•
X0/k

�
p−1⊕
i=0

Rπ∗Ω
i
X0/k

[−i].(13)

By Proposition 2.4, the right hand side of (13) is canonically isomorphic to

p−1⊕
i=0

Ωi
Z0/k

[−i].

Therefore it remains to show that the canonical morphism

τ<pF∗Ω
•
Z0/k

→ Rπ∗τ<pF∗Ω
•
X0/k

(14)

is an isomorphism in D(Z0). By [15, Theorem 4.12] the spectral sequence
associated to the canonical truncation of τ<pF∗Ω•

X0/k
is

Eij
1 =

{
Rjπ∗Ωi

X0/k
, i < p

0, i ≥ p
=⇒ Ri+jπ∗τ<pF∗Ω

•
X0/k

.

By Proposition 2.4 we obtain that

H i(Rπ∗τ<pF∗Ω
•
X0/k

) �
{
Ωi
Z0/k

, i < p

0, i ≥ p
.

Again by [15, Theorem 4.12], (14) is a quasi-isomorphism and the theorem
is proved.

The decomposition theorem of Deligne-Illusie has a log analogue, that is
the Kato’s decomposition theorem (see [15, Theorem 4.12]). Kato’s theorem
is crucial to the construction of our examples in the next section. Indeed,
our construction is based on a simple modification (Theorem 2.9) of Kato’s
theorem.

Let R = W (k) with k a perfect field of positive characteristic p. Notice
that we are already in the position to apply Kato’s decomposition theorem
to f0 defined as above. If we take the lifting (Spec W2(k), 1 	→ p) of the base
log scheme k, it seems that we could conclude the decomposition property
of τ<pF∗ω•

X0/k
by applying [15, Theorem 4.12 (2)]. However, this is not quite

true: by a simple calculation, one finds the absolute Frobenius Fk : k → k
of the standard log point is non-liftable to (Spec W2(k), 1 	→ p). Therefore,
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to the obvious lifting X1 of X0 over (Spec W2, 1 	→ p), which is given by

X1 := (X,MX0
)×(Spec W,1�→p) (Spec W2, 1 	→ p),

one cannot perform the log analogue of the base change as we do in the
scheme case. As a consequence, the lifting condition for X′

0 := X0 ×k,Fk
k,

as required by the theorem, might not be satisfied. Our examples in the next
section shall demonstrate that it is indeed the case.

The departure from trying to answer Problem 1.5 in the affirmative be-
gins with the following simple observation. Recall that a log smooth variety
X/k is DR-decomposable if τ<pF∗ω•

X/k is decomposable in the derived cat-
egory.

Theorem 2.9. Let f : X → k be a log smooth morphism of Cartier type.
Then X is DR-decomposable if and only if X admits a log smooth lifting to
W2.

Proof. Let f ′ : X′ → k is the base change of f by the absolute Frobenius
Fk : k → k. Notice that W2 is another lifting of the base log scheme k.
Moreover, there is an obvious lifting FW2

: W2 → W2 of Fk which is given
by the following commutative diagram:

W2
FW2

W2

N

α

×p
N,

α

where FW2
is the Frobenius automorphism of W2 and α is the pre-log struc-

ture determined by 1 	→ 0. Applying Kato’s decomposition theorem ([15,
Theorem 4.12]), one obtains the following statement: τ<pF∗Ω•

X/k is decom-

posable in the derived category if and only if X′ is liftable to W2. So it
remains to show X′ is liftable to W2 if and only if X is liftable to W2. One
direction is clear: via the base change by FW2

, one obtains a W2-lifting of
X′ from that of X. The converse direction is less obvious, as FW2

is not an
isomorphism of log schemes (for Fk is not an isomorphism). We prove it as
follows: by [15, Proposition 3.14] and the proof therein, we have the obstruc-
tion class ω(f) ∈ Ext2(Ω1

X/k, f
∗(p)) (resp. ω(f ′) ∈ Ext2(Ω1

X′/k, f
′ ∗(p))) of

log smooth lifting of X (resp. X′) over W2. We claim that ω(f) vanishes
if and only if ω(f ′) does. For that, we take an open affine covering {Ui}i∈I
of X (each Ui is equipped with the induced log structure). Because of [15,
Proposition 3.14 (1)], we may take for each i ∈ I a log smooth lifting Ui

over W2, and over each overlap Uij := Ui ∩ Uj (which is again affine),
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we may take an isomorphism αij : Ui|Uij
→ Uj |Uij

between two liftings of
Uij over W2. Then ω(f) is represented by the 2-cocycle (cijk) which over
Uijk := Ui ∩Uj ∩Uk takes the value

α−1
ki αjkαij − Id ∈ Hom(Ω1

Uijk/k
, f∗(p)) = TUijk/k.

Here T?/k is the dual of Ω?/k for a log scheme ? over k. The last equality
uses the fact that Ω1

X/k is locally free by [15, Proposition 3.10]. Now we pull

back the datum Uis and {αij}s over W2 by the morphism FW2
. A moment

of thought shall lead us to the conclusion that ω(f ′) is represented by the
2-cocycle (σ∗(cijk)). In other words, under the natural map

H2(X,TX/k)
σ∗
−→ H2(X ′, σ∗TX/k) = H2(X ′, TX′/k),

the obstruction class of lifting f is mapped to that of lifting f ′. As σ∗ is
semi-linear and bijective, ω(f) = 0 if and only if ω(f ′) = σ∗(ω(f)) = 0.
Thus the claim is proved and then the theorem follows.

Remark 2.10. By Theorem 2.9 and [15, Proposition 3.14], X is DR-
decomposable whenever H2(X,TX/k) = 0. This includes the cases that

1. dimX = 1,
2. X is affine,

Remark 2.11. After presenting our results, Weizhe Zheng provided us
a more conceptual proof of Theorem 2.9: Denote by Lift(X,MX) (resp.
Lift(X ′,MX′)) the groupoid of liftings of (X,MX) (rsep. (X ′,MX′)) over
W2. Let G : W2 → W2 be a lifting of the log Frobenius morphism F : k → k.
Given a lifting (X(1),MX(1)) ∈ Lift(X), the pullback of (X(1),MX(1)) along
G gives an object in Lift(X ′,MX′). With the obvious assignments on mor-
phisms, one can get a functor

A : Lift(X,MX) → Lift(X ′,MX′).

Conversely, let (X ′ (1),MX′ (1)) ∈ Lift(X ′,MX′) be a lifting of (X ′,MX′).
Denote by i : (X ′,MX′) ↪→ (X ′ (1),MX′ (1)) the canonical strict closed im-
mersion and by σ : (X ′,MX′) → (X,MX) the base change of F : k → k.
Recall that σ : X ′ → X is an isomorphism. One can construct the pushout
X ′ (1) �X′ X of the diagram

X ′ σ

i

X

X ′(1)
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as follows:

• The underlying scheme X ′ (1) �X′ X is defined to be X ′ (1),
• the log structure on X ′ (1) �′

X X is defined to be MX′ (1) ×MX′ MX .

With the obvious assignments on morphisms, the pushout process along σ :
(X ′,MX′) → (X,MX) gives a functor

B : Lift(X ′,MX′) → Lift(X,MX).

It is straightforward to check the following proposition.

Proposition 2.12. The functor A gives an equivalence of groupoids, and
the functor B is its quasi-inverse.

In the following, we use Kato’s decomposition theorem (or rather the
version Theorem 2.9 obtained as above), to prove Propositions 1.3 and The-
orem 1.10.

Let X a normal crossing (n.c.) variety defined over a field K. By [14,
Theorem 5.4], X is d-semistable if and only if X admits a log structure
of semistable type. This fact was first shown by Kawamata-Namikawa [16,
Proposition 1.1] for simple normal crossing varieties. The related notion of
log structure of semistable type is the notion of log structure of embedding
type (whose origin traces back to Steenbrink). Both notions are important
to our argument below. However, for sake of brevity, we refer our readers to
[14, §4–5] for precise definitions. Now we assume that X is a d-semistable
n.c. variety over K. Let α : MX → OX be a log structure of semistable type
on X. Let K = (Spec(K), 1 	→ 0) be the standard log point. Then we have
the following commutative diagram:

K OX

N
	

MX ,

α

which defines the morphism f : X := (X,MX) → K of log schemes (which
is log smooth), where α is etale locally isomorphic to the one associated to
a SNCD in the affine space over K, and the morphism � on such a local
chart is the diagonal map N → Nr with r the number of local branches. The
existence of a log structure of embedding type on X does not necessarily
offer such a commutative diagram. Also, we remark that over X there could
be more than one isomorphism classes of log structures of semistabe type.
Using the description of isomorphism classes of log structures in [14, Remark
4.7], it is easy to see that the sheaf Ω1

X/K of relative log differential forms
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is independent of a choice of MX . From now on, we denote this sheaf by
Ω1
X/K and the corresponding de Rham complex by Ω•

X/K as in Problem 1.1.

Kawamata-Namikawa [16] adapted the original transcendental method of
Steenbrink [28] to establish the following result. Ours is to follow the char
p method of Deligne-Illusie [6] (see [3, §6], especially the proof of Theorem
6.9 loc. cit.).

Proposition 2.13. For a proper d-semistable n.c. variety over a field K
of characteristic 0, the Hodge to de Rham spectral sequence in Problem 1.1
degenerates at E1.

Proof. Write the field K as an inductive limit of its sub Z-algebras of finite
type. Using [3, Lemma 6.1.2], one finds a Z-algebra A ⊂ K of finite type, a
proper normal crossing scheme X̃ of finite type over S = Spec(A) and a log
structure of semistable type

α̃ : M̃X̃ → OX̃

relative to S on X̃ which yields the following commutative diagram:

A OX̃

N
	̃

M̃X̃ ,

α̃

such that the associated log morphism f̃ : (X̃, M̃X̃) → (S, 1 	→ 0) := S pulls
back to f via the obvious base change K → S. That is, we ‘spread out’ the
log morphism f to obtain an integral model f̃ : X̃ = (X̃, M̃X̃) → S. By
[3, Proposition 6.3], we may assume S is smooth over Z by schrinking S if
necessary. Using the exact argument as [3, Proposition 6.6], schrinking S
if necessary, we can assume that the A-modules Rnf̃∗Ω∗

X̃/S
and Rj f̃∗Ωi

X̃/S

are all free of finite rank and satisfies the cohomology base change for any
morphism (S′, 1 	→ 0) → S. By Proposition 6.4 [3], we may take a closed
subscheme s : k → S with char(k) sufficiently large (larger than the relative
dimension of f̃). Since (S, 1 	→ 0) is smooth over (Spec(Z), 1 	→ 0), the
morphism s extends to a morphism g : W2 → S. Pulling back f̃ via the
base change s and g, one obtains the following Cartesian diagrams:

Y −−−−→ Y1 −−−−→ X̃ ←−−−− X

f̃0

⏐⏐
 f̃1

⏐⏐
 f̃

⏐⏐
 ⏐⏐
f

k −−−−→ W2
g−−−−→ S ←−−−− K.
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By the remark following [15, Definition 4.8], f̃0 is of Cartier type. Apply-
ing Theorem 2.9 to the morphism f̃0, one obtains the fact that F∗Ω∗

Y/k

is decomposable in D(Y ′) and therefore (follow the same arguments as in
[3, Corollary 5.6]) the Hodge to de Rham spectral sequence of the filtered
complex Ω∗

Y/k degenerates at E1. By the freeness and base change property
stated as above, the Hodge to de Rham spectral sequence of the filtered

complex Ω∗
X/K also degenerates at E1.

Now let K be a p-adic local field and V be its ring of integers. The
most powerful tool to obtain the E1-degeneration in Problem 1.1 for a

semistable family over V is to show the DR-decomposability in Problem
1.5 (and the dimension is larger than the characteristic of the residue field
k). Lang’s example [17] (smooth schemes over ramified V ) and our example
in §4 (semistable families over unramified V ) motivate us to find a com-
mon criterion for a general semistable reduction over V . To this purpose, for

the special fiber X0 → k we propose a stronger lifting condition than the
original one in Deligne-Illusie’s decomposition theorem.

Let K0 ⊂ K be the maximal unramified subfield with the ring of integers
V0 and f(t) the Eisenstein polynomial satisfying f(π) = 0. Consider f as

an element in P = V0[[t]]. Equip Spec(P ) with the log structure given by
N → P, 1 	→ t. Note thatV = (Spec(V ), 1 	→ π) is an exact closed subscheme
of P = (Spec(P ), 1 	→ t) defined by the ideal (f).

Proposition 2.14. Let X be a semi-reduction over V , endowed with the

standard log structure MX . If the log scheme (X,MX) over V is liftable
to the log scheme P, then the log scheme X0 is DR-decomposable (that is
Problem 1.5 holds true for X0 → k).

Proof. Notice that W2 is the exact closed subscheme of P defined by the

ideal (p2, t). A lifting of (X,MX) over P pulls back to a W2-lifting of the
special fiber X0. Thus Theorem 2.9 implies the result.

The last result of this section enables us to take k to be algebraically

closed in the study of Problem 1.5, which we shall assume in the next section.

Corollary 2.15. Let f : X → k be a smooth morphism of Cartier type.
Let k′ be a field extension of k which is also perfect. Let fk′ : Xk′ → k′ be
the base change of f by k′ → k. Then τ<pFX/k∗ω

•
X/k is decomposable if and

only if τ<pFXk′/k′∗ω
•
Xk′/k′ is decomposable.

Proof. By Theorem 2.9, it is equivalent to show that X lifts over W2(k)
if and only if Xk′ lifts over W2(k

′). One has the following commutative
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diagram of morphisms of schemes:

Xk′
π

X

Spec k′ Spec k.

By the flat base change theorem, we know that the composite of the natural
maps

π∗ : H2(X,TX/k) −→ H2(X,TX/k)⊗k k
′ −→ H2(Xk′ , TXk′/k′)

is injective. The same argument using Čech representatives of the obstruc-
tion classes as given in Theorem 2.9 shows that

π∗(ω(f)) = ω(fk′).

Thus ω(f) = 0 if and only if ω(fk′) = 0. The corollary follows.

3. Examples

In this section we take k to be an algebraically closed field of characteristic
p > 0. The aim of this section is to construct semistable families over W =
W (k) whose special fibers are DR-indecomposable. Because of the criterion
Theorem 2.9, it is equivalent to construct semistable families over W whose
special fibers are non-liftable over W2. Such examples negate Problem 1.5,
and consequently the base changes of their special fibers by the absolute
Frobenius Fk are non-liftable over (Spec W2, 1 	→ p).

3.1. A technical lemma

Let X be a semistable reduction over W . Let (X0,M0) be the associated log
scheme over k. In the following second lemma, we show that, in constrast to
the smoothing effect on the underlying scheme of the given lifting (X1,M1)
of (X0,M0) over the log base (Spec W2, 1 	→ p), the underying scheme of
a lifting of (X0,M0) over the log base W2 = (Spec W2, 1 	→ 0) keeps the
singularity of X0.

Lemma 3.1. Notation as above. Let X0 =
⋃

i∈I X
i
0 be the irreducible decom-

position of the scheme X0. Suppose (X ,M ) be a W2-lifting of (X0,M0).
Then the underlying scheme X is the schematic union of closed subschemes
X =

⋃
i∈I X i such that, for each nonempty set J ⊆ I of indices, the

schematic intersection
⋂

j∈J X j is a W2-lifting of the scheme
⋂

j∈J X
j
0 .
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Proof. Set Ii = Ii + pIi, where Ii is the ideal sheaf of X i
0 in X0. Then, Ii

is an ideal sheaf of OX . We claim that the closed subschemes Xis defined
by Iis have the property as claimed in the lemma. To show this, it suffices
to prove the following properties:

1. OX /Ii is flat over W2,
2.

⋂
Ii = 0, and

3. for each nonempty J ⊆ I, OX / ∪j∈J Ij is flat over W2.

Since ÔX ,x is faithfully flat over OX ,x for each point x ∈ X , it suffices to

verify the above claim after tensoring with ÔX ,x for every x ∈ X . By [15,
Theorem 3.5, Proposition 3.14], there is an étale morphism U → X such
that we have

U
f

π′|U

Spec(W2[x1, · · · , xn]/(x1 · · ·xr))

Spec(W2)

,

where f is an étale morphism. As a consequence, there is an isomorphism

α : ÔX ,x
∼= W2[[x1, · · · , xn]]/(x1 · · ·xr)

such that each IiÔX ,x (whenever it is nonempty) is generated by
α−1(Πj∈Ji

xj) for some nonempty set Ji ⊆ {1, · · · , r}. Moreover, {1, · · · , r} is
the disjoint union of Jis. Then the claim follows from direct calculations.

3.2. Construction

The strategy of our construction, which negate Problem 1.5, is as follows.
Let Z/W be a semistable family and X/W be an admissible blow-up of Z
along a regular center Y0 ⊂ Z0. Among many cases, there are two typical
situations under which the log scheme X0 cannot be lifted to W2.

Case I Y0 is non W2-liftable (Proposition 3.3).
Case II The pair (Z0, Y0) is non W2-liftable.

Although this strategy shall provides complicated semistable families negat-
ing Problem 1.5, we construct examples only when Z is smooth over W .
A study of case I provides us examples whose generic fiber is Pn for n ≥ 5
(Example 1). This demonstrate a surprising fact that a semistable family of
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a quite simple variety may have bad hodge theoretic behavior on the central
fiber. A study of Case II provides us examples of arbitrary dimension ≥ 2
(Example 2).

Proposition 3.2. Let Z be a regular scheme which is smooth over W ,
whose special fiber is denoted by Z0. Let Y0 ⊂ Z0 be a proper smooth closed
subvariety. Then the special fiber X0 of the admissible blow-up X = BlY0

Z
consists of two smooth components BlY0

Z0 and P(NY0/Z) which intersect
transversally along P(NY0/Z0

).

Proof. The proof is fairly standard and therefore omitted, see e.g Section
5.1 in [10].

Example 1

Proposition 3.3. Notation as in Proposition 3.2. Equip X0 with its natural
log structure, which makes it into a log scheme over k. If Y0 is non W2-
liftable, then X0 is non W2-liftable.

Proof. Assume the contrary that X0 is W2-liftable. Then, by Lemma 3.1,
the irreducible component P(NY0/Z) is W2-liftable. However, a result of
Cynk-van Straten (Proposition 3.4 below) implies that the base of the nat-
ural projection P(NY0/Z) → Y0, which is Y0, is also W2-liftable.

For reader’s convenience, we include the result of Cynk-van Straten as
follows.

Proposition 3.4 ([4, Theorem 3.1]). Let π : Y → X be a morphism of
schemes over k and let S = Spec A, where A is an artinian local ring with
residue field k. Assume that OX = π∗OY and R1π∗(OY ) = 0. Then for every
lifting Y → S of Y as a scheme there exists a lifting X → S making the
following diagram commutative

Y Y

X X

Proposition 3.3 provides the following examples: take a smooth projec-
tive variety Y0 over k which is non W2-liftable, and take a closed embedding
Y0 ↪→ Z0 over k into a smooth projective variety such that the codimen-
sion codimZ0

Y0 ≥ 2 and Z0 admits a smooth lifting Z over W (for example
take Z0 to be a projective space of high dimension). Then X = BlY0

Z is a
semistable family over W whose special fiber X0 is non W2-liftable.
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Example 2
Notice that Mukai [21] has obtained a nice generalization to higher di-

mension of Raynaud’s classical example [26] of non W2-liftable smooth pro-
jective surface over k. His construction, together with an idea of Liedtke-
Satriano [18, Theorem 1.1 (a)], allows us to produce examples of all relative
dimensions ≥ 2. Let us recall first the following

Definition 3.5 ([21]). A smooth projective curve C over k of genus ≥ 2
is called a Tango-Raynaud curve, if there exists a rational function f on C
such that df �= 0 and that (df) = pD for some ample divisor D.

A typical example of Tango-Raynaud curve has its affine model defined
by the following polynomial

G(xp)− x = ype−1,

where G is a polynomial of degree e ≥ 1 in the variable x. The following
lemma is well known.

Lemma 3.6 ([21, §2]). Let C be a Tango-Raynaud curve. Then, there exists
a rank two vector bundle E on C together with a smooth curve D contained
in its projectification PC(E), such that the composite of natural maps D →
PC(E) → C is the relative Frobenius FD/k : D → D′ = C over k.

Now we proceed to the last construction in this paper. We shall use
notation in Lemma 3.6 in the following

Proposition 3.7. Let C be a Tango-Raynaud curve over k. Choose and
then fix a smooth lifting C of C over W . Then the vector bundle E can be
lifted to a vector bundle over C . Choose such a lifting E of E. For each
natural number d ≥ 2, set Zd = PC (E ⊕ Od−2

C ) and Xd = BlDZ
d, where D

is a closed scheme of Zd by the natural inclusions

D ⊂ PC(E) ⊂ PC(E ⊕ Od−2
C ) ⊂ Zd.

Then, the special fiber of the semistable family Xd over W is non W2-
liftable.

Proof. We prove the statement for d = 2 only (the proof for d ≥ 3 is the
same). Set

C0 = C, Y0 = D, Z0 = PC(E), Z = Z2.

Assume the contrary that the special fiber of BlY0
Z is W2-liftable. It follows

from Lemma 3.1 that the pair (Z0, Y0) consisting of the component Z0 =
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BlY0
Z0 ofX0 together with the divisor Y0 = P(NY0/Z)∩Z0 ⊂ X0 lift to a pair

(Z1, Y1) over W2 (The scheme Z1 is not necessarily the mod p2-reduction of

Z). On the other hand, Proposition 3.4 implies that the projection Z0 →
C0 is the reduction of a certain W2-morphism Z1 → C1. Therefore, the

composite F0 : Y0 ↪→ Z0 → C0 lifts to the composite F1 : Y1 ↪→ Z1 → C1

over W2. But this leads to a contradiction: the nonzero morphism dF1 :

F ∗
1ΩC1/k → ΩY1/k is divisible by p and it induces a nonzero morphism over

k
dF1

p
: F ∗

0ΩC0/k → ΩY0/k,

which is impossible because of the degree. Therefore, X0 is indeed non W2-

liftable as claimed.

Appendix A. Preliminarires on semistable reductions

In this appendix we present some facts on semistable reductions. They are

more or less standard material. We collect them here for the convenience of

our readers.

Definition A.1 ([5, §2.4]). Let V be a regular Noetherian scheme. Let

D ⊂ V be a divisor of X and Di ⊂ D, i ∈ I be its irreducible compo-

nents (considered as reduced closed subschemes). We say that D is a strict

normal crossing divisor if the following conditions hold:

1. D is reduced, i.e. D =
⋃

i∈I Di (scheme-theoretically),

2. For any nonempty subset J ⊂ I, DJ :=
⋂

j∈J Dj is a regular subscheme

of codimension 	J in S.

A divisor D ⊂ V is called normal crossing if there is a surjective étale

morphism V ′ → V such that the scheme-theoretic inverse image of D is a

strict normal crossing divisor on X ′.

Definition A.2. Let A be a local ring and x1, . . . , xr ∈ mA. We say that

x1, . . . , xr form a part of a parameter system if their images in mA/m
2
A are

linearly independent over A/mA.

Lemma A.3. Let A be a Noetherian regular local ring and x1, . . . , xr ∈ mA.

Then the subscheme defined by x1x2 · · ·xr is a strict normal crossing divisor

if and only if x1, . . . , xr form a part of a parameter system.

Proof. See [19, Theorem 14.2].
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Lemma A.4. Let A be a Noetherian regular local ring and I ⊂ mA be an
ideal such that A/I is a regular local ring. Then there are x1, . . . , xr ∈ mA,
r = dimA− dimA/I such that

1. x1, . . . , xr form a part of a parameter system, and
2. I = (x1, . . . , xr).

Proof. By [19, Theorem 21.2], I = (x1, . . . , xr) for an A-regular sequence
x1, . . . , xr ∈ mA. By [19, Theorem 14.2], the images of such x1, . . . , xr in
mA/m

2
A must be linearly independent over A/mA.

The above lemmas suggest the following

Definition A.5. Let V be a regular Noetherian scheme and D ⊂ V a normal
crossing divisor. We say that D has strict normal crossings with a regular
closed subscheme Y ⊂ V if étale locally there exist x1, . . . , xk such that

1. x1, . . . , xk form a part of a parameter system,
2. D = {x1 · · ·xr = 0} for some 1 ≤ r ≤ k,
3. Y = {xs = 0, . . . , xk = 0} for some 1 ≤ s ≤ k.

Definition A.6 ([5, §2.16]). Let R be a discrete valuation ring. Let K de-
note its fractional field and k the residue field. Then an R-scheme Z is a
semistable reduction over Spec(R) if the following two properties hold:

1. the generic fiber ZK = Z ×R K is smooth over K,
2. the special fiber Z0 = Z ×R k is a normal crossing divisor of Z.

If furthermore Z0 is a strict normal crossing divisor of Z, we say that Z is
a strictly semistable reduction. A (strictly) semistable family over Spec(R)
is a proper (strictly) semistable reduction over Spec(R).

Remark A.7. One has the isomorphism formal locally

X � Spec(R̂[[x1, . . . , xn]]/(x1 · · ·xr − π))

[5, §2.16]. As a consequence, the log morphism (X,X0)→ (Spec(R), Spec(k))
of log schemes is log smooth [15, Examples 3.7 (2)].

Notations as in Definition A.6. Let Y ⊂ Z0 be a regular closed subscheme
such that Z0 has normal crossings with Y . Let D ⊂ Z be a (strict) normal
crossing divisor such that D ∪ Z0 is a normal crossing divisor of Z and has
normal crossings with Y . Denote X = BlY Z for the blow-up of Z along Y .
Since the blow-up procedure commutes with étale base changes, The above
lemmas show that
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Lemma A.8. Notations as above. X is a semistable reduction over Spec(R).
The inverse image of Z0∪D is a normal crossing divisor on X. If moreover
Z0 ∪ D is strict normal crossing, then its inverse image is strict normal
crossing.

Lemma A.9. Assume the following conditions:

1. Let R be a discrete valuation ring and A a Noetherian regular local
ring over R such that Z := Spec(A) → Spec(R) is a strict semistable
reduction.

2. Let D be a divisor on Z such that Z0 ∪D is strict normal crossing.
3. Let Y ⊂ Z0 be a regular closed subscheme such that Z0 has strict

normal crossings with Y and Y is contained in every component of D.
4. the number of components of Z0∪D containing Y is less than dimX−

dimY .

Then there is a regular divisor D′ on Z, containing Y , such that D′ is a
semistable reduction over R, Z0 ∪D ∪D′ is strict normal crossing.

Proof. By condition (3) there exist x1, . . . , xk ∈ A such that

• x1, . . . , xm form a part of a parameter system,
• D = {x1 · · ·xr = 0} for some 1 ≤ r ≤ m,
• Y = {x1 = 0, . . . , xm = 0}.

By Lemma A.3, we have

π = y1 · · · ys
where y1, . . . , ys ∈ A form a part of a parameter system. Since Y ⊂ Z0,
(y1, . . . , ys)/m

2
A define a subspace of (x1, . . . , xm)/m2

A. Let s ∈ mA and s̄ be
the image of s in mA/m

2
A. Denote D′ for the divisor on Z defined by s. By

condition (4), one has

(y1, . . . , ys, x1, . . . , xr) ∩ (x1, . . . , xm)/m2
A � (x1, . . . , xm)/m2

A.

Therefore we can choose a sufficiently general s ∈ (x1, . . . , xm) so that s̄ �= 0
does not lies in (y1, . . . , ys, x1, . . . , xr)/m

2
A. This ensures that D

′ is regular,
flat over Spec(R), and Z0∪D∪D′ is strict normal crossing. As a consequence,
D′

0 = Z0 ∩ D′ (scheme theoretic) is strict normal crossing. Hence D′ is a
semistable reduction over R.

The remaining part of the appendix is devoted to construct the log
version of the residue sequence, which is used in the proof of proposition 2.4.

Let R be a discrete valuation ring and X be a semistable reduction over
S = Spec(R). Let 0 ∈ Spec(S) be the closed point and X0 the fiber over
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0. Let D ⊂ X be a connected regular divisor such that D is a semistable
reduction over S andX0∪D is a normal crossing divisor. By Remark A.7, the
morphisms of log schemes X = (X,X0) → S = (S, 0), X′ = (X,X0∪D) → S
and D = (D,D ∩ X0) → S are log smooth. Denote MX0∪D for the log
structure on X induced from X0 ∪ D, then MX0∪D|D is induced from the
pre-log structure MD0

⊕ N. As a consequence,

Ω1
(D,MX0∪D|D) � Ω1

D/S ⊕ OD

and thus

Ωi
(D,MX0∪D|D) � Ωi

D/S ⊕ Ωi−1
D/S.(15)

Define the residue map

resD : Ωi
X′/S → Ωi−1

D/S

to be the composite of the natural map

Ωi
X′/S → Ωi

(D,MX0∪D|D)/S

with the projection

Ωi
(D,MX0∪D|D)

(15)
� Ωi

D/S ⊕ Ωi−1
D/S → Ωi−1

D/S.

Recall that the log morphism X′ → X induces a natural map

Ωi
X/S → Ωi

X′/S

Lemma A.10. The sequence

0 → Ωi
X/S → Ωi

X′/S
resD→ Ωi−1

D/S → 0

and its restriction

0 → Ωi
X/S|X0

→ Ωi
X′/S|X0

→ Ωi−1
D/S|D0

→ 0

are short exact sequences.

Proof. The proof is done by local calculations. We may assume that R is
complete,

X � Spec(R[[x1, . . . , xn]]/(x1 · · ·xr − π)), r < n
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and D is defined by xr+1 = 0. Then

Ω1
X/S �

r⊕
i=1

OX
dxi
xi

/OX

r∑
i=1

dxi
xi

⊕
n⊕

j=r+1

OXdxj ,

Ω1
X′/S �

r+1⊕
i=1

OX
dxi
xi

/OX

r∑
i=1

dxi
xi

⊕
n⊕

j=r+2

OXdxj

and

Ω1
D/S �

r⊕
i=1

OD
dxi
xi

/OD

r∑
i=1

dxi
xi

⊕
n⊕

j=r+2

ODdxj .

The residue map is defined as follows. For every α ∈ Ωi
X′/S, there is a unique

decomposition

α = β + γ ∧ dxr+1

xr+1

where β, γ do not involve dxr+1

xr+1
. Then

resD(α) = γ|D.

These calculations show that

0 → Ωi
X/S → Ωi

X′/S → Ωi−1
D/S → 0

is a short exact sequence. By restriction we have an exact sequence

Ωi
X/S|X0

→ Ωi
X′/S|X0

→ Ωi−1
D/S|D0

→ 0.

By local calculations the map on the left is injective. This proves the lemma.
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