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†

We prove that if a smooth variety with non-positive canonical class
can be embedded into a weighted projective space of dimension n
as a well formed complete intersection and it is not an intersection
with a linear cone therein, then the weights of the weighted pro-
jective space do not exceed n+ 1. Based on this bound we classify
all smooth Fano complete intersections of dimensions 4 and 5, and
compute their invariants.
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1. Introduction

Fano varieties are one of the important classes of algebraic varieties, both
from birational and biregular points of view. It is known that smooth Fano
varieties of a given dimension are bounded, see [30, Theorem 0.2], so that one
can hope for their explicit classification (actually this is known also for ε-log
terminal Fano varieties, see [5], but in this case any kind of explicit classifi-
cation is hardly possible even in dimension 3). The only smooth Fano curve
is P1. Smooth Fano varieties of dimension 2 are known as del Pezzo surfaces,
and they were classified long ago. Smooth Fano threefolds were classified by
V. Iskovskikh (see [27], [28], or [26, §12]), and S.Mori and S.Mukai (see, [37]
and [39]). The most important and hard part of this classification concerns
Fano varieties with Picard rank 1. In dimension 3 such varieties (at least
if they are general in the corresponding deformation family) appear to be
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either complete intersections in a weighted projective space, or zero loci of

sections of homogeneous vector bundles on Grassmannians. In dimensions

4 and higher no complete classification is known, and at the moment no

reasonable approach to the problem is yet in sight. Still there are partial

classification results, including the list of all smooth Fano fourfolds of in-

dex at least 2 or Picard rank greater than one and Fano varieties of high

coindex (see [16], [17], [18], [38], [59], [40], [60]), smooth Fano fourfolds that

are zero loci of sections of homogeneous vector bundles on Grassmannians

(see [31], [32, §4], [33]), smooth Fano fourfolds that are weighted complete

intersections (see [32, Proposition 2.2.1]), and some other sporadic results

(see [32, §3]). The purpose of this paper is to study smooth Fano weighted

complete intersections, and give effective numerical bounds that allow to

classify them.

To be able to classify weighted complete intersections of a given dimen-

sion satisfying some nice properties, one needs an effective bound on the cor-

responding discrete parameters. In [10, Theorem 1.3] such a bound was ob-

tained for codimension of a quasi-smooth (see Definition 2.4 below) weighted

complete intersection. In [9, Theorem 1.3] the degrees were bounded in terms

of canonical volume and discrepancies.

We will be interested in the case of smooth Fano varieties that can be

described as complete intersections in weighted projective spaces. Also, we

will deal with the case when our weighted complete intersection is Fano or

Calabi–Yau. In both cases by adjunction formula it is actually enough to

bound the weights of the corresponding weighted projective space.

Let P = P(a0, . . . , an) be a weighted projective space, and X ⊂ P be a

weighted complete intersection of multidegree (d1, . . . , dc) for some c ≥ 0.

We will usually assume that X is not an intersection with a linear cone, i.e.

one has dj �= ai for all i and j, cf. Remark 2.8. Finally, it is convenient to

assume that X is well formed, see Definition 2.3 and Theorem 2.9 below.

The main result of this paper is the following.

Theorem 1.1. Let X ⊂ P(a0, . . . , an), n ≥ 2, be a smooth well formed

weighted complete intersection of multidegree (d1, . . . , dc). Suppose that X is

not an intersection with a linear cone. If X is Fano, then for every 0 ≤ i ≤ n

one has ai ≤ n, and for every 1 ≤ j ≤ c one has dj ≤ n(n+ 1). Similarly,

if X is Calabi–Yau, then for every 0 ≤ i ≤ n one has ai ≤ n+ 1, and for

every 1 ≤ j ≤ c one has dj ≤ (n+ 1)2.

To prove Theorem 1.1 we use the following approach. Exploiting smooth-

ness assumption, we write down a bunch of necessary conditions on the
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parameters ai and dj , which appear to be inequalities (sometimes involv-
ing products of weights or degrees). On the other hand, Fano or Calabi–Yau
condition implies an inequality between the sums of ai and dj . Then we treat
all these inequalities as if ai and dj were arbitrary real numbers, and solve
the corresponding optimization problem using the standard down-to-earth
method of Lagrange multipliers.

The bounds for the largest weight of P given by Theorem 1.1 are sharp
for an infinite set of dimensions, see Remark 3.2 below.

Using Theorem 1.1, we will give a classification of weighted Fano com-
plete intersections of dimensions 4 and 5, see §5 below. Note that a classifica-
tion of four-dimensional weighted Fano complete intersections was already
obtained by O.Küchle in [32, Proposition 2.2.1]; his method builds on a
classification of weighted homogeneous polarized Calabi–Yau complete in-
tersections, see [41, Main Theorem II]. In a way this is closer to the methods
that were classically used in a classification of Fano threefolds, but one can
hardly expect that it can be easily generalized to higher dimensions.

The plan of the paper is as follows. In §2 we recall some basic proper-
ties of weighted complete intersections. In §3 we prove Theorem 1.1. In §4
we explain the (well known) method that can be used to compute Hodge
numbers of smooth weighted complete intersections. In §5 we provide a clas-
sification of smooth Fano weighted complete intersections of dimensions 4
and 5. Finally, in Appendix A we collect some (nearly elementary) auxiliary
material used in §3.

Notation and conventions All varieties are compact and are defined over
the field of complex numbers C. For a bigraded ring R we denote its (p, q)-
component by R(p,q). For a weighted complete intersectionX in P(a0, . . . , an)
of multidegree (d1, . . . , dc) the number

∑
ai −

∑
dj is denoted by I(X).

2. Smoothness

We recall here some basic properties of weighted complete intersections. We
refer the reader to [14] and [23] for more details. Let a0, . . . , an be positive
integers. Consider the graded algebra C[x0, . . . , xn], where the grading is
defined by assigning the weights ai to the variables xi. Put

P = P(a0, . . . , an) = ProjC[x0, . . . , xn].

Definition 2.1 (see [23, Definition 5.11]). The weighted projective space
P is said to be well formed if the greatest common divisor of any n of the
weights ai is 1.
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Any weighted projective space is isomorphic to a well formed one, see [14,
1.3.1].

Lemma 2.2 (see [23, 5.15]). Suppose that P is well formed. Then the sin-
gular locus of P is a union of strata

ΛJ = {(x0 : . . . : xn) | xj = 0 for all j /∈ J}

for all subsets J ⊂ {0, . . . , n} such that the greatest common divisor of the
weights aj for j ∈ J is greater than 1.

Definition 2.3 (see [23, Definition 6.9]). A subvariety X ⊂ P of codimen-
sion c is said to be well formed if P is well formed and

codimX (X ∩ SingP) ≥ 2.

The following notion is a replacement of smoothness suitable for subva-
rieties of weighted projective spaces.

Definition 2.4 (see [23, Definition 6.3]). Let p : An+1 \ {0} → P be the
natural projection. A subvariety X ⊂ P is said to be quasi-smooth if p−1(X)
is smooth.

We say that a variety X ⊂ P of codimension c is a weighted complete
intersection of multidegree (d1, . . . , dc) if its weighted homogeneous ideal in
C[x0, . . . , xn] is generated by a regular sequence of c homogeneous elements
of degrees d1, . . . , dc. Note that in general a weighted complete intersection
is not even locally a complete intersection in the usual sense.

Remark 2.5. It is possible that a weighted complete intersection of a given
multidegree in P does not exist, even if c is small. For example, there is
no such thing as a hypersurface of degree d < min(a0, . . . , an) in P, or a
weighted complete intersection of multidegree (2, 2) in P(1, 3, 4, 5).

Singularities of quasi-smooth well formed weighted complete intersec-
tions can be easily described.

Proposition 2.6 (see [13, Proposition 8]). Let X ⊂ P be a quasi-smooth
well formed weighted complete intersection. Then the singular locus of X is
the intersection of X with the singular locus of P.

Remark 2.7. Note that the definition of “general position” in [13] coincides
with our definition of well formedness.

Recall that the weighted complete intersection X is said to be an inter-
section with a linear cone if one has dj = ai for some i and j.
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Remark 2.8. If this condition fails, one can exclude the i-th weighted homo-
geneous coordinate and think about X as a weighted complete intersection
in a weighted projective space of lower dimension, provided that X is gen-
eral enough, cf. Remark 5.2 below. Note however that in general this new
weighted projective space may fail to be well formed, and the new weighted
complete intersection may fail to be nice in other ways as well.

It appears that the assumptions that the complete intersection is well
formed, quasi-smooth, and is not an intersection with a linear cone are not
always independent. In principle it can allow us to drop some of the assump-
tions in the rest of the paper, but we will refrain from doing so to keep the
assertions more explicit.

Theorem 2.9 (see [23, Theorem 6.17]). Suppose that the weighted projec-
tive space P is well formed. Then any quasi-smooth complete intersection of
dimension at least 3 in P is either an intersection with a linear cone or well
formed.

There is the following version of the adjunction formula that holds for
quasi-smooth well formed weighted complete intersections.

Lemma 2.10 (see [14, Theorem 3.3.4], [23, 6.14]). Let X ⊂ P be a quasi-
smooth well formed weighted complete intersection of multidegree(d1, . . . , dc).
Then

ωX = OX

(∑
di −

∑
aj

)
.

Along with quasi-smooth weighted complete intersections one may con-
sider those weighted complete intersections that are smooth in the usual
sense. Note that if we do not assume that a weighted complete intersection
X ⊂ P is well formed, then X may be smooth even if it passes through
the singularities of P. An example of such a behavior is given by a line
(which is a hypersurface of degree 1) on the two-dimensional quadratic
cone P = P(1, 1, 2). On the other hand, if X is both smooth and well formed,
then it must be disjoint from the singular locus of P. Furthermore, in this
case X can be shown to be quasi-smooth (although this fact is not quite
obvious, see Corollary 2.14 below).

Proposition 2.11. Let X ⊂ P be a smooth well formed weighted complete
intersection. Then X does not pass through singular points of P.

Proof. Suppose that X contains a singular point P of P. Let U ⊂ P be an
affine neighborhood of P , and π : Ũ → U be its natural finite cover (see
[23, 5.3]), so that Ũ is isomorphic to an open subset of An, and π is a
quotient by a group Z/rZ for some r > 1. Put V = X ∩ U . Let Σ be the
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singular locus of U . Since X is well formed, the intersection of Σ with V
has codimension at least 2 in V . Let Ṽ be the preimage of V with respect
to π, and let πV : Ṽ → V be the corresponding finite cover. Then Ṽ is a
complete intersection in U . Note also that πV is étale outside of Σ, and thus
Ṽ is smooth in codimension 1. In particular, Ṽ is Cohen–Macaulay, see [15,
§18.5].

Since V is smooth by assumption, we can choose a simply connected
analytic neighborhood V of P in V . Let Ṽ be its preimage with respect to πV .
Put Vo = V\Σ. Since the intersection of Σ with V has codimension at least 2
in V , the open set Vo is also simply connected. Let Ṽo be the preimage of Vo

with respect to πV . The morphism πV is étale over Vo, so that the complex
space Ṽo splits into a union of its connected components Ṽo

1 , . . . , Ṽo
r , r ≥ 2.

Let Ṽ1, . . . , Ṽr be the closures of Ṽo
1 , . . . , Ṽo

r in Ṽ. Then Ṽ1, . . . , Ṽr intersect
each other (in particular) at the point π−1(P ), so that Ṽ is connected. Since
Ṽ is Cohen–Macaulay, it follows from [15, Theorem 18.12] that there is an
index 2 ≤ k ≤ r such that the intersection Z = Ṽ1 ∩ Ṽk has codimension
1 in Ṽ1. This means that the variety Ṽ , and thus also Ṽ , is singular at the
points of Z. Since πV is étale at a general point of Z, we conclude that V
is singular at a general point of πV (Z), which is a contradiction.

Remark 2.12. A.Kuznetsov pointed out that there is an alternative proof of
Proposition 2.11 that is purely algebraic and does not depend on the base
field. Namely, in the notation of our proof of Proposition 2.11 the variety Ṽ is
normal (since it is a locally complete intersection smooth in codimension 1).
Since V is smooth by assumption, the branch locus R of πV has codimension
1 in V by the purity of the branch locus, see [2, Theorem 1.4]. Now we can
obtain a contradiction as above. Still we prefer to keep the original proof
of Proposition 2.11, since we believe that it makes the geometric reason
explaining why this property holds more transparent, and our base field
is C anyway.

Remark 2.13. The assertion of Proposition 2.11 fails without the assumption
that X is well formed. Indeed, suppose that a0 = a1 = 1 and a2 = . . . =
an = 2; put c = 1 and d1 = 2. Then X is not well formed, but it is smooth
since it is isomorphic to Pn−1. However, it passes through singular points
of P. For n = 2 this example gives a line on a usual quadratic cone.

As an application of Proposition 2.11 one can show that being smooth is
a stronger condition than being quasi-smooth, provided that we work with
well formed weighted complete intersections.

Corollary 2.14. Let X ⊂ P be a smooth well formed weighted complete
intersection. Then X is quasi-smooth.
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Proof. The morphism p : An+1 \ {0} → P is a locally trivial C∗-bundle over
the non-singular part U of P, while X is contained in U by Proposition 2.11.
Hence p is a locally trivial C∗-bundle over X, and thus the preimage of X
with respect to p is smooth, which means that X itself is quasi-smooth.

If the weighted projective space P is not well formed, then the assertion
of Corollary 2.14 may fail. Thus, the curve X in P = P(1, 2, 2) given by
equation

x20x1 + x22 = 0

is not quasi-smooth because the cone over this curve in A3 is singular, for
instance, at the point (0, 1, 0). On the other hand, X is isomorphic to a conic
given by the equation

z0z1 + z22 = 0

in P2 ∼= P(1, 2, 2), and thus it is smooth. However, we do not know whether
there exists an example of a smooth (but not well formed) weighted complete
intersection X in a well formed weighted projective space P such that X is
not quasi-smooth.

Another consequence of Proposition 2.11 is the following result.

Lemma 2.15 (cf. [10, Proposition 4.1]). Let X ⊂ P be a smooth well formed
weighted complete intersection of multidegree (d1, . . . , dc). Then for every
k and every choice of k weights ai1 , . . . , aik , i1 < . . . < ik, such that their
greatest common divisor δ is greater than 1 there exist k degrees ds1 , . . . , dsk ,
s1 < . . . < sk, such that their greatest common divisor is divisible by δ.

Proof. Choose a positive integer k, and suppose that there are k weights
ai1 , . . . , aik with i1 < . . . < ik, such that their greatest common divisor δ is
greater than 1. Let t be the number of degrees dj that are divisible by δ.
Suppose that t < k. We claim that in this case X is singular. Indeed, let
f1 = . . . = fc = 0 be the equations of X in P, so that deg(fj) = dj . Let J be
the set of indices j such that dj is divisible by δ, and let Λ be the subvariety in
P given by equations xj = 0 for j ∈ J . Then for any j′ �∈ J the polynomial fj′

does not contain monomials that depend only on xj with j ∈ J . On the
other hand, the equations fj = 0 for j ∈ J cut out a non-empty subset
of Λ. Since δ > 1, the weighted projective space P is singular along Λ, see
Lemma 2.2. This gives a contradiction with Proposition 2.11.

Remark 2.16. The condition provided by Lemma 2.15 is only necessary for
the weighted complete intersection X to be smooth, but not sufficient. For
example, assume that a0 = . . . = ar = 1, while 2 < ar+1 ≤ . . . ≤ an, and aj
are pairwise coprime. Choose d1 and d2 so that d2 is divisible by all aj ,
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and 2 ≤ d1 < ar+1. Then a general weighted complete intersection X of mul-
tidegree (d1, d2) in P is not smooth provided that r ≤ n− 2; moreover, it is
reducible if r = 1, and non-reduced if r = 0. Another way how smoothness
may fail is illustrated by an example of a weighted complete intersection
X of multidegree (2, 30) in P when a0 = . . . = an−2 = 1, an−1 = 6, and
an = 10; in this case we see that the assertion of Proposition 2.11 does not
hold, so that X is singular. See also Lemma 3.1(i) below.

3. Weight bound

In this section we derive Theorem 1.1 from elementary results of Appendix A.
The method we use here is somewhat similar to [8, §3].

Let X ⊂ P = P(a0, . . . , an), n ≥ 2, be a smooth well formed weighted
complete intersection of multidegree (d1, . . . , dc) that is not an intersection
with a linear cone. We can assume that X is normalized, i.e. that inequalities
a0 ≤ . . . ≤ an and d1 ≤ . . . ≤ dc hold. Moreover, if c = 0, then one has
X ∼= P ∼= Pn, and there is nothing to prove; therefore, we will always assume
that c ≥ 1.

We need an auxiliary result that is easy to establish and well known to
experts.

Lemma 3.1. Let X ⊂ P = P(a0, . . . , an), n ≥ 2, be a smooth well formed
normalized weighted complete intersection of multidegree (d1, . . . , dc) that is
not an intersection with a linear cone. Then the following assertions hold.

(i) One has dc−k > an−k for all 1 ≤ k ≤ c− 1.
(ii) One has dc ≥ 2an.
(iii) The integer a0 · . . . · an divides the integer d1 · . . . · dc.

Proof. Assertion (i) is given by [23, Lemma 18.14] and holds under a weaker
assumption of quasi-smoothness. If an = 1, then the remaining assertions of
the lemma obviously hold, and thus we can assume that an > 1.

Let x0, . . . , xn be homogeneous coordinates on P of weights a0, . . . , an,
respectively. Let f1 = . . . = fc = 0 be the equations of X in P, so that
deg(fj) = dj .

Suppose that dc < 2an. Then none of fj contains a monomial xrn with
non-zero coefficient if r ≥ 2. Also, since X is not an intersection with a linear
cone, none of fj contains a monomial xn with non-zero coefficient either.
Therefore, we see that every fj vanishes at the point P given by x0 = . . . =
xn−1 = 0, so that X passes through P . On the other hand, P is a singular
point of P by Lemma 2.2 because an > 1. Thus Proposition 2.6 implies that
X is singular at P , which is a contradiction. This gives assertion (ii).
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To prove assertion (iii), choose a prime number p, and denote by

ν
(r)
p (a0, . . . , an) the number of the weights ai that are divisible by pr. Simi-

larly, denote by ν
(r)
p (d1, . . . , dc) the number of the degrees dj that are divis-

ible by pr. By Lemma 2.15 for every r one has

ν(r)p (a0, . . . , an) ≤ ν(r)p (d1, . . . , dc).

This implies that the p-adic valuation of the integer a0 · . . . · an does not

exceed the p-adic valuation of the integer d1 · . . . · dc. Since this holds for an

arbitrary prime p, we obtain assertion (iii).

Now we are ready to prove Theorem 1.1. Recall that it asserts the bounds

ai ≤ n and dj ≤ n(n+ 1) if X is Fano, and the bounds ai ≤ n+ 1, and

dj ≤ (n+ 1)2 if X is Calabi–Yau.

Proof of Theorem 1.1. Put N = n + 1. Denote Ai+1 = an−i for 0 ≤ i ≤ n,

and Dj = dc−j+1 for 1 ≤ j ≤ c. Then one has A1 ≥ . . . ≥ AN and D1 ≥
. . . ≥ Dc. Moreover, by Lemma 3.1(i) one has D2 > A2, . . . , Dc > Ac. By

Lemma 3.1(ii) we also have D1 ≥ 2A1, and by Lemma 3.1(iii) we have

A1 · . . . ·AN ≤ D1 · . . . ·Dc.

Put

L = a0 + . . .+ an − d1 − . . .− dc = A1 + . . .+AN −D1 − . . .−Dc.

Then L > 0 provided that X is Fano, and L ≥ 0 provided that X is Calabi–

Yau. This follows from Lemma 2.10.

Suppose that X is a Fano variety. Then N ≥ 2c+1 by [10, Theorem 1.3].

Therefore, Proposition A.12 implies that A1 ≤ N−1, which can be rewritten

as an ≤ n.

Now suppose that X is Calabi–Yau. Then a general weighted complete

intersection of multidegree d1, . . . , dc in P(1, a0, . . . , an) is a smooth well

formed Fano weighted complete intersection that is not an intersection with

a linear cone. Thus one has an ≤ n+ 1.

Since X is normalized, we obtain similar inequalities for all other

weights ai. Finally, the inequalities for the degrees dj follow from the fact

that L is positive if X is Fano, and non-negative if X is Calabi–Yau. This

completes the proof of Theorem 1.1.
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Remark 3.2. The bounds for an given by Theorem 1.1 are sharp for an in-
finite set of dimensions. Indeed, if n is odd, a0 = . . . = an−2 = 1, an−1 = 2,
and an = n, then a general hypersurface of weighted degree 2n in P is a
smooth well formed Fano weighted complete intersection. Similarly, if n is
even, a0 = . . . = an−2 = 1, an−1 = 2, and an = n+ 1, then a general hyper-
surface of weighted degree 2n+ 2 in P is a smooth well formed Calabi–Yau
weighted complete intersection. However, we do not know if the bound for
an is attained for even n in the case of Fano weighted complete intersections,
and if it is attained for odd n in the case of Calabi–Yau weighted complete
intersections.

Although Remark 3.2 shows that the bound for the maximal weight an
given by Theorem 1.1 is more or less sharp, there are stronger bounds for
some other weights ai in certain cases.

Lemma 3.3. Let X ⊂ P = P(a0, . . . , an), n ≥ 2, be a smooth well formed
normalized weighted complete intersection of multidegree (d1, . . . , dc) that is
not an intersection with a linear cone. Suppose that X is Fano or Calabi–
Yau. Then for every 0 ≤ k ≤ dimX one has

ak < 2
dimX+1

dimX−k+1 .

Moreover, if dimX ≥ 2, then one has a0 = a1 = 1.

Proof. For the first assertion, we mostly follow the proof of [10, (2.6)]. Using
Lemmas 2.10 and 3.1(i), one gets

(3.1) (dimX + 1)adimX+1 ≥ (dimX + 1)adimX+1 − I(X) ≥

≥ a0 + . . .+ adimX − I(X) =

c∑
j=1

(
dj

adimX+j
− 1

)
adimX+j ≥

≥

⎛⎝ c∑
j=1

dj
adimX+j

− c

⎞⎠ adimX+1,

so that

dimX + c+ 1 ≥
c∑

j=1

dj
adimX+j

.

Thus(
1 +

dimX + 1

c

)c

≥
(∑c

j=1
dj

adimX+j

c

)c

≥
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≥
∏c

j=1 dj∏n
j=dimX+1 aj

=

dimX∏
i=0

ai ·
∏c

j=1 dj∏n
s=0 as

≥
dimX∏
i=0

ai

by Lemma 3.1(iii).

Suppose that for some 0 ≤ k ≤ dimX the inequality

ak ≥ 2
dimX+1

dimX−k+1

holds. Then

dimX∏
i=0

ai ≥
dimX∏
i=k

ai ≥ adimX−k+1
k ≥ 2dimX+1,

and thus (
1 +

dimX + 1

c

) c

dimX+1

≥ 2.

The latter means that c
dimX+1 ≥ 1. On the other hand, we have c ≤ dimX

by [10, Theorem 1.3], which gives a contradiction.

Now suppose that a1 > 1. To avoid a contradiction with [10, Theo-

rem 1.3] one must have a0 = 1 and either

a1 = . . . = adimX = 2

or

a1 = . . . = adimX−1 = 2

and adimX = 3, because otherwise we obtain
∏dimX

i=0 ai ≥ 2dimX+1 and argue

as above. In both cases one has c ≥ dimX − 1 by Lemma 2.15.

Assume that c = dimX, so that c ≥ 2. Then(∑c
j=1

dj

adimX+j

c

)c

≥
∏c

j=1 dj∏n
s=dimX+1 as

≥
dimX∏
i=0

ai ≥ 2dimX = 2c,(3.2)

so that
c∑

i=1

di
adimX+i

≥ 2c.

Thus, as in (3.1), we get
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2c+ 1 ≥ 2 dimX + 1 ≥ 2 dimX + 2− I(X) ≥ a0 + . . .+ adimX − I(X) =

=

⎛⎝ c∑
j=1

dj
adimX+j

− c

⎞⎠ adimX+1 ≥ (2c− c)adimX+1 = cadimX+1.

This implies

adimX+1 ≤
2c+ 1

c
< 3.

This implies adimX+1 = 2, which gives a contradiction with Lemma 2.15.
Finally, assume that c = dimX − 1. As in (3.2), one has(∑c

j=1
dj

adimX+j

c

)c

≥ 2dimX = 2c+1,

so that
c∑

i=1

di
adimX+i

≥ 2
c
√
2c.

Thus

2c+ 3 ≥ 2 dimX + 1 ≥ 2 dimX + 2− I(X) ≥ a0 + . . .+ adimX − I(X)=

=

⎛⎝ c∑
j=1

dj
adimX+j

− c

⎞⎠ adimX+1≥(2
c
√
2c−c)adimX+1 = c(2

c
√
2−1)adimX+1.

This implies

(3.3) adimX+1 ≤
2c+ 3

c(2 c
√
2− 1)

.

If c ≥ 3, then (3.3) gives adimX+1 < 3, so that adimX+1 = 2. This is
impossible by Lemma 2.15. If c = 2, then (3.3) gives

adimX+1 ≤
7

2(2
√
2− 1)

< 2,

which is a contradiction. If c = 1, then (3.3) gives

adimX+1 ≤
5

3
< 2,

which is again a contradiction.
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4. Hodge numbers

The idea of description of Hodge numbers for complete intersections in
weighted projective spaces as dimensions of graded components of particular
(bi)graded rings goes back to [19], [55], [14], [44]; another approach, due to
Hirzebruch, can be found in [12, Exp. XI, Theorem 2.2]. For complete inter-
sections in toric varieties one can look at [3]. The way of the computation
called the Cayley trick is to relate the Hodge structure of a complete inter-
section to the Hodge structure of some higher-dimensional hypersurface. We
describe this approach following [36].

Let Y be a simplicial toric variety of dimension n. Let D1, . . . , Db be its
prime boundary divisors. Denote the group of r-cycles on Y modulo rational
equivalence by Ar(Y ). Consider an An−1(Y )-graded ring R0 = C[x1, . . . , xb]
with grading defined by

degA

(
b∏

i=1

xrii

)
=

b∑
i=1

riDi.

One has Spec (R0) ∼= Ab, and there is a natural correspondence between rays
ei of a fan of Y and variables xi. Define a subvariety Z in Spec(R0) as a
union of hypersurfaces {

∏
xi = 0 | ei /∈ σ} over all cones σ of a fan of Y .

Then Y is a geometric quotient of

U = Spec (R0) \ Z ⊂ A
b

by the torus
D = HomZ(An−1(Y ),C∗).

We call a polynomial f ∈ R0 homogeneous if all its monomials are of degree
d for some d ∈ An−1(Y ). For any homogeneous polynomials f1, . . . , fc their
common zero set intersected with U is stable under the action of D so they
determine a closed subset X in Y .

Consider a ring R = C[x1, . . . , xb, y1, . . . , yc]. Choose c homogeneous
polynomials f1, . . . , fc ∈ R0 ⊂ R with degA(fi) = di ∈ An−1(Y ). Define a
bigrading on R with values in An−1(Y ) × Z by bideg(xi) = (Di, 0) and
bideg(yi) = (−di, 1). Consider the polynomial F = y1f1 + . . .+ ycfc. Obvi-
ously, one has bideg(F ) = (0, 1). Define a Jacobian ideal

J =

(
∂F

∂x1
, . . . ,

∂F

∂xb
,
∂F

∂y1
, . . . ,

∂F

∂yc

)
and a bigraded ring R(F ) = R/J .
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We will assume that the subvariety X defined by the polynomials
f1, . . . , fc is quasi-smooth. Recall from [36, Definition 1.1] that this means
that a common zero set of f1, . . . , fc inside U is a smooth subvariety of codi-
mension c, cf. Definition 2.4. In this case X has a pure Hodge structure on its
cohomology, see [36, §3]. In particular, one can talk about Hodge numbers
hp,q(X).

Define ck as a number of cones of dimension k in the fan of Y . Put

lk =

n∑
i=k

(−1)i−k

(
i

k

)
cn−i.

Theorem 4.1 (see [11, Theorem 10.8 and Remark 10.9]). Let Y be a simpli-
cial toric variety of dimension n. Then dimH2k(Y,C) = lk for all 0 ≤ k ≤ n.

There is an analog of Lefschetz hyperplane section theorem for complete
intersections in simplicial toric varieties, see e.g. [36, Proposition 1.4]. In
particular, the only Hodge numbers of such complete intersection X that are
not inherited from the ambient toric variety are hp,q(X) with p+q = dim(X).

Theorem 4.2 (see [36, Theorem 3.6]). Let Y be a simplicial toric variety
of dimension n and let D1, . . . , Db be its boundary divisors. Let X ⊂ Y be a
quasi-smooth complete intersection of ample divisors defined by homogeneous
polynomials f1, . . . , fc with degA(fi) = di ∈ An−1. Suppose that dimX = n−
c ≥ 3. Denote

b∑
r=1

Dr −
c∑

s=1

ds ∈ An−1(X)

by i(X). Then for p �= n−c+1
2 and p �= n−c

2 one has

hn−c−p,p(X) = dimR(F )(−i(X),p).

For p = n−c+1
2 one has

hp−1,p(X) = dimR(F )(−i(X),p) + lp−c − lp.

For p = n−c
2 one has

hp,p(X) = dimR(F )(−i(X),p) + lp.

In a particular case of complete intersections in a weighted projective
space the even cohomology spaces H2k(Y,C) are one-dimensional, see [14,
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Corollary 2.3.6]. This allows to simplify Theorem 4.2 in this case. Recall
that for a weighted complete intersection X in P(a0, . . . , an) of multidegree
(d1, . . . , dc) we denote the number

∑
ai −

∑
dj by I(X).

Corollary 4.3. Let P = P(a0, . . . , an) be a well formed weighted projec-
tive space, and X ⊂ P be a quasi-smooth weighted complete intersection de-
fined by homogeneous polynomials f1, . . . , fc with deg(fi) = di. Suppose that
dimX = n− c ≥ 3. Then for p �= n−c

2 one has

hn−c−p,p(X) = dimR(F )(−I(X),p)

and for p = n−c
2 one has

hp,p(X) = dimR(F )(−I(X),p) + 1.

Example 4.4. Consider the weighted projective space P=P(1, 1, 1, 1, 1, 1, 3)
with weighted homogeneous coordinates x0, . . . , x6, where the weights of
x0, . . . , x5 equal 1, and the weight of x6 equals 3. Let X be a (general)
weighted complete intersection of hypersurfaces of degrees 2 and 6 in P

given by polynomials f1 and f2, respectively. Thus F = y1f1 + y2f2 and

J =

(
∂F

∂x0
, . . . ,

∂F

∂x6
, f1, f2

)
.

One has

bideg(x0) = . . . = bideg(x5) = (1, 0), bideg(x6) = (3, 0),

bideg(y1) = (−2, 1), bideg(y2) = (−6, 1).

Since I(X) = 1, one gets h1,3(X) = dimR(F )(−1,1). The component
R(F )(−1,1) is generated by polynomials of type g1y1 + g5y2, where gs are

polynomials of degrees s in xi. There are 6 parameters for g1 and
(
10
5

)
+
(
7
5

)
=

273 parameters for g5, so R(−1,1) = 279. There are no polynomials from

R(−1,1) that are divisible by f2, and
(
8
5

)
= 56 parameters for polynomials

in x0, . . . , x5, y2 that are divisible by f1. Up to scaling there is a unique
polynomial that is divisible by f1 and x6. Moreover, one has bideg( ∂F∂xi

) =
(−1, 1) for i = 1, . . . , 6, so there are 6 parameters for polynomials from
R(−1,1) that are divisible by ∂F

∂xi
. Similarly, one has bideg( ∂F

∂x6
) = (−3, 1),

so there are
(
7
5

)
= 21 parameters for polynomials from R(−1,1) that are

divisible by ∂F
∂x6

. One of them, namely ∂F
∂x6

f1, is already taken into account.
Thus
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h1,3(X) = dimR(F )(−1,1) = dimR(−1,1) − 56− 1− 6− 21 + 1 =

= 279− 56− 1− 6− 21 + 1 = 196.

Remark 4.5. The method given by Corollary 4.3 enables one to study weigh-
ted complete intersections with interesting behavior of Hodge numbers.
Smooth Fano weighted complete intersections with few non-vanishing Hodge
numbers (more precisely, with small Hodge complexity) were classified in [50].
It turns out that they always have certain interesting properties which can be
described in terms of semi-orthogonal decompositions of derived categories
of coherent sheaves.

One can obtain the following elegant formula for dimH0(X,OX(k)).

Theorem 4.6 ([14, Theorem 3.4.4]). Let X be a quasi-smooth well formed
weighted complete intersection of multidegree (d1, . . . , dc) in P(a0, . . . , an).
Then

∞∑
k=0

(
dimH0(X,OX(k))

)
tk =

∏c
s=0

(
1− tds

)∏n
r=0 (1− tar)

.

For a weighted projective space P(a0, . . . , an) with weighted homoge-
neous coordinates x0, . . . , xn denote by P (r) the dimension of the vector
space of (weighted) homogeneous polynomials in x0, . . . , xn of (weighted)
degree r. Theorem 4.6 implies the following.

Corollary 4.7. Let X be a quasi-smooth well formed weighted complete
intersection of multidegree (d1, . . . , dc) in P(a0, . . . , an). Then

dimH0(X,−KX) =

c∑
s=0

(−1)s
∑

1≤k1<...<ks≤c

P (I(X)− dk1
− . . .− dks

).

Proof. By Lemma 2.10, we are going to compute

dimH0(X,−KX) = dimH0
(
X,OX(I(X))

)
.

This number equals the coefficient at tI(X) in the right hand side of the
equality in Theorem 4.6. Note that

c∏
s=0

(
1− tds

)
=

c∑
s=0

(−1)s
∑

1≤k1<...<ks≤c

tdk1+...+dks .

On the other hand, the coefficient at tI(X)−dk1−...−dks in
∏n

r=0 (1− tar) is
equal to the number P (I(X)− dk1

− . . .− dks
), which easily implies the re-

quired assertion.
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Another approach to compute Hodge numbers for complete intersections
in (usual) projective spaces is due to F.Hirzebruch. Define

H(d) =
(y + 1)d−1 − (z + 1)d−1

(z + 1)dy − (y + 1)dz
=

=
d− 1 +

(
d−1
2

)
(y + z) +

(
d−1
3

)
(y2 + yz + z2) + . . .

1−
(
d
2

)
yz −

(
d
3

)
yz(y + z) + . . .

and

H(d1, . . . , dc) =
∑

Q⊂[1,c],Q �=∅

((y + 1)(z + 1))|Q|−1
∏
i∈Q

H(di),

where |Q| is a number of elements of Q. If F is a formal series in two variables
y and z, we denote by F (m) the sum of monomials in F of homogeneous
degree m.

Theorem 4.8 (see [12, Exp. XI, Théorème 2.3]). Let X be a smooth com-
plete intersection of hypersurfaces of degrees d1, . . . , dc in Pn. Put m =
dimX = n− c. Then∑

hp,m−p(X)ypzm−p =
(
H(d1, . . . , dc) + δy

m

2 z
m

2

)(m)
,

where δ = 1 if m is even and δ = 0 if m is odd.

Remark 4.9. There is a conjectural approach to description of Hodge num-
bers of Fano varieties via their Landau–Ginzburg models, see [29]. It was
verified for del Pezzo surfaces (see [34]) and Fano threefolds (see [47] and [7]);
for smooth toric varieties see [20]. Its reformulation in terms of toric Landau–
Ginzburg models for one of the Hodge numbers was checked for complete
intersections in projective spaces (see [48]).

5. Dimensions 4 and 5

In this section we provide a classification of smooth well formed Fano weight-
ed complete intersections of dimensions 4 and 5. To simplify conventions,
we exclude the projective space (which is a codimension 0 smooth Fano
complete intersection in itself) from our lists.

We find the weighted complete intersections we are interested in by a
straightforward check of all possible weights and degrees. Namely, we know
that if there is a smooth well formed Fano weighted complete intersection of
dimension r and multidegree (d1, . . . , dn−r−1) in P(a0, . . . , an) that is not an
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intersection with a linear cone, then n ≤ 2r by [10, Theorem 1.3]. Next, by
Theorem 1.1 we have ai ≤ n for all 0 ≤ i ≤ n, so that for any given dimen-
sion r we have to check only a finite number of possible weights a0, . . . , an;
one can further reduce the number of cases to be checked using Lemma 3.3.
Finally, the degrees dj can be bounded from above in terms of ai (see Theo-
rem 1.1 or Lemma 2.10), so we have only a finite number of possible collec-
tions d1, . . . , dn−r−1 to check; here the number of cases can also be reduced
using the lower bounds from Lemma 3.1. Note that at this step we obtain
only necessary conditions on the weights and degrees, and in each case one
has to check that there actually exists a weighted complete intersection with
the corresponding parameters, and that it is smooth. This can be done by
writing down a general equation of a weighted complete intersection in the
few remaining families. The Hodge numbers of our weighted complete in-
tersections are computed using Corollary 4.3, and sometimes Theorem 4.8
when the latter is more convenient to apply. Since the Hodge numbers are
constant in smooth families, for these computations it is enough to pick
one example in each of the families. In principle, all this can be done in
an arbitrary given dimension, although the number of arising Fano varieties
becomes rather large in higher dimensions. For instance, there are 22 defor-
mation families of smooth well formed four-dimensional Fano weighted com-
plete intersections that are not intersections with a linear cone (excluding
the variety P4, as usual); there are 35 such deformation families of fivefolds;
and there are 72 such families of sixfolds (here the number of families of
codimension 1, 2, 3, 4, 5, and 6 weighted complete intersections equals 18,
31, 15, 5, 2, and 1, respectively).

Let X be a smooth well formed Fano weighted complete intersection of
multidegree (d1, . . . , dc) in P = P(a0, . . . , an) of dimension n− c ≥ 3. Impor-
tant invariants of X are its anticanonical degree (−KX)dimX , the dimension
h0(−KX), and the index I(X), which is defined as the maximal number
i such that KX is divisible by i in Pic (X). Since dimX ≥ 3, the class of
the line bundle OP(1)|X is not divisible in Pic (X), see [43, Remark 4.2].
Therefore, by Lemma 2.10 one has

I(X) =
∑

ai −
∑

dj .

For the anticanonical degree of X one has

(−KX)dim(X) =

∏
dj∏
ai

· I(X)dim(X).

The number h0(−KX) can be computed by Corollary 4.7.
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Table 1: Fourfold Fano weighted complete intersections

No. I P Degrees K4 h0(−K) h1,3 h2,2

1 1 P(13, 22, 32) 6,6 1 3 107 503

2 1 P(14, 2, 5) 10 1 4 412 1801

3 1 P(14, 22, 3) 4,6 2 4 121 572

4 1 P(15, 4) 8 2 5 325 1452

5 1 P(15, 2) 6 3 5 156 731

6 1 P(15, 22) 4,4 4 5 75 378

7 1 P(16, 3) 2,6 4 6 196 912

8 1 P
5 5 5 6 120 581

9 1 P(16, 2) 3,4 6 6 71 364

10 1 P
6 2,4 8 7 77 394

11 1 P
6 3,3 9 7 49 267

12 1 P
7 2,2,3 12 8 42 236

13 1 P
8 2,2,2,2 16 9 27 166

14 2 P(15, 3) 6 32 15 70 382

15 2 P
5 4 64 21 21 142

16 2 P6 2,3 96 27 8 70

17 2 P
7 2,2,2 128 33 3 38

18 3 P(14, 2, 3) 6 81 25 24 161

19 3 P(15, 2) 4 162 40 5 52

20 3 P
5 3 243 55 1 21

21 3 P
6 2,2 324 70 0 8

22 4 P
5 2 512 105 0 2

We will use the abbreviation

(ak0

0 , . . . , akm
m ) = (a0, . . . , a0︸ ︷︷ ︸

k0 times

, . . . , am, . . . , am︸ ︷︷ ︸
km times

),

where k0, . . . , km will be allowed to be any positive integers. If some ki is
equal to 1 we drop it for simplicity.

Table 1 contains a list of all smooth well formed Fano weighted complete
intersections of dimension 4 that are not intersections with linear cones. This
list was obtained in [32, Proposition 2.2.1], cf. [6, §1.3].
Remark 5.1. Note that there is a misprint in the first line of the table
on [32, p. 50]: the varieties described there should be understood as complete
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intersections of two hypersurfaces of weighted degree 6 in P(13, 22, 32). This
corresponds to family No. 1 in Table 1.

Remark 5.2. The numerical data listed in Table 1 does not describe every
variety in the corresponding deformation family. For example, a quartic in
P5 can be seen as a complete intersection of bidegree (2, 4) in P(16, 2), that
is an intersection with a linear cone. A non-general variety of the latter type
can be contained in a hypersurface of weighted degree 2 whose equation does
not depend on the variable of weight 2; such complete intersections cannot
be embedded as quartics in P5.

Looking at the anticanonical degrees and dimensions of anticanonical
linear systems of varieties from Table 1, we see that varieties from different
families are never isomorphic to each other. Similarly, none of them is iso-
morphic to any of the smooth Fano fourfolds that are zero loci of sections
of homogeneous vector bundles on Grassmannians, see [32, Theorem 4.2.1].

The information concerning rationality of varieties listed in Table 1 that
we are aware of is summarized in Table 2. In the first column, we list the
number of the family according to Table 1. In the second column, we give the
condition for a variety in the family to be not stably rational (this might be
either “very general” or “none”). In the third column, we give the condition
for a variety in the family to be non-rational (in most cases this information
is obtained just from the previous column). In the fourth column, we give
the condition for a variety in the family to be rational. In all these columns
empty cells mean that we know nothing about the corresponding property
for the varieties in the family. Finally, in the last column we give references
for the corresponding theorems.

Now we consider five-dimensional weighted complete intersections. Ta-
ble 3 contains a list of all smooth well formed Fano weighted complete in-
tersections of dimension 5 that are not intersections with linear cones.

Similarly to Remark 5.2, the numerical data listed in Table 3 does not
describe every variety in the corresponding deformation family, but only a
general one.

Looking at the anticanonical degrees and dimensions of anticanonical
linear systems of varieties from Table 3, we see that varieties from different
families are never isomorphic to each other.

The information concerning rationality of varieties listed in Table 3 that
we are aware of is summarized in Table 4, with the notation similar to that
of Table 2.

It would be interesting to study birational geometry of weighted com-
plete intersections from Tables 1 and 3 that are not covered by Tables 2
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Table 2: Rationality for fourfold Fano weighted complete intersections

No. Not st. rat. Non-rational Rat. Reference

2 very general very general [42, Corollary 1.4]

4 very general very general [42, Theorem 1.1]

5 very general very general [42, Corollary 1.4]

8 very general general [56], [54], [51]

14 very general very general [42, Theorem 1.1]

15 very general very general [56], [54]

17 very general very general some [21]

18 very general very general [42, Theorem 1.3]

19 very general very general [22]

20 some [53]

21 none none all projection from a line

22 none none all projection from a point

and 4. Also, it would be interesting to study automorphism groups of Fano
varieties from Tables 1 and 3, cf. [46, §A.2]. In particular, it would be inter-
esting to find weighted Fano complete intersections acted on by relatively
large automorphism groups, cf. [49].

Using the list of index 1 Fano fivefolds provided in Table 3, one can
compile the list of smooth well formed Calabi–Yau weighted complete inter-
sections of dimension 4 that are not intersections with linear cones (cf. [41]).
Namely, if there is a smooth Calabi–Yau weighted complete intersection of
multidegree d1, . . . , dc in P(a0, . . . , an), then a general complete intersection
of multidegree d1, . . . , dc in P(1, a0, . . . , an) is a smooth Fano variety. Note
that the converse also holds: if there is a smooth Fano normalized weighted
complete intersection of multidegree d1, . . . , dc in P(a0, . . . , an) that has in-
dex 1, then it follows from [45, Theorem 1.2] that a0 = 1 and a general
weighted complete intersection of multidegree d1, . . . , dc in P(a1, . . . , an) is a
smooth Calabi–Yau variety. For other partial classification results concern-
ing Calabi–Yau threefolds see [1], [24], [25], [4], and references therein.

Appendix A. Optimization

The purpose of this section is to prove some bounds on the values of linear
functions on special subsets of Rm.

Let L be a real-valued function on a set Ω. We say that L attains its
maximum in Ω if L is bounded and there is a point P in Ω such that
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Table 3: Fivefold Fano weighted complete intersections

No. I P Degrees −K5 h0(−K) h1,4 h2,3

1 1 P(15, 2, 3, 3) 6, 6 2 5 354 4594

2 1 P(16, 5) 10 2 6 1996 24576

3 1 P(16, 2, 3) 4, 6 4 6 359 4758

4 1 P(17, 4) 2, 8 4 7 1386 15771

5 1 P6 6 6 7 455 6055

6 1 P(17, 2) 4, 4 8 7 168 2383

7 1 P(18, 3) 2,2,6 8 8 568 7571

8 1 P
7 2, 5 10 8 294 4074

9 1 P
7 3, 4 12 8 147 2142

10 1 P
8 2,2,4 16 9 156 2295

11 1 P
8 2,3,3 18 9 88 1364

12 1 P
9 2,2,2,3 24 10 72 1155

13 1 P
10 2,2,2,2,2 32 11 44 759

14 2 P(14, 2, 2, 3, 3) 6, 6 32 12 122 1920

15 2 P(15, 2, 5) 10 32 16 790 11020

16 2 P(15, 2, 2, 3) 4, 6 64 17 117 1936

17 2 P(16, 4) 8 64 21 462 6891

18 2 P(16, 2) 6 96 22 147 2457

19 2 P(16, 2, 2) 4, 4 128 23 44 867

20 2 P(17, 3) 2, 6 128 27 183 3072

21 2 P
6 5 160 28 84 1554

22 2 P(17, 2) 3, 4 192 29 35 742

23 2 P
7 2, 4 256 35 36 783

24 2 P
7 3,3 288 36 16 410

25 2 P
8 2,2,3 384 43 11 316

26 2 P
9 2,2,2,2 512 51 4 159

27 3 P(16, 3) 6 486 57 56 1246

28 3 P
6 4 972 84 7 266

29 3 P
7 2,3 1458 111 1 83

30 3 P
8 2,2,2 1944 138 0 27

31 4 P(15, 2, 3) 6 1024 91 16 505

32 4 P(16, 2) 4 2048 147 1 90

33 4 P
6 3 3072 203 0 21

34 4 P
7 2, 2 4096 259 0 3

35 5 P
6 2 6250 378 0 0
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Table 4: Rationality for fivefold Fano weighted complete intersections

No. Not stably rat. Non-rational Rat. Reference

2 very general very general [42, Theorem 1.1]

5 very general general [56], [54], [51]

9 some [52]

15 very general very general [42, Theorem 1.3]

17 very general very general [42, Theorem 1.1]

18 very general very general [42, Theorem 1.3]

21 very general very general [54]

27 very general very general [42, Theorem 1.1]

30 none none all [57, Corollary 5.1]

34 none none all projection from a line

35 none none all projection from a point

L(P ) = supP ′∈Ω L(P ′); in this case we also say that L attains its maximum
in Ω at P .

Lemma A.1. Let N and c be positive integers, and M be a real number.
Consider the closed subset of RN+c with coordinates A1, . . . , AN , D1, . . . , Dc

defined by inequalities

M ≥ A1 ≥ . . . ≥ AN ≥ 0, D1 ≥ . . . ≥ Dc ≥ 0,

and let Ω′ be a non-empty closed subset therein. Put

L(A1, . . . , AN , D1, . . . , Dc) =

N∑
i=1

Ai −
c∑

j=1

Dj .

Then the function L attains its maximum in Ω′.

Proof. Let P̄ be some point of Ω′, and put L̄ = L(P̄ ). If D1 > NM − L̄,
then

L(A1, . . . , Dc) =

N∑
i=1

Ai −
c∑

j=1

Dj ≤ NA1 −D1 < N(A1 −M) + L̄ ≤ L̄.

Thus L attains its maximum in Ω′ if and only if it attains its maximum in
the closed subset

Ω′′ = Ω′ ∩ {(A1, . . . , Dc) | D1 ≤ NM − L̄}

containing P̄ . It remains to notice that Ω′′ is a compact subset of RN+c.
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Lemma A.2. Let N and c be positive integers such that N > c, and α be a
real number. Let Ω̃ be a subset of RN+c with coordinates

A1, . . . , AN , D1, . . . , Dc

defined by inequalities

A1 · . . . ·AN ≤ D1 · . . . ·Dc,

A1 ≥ . . . ≥ AN ≥ 1, D1 ≥ . . . ≥ Dc,

D1 ≥ 2A1, D2 ≥ A2, . . . , Dc ≥ Ac.

Put

L(A1, . . . , AN , D1, . . . , Dc) =

N∑
i=1

Ai −
c∑

j=1

Dj + α.

Let Ω ⊂ Ω̃ be a non-empty closed subset. Then the function L attains its
maximum in Ω.

Proof. It is enough to prove the assertion for α = 0. Let P̄ be some point of
Ω, and put L̄ = L(P̄ ).

Suppose that (A1, . . . , Dc) ∈ Ω. If Ac+1 < (A1 + L̄) · (N − c)−1, then

L(A1, . . . , Dc) =

N∑
i=1

Ai−
c∑

j=1

Dj = (A1−D1)+

c∑
j=2

(Aj −Dj)+

N∑
i=c+1

Ai ≤

≤ −A1 + (N − c)Ac+1 < −A1 +A1 + L̄ = L̄.

Thus L attains its maximum in Ω if and only if it attains its maximum in
the closed subset

Ω(1) = Ω ∩
{
(A1, . . . , Dc) | Ac+1 ≥

A1 + L̄

N − c

}
containing P̄ .

By Lemma A.1, the function L attains its maximum in the closed subset

Ω′ = Ω(1) ∩ {(A1, . . . , Dc) | A1 ≤ −L̄}

provided that Ω′ is not empty. Therefore, to prove that L attains its maxi-
mum in Ω(1) it is enough to show that either L attains its maximum in the
closed subset

Ω(2) = Ω(1) ∩ {(A1, . . . , Dc) | A1 ≥ −L̄},
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or L(P ) < L̄ for every point P ∈ Ω(2). The latter case takes place in partic-

ular when Ω(2) is empty.

Suppose that Ω(2) is not empty, and let (A1, . . . , Dc) ∈ Ω(2). Then

Dc
1 ≥ D1 · . . . ·Dc ≥ A1 · . . . ·AN ≥ A1 · . . . ·Ac+1 ≥

(
A1 + L̄

N − c

)c+1

,

so that

D1 ≥
(

1

N − c

) c+1

c

· (A1 + L̄)
c+1

c .

One has

(A.1)

L(A1, . . . , Dc) =

N∑
i=1

Ai−
c∑

j=1

Dj ≤ N ·A1−D1 = N(A1+ L̄)−D1−NL̄ ≤

≤ (A1 + L̄) ·
(
N −

(
1

N − c

) c+1

c

· (A1 + L̄)
1

c

)
−NL̄.

Put

M = max
{
|(N + 1)L̄| − L̄, (N + 1)c · (N − c)c+1 − L̄

}
.

If A1 > M , then the right hand side of (A.1) is less than L̄. Thus to complete

the proof it is enough to show that either L attains its maximum in the closed

subset

Ω(3) = Ω(2) ∩ {(A1, . . . , Dc) | A1 ≤ M},

or Ω(3) is empty. Now everything follows from Lemma A.1.

Similarly to Lemma A.2, we prove the following.

Lemma A.3. Let l and r be positive integers such that l > r, and let α

be a real number. Let Ω ⊂ R2
B,D be defined by inequalities Bl ≤ 2Dr and

D ≥ B ≥ 1. Put

L(B,D) = lB − rD + α.

Then the function L attains its maximum in Ω.

Proof. It is enough to prove the assertion for α = 0. Let P̄ be some point of

Ω, and put L̄ = L(P̄ ).
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Put

M = max

{
−2L̄

r
,

(
4l

r

) l

l−r

}
.

Suppose that (B,D) ∈ Ω and D > M . In particular, we have

D
r−l

l <
r

4l
.

We also know that B ≤ l
√
2D

r

l . Hence

L(B,D) = lB − rD ≤ l
l
√
2D

r

l − rD <

(
2l

r
D

r−l

l − 1

)
· rD < −r

2
D < L̄.

Thus L attains its maximum in Ω if and only if it attains its maximum in
the closed subset

Ω(1) = Ω ∩ {(B,D) | D ≤ M}
containing P̄ . Since B ≤ D in Ω, the set Ω(1) is compact, and the required
assertion follows.

The following theorem will be our main technical tool to find the points
where certain functions attain their maximal values. It is well known as the
method of Lagrange multipliers, or sometimes the Kuhn–Tusker Theorem.

Theorem A.4 (see [58, p. 503] or [35, Theorem M.K.2]). Let G1, . . . , Gp be
differentiable functions on Rm with coordinates x1, . . . , xm. Let Ω ⊂ Rm be
a subset defined by inequalities Gi ≤ 0, 1 ≤ i ≤ p. Let L be a differentiable
function on Rm. Suppose that L attains its maximum in Ω at a point P .
Then (

∂L

∂x1
, . . . ,

∂L

∂xm

)
[P ] =

p∑
i=1

λi

(
∂Gi

∂x1
, . . . ,

∂Gi

∂xm

)
[P ]

for some non-negative numbers λi. Moreover, if for some j one has λj �= 0,
then Gj(P ) = 0.

To proceed we need to establish some elementary inequalities that will
be used in the proof of Proposition A.12.

Lemma A.5. Let l ≥ 1 be an integer, and r be a non-negative integer. Let
Ω ⊂ R2

B,D be defined by inequalities Bl ≤ 2Dr and D ≥ B ≥ 1. Put

L(B,D) = lB − rD − (l + 1).

Then L is non-positive on Ω. Moreover, L(B,D) is negative unless l = 1,
r = 0, and B = 2.
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Proof. Suppose that l ≤ r. Then

L(B,D) = lB − rD − (l + 1) ≤ (l − r)B − (l + 1) < 0

for all (B,D) ∈ Ω. Thus we will assume that l > r.

Suppose that l = 1. Then r = 0, so that B ≤ 2

L(B,D) = B − 2 ≤ 0

for all (B,D) ∈ Ω. Moreover, in this case L(B,D) = 0 if and only if B = 2.

Thus we will assume that l ≥ 2.

Suppose that r = 0. Then Bl ≤ 2 in Ω. Since l ≥ 2, this implies that

B < 1 + 1
l . The latter gives

L(B,D) = lB − rD − (l + 1) < l ·
(
1 +

1

l

)
− (l + 1) = 0.

Thus we will assume that r > 0.

The function L attains its maximum in Ω at some point P by Lemma A.3.

Abusing notation a little bit, we write P = (B,D) and put M = L(P ).

If B = 1, then

M = l − rD − (l + 1) = −rD − 1 < 0.

Thus we will assume that B > 1.

Suppose that B = D. Then Bl−r ≤ 2, which implies B ≤ 1 + 1
l−r . This

gives

M = lB − rD − (l + 1) = (l − r)B − (l + 1)

≤ (l − r) ·
(
1 +

1

l − r

)
− (l + 1) = −r < 0.

Thus we will assume that D > B.

By Theorem A.4 applied to L and

G1 = Bl − 2Dr, G2 = B −D, G3 = 1−B,

one has

(A.2) (l,−r) = λ(lBl−1,−2rDr−1)
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for some non-negative number λ. This implies that

λ =
1

Bl−1
,

so that λ is positive, and thus Bl = 2Dr by Theorem A.4. Also, since r > 0,
equation (A.2) implies that

1 = 2Dr−1 · λ =
2Dr−1

Bl−1
=

B

D
< 1,

which is a contradiction.

Lemma A.6. Let k be a positive integer, l be a non-negative integer, and
p be a non-negative real number such that k + l + p > 2; let r be a non-
negative integer. Let Ω ⊂ R3

A,B,D be defined by inequalities Ak−1Bl ≤ 2Dr,
A ≥ B ≥ 1, A ≥ k + l + p, D ≥ B, 2A ≥ D, and an additional inequality
D ≥ A in the case when k ≥ 2. Put

L(A,B,D) = (k − 2)A+ lB − rD + p.

Then L is non-positive on Ω. Moreover, L(A,B,D) is negative unless A =
p+ 2 and p > 0.

Proof. The function L attains its maximum in Ω at some point P . To see
this apply Lemma A.2 with c = r + 1, an arbitrary N ≥ max{k + l, c+ 1},
and the closed subset defined by conditions

A1 = . . . = Ak, Ak+1 = . . . = Ak+l, Ak+l+1 = . . . = AN = 1,

D1 = 2A1, D2 = . . . = Dc, A1 ≥ k + l + p.

Abusing notation, we write P = (A,B,D) and put M = L(P ).

If k = 1, we have Bl ≤ 2Dr, so that

M = lB − rD + (p−A) ≤ lB − rD − (l + 1) ≤ 0

by Lemma A.5. Moreover, if M = 0, then l = 1, r = 0, and B = 2, so
M = p+2−A and A = p+2. In particular, condition k+ l+ p > 2 implies
that p > 0. Thus we will assume that k ≥ 2.

Note that r > 0. Indeed, otherwise one has

2 ≥ Ak−1Bl ≥ Ak−1 ≥ A > 2,
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which is absurd.
If l = 0, then Ak−1 ≤ 2Dr, so that

M = (k − 2)A− rD + p = ((k − 1)A− rD − k) + (k + p−A) < 0

by Lemma A.5. Thus we will assume that l > 0.
If B = 1 then Ak−1 ≤ 2Dr, so that

M = (k− 1)A+ l− rD−A+ p = ((k− 1)A− rD− k) + (k+ l+ p−A) < 0

by Lemma A.5. Thus we will assume that B > 1.
If A = B then Ak+l−1 ≤ 2Dr, so that

M = (k+ l−2)A−rD+p = ((k+ l−1)A−rD−(k+ l))+(k+ l+p−A) < 0

by Lemma A.5. Thus we will assume that A > B. In particular, we have
D > B.

Suppose that D = A. If r < k− 1, then Ak−1−rBl ≤ 2, so that A ≤ 2 <
k + l + p, a contradiction. Hence r ≥ k − 1, and Bl ≤ 2Dr−k+1. We have

M = lB+(k−r−2)D+p = (lB − (r − k + 1)D − (l + 1))+(l+p+1−D) < 0

by Lemma A.5. Thus we will assume that D > A.
By Theorem A.4 applied to L and

G1 = Ak−1Bl − 2Dr, G2 = k + l + p−A, G3 = B −A,

G4 = 1−B, G5 = B −D, G6 = A−D,

one has

(A.3) (k−2, l,−r) = λ1((k−1)Ak−2Bl, lAk−1Bl−1,−2rDr−1)+λ2(−1, 0, 0)

for some non-negative numbers λ1 and λ2. Since l > 0, equation (A.3) implies
that

λ1 =
1

Ak−1Bl−1
,

so that λ1 is positive, and hence Ak−1Bl = 2Dr by Theorem A.4. Finally,
since r > 0, equation (A.3) implies that

1 = 2Dr−1 · λ1 =
2Dr−1

Ak−1Bl−1
=

B

D
< 1,

which is a contradiction.
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Lemma A.7. Let k and c be positive integers, and l be a non-negative real
number such that k + l > 2. Let Ω be a subset of R2 with coordinates A,D
defined by inequalities Ak ≤ Dc, D ≥ 2A, and A ≥ k + l. Put

L(A,D) = kA− cD + l.

Then L is negative on Ω.

Proof. The function L attains its maximum in Ω at some point P . To see
this apply Lemma A.2 with an arbitrary N ≥ max{k, c+1}, and the closed
subset defined by conditions

A1 = . . . = Ak, Ak+1 = . . . = AN = 1, D1 = . . . = Dc, A1 ≥ k + l.

Abusing notation, we write P = (A,D). Note that if (k + 1)A ≤ cD,
then

L(A,D) = kA− cD + l ≤ l −A < 0.

In particular, this happens if k < 2c, since k and c are integers.

By Theorem A.4 applied to L and

G1 = Ak −Dc, G2 = 2A−D, G3 = k + l −A,

one has

(k,−c) = λ1(kA
k−1,−cDc−1) + λ2(2,−1) + λ3(−1, 0)

for some non-negative numbers λ1, λ2, and λ3.

Suppose that λ1 > 0. By Theorem A.4 this means that Ak = Dc. We
can assume that k ≥ 2c. Thus Dc ≥ A2c, and D ≥ A2.

Assume that c ≥ 2. Then k + 1 ≤ ck ≤ c(k + l) ≤ cA, so that

(k + 1)A ≤ cA2 ≤ cD,

and we are done. Hence we have c = 1, and

L(A,D) = kA−D + l ≤ kA−A2 + l ≤ l − lA < 0.

Therefore, we may suppose that λ1 = 0. Then

(A.4) (k,−c) = (2λ2 − λ3,−λ2),
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so that λ2 = c and D = 2A by Theorem A.4. Also, we see from (A.4)
that k ≤ 2c. If k = 2c, then A2c = (2A)c, which means A = 2 < k + l,
a contradiction. Thus, we have k < 2c, which implies the assertion of the
lemma.

Lemma A.8. Let k be a positive integer, let l be a non-negative integer
such that k + l > 2, and let c be a non-negative integer. Let Ω ⊂ R3

A,B,D be

defined by inequalities AkBl ≤ Dc, D ≥ 2A, A ≥ B ≥ 1, and A ≥ k+ l. Put

L(A,B,D) = kA+ lB − cD.

Then L is negative on Ω.

Proof. The function L attains its maximum in Ω at some point P . To see
this apply Lemma A.2 with an arbitrary N ≥ max{k + l, c + 1}, and the
closed subset defined by conditions

A1 = . . . = Ak, Ak+1 = . . . = Ak+l, Ak+l+1 = . . . = AN = 1,

D1 = . . . = Dc, A1 ≥ k + l.

Abusing notation, we write P = (A,B,D) and put M = L(P ).

Note that c > 0. Indeed, otherwise one has

1 ≥ AkBl ≥ Ak ≥ A > 2,

which is absurd.

If l = 0, then Ak ≤ Dc, so that

M = kA− cD < 0

by Lemma A.7. Thus we will assume that l > 0.

If A = B, then Ak+l ≤ Dc, so that

M = (k + l)A− cD < 0

by Lemma A.7. Thus we will assume that A > B.

If B = 1, then Ak ≤ Dc, so that

M = kA− cD + l < 0

by Lemma A.7. Thus we will assume that B > 1.
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If D = 2A, then

M = kA+ lB − c · 2A = (k − 2)A+ lB − (c− 1) · 2A < 0

by Lemma A.6. Thus we will assume that D > 2A.
By Theorem A.4 applied to L and

G1 = AkBl −Dc, G2 = k+ l−A, G3 = 2A−D, G4 = B−A, G5 = 1−B,

one has

(A.5) (k, l,−c) = λ1(kA
k−1Bl, lAkBl−1,−cDc−1) + λ2(−1, 0, 0)

for some non-negative numbers λ1 and λ2. Since l > 0, equation (A.5) implies
that

λ1 =
1

AkBl−1
,

so that λ1 is positive and AkBl = Dc by Theorem A.4. Finally, since c > 0,
equation (A.5) implies that

1 = Dc−1 · λ1 =
Dc−1

AkBl−1
=

B

D
< 1,

which is a contradiction.

Consider a real vector space Rm. For a vector v ∈ Rm we denote by v(i)

its i-th coordinate. Denote

ei = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0) ∈ R
m, 1 ≤ i ≤ m.

Lemma A.9. Let u ∈ Rm be a vector such that

0 ≤ u(1) ≤ . . . ≤ u(m).

Put u−1 = −e1, put u0 = e1, put ui = −ei + ei+1 for 1 ≤ i ≤ m − 1, and
put um = −em. Choose a subset Λ ⊂ {−1, 0, . . . ,m}. Suppose that

λu+
∑
i∈Λ

λiui = (1, . . . , 1)

for some non-negative number λ and some positive numbers λi. Then there
exist two indices 0 ≤ p ≤ q ≤ m such that u(p+1) = . . . = u(q) and

{0, . . . , p− 1} ∪ {q + 1, . . . ,m} ⊂ Λ.
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Proof. Note that for the vector λu the same assumptions hold as for the
vector u itself provided that λ ≥ 0. Thus we will replace u by λu and
assume that λ = 1. In other words we have a system of equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u(1) − λ−1 + λ0 − λ1 = 1,

u(2) + λ1 − λ2 = 1,
. . .

u(m−1) + λm−2 − λm−1 = 1,

u(m) + λm−1 − λm = 1,

where we put λi = 0 for i �∈ Λ. Choose the indices p and q so that

u(p) < u(p+1) = . . . = u(q) = 1 < u(q+1).

In particular, we put p = q if one has u(p) < 1 < u(p+1), we put p = q = 0 if
1 < u(1), and we put p = q = m if u(m) < 1.

For 1 < i � p we have

1 = u(i) + λi−1 − λi < 1 + λi−1,

so λi−1 > 0. Moreover, if p > 0, then

1 = u(1) − λ−1 + λ0 − λ1 < 1 + λ0,

so λ0 > 0. In the same way for j > q we have

1 = u(j) + λj−1 − λj > 1− λj ,

so λj > 0. This exactly gives the assertion of the lemma.

Lemma A.10. Let u ∈ Rm be a vector such that

0 ≥ u(1) ≥ . . . ≥ u(m).

Put u0 = −e1, and put ui = −ei + ei+1 for 1 ≤ i ≤ m − 1. Choose a
subset Λ ⊂ {0, . . . ,m− 1}. Suppose that

λu+
∑
i∈Λ

λiui = (−1, . . . ,−1)

for some non-negative number λ and some positive numbers λi. Then one
of the following possibilities occurs:
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(i) 0 ∈ Λ and u(2) = . . . = u(m);

(ii) u(1) = . . . = u(m);

(iii) {1, 2, . . . ,m− 1} ⊂ Λ;

(iv) {0, 2, 3, . . . ,m− 1} ⊂ Λ.

Proof. Note that for the vector λu the same assumptions hold as for the

vector u itself provided that λ ≥ 0. Thus we will replace u by λu and

assume that λ = 1. In other words we have a system of equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u(1) − λ0 − λ1 = −1,

u(2) + λ1 − λ2 = −1,
. . .

u(m−1) + λm−2 − λm−1 = −1,

u(m) + λm−1 = −1,

where we put λi = 0 for i �∈ Λ. Suppose that u(m) = −1. Let q be the

minimal index such that u(q) = −1. Then, considering equations from the

last one to the q-th one by one we have

λm−1 = . . . = λq−1 = 0.

Moreover, if q > 2, then

u(q−1) + λq−2 − λq−1 = u(q−1) + λq−2 > −1,

which is impossible. Thus either q = 2, so u(1) > −1 and λ0 > 0, which

corresponds to case (i), or q = 1, which corresponds to case (ii).

Now suppose that u(m) < −1. Choose the indices 1 ≤ p ≤ q < m such

that

u(p) > u(p+1) = . . . = u(q) = −1 > u(q+1).

Then for i > q one has

−1 = u(i) + λi−1 − λi < −1 + λi−1,

so λi−1 > 0. Moreover, for p � j � q one has

−1 = u(j) + λj−1 − λj = −1 + λj−1 − λj < −1 + λj−1,

so we also have λj−1 > 0.
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If one has λi > 0 for all 1 ≤ i ≤ p−1, then we obtain case (iii). Otherwise
take the maximal number s with 1 ≤ s ≤ p − 1 such that λs = 0. If s > 1
then

u(s) + λs−1 − λs > −1,

which is impossible. Thus s = 1 and λ0 > 0, which gives us case (iv).

Lemma A.11. Choose a vector u =
(
u(1), . . . , u(N+c)

)
∈ RN+c such that

0 ≤ u(1) ≤ . . . u(N), 0 ≥ u(N+1) ≥ . . . ≥ u(N+c).

Put u−1 = −e1 and u0 = 2e1 − eN+1. Furthermore, put ui = −ei + ei+1

for 1 ≤ i ≤ N − 1 and for N + 1 ≤ i < N + c. Finally, put uN = −eN .
Choose a subset Λ′ ⊂ {−1, 0, . . . , N + c− 1}. Suppose that

λu+
∑
i∈Λ′

λiui = (1, . . . , 1︸ ︷︷ ︸
N

,−1, . . . ,−1︸ ︷︷ ︸
c

)

for some non-negative number λ and some positive numbers λi. Define

Λ′′ =
{
i | u(i) = u(i+1)

}
.

Then one of the following possibilities occurs:

(I) there is an index 0 ≤ q ≤ N such that

{1, . . . , q − 1, q + 1, . . . , N,N + 1, . . . , N + c− 1} ⊂ Λ′ ∪ Λ′′.

and N ∈ Λ′;
(II) there is an index 1 ≤ p ≤ N such that

{0, . . . , p− 1, p+ 1, . . . , N − 1, N + 2, . . . , N + c− 1} ⊂ Λ′ ∪ Λ′′

and 0 ∈ Λ′;
(III) there are indices 1 ≤ p ≤ q ≤ N − 1 such that

{0, . . . , p−1, p+1, . . . , q−1, q+1, . . . , N,N+2, . . . , N+c−1} ⊂ Λ′∪Λ′′

and {0, N} ⊂ Λ′.

Proof. Apply Lemma A.9 to the first N coordinates of the vector u and
Lemma A.10 to its last c coordinates. Define numbers p and q following the
notation of Lemma A.9. The only possibility to have 0 �∈ Λ is to have p = 0.
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Then {1, . . . , q − 1} ⊂ Λ′′ and {q + 1, . . . , N} ⊂ Λ′. Moreover, for the last c
coordinates only cases (ii) or (iii) from Lemma A.10 can occur, which gives
us case (I).

So we can assume that 0 ∈ Λ′. From Lemma A.10 one can easily see
that

{N + 2, . . . , N + c− 1} ⊂ Λ′ ∪ Λ′′.

If q = N then {0, . . . , p − 1} ⊂ Λ′ and {p + 1, . . . , N − 1} ⊂ Λ′′, and we
obtain case (II). If q < N then

{0, . . . , p− 1, q + 1, . . . , N} ⊂ Λ′

and {p+ 1, . . . , q − 1} ⊂ Λ′′, and we obtain case (III).

Now we are ready to prove the main result of this section.

Proposition A.12. Let c and N be positive integers such that N ≥ 2c+1.
Let Ω be a subset of RN+c with coordinates A1, . . . , AN , D1, . . . , Dc defined
by inequalities

A1 · . . . ·AN ≤ D1 · . . . ·Dc,

A1 ≥ . . . ≥ AN ≥ 1, D1 ≥ . . . ≥ Dc,

D1 ≥ 2A1, D2 ≥ A2, . . . , Dc ≥ Ac.

Put

L(A1, . . . , AN , D1, . . . , Dc) = A1 + . . .+AN −D1 − . . .−Dc.

Then L is non-positive on the subset of Ω where A1 ≥ N .

Proof. Rewrite the inequalities defining Ω as

A1 · . . . ·AN −D1 · . . . ·Dc ≤ 0,

A2 −A1 ≤ 0, . . . , AN −AN−1 ≤ 0, 1−AN ≤ 0,

D2 −D1 ≤ 0, . . . , Dc −Dc−1 ≤ 0,

A2 −D2 ≤ 0, . . . , Ac −Dc ≤ 0, 2A1 −D1 ≤ 0.

The function L attains its maximum in Ω at some point P ∈ Ω by
Lemma A.2. Abusing notation a little bit, we write

P = (A1, . . . , AN , D1, . . . , Dc).
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If for some 2 ≤ i ≤ c one has Ai = Di, we cancel Ai and Di from the

inequalities defining Ω and from the definition of L and arrive to the same

assertion with a smaller number of parameters. Therefore, we assume that

for all 2 ≤ i ≤ c one has Ai < Di (in particular, this is the case when c = 1).

Note that after such cancelation the condition N ≥ 2c+ 1 is preserved.

Denote ΠA = A1 · . . . ·AN and ΠD = D1 · . . . ·Dc. Applying Theorem A.4

and keeping in mind that Ai < Di for 2 ≤ i ≤ c, we obtain an equality

(1, . . . , 1︸ ︷︷ ︸
N

,−1, . . . ,−1︸ ︷︷ ︸
c

) = λ

(
ΠA

A1
, . . . ,

ΠA

AN
,
ΠD

D1
, . . . ,

ΠD

Dc

)
+

+

N−1∑
i=1

λi(0, . . . , 0︸ ︷︷ ︸
i−1

,−1, 1, 0, . . . , 0) + λN (0, . . . , 0︸ ︷︷ ︸
N−1

,−1, 0, . . . , 0)+

+

N+c−1∑
i=N+1

λi(0, . . . , 0︸ ︷︷ ︸
i−1

,−1, 1, 0, . . . , 0)+

λ0(2, 0, . . . , 0︸ ︷︷ ︸
N−1

,−1, 0, . . . , 0) + λ−1(−1, 0, . . . , 0)

for some non-negative numbers λ and λi, where −1 ≤ i ≤ N + c− 1.

Let Λ′ ⊂ {−1, 0, 1 . . . , N + c− 1} be the set of indices such that for any

i ∈ Λ′ one has λi > 0, and let Λ′′ = {i | u(i) = u(i+1)}. By Theorem A.4

for any i ∈ Λ′ the corresponding inequality turns into equality. Thus, by

Lemma A.11 we have the following possibilities:

(I)

(A1, . . . , AN , D1, . . . , Dc) = (

k︷ ︸︸ ︷
A, . . . , A,

l︷ ︸︸ ︷
B, . . . , B︸ ︷︷ ︸

N

, D, . . . , D︸ ︷︷ ︸
c

)

for some k ≥ 1 and l ≥ 0;

(II)

(A1, . . . , AN , D1, . . . , Dc) = (

k︷ ︸︸ ︷
A, . . . , A,

l︷ ︸︸ ︷
B, . . . , B︸ ︷︷ ︸

N

, 2A,D, . . . , D︸ ︷︷ ︸
c−1

)

for some k ≥ 1 and l ≥ 0;
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(III)

(A1, . . . , AN , D1, . . . , Dc)=(

k︷ ︸︸ ︷
A, . . . , A,

l︷ ︸︸ ︷
B, . . . , B,

p︷ ︸︸ ︷
1, . . . , 1︸ ︷︷ ︸

N

, 2A,D, . . . , D︸ ︷︷ ︸
c−1

)

for some k ≥ 1, l ≥ 1, and p ≥ 1.

In all cases one has c ≥ 1 and N ≥ 2c + 1 ≥ 3. In cases (II) and (III) the
inequality 2A ≥ D holds.

In case (I) we have L(P ) < 0 provided that A1 ≥ N ; to see this apply
Lemma A.8. In case (II) we have L(P ) < 0 provided that A1 ≥ N ; to see
this apply Lemma A.6 with r = c− 1 and p = 0. Finally, in case (III) we
have L(P ) ≤ 0 provided that A1 ≥ N ; to see this apply Lemma A.6 with
r = c− 1.

Acknowledgments

We are grateful to K.Besov, A.Corti, A.Kuznetsov, T.Okada, and Yu.Prok-
horov for useful discussions, and to A.Harder who helped us to compute
Hodge numbers in §5. Special thanks go to the referees for numerous valuable
comments.

References

[1] G. Almkvist, C. van Enckevort, D. van Straten, W. Zudilin, Tables of
Calabi–Yau equations, arXiv:math.AG/0507430.

[2] M. Auslander, On the purity of the branch locus, Amer. J. Math., 84:1
(1962), 116–125. MR0137733

[3] V.V. Batyrev, D.A. Cox, On the Hodge structure of projective hypersur-
faces in toric varieties, Duke Math. J. 75 (1994), 293–338. MR1290195

[4] V. Benedetti, Manifolds of low dimension with trivial canonical bundle
in Grassmannians, Math. Z. 290:1-2 (2018), 251–287. MR3848432

[5] C. Birkar, Singularities of linear systems and boundedness of Fano va-
rieties, arXiv:1609.05543.

[6] G. Brown, A. Kasprzyk, Four-dimensional projective orbifold hypersur-
faces, Exp. Math. 25:2 (2016), 176–193. MR3463567

[7] I. Cheltsov, V. Przyjalkowski, Katzarkov–Kontsevich–Pantev Conjec-
ture for Fano threefolds, arXiv:1809.09218.

http://www.ams.org/mathscinet-getitem?mr=0137733
http://www.ams.org/mathscinet-getitem?mr=1290195
http://www.ams.org/mathscinet-getitem?mr=3848432
http://www.ams.org/mathscinet-getitem?mr=3463567


Bounds for smooth Fano weighted complete intersections 549

[8] I. Cheltsov, C. Shramov, Del Pezzo zoo, Exp. Math. 22:3 (2013), 313–
326. MR3171095

[9] J.J. Chen, Finiteness of Calabi–Yau quasismooth weighted com-
plete intersections, Int. Math. Res. Not. IMRN 2015:12, 3793–3809.
MR3356738

[10] J.-J. Chen, J. Chen, M. Chen, On quasismooth weighted complete in-
tersections, J. Algebraic Geom. 20:2 (2011), 239–262. MR2762991

[11] V. Danilov, The geometry of toric varieties, Russian Math. Surveys,
33:2 (1978), 97–154. MR0495499

[12] P. Deligne, A. Grothendieck, N. Katz, Groupes de Monodromie en
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