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This paper completes the classification problem which was pro-
posed in the previous paper [1] in which we attempted to char-
acterize the minimal models and families obtained by the tensor
products and the simple current extensions of minimal models un-
der the condition that the characters of simple modules satisfy
modular differential equations of the third order, and a mild con-
dition on vertex operator algebras. In the previous work, several
vertex operator algebras which are not the minimal models ap-
peared. Five elevenths of them are identified to well-known vertex
operator algebras which are all vertex operator algebras related
with orbifold models of lattice vertex operator algebras. However,
we were not able to deny the existence of simple, rational vertex
operator algebras of CFT and finite type with central charges ei-
ther 164/5 or 236/7 under the condition on which we worked in [1].
The characterization of minimal models with at most two simple
modules was achieved in the same paper.

The numbers 164/5 and 236/7 were already appeared in the
paper of Tuite and Van ([17]) in the different context. However,
they were out of reach of our conclusion. Moreover, we solve the
conjecture, which was proposed by Hampapura and Mukhi [8], that
the j-function is expressed by characters of the minimal models.
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1. Introduction

In this paper we study a simple, rational vertex operator algebra V (simply
VOA) of CFT and finite (C2-cofinite) type, which has further properties
are either 164/5 or 236/7, (b) the weight one space is trivial, (c) characters
of simple modules over V are solutions of a monic modular linear differen-
tial equations (simply MLDE) of the third order of weight 0 (see §3 for the
definition of monic MLDEs). In [1], we have shown that there are eleven
rational numbers which can be central charges of VOAs satisfying the con-
ditions (b) and (c). Moreover, we have obtained the exact expression of the
monic MLDE for each central charge. Three of these numbers uniquely cor-
respond to central charges of the minimal models and their tensor product,
respectively, and six of them coincide with central charges of Z2-orbifold
models of lattice VOAs and their extensions (which include the moonshine
VOA) ([1], [8], [17]). However, it was not known if the remaining two cen-
tral charges 164/5 and 236/7 have corresponding VOAs, respectively. Our
principal aim of this paper is to show that a simple, rational VOA of CFT
and finite type satisfying the conditions (a)–(c) does not exist. Combining
this with the partial classification obtained in [1], we complete a proof that
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any simple, rational VOA of CFT and of finite type, which satisfies (b)
and (c) is isomorphic to one of the minimal models with central charges 1/2
and −68/7 and the two-fold tensor product of the minimal model with the
central charge −22/5 if it is not a Z2-orbifold model of a lattice VOA and
is not its extensions.

Let V be a simple VOA with a central charge either 164/5 or 236/7,
which satisfies the condition (b) and (c). Then we can uniquely determine
the monic MLDE in (c) as it was written in [1]. Therefore, we can find
indicial roots and then solutions of the monic MLDE which would be the
characters of simple V -modules. It is then well-known that the space of
solutions of a monic MLDE is invariant under the usual slash 0 action of
the full modular group Γ1 = SL2(Z). This is closely related to the modular
invariance of the space of characters. Then we can determine the square
matrix of degree three, which represents the transformation S : H → H

(τ �→ 1/τ) where τ ∈ H.
Once the S-matrix has been computed, one can obtain the quantum

dimension of each simple module by Lemma 4.2 and Theorem 5.1 of [4], and
then the so-called global dimension (which is the sum of square of quantum
dimensions). In particular, one knows that the quantum dimension qdimM
for any simple V -module M is not less than 1. Proposition 4.5 of [4] now
shows that the global dimension of V (denoted by global(V )) is simply
written as global(V ) = 1/(S00)

2. In this paper we find that the value of S00

is smaller than 3. However, this contradicts to global(V ) ≥ 3 as the number
of simple modules is at least three, which is also proved in this paper. Thus
the theory of quantum and global dimensions developed in [4] allows one to
prove non-existence of VOAs which we study.

Warning The reader may think that the classification of “unitary” mod-
ular tensor categories with rank 3 proved in Section 2 of [18] implies the
main results of this paper. However, since our VOAs are not unitary, one
cannot apply their result to our problem.

This paper is organized as follows. In Section 2 we give a brief review of
basics of VOAs. The notion of vacuum-like vectors introduced in [12], which
is used in Section 5, is also explained here. The definitions and the proper-
ties of monic MLDEs, and the concept of vector-valued modular forms are
presented in Section 3. We recall briefly an important result on the quantum
dimensions and the global dimensions of VOAs in Section 4. The explicit ex-
pressions of monic MLDEs associated with central charges 164/5 and 236/7
are given in Section 5. In Section 6 and 7 we compute the matrix elements of
the S-transformation on bases of the spaces of the monic MLDEs which are
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associated with central charges 164/5 and 236/7, respectively, and obtain
the global dimensions. The main theorems (Theorem 8 and Theorem 10) are
proved in these sections.

Since the explicit expressions of the monic MLDEs for the central charge
236/7 are quite complicated, they are described in the first part of Appendix.
The second part of Appendix is devoted to proofs of two expressions of
the j-function observed in [8] in terms of solutions of the monic MLDEs
(for c = 164/5 and 236/5).

2. Vertex operator algebras

In this section we give a brief introduction to the theory of vertex operator
algebras (for the complete definition, see [11] and [15]). A vertex operator
algebra (simply VOA) is a Z-graded vector space V =

⊕
n∈Z Vn equipped

with a linear map

V → EndC(V )[[z, z−1]]
(
a �→ Y (a, z) =

∑
n∈Z

a(n)z
−n−1

)
.

The vector space V is required to have a so-called vacuum element 1 ∈ V0

and a Virasoro element ω ∈ V2 satisfying a number of axioms. One of the
axioms demands that Ln = ωn+1 (n ∈ Z) define a module of the Virasoro
algebra over V with a central charge c ∈ C, i.e.

(1) [Lm, Ln] = (m− n)Lm+n +
m3 −m

12
c δm+n,0.

Another axiom asks that L0 is the grading operator. The non-negative in-
teger of an element v ∈ Vn is said to have an weight n which is denoted
by wt(v). A VOA V is called of CFT type when Vn is trivial for any n < 0
and V0 is one-dimensional with the basis {1}.

A weak module of a VOA V is a pair (M,Y ) of a vector space and
a linear map Y : V → EndC (M)[[z, z−1]] satisfying several conditions (for
more details, see e.g. [11], [15]). A weak V -module M is called a V -module if

(a) it is graded by C; M =
⊕

λ∈C Mλ,
(b) for any complex number λ there exists a positive number N such that

Mλ+n = 0 for any n+N < 0,
(c) the endomorphism a(n) has weight wt(a)− n− 1, i.e.,

a(n)Mλ ⊂ Mλ+wt(a)−n−1

for any homogeneous a ∈ V and n ∈ Z,
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(d) the endomorphism L0 is the grading operator of M .

A module of V , which does not satisfy the condition (d), is called admissible.
If a V -module M is simple, the conditions (b) and (c) show that there is
a unique complex number λ such that M =

⊕∞
n=0Mλ+n and Mλ �= 0. We

call this λ the conformal weight of M . A VOA is called rational when the
number of simple module is finite and any admissible module is completely
reducible (see [5] and [20]).

A VOA V is called of finite type (or C2-cofinite) if the subspace of V ,
whose elements are linear combinations of a(−2)b for all a, b ∈ V , has a finite
codimension in V . It is known that if V is of finite type, then the number of
simple V -modules is finite and the central charge of V as well as conformal
weights of simple V -modules are rational numbers ([2], [16]).

One of interesting simple, rational VOAs of CFT and of finite type would
be a series of the minimal model V = L(cp,q, 0) which was studied intensively
in [19] (Theorem 4.2) by using works of Feigin and Fuchs ([6], [7]). This VOA
is the simple quotient of the Verma module of the Virasoro algebra with the
central charge cp,q = 1− 6(p− q)2/pq for coprime positive integers p and q.
It is noteworthy that any simple V -module is isomorphic to an irreducible
highest weight module L(cp,q, hr,s) with the highest weight

hr,s =
(rq − sp)2 − (p− q)2

4pq

for 1 ≤ r ≤ p−1 and 1 ≤ s ≤ q−1 so that the number of simple V -modules
is equal to (p− 1)(q − 1)/2 (see also [19]).

Let V be a VOA and M a weak V -module. An element v ∈ M is called
vacuum-like when Y (a, z)v ∈ M [[z]], i.e., Y (a, z)v has does not have negative
exponents of z. It is known in [12] (Proposition 3.3) that v ∈ M is vacuum-
like if and only if L−1v = 0. The following proposition is proved in [12]
(Proposition 3.4).

Proposition 1 ([12]). Let V be a vertex operator algebra and M a weak V -
module. Then HomV (V,M) is isomorphic to the space of vacuum-like ele-
ments of M .

3. Monic modular linear differential equations

In this section we give a short explanation of the concepts of vector-valued
modular forms and monic modular linear (ordinary) differential equations.

Let H be the complex upper-half plane. For a non-negative integer k
and a holomorphic function f on H, we define the slash action of γ =
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(
a b
c d

)
∈ Γ1 = SL2(Z) on f by (f |kγ)(τ) = (cτ + d)−kf(γ(τ)), where γ(τ) =

(aτ + b)/(cτ + d). We simply write f |kγ instead of (f |kγ)(τ) if this causes
no confusion.

A vector-valued modular form (VVMF) of weight k is a column vec-
tor t(f1, f2, . . . , fn) of holomorphic functions on H such that

(a) t(f1, f2, . . . , fn)
∣∣
k
γ = ρ(γ) t(f1, f2, . . . , fn) for any γ ∈ Γ1, where ρ

is an n-dimensional representation of Γ1 on GLn(C),
(b) the component fj has a Fourier expansion fj = qλj

∑∞
i=0 a

j
i q

i, where
λj ∈ R and q = e2πiτ (i =

√
−1, τ ∈ H).

Let

E2k(τ) = 1− 4k

B2k

∞∑
j=0

σ2k−1(j)q
j (k = 1, 2, . . .)

be the (normalized) Eisenstein series of weight 2k, where Bm is the mth

Bernoulli number and σm(n) is the division function. Let

M∗(Γ1) =

∞⊕
k=1

M2k(Γ1)

be the graded space of modular forms on Γ1 and let

d : M∗(Γ1) → M∗+2(Γ1)

be the Serre operation defined by

d(f) = f ′ − k

12
E2(f) , f ′ = q

df

dq
=

1

2πi

df

dτ

for any f ∈ Mk(Γ1). A monic modular linear differential equation (simply
monic MLDE) of weight 0 is a linear ordinary differential equation

dn(f) +

n−1∑
j=0

Pjd
j(f) = 0 ,

where an unknown f is a holomorphic function on H and Pi is a holomorphic
modular form of weight 2(n− i). Then [14] (Theorem 3.7 and Theorem 4.3)
says:

Proposition 2. Let t(f1, f2, . . . , fn) be a column vector-valued modular
form of weight 0 whose entries are linearly independent. If λ1 < λ2 < · · · <
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λn, where λj is the smallest exponent of q of the Fourier expansion of fj,
then {f1, f2, . . . , fn} is a basis of the space of solutions of a monic modular
linear differential equation of nth order if and only if

(2) n(n− 1) = 12

n∑
j=1

λj .

Remarks. (a) If all smallest exponents of q of the Fourier expansions of fj
(1 ≤ j ≤ n) satisfy λ1 < λ2 < · · · < λn, then vector-value function F =
t(f1, f2, . . . , fn) is called strictly normalized.

(b) If the set of entries of a VVMF is linearly independent, then there
exists an invertible matrix A such that AF is strictly normalized. Moreover,
the matrix A can be written as a products of elementary matrices.

Since any monic MLDE has a regular singularity point only at q =
0 ([14]), one can use the method of Frobenius to obtain solutions of monic
MLDEs. The following lemma in [13] (Corollary 2.4) is easily checked.

Lemma 3. Let λ1, λ2 and λ3 be mutually distinct rational numbers. Then
there is a unique monic modular linear differential equation of the third order
whose indicial roots are λ1, λ2 and λ3.

4. Quantum and global dimensions

In this short section we recall the definitions of quantum dimensions and
global dimensions and present a theorem and a proposition which are used
in the following sections.

Let V be a VOA and M a simple V -module. The trace function on M
is defined by

(3) trM (v, τ) = trM o(v)qL0−c/24

for any homogeneous element v ∈ V , where o(v) = v(wt(v)−1) which is an en-
domorphism on M that preserves any homogeneous space of M . It is proved
in [20] (see also [5]) that the series trM (v, τ) converges for any fixed v and
is holomorphic on H if V is of finite type. Since o(1) = idM , the charac-
ter chM (τ) of M coincides with trM (1, τ).

The slash action of Γ1 = SL2(Z) on the trace functions is defined by

(trM |kγ)(v, τ) = (cτ + d)−k trM (v, γ(τ)) for any γ =

(
a b
c c

)
∈ Γ1 ,
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where k = wt(v). The modular invariance of the space of trace functions are
proved in [20] (Theorem 5.3.2).

Theorem 4. Let V be a simple, rational vertex operator algebra of CFT
and the finite type and let M0, M1, . . . , Mn be the set of inequivalent sim-
ple V -modules. Let γ be an element of SL2(Z). Then there exist complex
numbers γij such that

(4) trM i |γ(v, τ) =
n∑

j=0

γij trMj (v, τ)

for all v ∈ V . Moreover, the complex numbers γij do not depend on v ∈ V .

There is a matrix S = (Sij) such that

(5) trM i(v,−1/τ) = τwt(v)
n∑

j=0

Sij trMj (v, τ)

for homogeneous v ∈ V . The matrix S ∈ GLn+1(C) is called the S-matrix
associated with V in the literature.

Let V be a VOA and M a simple V -module. Suppose that the char-
acters chV (τ) and chM (τ) are holomorphic functions on H. The quantum
dimension of M (which is originally introduced in [3]) is defined by

(6) qdimV M = lim
y→+0

chM (
√
−1y)

chV (
√
−1y)

,

where y > 0 is a real number. Dong, Jiao and Xu have proved the following
theorem in [4] (Lemma 4.2, Theorem 5.1).

Theorem 5. Let V be a simple, rational vertex operator algebra of CFT
and of finite type and let M0, M1, . . . , Mn be the set of inequivalent simple
V -modules, where M0 = V . Let λi be a conformal weight of M i.

(a) Suppose that λi > 0 for all 1 ≤ i ≤ n. Then S00 �= 0 and qdimV M i =
Si0/S00, where S = (Sij) is the S-matrix associated with V .

(b) For any integer 0 ≤ i ≤ n, the quantum dimension of M i belongs to
the set

{2 cos(π/n) |n ≥ 3} ∪ {a | 2 ≤ a < ∞} ,

where a is an algebraic number. In particular, we have qdimV M i ≥ 1.
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Suppose that a VOA V has only finitely many simple V -modules which

are denoted by M0, M1, . . . , Mn, where M0 = V , and that chM i(τ) are

holomorphic functions on H. Then the global dimension of V is defined by

(7) global(V ) =

n∑
j=0

(qdimV M j )2 .

It then follows from the very definition of the global dimension and Theo-

rem 5 that global(V ) is not smaller than the number of simple V -modules.

Corollary. Let V be a VOA satisfying conditions as in Theorem 5. Then the

global dimension of V is not smaller than the number of simple V -modules.

In [4] (Proposition 4.5) they found a fairly simple formula of the global

dimension.

Proposition 6 ([4]). Let V be a simple, rational vertex operator algebra of

CFT and finite type. Let
{
M0, M1, . . . , Mn

}
, where M0 = V , be the set of

inequivalent simple V -modules. If the conformal weight of M i for any i > 0

is positive, then we have global(V ) = 1/(S00)
2, where S = (Sij) is the S-

matrix associated with V .

5. Monic modular linear differential equations of third order
with the central charges 164/5 and 236/7

Let V be a simple VOA of CFT type. Suppose that V1 = 0 and characters

of simple V -modules are solutions of a monic MLDE of third order. It was

shown in [1] that the central charge of V is an element of the set

(8) {−68/7, 1/2, −44/5, 8, 16, 47/2, 24, 32, 164/5, 236/7, 40} .

In [17] these numbers were found in the different context (cf. [8]).

It was verified that there exists at least one VOA whose central charge

is an element of (8) except 164/5 and 236/7. In this paper we show that

there does not exist a simple, rational VOA of CFT and of finite type, whose

central charge is either 164/5 or 236/7.

The explicit expressions of the monic MLDEs of the third order with the

central charges 164/5 and 236/7 are

(9) f ′′′ − 1

2
E2f

′′ +
(1
2
E′

2 −
169

100
E4

)
f ′ +

1271

1080
E6 f = 0
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and

(10) f ′′′ − 1

2
E2f

′′ +
(1
2
E′

2 −
149

84
E4

)
f ′ +

93869

74088
E6 f = 0 ,

respectively. The explicit expressions of solutions of the monic MLDEs (9)
and (10) are given in [1], which are homogeneous polynomials of characters of
simple modules of the minimal models with the central charges c2,5 = −22/5
and c2,7 = −68/7, respectively.

Remark. In this paper by means of (2) and the S-transformations of (11)
and (14) we will give another proof that they are solutions of (9) and (10),
respectively.

Now suppose that there exists a simple, rational VOA V which is of CFT
and finite type, whose central charge is either 164/5 or 236/7 and characters
are solutions of a monic MLDE, respectively. The explicit expressions of the
S-transformations of the space of the solutions of (9) and (10), which will
be shown to equal to the S-transformation of the spaces of characters of
simple V -modules (up to similarity transformations) as shown in the proof
of Theorem 8, show global(V ) < 3 which implies that V is not of finite type
and rational since global(V ) ≥ 3 by Theorem 5 (b) as discussed in §6– §7.
Remark. If we drop the assumption that the spaces of characters are in-
cluded in the spaces of solutions of MLDEs (9) and (10), respectively, then
there are examples of simple, rational VOA V which is of CFT and of finite
type, whose central charge is either 164/5 or 236/7. Let L (4/5, 0) be the
minimal model with central charge 4/5. Then L (4/5, 0)⊗41 is a simple, ratio-
nal VOA of CFT and finite type with the central charge 164/5. Let L (6/7, 0)
and L (−68/7, 0) be the minimal model with central charges 6/7 and 68/7,
respectively. Then L (6/7, 0)⊗62 ⊗ L (−68/7, 0)⊗2 is a simple, rational VOA
of CFT and of finite type with the central charge 236/7.

6. Central charge 164/5

In this section we will show that there does not exist a simple, rational
VOA V which is of CFT and of finite type, whose central charge is 164/5
and characters are solutions of the MLDE (9).

Let V be a simple VOA of CFT and of finite type with the central
charge 164/5. Suppose that characters of simple V -modules are solution of
the monic MLDE (9). It is easily seen that the set of the indicial roots of (9)
is {−41/30, 5/6, 31/30}.
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We first present a set of solutions f1, f2 and f3 (unique up a scalar factor)

whose leading exponents of Fourier expansions are indicial roots of the monic

MLDE (9), which are written in terms of homogeneous polynomials of the

functions

g(q) = q−1/60
∞∏
n=0

1

(1− q5n+1) (1− q5n+4)
,

h(q) = q11/60
∞∏
n=0

1

(1− q5n+2) (1− q5n+3)
.

We now define the functions f1, f2 and f3, respectively, by

(11)

f1 = k1 (g, h) = q−41/30
(
1 + 90118q2 + 53459408q3 + · · ·

)
,

f2 = k2 (g, h) = 11271q−5/6
(
8 + 2915q + 266160q2 + · · ·

)
,

f3 = k1 (h,−g) = 5084q31/30
(
121 + 30008q + 2304726q2 + · · ·

)
,

where k1 and k2 are homogeneous polynomials of degree 82 defined by

k1(g, h) = g12
(
g70 − 82g65h5 + 93029g60h10 + 46912692g55h15

+ 2556589686g50h20 + 28524397164g45h25 + 74276556202g40h30

+ 52919401756g35h35 + 23300865513g30h40 − 10586446246g25h45

+ 28710897349g20h50 − 18944773568g15h55 + 3063714996g10h60

− 109499192g5h65 + 615164h70
)
,

k2(g, h) = g11h11
(
10168g60 + 2983037g55h5 + 115307662g50h10

+ 958403905g45h15 + 1880475660g40h20 + 1074772442g35h25

+ 699519268g30h30 − 1074772442g25h35 + 1880475660g20h40

− 958403905g15h45 + 115307662g10h50 − 2983037g5h55

+ 10168h60
)
.

These solutions (that will be proved later) are all polynomials (homoge-

neous of degree 82) in the Rogers–Ramanujan modular functions g and h.

More precisely,

f1 = g12h70P14(g
5/h5), f2 = g11h71P12(g

5/h5), f3 = g17h20P14(−g5/h5) ,
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where

P14(t) = t14 − 82t13 + 93029t12 + 46912692t11 + 2556589686t10

+ 28524397164t9 + 74276556202t8 + 52919401756t7

+ 23300865513t6 − 10586446246t5 + 28710897349t4

− 18944773568t3 + 3063714996t2 − 109499192t+ 615164 ,

P12(t) = 10168t12 + 2983037t11 + 115307662t10 + 958403905t9

+ 1880475660t8 + 1074772442t7 + 699519268t6

− 1074772442t5 + 1880475660t4 − 958403905t3

+ 115307662t2 − 2983037t+ 10168 .

The functions h and g are characters of L(−22/5, 0) and its simple mod-
ule L(−22/5,−1/5), respectively. We will now see that fi is a solution of the
monic MLDE (9) in the following.

We first show that the vector-valued function F = t(f1, f2, f3) is a
VVMF. Since fi has the Fourier expansion, obviously fi(τ + 1) is a scalar
multiple of fi(τ) for each i. Therefore it suffices to prove that the vector space
spanned by f1, f2 and f3 is invariant under the transformation S : H → H

(τ �→ −1/τ).
It is well-known (cf. [10] (Proposition 6.3)) that the S-transformation

of g and h are given by

(12)

(
h
g

)∣∣∣∣
0

S =

⎛
⎝−

√(
5 +

√
5
)
/10

√(
5−

√
5
)
/10√(

5−
√
5)/10

) √(
5 +

√
5
)
/10

⎞
⎠(

h
g

)
.

Then direct computations give (such extensive numerical computation would
be impossible without a computer)

(13)

⎛
⎝f1
f2
f3

⎞
⎠
∣∣∣∣∣∣
0

S =

⎛
⎝
(√

5 + 5
)
/10 10

√
5

(
5−

√
5
)
/10

1/25
√
5 −1/

√
5 −1/25

√
5(

5−
√
5
)
/10 −10

√
5

(√
5 + 5

)
/10

⎞
⎠

⎛
⎝f1
f2
f3

⎞
⎠

which shows that F = t(f1, f2, f3) is a VVMF. Since the leading exponents
of Fourier series of f1, f2 and f3 are −41/30, 5/6 and 31/30, respectively,
and 12(−41/30 + 5/6 + 31/30) = 6, it follows from Proposition 2 that the
triple {f1, f2, f3} is a basis of the space of solutions of a monic MLDE of
third order. Then Lemma 3 shows the following proposition (for a different
proof see [1, pp. 25–26]).
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Proposition 7. The set {f1, f2, f3} given by (11) is a basis of the space of
solutions of the monic modular linear differential equation (9).

Theorem 8. Let V be a simple vertex operator algebra of CFT type whose
central charge is 164/5. Suppose that the character of any simple module
of V is a solution of the modular linear differential equation (9). Then V is
not of finite type and rational.

Proof. Suppose that V is of finite type and rational. The key idea is showing
that the consequences of Theorem 5 and eq. (7) give a contradiction.

We first show that f1, f2 and f3 are characters (up to scalar multiples)
of the V -modules. The monic MLDE (9) has mutually different indicial
roots which do not have integral differences. Therefore there is a unique
solution (up to a scalar multiple) such that the leading exponent of Fourier
expansion is an indicial root. Any character is, by the assumption, a linear
combination of f1, f2 and f3 and the indicial roots of (13) do not have
integral differences. Since any character is a solution of (13), it is one of f1,
f2 and f3 (up to a scalar multiple). (Any character has the Fourier expansion
qr

∑∞
n=0 q

n.) In particular, the conformal weight of each simple V -module
is one of {0, 11/5, 12/5}. It follows that chV = f1 and dimV1 = 0 as f1 =
q−41/30(1 + 90118q2 + O(q3)) by (11) and the leading exponents of Fourier
expansions of chV and f1 are−41/30 and leading coefficients are 1. Moreover,
there are at least three simple V -modules.

Secondly, we show that the conformal weights of simple V -modules ex-
cept V are positive (since this is assumed in Theorem 5). Since the conformal
weight of a simple V -module is non-negative, it suffices to check that any
simple V -module M with the conformal weight 0 is isomorphic to V . Let M
be a V -module. The character chM is a scalar multiple of f1 since chM is
a solution of the monic MLDE (9) and the conformal weight of M is 0 (and
then they have the same leading power of Fourier expansions). It hence fol-
lows from the Fourier expansion (11) that dimM0 �= 0 and dimM1 = 0,
and therefore, the space of vacuum-like elements of M is nontrivial since
L−1M0 ⊂ M1 = 0. Then Proposition 1 shows that HomV (V,M) �= 0 so
that V is isomorphic to M since M is simple. Since from the argument in
the previous paragraph, there are at least three simple V -modules. Hence
the global dimension of V is not smaller than 3 by Proposition 5 and the
very definition of global dimensions, while it follows from (5) and (13) that
S00 =

(√
5 + 5

)
/10. Hence we have

global(V ) = 100/(5 +
√
5)2 = 5(3−

√
5)/2 = 1.90983 · · · < 2

by Proposition 7. Thus we have a contradiction.
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7. Central charge c = 236/7

In this section we will show that there does not exist a simple, rational
VOA V which is of CFT and of finite type, whose central charge is 236/7
and characters are solutions of the monic MLDE (10).

Let V be a simple VOA of CFT type with the central charge 236/7.
Suppose that characters of simple V -modules are solutions of the monic
MLDE (10). Since the set of indicial roots of (10) is {−59/42, 37/42, 43/42}
and the central charge of V is 236/7, as in the arguments given in the
proof of Theorem 8, the sets of conformal weights of simple V -modules
is {0, 16/7, 17/7}.

Let a1, a2 and a3 be homogeneous polynomials of degree 59 (for the ex-
plicit expressions see Appendix A.1). Let x, y and z be the characters simple
modules of the minimal model L(c2,7, 0) (c2,7 = −68/7), whose conformal
weights are 0, −2/7 and −3/7, respectively, i.e.

x = q17/42
∏
n>0

n�≡0,±1
(mod 7)

(1− qn)−1 ,

y = q5/42
∏
n>0

n�≡0,±2
(mod 7)

(1− qn)−1 ,

z = q−1/42
∏
n>0

n�≡0,±3
(mod 7)

(1− qn)−1 .

We now give solutions of (10) whose leading exponents of the Fourier
expansions are indicial roots. The explicit expressions of them are given by

(14)

g1 = a1 (x, y, z) = q−59/42
(
1 + 63366q2 + 46421200q3 + · · ·

)
,

g2 = a2(x, y, z) = 31093q37/42
(
23 + 8288q + 774410q2 + · · ·

)
,

g3 = a3(x, y, z) = 3422q43/42
(
248 + 67983q + 5611328q2 + · · ·

)
,

where a1, a2 and a3 are defined in Appendix A.1. (We will prove that these
are in fact solutions later.) It is known [9, Proposition 2.3] that the func-
tions x, y and z have a homogeneous algebraic relation y3z− z3x− x3y = 0
which yields

(15) a2(x, y, z) = a1(−y, z,−x) and a3(x, y, z) = −a1(−x,−z, y) .
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We first show that the vector-valued function t(g1, g2, g3) is a VVMF.
Obviously gi(τ + 1) is a scalar multiple of gi(τ) for each i. Therefore it
suffices to show that the vector space whose basis is {g1, g2, g3} is invariant
under the transformation S. It is well-known [10, Proposition 6.3] that the
transformations S of the functions x, y and z are given by

(16)

⎛
⎝x
y
z

⎞
⎠
∣∣∣∣∣∣
0

S =
2√
7

⎛
⎝ cos (3π/14) − cos (π/14) sin (π/7)
− cos (π/14) − sin (π/7) cos (3π/14)
sin (π/7) cos (3π/14) cos (π/14)

⎞
⎠

⎛
⎝x
y
z

⎞
⎠ .

The function g1|0S is a polynomial in x, y and z, which is generated by 93
monomials1 (see Appendix A.2). Moreover, we find

(17) g1|0 S = s1g2 + s2a2 + s3g3 ,

where s1 = 2 cos (3π/14) /
√
7, s2 = 2 cos (π/14) /

√
7, s3 = 2 sin (π/7) /

√
7.

Since the left-hand side of (17) equals to

G(x, y, z) = a1(s1x− s2y + s3z,−s2x− s3y + s1z, s3x+ s2y + s1z)

by the very definition, it follows from (15) and (16) that a2(x, y, z)|0 S =
G(−z,−x, y) and a3(x, y z) = −G(−y, z,−x)|0S. Therefore, by (15) and
eq. (17) we have

⎛
⎝g1
g2
g3

⎞
⎠
∣∣∣∣∣∣
0

S =
2√
7

⎛
⎝ cos (3π/14) cos (π/14) sin (π/7)

cos (π/14) − sin (π/7) − cos (3π/14)
sin (π/7) − cos (3π/14) cos (π/14)

⎞
⎠

⎛
⎝g1
g2
g3

⎞
⎠ .

(18)

Hence the column vector-valued function t(g1, g2, g3) is a VVMF.

Proposition 9. The set of functions {g1, g2, g3} defined by (14) is a basis of
the space of solutions of the monic modular linear differential equation (10).

Proof. Since t(g1, g2, g3) is a VVMF and the leading exponents of the q-
expansions of functions g1, g2 and g3 are −59/42, 37/42 and 43/42, respec-
tively, we have 12(−59/42 + 37/42 + 43/42) = 6. Then Proposition 2 yields
that {g1, g2, g3} is a basis of the space of solutions of a monic MLDE of
third order. Moreover, it follows from Lemma 3 that this MLDE coincides
with the monic MLDE (10).

1It follows from (16) that x|0S, y|0S and z|0S are expressed as polynomials
of x, y and z. If x, y and z have not had any algebraic relation, then g1|0S was
written as linear combinations of 1824 monomials.
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Remark. Another poof of Proposition 9 is given in (
) of [1].

Theorem 10. Let V be a simple vertex operator algebra of CFT type with
the central charge 236/7. Suppose that the characters of simple V -modules
are solutions of the monic modular linear differential equation (10). Then V
is not of finite type and rational.

Proof. Suppose that V is rational and of finite type. Since V is of CFT
type and its central charge is 236/7, the character of V coincides with g1.
Because the S-transformation of g1 is a linear combination of the characters
of the simple modules of V by the modular invariance property and (17),
the arguments as in the proof of Theorem 8 show that there are at least 3
simple V -modules and that the conformal weights of simple V -modules are
non-negative and any simple V -module with conformal weight 0 is isomor-
phic to V . The very definition of the global dimension and Proposition 5
show that global(V ) ≥ 3. However, the entry S00 of the S-matrix is equal
to 2 cos (3π/14) /

√
7 by (5) and (18). Hence it follows from Proposition 7

that

global(V ) =
7

4 cos2(3π/14)
= 2.86294 . . . < 2.9 .

Thus we have a contradiction.

Appendix A. Homogeneous polynomials appeared in the
c = 236/7 monic modular linear differential

equation

In this appendix we give the explicit expressions of polynomials which appear
in §7 and give the S-matrix.

A.1. Expressions of polynomials a1, a2 and a3

The polynomials a1, a2 and a3 in x, y and z of degree 59 which appeared
in §7 are explicitly expressed as

a1(x, y, z)

(19)

= 2190849987347x58y + 2190849987347x56z3 + 8816184633328x53y2z4

+ 465452872955x51y8 + 17330415570670x51yz7

+ 10705080924689x49z10 + 20273356011456x46y2z11

+ 97883562370x44y15 + 61661154366700x44yz14
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+ 47658393772643x42z17 + 139841916769201x39y2z18

− 109424817575x37y22 + 320520742923731x37yz21

+ 217896152319363x35z24 + 361856157239137x32y2z25

+ 10067353726x30y29470476510477120x30yz28

+ 252772915072319x28z31 + 223747642357998x25y2z32

− 215505583x23y36 + 149102376058101x23yz35

+ 52937745467620x21z38 + 20641842052772x18y2z39

+ 715139x16y43 + 5462274021285x16yz42

+ 829805597999x14z45 + 80972731266x11y2z46

+ 3431399762x9yz49 + 42913178x7z52 + 64900x4y2z53

− 59x2yz56 + z59,

a2(x, y, z)

(20)

= −x59 + 882794444359x56y2z + 4543893054975x54yz4

+ 138258169436x52y7 + 3661098610557x52z7 + 10224524748288x49y2z8

+ 31490183598954x47yz11 + 6924887466x45y14 + 24043962951905x45z14

+ 80499190812167x42y2z15 + 228094024607248x40yz18

− 59881352148x38y21 + 166226386774472x38z21

+ 352186560279214x35y2z22 + 587928082399742x33yz25

+ 6892739546x31y28 + 354743600999784x31z28

+ 417326748220400x28y2z29 + 377551394875116x26yz32

− 182567122x24y35 + 165247049735260x24z35

+ 94762510467036x21y2z36 + 39200808461423x19yz39

+ 848656x17y42 + 9350127088939x17z42

+ 1876091330673x14y2z43 + 216146813939x12yz46

+ 11583044197x10z49 + 219081278x7y2z50 + 715139x5yz53

and

a3(x, y, z)(21)

= −1282552304527x56y3 − 5134394452787x54y2z3

− 6766778252144x52yz6 − 2914936103884x50z9
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− 368294187889x49y10 + 6031840984522x47y2z10

+ 28126445594091x45yz13 + 21748959064557x43z16

+ 61766535503281x40y2z17 + 150382341083241x38yz20

+ 104928152458177x36z23 + 51886767247x35y24

+ 190254165627419x33y2z24 + 269302315887115x31yz27

+ 150722349577506x29z30 − 3132177486x28y31

+ 147021943645516x26y2z31 + 109111294527183x24yz34

+ 41709068640197x22z37 + 42653165x21y38

+ 18683198910349x19y2z38 + 5796683914336x17yz41

+ 1045910881484x15z44 − 65018x14y45 + 133937600144x12y2z45

+ 8366006362x10yz48 + 186810402x8z51

− 144799582921x42y17 − 59x7y52 + 848656x5y2z52 − y59 .

A.2. S-transformation of a1(x, y, z)

Let c1 = 2 cos(3π/14)/
√
7, c2 = 2 cos(π/14)/

√
7 and c3 = 2 sin(π/7)/

√
7.

Then the function a1 (x, y, z) |0S is written in terms of x, y and z by

a1 (x, y, z) |0S(22)

= c1(2190849987347x
58y + 2190849987347x56z3 + 8816184633328x53y2z4

+ 465452872955x51y8 + 17330415570670x51yz7 + 10705080924689x49z10

+ 20273356011456x46y2z11 + 97883562370x44y15 + 61661154366700x44yz14

+ 47658393772643x42z17 + 139841916769201x39y2z18 − 109424817575x37y22

+ 320520742923731x37yz21 + 217896152319363x35z24 + 361856157239137x32y2z25

+ 10067353726x30y29 + 470476510477120x30yz28 + 252772915072319x28z31

+ 223747642357998x25y2z32 − 215505583x23y36 + 149102376058101x23yz35

+ 52937745467620x21z38 + 20641842052772x18y2z39 + 715139x16y43

+ 5462274021285x16yz42 + 829805597999x14z45 + 80972731266x11y2z46

+ 3431399762x9yz49 + 42913178x7z52 + 64900x4y2z53 − 59x2yz56 + z59)

+ c2(−x59 + 882794444359x56y2z + 4543893054975x54yz4 + 138258169436x52y7

+ 3661098610557x52z7 + 10224524748288x49y2z8 + 31490183598954x47yz11

+ 6924887466x45y14 + 24043962951905x45z14 + 80499190812167x42y2z15

+ 228094024607248x40yz18 − 59881352148x38y21 + 166226386774472x38z21

+ 352186560279214x35y2z22 + 587928082399742x33yz25 + 6892739546x31y28

+ 354743600999784x31z28 + 417326748220400x28y2z29 + 377551394875116x26yz32
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− 182567122x24y35 + 165247049735260x24z35 + 94762510467036x21y2z36

+ 39200808461423x19yz39 + 848656x17y42 + 9350127088939x17z42

+ 1876091330673x14y2z43 + 216146813939x12yz46 + 11583044197x10z49

+ 219081278x7y2z50 + 715139x5yz53) + c3(−1282552304527x56y3

− 5134394452787x54y2z3 − 6766778252144x52yz6 − 2914936103884x50z9

− 368294187889x49y10 + 6031840984522x47y2z10 + 28126445594091x45yz13

+ 21748959064557x43z16 − 144799582921x42y17 + 61766535503281x40y2z17

+ 150382341083241x38yz20 + 104928152458177x36z23 + 51886767247x35y24

+ 190254165627419x33y2z24 + 269302315887115x31yz27 + 150722349577506x29z30

− 3132177486x28y31 + 147021943645516x26y2z31 + 109111294527183x24yz34

+ 41709068640197x22z37 + 42653165x21y38 + 18683198910349x19y2z38

+ 5796683914336x17yz41 + 1045910881484x15z44 − 65018x14y45

+ 133937600144x12y2z45 + 8366006362x10yz48 + 186810402x8z51

− 59x7y52 + 848656x5y2z52 − y59) .

Appendix B. Expressions of the j-function in terms of
solutions of monic modular linear differential

equations

We denote the j-function by simply j. Then it is conjectured in (3.8) and
Table 2 of [8] that

j = 1728E3
4/(E

3
4 − E2

6) = q−1 + 744 + 196884q +O(q2)

is expressed in terms of solutions of the MLDE (9), (10), i.e. the characters
of simple modules of L(−22/5, 0)⊗ L(−22/5, 0) and L(−68/7, 0).

Conjecture. We have

(23) j − 744 = h2f1 − 50ghf2 + g2f3 = xg1 − yg2 + zg3 ,

respectively.

In [8] they checked these relations numerically using Fourier expansions.
Here we give a rigorous proof of the formula (23). The first and the second
equalities are proved as Theorem 11 and Theorem 12, respectively.

Theorem 11. We have j−744 = h2f1−50ghf2+g2f3. In particular, j−744
is a homogeneous polynomial in g and h of degree 84.
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Proof. The first three terms of the Fourier expansion of the right-hand side

is q−1+196884q+O(q2), which is equal to the first three terms of the Fourier

expansion j− 744. Therefore the difference j− 744− (h2f1− 50ghf2+ g2f3)

is holomorphic and zero at τ = +i∞. Since j − 744 is a modular function,

it suffices to show that the right-hand side is also a modular function.

It follows from (12) and (13) that

(
h2f1 − 50hgf2 + g2f3

)
|0S

= (h2|0S, hg|0S, g2|0S)

⎛
⎝1 0 0
0 −50 0
0 0 1

⎞
⎠

⎛
⎝f1|0S
f2|0S
f3|0S

⎞
⎠

= (h2, hg, g2)A

⎛
⎝f1
f2
f3

⎞
⎠ ,

where

A =
1

102

⎛
⎝5 +

√
5 −2

√
5 5−

√
5

−4
√
5 −2

√
5 4

√
5

5−
√
5 2

√
5 5 +

√
5

⎞
⎠

⎛
⎝1 0 0
0 −50 0
0 0 1

⎞
⎠

×

⎛
⎜⎝
√
5 + 5 100

√
5 5−

√
5

2
5
√
5

−2
√
5 − 2

5
√
5

5−
√
5 −100

√
5

√
5 + 5

⎞
⎟⎠

=

⎛
⎝1 0 0
0 −50 0
0 0 1

⎞
⎠ .

Hence we have
(
h2f1 − 50hgf2 + g2f3

)
|0S = h2f1 − 50hgf2 + g2f3.

Secondly, we prove the second equality of (23). As in the proof of the

first equality at least the first three terms of the Fourier expansions of both

hand sides are equal. Therefore it suffices to show that the right-hand side

is a modular function since the difference between both is a holomorphic

cusp form. It can be verified by (16) and (18) that xg1 − yg2 + zg3 and its

S-transformation are equal to

(xg1 − yg2 + zg3)|0S = (x|0S, y|0S, z|0S)

⎛
⎝1 0 0
0 −1 0
0 0 1

⎞
⎠

⎛
⎝g1|0S
g2|0S
g3|0S

⎞
⎠
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= (x, y, z)B

⎛
⎝g1
g2
g3

⎞
⎠ ,

where the matrix B is

4

7

⎛
⎝ cos (3π/14) − cos (π/14) sin (π/7)
− cos (π/14) − sin (π/7) cos (3π/14)
sin (π/7) cos (3π/14) cos (π/14)

⎞
⎠

⎛
⎝1 0 0
0 −1 0
0 0 1

⎞
⎠

×

⎛
⎝cos (3π/14) cos (π/14) sin (π/7)

cos (π/14) − sin (π/7) − cos (3π/14)
sin (π/7) − cos (3π/14) cos (π/14)

⎞
⎠ =

⎛
⎝1 0 0
0 −1 0
0 0 1

⎞
⎠ .

Therefore, we have proved the following theorem.

Theorem 12. We have j − 744 = xg1 − yg2 + zg3. In particular, j − 744 is
a homogeneous polynomial in x, y and z of degree 60.

Remark. The functions η2/5h and η2/5g are holomorphic modular forms
of weight 1/5 on the principal congruence subgroup Γ(5), and the functions
η4/7x, η4/7y and η4/7z are holomorphic modular forms of weight 2/7 on Γ(7),
where η is the Dedekind eta function. Thus the both-sides of (23.1) and
(23.2) multiplied by powers of η are modular forms of weight 84/5 on Γ(5)
and of weight 120/7 on Γ(7), respectively. Since the generators and relations
of the rings of holomorphic modular forms of weight (1/5)Z on Γ(5) and
of weight (2/7)Z on Γ(7) are determined in [9, Lemma 1.7], one can prove
Theorems 11 and 12 by comparing finite number of Fourier coefficients.
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