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Quantum Langlands dualities of boundary
conditions, D-modules, and conformal

blocks

Edward Frenkel and Davide Gaiotto

We review and extend the vertex algebra framework linking gauge
theory constructions and a quantum deformation of the Geometric
Langlands Program. The relevant vertex algebras are associated to
junctions of two boundary conditions in a 4d gauge theory and can
be constructed from the basic ones by following certain standard
procedures. Conformal blocks of modules over these vertex algebras
give rise to twisted D-modules on the moduli stacks of G-bundles
on Riemann surfaces which have applications to the Langlands
Program. In particular, we construct a series of vertex algebras
for every simple Lie group G which we expect to yield D-module
kernels of various quantum Geometric Langlands dualities. We pay
particular attention to the full duality group of gauge theory, which
enables us to extend the standard qGL duality to a larger duality
groupoid. We also discuss various subtleties related to the spin and
gerbe structures and present a detailed analysis for the U(1) and
SU(2) gauge theories.

1. Introduction

A geometric version of the Langlands Program originated in the 1980s in
the works of Deligne, Drinfeld, and Laumon. In the early 1990s, Beilinson
and Drinfeld discovered its deep connections to 2d conformal field theory
and representation theory of affine Kac–Moody algebras at the critical level
[11]. This led them to the insight that deforming the Kac–Moody level, one
should be able to obtain a quantum deformation of the Geometric Langlands
correspondence (see [65] for an early formulation). Today, this is usually
stated as a conjectural equivalence between derived categories of twisted
D-modules on the moduli stacks BunG and BunLG of bundles on a com-
pact Riemann surface X for a pair of Langlands dual simple1 Lie groups G

1This can be generalized to reductive Lie groups. For abelian G, it has been
proved in [60].
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and LG:

(1.1) Sm : Dκ(BunG) ←→ D−1/mκ(BunLG)

where m is the lacing number of G and we equip X with a spin structure2

(it is expected that S2
m is the identity in the categorical sense). Here κ is

a twisting parameter for D-modules corresponding to the level of the affine

Kac–Moody algebra ĝ shifted by the critical value. The equivalence (1.1) is

expected to hold for irrational κ (i.e. κ ∈ C\Q) and satisfy some natural

compatibilities. For rational κ some modifications may have to be applied

to the above categories for it to hold.

The ordinary (non-quantum) Geometric Langlands correspondence ap-

pears in the κ → 0 limit of (1.1). In this limit D−1/mκ(BunLG) becomes a

suitably modified version of the derived category of quasicoherent sheaves

on LocLG, the moduli stack of flat LG-bundles on X (see [6] for a precise

conjecture).

In the past twenty years, a great effort has been made to search for gen-

eral methods and structures that could shed light on how and why quantum

Geometric Langlands (qGL) duality (1.1) comes about (see [23, 55, 54, 67,

44, 46, 36, 37, 16, 1] for a partial list of references).

It turns out that a lot of valuable information can be obtained from

the study of dualities in 4d supersymmetric gauge theories. In their ground-

breaking work [55], Kapustin and Witten related quantum qGL duality (1.1)

to the S-duality of twisted 4d gauge theories and mirror symmetry of Hitchin

moduli spaces (see also [54, 68]). In their approach, S-duality is manifested

as an equivalence of certain categories of branes on the Hitchin moduli spaces

for G and LG, which they have linked to categories of D-modules. On the

other hand, Witten and one of the authors undertook in [40, 41] an in-depth

study of boundary conditions in 4d gauge theory and their behavior under

quantum dualities. This dramatically expanded the class of 4d gauge theory

data that one could employ to gain further insights into the qGL dualities.

In this paper, we build on these results, as well as the recent works

[36, 37, 39, 16], to present a systematic study of the quantum Geometric

Langlands dualities in the framework of boundary conditions in 4d gauge

theory and the corresponding junction vertex algebras. Here we list the main

ingredients of our approach:

2Without a choice of spin structure the statement is modified in an interesting
way, which we will review later on.
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(i) We heed a lesson of 4d gauge theory and consider, instead of a single

duality Sm sending κ �→ −1/mκ and G �→ LG, the full group (more

precisely, a groupoid) of quantum dualities. It combines Sm with the

dualities Tn sending κ → κ + n, n ∈ n(G) · Z and G �→ G, which

correspond to the equivalences

(1.2) Dκ(BunG) ←→ Dκ+n(BunG)

given by taking the tensor product with a power of a “minimal” line

bundle LG on BunG (corresponding to level n(G) defined in Sec-

tion 3.3). The functors Sm and Tn are then expected to generate a

categorical action of a certain groupoid GG
κ on the categories of twisted

D-modules on BunG (at least, for irrational κ). Thus, for any g ∈ GG
κ

we should have functors

(1.3) EG,g
κ : Dκ(BunG) → Dg(κ)(Bung(G)),

satisfying the relations in the groupoid GG
κ , which ultimately boil down

to relations between the elements

(1.4) Sm =

(
0 −1
m 0

)
T =

(
1 1
0 1

)

in the group PGL2(Z). The study of all of these functors together

(rather than Sm of (1.1) alone) allows for a much greater flexibility

and leads to a number of non-trivial consequences.3

(ii) We start with the basic boundary conditions of the twisted 4d gauge

theory labeled by (G, κ): Dirichlet, Neumann, and Nahm, and consider

their images under the action of the groupoid GG
κ . Thus, we obtain a

big collection of boundary conditions B. To each of them corresponds

a ribbon category CG
κ (B) of line defects (or a spin-ribbon category if we

choose a spin structure on the underlying manifold; we could also view

3For a non-simply connected group G only powers of T divisible by a positive
integer n(G) are allowed as quantum dualities. However, gauge theory predicts
that an extension of the duality groupoid GG

κ , generated by Sm and T , acts on the
more general categories of gerbe-twisted D-modules on BunG′ where G′ is in the
isogeny class of G or LG but does not necessarily coincide with either of them. The
vertex algebra technology provides information about these new dualities as well,
and about further refinements which occur when the choice of spin structure on X
is removed.
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them as chiral categories). In general, this is a derived, or a DG, cat-
egory. We describe these categories for the basic boundary conditions
explicitly (see Section 3.1). We then assign to a boundary condition
g(B) with label (g(G), g(κ)), where B is basic and g ∈ GG

κ , the same
category CG

κ (B). All equivalences of categories that this assignment en-
tails are assumed to hold (in particular, this way we naturally get the
statement that CG

κ (Neumann) is equivalent to C
LG
1/mκ(Nahm), which is

related to a conjecture of Gaitsgory and Lurie [44, 46]).
(iii) For each Riemann surface X and a point x ∈ X, there is a compactifi-

cation functor from the category of line defects CG
κ (B) to Dκ(BunG).

Thus, we can go from line defects of boundary conditions directly to
objects of the derived category Dκ(BunG) (in what follows we will
refer to them simply as twisted D-modules on BunG), bypassing the
categories of branes. These functors have multi-point generalizations.

(iv) To each junction of boundary conditions B1 → B2 in the 4d theory
labeled by (G, κ) one associates a vertex algebra V G

κ (B1 �B2) and a
functor

CG
κ (B1)

∨ � CG
κ (B2) → V G

κ (B1�B2) -mod .

We argue that the compactification functor of (iii) can be constructed
rigorously as a localization functor for the vertex algebra V G

κ (DG
0,1

�B),

where DG
0,1 → B is any non-degenerate junction from the Dirichlet

boundary condition DG
0,1 to B.

The notion of localization functor is familiar from representation the-
ory of vertex algebras and 2d conformal field theory (see e.g. [25]).
It assigns to a module over a vertex algebra with affine Kac–Moody
symmetry its sheaf of coinvariants twisted by various G-bundles (these
are the dual spaces to the spaces of conformal blocks). This sheaf is
naturally a twisted D-module on BunG.

(v) We conjecture that morphisms between the D-modules associated to
objects in CG

κ (B1) and CG
κ (B2) can be identified with the spaces of

coinvariants of the corresponding modules over the vertex algebra
V G
κ (B1 �B2) for a non-degenerate junction B1 → B2 (for such junc-

tions it follows therefore that the spaces of coinvariants of V G
κ (B1�B2)-

modules should be independent of the specifics of the junction B1 →
B2).

(vi) For irrational κ, we conjecture that a kernel of the equivalence E
G,g
κ

given by (1.3) can be constructed as the sheaf of coinvariants of the
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vertex algebra

V G
κ (D0,1�g(D0,1))

associated to a non-degenerate junction D0,1 → g(D0,1), where g(D0,1)
is the boundary condition in 4d gauge obtained by applying the du-
ality g ∈ GG

κ to the Dirichlet boundary condition DG
0,1. Unlike DG

0,1,
these dual boundary conditions are notoriously difficult to describe
directly (see [40, 41]). However, as we explain below, there are various
tricks which enable us to construct explicitly various vertex algebras
V G
κ (D0,1�g(D0,1)) without knowing what g(D0,1) is. In fact, in this pa-

per we construct two families of such vertex algebras with the favorable
property that all of their conformal dimensions (apart from the vac-
uum) are strictly positive and the graded components corresponding
to all conformal dimensions are finite-dimensional.

Although 4d gauge theory is a powerful motivator, many of these results
and conjectures can be understood directly and rigorously in terms of the
junction vertex algebras and their properties. Thus, the junction vertex al-
gebras enable us to translate subtle and complicated structures of 4d gauge
theory into a simpler, mathematically rigorous world of vertex algebras,
their modules, conformal blocks and localization functors. In this world, the
structures relevant to the qGL dualities can be expressed in terms of a kind
of lego game, in which building blocks are labeled by the basic boundary
conditions and their images under various dualities (a precise nomenclature
is set up in Section 3.5).

To each junction between these blocks and a label (G, κ), which identifies
the bulk 4d gauge theory in which the junction is implemented, we assign a
vertex algebra. (We want to emphasize that a given pair of boundary condi-
tions may have many different junctions; the corresponding vertex algebras
may well be non-isomorphic.) There are several basic junctions for which we
know the corresponding vertex algebra at the outset. For instance, a junction
from Dirichlet to Neumann gives us an affine Kac–Moody algebra, a junc-
tion from Nahm to Neumann gives us the corresponding W-algebra, and so
on. And then there are two standard moves which enable us to produce new
junctions and new vertex algebras.

The first move is composition: we can compose two junctions B1 →
B2 and B2 → B3 with label (G, κ) to produce a new junction B1 → B3

with the same label. Furthermore, for many junctions, we can construct the
corresponding vertex algebra explicitly. For irrational κ, it is an extension
of the tensor product of the vertex algebra associated to B1 → B2 and the
vertex algebra B2 → B3 by a specific family of modules.
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The second move is duality : the vertex algebras arising in different du-
ality frames of a given junction should be the same. In other words, for each
element g of the duality groupoid GG

κ , the vertex algebra assigned to a junc-
tion B1 → B2 with a label (G, κ) should be isomorphic to the vertex algebra
associated to its duality image g(B1) → g(B2) with the label (g(G), g(κ)).
If both junction vertex algebras can be constructed explicitly, we obtain an
isomorphism between them, which could be non-trivial (such as the duality
of W-algebras [22]). More often than not, however, only one of these vertex
algebras is known a priori, and then this move gives us a way to define the
other vertex algebra.

Thus, we obtain “junction calculus” with two standard moves at our dis-
posal: composition of two junctions produces another junction, and changing
the duality frame of a junction gives rise to an equivalent junction. Iterating
these moves, we obtain a vast array of junctions, and hence the correspond-
ing vertex algebras, many examples of which are presented below.

Since all these structures arise from the 4d gauge theory, we expect
that this junction calculus satisfies a kind of bootstrap consistency. In other
words, whenever we obtain the same junction by means of different sequences
of the standard moves applied to basic junctions, the corresponding vertex
algebras should be isomorphic. It is interesting to ask what sort of math-
ematical structure this represents and what are the minimal requirements
for its consistency (as a useful analogy, consider the Kirby calculus). We do
not address this question in the present paper, but hope to return to it in
a future work. Here we focus on various applications of the rich framework
provided by this junction calculus.

The first application has already been mentioned in (vi) above: we can
construct junctions DG

0,1 → g(DG
0,1) from Dirichlet to its g-dual boundary

condition. The corresponding vertex algebra has two commuting affine Kac–
Moody algebra symmetries: ĝ and ĝ′, where g′ is the g-dual of g (i.e. it is g
or Lg depending on what g is). We conjecture that the sheaf of coinvariants
of this vertex algebra on BunG×Bung(G) is a kernel of the qGL equivalence

E
G,g
κ corresponding to g (see formula (1.3)).

Our construction of the kernels is automatically compatible with the
expected characteristic property of the functor Sm; namely, that it should
relate two important families of D-modules:

(1.5) Sm : Dxi,λi
κ ←→ Ψxi,λi

−1/mκ, xi ∈ X, λi ∈ P+(G)

which are local modifications of the sheaf Dκ of κ-twisted differential op-
erators on BunG and the Whittaker sheaf Ψ−1/mκ on BunLG defining a ge-
ometric analogue of the Whittaker functional on the space of automorphic
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functions (the Whittaker sheaf may also be viewed as a quantization the

structure sheaf of the oper manifold, which appears in the limit κ → 0).

The second application is that we can express morphisms between vari-

ous D-modules F1 and F2 on BunG in terms of conformal blocks of a suitable

vertex algebra. The most basic example is when F1 is the D-module of δ-

functions supported at a point P ∈ BunG and F2 is in the image of the

compactification functor corresponding to a boundary condition B. In this

case, Hom(F1,F2) should be isomorphic to the space of P-twisted coinvari-

ants of a module over the vertex algebra obtained from the junction from

Dirichlet to B.

For example, the fibers of the D-modules D
xi,λi
κ at points of BunG are

the spaces of coinvariants of the tensor product of the corresponding Weyl

modules over the Kac–Moody vertex algebra Vκ(g).

As another example, the vector space

(1.6) Hom(Ψxi,μ∨
i

κ ,Dxi,λi
κ )

is expected to be isomorphic to the space of coinvariants of the W-algebra

Wκ(g) obtained by the quantum Drinfeld–Sokolov reduction of Vκ(g).

A pair of boundary conditions, B1 and B2 may well have different junc-

tions B1 → B2 which give rise to non-isomorphic vertex algebras. However,

we conjecture that the corresponding spaces of coinvariants of modules over

these vertex algebras are isomorphic to each other for all non-degenerate

junctions. Some of these isomorphisms may be quite non-trivial.

The third application is that we can construct many interesting D-

modules that are qGL dual to each other. For example, take G = GL(n)

or semisimple and self-dual with m = 1 (this means that G is a prod-

uct of E8 factors). Then the entire group PSL2(Z) is realized by functors

E
G,g
κ , and we have a relation (ST )3 = 1. Furthermore, the functor T leaves

Ψ
xi,μ∨

i
κ invariant, which implies that STS must send D

xi,λi
κ to D

xi,λi

STS(κ). But

STS = T−1ST−1. We thus learn (almost for free!) that under the qGL

duality S,

(1.7) L−1
G ⊗D

xi,λi

κ+1 ∈ Dκ(BunG) ←→ LG ⊗D
xi,λi

−κ−1−1 ∈ D−1/κ(BunG).

Many non-trivial and perhaps even surprising statements of this kind can

be obtained this way.

Finally, we expect that it is possible to obtain a kernel of the Geometric

Langlands duality proper as a carefully defined critical level limit κ → 0
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of the kernels constructed using the junction calculus (see Section 6.7 for a
brief discussion). We leave the details to a future work.

The paper is organized as follows. In Section 2 we give a brief overview of
the subject, summarizing the links between boundary conditions in 4d gauge
theories, vertex algebras, and D-modules on BunG. In Section 3 we focus on
a specific class of 4d gauge theories, the GL twisted N = 4 supersymmet-
ric theories defined in [55]. For these theories, we give concrete examples of
boundary conditions and categories associated to them, junction vertex alge-
bras, compactification functors, and the action of the duality groupoid. We
also formulate conjectures linking conformal blocks of the junction vertex
algebras and morphisms between D-modules on BunG obtained via the com-
pactification functors. In Section 4 we explain how the action of the duality
groupoid on the categories of line defects associated to boundary conditions
gives rise to qGL dualities between categories of twistedD-modules on BunG
and BunLG. In Section 5 we present an explicit construction of a family of
junction vertex algebras Xp,q(G) for an arbitrary simple Lie group G, whose
sheaves of coinvariants we expect to give rise to kernels of specific qGL du-
alities. For positive p and q with either of them greater than 1, these vertex
algebras have the favorable property that conformal dimensions of all fields
other than the vacuum are strictly positive.

Section 6 starts with a detailed discussion of the links between the D-
modules and the branes associated to the basic boundary conditions. We
then explain how the compactification functor (with values in twisted D-
modules on BunG) comes about from the point of view of 4d gauge theory
and from the point of view of the theory of vertex algebras. In particular,
we show that under some natural assumptions it can be constructed as the
localization functor for the corresponding junction vertex algebra (up to
tensoring with a line bundle on BunG). In Sections 7 and 8 we discuss in
more detail various examples of the categories of line defects and junction
vertex algebras arising from 4d gauge theories with gauge groups U(1) and
SU(2)/SO(3), respectively, paying special attention to the spin and gerbe
subtleties. These subtleties for general groups are discussed in Section 9.
Finally, in Section 10, we produce more examples of kernel vertex algebras
for general simple Lie groups. Section 11 lists some open questions and
directions for future research.

2. Overview of the gauge theory setup

Here we summarize the links between boundary conditions in 4d super-
symmetric gauge theories, vertex algebras, and D-modules on the moduli
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stack BunG of G-bundles on a curve X. We also discuss the relations be-
tween dualities of gauge theories, quantum Langlands dualities, and various
operations on vertex algebras. The purpose of this section is to give a bird’s-
eye view of the subject. Therefore, we only give brief descriptions of some
these objects and emphasize the links between them. More details are given
in the subsequent sections. We also refer the reader to the earlier works
[40, 41, 36, 37, 39, 16].

Useful mathematical groundwork on boundary conditions for 4d super-
symmetric gauge theories is presented in [19, 14]. Some important links
between boundary conditions and the Geometric Langlands Program have
been found in (yet unpublished) work by Yoo [69]. That includes, in par-
ticular, the characterization (reviewed below) of the categories of boundary
line defects at Neumann and Nahm boundary conditions and their junction
local operator algebras. The characterization of the category of line defects
at Dirichlet boundary conditions was developed by Yoo and one of the au-
thors in the course of an ongoing project on the local Geometric Langlands
Program [43].

Several of the statements below have a rather natural TFT interpreta-
tion. Despite that, we warn the reader that our setup differs in an important
way from the standard TFT setup, where one may describe a 4d topologi-
cal theory as some sort of 3-category, with objects associated to topological
3d boundary conditions, morphisms associated to topological 2d junctions,
2-morphisms associated to 1d junctions of junctions, etc.

Topologically twisted 4d gauge theory is equipped with topological 3d
boundary conditions, which are the main actors in our setup. On the other
hand, it admits no topological 2d junctions between generic pairs of bound-
ary conditions. Instead, it admits holomorphic 2d junctions, which support
interesting vertex algebras of local operators. These vertex algebras are our
main computational tools.4

In this paper we do not employ the full toolbox available to us in topo-
logically twisted 4d gauge theory. In particular, this toolbox includes topo-
logical 3d interfaces (domain walls) and topological 2d surface defects. These
tools are invaluable for uncovering other aspects of qGL dualities: the study
of interfaces will enable us to construct functors between the categories of
D-modules on BunG and BunH , generalizing the geometric Langlands func-
toriality (see Sect. 4 of [27]); the study of surface defects will allow us to

4The resulting structure is a higher analogue of the structure which arises nat-
urally in the study of 3d Chern–Simons theory, which is a topological field theory
but typically admits no topological 2d boundary conditions. Instead, it admits holo-
morphic 2d boundary conditions, supporting rational vertex algebras.
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introduce ramification into the picture (generalizing [51]), and to set up a
proper framework for the local qGL dualities respectively. We leave these
topics for future work.

Our main objective in this paper is to understand the compactification
functor associated to a (possibly decorated) Riemann surface X. Intuitively,
this is the map from structures in the 4d gauge theory T to structures in the
effective 2d topological theory T[X] which describes the compactification of
T on X.

In the first approximation, this 2d theory is a twisted sigma model whose
target as the moduli space MH(G) of solutions of Hitchin’s equations [52].
However, this description is incomplete and inadequate for understanding
important objects and phenomena in this 2d theory, such as boundary con-
ditions. Mathematically, this can be expressed as saying that in the first
approximation, the category of 1d boundary conditions in the 2d theory
T[X] is described by some category of branes on MH(G), but this descrip-
tion omits important boundary conditions. A better choice is the category
of twisted D-modules on BunG, and for irrational values of the coupling
constant κ (which corresponds to the twisting parameter) we do expect this
to be the correct answer. But for rational values of κ there are subtle dif-
ferences between the category of 1d boundary conditions in T[X] and the
category of κ-twisted D-modules on BunG; this can be seen in the fact that
some of the D-modules may be unphysical because of various issues with
the 2d theory (see Remark 6.1 below).

In this paper we will mostly sidestep these concerns. Our objective is
not to identify specific categories of κ-twisted D-modules on BunG for which
qGL duality would be an equivalence for all values of κ. Rather, we want
to find an explicit and practical description of the compactification functor
mapping decorated boundary conditions of the 4d gauge theory and various
junctions between them to twisted D-modules on BunG and morphisms
between them.

Once we achieve that, the general machine of 4d gauge theory dualities
will then allow us to construct specific collections of qGL dual twisted D-
modules with matching properties as well as a variety of duality “kernels”.
We expect that studying these data further will ultimately allow us to define
the qGL dualities precisely and in full generality.

See Table 1 for a brief summary of the role played by objects in various
dimensions.

2.1. Categories of boundary lines

The starting point is the following:
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Table 1: A brief summary of the relations between gauge theory, vertex
algebra and quantum Geometric Langlands structures

Gauge Theory Vertex Algebra Compactification on X

4d bulk theory Tκ
G ? “Dκ(BunG)”

3d boundary Spin ribbon (chiral) Functor
condition B category C(T, B) C(T, B) → Dκ(BunG)
2d junction Vertex algebra with Conformal blocks
B1 → B2 C∨

1 � C2 action map to morphisms

• Each boundary condition B in a 4d topologically twisted supersymmet-

ric gauge theory T gives rise to a ribbon category (as defined e.g. in

[21]) C(T, B) of “boundary line defects”.

In a more careful treatment, we should replace ribbon categories with

chiral categories (see e.g. [62]), which are better suited for algebraic-geomet-

ric considerations. Furthermore, in general C(T, B) should be a derived, or

a DG category. We will mostly ignore this issue because in the examples we

consider below (corresponding to the irrational level κ) we can work with

the abelian categories.

Upon compactification of B on a Riemann surface X, possibly decorated

by line defects at points xi ∈ X, we expect to obtain an object in the category

of 1d boundary conditions for the 2d theory T[X]. This map should give rise

to a functor from C(T, B)�C(T, B)�· · · , with different factors corresponding

to different points xi, to that category, which is compatible with braiding

and fusion.

Without loss of generality, we can focus on a single point x ∈ X and

denote the corresponding compactification functor from C(T, B) by FB
T .

2.2. Vertex algebra at a junction

Given a 4d bulk theory T and two 3d boundary conditions B1 and B2, we

can look for 2d junctions interpolating from one boundary condition to the

other. We denote such a junction as J12 : B1 → B2. In general, the same

pair of boundary conditions may admit a variety of distinct junctions, with

microscopic definitions which may involve various auxiliary holomorphic 2d

degrees of freedom.

Most of the time, we will suppress the specific choice of junction J12 in

our notation, unless we want to draw special attention to it.
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Figure 1: The main physical actors: a 4d theory, 3d boundary conditions B
and B′, boundary line defects λi and λ′

i placed at xi ∈ X, a 2d junction
J , the vertex algebra A of junction local operators, the A-modules Mλi,λ′

i

of local operators at the endpoints of boundary line defects at the junction.
We drew B and B′ as orthogonal in the topological plane transverse to the
junction, but any angle is possible.

To these data, we expect to associate a vertex algebra V (T, B1�B2) of

local operators together with a functor

FT,B1
�B2

: C(T, B1)
∨ � C(B2) → V (T, B1�B2) -mod,

where C(T, B1)
∨ is the dual category to C(T, B1).

5

Physically, the functor maps boundary lines to the spaces of local opera-

tors supported at points where the lines end at the junction. These naturally

form a module for the vertex algebra V (T, B1 �B2) of local operators sup-

ported at generic points of the junction. See Figure 1 for an illustration of

these ideas.

This functor is not an equivalence in general, but we expect it to be

fully faithful in many interesting cases. If is it fully faithful, we will call the

junction non-degenerate.

5In special situations, the bulk 4d theory may admit non-trivial category S(T)

of bulk line defects, with functors to the categories of boundary lines. If that’s the

case, the product should taken over this category. Also, it might be necessary to

consider here the dual of the derived, or DG, categories.
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2.3. Conformal blocks

It is natural to consider conformal blocks (more precisely, their dual spaces
called spaces of coinvariants, see [28, 12] and Section 6 below) of a junction
vertex algebra V (T, B1 �B2), possibly involving the V (T, B1 �B2)-modules
associated to the corresponding ribbon categories.

We will get such a space of conformal blocks for any choice of curve
X, possibly decorated by modules placed at one or more points xi ∈ X.
By construction, the operation of taking conformal blocks (or coinvariants)
gives a functor from the category of N -tuples of V (T, B1 �B2)-modules to
vector spaces, where N is the number of points. In what follows, we restrict
ourselves to the caseN = 1, but a generalization toN > 1 is straightforward.

What interests us the most is that there is a direct link between mor-
phisms between the images of the compactification functor and conformal
blocks of the corresponding V G

κ (B1�B2)-module.
More precisely, let A1 ∈ Ob(C(T, B1)), A2 ∈ Ob(C(T, B2)). Then on

the one hand, these objects can be sent by the compactification functors to
objects A1 = FB1

T (A1) and A2 = FB2

T (A2) of the category of 1d boundary
conditions for T[X].

On the other hand, FT,B1
�B2

(A∨
1 ⊗A2) is a V (B1�B2)-module.

Conjecture 2.1. Suppose that the functor FT,B1
� B2

is fully faithful. Then
Hom(A1,A2) is isomorphic to the space of coinvariants of the V (B1 �B2)-
module FT,B1

� B2
(A∨

1 ⊗A2).

This is the main tool we will employ to reconstruct the compactification
functor.

We also have the following

Conjecture 2.2. Suppose that the functor FT,B1
� B2

is fully faithful. Then
the category of V (B1 �B2)-modules and the corresponding spaces of coin-
variants (and conformal blocks) depend only on B1 and B2 and not on the
junction data between them.

In Sections 3.8 and 6.5 we will explain the significance of these conjec-
tures.

The physical interpretation of these conjectures is straightforward. It
involves the space of states for the theory on a space manifold of the form
[0, 1] × X, with boundary conditions B1 and B2 at the endpoints of the
segment.

By definition, the space of states computes the Hom in the category of
boundary conditions in T[X]. It can also be interpreted as the space of states
of the 3d TFT resulting from compactification of T on the segment.



212 Edward Frenkel and Davide Gaiotto

Figure 2: The space-time justification for relating conformal blocks of junc-
tion vertex algebras and the Hilbert space of states on [0, 1]×X with B and
B′ boundary conditions: the junction creates states in the the Hilbert space.
The X holomorphic direction is not depicted.

The 2d junction descends to a boundary condition for such a TFT. Our
conjectures can then be seen as a variant of the standard relation between
the space of states of a 3d TFT and the space of conformal blocks of its
boundary vertex algebras. See Figure 2 for an illustration of this setup.

Remark 2.1. We can illustrate such a relation in further detail for the
simplest situation namely, a 3d TFT T [C] described by some modular tensor
category C and a 2d rational vertex algebra A. This is not an example which
occurs in our setup (except when describing some useful auxiliary degrees
of freedom in later sections) but it is nevertheless instructive.

Any rational vertex algebra A gives rise to a modular tensor category
A−mod. That means A can always be found at a boundary for the 3d
TFT T [A−mod] defined by A−mod. The space of states of T [A−mod] on a
Riemann surface X coincides with the space of conformal blocks of A on X.

However, the vertex algebra A can also be found as the algebra of bound-
ary local operators at boundaries of other 3d TFTs. The MTC A−mod has
a universal property: any boundary condition for T [C] supporting A can
be factored as the composition of the canonical boundary condition for the
T [A−mod] 3d TFT and a topological interface from T [C] to T [A−mod].

In particular, the functor C → A−mod from lines to local operators
can be reinterpreted as, or factored through, the functor which describes
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the action of such an interface on the lines of the 3d TFTs. The interface,

though, also controls the relation between the spaces of states for the two

3d TFTs on any Riemann surface.

Hence in this basic setup one can derive sharp statements relating the

properties of a functor C → A−mod and the relation between the spaces of

states of T [C] and conformal blocks of A.

2.4. Boundary conditions with global symmetries

A final ingredient is the observation that certain boundary conditions are

equipped with a non-trivial group of global symmetries, which is defined

independently of the gauge symmetry of the bulk theory.

Whenever boundary condition B has a non-trivial global symmetry

group H, the compactification functor can be modified by coupling the sys-

tem to an H-bundle on X. This gives families of 1d boundary conditions for

T[X] parametrized by BunH .

Furthermore, junctions of the form B → B′ or B′ → B which pre-

serve the H symmetry will support vertex algebras with an H-symmetry

implemented by an ĥ Kac–Moody subalgebra. As a consequence, spaces of

coinvariants can be promoted to twisted D-modules on BunH .

Morphisms between these D-modules can be used to give a concrete

realization for the spaces of morphisms between the families of 1d boundary

conditions parametrized by BunH .

Each 4d gauge theory with gauge group G comes equipped with a special

family of “Dirichlet” boundary conditions with global symmetry G. These

will be key to giving a precise formulation of the compactification functors

with values in the categories of twistedD-modules on BunG (see Section 6.3).

2.5. Composition of junctions

Consider now three boundary conditions B1, B2 and B3 in a bulk theory T,

with pairwise junctions J12 and J23. On physical grounds, we then expect

to have a new junction J12 ◦ J23 from B1 to B3.

The corresponding vertex algebra V (T, B1 � B3) in which we take as

junction data the composition of the data J12 and J23 is expected to include

the tensor product vertex algebra

V (T, B1�B2)⊗ V (T, B2�B3).
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Furthermore, conjecturally, V (T, B1�B3) can be built as an extension of the
latter by a (super)algebra object A13 of the category

[V (T, B1�B2)⊗ V (T, B2�B3)] -mod

which is the image of Id∨1 ×Diag× Id3 under FT,B1
�B2

�FT,B2
�B3

. Here Id∨1
and Id3 denote the identity objects in C(T, B1)

∨ and C(T, B3), respectively,
while Diag is a “diagonal object” in C(T, B2) � C(T, B2)

∨. This object is
easy to define if C(T, B2) is semisimple as an abelian category. In general,
the construction of Diag requires special care.

The composition of the obvious map

C(T, B1)
∨ � C(T, B3) → C(T, B1)

∨ �Diag � C(T, B3)

and FT,B1
�B2

� FT,B2
�B3

gives a functor to A13 -mod and thus to
V (T, B1�B3) -mod, as needed.

See Figure 3 for the physical explanation of this prescription.
In the rest of the paper, we will discuss several such compositions. A par-

ticularly important application of these compositions is to produce junctions
between boundary conditions which do not simultaneously admit weakly-
coupled descriptions, in a sense we will explain momentarily.

2.6. Dualities

A duality is an equivalence between different definitions of the same 4d
theory. The quantum Geometric Langlands dualities are expected to relate
the different definitions (in other words, different duality frames) of the
category of 1d boundary conditions for T[X].

Each definition of a theory will come with some collection of “weakly
coupled” boundary conditions and junctions, which can be defined micro-
scopically in terms of the fields of the theory and possibly other auxiliary
fields. These are the boundary conditions and junctions for which direct
calculations of the categories of line defects and vertex algebras are usually
possible.

A duality rarely identifies two weakly coupled boundary conditions. More
often, it maps weakly coupled boundary conditions to other “strongly cou-
pled” ones for which direct calculations are not feasible.

We will often face the problem to define and compute properties of
junctions between boundary conditions which are not simultaneously weakly
coupled. For example, in order to study the qGL dualities, we need to employ
duality images of the Dirichlet boundary conditions.
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Figure 3: Composition of junctions J : B′ → B and J ′ : B′′ → B′. The
local operators for the composite junction can arise from finite segments
of line defects in the intermediate boundary. Thus the new junction vertex
algebra is an extension of A × A′ by a combination of product of modules
M0,λ′ ×Mλ′,0. Modules for the new vertex algebra are similarly built from
combinations of the form Mλ,λ′ ×Mλ′,λ′′ .

Our solution to the problem is simple: we find a chain of boundary

conditions such that each consecutive pair is simultaneously weakly coupled

in some duality frame of the 4d theory; find and compute the properties of

the corresponding junctions; and then compose these junctions into a single

junction between the first and the last boundary conditions in the chain.

2.7. Spin subtleties

We should mention here an important subtlety which will be recurring in our

analysis. A priori, the constructions we employ involve theories and defects

which are spin-topological or spin-holomorphic: they are defined only on

manifolds equipped with a spin structure. In many situations, though, we

can refine the constructions so that the corresponding objects become truly

topological or holomorphic.
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Working with “spin” constructions is somewhat simpler. For example,

the dualities of gauge theories are well understood in the spin case, while

the non-spin refinement of the dualities is only known in some examples.6

The most immediate consequence of working with spin constructions is

that boundary line defects form spin-ribbon categories, a variant of ribbon

categories in which the topological twisting of an object is defined only up

to an integral multiple of π (rather than 2π). Spin constructions also employ

spin-vertex algebras, i.e. vertex algebras in which some of the fields have half-

integral spin. Conformal blocks of modules over the spin-vertex algebras are

only well-defined on a complex curve equipped with a specific choice of spin

structure (i.e. a square root of the canonical line bundle).

If a spin-vertex algebra can be coupled to H-bundles and H has a Z2

central subgroup which acts as −1 on the fields of half-integral spin, then

instead of choosing a spin structure, we can work with SpinH bundles rather

than G-bundles (we could say we have a SpinH vertex algebra) in this case).

Conformal blocks then become dependent on SpinH bundles, and they give

rise to twisted D-modules on the stack BunSpinH
of such bundles. See Sec-

tion 7.4 for more details, including the definition of SpinH bundles.

Finally, notice that “spin” and “super” are distinct notions. Our vertex

algebras are allowed to be vertex superalgebras, in the sense of including

odd (Grassmann) fields. But these fields do not necessarily have half-integral

spin, and conversely, fields of half-integral spin may or may not be odd.

6As the physical gauge theory contains spinors, the theory is initially defined

only on spin manifolds and the duality group(oid) has been studied in detail only

on such manifolds. The topologically twisted theory, however, has no spinors and

can be readily defined on a manifold without a spin structure. But then the duality

group(oid) needs to be modified in ways that are only partly understood in the

existing literature.

As the spinors in the physical theory transform in the fundamental represen-

tation of the SU(4)R � Spin(6)R R-symmetry group, while fields of integral

spin transform in the representations of SO(6)R, it should be possible to cou-

ple the theory to SpinSU(4)R-bundles, i.e. bundles on a four-manifold M with

the structure group (Spin(4) × SU(4))/Z2 (which is a Z2-extension of the struc-

ture group SO(4) × (SU(4)/Z2) = SO(4) × SO(6)), such that the corresponding

SO(4)× (SU(4)/Z2)-bundle has the frame bundle of M along the first factor. The

latter choice is probably better in preparation for a topological twist. It suggests

that the spin-refined duality action may already be probed within the physical

theory.
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3. Boundary conditions, dualities, and junction vertex
algebras

In this section we discuss specific boundary conditions and junctions between
them. Though they exist universally in all twisted 4d gauge theories, we will
focus on the GL twisted 4d gauge theory, as defined in [55], with a compact
connected gauge group Gc, whose complexification is denoted by G (this
is a connected reductive Lie group over C), and the topological coupling
constant which is denoted by Ψ in [55], but which we will denote by κ.7

Upon compactification of the 4d gauge theory on a Riemann surface X,
we naturally obtain a functor from the category of line defects associated
with a given boundary condition to the category Dκ(BunG) of twisted D-
modules on the moduli stacks BunG of G-bundles on X. We will call it
the compactification functor. In subsequent sections, we will see how these
functors, together with the action of quantum dualities on the boundary
conditions and junctions between them, naturally lead us to valuable insights
into the quantum Geometric Langlands theory.

In fact, there is a larger class of theories that we need to consider in order
to fully explore the duality groups of gauge theories. These theories include
extra “discrete theta angles”. For now, we set the discrete theta angles to
0, but we will come back to the more general theories in later sections.

The parameter κ of gauge theory may be viewed as the level of the corre-
sponding affine Kac–Moody algebra ĝ (the affinization of the Lie algebra g of
G) shifted by the critical value, or as the twisting parameter for D-modules
on the affine Grassmannian GrG and on BunG, also shifted by the critical
value (corresponding to the properly defined square root of the canonical
line bundle). We will denote this bulk theory by TG

κ .
The properties of the theory TG

κ are rather uniform as a function of κ,
as long as κ is not rational. A variety of new phenomena occurs for rational
values of κ, such as the existence of a non-trivial category S(TG

κ ) of bulk line
defects. For simplicity, unless specified otherwise, we will assume throughout
this paper that κ is irrational (i.e. κ ∈ C\Q).

3.1. Examples of boundary conditions

In the examples below, we consider basic boundary conditions in the theory
TG
κ and the ribbon categories corresponding to them, which we will denote

by CG
κ (B).

7There is in fact a separate coupling for each simple factor of the Lie algebra of
G, together with a matrix of couplings for Abelian factors.
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(i) The Dirichlet boundary condition. The corresponding category CG
κ (B)

is the category D−κ(GrG) of right (−κ)-twisted D-modules on the
affine Grassmannian GrG = G((z))/G[[z]]. Recall that GrG is an ind-
scheme, a union of its closed subschemes of finite type (which are
proper finite-dimensional complex algebraic varieties). By definition,
the support of each object of D−κ(GrG) should belong to one of those
subschemes (see e.g. [29] for a precisely definition).

(ii) The Neumann boundary condition. The corresponding category CG
κ (B)

is the Kazhdan–Lusztig category KLκ(G) [57] of finitely generated ĝκ-
modules M on which the action of the Lie subalgebra g[[z]] ⊂ ĝκ is
locally finite and can be exponentiated to an action of G[[z]] (equiva-
lently, M decomposes into a direct sum of finite-dimensional modules
over the constant Lie subalgebra g which can be exponentiated to an
action of G, and for any vector v ∈ M , there exists n > 0 such that
g⊗ tnC[[t]] · v = 0).

(iii) The principal Nahm boundary condition. The corresponding category
CG
κ (B) is the Whittaker category Whit−κ(G), of (−κ)-twisted D-

modules on GrG which are N((z))-equivariant with respect to a fixed
non-degenerate character ψ (corresponding to the principal element
appearing in the Nahm boundary condition). Here N is the unipo-
tent subgroup of G.8 See [31, 45] for the precise definition. The chiral
category structure is defined in [13, 61].

(iv) Other Nahm boundary conditions. There is a more general family of
boundary conditions labeled by the extra data of a conjugacy class
of an embedding ρ of sl2 into g (or equivalently, a non-zero nilpotent
conjugacy class in g). The corresponding category Whitρ−κ(G) can be
defined in a similar manner as for the principal Nahm boundary con-
dition.

In addition, we expect that each of these categories is equipped with a
functor:

• For each boundary condition B in the theory TG
κ and every compact

Riemann surface (smooth projective curve) X with a point x ∈ X,

there is a compactification functor FG,B
κ from the category CG

κ (B)
to the category Dκ(BunG) of left κ-twisted D-modules on BunG. In

8The category Whit−κ(G) is an example of a category that requires, for some G,
a choice of spin structure, i.e. a specific choice of a square root of the canonical line
bundle on a formal disc (or on a curve X). Indeed, one needs to make this choice
in order to define a non-degenerate character on the group N((z)) in a coordinate-
independent fashion.
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general, this is a functor between derived, or DG, categories. This
functor has a multi-point generalization compatible with fusion and
braiding in CG

κ (B).

• The image FG,B
κ (I) of the identity object I in CG

κ (B) does not depend
on the point x. We call the map from boundary conditions to twisted
D-modules on BunG,

B �→ FG,B
κ (I)

the compactification map.

In Section 6, under some natural assumptions, we will describe the com-
pactification functor as a localization functor for a certain vertex algebra
with affine Kac–Moody symmetry. We will also discuss the connection be-
tween the corresponding twisted D-modules on BunG and branes on the
Hitchin moduli space MH(G) associated to X constructed in [55]. Here we
will only mention that the boundary conditions available at general κ are
non-trivial deformations of standard half-BPS boundary conditions of the
physical theory. Half-BPS boundary conditions can be employed either at
κ = 0 or at κ = ∞, but only a few can be deformed to other values of κ.
Neumann are deformed from κ = ∞, while Dirichlet and Nahm are deformed
from κ = 0.

The compactification functor can be interpreted as the composition of
two functors: a compactification of boundary conditions to branes and a
functor from branes to twistedD-modules. The brane interpretation is useful
and instructive, but we stress that the compactification functors can be
defined directly, i.e. bypassing the categories of branes onMH(G) introduced
in [55]. See Sections 6.1 and 6.2 for more details.

This simplifies some aspects of the construction. For example, as ex-
plained in [55], the sigma model description is simplest for real values of κ,
but for other values of κ one needs to consider generalized complex struc-
tures on MH(G). On the other hand, the categories of κ-twisted D-modules
on BunG behave in a more uniform way relative to κ.

3.2. Examples of the compactification functors

We now describe examples of the compactification functors, as well as the
images of the standard objects in CG

κ (B) under these functors. We also com-
ment on the corresponding branes on the Hitchin moduli space MH(G,X).

(i) The Dirichlet boundary condition. The compactification functor is the
suitably defined push-forward corresponding to the surjective map

GrG → BunG = G(X\x)\GrG .
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Note that under this functor right (−κ)-twisted D-modules on GrG
are mapped to left κ-twisted D-modules on BunG.

The standard objects in the categoryD−κ(GrG) are“δ-function”(right)

(−κ)-twistedD-modules supported at points of GrG (see below), which

we denote by δ−κ
p , p ∈ GrG. The corresponding D-module on BunG is

the “δ-function” (left) κ-twisted D-module δκP, where P is the image

of p ∈ GrG in BunG. (If P has non-trivial automorphisms, then the

category of twisted D-modules supported at P is non-trivial, but we

ignore this for now. See the discussion at the end of this subsection,

as well as Remark 6.2.)

For irrational κ, the D-module δκP is a counterpart of the (A,B,A)

brane F′
P. These are supported on the fibers of the maps from an

open subset of MH(G,X), seen as a moduli space of flat G-bundles,

to M(G,X), the moduli space of semi-stable G-bundles on X (see

Section 6.1 for more details).

These branes are deformations of the (B,A,A) branes FP, the fibers of

the projection of MH(G,X), seen as a moduli space of Higgs bundles

on X, to M(G,X). These originate from the undeformed Dirichlet

boundary conditions at κ = 0.

(ii) The Neumann boundary condition. The compactification functor is the

localization functor Δκ (see [28], Ch. 18, [25] and Section 6 below).

The standard objects in KLκ(G) are the Weyl modules Vλ,κ, where λ ∈
P+(G), the set of dominant integral weight of G (i.e. highest weights

of irreducible representations of G). (Note that for κ �∈ Q, KLκ(G) is

a semisimple category with each object isomorphic to the direct sum

of finitely many Weyl modules Vλ,κ.) The corresponding (left) twisted

D-module Δκ(Vλ,κ) = D
x,λ
κ on BunG is the tensor product Dκ⊗OVx,λ,

where Dκ is the sheaf of κ-twisted differential operators on BunG and

Vx,λ is the sheaf of sections of the tautological vector bundle on BunG
corresponding to the finite-dimensional representation Vλ of G and the

point x of the curve X.

In particular, for the vacuum module V0,κ we have Δκ(V0,κ) = Dκ.

This is the image of the compactification map.

The brane on MH(G,X) corresponding to Dκ for irrational κ is the

canonical coisotropic brane Bc.c. (see Section 6.1). This is a deforma-

tion away from κ = ∞ of the space-filling (B,B,B) brane B̃ associated

to the undeformed Neumann boundary conditions.

(iii) The (principal) Nahm boundary condition. Consider for simplicity the

case that G is simple. Then the Whittaker category Whit−κ(G) can be
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realized as a direct limit of the categories of Whittaker sheaves (left κ-

twistedD-modules) on the moduli stacks Bun
FT0(μ

∨·x)
N of B-bundles on

X, where μ∨ ∈ LP+, the set of dominant integral coweights of G (see
[31]). For each of these categories, we take the functor of direct image

corresponding to the natural maps jx,μ∨ : Bun
FT0 (μ

∨·x)
N → BunG. The

compactification functor from Whit−κ(G) to the category of κ-twisted
D-modules on BunG is naturally “glued” from these.
The standard objects of Whit−κ(G) are the Whittaker sheaves Ψx,μ∨

κ ,
μ∨ ∈ LP+. In particular, the Dκ-module corresponding to Ψx,0

κ is con-
structed as follows. Let F0

T be a T -bundle on X (where T is the Cartan
subgroup of G) corresponding to the canonical line bundle KX on X
and a cocharacter ρ̌. Note that we may need to choose a square root
of the canonical line bundle on X to make sense of this T -bundle.9

Let Bun
F0

T

N be the corresponding moduli stack and jx,0 the corre-

sponding map Bun
F0

T

N → BunG. It is equipped with a natural map

ev : Bun
F0

T

N → A1, the affine line. Let E be the D-module on A1 gen-

erated by the exponential function. Then, Ψx,0
κ is a generalization to

arbitrary κ of jx,0!(ev
∗(E)). The construction of the other Dκ-modules

Ψx,μ∨

κ is similar (for κ = 0, they can be obtained by applying the Hecke
functors to Ψx,0

0 ). See [31, 45, 13, 61] for more details.

For κ �= 0, the (A,B,A) brane corresponding to Ψ0,x
κ is the brane of

opers. This is a deformation away from κ = 0 of the (B,A,A)-brane
of “classical opers” (also known as the Hitchin section) associated to
undeformed Nahm boundary conditions. See Section 6.1 for more de-
tails.

Table 2: The basic boundary conditions that exist universally for all G

Boundary Condition Category of Lines Compactification Functor

Dirichlet (D0,1) D−κ(GrG) Push-Forward GrG → BunG
Neumann (N1,0) Kazhdan–Lusztig KLκ Localization functor Δκ

Principal Nahm (N0,1) Whittaker Whit−κ(G) Direct image

A few comments on the definition of the sheaf of “δ-functions” supported
at a point. Let Z be a smooth algebraic variety over C (or an ind-scheme

9This is an example of how we may be forced to make a choice of a spin structure
on X. Once we make such a choice, there is a parameter for F0

T : an element of
H1(X,Z(G)). For simplicity, we will assume here that G is of adjoint type so that
its center Z(G) is trivial.
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such as GrG) and p a point of Z. By definition,

δp = ip!(Cp) = DZ ⊗
OZ

Cp

is the (left) D-module push-forward of the constant sheaf at a point (viewed
as a D-module at that point) under the embedding ip : pt → Z. Concretely,
for any open subset U ⊂ M containing p, we have

δp(U) = D(U) ⊗
O(U)

Cp,

where O(U) is the ring of functions on U acting on Cp by evaluation at
p. If we choose local coordinates x1, , . . . , xn at p, and choose vector fields
∂1, . . . , ∂n on U such that the value of ∂i at p is ∂/∂xi, then

δp(U) � C[∂i]i=1,...,n.

The definition of the sheaf of δ-functions supported at p in the categories of
twisted left and right D-modules is similar.

If we deal with a smooth stack (such as BunG) rather than a variety, then
a point P may well come with a non-trivial group Aut(P) of automorphisms
(in the case of a G-bundle P, this is the group of global automorphisms of
P, which is a subgroup of G). In this case, instead of a single δ-function
D-module supported at P, we have a category of D-modules supported at P
which is equivalent to the category of representations of Aut(P). In this case,
we denote by δP the D-module corresponding to the regular representation
of Aut(P) (i.e. the space of functions on Aut(P)). For further comments
about these D-modules, see Remark 6.2 at the end of Section 6.5.

3.3. Quantum dualities

Supersymmetric quantum gauge theories in 4d possess important dualities
generalizing the electromagnetic duality. Each duality relates various at-
tributes of two gauge theories, which usually have different coupling con-
stants and often different groups, G and its Langlands dual LG. Upon com-
pactification of the 4d theory on a Riemann surface X, these dualities
give rise to interesting equivalences of categories, which can be viewed as
quantum versions of the geometric Langlands correspondence. Tracing these
equivalences to the “first principles” of 4d gauge theory yields unexpected
insights into the quantum geometric Langlands theory, which would be dif-
ficult to realize otherwise.
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Gauge theory for a general compact Lie group can be decomposed into

gauge theories for the simple and abelian factors, up to some topological

subtleties which however do not affect the non-perturbative dynamics behind

quantum duality symmetries.

We will discuss the properties of general gauge theories in Section 9. For

now, we will focus on a connected simple Lie group G over C. Denote by

m the lacing number of G – the maximal number of edges connecting two

vertices of the Dynkin diagram of G. Thus, m is 1 for simply-laced groups,

and is equal to 2 or 3 for non-simply laced simple Lie groups.

There are two basic types of dualities: the orientation reversal symmetry

R and the dualities corresponding to elements of a subgroup of PGL2(Z),

which depends on the bulk theory. We start by outlining their action on

bulk theories TG
κ introduced above.

• R preserves the group G but sends κ to −κ: TG
κ �→ TG

−κ.

• For a given G, only a particular subgroup of PGL2(Z) acts by duality

transformations. Furthermore, these transformations in general change

not only the parameter κ but the group G as well, so in fact it is better

to view them as forming a groupoid rather than a group.

Let us describe this groupoid, which we will denote by GG
κ .

The group PGL2(Z) naturally acts on the projective line, which gives

rise to the standard action on κ viewed as a point on the projective line with

respect to a particular coordinate:

κ �→ aκ+ b

cκ+ d
.

Now introduce the following elements of PGL2(Z):

Sm =

(
0 −1
m 0

)
κ �→ κ̌ = −1/mκ

and

T =

(
1 1
0 1

)
κ �→ κ+ 1.

Denote by n(G) the minimum positive coefficient of a well-defined Chern–

Simons action for Gc [17] (equivalently, the level of the affine Kac–Moody

algebra corresponding to the minimal line bundle LG on the moduli stack of
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G-bundles on a curve X).10 For example, n(G) = 1 if G is simply-connected

simple Lie group. Likewise, we denote by n(LG) the corresponding number

for LG. Let SG (resp., SLG) be the subgroup of PSL2(Z) generated by Tn(G)

and SmTn(LG)Sm (resp., Tn(LG) and SmTn(G)Sm).

We define the groupoid GG
κ as the category with the objects (which we

will sometimes refer to as nodes) labeled by pairs

(G, κ′), κ′ ∈ SG · κ, and (LG, κ′), κ′ ∈ SLG · κ̌,

where κ̌ = −1/mκ. We have morphisms (arrows) from (G, κ′) to (G, κ′′) for
each element g in SG such that κ′′ = g(κ′); from (G, κ′) to (LG, κ′′) for each
element g in SLGSm or SmSG such that κ′′ = g(κ′); and similarly for the

morphisms starting from nodes labeled by LG.

Now we consider the action of these symmetries on the boundary con-

ditions discussed above and the corresponding categories.

The symmetry R sends the bulk theory TG
κ with a boundary condition B

to the bulk theory TG
−κ with a boundary condition that we denote by R(B).

The resulting ribbon category should be dual to the original one, so that we

have an equivalence

(3.1) CG
−κ(R(B)) � CG

κ (B)∨

In general, we need to consider here the dual of the derived, of a DG, cat-

egory. However, for irrational values of κ, it appears that it is sufficient to

work with the abelian categories.

On the other hand, the action of the duality groupoid GG
κ should take

the ribbon categories to equivalent ones:

C
g(G)
g(κ) (g(B)) � CG

κ (B),

for every g ∈ SG (in this case, g(G) = G) and g ∈ Sm · SG (in this case,

g(G) = LG).

10Here is the first place where spin subtleties occur: for some G, the minimal

Chern–Simons action is only defined on spin manifolds unless we replace n(G)

by 2n(G). Equivalently, for those groups we need to pick the square root of the

canonical line bundle on X in order to define the line bundle LG; without such a

choice, we can only define L⊗2
G .
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3.4. Examples of the action of quantum dualities on boundary
conditions

Now we look at how R and the duality groupoid GG
κ act on the basic bound-

ary conditions.

(i) The action of R preserves the Neumann, Dirichlet, and Nahm bound-
ary conditions. In fact, for irrational κ the equivalences (3.1) hold in
these cases at the level of abelian categoies.
For example, for irrational κ the dual category to KLκ(G) is KL−κ(G).
This can be seen from the Kazhdan–Lusztig equivalence between the
category KLκ(G) with irrational κ and the category Uq(g)-mod of
finite-dimensional Uq-modules, where q = eπi/κ. As explained in Ex-
ample 2.10.14 of [21], the dual category to the latter is equivalent to
the opposite category, which is known to be equivalent to Uq−1(g)-mod
and hence to KL−κ(G) via the Kazhdan–Lusztig equivalence.

(ii) The action of Sm exchanges the Neumann and principal Nahm bound-
ary conditions. The corresponding categories are therefore expected to
be equivalent:

(3.2) KLκ(G) � Whit1/mκ(
LG).

This is essentially the statement of a conjecture of Gaitsgory and Lurie,
proved by Gaitsgory for irrational κ [44, 46].11

(iii) The Sm-dual of the Dirichlet boundary condition is much more com-
plicated if G is non-abelian (see [40, 41, 36, 37]). (If G is abelian,
there is no difference between the Dirichlet and Nahm boundary con-
ditions, and therefore the dual of Dirichlet is Neumann.) From the
perspective of boundary conditions in 4d gauge theory, this is the rea-
son why it is difficult to construct the quantum geometric Langlands
correspondence. All we can say at the outset is that the corresponding
category should be equivalent to the category of right 1/mκ-twisted
D-modules on GrLG. Similar considerations apply to the intermediate
Nahm boundary conditions.

(iv) The action of T p, p ∈ n(G) · Z. If B is any of the Nahm boundary
conditions or a Dirichlet boundary condition, then T p(B) = B, but

11This is an example of an equivalence that for some groups requires a choice
of a spin structure (or a square root of the canonical line bundle), because the
category KLκ(G) does not require such a choice, but the category Whit1/mκ(

LG)
does require it for some G.
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for the Neumann boundary conditions, T p(B) �= B for p ∈ Z. In any
case, we expect the equivalences

CG
κ+p(T

p(B)) � CG
κ (B).

In other words,

(3.3) CG
κ (T

p(B)) � CG
κ−p(B).

In particular, the equivalences
(3.4)
Dκ(Gr) � Dκ+p(Gr), Whitκ(G) � Whitκ+p(G), ∀p ∈ n(G) ·Z

are given by tensoring with the appropriate line bundle on GrG.

In Section 4 we conjecture that for irrational κ the groupoid GG
κ acts by

equivalences on the categories of twisted D-modules on BunG and BunLG

(the situation becomes more subtle for rational values of κ).

3.5. Nomenclature for boundary conditions

We will consider boundary conditions in bulk theories of type TG
κ discussed

above and therefore for now we will keep G in our notation for boundary
conditions. But since all boundary conditions we consider are defined uni-
formly for all values of κ, we will not keep κ. Hence we use the notation
BG. Starting from every a boundary condition BG, we can generate a whole
family of boundary conditions: R(BG) and g(BG) with g ∈ SG and g(B

LG)
with g ∈ SmSG by the action of the duality groupoid. This suggests the
following nomenclature (it is similar but not identical to the one adopted in
[16]).

For a given bulk theory TG
κ we will use the following notation:

(i) NG
0,1 for the (principal) Nahm boundary condition;

(ii) NG
1,0 for the Neumann boundary condition;

(iii) DG
0,1 for the Dirichlet boundary condition;

(iv) NG,ρ
0,1 for the ρ-Nahm boundary condition.

Next, we denote by NG
g◦(0,1) and NG

g◦(1,0) (modulo the identification

NG
ap,aq = NG

p,q) the images of these boundary conditions under g ∈ SG, with
g acting on the pairs (p, q) according to its standard action on the column
vectors

(
q
p

)
(note the switch of p and q).
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Thus, every element in GG
κ sends

NG
p,q �→ N

g(G)
g◦(p,q),

where g(G) is either G or LG. At the same time, each g acts on κ in the
standard way.

Further, for the orientation reversal R we define

R : NG
p,q �→ NG

p,−q

In this case, R(TG
κ ) = TG

−κ, and so R(κ) = −κ.

We can give a similar definition of the families DG
p,q and NG,ρ

p,q starting
from Dirichlet or ρ-Nahm boundary conditions in the bulk gauge theories
TG
κ and T

LG
κ . For example, DG

0,1 denotes the Dirichlet boundary condition in

TG
κ , while DG

1,0 denotes the Sm-image of the Dirichlet boundary condition

D
LG
0,1 in T

LG
κ . Also, R maps DG

p,q to DG
p,−q, etc.

UsingR together with the groupoid of duality transformations, we obtain
various non-trivial identifications between boundary conditionsNG

p,q (beyond

NG
ap,aq = NG

p,q). Each of them is expected to give rise to an equivalence
between the corresponding ribbon categories of line defects. Some of these
equivalence are highly non-trivial. For instance, we have

(3.5) (T
LG
−1/mκ, N

LG
0,1 ) = (TG

κ , N
G
1,0), (T

LG
−1/mκ, N

LG
1,0 ) = (TG

κ , N
G
0,1).

The corresponding equivalences of categories are given by formula (3.2) and
its analogue in which we reverse G and LG, κ and 1/mκ. We will encounter
more equivalences of this nature below.

3.6. Extended families of boundary conditions

With some care, the duality groupoid can be extended to a larger groupoid
involving all transformations generated by T and Sm. The nodes of the
extended groupoid involve gauge theories with gauge algebra g or Lg but
gauge group which may differ from G or LG. They are furthermore modified
by certain “discrete theta angles” [8]. It is possible to define well-behaved
analogues of Dirichlet, Neumann, Nahm boundary conditions in these gener-
alized theories, but it requires some extra structures, which we will describe
in section 9.

As a consequence, one may accordingly extend the range of pairs (p, q)
for which the above families of boundary conditions are well-defined. The
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compactification functors should map the categories associated to these
boundary conditions to the categories of D-modules on BunG twisted by
appropriate gerbes.

3.7. Vertex algebras at a junction

As explained in Section 2.2, we can attach a vertex algebra to a junction of
two boundary conditions B1 and B2 in a bulk theory T, possibly with some
extra data attached to the junction. We now focus on the case of the bulk
theory T = TG

κ , as above, and denote the corresponding junction vertex
algebra V (TG

κ , B1 �B2) by V G
κ (B1 �B2). Then we have the corresponding

functor FT,B1
�B2

, which we now denote by FG
κ,B1

�B2
. Thus,

(3.6) FG
κ,B1

�B2
: CG

κ (B1)
∨ � CG

κ (B2) → V G
κ (B1�B2) -mod .

This functor should satisfy the following conditions:
First,

(3.7) FG
κ,B1

�B2
(I ⊗ I) = V G

κ (B1�B2),

where I denotes the identity object.
Second, if we apply any duality symmetry g ∈ GG

κ as defined in Sec-
tion 3.3 to all data, then the vertex algebra should be unchanged:

(3.8) V G
κ (B1�B2) � V

g(G)
g(κ) (g(B1)�g(B2)),

and we should have a commutative diagram
(3.9)

CG
κ (B1)

∨ � CG
κ (B2)

FG
κ,B1

� B2−−−−−−→ V G
κ (B1�B2) -mod⏐⏐	 ⏐⏐	

C
g(G)
g(κ) (g(B1))

∨ � C
g(G)
g(κ) (g(B2))

F g(G)

g(κ),g(B1) � g(B2)−−−−−−−−−−−→ V
g(G)
g(κ) (g(B1)�g(B2)) -mod

Third, under the orientation reversal R, we should have an isomorphism
of vertex algebras

(3.10) V G
κ (B1�B2) � V G

−κ(R(B2)�R(B1)),

compatible with the functors FG
κ,B1

�B2
and FG

−κ,R(B2)�R(B1)
and the equiv-

alences

CG
κ (Bi)

∨ � CG
−κ(R(Bi)).
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Let us consider some basic examples. More examples will be presented

in later sections.

(i) Let B1 = DG
0,1 and B2 = NG

1,0 be the Dirichlet and Neumann boundary

conditions, respectively. There is a standard junction between them

described in [16] such that V G
κ (B1�B2) is the affine Kac–Moody vertex

algebra Vκ(g).

In this case, we have

CG
κ (D

G
0,1)

∨�CG
κ (N

G
1,0) = (D−κ(GrG))

∨�KLκ(G) � Dκ(GrG)�KLκ(G),

and there is indeed a functor from the latter category to the category

of Vκ(g)-modules (i.e., ĝ-modules of level κ). Namely, we view KLκ(G)

as a subcategory of ĝκ -mod and use the functor

(3.11) F ∈ Dκ(GrG),M ∈ KLκ(G) �→ F 	 M,

where 	 denotes the categorical convolution functor (see [11, 30]).

Beilinson has conjectured (see the Introduction of [10], especially Re-

mark (ii)) that the category of ĝ-modules of any level κ is expected to

“fiber” over the stack of flat LG-bundles on the punctured disc. This

conjecture suggests that the essential image of CG
κ (D

G
0,1)

∨ � CG
κ (N

G
1,0)

under the functor FG
κ,DG

0,1
�NG

1,0
is the subcategory of ĝ-modules of level

κ supported on the formal neighborhood of the trivial flat bundle.

(ii) Let B1 = NG
0,1 and B2 = NG

1,0 be the Nahm and Neumann boundary

conditions, respectively. Then there is a standard junction between

them described in [59, 39, 16] such that V G
κ (B1�B2) is the W-algebra

Wκ(g).

The corresponding functor

FG
κ,NG

0,1
�NG

1,0
: Whitκ(G)�KLκ(G) → Wκ(g) -mod

is constructed as follows. Recall [22, 33] (see Ch. 15 of [28] for a sur-

vey) that the Drinfeld–Sokolov reduction functor Hg

DS is defined as

the semi-infinite cohomology of the nilpotent Lie subalgebra n+((z))

of ĝ twisted by a non-degenerate character ψ of n+((z)) which takes

non-zero values on the (−1)st Fourier coefficients of the generating

currents. This functor, applied to KLκ(G), defines the restriction of

FG
κ,NG

0,1
�NG

1,0
to I �KLκ(G)), where I = Ψx,0

κ .



230 Edward Frenkel and Davide Gaiotto

For irrational κ, it follows from the results of Arakawa [3, 4] that the
functor Hg

DS is exact, and its essential image in the category Wκ(g)-
mod is a semi-simple subcategory with the simple modules M(λ,0),κ =
Hg

DS(Vλ,κ). See also [63] for some general results about this functor.
In order to incorporate the category Whitκ(G), observe that for any
dominant integral coweight μ∨ of G, we can twist the character ψ
by the element μ∨(z) ∈ H((z)). Let us denote the quantum Drinfeld–
Sokolov reduction functor with respect to this twisted character by
Hg

DS,μ∨ . This functor has been previously studied in [30, 16].

For any object M of KLκ(G), the functor FG
κ,NG

0,1
�NG

1,0
sends the object

Ψx,μ∨

κ ⊗M of Whitκ(G)�KLκ(G) to the Wκ(g)-module Hg

DS,μ∨(M).
This can be generalized to arbitrary objects of Whitκ(G). Thus,
Whitκ(G) can be viewed as the category that controls the data of
the Drinfeld–Sokolov reduction.
It is natural to conjecture that for irrational κ the essential image of
FG
κ,NG

0,1
�NG

1,0
is a semi-simple subcategory of Wκ(g)-mod with simple

modules

(3.12) M(λ,μ∨),κ = Hg

DS,μ∨(Vλ,κ) = FG
κ,NG

0,1
�NG

1,0
(Ψx,μ∨

κ ⊗ Vλ,κ).

According to our conventions, the duality Sm acts as follows:

Sm(NG
0,1) = N

LG
1,0 , Sm(NG

1,0) = N
LG
0,1

Hence RSm should send the junctionNG
0,1 → NG

1,0 toN
LG
0,1

�N
LG
1,0 , leading

to the Feigin–Frenkel duality

(3.13) Wκ(g) � W1/mκ(
Lg).

Moreover, it follows from the diagram (3.9) that the subcategories
of Wκ(g)-mod and W1/mκ(

Lg)-mod that are the essential images of

the functors FG
κ,NG

0,1
�NG

1,0
and F

LG
1/mκ,N

LG
0,1

�N
LG
1,0

should be equivalent. In

particular, under the duality (3.13) we expect to have an isomorphism

(3.14) Mg

(λ,μ∨),κ � M
Lg

(μ∨,λ),1/mκ .

(see Conjecture 1.5 of [16]).12

12This has been proved in [5].
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Note that if this is the case, then the Whittaker category Whitκ(G) can
be realized for irrational κ as a semi-simple subcategory Wκ(g)m-mod
of Wκ(g)-mod, which has as simple objects the modules

M(0,μ∨),κ = Hg

DS,μ∨(V0,κ)

with “magnetic” highest weights (0, μ∨), μ∨ ∈ LP+. The equivalence
(3.2) between Whitκ(G) and KL1/mκ(

LG) can therefore be rephrased
as the statement that the category Wκ(g)m-mod is equivalent, as a
ribbon category, to KL1/mκ(

LG). This statement (and its extension to
negative rational κ) is essentially Conjecture 6.3 of [1].

(iii) More generally, if B is any boundary condition, then we expect that
the vertex algebra

V G
κ (DG

0,1
�B)

contains the affine vertex algebra Vκ′(g), where κ′ − κ ∈ n(G) ·Z, as a
subalgebra.13

We cannot determine κ′ on general grounds, because we can always
modify the junction data J12 by adding some holomorphic vertex al-
gebra, and this operation may shift the level by a multiple of n(G).
Furthermore, we expect that

V G
κ (NG

0,1
�B)

can be obtained by the quantum Drinfeld–Sokolov reduction of this
affine subalgebra, and

V G
κ (NG

1,κ−κ′ �B)

can be obtained by the BRST reduction of

V G
κ (DG

0,1
�B)⊗ V−κ′(g)

(with respect to the diagonal action of ĝ, with the level equal to twice
the critical level).14

13This expectation is conditional on the existence of a physical junction DG
0,1

�B
which preserves the global G symmetry associated to the Dirichlet boundary condi-
tion. If such a junction exists, then by Noether’s theorem we obtain the correspond-
ing conserved currents which generate the affine vertex algebra at the junction.

14These expectations are motivated from the existence of physical operations
which convert a DG

0,1 boundary condition to either NG
0,1 or NG

1,κ−κ′ . For example,

an NG
1,κ−κ′ boundary condition can be obtained by “gauging the G global symmetry

of DG
0,1”. The effect of these operations on the junction vertex algebra is encoded

by the above BRST reductions.
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From the last two constructions, we can obtain many examples of
vertex algebras, some of which we consider below.
These statements are consistent with the categorical statements: The
averaging functor Dκ(GrG) → Whitκ(G) gives rise to a functor

Dκ(GrG)� CG
κ (B) → Whitκ(G)� CG

κ (B).

The composition of natural functors Dκ(GrG) → Dκ′(GrG) →
KL−κ′(G) (where the first functor is tensoring with a line bundle
on GrG and the second functor is pulling back to G((z)) and taking
G[[z]]-invariants with respect to the right action) and the equivalence
KL−κ′(G) = CG

−κ′(NG
1,0) � CG

−κ(N
G
1,κ′−κ) gives a functor

Dκ(GrG)� CG
κ (B) → CG

−κ(N
G
1,κ′−κ)� CG

κ (B).

(iv) Similar statements hold for general Nahm boundary conditions corre-
sponding to an embedding ρ : sl2 → g. In this case, the vertex alge-
bra is the W-algebra obtained by the generalized quantum Drinfeld–
Sokolov reduction of Vκ(g) associated to the embedding ρ [53].

3.8. Conformal blocks and compactification functors

It is natural to consider the spaces of conformal blocks and coinvariants of
a junction vertex algebra V G

κ (B1�B2).
Recall from Section 2.3 that we expect the coinvariants of V G

κ (B1�B2)
to be closely related to the Hom’s of the images of line defects in B1 and B2

under the compactification functors.
More precisely, let A1 ∈ Ob(CG

κ (B1), A2 ∈ Ob(CG
κ (B2)). The compact-

ification functors send them to twisted D-modules A1 = FG,B1
κ (A1) and

A2 = FG,B2
κ (A2) on BunG.

On the other hand, we have a V G
κ (B1�B2)-module FG

κ,B1
�B2

(A∨
1 ⊗ A2)

which we will denote simply by A∨
1 ⊗A2. Then the statement of Conjecture

2.1 becomes

Conjecture 3.1. Suppose that the functor FG
κ,B1

� B2
is fully faithful. Then

Hom(A1,A2) is isomorphic to the space of coinvariants of the V G
κ (B1�B2)-

module A∨
1 ⊗A2.

An important special case arises when B1 is the Dirichlet boundary
condition DG

0,1 whose global symmetry group is the group G.15 Then we can

15More generally, the global symmetry group of the general Nahm pole boundary
conditions NG,ρ

1,0 is the centralizer of ρ.
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choose as A1 the δ-function D-module δP supported at P ∈ BunG. Thus,
given A ∈ Ob(CG

κ (B)), we obtain a family of vector spaces Hom(δP,A).
According to Conjecture 3.1, they should be isomorphic to the spaces of
coinvariants of the V (B1�B2)-module corresponding to δp ⊗A.

We note that important special cases of this isomorphism were studied
(in the language of branes) in [9] as an expression of a relation between
the Kapustin–Witten and Beilinson–Drinfeld approaches to the Geometric
Langlands correspondence (in this regard, see also Section 6.7).

In fact, as we explain in Section 6.5, we expect a stronger statement to
be true. Indeed, on the one hand, Hom(δP,A) is a fiber of the D-module

A = FG,B
κ (A) at P ∈ BunG. On the other hand, recall that we expect

the vertex algebra V G
κ (DG

0,1
� B) to contain an affine Kac–Moody vertex

subalgebra Vκ′(g) of level κ′ such that κ − κ′ = p · n(G), where p is an
integer. This allows us to couple coinvariants of V G

κ (DG
0,1

�B)-modules to G-

bundles onX. Mathematically, this means that for any V G
κ (DG

0,1
�B)-module,

we can define its sheaf of coinvariants, which is a κ′-twisted D-module on
BunG. This D-module can then be mapped to a κ-twisted D-module by
tensoring it with the pth power of the minimal line bundle LG, an infinite
order generator of the Picard group of BunG.

This enables us to define, under some natural assumptions, the com-
pactification functor FG,B

κ in a mathematically rigorous way in terms of the
localization functor for the vertex algebra V G

κ (DG
0,1

�B2), i.e. the functor
assigning to a module over this vertex algebra its sheaf of coinvariants on
BunG (see Section 6.5).

Another interesting case to consider is that of B1 = NG
0,1 and B2 =

NG
1,0. Then the vertex algebra V G

κ (NG
0,1

�NG
1,0) is the W-algebra Wκ(g). If

we take A1 = Ψx,μ∨

κ and A2 = Vλ,κ, then the corresponding Wκ(g)-module
is M(λ,μ∨),κ which appeared in formula (3.12). Conjecture 3.1 then implies

that there is an isomorphism between Hom(Ψx,μ∨

κ ,Dx,λ
κ ) and the space of

coinvariants of the Wκ(g)-module M(λ,μ∨),κ. In the case μ∨ = 0 and λ = 0,
a closely related isomorphism (in the language of branes) was proposed in
[59] as a possible interpretation of the AGT conjecture [2].

Remark 3.1. This statement has a multi-point generalization: an isomor-

phism between the space Hom(Ψ
xi,μ∨

i
κ ,Dxi,λi

κ ) and the space of coinvariants
of the modules M(λi,μ∨

i ),κ
inserted at the points xi ∈ X. Consider the case

g = sl2, X = P1, and suppose that the set of points xi is a disjoint union
of two subsets; for points of one of subset we have λi = 0 and μ∨

i is the
fundamental coweight, and for points of the other subset we have arbitrary
λi but μ

∨
i = 0. Then, if we allow the points of the first kind to vary, we can
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view this isomorphism as a reformulation of the quantum separation of vari-
ables linking conformal blocks of ŝl2 and the Virasoro algebra [66, 67, 32] (at
the critical level, it becomes the separation of variables of the corresponding
Gaudin model [23]). Thus, the above isomorphism (with points correspond-
ing to dominant integral weights or to the fundamental coweights) could
be viewed as a generalization of the quantum separation of variables to Lie
algebras of higher rank. We leave the details to a future work.

Replacing NG
1,0 by another boundary condition B, we obtain a general-

ization of the above isomorphism, which expresses coinvariants of modules
over V G

κ (NG
0,1

�B) as Hom’s between the corresponding D-modules on BunG.

Indeed, recall from item (iii) of Section 3.7 that if the junction NG
0,1 → B

is obtained from a junction DG
0,1 → B, then we expect the vertex algebra

V G
κ (NG

0,1
�B) to be the quantum Drinfeld–Sokolov reduction of V G

κ (DG
0,1

�B).

Now, given an object A of the category CG
κ (B), we obtain a family of “mag-

netic” V G
κ (NG

0,1
�B)-modules Hg

DS,μ∨(A). Applying Conjecture 3.1, we obtain

that the space of coinvariants of the V G
κ (NG

0,1
�B)-module Hg

DS,μ∨(A) is iso-

morphic to Hom(Ψx,μ∨

κ , FG,B
κ (A)).

4. Quantum Langlands dualities of twisted D-modules

It is important to realize that using the quantum dualities, we can generalize
the compactification functor to a whole family of functors from the category
CG
κ (B) to various categories of twisted D-modules on BunG and BunLG.

This will naturally lead us to postulate the existence of certain functors
between the categories Dκ(BunG). We will conjecture that for irrational
κ these give rise to a plethora equivalences of categories, generalizing the
quantum geometric Langlands correspondence (1.1).

4.1. A family of dual compactification functors

Recall the duality groupoid GG
κ introduced in Section 3.3. Let us observe

that a duality does not affect the group of global symmetries of a boundary
condition. In particular, for any g ∈ GG

κ , the boundary condition DG
p,q =

g−1(D
g(G)
0,1 ) should have the same global symmetry group as the Dirichlet

boundary condition D
g(G)
0,1 , which is the group g(G). Therefore, arguing as

above, for any junction DG
p,q → B in the bulk theory TG

κ , where DG
p,q =

g−1(D
g(G)
0,1 ), we obtain a functor from the category CG

κ (B) to the category
of twisted D-modules on Bung(G).
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To determine the twisting parameter, observe that the junction DG
p,q →

B in the bulk theory TG
κ can be seen in another duality frame as the junction

D
g(G)
0,1 → g(B) in the bulk theory T

g(G)
g(κ) , which gives rise to a functor (in

general, of derived categories)

(4.1) F
g(G),g(B)
g(κ) : C

g(G)
g(κ) (g(B)) → Dg(κ)(Bung(G)).

But the category C
g(G)
g(κ) (g(B)) should be equivalent to CG

κ (B), so F
g(G),g(B)
g(κ)

gives rise to a functor

(4.2) gF
G,B
κ : CG

κ (B) → Dg(κ)(Bung(G)).

The functors gF
G,B
κ are generalizations of the compactification functor FG,B

κ

(which corresponds to g being the identity). They correspond to junctions

DG
p,q → B in the same sense in which the compactification functor FG,B

κ

corresponds to a junction DG
0,1 → B. Note that in both cases there could

be multiple junctions between these boundary conditions, but the corre-
sponding functors gF

G,B
κ should be equivalent to each other according to

Conjecture 2.2 (see Conjecture 6.1 for a more precise formulation).

Once the functors gF
G,B
κ labeled by g in the groupoid GG

κ have been de-
fined, it is natural to suppose that there is also a collection of duality func-
tors E

G,g
κ , labeled by the same groupoid, acting between the corresponding

categories of twisted D-modules on BunG and BunLG and intertwining the
functors gF

G,B
κ for all boundary B conditions. This leads to a vast gener-

alization of the idea of quantum Geometric Langlands duality (1.1), which
from the 4d gauge theory point of view is just one of many duality functors;
namely, the functor EG,Sm

κ attached to the duality Sm.
Putting aside the subtleties related to the spin structures, which will

be addressed in later sections, we expect that for irrational κ these func-
tors E

G,g
κ are in fact equivalences between categories of twisted D-modules

on BunG and BunLG. In other words, we conjecture that for each g ∈ GG
κ

there is an equivalence E
G,g
κ between Dκ(BunG) and Dg(κ)(Bung(G)) which

intertwines the equivalences CG
κ (B) � C

g(G)
g(κ) (g(B)) via the corresponding

compactification functors, for all boundary conditions B.
Before stating the conjecture, it is useful to recall the subgroup SG of

PGL2(Z) generated by Tn(G) and SmTn(LG)Sm. Each element g ∈ SG gives
rise to a particular element (arrow) of the groupoid GG

κ connecting (G, κ)
to (G, g(κ)). In this case, we write g(G) = G. Similarly, each element g ∈
Sm · SG gives rise to the element of GG

κ connecting (G, κ) to (LG, g(κ)). In
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case case, we write g(G) = LG. Likewise, for g ∈ SLG and g ∈ Sm ·SLG. When
no confusion can arise, we use the same notation g for the corresponding
elements of the groupoid GG

κ .

Conjecture 4.1. Let κ be irrational. Then for each g ∈ GG
κ , connecting the

nodes (G, κ) and (g(G), g(κ)), there is a functor

EG,g
κ : Dκ(BunG) → Dg(κ)(Bung(G))

that fits in a commutative diagram

(4.3)

CG
κ (B) −−−−→ C

g(G)
g(κ) (g(B))

FG,B
κ

⏐⏐	 ⏐⏐	F
g(G),g(B)

g(κ)

Dκ(BunG)
EG,g

κ−−−−→ Dg(κ)(Bung(G))

and these functors combine into a categorical action of the groupoid GG
κ on

the categories Dκ(BunG).

Furthermore, if g = Tn, n = p · n(G), p · Z, then the functor

EG,Tn

κ : Dκ(BunG) → Dκ+n(BunG)

is given by the formula

F �→ F ⊗ L⊗m
G ,

where LG is a minimal line bundle on BunG. In particular, the functor EG,1
κ

is the identity functor.

A categorical action of the groupoid GG
κ means that for any pair g, h ∈

GG
κ , we have an isomorphism of functors

ig,h : E
h(G),g
h(κ) ◦ EG,h

κ � EG,gh
κ

and these isomorphisms satisfy a cocycle condition for every triple of ele-
ments of GG

κ :

ig,hk ◦ ih,k = ig,h ◦ igh,k.

This implies that the functors EG,g
κ satisfy (in the categorical sense) the

relations satisfied by the corresponding elements in the groupouid GG
κ (all

of these relations boil down to some relations in PGL2(Z)). This leads to
various non-trivial statements.
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For example, Conjecture 4.1 states that Tn(G) ∈ SG gives rise to an
equivalence between the categories of twisted κ- and (κ + n(G))-twisted
D-modules on BunG obtained by tensoring a twisted D-module with the
minimal line bundle LG on BunG, and likewise for Tn(LG) and BunLG. On
the other hand, the duality transformation Sm ∈ PGL2(Z) should give rise
to the equivalence (1.1):

Dκ(BunG) � D−1/mκ(BunLG).

Therefore these equivalences should satisfy whatever relations are satisfied
by Tn(G), Tn(LG) and Sm in the group PGL2(Z).

This is one of the reasons we find it more fruitful to look at the entire
groupoid GG

κ (rather than the specific equivalence Sm) as the collection of
quantum Geometric Langlands dualities (qGL dualities for short). Another
reason is that, as we show below, using the method of constructing vertex
algebras via compositions of junctions, we can conjecturally construct the
kernels of many of these qGL dualities directly. However, the vertex algebra
corresponding to the duality Sm may not be the optimal one (it may have un-
bounded conformal dimensions and other unfavorable features). Therefore,
we may be better off constructing other qGL dualities first. Using these qGL
dualities and the equivalences Tn(G) and Tn(LG), we can then construct the
qGL duality Sm as well.

4.2. Kernels

Let us discuss these kernels in more detail. Let g be an arrow between
the nodes (G, κ) and (g(G), g(κ)) in the groupoid GG

κ . Then, according to
Conjecture 4.1, there should be a functor

E
g(G),g
κ,g(κ) : Dκ(BunG) → Dg(κ)(Bung(G)).

We hope to realize this functor as the correspondence induced by a kernel

FG,g
κ ∈ D−κ,g(κ)(BunG×Bung(G))

which is obtained by applying a localization functor to the vertex algebra

V
g(G)
g(κ) (DG

0,1
�g(DG

0,1)),

corresponding to a junction DG
0,1 → g(DG

0,1).
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Indeed, according to our general conjectures, this vertex algebra should
have commuting actions of the affine Kac–Moody algebras ĝ of level −κ and
ĝ′ (where g′ is the Lie algebra of g(G)) of level g(κ). Therefore we can apply
the localization functor with respect to both actions, which yields a twisted
D-module in the category D−κ,g(κ)(BunG×Bung(G)).

According to our general conjectures, it should be independent of the
junction data of DG

0,1 → g(DG
0,1) and should coincide with the image of the

identity object

I ⊗ I ∈ CG
κ (D

G
0,1)

∨ � C
g(DG

0,1)
κ (g(DG

0,1))

under the compactification functor of this category, viewed as a category
arising in the 4d gauge theory with the semisimple group G × g(G) and
the coupling (−κ, g(κ)). In the next subsection we will explain a general
strategy for constructing these kernels. We will give a number of examples
in the later sections; in particular, two families of kernel vertex algebras in
Sections 5 and 10.

The following heuristic point of view on the kernels F
G,g(G)
κ might be

useful: let’s think of the functors F
g(G),g(B)
g(κ) as kind of bookkeeping devices,

giving us “coordinate representations” of objects of the category C
g(G)
g(κ)(g(B) �

CG
κ (B). Indeed, given an object A of CG

κ (B), we obtain an object g(A) of

the category C
g(G)
g(κ) (g(B)), and the functor F

g(G),g(B)
κ then assigns to g(A) a

g(κ)-twisted D-module on Bung(G). Let’s think of the collection of its fibers

(to simplify notation, we denote F
g(G),g(B)
κ (g(A)) simply by g(A) here)

A �→ Hom(δP, g(A)), P ∈ Bung(G)

as a categorical version of the set of “g-coordinates” of A, relative to a
specific “basis” {δP}P∈Bung(G)

in the category Dg(κ)(Bung(G)).
Now let’s compare these “g-coordinates” to the “coordinates” of A rel-

ative to the standard basis {δP′}P′∈BunG
in the category Dκ(BunG):

A �→ Hom(δP′ , A), P′ ∈ BunG .

As in linear algebra, converting one “coordinate representation” into another
requires a categorical version of “change of basis matrix” which we can think
of as a D-module on BunG×Bung(G) with fibers

Hom(δP, g(δP′)), (P′,P),

with the Hom’s taken in the category Dg(κ)(Bung(G).



Quantum Langlands dualities 239

Heuristically, for each P ∈ Bung(G),

Hom(δP, g(A)) =

∫
P′∈BunG

Hom(δP, g(δP′))⊗Hom(g(δP′), g(A))

=

∫
P′∈BunG

Hom(δP, g(δP′))⊗Hom(δP′ , A),

where the first factor represents the kernel FG,g
κ .

The upshot of this discussion is that the kernel of the qGL duality
g should be a D-module on BunG×Bung(G) whose fibers at (P′,P) are
Hom(δP, g(δP′)). It should also be clear from the above discussion (see also
Section 6.5 below) that this D-module can be obtained by applying the

localization functor to the vertex algebra V
g(G)
g(κ) (DG

0,1
�g(DG

0,1)).

We expect that all of this works out nicely for irrational κ. For rational κ,
some complications arise. We no longer expect that our functors yield equiv-
alences between the corresponding categories of twisted D-modules. Rather,
we expect such equivalences between certain “tempered” subcategories [6].
The reason is that from the 4d gauge theory point of view [40, 41], the
non-tempered part is accommodated by additional fields, denoted by σ, σ in
[55], which become relevant at rational values of κ as additional degrees of
freedom [20]. They play a role similar to the role Arthur’s SL2 plays in the
classical Langlands correspondence ([26], Sect. 6.2). See Remark 6.1 below
for more details.

Another issue arising at rational κ is that there are two derived categories
of κ-twisted D-modules, dual to each other [18]. In order to extend our setup
to rational κ one should probably consider one of them for positive rational
values of κ and the other for negative ones.16

4.3. Extension of the compactification functor

The above construction is a special case of a general phenomenon: Whenever
a boundary condition B has a global symmetry group H, the compactifica-
tion functor FG,B

κ can be extended to a functor

FG,B,H
κ : CG

κ (B) → Dκ,−κH
(BunG×BunH,(x)).

Here BunH,(x) denotes the moduli stack of H-bundles on X equipped with
a trivialization on the formal disc around the point x. Such a trivialization

16We thank P. Yoo for useful comments on this issue.
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is necessary in general in order to insert a line defect at x. However, specific
line defects may only depend on a trivialization on the nth formal neigh-
bourhood of x for some integer n ≥ 0, in which case the image of the functor
can be well-defined on the corresponding quotient of BunH,(x) by a congru-
ence subgroup of H[[z]]. It should be possible to express this statements as

the requirement that the functor FG,B,H
κ should intertwine the appropriate

actions of the loop group of H on the source and target categories.
In particular, if we take the identify object I in the category CG

κ (B),
then we do not insert any line defect at all, and therefore the correspond-
ing twisted D-module FG,B,H

κ (I) is actually well-defined in Dκ,−κH
(BunG×

BunH). Thus, FG,B,H
κ (I) can be viewed as an extension of the compacti-

fication map, taking values in Dκ,−κH
(BunG×BunH). We can obtain the

functor FG,B,H
κ (I) by applying the localization functor to the vertex alge-

bra V G
κ (DG

0,1
�B) (for appropriate choices of junctions). Indeed, on general

grounds we expect this vertex algebra to contain a Kac–Moody subalge-
bra Vκ′(g) × V−κ′

H
(h), with κ′ and κ′H could in general differ from κ by

integral multiples of n(G) and n(H). Applying the localization functor to
V G
κ (DG

0,1
�B) with respect to this Kac–Moody subalgebra and tensoring the

resulting D-modules by a line bundle if necessary, we obtain the desired
D-module in Dκ,κH

(BunG×BunH).
As an example, suppose that B is also the Dirichlet boundary condition.

Then H = G. For irrational κ, the compactification map should produce
the diagonal D-module in Dκ,−κ(BunG×BunG), and the compactification
functor should be the natural functor

D−κ(GrG) → D−κ,κ(BunG×BunG,(x))

assigning to a compactly supported D-module on GrG a kernel on
BunG×BunG,(x). This is a categorical version of a construction of the kernel
of a convolution operator that is familiar from the theory of automorphic
representations. The kernel of the convolution with a G[[z]]-invariant com-
pactly supported object (a function or a D-module) on GrG is well-defined
on BunG×BunG, but the convolution with a general compactly supported
object on GrG gives rise to a kernel on BunG×BunG,(x).

Now let B be any duality image g(DG
0,1) of the Dirichlet boundary con-

dition discussed above. Then we get an extended compactification functor

D−g(κ)(Grg(G)) → D−κ,g(κ)(BunG×Bung(G),(x)).

Applying it to the identity object of the category D−g(κ)(Grg(G)), we obtain
aD-module onD−κ,g(κ)(BunG×Bung(G)) which is nothing but the kernel we
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discussed above. It can also be viewed as the qGL image of the diagonal D-
module in BunG×BunG under the qGL duality g applied along the second
factor. Just as the categorical integral transform induced by the diagonal
gives rise to the identity functor, integral transforms induced by these kernels
give rise to functors taking twisted D-modules on BunG to their images on
Bung(G) under the qGL duality g.

Thus, we see that junctions between DG
0,1 and g(DG

0,1) are crucial for
constructing qGL dualities. Namely, we expect the sheaves of coinvariants
of the corresponding vertex algebras give rise to the qGL kernels. This begs
the question: How to build junctions between DG

0,1 and g(DG
0,1)?

4.4. Building duality kernels

A particularly powerful method for constructing junctions between DG
0,1 and

its dual g(DG
0,1) is using compositions of junctions [16]. More generally, this

method can allow us to produce many interesting junctions between bound-
ary conditions which do not simultaneously admit weakly-coupled descrip-
tions, such as DG

0,1 and DG
p,q.

In general, we will always compose junctions along boundary conditions
of typeNG

p′,q′ , whose category of boundary lines is semisimple for irrational κ.
This considerably simplifies the construction of composite vertex algebras.
We leave for future work calculations involving composition along other
types of boundary conditions, as well as the limits of the objects we construct
to rational values of κ.

Thus, our basic strategy is to “resolve” the junction between DG
0,1 and

DG
p,q by a composition of junctions of the form

(4.4) DG
p0=0,q0=1 → NG

p1,q1 → · · · → NG
pn−1,qn−1

→ DG
pn=p,qn=q,

so that each the vertex algebra corresponding to each intermediate junction
is a Kac–Moody or W-algebra.

The resulting vertex algebra V (T, DG
0,1

�DG
p,q) is then an extension of an

algebra which contains two Kac–Moody subalgebras at appropriate levels,
together with a sequence of W-algebras in-between. The extension involves
diagonal objects in the products of two categories of the form KLκi

(G) or
KLκi

(LG) for appropriate intermediate levels.
As an important example, in which we don’t have to deal with the sub-

tleties related to the center and the spin structures, consider the case of the
simple Lie group G of type E8, which is Langlands self-dual; it is simply-
laced, simply-connected, and has trivial center. Then we can interpolate
between DG

0,1 and DG
1,0 by NG

1,−1.
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• We have T−1(DG
0,1) = DG

0,1 and T−1(NG
1,0) = NG

1,−1. Therefore, if we

apply T−1 to the standard junction DG
0,1 → NG

1,0, we obtain the junc-

tion DG
0,1 → NG

1,−1, and according to formula (3.3), the latter supports

Vκ+1(g).

• We have RS(DG
1,0) = DG

0,1 and RS(NG
1,−1) = NG

1,−1. Therefore, if we

apply RS to the junction DG
0,1 → NG

1,−1 (or equivalently, RST−1 to the

standard junction DG
0,1 → NG

1,0), we obtain the junction NG
1,−1 → DG

1,0

(recall that the junction arrow is reversed under R, see formula (3.10)).

The latter junction supports Vκ−1+1(g), because if g = RST−1, then

g−1(κ) = TSR(κ) = κ−1 + 1 (see formula (3.8)).

• The vertex algebra corresponding to the composite junction DG
0,1 →

DG
1,0 is thus the following extension of Vκ+1(g)⊗ Vκ−1+1(g):

V G
κ (DG

0,1
�DG

1,0) =
⊕

λ∈P+(G)

Vλ,κ+1 ⊗ Vλ,κ−1+1.

Conjecturally, if we apply the localization functor to this composite junc-

tion vertex algebra, we obtain a twistedD-module on BunG×BunG with the

twists κ+1 along the first factor and κ−1+1 along the second factor, which

should be the kernel of the functor of qGL duality E
G,TST
−κ−1 corresponding to

TST from D−κ−1(BunG) to Dκ−1+1(BunG). We will discuss a generalization

of this junction vertex algebra, and the corresponding kernel, in Section 10.

As a more basic example, consider the composition of basic junctions

from DG
0,1 to NG

1,0 and from NG
1,0 to DG

0,1. This composition gives the vertex

algebra of (twisted) chiral differential operators on G, which has V−κ(g) ⊗
Vκ(g) as a vertex subalgebra [7]. For irrational κ, it is isomorphic to a direct

sum of tensor products of the Weyl modules over ĝ of levels −κ and κ:

V G
κ (DG

0,1
�DG

0,1) =
⊕

λ∈P+(G)

Vλ,−κ ⊗ Vλ∗,κ,

where λ∗ = −w0(λ) is the highest weight of the irreducible g-module dual

to the irreducible finite-dimensional g-module with highest weight λ. For

irrational κ, we expect that the localization of this vertex algebra is the

push-forward of the diagonal inD−κ,κ(BunG×BunG). Thus, for irrational κ,

V G
κ (DG

0,1
�DG

0,1) is the kernel of the identity functor Dκ(BunG) → Dκ(BunG),

the qGL duality g = 1.
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5. A family of kernel vertex algebras

In this section we construct a family of junction vertex algebras Xp,q(G)
which we expect to give rise to kernels of specific quantum Langlands duality
functors. The vertex algebra Xp,q(G) is associated to a simple Lie group G
and two integers

p ∈ n(G) · Z, q ∈ n(LG) · Z,

and it is equipped with the action of the affine Kac–Moody algebras ĝ−κ

and L̂gg(κ), where

g = T̃ pSmT̃ q

and

T̃ = SmT−1Sm =

(
1 0
m 1

)
When we apply the localization functor to Xp,q(G), we obtain a twisted

D-module

Δ−κ,g(κ)(Xp,q(G))

on BunG×BunLG, with twists −κ and g(κ) along the first and the second
factor, respectively We conjecture that Δ−κ,g(κ)(Xp,q(G)) is a kernel of the

qGL functor corresponding to g = T̃ pST̃ q:

EG,g
κ : Dκ(BunG) → Dg(κ)(BunLG)

(see formula (6.3); note that g(G) = LG in this case).

The standard qGL duality, g = Sm, corresponds to the case p = q = 0.
The corresponding junction vertex algebra X0,0(G), obtained from the chain
of junctions D0,1 → N1,0 → N0,1 → D1,0, appears to coincide (for irrational
κ) with the “master vertex algebra” recently proposed by Gaitsgory [47] as
a candidate for a vertex algebra that could be used to construct a kernel of
the qGL duality Sm (this vertex algebra was also proposed earlier by Feigin;
as far as we know, he has not published anything about it).

However, the vertex algebras X0,0(G) with p ≤ 0 or q ≤ 0 have con-
formal dimensions unbounded from below. This makes it more difficult to
study these vertex algebras and to apply the localization functor to them
(we likely need to take into account higher derived functors in this case
and perhaps apply some regularization procedure, since the dimensions of
the homogeneous components are infinite). However, we will show that in
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the case of positive p and q, all conformal dimensions of Xp,q(G) are non-

negative; and furthermore, if p > 1 and q > 0 or p > 0 and q > 1, then

only the vacuum vector has conformal dimension 0 and conformal dimen-

sions of all other fields are strictly positive. Furthermore, the dimensions

of all homogeneous components of fields corresponding to a fixed conformal

dimension are then automatically finite.

In this sense, the kernel for the duality

g = T̃ pSmT̃ q = SmT−pSmT−qSm

with, say, p ≥ 1 and q > 1 has an advantage over the kernel for the standard

qGL duality Sm. And once it is constructed, it can be used to construct the

kernel for Sm.

For example, if G is a simply-laced, simply connected group, then we

have m = 1 and we can take p = 1, so using the relation (ST )3 = 1, we

can rewrite g as ST−1ST−qS = TST 1−qS. If n(LG) ≤ 2, we can further

take q = 2, to obtain TST 1−qS = T 2ST . But the action of T and Tn(LG)

corresponds (up to the spin and θ-angle subtleties) to tensoring with a line

bundle on BunG and BunLG, respectively. Therefore, once we construct a

kernel for the duality g, we can construct a kernel for S = S1 as well.

5.1. The case of G = SL2, p = q = 0

We first construct the kernel for the duality S = S1 for G = SL2 (i.e.

p = q = 0). For that we take the composition of the following chain of

junctions:

D0,1 → N1,0 → N0,1 → D1,0

in the bulk theory TPSL2

−1/κ .

The vertex algebra corresponding to the first junction is ŝl2 of level−1/κ.

The one corresponding to the second junction is W1/κ(sl2) � Wκ(sl2), i.e.

the Virasoro algebra with the central charge

c(κ) = 13− 6κ− 6κ−1,

because N1,0 → N0,1 = R(N0,1 → N1,0) and −1/κ = R(1/κ). The one

corresponding to the third junction,

V PSL2

−1/κ (N0,1�D1,0) � V SL2

−κ (D0,1�N1,0),
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which is ŝl2 of level −κ, because

NPSL2

0,1 → DPSL2

1,0 = SR(DSL2

0,1 → NSL2

1,0 )

and −1/κ = SR(−κ) (see formula (3.8)). Recalling the procedure of Sec-
tion 2.5 for constructing compositions of junction vertex algebras, we obtain
that for irrational κ this vertex algebra is

X0,0(SL2) =
⊕

r≥,s≥0

Vr,−κ ⊗M(r,2s),κ ⊗ V2s,−1/κ,

where Vm,κ denotes the Weyl module over ŝl2 with highest weight m and
(shifted) level κ, and M(m,n),κ denotes the irreducible highest weight module
over the Virasoro algebra with the above central charge c(κ) and conformal
dimension

h(m,n),κ =
1

4
(m(m+ 2)κ−1 + n(n+ 2)κ)− 1

2
(mn+m+ n).

Thus, the conformal dimension of the highest weight vector in Vr,−κ ⊗
M(r,2s),−κ ⊗ V2s,−1/κ is

h(r,2s),κ −
1

4
r(r + 2)κ−1 − 1

4
2s(2s+ 2)κ = −1

2
(2rs+ r + 2s).

We see this vertex algebra has fields with conformal dimensions unbounded
from below, which is a drawback.

However, if we apply the localization functor to X0,0(SL2) (perhaps,
in the derived sense), we obtain a D-module on BunSL2

×BunPSL2
with

the twisting −κ along the first factor and −1/κ along the second factor.
According to our general conjecture, it should be a kernel of the qGL functor
corresponding to the duality transformation S:

ESL2,S
κ : Dκ(BunSL2

) → D−1/κ(BunPSL2
).

5.2. The case of G = SL2, general p, q

We now generalize this to the duality transformations g = T̃ pST̃ q with
arbitrary integers p and q. Consider the following chain of junctions:

(5.1) D−p,1 → N1,0 → N0,1 → D1,−q

in the bulk theory TPSL2

−1/κ .
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The vertex algebra corresponding to the first junction in (5.1) is ŝl2 of
level 1/(p−κ) = T̃ p(−1/κ), becauseD−p,1 → N1,0 = T̃−p(D0,1 → N1,0). The
vertex algebra corresponding to the second junction is W1/κ(sl2) � Wκ(sl2),
the Virasoro algebra with the central charge c(κ) (for the same reason as
explained above). The one corresponding to the third junction,

V PSL2

−1/κ (N0,1�D1,−q) � V SL2

κ/(qκ−1)(D0,1�N1,0),

which is ŝl2 of level κ/(qκ− 1), because

NPSL2

0,1 → DPSL2

1,−q = ST̃ qR(DSL2

0,1 → NSL2

1,0 )

and −1/κ = ST̃ qR(κ/(qκ − 1)) (see formula (3.8)). Note that q has to be
even, because T̃ q is a legitimate duality in the bulk theory corresponding to
SL2, or equivalently, T

q is a legitimate duality in the theory corresponding to
PSL2 (ignoring θ-angle subtleties), only if q is even (indeed, n(PSL2) = 2).

In the same way as above, we obtain that the corresponding vertex
algebra is

Xp,q(SL2) =
⊕
r,s≥0

Vr,κ/(qκ−1) ⊗M(r,2s),κ ⊗ V2s,1/(p−κ).

The conformal dimension of the highest weight vector in Vr,κ/(qκ−1) ⊗
M(r,2s),κ ⊗ V2s,1/(p−κ) is

h(r,2s),κ +
1

4
r(r + 2)

qκ− 1

κ
+

1

4
2s(2s+ 2)(p− κ)

=
1

4
(r − 2s)2 +

1

4
r(r + 2)(q − 1) + s(s+ 1)(p− 1)

(note that this is always an integer if q is even). Since r, s ≥ 0, conformal
dimensions are non-negative if p, q ≥ 1, and are strictly positive, with the
exception of the vacuum vector, if in addition either p or q are positive. But
since q has to be even, this is equivalent to p ≥ 1 and q ≥ 2.

Applying the localization functor to Xp,q(SL2), we obtain a twisted D-
module on the product BunSL2

×BunPSL2
. The twisting is κ/(qκ−1) along

the first factor and 1/(p−κ) along the second factor. This should be a kernel
of the qGL functor corresponding to the duality transformation T̃ pST̃ q:

E
SL2,T̃ pST̃ q

κ/(1−qκ) : Dκ/(1−qκ)(BunSL2
) → D1/(p−κ)(BunPSL2

).
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Note that the junction D−p,1 → D1,−q given by the composition (5.1)

can be transformed by the duality T̃ p to D0,1 → D1−pq,−q = Dg(0,1), where

g = T̃ pST̃ q. Therefore constructing the junction vertex algebra for D−p,1 →
D1,−q is equivalent to constructing a junction vertex algebra for D0,1 →
Dg(0,1). This is why we have used the same notation Xp,q(SL2) for this
vertex algebra as we used at the beginning of this section. And in fact, if we
make a change of variables κ �→ κ/(qκ+1) in the above formulas, we obtain
the kernel of

ESL2,g
κ : Dκ(BunSL2

) → Dg(κ)(BunPSL2
),

where g = T̃ pST̃ q.

5.3. General case

For a general simple Lie group G with lacing number m, we consider the
composition of junctions

D−pm,1 → N1,0 → N0,1 → D1,−q

in the bulk theory T
LG
−1/mκ, where p ∈ n(G)Z, q ∈ n(LG)Z.

The vertex algebra corresponding to the first junction is L̂g of level
1/m(p − κ) = T̃ p(−1/mκ), because D−mp,1 → N1,0 = T̃−p(D0,1 → N1,0).
The vertex algebra corresponding to the second junction N1,0 → N0,1 =
R(N0,1 → N1,0) is W1/κ(

Lg) � Wκ(g). The vertex algebra corresponding to
the third junction,

V
LG
−1/mκ(N0,1�D1,−q) � V G

κ/(mqκ−1)(D0,1�N1,0),

is ĝ of level κ/(mqκ− 1).
In the same way as before, we obtain that for irrational κ the corre-

sponding vertex algebra is

(5.2) Xp,q(G) =
⊕

λ∈P+,μ∨∈LP+

Vλ∗,κ/(mqκ−1) ⊗M(λ,μ∨),κ ⊗ Vμ∨∗,1/m(p−κ).

Here Vλ∗,κ denotes the Weyl module over ĝ generated from the irreducible
finite-dimensional representation (Vλ)

∗ of g which is dual to Vλ. Since (Vλ)
∗ �

V−w0(λ), we find that λ∗ = −w0(λ). The weight μ
∨∗ of Lg is defined similarly.

Recall from formula (3.12) that we denote by M(λ,μ∨),κ(g) the Wκ(g)-
module

M(λ,μ∨),κ(g) = HDS,μ∨(Vλ,κ).
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The conformal dimension of its highest weight vector is (see [22])

(5.3) h(λ,μ∨),κ =
1

2κ
(λ, λ+2ρ)+

κ

2
(μ∨, μ∨+2ρ∨)−〈λ, μ∨〉−〈ρ, μ∨〉−〈λ, ρ∨〉.

We use the invariant inner product (·, ·)h∗ on h∗ = P ⊗
Z

C normalized

so that the square length of the maximal root of g is equal to 2. This inner

product enables us to identify h∗ with h = (Lh)∗ = LP ⊗
Z

C. We denote the

image of μ∨ ∈ LP ⊂ h in h∗ under this identification by the same symbol.

In particular, the ith simple root of Lg is identified with 2αi/(αi, αi) ∈ h∗.
In formula (5.3), (μ∨, μ∨) stands for the square length (μ∨, μ∨)h∗ of μ∨ ∈

h∗. Note that it is also equal tom times the square length (μ∨, μ∨)(Lh)∗ of this
element with respect to the invariant inner product on (·, ·)(Lh)∗ normalized

so that the square length of the maximal root of Lg is equal to 2. That’s

why formula (5.3) stays invariant if we exchange g and Lg and replace κ by

1/mκ (and not 1/κ).

We also use the canonical pairing

〈·, ·〉 : P × LP → Z,

and the standard notation ρ and ρ∨ for the elements of P and LP , respec-

tively, such that 〈ρ, α∨
i 〉 = 1 and 〈αi, ρ

∨〉 = 1 for all i.

Conformal dimensions of the highest weight vectors of Vλ∗,κ/(mqκ−1) and

Vμ∨∗,1/m(p−κ) coincide with those of Vλ,κ/(mqκ−1) and Vμ∨,1/m(p−κ), respec-

tively, and are equal to

mqκ− 1

2κ
(λ, λ+ 2ρ) =

(
− 1

2κ
+

mq

2

)
(λ, λ+ 2ρ)

and

m(p− κ)

2
(μ∨, μ∨ + 2ρ∨)(Lh)∗ =

(
−κ

2
+

p

2

)
(μ∨, μ∨ + 2ρ∨),

respectively. Therefore conformal dimension of the highest weight vector of

the (λ, μ∨)-term of the vertex algebra (5.2) is equal to

1

2
(λ− μ∨, λ− μ∨) +

mq − 1

2
(λ, λ) + (mq(λ, ρ)− 〈λ, ρ∨〉)

+
p− 1

2
(μ∨, μ∨) + (p(μ∨, ρ∨)− 〈ρ, μ∨〉).
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The first term is always non-negative, the second and third terms are non-
negative (resp. strictly positive) if q ≥ 1 (resp. q > 1), and the fourth and
fifth terms are non-negative (resp. strictly positive) if p ≥ 1 (resp. p > 1).

We conclude that conformal dimensions in Xp,q(G) are bounded from
below (in fact, are non-negative) if and only if p, q ≥ 1. Furthermore, they
are strictly positive, with the exception of the vacuum vector (which appears
in the λ = μ = 0 sector) if in addition either p or q is greater than 1.

Applying the localization functor to Xp,q(G), we obtain a twisted D-
module on the product BunG×BunLG. The twisting is κ/(mqκ − 1) along
the first factor and 1/m(p − κ) along the second factor. This should be
a kernel of the qGL functor corresponding to the duality transformation
T̃ pST̃ q:

E
G,T̃ pST̃ q

κ/(1−mqκ) : Dκ/(1−mqκ)(BunG) → D1/m(p−κ)(BunLG).

Making a change of variables, we can rewrite it as the kernel of

EG,g
κ : Dκ(BunG) → Dg(κ)(BunLG),

where g = T̃ pST̃ q and g(κ) = (mqκ+ 1)/m(mpqκ+ p− κ).

6. Branes, twisted D-modules, and compactification functors

In this section we discuss in more detail the compactification functors and
their behavior under the quantum Langlands dualities. We also review the
connections between the D-modules obtained via compactification functors
and the corresponding branes on the Hitchin moduli spaces. Much of the ma-
terial of this section on the links between branes, D-modules, and conformal
blocks appeared previously in [55, 59, 35, 42, 36, 37, 9]. A new ingredient is
identifying, under some mild conditions, the compactification functor with
the localization functor for a junction vertex algebra (up to tensoring with
a line bundle on BunG).

6.1. Branes associated to boundary conditions

In their pioneering work [55], Kapustin and Witten introduced and studied
the categories of A- and B-branes on MH(G,X) and MH(LG,X), and the
equivalence (homological mirror symmetry) between them that is a conse-
quence of the S-duality of the 4d gauge theories TG

0 and T
LG
∞ (in the notation

introduced in Section 3). In particular, they studied the following branes,
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which can be viewed as A- or B-branes in each of the three complex struc-
tures of the Hitchin moduli spaces, relative to the hyperKäler structure
described in [55]:

(i) The zero-branes BE – supported at a single (smooth) point E of
MH(LG,X), each of them has type (B,B,B);

(ii) Pairs (Fb,∇), where Fb is a smooth fiber table of the Hitchin fibration
of MH(G,X) and a ∇ is a flat U(1)-bundle on it – these are mirror
dual to the zero-branes BE from (i) and have type (B,A,A).

(iii) The canonical coisotropic brane Bc.c. – it is supported on the entire
MH(G,X) and has type (A,B,A);

(iv) The space-filling (B,B,B) brane B̃ on MH(LG,X);
(v) The brane of opers BOp – it is supported on the subspace of LG-opers

in MH(LG,X), has type (A,B,A), and is mirror dual to Bc.c. from
(iii);

(vi) The (B,A,A) brane Bcl.Op of “classical opers” (also known as the
Hitchin’s section) on MH(G,X) – it is mirror dual to the space-filling

(B,B,B) brane B̃ from (iv).

To make contact with the formalism of the previous section, we note
that to each half-BPS boundary condition B in the physical 4d theory we
can associate a topological boundary condition in the TG

κ theory with κ = 0
or ∞. One can also associate to it two families of branes on the Hitchin
moduli space MH(G): one corresponds to κ = ∞ and consists of (B,B,B)
branes; the other corresponds to κ = 0 and consists of (B,A,A) branes.
They arise from two different types of compactifications of the 4d theory
on the Riemann surface X, preserving two different SO(3) subgroups of the
group SO(6) of R-symmetries of the 4d theory (this is explained in detail
in [36, 37]).

For a generic B, this is the end of the story. But for some special bound-
ary conditions, one of the two types of branes deform to other values of κ.
If a brane does deform, then the deformed brane always has type (A,B,A).

In the above table, the only branes that can be deformed are (iv) and

(vi). The former, the (B,B,B) brane B̃, deforms to the (A,B,A) brane Bc.c.

from (iii). The latter, the (B,A,A) brane Bcl.Op, deforms to the (A,B,A)
brane BOp from (v).

Table 3 organizes the branes according to the boundary conditions to
which they are associated (we only consider the basic ones: Dirichlet, Neu-
mann, and principal Nahm).

Note that three of the branes in the middle column, namely, (i), (iv) and
(vi), appeared in the above list; as did two of the branes in the rightmost
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Table 3: The basic boundary conditions, branes and D-modules

Boundary Condition κ Brane Type Deforms? If yes, D-mod

Dirichlet (D0,1) ∞ BE (B,B,B) no

Dirichlet (D0,1) 0 FP (B,A,A) yes, F′
P δκP

Neumann (N1,0) ∞ B̃xi,λi (B,B,B) yes, Bxi,λi
c.c. Dxi,λi

κ

Neumann (N1,0) 0 B
xi,λi
0 (B,A,A) no

Nahm (N0,1) ∞ B
xi,μ

∨
i

cl.Op (B,B,B) yes, B
xi,μ

∨
i

Op Ψ
xi,μ

∨
i

κ

Nahm (N0,1) 0 Nahm pole of σ (B,A,A) no

column: (iii) and (v). The branes (Fb,∇) from (ii) correspond to the dual
of the (B,B,B) Dirichlet boundary conditions from (i) and hence do not
appear in our table.

Although the (B,B,B) Dirichlet and their duality images are not the
κ → q/p limits of the Dp,q boundary conditions which exist for irrational κ,
the vertex algebra technology can still be used to explore their properties.
We will comment on this observation only briefly here, in Section 6.7, and
leave a more detailed discussion to future work.

Now we give more details on the branes appearing in Table 3.

6.1.1. Dirichlet boundary condition In this case, the (B,B,B) branes
are the zero-branes BE which appeared in [55]. They cannot be deformed
away from κ = ∞ (this can be seen from the fact that the deformation of
MH(LG) away from κ = ∞ is non-commutative, so points of MH(LG) no
longer make sense). Likewise, the branes (Fb,∇), supported on the fibers of
the Hitchin fibration, which are mirror dual to the zero-branes BE, as shown
in [55]. They cannot be deformed away from κ = 0.

The (B,A,A) branes associated to the Dirichlet boundary condition are
the branes FP on MH(G), where P is a semi-stable G-bundle on X. Recall
that in the complex structure I the Hitchin moduli space is identified with
the moduli space of semi-stable Higgs bundles on X. Hence it contains as
an open subspace the holomorphic cotangent bundle to the moduli space
M(G,X) of semi-stable G-bundles. The brane FP is supported on the fiber
of this cotangent bundle at P (this map was called “the second Hitchin
fibration” in [55] to distinguish it from the Hitchin map to the Hitchin
base). Note that since these fibers are vector spaces, they do not support
any non-trivial flat connections. Each brane FP has type (B,A,A).

The branes FP can be deformed away from κ = 0 to the (A,B,A) branes
which we denote by F′

P. These are constructed in a similar fashion, but using
the complex structure J , in which MH(G,X) appears as the moduli space
of semi-stable flat G-bundles on X. Then an open part of MH(G,X) also
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maps to M(G,X), and the fibers of this map give rise to a second family of
branes, which we denote by F′

P, where again P ∈ M(G,X) (these are affine
spaces, hence they do not support any non-trivial flat connections). Note
that the fibers of this map are different from the fibers of the previous map,
and hence the branes F′

P are different from FP.
The κ-twistedD-modules on BunG associated to the above “fiber branes”

are the δ-function D-modules δκP discussed in the previous section. More pre-
cisely, FP corresponds to δ0P for κ = 0 and F′

P corresponds to δκP for κ �= 0.
Unlike the branes that are mirror dual to the (B,B,B) zero-branes BE,

which have been described in [55] in the case when E is a smooth point of
MH(LG,X) (these are the branes (Fb,∇) from supported on the fibers of
the first Hitchin fibration), the mirror dual branes to the (B,A,A) branes
FP, and to their deformations F′

P, are rather complicated, and no explicit
description for them is presently known (apart from a small number of cases,
including that of abelian G). However, as we argue in this paper, we can
construct vertex algebras which give rise to the twisted D-modules corre-
sponding to these complicated branes using the localization functor to BunG.

6.1.2. Neumann boundary condition Then the (B,B,B) branes are

the space-filling brane B̃ and its generalizations B̃xi,λi obtained by applying
the Wilson line operators corresponding to the dominant integral weights
λi of G at the points xi ∈ X to B̃. These (B,B,B) branes deform to the

(A,B,A) brane Bc.c and its generalizations Bxi,λi
c.c on MH(LG,X) away from

κ = ∞. The corresponding twisted D-modules on BunLG are Dκ (whose
limit as κ → ∞ can be identified with the structure sheaf on LocLG, the
moduli stack of flat LG-bundles on X) and its generalizations Dxi,λi

κ .
A Neumann-type brane that does not deform is the (B,A,A) brane B0

which is the zero section of the cotangent bundle T ∗M(G,X) ⊂ MH(G,X).

6.1.3. Nahm boundary condition In this case the (B,A,A) branes are
the brane Bcl.Op of “classical opers” on MH(G,X) and its generalizations

B
xi,μ∨

i

cl.Op obtained by applying the ’t Hooft line operators corresponding to the

dominant integral coweights μ∨
i of G at the points xi ∈ X to Bcl.Op. These

(B,A,A) brane (for the group G) are mirror dual to the (B,B,B) branes

B̃xi,μ∨
i (for the group LG), which is consistent with the fact that the category

CG
0 (N

G
0,1) is S-dual to C

LG
∞ (NG

1,0).
The (B,A,A) brane Bcl.Op deforms away from κ = 0 to the (A,B,A)

brane of opers BOp on MH(G,X), and the branes B
xi,μ∨

i

cl.Op deform to the

(A,B,A) branes B
xi,μ∨

i

Op . Note that for irrational κ there are no bulk ’t Hooft
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operators, so B
xi,μ∨

i

Op cannot be obtained by applying ’t Hooft operators to
BOp.

The κ-twisted D-modules on BunG associated to the branes B
xi,μ∨

i

Op are

the Whittaker sheaves Ψ
xi,μ∨

i
κ (see Section 3.2, Example (iii)).

This is consistent with the fact that the category CG
κ (N

G
0,1) = Whit−κ(G)

is S-dual to C
LG
−1/mκ(N

G
1,0) = KL−1/mκ. The corresponding functor

EG,Sm
κ : Dκ(BunG) → D−1/mκ(BunLG)

should send the Whittaker sheaves Ψ
xi,μ∨

i
κ to the −1/mκ-twisted D-modules

D
xi,μ∨

i

−1/mκ on BunLG corresponding to the (A,B,A) brane B
xi,μ∨

i
c.c. .

Finally, the Nahm-type brane that does not deform (which is mirror
dual of the above “zero section” Neumann-type (B,A,A) brane) should
involve a Nahm pole of additional fields σ and σ that appear in the dimen-
sional reduction of the 4d gauge theory but are not usually included among
the degrees of freedom of the Hitchin moduli space, see [55, 40, 41] (this
boundary condition appears to be related to the Arthur’s SL2 in the classi-
cal Langlands correspondence, see Sect. 6.2 of [26]). It cannot be deformed
away from κ = ∞, just as its mirror dual “zero section” Neumann-type
(B,A,A) brane cannot be deformed away from κ = 0. This actually pro-
vides an important insight into the expected behavior of the qGL duality
functors EG,g

κ , see Remark 6.1 below.

6.2. Branes vs. D-modules

In [55], Kapustin and Witten described a link between the geometric Lang-
lands correspondence and mirror symmetry of categories of branes on the
Hitchin moduli spaces MH(G,X) and MH(LG,X) in terms of the following
triangle of categories:

(6.1) A-branes on MH(G,X)

B-branes on M(LG,X)

D0-modules on BunG
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Here B-branes on M(LG,X) are considered in the complex structure
J , in which M(LG,X) is viewed as the moduli space Y(LG) of semi-stable
LG-local systems on X. This category is usually interpreted mathemati-
cally as the (derived) category of coherent sheaves on Y(LG). Hence it is
closely related to the (derived) category of coherent sheaves (or, equiva-
lently, O-modules) on LocLG, the moduli stack of flat LG-bundles on X. For
example, the two categories share some familiar objects: zero-branes BE

on M(LG,X) (example (i) from Section 6.1) correspond to the skyscraper
sheaves on LocLG, and the space filling B-brane on M(LG,X) (example (iv)
from Section 6.1) corresponds to the structure sheaf on LocLG. However,
there are two important differences between the two categories: first, LocLG

is the moduli stack of flat LG-bundles on X, whereas MH(LG,X) in complex
structure J is the moduli space Y(LG) of semi-stable ones. Second, from the
physics perspective it is more natural to consider coherent sheaves on Y(LG)
with respect to its complex analytic rather than algebraic structure, whereas
in the traditional formulation of the geometric Langlands correspondence
one considers algebraic O-modules on LocLG (see however, [19]).

The upper arrow in the diagram (6.1) represents the (homological) mir-
ror symmetry, while the lower arrow represents the geometric Langlands
correspondence (up to the above two subtleties).

The vertical arrow linking the two should be viewed, according to [55],
as an equivalence of two (derived) categories that is independent from both
mirror symmetry and geometric Langlands. Rather, it is meant to be a
special case of a general link between the (derived) categories of D-modules
on a variety M (twisted by a square root of the canonical line bundle on
M) and A-branes on its cotangent bundle T ∗M (indeed, MH(G) is closely
connected to T ∗ BunG). We refer the reader to [55] for more details.

The picture summarized above corresponds to the case of κ = 0 on theG-
side and κ̌ = ∞ on the LG-side of the geometric Langlands correspondence.
In [55], a deformation of this picture to non-zero values of κ was considered
as well. In this deformation, one gets a link between the κ-deformed version
of the above categorical mirror symmetry and a quantum deformation of the
geometric Langlands duality.

This is a beautiful idea that has led to important developments in math-
ematics aiming at rigorously establishing equivalences of this kind between
categories of A-branes and D-modules (or constructible sheaves). However,
in the context of the above diagram there still remain several obstacles to
making a precise mathematical statement about such an equivalence. One of
them is the difference between the variety MH(G) and the stack T ∗ BunG.
The other is that in order to have an equivalence between the categories
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connected by the lower arrow one needs to modify one of these categories in
a non-trivial way (see [6, 20] for details).

Thus, while the diagram (6.1) offers a useful perspective on the links be-
tween S-duality (or mirror symmetry) and geometric Langlands, the techni-
cal difficulties involved in making it mathematically precise encourages one
to look for alternative proposals.

In this paper we make such an proposal. We show how to use a junction
of a given boundary condition B with the Dirichlet boundary condition (in
the bulk theory TG

κ ) to directly construct the compactification functor from
the category of line defects associated to B to a category of κ-twisted D-
modules on BunG, bypassing the categories of branes. Thus, at the outset,
we consider the boundary conditions and the corresponding categories of
line defects separately from one other. A priori, we only expect that the
groupoid of quantum dualities of the 4d gauge theory acts by equivalences on
the categories of line defects associated to B. The corresponding functors on
the categories of twisted D-modules on BunG arise a posteriori, as functors
that should intertwine the compactification functors. A priori there is no
reason to expect these functors to be equivalences (and in fact we only
expect that to be true for irrational κ). This understanding removes seeming
inconsistencies between the statements that are made in 4d gauge theory
and in the mathematical theory of quantum geometric Langlands duality
(see Remark 6.1 at the end of the next subsection for more details).

6.3. From boundary conditions to twisted D-modules

The starting point of our proposal is that for each boundary condition B,
we have the category of line defects CG

κ (B) associated to B in the bulk
theory TG

κ . At the outset, we look at these categories separately (rather
than considering all boundary conditions and the corresponding line defects
together). For each B, we then construct a compactification functor from
CG
κ (B) toDκ(BunG), using a junctionDG

0,1 → B from the Dirichlet boundary
condition to B.

The Dirichlet boundary condition plays a fundamental role in 4d gauge
theory. In fact, one could argue that it is only after we specify this boundary
condition that we fix the gauge group Gc of our theory (and hence its com-
plexification G). For the class of twisted gauge theories we are considering,
this means that identifying our 4d gauge theory with a specific theory TG

κ .
The traditional approach is to first define TG

κ in the weak coupling limit
(corresponding to κ close to 0), and then argue that it can be analytically
continued to other values of κ. But we find that among the resulting theories,
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there are many equivalences given by the duality groupoid (see Section 3.3).
Therefore, a more fruitful point of view might be that each orbit of the
duality groupoid gives rise to a single quantum field theory that has many
different Lagrangian descriptions (each of them corresponding to a particular
weak coupling limit, for a suitably chosen parameter κ). Thus, for example,
we see that the gauge group of the theory is not really a well-defined object
in a theory; rather, it is a pair of Langlands dual groups that is well-defined
(if we include discrete θ-angles, then we get an even larger set of groups,
though all of them belong to the isogeny classes of G and LG).

To summarize, given a quantum 4d gauge theory, we have a choice which
boundary condition (among many potential candidates) to call the Dirich-
let boundary condition DG

0,1 of our theory. This choice implies a particular
Lagrangian (weakly coupled) description, and hence an identification of the
theory as TG

κ for particular G and κ.

Now, suppose we have declared our choice of DG
0,1 (which includes the

choice of the corresponding group G). The Dirichlet boundary conditionDG
0,1

has a special property: it has a global symmetry group, which is nothing
but the gauge group Gc of the theory TG

κ . This allows us to couple this
boundary condition to a background G-bundle on the boundary. Suppose
that the boundary is the product of a Riemann surface X and a real line.
Then we can couple this boundary condition to a G-bundle P on X extended
to this product. Given another boundary condition B together with a line
defect (i.e. an object A of CG

κ (B)), we can then define a family of vector
spaces HB

P(A) labeled by P ∈ BunG. Furthermore, one can argue on general
grounds of TFT that these vector spaces must be the fibers of a κ-twisted
D-module on BunG, or more generally an object of the derived category
Dκ(BunG). For simplicity, we refer to all of them simply as κ-twisted D-
modules on BunG. This way we assign to B and A a κ-twisted D-module on
BunG, and this construction gives rise to the compactification functor from
CG
κ (B) to Dκ(BunG).

Let us explain this more precisely. What follows may be viewed a moti-
vation from the 4d gauge theory perspective. We will give a rigorous mathe-
matical definition of the compactification functor (under a few assumptions)
in Section 6.5 below.

(1) Let B be a boundary condition in the theory TG
κ and X a Riemann

surface. Consider the 4d theory TG
κ on the product of X and an infinite

strip, with the Dirichlet boundary condition DG
0,1 on one side and B

on the other side. Let P be a G-bundle on X, which we extend to the
product of X and the real line. Let’s couple the Dirichlet boundary
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condition to this G-bundle. In the limit in which the width of the
strip goes to zero, this yields a 3d TFT, whose space of states on X
we denote by HB

P . On general grounds, as explained in Section B.2 of
[36], we expect the spaces HB

P for different P ∈ BunG to be the fibers
of a κ-twisted D-module on BunG (the action of vector fields comes
from a version of the “Berry connection” familiar to physicists). This

is the image FG,B
κ (I) of the compactification map.

(2) Consider the same configuration as above, but with a line defect cor-
responding to an object A of the category CG

κ (B) on the boundary
of the strip on which we have the boundary condition B, situated at
x ∈ X (see Figure 1). Denote the corresponding space of states, in the
limit when the width of the strip goes to zero, by HB

P(A). Then, for
the same reason as in (1), we expect that HB

P(A) are the fibers of a

κ-twisted D-module on BunG. We denote this D-module by FG,B
κ (A).

(3) Given another object A′ of CG
κ (B), and a morphism A → A′, general

properties of TFT give rise to a morphism FG,B
κ (A) → FG,B

κ (A′).
Thus we obtain a functor

FG,B
κ : CG

κ (B) → Dκ(BunG).

This is the compactification functor. It has a multi-point generalization
compatible with fusion and braiding in CG

κ (B).
(4) If g is an element of the duality groupoid GG

κ , then for irrational κ we
should have an equivalence of categories

(6.2) CG
κ (B) � C

g(G)
g(κ) (g(B)).

Therefore, it is natural to assume the existence of a quantum GL du-
ality functor

(6.3) EG,g
κ : Dκ(BunG) → Dg(κ)(Bung(G))

intertwining the equivalences (6.2) via the corresponding compactifi-

cation functors FG,B
κ and F

g(G),g(B)
g(κ) in the sense that they fit in the

commutative diagram (4.3). Thus, we arrive at the statement of Con-
jecture 4.1.

Remark 6.1. Note that from the point of view of 4d gauge theory, we can
only claim that the essential images of the compactification functors FG,B

κ

and F
g(G),g(B)
g(κ) for a fixed boundary condition B are equivalent. A priori,
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there is no claim that the categories Dκ(BunG) and Dg(κ)(Bung(G)) are
equivalent. On general grounds, we do expect an equivalence between the
categories of 1d boundary conditions in the compactified 2d theories TG

κ [X]

and T
g(G)
g(κ) [X], but it is not clear that the category TG

κ [X] coincides with

Dκ(BunG). In general, some of the D-modules may have to be excluded
because of various subtleties with the definition of the theory TG

κ [X]. On
the other hand, some 1d boundary conditions may not correspond to any
D-modules on BunG.

For irrational κ, we expect that Dκ(BunG) is equivalent to the category

TG
κ [X]. Therefore, for irrational κ we expect that each functor E

G,g
κ is an

equivalence of categories.
For rational values of κ, however, we expect that TG

κ [X] is different from
Dκ(BunG). Perhaps, a part of it can be described as a certain “tempered”
subcategory of Dκ(BunG). This is motivated by the observation that in the
4d gauge theory there are additional fields, denoted by σ and σ in [55],
that appear to take care of the parameters for non-tempered D-modules.
For example, the “constant” D-module in D0(BunG) corresponds to the
principal Nahm pole for the fields σ and σ (see Section 6.1.3 and [26]). But
these fields represent additional degrees of freedom in the dual theory, which
suggests that if we only consider boundary conditions in the dual theory in
which these fields are set to 0, then we must also exclude the “constant” D-
module on BunG, which is a non-tempered object of the category D0(BunG)
[6, 20].

In general, it is usually difficult to explicitly compute the spaces HB
P(A),

appearing in part (3) above, purely in terms of the 4d gauge theory (or the
3d TFT obtained by its dimensional reduction). And that’s where vertex
algebras come to the rescue. In fact, it turns out that the compactification
functor for a boundary condition B can be described rigorously mathemati-
cally (under some assumptions) as the localization functor for modules over
the vertex algebra associated to any non-degenerate junction DG

0,1 → B
(possibly, up to tensoring with a power of the line bundle LG on BunG). In
order to explain this, we first recall the concepts of coinvariants, conformal
blocks, and the localization functor.

6.4. Generalities on conformal blocks and localization functors

Here we recall the notions of localization functors, conformal blocks, and
coinvariants (see [28], Ch. 18 for details; for a brief survey aimed at physi-
cists, see Sect. 7 of [25]).
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Let V be a vertex algebra and Ag,n the category whose objects are

(X, (xi), (Mi)), where (X, (xi)i=1,...,n) is an n-punctured compact Riemann

surface (more generally, a stable n-pointed curve) and (Mi)i=1,...,n is an

ordered set of V -modules (we think of each Mi as attached to the point xi),

and morphisms are holomorphic maps. Recall [64] that a modular functor

H is a functor from the category Ag,n to the category of vector spaces:

(6.4) (X, (xi), (Mi)) �→ HV (X, (xi), (Mi)),

satisfying the well-known “sewing axiom” (see [64] for details). The vector

space on the right hand side of (6.4) is the space of coinvariants, which is

dual to the space of conformal blocks (see [28, 25] for the precise definition

of these spaces for any vertex algebra and a given collection (X, (xi), (Mi))

as above).

Next, suppose that V is a vertex algebra containing as a subalgebra the

vertex algebra Vκ(ĝ) of an affine Kac–Moody algebra ĝ. In this case, we

will say that V has ĝ-symmetry of level κ. Then the space of coinvariants

HV (X, (xi), (Mi)) (as well as its dual) may be twisted by an arbitrary G-

bundle P on X (see [28, 25]).

For instance, let V = Vκ(g), the affine Kac–Moody algebra ĝ of (shifted)

level κ. Then the ordinary (untwisted) space of coinvariants is the quotient

H(X, (xi), (Mi)) = ⊗iMi/ (gout · ⊗iMi) ,

where

gout = g⊗ C[X\{x1, . . . , xn}]

(it is viewed as a Lie subalgebra in the direct sum of n copies of ĝ with their

centers identified). Its dual space is the ordinary space of conformal blocks:

C(X, (xi), (Mi)) = Homgout
(⊗iMi,C) .

Now let P be a G-bundle on X. Then we define the space of P-twisted

coinvariants as

HP(X, (xi), (Mi)) = ⊗iMi/
(
gPout · ⊗iMi

)
,

where

gPout = H0(X\{x1, . . . , xn},P×
G
g).
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Its dual space is the space of P-twisted conformal blocks :

CP(X, (xi), (Mi)) = HomgP
out

(⊗iMi,C) .

For a general vertex algebra V , to obtain the space of coinvariants (or

conformal blocks), we take the quotient (or take invariant functionals) with

respect to a larger Lie algebra, encompassing all Ward identifies of all fields

of the vertex algebra V . If V has ĝ-symmetry, then this Lie subalgebra can be

twisted by a G-bundle P on X. This way, we obtain the P-twisted spaces of

coinvariants and conformal blocks, HP
V (X, (xi), (Mi)) and CP

V (X, (xi), (Mi)),

see [28]. Thus, we obtain a modular functor HP
V , and its conformal blocks

version CP
V , for each G-bundle P. It is natural to call it a P-twist of H (or C).

As shown in [28], if the modules Mi are such that the action of the

Lie subalgebra g[[z]] of ĝ extends to the group G[[z]], then the spaces of

P-twisted coinvariants are fibers (or stalks) of a naturally defined κ-twisted

D-module on BunG. This κ-twisted D-module is obtained by applying the

so-called localization functor Δκ to ⊗iMi.

More generally, suppose that the action of the Lie subalgebra zmig[[z]]

of ĝ extends to the corresponding subgroup of G[[z]], for some mi ≥ 0. Then

we obtain a twisted D-module on BunG,(xi),(mi), the moduli stack classifying

the data (P, (ηi)), where P is a G-bundle on X and ηi is a trivialization of

P on the (mi − 1)st formal neighborhood of the point xi. If Mi is a highest

weight ĝ-module (or a module from the category O), then we can replace

the trivialization of the fiber Pxi
of P at xi (which corresponds to the case

mi = 1) by a parabolic structure, that is a reduction of Pxi
to a Borel

subgroup of G. In this paper, we restrict ourselves to the case mi = 0, so

our localization functors takes values in the category of κ-twisted D-modules

on BunG = BunG,(xi),(0).

Now recall (see, e.g., [56, 50]) that for a twisted D-module R on a smooth

manifold Z, the stalk of D at a point p ∈ Z is defined as

i∗p(R) = R ⊗
OZ

Cp,

where Cp is the skyscraper sheaf supported at p; that is, the OZ-module

Cp = OZ/mp, where mp is the sheaf of functions vanishing at p.

We can rewrite this as follows:

i∗p(R) = R ⊗
DZ

δp.
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The functor i∗p is right exact. One can show that the left derived functor

of i∗p is equivalent to the right derived functor of the functor i!p coupled with
cohomological shift by − dimZ, where

i!p(R) = HomOZ
(Cp,R) = HomDZ

(δp,R).

We will ignore this cohomological shift.
If the category of D-modules on Z twisted by the square root of the

canonical line bundle on Z is equivalent to the category of A-branes on
T ∗Z, then the latter Hom can be described as a Hom in the category of
A-branes on T ∗Z (and similarly, for the categories of twisted D-modules).
And that’s because under such an equivalence, the A-brane corresponding
to the D-module δp to be Fp, the fiber of T ∗Z over p ∈ Z. So, if B is the
A-brane corresponding to the D-module R, then we find that isomorphic to

(6.5) Hom(δp,R) � Hom(Fp,B)

up to a shift of cohomological degrees. (We will ignore this cohomological
shift as well.)

Therefore, for a semi-stable G-bundle P we can compare the space of P-
twisted coinvariants with a Hom of A branes (with respect to the symplectic
structure ωK):

HP(X, (xi), (Mi)) = Hom(δP,Δ(⊗iMi)) � Hom(FP,B),

if B is the A-brane on MH(G) corresponding to the D-module Δ (⊗iMi)
obtained by the localization functor from ⊗iMi.

This shows that the branes FP can be used to link the spaces of P-twisted
coinvariants and Hom’s in the categories of D-modules and A-branes.

If our D-module is holonomic (i.e. all of its fibers are finite-dimensional),
we can express the dual space to the space of coinvariants, the space of P-
twisted conformal blocks, as a Hom between D-modules in the opposite
direction (and without any cohomological shift):

CP
V (X, (xi), (Mi)) � Hom(Δ (⊗iMi) , δP).

Alternatively, we can write it in terms of the corresponding A-brane B,
which in this case should be Lagrangian:

CP
V (X, (xi), (Mi)) � Hom(B,FP).

Similarly, we can use the branes F′
P away from the critical level.
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6.5. Construction of the compactification functor as a

localization functor

Recall that we denote by DG
0,1 the Dirichlet boundary condition in the 4d

gauge theory TG
κ . Let B be another boundary condition in the same theory.

Suppose that we have a specific junction DG
0,1 → B which is non-degenerate

in the sense described in Section 2.2. Then, according to the general for-

malism, we have the junction vertex algebra V G
κ (DG

0,1
�B). From the point

of view of the strip geometry discussed in Section 6.3, the vertex algebra

V G
κ (DG

0,1
� B) is a “boundary chiral algebra” of the 3d TFT. On general

grounds, we should expect a close relationship between the spaces of confor-

mal blocks of this boundary chiral algebra and the spaces of states HB
P(A)

of the TFT discussed above. In this subsection, we use this idea to give a

mathematically rigorous definition of the compactification functor FG,B
κ as

a localization functor, under specific assumptions.

To motivate it, recall that in Section 6.3 we have argued that the vector

spaces HB
P(A) should be fibers of a κ-twisted D-module on BunG, which we

then took as FG,B
κ (A). On the other hand, as explained in Section 3.7, we

expect that V G
κ (DG

0,1
�B) contains the affine Kac–Moody algebra ĝ of level

κ′ such that κ − κ′ = n(G) ·m for some m ∈ Z. Recall also that should be

a functor

(6.6) FG
κ,DG

0,1
�B : Dκ(GrG)� CG

κ (B) → V G
κ (DG

0,1
�B) -mod .

We now make a list of concrete assumptions that we expect this functor to

satisfy:

(i) The functor FG
κ,DG

0,1
�B is fully faithful (in other words, the junction

DG
0,1 → B is non-degenerate).

If this is the case, then slightly abusing notation, we will identify the

image of I � CG
κ (B) under the functor (6.6) with CG

κ (B). Here I is the

identity object of Dκ(GrG); namely, I = δ1, where 1 is the coset of the

identity element of G((z)) in GrG. Given an object A of the category

CG
κ (B), denote the image of I⊗A under the functor FG

κ,DG
0,1

�B also by

A. The latter A is thus a V G
κ (DG

0,1
�B)-module, and hence a ĝκ′-module.

(ii) The action of the Lie subalgebra g[[z]] ⊂ ĝκ′ on A can be extended

to the corresponding group G[[z]]. In other words, A is a (ĝκ′ , G[[z]])

Harish-Chandra module.
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(iii) The functor FG
κ,DG

0,1
�B can be described as follows:

(6.7) F ∈ Dκ(GrG),A ∈ CG
κ (B) �→ F 	A,

where 	 denotes the convolution functor [30], which is well-defined
because A is a (ĝ, G[[z]]) Harish-Chandra module under the previous
assumption (if κ �= κ′, we tensor F with an appropriate line bundle
on GrG to make it into a Dκ′-module before applying the convolution
functor). Note that formula (6.7) coincides with formula (3.11) in the
case B = NG

1,0.

According to assumption (ii), we have a localization functor

Δκ′ : V G
κ (DG

0,1
�B) -mod → Dκ′(BunG).

Denote its restriction to the subcategory CG
κ (B) of V G

κ (DG
0,1

�B)-mod by
Δκ′ |CG

κ (B).
Under the above assumptions, we now define the compactification func-

tor FG,B
κ from CG

κ (B) to Dκ(BunG) in terms of the localization functor
Δκ′ |CG

κ (B). Namely, we set

(6.8) FG,B
κ = Δκ′ |CG

κ (B) ⊗ L⊗m
G ,

where LG is the minimal line bundle on BunG and m ·n(G) = κ− κ′ (recall
that tensoring with LG shifts the level by n(G)).

To motivate the definition (6.8), let us compare the fibers of the twisted
D-modules on the left and right hand sides of (6.8) for an object A of CG

κ (B).
On the left hand side, the fiber is

Hom(δP, F
G,B
κ (A)).

On the right hand side it is isomorphic to the space of P-twisted coinvariants

HP
V G
κ (DG

0,1→B)(X,x,A).

In order to show that these two spaces should indeed be isomorphic
under our assumptions (i)–(iii), consider formula (6.7) in the case that F =
δp, the δ-function twisted D-module corresponding to a point p ∈ GrG =
G((z))/G[[z]]. Let p̃ be a lift of p to G((z)). Then for any (ĝ, G[[z]]) Harish-
Chandra module M , we have

(6.9) δp 	 M � p̃∗(M),
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where for a ĝ-module M and an element h ∈ G((z)), we denote by h∗(M)
the ĝ-module on which the action of ĝ is modified by Adh. Note that if the
action of the Lie subalgebra g[[z]] ⊂ ĝ on M extends to an action of the
corresponding group G[[z]], then h∗1(M) � h∗2(M) if the images of h1 and h2
in GrG coincide. That’s why the right hand side of (6.9) does not depend
on the lift of p to G((z)).

By our assumptions (ii) and (iii), the right hand side of (6.9) describes
the image of δp ⊗M under the functor (6.6).

Recall that if G is simple, then BunG � G(X\x)\G((z))/G[[z]]. Let p
be a lift of P ∈ BunG to GrG = G((z))/G[[z]], and p̃ a lift of p to G((z)).
We can think of p̃ as a transition function on the punctured disc around x.
If we glue the trivial bundles on the disc and on X\x using this transition
function, we obtain the G-bundle P on X. (As explained in Section 3.2, the

compactification functor F
G,D0,1
κ sends δp, p ∈ GrG, to δP, where P is the

image of p in BunG = G(X\x)\GrG.)
The definition of twisted coinvariants readily implies that the space of P-

twisted coinvariants of A is the same as the space of untwisted coinvariants
of p̃∗(A), which is δp 	A by formula (6.9). Hence

(6.10) HP
V G
κ (DG

0,1→B)(X,x,A) � HV G
κ (DG

0,1→B)(X,x, δp 	A).

Now, according to assumption (ii) and formula (6.7), Conjecture 3.1
states that we have an isomorphism

(6.11) HV G
κ (DG

0,1→B)(X,x, δp 	A) � Hom(δP, F
G,B
κ (A)).

Combining the isomorphisms (6.10) and (6.11), we find that the fibers
at P of the two sides of (6.8) should indeed be isomorphic:

(6.12) Hom(δP, F
G,B
κ (A)) � HP

V G
κ (DG

0,1→B)(X,x,A).

Thus, the fibers of the two sides of (6.8) are indeed isomorphic.

Since Δκ′(A) is a κ′-twisted D-module on BunG, and FG,B
κ (A) is a κ-

twisted D-module, in light of (6.12), this naturally leads us to stipulate
that

FG,B
κ (A) = Δκ′(A)⊗ L⊗m

G ,

where m = (κ− κ′)/n(G) ∈ Z. This motivates the definition (6.8).
Since there could be multiple junctions DG

0,1 → B with different vertex
algebras associated to them, for this definition to be correct, we need the
following:



Quantum Langlands dualities 265

Conjecture 6.1. For any two junctions DG
0,1 → B such that the correspond-

ing functors (6.6) satisfy the assumptions (i)–(iii), the functors Δκ′ |CG
κ (B)

are naturally isomorphic (after taking a tensor product with a power of LG

if the levels κ′ corresponding to the two junctions are different).

This conjecture can be viewed as a generalization of Conjecture 2.2,
according to which the space of coinvariants HP

V G
κ (DG

0,1→B)(X,x,A) depends

(up to an isomorphism) only on B and the object A of the category CG
κ (B)

(as well as P ∈ BunG), but is independent of the junction data between
DG

0,1 and B used in the construction of the vertex algebra V G
κ (DG

0,1
�B).

Conjecture 6.1 extends this to an isomorphism of the corresponding twisted
D-modules on BunG.

Remark 6.2. The isomorphism (6.10), translated into the language of 4d
gauge theory, means that we can obtain the space of states HB

P(A) in the
strip geometry discussed in Section 6.4 in two ways: the first is by coupling
the Dirichlet boundary condition to a G-bundle P on X; and the second is by
adding the line defect corresponding to δp, where p is a lifting of P ∈ BunG
to GrG, at the boundary. This makes perfect sense because this line defect
has the effect of changing the trivial G-bundle on X to a bundle obtained
by gluing the trivial G-bundles on the disc around x and X\x using as the
transition function, an element p̃ of G((z)) defined as above.

However, there is a subtle but important difference between these two
procedures of obtaining the spaceHB

P(A): When we obtain it by coupling the
Dirichlet boundary condition to the G-bundle P, as described in Section 6.4,
we automatically obtain a natural action on HP(A) of the group Aut(P) of
automorphisms of the G-bundle P on X. On the other hand, if we instead
insert the line defect δp, we obtain the same vector space, but we forget
the action of Aut(P). If we want these spaces to combine into a twisted
D-module on BunG, however, the information about the action of Aut(P)
must be included, so we have to use the first procedure.

Likewise, the group Aut(P) acts naturally on the space HP
V G
κ (DG

0,1→B)(X,

x,A) of P-twisted coinvariants (which appears in our definition of the com-
pactification functor as the localization functor) but doesn’t acts on the
space HV G

κ (DG
0,1→B)(X,x, δp 	A).

Remark 6.3. Roughly speaking, the reason we are able to assign twisted
D-modules on BunG to line defects associated to a boundary condition B
is that there is a family of line defects associated to the Dirichlet boundary
condition parametrized by points of BunG. What about the Neumann and
Nahm boundary conditions? At first glance, the above construction can’t
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be generalized to them because their standard line defects are parametrized
by discrete data (integral weights or coweights of G). However, we actually
do have a continuous parameter for those line defects as well; namely, the
point x of the Riemann surface X at which we insert a junction from one of
these boundary conditions to B. Unlike the Dirichlet case, for which varying
x does not change the compactification functor, in the Nahm and Neumann
cases it does change. Therefore, using a variant of the above arguments, we
obtain D-modules on X. More generally, by considering multiple points, we
can obtain D-modules on the spaces of P+- or LP+-valued divisors on X.
These D-modules can probably be glued together into D-modules on the
corresponding Ran spaces.

6.6. A simple test

Consider the vertex algebra associated to the junction

NG
1,0 → DG

0,1 = R(DG
0,1 → NG

1,0)

in the bulk theory TG
−κ. According to formula (3.10), this vertex algebra is

Vκ(ĝ). Let us take the identity object in the category of line defects CG
−κ(N

G
1,0)

and the δ-function D-modules δp, p ∈ GrG in CG
−κ(D

G
0,1). Applying to them

the compactification functors, we obtain the sheaf of κ-twisted differential
operators Dκ and the δ-function D-modules δP on BunG. According to Con-
jecture 3.1 and the discussion of Section 6.5, we expect an isomorphism

(6.13) HP(X,x, Vκ(g)) � HomDκ
(Dκ, δP).

To show that this isomorphism indeed holds, observe that the right hand
side is nothing but the space of sections of δP, which we will denote by Γ(δP).
On the other hand, HP(X,x, Vk(g)) is also isomorphic to Γ(δP). The proof
of this fact (see, e.g., [28], Ch. 18) is straightforward: the tangent space to
BunG at P is isomorphic to

(6.14) TP BunG � gPout\g((z))/g[[z]],

where z is a local coordinate at x ∈ X. By definition,

Vκ(g) = Uκ(ĝ)/Uκ(ĝ) · g[[z]],

and HP(X,x, Vκ(g)) is the quotient of Vκ(g) by the action of the Lie subal-
gebra gPout. This gives us an isomorphism

HP(X,x, Vk(g)) � Γ(δP),

which implies (6.13).
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Finally, we can relate the right hand side of (6.13) to a Hom of branes:

(6.15) HomDκ
(Dκ, δP) � Hom(Bc.c.,F

′
P).

Therefore we obtain

(6.16) HP(X,x, Vκ(g)) � Hom(Bc.c.,F
′
P).

This isomorphism was discussed in [35], and an isomorphism between “tem-
pered” versions of these vector spaces has been studied in [9] (note that in
[9] this term refers to vectors in these spaces, and so it has no relation to
the notion of tempered D-modules discussed in Remark 6.1).

6.7. Branes and Hecke eigensheaves

Let κ = 0, corresponding to the critical level of ĝ. In this case, Kapustin
and Witten defined the (B,A,A) branes (Fb,∇) supported on the fibers
Fb of the Hitchin fibration in MH(G) (see item (ii) on the list at the be-
ginning of Section 6.1). They are mirror dual to the (B,B,B) zero-branes
BE supported at generic points of MH(LG) (in the complex structure J on
MH(LG) these are flat LG-bundles on X that have no automorphisms other
then those coming from the center of LG). Since BE is an eigenbrane of the
Wilson operators, we obtain that the branes (Fb,∇) are eigenbranes of the
’t Hooft operators (these are line defect operators corresponding to lines in
the bulk of the 4d gauge theory).

As we discussed in Section 6.1, the branes (Fb,∇) do not deform away
from κ = 0. However, at κ = 0 they give rise to twisted D0-modules on
BunG, which are Hecke eigensheaves, objects of interest in the geometric
Langlands correspondence. (Recall that D0-modules are D-modules twisted
by a square root of the canonical line bundle, so a careful treatment of
the corresponding category includes spin subtleties discussed in the later
sections. But here we choose to ignore these subtleties.)

Based on gauge theory considerations [36, 37, 15], one can argue that the
Hecke eigensheaves should also computable as conformal blocks of certain
“kernel” vertex algebras, which have both a Kac–Moody subalgebra of level
that is a multiple of n(G) and an extra structure which allows the conformal
blocks/coinvariants to be twisted by a flat LG-bundle.

These κ = 0 kernel vertex algebras can sometimes be built directly
from a microscopic description of the dual to Dirichlet boundary conditions,
involving the three-dimensional SCFT called T [G] in [41]. The description
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is only somewhat explicit for some classical gauge groups and it cannot be
deformed to irrational κ.

Still, somewhat experimentally, it appears to lead to kernel vertex al-
gebras V (T [G]) which are, in an appropriate sense the κ → 0 limits of
V G
κ (DG

0,1 → DG
1,0): up to some rescalings, the OPE of V G

κ (DG
0,1 → DG

1,0) has

a finite limit which coincides with V (T [G]), with the level Lκ Kac–Moody
currents for LG replaced in the limit Lκ → ∞ by a classical holomorphic
connection for LG. This allows conformal blocks of V (T [G]) to be twisted
by a flat LG-bundle. Conjecturally, V (T [G]) can be obtained in this fashion
even when T [G] is not directly known.

More generally, vertex algebras of the form V G
κ (DG

1,0
�B) tend to have a

very nice κ → 0 behaviour [36, 37, 16, 15]: up to some rescalings the OPE
have a finite limit giving rise to a vertex algebra V G

0 (B), with the level Lκ of
Kac–Moody currents for LG replaced by a classical holomorphic connection
for LG. Again, this allows conformal blocks of V G

0 (B) to be twisted by a
flat LG-bundle. We expect the D-module of coinvariants of V G

0 (B) to be the
Geometric Langland dual of the D-module of coinvariants of V G

0 (DG
0,1

�B).
We hope to explore this in more detail in a future work.

Note that Beilinson and Drinfeld have constructed Hecke eigensheaves on
BunG using the isomorphism of [22, 24]. In this subsection we discuss a link
between these two constructions in the framework of our general formalism.

Recall that according to [22, 24], the vacuum module V0(g) of ĝ of crit-
ical level has a large algebra of endomorphisms, which is isomorphic to the
algebra of functions on the space OpLG(Dx) of opers for the Langlands dual
group LG on the formal disc Dx at x. For ρ ∈ OpLG(Dx), we can then de-
fine a ĝ-module Vρ of critical level as the quotient of V0 by the ideal Iρ
corresponding to ρ:

Vρ = V0/Iρ.

In other words, we set all central elements of the enveloping algebra of ĝ (such
as the quadratic Sugawara elements) equal to the numeric values prescribed
by ρ (see [25] for more details).

Now suppose that x is a point of a Riemann surface X (and so Dx ⊂ X).
The following theorem is due to Beilinson and Drinfeld [11].

Theorem 6.2.

(1) HP(X,x, Vρ) = 0 for all P ∈ BunG, unless the
LG-oper ρ extends from

the disc Dx to the entire curve X.
(2) If ρ does extend to an LG-oper on X, then the critically twisted D-

module on BunG Δ0(Vρ), whose stalks are the spaces of coinvariants
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HP(X,x, Vρ) is a Hecke eigensheaf whose eigenvalue is the flat LG-
bundle on X defined by this oper.

The two perspectives on Hecke eigensheaves will agree if HP(X,x,Vρ)
coincides with the space of coinvariants for V (T [G]) twisted by a flat LG-
bundle which is also an oper. In concrete examples this seems to happen
in a very direct fashion: coupling to an oper deforms V (T [G]) to a vertex
algebra equivalent to Vρ.

For completeness, we now recall the definition of the Kapustin–Witten
(B,A,A) branes on MH(G) that are dual to the zero-branes BE on MH(LG)
[55]. Recall that here E is a flat LG-bundles on X that have no automor-
phisms other then those coming from the center of LG, viewed as a point in
the Hitchin moduli space MH(LG) with respect to the complex structure J .
Now consider E as a point of MH(LG) with respect to the complex structure
I, and let b = b(E) be its image in the Hitchin base under the (first) Hitchin
fibration. Let Fb be the dual fiber in MH(G). Then the mirror dual brane
to BE is the pair (Fb,∇), where ∇ = ∇E is a flat unitary line bundle on
Fb corresponding to E under the T -duality of Hitchin fibers in MH(G) and
MH(LG).

Suppose that E = E(ρ) corresponds to an oper ρ. Then we find from
formula (6.5) that there should be an isomorphism between the space of
P-twisted conformal blocks of the ĝ-module Vρ and a Hom in the category
of A-branes on MH(G) (with respect to ωK):

(6.17) HP(X,x,Vρ) � Hom(FP, (Fb,∇E)).

This isomorphism has been previously discussed in [35, 9].

As Balasubramanian and Teschner argued in [9], one can think of this
isomorphism as an expression of a link between the Beilinson–Drinfeld con-
struction and the Kapustin–Witten construction of the Geometric Langlands
correspondence. Indeed, it shows how to express the fibers of the Hecke
eigensheaf, i.e. a D0-module on BunG obtained by applying the localization
functor Δ0 to Vρ in terms of Hom’s between the fiber-brane FP discussed
in Section 6.1 and the Kapustin–Witten brane (Fb,∇E).

As we explained in [36] and Section 6.3 above, the spaces appearing
on the right hand side of (6.17) acquire a natural flat (Berry) connection,
which should coincide with the one on the left hand side, coming from the
D-module structure on Δ0(Vρ).

As a simple test of (6.17), we can check that for a generic G-bundle P,
the dimensions of the two vector spaces in the isomorphism (6.17) are the
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same. According to the left hand side, this is the generic rank of the D-
module Δ0(Vρ), which is the multiplicity of the nilpotent cone in the zero
fiber of the (first) Hitchin fibration. It coincides with the number of points
in the intersection of generic fibers Fb and FP of the first and second Hitchin
fibrations. But the latter is the dimension of the generic space on the right
hand side of (6.17).

7. A simple example: U(1) gauge theory

The simplest Abelian example – the 4d N = 4 supersymmetric U(1) gauge
theory – is already rich enough to demonstrate non-trivial compositions of
junctions. It is also an excellent example of the potential spin structure
dependence of our constructions and of the extra subtleties which occur
when the spin structure dependence is lifted.

The notions of Nahm and Dirichlet boundary conditions coincide in

Abelian theories, so we have a single family of boundary conditions N
U(1)
p,q ,

which we will denote in this subsection simply by Np,q.

7.1. Category of boundary lines

The tensor category CG
κ (N1,0) of line defects associated to the boundary

condition N1,0 is KLκ(U(1)).17 It is a semisimple category with irreducible
objects Ln for integer n, and the tensor product (fusion) Ln ⊗Lm � Ln+m.

The twisting (aka topological spin) on Ln is given by eπi
n2

κ . We will call its
phase factor π n2

κ the twist.
For now, we will consider CG

κ (N1,0) as what we will call a “spin-ribbon
category.” This is a modification of the ribbon category in which the twist-
ings are defined up to multiplication by ±1. In other words, the twists are
only defined up to addition of an integer multiple of π (rather than 2π). The
necessity to view CGκ(N1,0) as a spin-ribbon category can be inferred, for
example, from the fact that some of the dualities from the group SL2(Z)
preserve the spin-ribbon structure but not the ribbon structure.

For example, the action of STS maps κ �→ (κ−1 − 1)−1, and hence
the twist π n2

κ gets mapped to πn2
(
κ−1 − 1

)
. The corresponding categories

CG
κ (N1,0) and CG

(κ−1−1)−1(N1,0) would only be equivalent if we stipulate that
the twists in them are defined up to addition of integer multiples of π.

17If Gc is a compact Lie group and gc its Lie algebra, we will sometimes refer
to the affine Kac–Moody algebra ĝ, where g is the complexification of gc, as the gc
(affine) Kac–Moody algebra, and use gc rather than g in denoting various categories
and functors associated to ĝ. For example, we will sometimes use the notation U(1)
instead of GL(1), e.g., KLκ(U(1)).
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7.2. Junction vertex algebras

The basic junction from N0,1 → N1,0 supports the û(1) Kac–Moody algebra

at level κ (which is its own W-algebra). The standard modules correspond

to the û(1) vertex operators of charge n+mκ and conformal dimension

(7.1) Δu(1)
m,n(κ) =

n2

2κ
+ nm+

m2κ

2
.

They are the images of the corresponding objects of the category

KLκ(U(1))�KLκ−1(U(1)) in û(1)κ -mod under the functor F
U(1)
κ,NG

0,1
�NG

1,0
(we

use the notation introduced in Section 3.7).

In the same way as in the last example of Section 3.7, we find that

applying the duality transformation RST−1 to the standard junction N0,1 →
N1,0 we obtain a junction N1,−1 → N1,0 supporting the û(1) Kac–Moody

algebra at level κ−1 + 1. On the other hand, applying T−1 we obtain the

junction N0,1 → N1,−1 supporting the û(1) Kac–Moody algebra at level

κ+ 1.

The composition of two such junctions, N0,1 → N1,−1 → N1,0, gives an

extension of û(1)κ+1 × û(1)κ−1+1 Kac–Moody by new fields of dimensions

(7.2) Δ
u(1)
0,n (κ+ 1) + Δ

u(1)
n,0 (

κ

κ+ 1
) =

n2

2

1

κ+ 1
+

n2

2

κ

κ+ 1
=

n2

2
.

The extension can be identified with the product of a û(1) Kac–Moody

algebra at level κ and of the lattice vertex superalgebra corresponding to

the lattice Z. The û(1) current of the former is κ
κ+1(Jκ+1 − Jκ−1+1) and the

û(1) current of the latter is 1
κ+1Jκ+1+

1
κ−1+1Jκ−1+1. The latter is isomorphic

to the free (complex) fermion vertex superalgebra
∧
. It is generated by two

fermionic fields of conformal dimensions 1/2 which correspond to n = ±1 in

formula (7.2).

More general modules over this vertex algebra combine vertex operators

of dimension

(7.3) Δu(1)
m,n(κ+ 1) + Δu(1)

n,e (
κ

κ+ 1
) =

(n+ e+m)2

2
+ Δ

u(1)
m,−e(κ)

Thus, the vertex algebra V
U(1)
κ (N0,1�N1,0) obtained from the composi-

tion of junctionsN0,1 → N1,−1 → N1,0 is the vertex algebra V
U(1)
κ (N0,1�N1,0)
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of the basic junction N0,1 → N1,0 tensored with the free fermion vertex su-
peralgebra. From the point of view of 4d gauge theory, both vertex alge-
bras are associated to the junction N0,1 → N1,0, but with different junction
data.18

According to Conjecture 2.2, we expect the spaces of conformal blocks
of the two vertex algebras to be isomorphic. And indeed, this is the case,
because the space of conformal blocks of the free fermion vertex superalgebra∧

is one-dimensional for any compact Riemann surfaceX. However, because
the two generating fields of

∧
have conformal dimensions 1/2, in order to

define this space of conformal blocks we need to choose a square root K1/2

of the canonical line bundle on X. This choice is equivalent to a choice of
spin structure on X. This is another example of how spin structures show
up in the twisted TFT.

We can also construct new junctions. For example, we can compose the
basic junction N0,1 → N1,0 with the junction N1,0 → Nk,1 obtained as ST−k

image of the basic junction N0,1 → N1,0. For now, take k > 0.
The result is a junction N0,1 → Nk,1, which is not a duality image of the

basic junction: there is no combination of S and T operations which could
relate it to N0,1 → N1,0. The corresponding vertex algebra is an extension of
û(1)κ× û(1)k−κ−1 by operators of conformal dimension k

2n
2. It is isomorphic

to the product of the û(1)κ−k−1 Kac–Moody algebra and the u(1)k lattice
vertex algebra corresponding to the lattice

√
kZ.

More general modules have dimensions
(7.4)

Δu(1)
m,n(κ)+Δu(1)

n,e (k−κ−1) =
(kn+ e+m)2

2k
+

m2

2k
(kκ−1)+

e2

2k

1

kκ− 1
− em

k

and combine modules over u(1)k with modules over û(1)κ−k−1 Kac–Moody
algebra with integral magnetic charges (corresponding to m) but electric
charges of the form e/k, e ∈ Z.

For k = 0, the extension involves modules of conformal dimension 0
and is isomorphic to the vertex algebra of chiral differential operators on
GL1(C) = C×. Indeed, by rescaling the first and the second factors of the
û(1)κ × û(1)−κ−1 current algebra by κ−1/2 and κ1/2, respectively, we obtain
the û(1)1 × û(1)−1 current algebra of the standard βγ system in which we
make the field γ invertible. Note that under this identification, the commut-
ing û(1) currents are constructed from the fields βγ and γ−1∂γ, and the
extension vertex operators correspond to γn, n ∈ Z.

18Physically, the second junction is obtained from the first by “stacking” it with
a decoupled, holomorphic 2d spin-CFT: a free complex fermion. In particular, the
second junction is intrinsically a “spin junction”.
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For k < 0, the extension involves modules of dimension unbounded from
below and it is less well-behaved as a vertex algebra.

More generally, we would like to construct junctions N0,1 → Np,q such
that in the corresponding vertex algebra all fields, except the vacuum, have
positive conformal dimensions. This is a favorable property for many reasons,
not least the behavior of conformal blocks.

To achieve that, we need a chain of junctions which support û(1)κi
, i =

0, . . . , n, with
1

κi−1
+ κi = ki,

where each ki is a positive integer.
Such û(1)κi

can be found at the junction N0,1 → N1,0 when the bulk
coupling is κi.

Applying ST−ki , we find that it can also be found at the junction N1,0 →
Nki,1 when the bulk coupling is

− 1

κi − ki
= κi−1.

We can then compose the N0,1 → N1,0 junction and the N1,0 → Nki,1

junction with the bulk coupling κi−1 into a junction N0,1 → Nki,1.
Note that the same vertex algebra will appear when the bulk cou-

pling is κi−2 = −1/(κi−1 − ki−1) at the composition N1,0 → Nki−1,1 →
Nkiki−1−1,ki

. So, we can compose it with N0,1 → N1,0 to get a junction
N0,1 → Nkiki−1−1,ki

.
Next, move to the bulk coupling κi−3 = −1/(κi−2 − ki−2) by applying

ST−ki−2 and compose to get N0,1 → Nkiki−1ki−2−ki−ki−2,kiki−1−1.
If we run this procedure backwards from κn to κ0, we get junctions of

the form

N0,1 → N1,0 → ST−k1(N1,0) → ST−k1ST−k2(N1,0) →
ST−k1ST−k2ST−k3(N1,0) → · · · → ST−k1ST−k2 . . . ST−kn(N1,0)

with ki > 0, i.e.,

(7.5) N0,1 → N1,0 → Nk1,1 → Nk1k2−1,k2
→ Nk1k2k3−k1−k3,k2k3−1 → · · ·

If we label the ith term after N1,0 by Npi,qi then

(7.6)
pi
qi

= k1 −
1

k2−
1

k3−
· · · 1

ki
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can be seen as the ith convergent (i.e., the truncation after the first i terms)
of the continued fraction

(7.7)
pi
qi

= k1 −
1

k2−
1

k3−
· · ·

The junctions support û(1)κi
Kac–Moody with κi = ki−κ−1

i−1 and κ0 = κ.
The extension involves modules of charges qiκi+qi+1 for û(1)κi

(with q0 = 0)
of dimension

n∑
i=1

ki
2
q2i + qiqi+1.

This vertex algebra is isomorphic to the product of a lattice vertex algebra
of rank n and the û(1) Kac–Moody algebra at level

(7.8) κpn,qn = κ+
1

k1−
1

k2−
· · · 1

kn

with the image of KLκ−1(U(1))×KLκn
(U(1)) given by combinations of mod-

ules for the lattice vertex algebra and modules of integral magnetic charges
and fractional electric charges for the û(1) Kac–Moody algebra.

All fields of this vertex algebra, except for the vacuum, have positive
conformal dimensions.

This construction can serve as a prototype for building a vertex algebra
satisfying this property corresponding to a junction from N0,1 to any Np,q:
expand p

q into continued fractions and use the resulting integers ki to build
the junction as a composition of basic junctions, as explained above.

7.3. Compactification functors

We can now discuss the compactification functors from the categories

C
U(1)
κ (B) to Dκ(BunU(1)) (see Section 3.1).

We begin with two important points:

• There is a degree 1 line bundle L on BunU(1) related to the level 1
Chern–Simons action. It is the line bundle of conformal blocks for
the u(1)1 lattice vertex algebra (the vertex superalgebra

∧
of a free

complex fermion). Again, we are ignoring the spin structure for the
moment.

• The category C
U(1)
κ (N1,0) is KLκ(U(1)), and the compactification func-

tor F
U(1),N1,0
κ is the localization functor Δκ. Applying it to the identity
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object of KLκ(U(1)), which is the vertex algebra Vκ(U(1)), we obtain
the sheaf Dκ itself (see Section 6). This is a special case of the general
statement discussed in example (ii) of Section 3.2: the identity object

of C
U(1)
κ (N1,0) is mapped to Dκ. In other words, the compactification

map sends the boundary condition N1,0 to Dκ.

The construction of a junction from N0,1 → N1,1 as a composition
N0,1 → N1,0 → N1,1 of the basic junction and the junction N1,0 → N1,1

discussed in the previous subsection (the case k = 1 of the junction N1,0 →
Nk,1) is instructive.

It produces a junction vertex algebra isomorphic to u(1)1⊗Vκ−1(U(1)),
with the coupling to U(1) bundles implemented by the diagonal combination
of the û(1) currents of the two factors. This junction vertex algebra yields
a compactification functor whose image lies directly in Dκ(BunU(1)). The
image of the compactification functor is the product of the sheaves of coin-
variants of the two vertex subalgebras u(1)1⊗Vκ−1(U(1)), i.e. L⊗Dκ−1. In
other words, the compactification map sends the boundary condition N1,1

to L⊗Dκ−1.

We could also produce aN0,1 → N1,1 junction as a T image of theN0,1 →
N1,0 junction (up to the spin subtleties discussed in the next subsection).
Since N1,1 = T (N1,0),

CU(1)
κ (N1,1) � C

U(1)
κ−1 (N1,0) = KLκ−1(U(1)).

Thus, the relevant localization functor for this second junction is Δκ−1 tak-
ing values in Dκ−1(BunU(1)). When we apply it to the identity object of

C
U(1)
κ (N1,1) (i.e. the junction vertex algebra itself), we obtain Dκ−1, viewed

as a left (κ− 1)-twisted D-module on BunU(1). As explained in Section 6.5,

to get the corresponding compactification functor F
G,N1,1
κ , we should ten-

sor Δκ−1 with the line bundle L. Under F
G,N1,1
κ , the identity object of

C
U(1)
κ (N1,1) therefore goes to L ⊗ Dκ−1, in agreement with the previous

construction.

This example provides a positive test for our prescription for the com-
pactification functor. Is also demonstrates how the compactification func-
tors intertwine the action of the duality T on the categories corresponding
to boundary conditions and the operation of taking a tensor product with
L, in agreement with Conjecture 4.1.19

19From the point of view of 4d gauge theory, this is clear from the fact that if
we have a domain wall such that gauge theories on the two sides of the wall differ
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Similar considerations apply to show that the compactification map
sends N1,k to Lk ⊗Dκ−k.

Next, we look at Nk,1. As explained above, the vertex algebra corre-
sponding to the junction N0,1 → Nk,1 is u(1)k × û(1)κ−k−1 . If |k| > 1, we
cannot use the localization functor Δκ−k−1 corresponding to the û(1)κ−k−1

subalgebra because then κ − k−1 differs from κ by a rational number that
is is not an integer. However, this junction vertex algebra has a diagonal
û(1)κ subalgebra generated by the current which is the linear combination
k−1Ju(1)k +Jκ−k−1 of the generating currents of u(1)k× û(1)κ−k−1 . The com-

pactification functor F
U(1),Nk,1
κ can be obtained from the localization functor

Δκ with respect to this subalgebra.
In particular, applying the localization functor Δκ to the identity object

in C
U(1)
κ (Nk,1), we obtain a Dκ-module on BunU(1) which is easy to describe

as an O-module: it is the tensor product of the bundles of coinvariants for
u(1)k and û(1)κ−k−1 , i.e. Vk ⊗Dκ−k−1 . Here Vk is the vector bundle of coin-
variants for u(1)k which is coupled “magnetically” to the line bundles in
BunU(1) in a non-trivial way: given a line bundle � in BunU(1), we represent
it as � = O(D), where D =

∑
i nixi is a divisor on X, and then take the

space of coinvariants with the insertions of u(1)k primary fields of charge ni

at the points xi. (The statement that Vk ⊗ Dκ−k−1 has the structure of a
Dκ-module is non-trivial. It follows from the fact that it is in the image of
Δκ.)

Thus, we have describe the image of Nk,1 under the compactification
map. More generally, by using the composition of junctions above, we can
obtain the image of any Np,q as a twisted D-module of the form L[q/p] ⊗
Vp,q ⊗Dκpn,qn−[q/p] with Vp,q being the bundle of coinvariants of the lattice
vertex algebra built above as an extension of ⊗iu(1)ki

.

It would be nice to prove directly that the qGL dualities E
U(1),g
κ in-

tertwine these D-modules for (p, q) and g ◦ (p, q). The simplest statement
corresponds to the fact that S(N1,−1) = N1,1. This implies that the qGL
duality S sends

S(L−1 ⊗Dκ+1) �→ L⊗D−κ−1−1,

which is a special case of formula (1.7).

by the duality symmetry T (i.e. have coupling constants κ and κ + 1), then the
difference between the topological terms in the 4d actions on the two sides (each of
them is a scalar multiple of the first Pontryagin class, and the two scalars differ by
2π) has to be compensated on the boundary by the Chern–Simons action of level
1, which is the 4d gauge theory counterpart of tensoring with the line bundle L on
BunU(1).
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It is worth mentioning that all the Np,q boundary conditions can be

given an interpretation as modifications of Neumann boundary conditions

involving coupling to some specific 3d Chern–Simons theories, i.e. to some

physical 3d TFTs. One may consider many more such boundary conditions,

associated to more general 3d TFTs which can be coupled to U(1) connec-

tions.

7.4. Spin subtleties

Here we will discuss under which conditions we can dispense with the use of

spin manifolds for the bulk theory and possibly for its boundary conditions

and junctions.

Recall that the 4d topological field theory TG
κ we are interested in is

obtained by a topological twist (the GL twist of [55]) from the physical

supersymmetric gauge theory. This means that the action of the Lorentz

group on the field content of the theory has been modified in such a way

that the resulting twisted theory is endowed with a two-dimensional family

of supercharges that can used to define a TFT (the physical theory is not

endowed with supercharges). In particular, while in the physical theory the

fermions transform as spinors, in the twisted TFT they are turned into i-

forms with i = 0, 1, 2. Thus, while the physical theory can only be defined

on a spin four-manifold M and one needs to make a specific choice of the

spin structure to make the theory well-defined, the twisted TFT does not

require M to be a spin manifold, nor is one required to make a choice of the

spin structure.

However, there is a price to pay: it turns out that the action of the

quantum dualities then has to be refined. If we choose a spin structure, then

every element of the group PSL2(Z) gives rise to a legitimate quantum

duality of the theory T
U(1)
κ (though the categories of line defects are then

spin-ribbon categories, as discussed above). However, if we do not have a

spin structure, or do not want to choose a specific one, then we cannot

employ the T duality transformation: only T 2 and S (and their products)

are legitimate dualities.

Instead of the group PSL2(Z) of quantum dualities, we then have a

duality groupoid, obtained by adding two more “nodes”, which are certain

topological modifications of the standard U(1) twisted gauge theory T
U(1)
κ .

These three theories are then related to each other by various duality trans-

formations.
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More specifically, we denote the basic gauge theory T
U(1)
κ by U(1)b. Its

T -image will be denoted by U(1)t.
20 In other words, we define U(1)t with a

coupling κ to be the same as U(1)b with coupling κ−1. Then T maps U(1)b
theory to U(1)t theory, and vice versa.

The S image of U(1)t will be denoted as U(1)s. It is known that U(1)s
has an independent definition [58]: it is a gauge theory based on SpinC
connections rather than standard U(1) connections. Thus S maps U(1)t to

U(1)s theories, and vice versa. Finally, T is a true duality of U(1)s:

(7.9)
U(1)b ←→ U(1)t ←→ U(1)s
� T S �
S T

The basic boundary conditions N1,0 and N0,1 for the U(1)b theory can be

defined without a choice of spin structure and are exchanged by S-duality. On

the other hand, in order to define N1,1 in U(1)b, we cannot use T . Instead,

we use the direct definition: N1,q can be defined as a modified Neumann

boundary condition with q extra units of boundary Chern–Simons action.

For odd q, this definition is viable but requires a choice of spin structure at

the boundary.

In general, duality transformations tell us that boundary conditions Np,q

do not require a spin structure in U(1)b as long as pq is even.

Applying T , we get by definition the corresponding statement for U(1)t.

In particular, N1,0 requires a spin structure in U(1)t. In U(1)s, we expect

then N0,1 to require a spin structure as well. Indeed, Dirichlet boundary

conditions for a SpinC gauge field do not have a canonical choice of trivial

connection, unless a spin structure is selected.

These topological aspects do affect the categories of lines available at

boundary conditions. These will be ribbon categories if the boundary con-

ditions do not require a spin structure. If they do (as N1,q with odd q in

U(1)b), then they will be spin-ribbon, i.e. the twists will be defined modulo

integer multiples of π rather than 2π.

A good example of this phenomenon is the observation that although

N1,1 and N1,−1 are related by S-duality in U(1)b, the categories of bound-

ary lines are equivalent only as spin-ribbon categories: the objects in one

category have twists 2π n2

2(κ+1) , while the corresponding objects in the other

20We should really use the T
U(1)b
κ , T

U(1)t
κ , etc. notation, but it is a bit cumber-

some.
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categories have spin −2π n2

2(κ−1+1) . The two differ by possibly half-integer

multiples of 2π; namely, by 2π n2

2 .
The effects percolate also to vertex algebra calculations. If both bound-

ary conditions and the junction itself can be defined with no reference to
spin structure, the vertex algebra will be a true vertex algebra, with fields
of integral dimensions (but possibly a vertex superalgebra, including odd
fields). Otherwise, the vertex algebra may include fields of half-integer con-
formal dimensions, which requires a choice of spin structure on the Riemann
surface X.

We have already seen this phenomenon implicitly. The standard junction
in U(1)b from N0,1 to N1,0 does not require a spin structure and supports
û(1)κ. On the other hand, the same junction in U(1)t must be built as a
composition of junctions leading to u(1)1 × û(1)κ−1, a spin-vertex algebra.

These subtleties matter when we build compactification functors to
twisted D-modules. This is expressed in the fact that the line bundle L

on BunU(1) we used above is not defined canonically unless one selects a
spin structure on X. It can be defined canonically as a section of a Z2 gerbe
G on BunU(1) which is trivial, but not canonically so.

This is a good moment to discuss some general notions related to gerbes.
Let Γ be a finite abelian group, and G a Γ-gerbe on a manifold M . In the
Cech definition, this means that given an open covering of M , we have on
each open subset Ui ⊂ M of the covering a category G(Ui) that is a torsor
(in the categorical sense) over the category of Γ-bundles on Ui. Choosing
a trivialization of G(Ui), we obtain Γ-bundles Gij on the overlaps Ui ∩ Uj

and hence an element Gijk of Γ for each triple overlap Ui ∩ Uj ∩ Uk. These
elements should define a Cech two-cocycle on M with values in Γ.

A standard example is the following: let L be a line bundle on M and
k a positive integer. Let us choose an identification Zk � μk, the group of
kth roots of unity. Define the Zk-gerbe GL,k on M by taking as GL,k(Ui)
the category of kth roots of L on Ui, i.e. line bundles K on Ui such that
Kk � L. (This is a torsor for the category of Zk-bundles because any two
such K differ by a kth root of the trivial line bundle; or equivalently, a Zk-
bundle.) The gerbe GL,k is trivial if and only if there exists on M a kth root
of L defined on the entire M . If GL,k is trivial, then a trivialization of GL,k

is the same as a choice of such a global kth root of L.
Given a Γ-gerbe G on M and another group H (not necessarily finite)

together with a homomorphism Γ → H whose image is in the center of H,
we have the notion of an H-bundle on M modified by G. In Cech realization,
an ordinary H-bundle assigns to each open Ui a torsor over the group H(Ui).
Then on overlaps Ui∩Uj we obtain H-valued functions which has to satisfy a
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one-cocycle condition on triple overlaps. AnH-bundle onM modified by G is
defined by the same data, except that the one-cocycle condition is modified
on the triple overlaps by the images of Gijk in H.

If H = C×, we obtain the notion of a line bundle modified by a Γ-gerbe
G for each homomorphism Γ → C×. We obtain the notions of O-modules
and D-modules on M modified by G in a similar way.

The examples we are most interested in are as follows:

• L = KX is the canonical line bundle on a Riemann surface X and
k = 2. Then the gerbe GKX ,2 of square roots of KX is trivial, but not
canonically. Its trivialization is the same as a choice of spin structure
on X. Let H = C× and Z2 → C× be the embedding with the image
{±1}. We refer the C×-bundles on X modified by GKX ,2 as SpinC
bundles. More generally, if Z2 maps to the center of a group H, we
refer to the corresponding bundles on X as SpinH bundles.

• L = KBunG
is the canonical line bundle on BunG and k = 2. For

G = GL1, the corresponding gerbe GKBunG
,2 is the gerbe discussed in

this section. For a simple Lie group G, the gerbe GKBunG
,2 has been

studied in [11] and, in the setting close to ours, in [34]. This gerbe
is trivial, but not canonically so if ρ is not an integral weight of G.
In that case, a trivialization can be constructed from a choice of spin
structure on X.

• L = LG, the minimal line bundle on BunG. The corresponding gerbes
are needed if we want to extend the qGL duality groupoid. In 4d gauge
theory language, they correspond to the theories associated to discrete
θ angles (see Section 9).

We can now map the three nodes of our groupoid to three variants of
the usual category of D-modules:

• U(1)b → Dκ(BunU(1)), standard twisted D-modules.
• U(1)t → G −Dκ(BunU(1)), twisted D-modules modified by the gerbe
G.

• U(1)s → Dκ(BunSpin
C
), twisted D-modules on a modified moduli

space, that of SpinC bundles on the Riemann surface X.

The image of T , tensoring with L, clearly intertwines between the two
first lines. On the other hand, the line bundle L is defined canonically on
BunSpin

C
.

The image of the qGL duality S maps the first category Dκ(BunU(1)) to
itself. We conjecture it exchanges the last two categories G − Dκ(BunU(1))
and Dκ(BunSpin

C
).
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Thus we predict that, taking into account spin subtleties, the qGL du-
alities have the form

(7.10)
Dκ(BunU(1)) ←→ G−Dκ′(BunU(1)) ←→ Dκ′′(BunSpin

C
)

� T S �
S T

8. A richer example: SU(2) gauge theory

The vertex algebras appearing at the junctions of boundary conditions in
gauge theories related to the group SL2 (or SU(2)) provide a particularly
rich class of examples. The analysis is somewhat complicated by the choices
of global form of the group, i.e. SU(2) or SO(3), and by spin subtleties.

Usually, it is possible to relate gauge theory configurations with different
global forms of the gauge group by topological manipulations which affect
the junction vertex algebras in a relatively minor way, at most adding/
removing some simple auxiliary vertex algebras, such as the real free fermion
vertex algebra

∧
R
of central charge c∧

R
= 1

2 . Recall that
∧

R

n = so(n)1, the

simple quotient of so(n) Kac–Moody at level 1. Also,
∧

R

2 = u(1)1.
Because of that observation, we first make some preliminary statements

which are essentially insensitive to the form of the gauge group, and then
refine them to sharper statements involving specific gauge groups.

8.1. Major boundary conditions and junction vertex algebras

At the first, loose level, we can refer to families of boundary conditions
Np,q and Dp,q. We can identify several junctions and corresponding vertex
algebras for the su(2) gauge algebra from string theory constructions which
directly produce orthogonal or symplectic groups or by stripping off Abelian
contributions from u(2) statements. We refer the reader to Sections 8 and
10 of [39] and Section 4 of [16] for details. Up to dualities, we will encounter
five interesting classes of junctions and vertex algebras:

• N0,1 → N1,0: Virκ. This is the Virasoro algebra of central charge
cVirκ = 13 − 6κ − 6κ−1. Notice that Virκ � Virκ−1 , compatible with
RS invariance of the junction.

• N0,1 → N2,1: sVir2κ−1. The super-Virasoro algebra sVirκ has central
charge csVirκ = 15

2 −3κ−3κ−1 and satisfies sVirκ � sVirκ−1 , compatible
with RST 2S invariance of the junction.

• D0,1 → N1,0: ŝu(2)κ. This is the Kac–Moody algebra at critically
shifted level κ. It has central charge cŝu(2)κ = 3− 6κ−1.
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• D0,1 → N2,1: ôsp(1|2)2κ−1. The super-Kac–Moody algebra ôsp(1|2)κ
has an ŝu(2) 1+κ

2
sub-algebra. It has central charge côsp(1|2)κ = 1−3κ−1.

• D0,1 → D1,0: d(2, 1| −κ)1. This is a quotient of the super-Kac–Moody
algebra based on the d(2, 1| − κ) exceptional superalgebra which has
sub-algebra ŝu(2)κ+1× ŝu(2)κ−1+1× su(2)1, where su(2)1 is the simple
quotient of ŝu(2) Kac–Moody at level 1. The central charge of this
vertex algebra is cd(2,1|−κ)1 = 1. The algebra is invariant under κ →
κ−1, compatibly with RS invariance of the junction.

Table 4: A brief summary of the vertex algebras which appear at some
junction in SU(2)/SO(3) gauge theory

Junction Vertex Algebra

N0,1 → N1,0 Virκ
N0,1 → N2,1 sVir2κ−1

D0,1 → N1,0 ŝu(2)κ
D0,1 → N2,1 ôsp(1|2)2κ−1

D0,1 → D1,0 d(2, 1| − κ)1

These vertex algebras are related in interesting ways by the quantum
Drinfeld–Sokolov reductions, which effectively replace D0,1 with N0,1 in the
junctions:

• The standard Virκ = DS [ŝu(2)κ].
21

• The relation DS
[
ôsp(1|2)κ

]
=

∧
R
× sVirκ. Here we do the DS re-

duction of the ŝu(2) 1+κ

2
sub-algebra, without stripping off the extra

free fermion originating from the odd current of charge 1
2 . This extra

fermion is the decoupled
∧

R
factor indicated above.22

• The relation DS(1) [d(2, 1| − κ)1] = so(4)1 × ŝu(2)κ−1 . Here we do the
DS reduction on the ŝu(2)κ+1 sub-algebra, without stripping off the
extra four free fermions originating from the odd current of charge 1

2 .
These extra fermions give the so(4)1 factor indicated above. The resid-
ual ŝu(2)κ−1+1×su(2)1 in [d(2, 1| − κ)1] is embedded in the obvious way
in so(4)1× ŝu(2)κ−1 .23 Similarly, DS(2) [d(2, 1| − κ)1] = so(4)1× ŝu(2)κ.

There is also a rich web of coset/extension relations which have a natural
interpretation as compositions of junctions or replacements D0,1 �→ N1,k:

21Indeed cVirκ = cŝu(2)κ − 2 − 6(κ − 2), where −2 is the contribution from the
ghost bc-system and −6(κ− 2) comes from the re-definition of the stress tensor.

22As a check, c∧
R
+ csVirκ = côsp(1|2)κ − 2− 6( 1+κ

2 − 2).
23As a check, cd(2,1|−κ)1 − 2− 6(κ+ 1− 2) = 4c∧

R
+ cŝu(2)κ−1

.
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• D0,1 → N1,−1 → N1,0: The GKO-like coset Vir1+κ−1 = ŝu(2)κ×su(2)1
ŝu(2)κ+1

.

• D0,1 → N1,−2 → N1,0: The super-GKO-like coset sVir1+2κ−1 =
ŝu(2)κ×so(3)1

ŝu(2)κ+2
.

• N0,1 → N1,0 → N2,1: sVir2κ−1×
∧

R
is an extension of Virκ×Vir2−κ−1 .

• D0,1 → N1,0 → N2,1: The alternative coset Vir2−κ−1 = ôsp(1|2)2κ−1

ŝu(2)κ
.

• D0,1 → N1,−1 → D1,0: The d(2, 1|−κ)1 VA is an extension of ŝu(2)κ+1×
ŝu(2)κ−1+1 × su(2)1.

• D0,1 → N1,−2 → D1,0: d(2, 1| − κ)1 is also an extension of ŝu(2)κ+2 ×
ôsp(1|2)1+2κ−1 .

All these extensions are compatible with each other.24

As a preparation to restoring the global form of the gauge group, it is

useful to observe which collections of modules appear in the above exten-

sions.

• D0,1 → N1,−1 → N1,0: Vir1+κ−1 ×ŝu(2)κ+1 ⊂ ŝu(2)κ × su(2)1. We

can expand the right hand sides into even weight Weyl modules for

ŝu(2)κ+1 combined with Vir1+κ−1 degenerate modules labelled by the

same weight. The extension is based on KLκ+1(SO(3)).

• D0,1 → N1,−2 → N1,0: sVir1+2κ−1 ×ŝu(2)κ+2 ⊂ ŝu(2)κ × so(3)1. The

extension is based on KLκ+2(SO(3)).

• N0,1 → N1,0 → N2,1: sVir2κ−1×
∧

R
is an extension of Virκ×Vir2−κ−1 .

Here the fields of half-integral/integral spin arise from products of

modules labelled by odd/even weights. The extension is based on

KLκ(SU(2)).

• D0,1 → N1,0 → N2,1: Vir2−κ−1 ×ŝu(2)κ ⊂ ôsp(1|2)2κ−1. The extension

is based on KLκ(SU(2)).

• D0,1 → N1,−1 → D1,0: ŝu(2)κ+1 × ŝu(2)κ−1+1 × su(2)1 ⊂ d(2, 1| −
κ)1. The right hand side is a sum of products of Weyl modules for

the three current algebras with the same weight, defined modulo 2

for su(2)1. We can think about the extension being based on either

KLκ±1+1(SU(2)). We also have ŝu(2)κ+1 × ŝu(2)κ−1+1 ⊂ d(2,1|−κ)1
su(2)1

,

based on KLκ±1+1(SO(3)).

24There are also compatibility conditions between DS reductions and extensions.
For example, the DS(1) reduction of d(2, 1|−κ)1, i.e. so(4)1× ŝu(2)κ−1 , is an exten-

sion of Virκ+1 ×ŝu(2)κ−1+1 × su(2)1. Similarly, the DS(2) reduction of d(2, 1| − κ)1,
i.e. so(4)1 × ŝu(2)κ, is an extension of ŝu(2)κ+2 × DS

[
ôsp(1|2)1+2κ−1

]
. Another

compatibility relation is the observation that the DS reduction of ôsp(1|2)κ, i.e.∧
R
× sVirκ, is an extension of Vir 1+κ−1

2

×Vir 1+κ
2
.
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• D0,1 → N1,−2 → D1,0: ŝu(2)κ+2 × ôsp(1|2)1+2κ−1 ⊂ d(2, 1| − κ)1. The

extension is based on KLκ+2(SO(3)).

The extensions above demonstrate some important facts about the KLκ

categories, seen as spin-ribbon categories:25

• There is an algebra object inKLκ+1(SO(3))�KLκ−1+1(SO(3)). Equiv-

alently, KLκ(SO(3)) depends on κ−1 modulo 1.
• There is an algebra object in KLκ(SU(2))�KL κ

2κ−1
(SU(2)). Equiv-

alently, KLκ(SU(2)) depends on κ−1 modulo 2.

• There is an algebra object in KLκ+1(SU(2)) � KLκ−1+1(SU(2)) �
su(2)1−mod.

Equivalently, for irrational κ, let us define a new category K̃Lκ(SU(2))
as a subcategory of

KLκ(SU(2))� su(2)1−mod

whose simple objects are tensor products Vn,κ⊗Li,1 where n ∈ Z+, i ∈
{0, 1} and n ≡ i mod 2 (here Li,1, i ∈ {0, 1}, are the two simple su(2)1-

modules, L0,1 being the vacuum module). In other words, we “dress”
objects in KLκ(SU(2)) by objects with the same weight (mod 2) in

su(2)1−mod. There is a similar definition for rational κ as well. Then

K̃Lκ(SU(2)) to equivalent to KLκ′(SU(2)) with κ−1 − (κ′)−1 = 1.

The first and second facts have a natural interpretation. The category
KL−κ−1(SO(3)) should be equivalent to the Whittaker category for SU(2),

i.e. C
SU(2)
κ (N0,1). The latter is naturally invariant under T : κ → κ+ 1. On

the other hand, KL−κ−1(SU(2)) should be equivalent to C
SO(3)
κ (N0,1), which

is only invariant under T 2 : κ → κ + 2. Indeed, we have n(SU(2)) = 1 and
n(SO(3)) = 2.

The third fact, instead, should be thought of as giving a hint about the

nature of N
SO(3)
1,−1 . Recall that this boundary condition cannot be obtained

from N
SO(3)
1,0 by a T transformation, as that is not a valid duality. Instead,

it must be defined as the S image of N
SU(2)
1,1 . In particular, we have

(8.1) CSO(3)
κ (N1,−1) = K̃Lκ+1(SU(2))

25The algebra objects below are really superalgebra objects, as the resulting
extensions are super-vertex algebras. Regardless of whether we work with ribbon
or spin-ribbon categories, all categories we use are assumed to be Z2-graded.
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The following analysis requires more physics background than the rest of

the paper. In the SU(2) gauge theory, the boundary conditions N
SU(2)
1,q can

be given a direct definition as Neumann boundary conditions modified by
a Chern–Simons coupling. In the SO(3) theory one would expect a similar

direct definition of N
SO(3)
1,q . However, the required Chern–Simons coupling

is only well-defined for even q.
The construction of K̃Lκ+1(SU(2)) as a sub-category inKLκ+1(SU(2))×

su(2)1−mod suggests a direct construction of N
SO(3)
1,2k+1 in four steps:

(i) Extend the gauge group from SO(3) to SU(2) at the boundary.
(ii) Add 2k + 1 units of boundary Chern–Simons coupling for the bulk

gauge fields.
(iii) Add an extra 3d TFT at the boundary: the TFT associated to U(1)2

or SU(2)1 Chern–Simons theory.
(iv) Restrict the boundary lines to the combinations of the original bound-

ary Wilson lines and SU(2)1 Wilson lines of the same weight (mod
2). This can be done by “gauging a Z2 one-form symmetry”, the non-
anomalous combination of the boundary Z2 one-form symmetry as-
sociated to the extension of the boundary gauge group and the Z2

one-form symmetry of SU(2)1 Chern–Simons theory.

This direct physical construction helps understand the physical origin of
some of the junctions we will encounter below.

8.2. More details on modules

Recall that an ŝu(2)κ Weyl module of highest weight m has a highest weight
vector of conformal dimension

(8.2) Δŝu(2)κ
m =

m(m+ 2)

4κ

This makes it manifest that the topological twist 2πΔ is invariant for κ−1 →
κ−1 + 1 if the weight is even, but not if the weight is odd.

The topological twist will be invariant under κ−1 → κ−1 + 2 for all
weights, but only in the spin sense. As the dimensions of the highest weight
vector of the su(2)1 module L1,1 of highest weight 1 is 1

4 , we see how it can
be used to compensate the effect of κ−1 → κ−1 +1 on Weyl modules of odd
weight.

The objects of the category Virκ-mod that are images of the objects of

CSU(2)
κ (N0,1)� CSU(2)

κ (N1,0) � KLκ−1(SO(3))�KLκ(SU(2))
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under the functor F
SU(2)
κ (N0,1�N1,0) should be given by the fully degenerate

modules for Virasoro algebra with conformal dimensions

ΔVir
m,e = (− e

2b
− mb

2
)(b+ b−1 +

e

2b
+

mb

2
)(8.3)

=
e(e+ 2)

4κ
+

m(m+ 2)

4
κ− em+ e+m

2
,

with arbitrary e and even m. The half-integral shifts compared with the
dimensions of Weyl modules are OK as long as we work with spin-ribbon
categories.

Notice that the full collection of modules, with arbitrary weights e and
m, does not give an image of KLκ−1(SU(2))�KLκ(SU(2)), because of the
half-integral shifts which occur when e and m are both odd.

Finally, because of the negative shifts in the dimensions of Virasoro mod-
ules, the combination of junctions supporting Virasoro algebra is more likely
to give junction vertex algebras with negative conformal dimensions com-
pared with the combination of junctions supporting Kac–Moody algebras.

Similar considerations as above apply to categories of modules over
ôsp(1|2)2κ−1 and sVir2κ−1.

The extension construction guarantees the existence of a family of mod-
ules over ôsp(1|2)2κ−1 which realize KL2−κ−1(SO(3)). Concretely, we are
combining Vir2−κ−1 modules with weights (2e,m) and Weyl modules of
ŝu(2)κ with weights m. The corresponding dimensions are

(8.4) Δôsp(1|2)2κ−1
e;m =

e(e+ 1)κ

(2κ− 1)
+

(m− 2e)(m+ 1)

2
,

which is smallest for m = e, with conformal dimension of highest weight
vector

(8.5) Δôsp(1|2)2κ−1
e;m =

e(e+ 1)

2(2κ− 1)
.

These can be identified with Weyl modules of ôsp(1|2)2κ−1.
If we build the extension using only modules in KLκ(SU(2)), the result

is the even part (ôsp(1|2)2κ−1)e of ôsp(1|2)2κ−1 (in the sense of Lie super-
algebras). Then we can realize the full KL2−κ−1(SU(2)) as a category of
modules over (ôsp(1|2)2κ−1)e.

In a similar manner, we can build modules for sVir2κ−1 associated to
KLκ−1(SO(3)) × KL2−κ−1(SO(3)). These are well-known degenerate mod-
ules for the super-Virasoro algebra. If we consider the even subalgebra
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(sVir2κ−1×
∧

R
)e, we can realize the larger category KLκ−1(SU(2)) �

KL2−κ−1(SU(2)).

One final observation concerns the embedding su(2)1�su(2)1 ⊂ so(4)1 =∧
R

4. It demonstrates the presence of an algebra object in su(2)1−mod �
su(2)1−mod, seen as spin-ribbon categories.

There are many holomorphic vertex algebras and spin-vertex algebras

which have a su(2)1 subalgebra, and which thus lead to coset algebras V

such that V−mod is canonically conjugate to su(2)1−mod, as a spin-ribbon

or as a ribbon category.26

8.3. Choices of global form

In this subsection, we give a more detailed analysis, in which we distinguish

between SU(2) and SO(3) while still ignoring the subtleties related to spin

structures.

8.3.1. Variants of N0,1 → N1,0 The Virasoro algebra Virκ arises natu-

rally at the junction N0,1 → N1,0 both in SU(2) and in SO(3) gauge theory.

Recall that Virκ is invariant under κ → κ−1. This transformation corre-

sponds to the duality symmetry RS which exchanges SU(2) and SO(3).

The difference between the two choices of gauge group affects the categories

of boundary line defects and hence the corresponding modules Virκ.

An SU(2) gauge theory will have the electric line defects on N1,0 with all

possible dominant integral weights and magnetic line defects on N0,1 with

even dominant integral weights only. The corresponding families of modules

in Virκ are mutually local (indeed, the modules in one family braid trivially

with the modules of the other family and the fusion product of two simple

modules of this kind is again a module of this kind) and so we indeed have

a tensor functor

KLκ(SU(2))�KLκ−1(SO(3)) → Virκ -mod

The reverse set-up (with electric and magnetic line defects exchanged) is

true for the SO(3) gauge theory, and we have

KLκ(SO(3))�KLκ−1(SU(2)) → Virκ -mod

26A simple class of examples arises from lattice vertex algebras associated to
(even) unimodular lattices L with a vector v of length 2.
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(both as spin-ribbon categories). Notice that modules of odd weights in the
two families braid with a −1 sign. In particular, there is no functor from
KLκ(SU(2))�KLκ−1(SU(2)) to Virκ−mod, even as spin-ribbon categories.

The action of RST−1 on N
SU(2)
0,1 → N

SU(2)
1,0 gives N

SO(3)
1,−1 → N

SO(3)
1,0 . If

the bulk coupling for the latter is κ, then the junction vertex algebra will be
Vir1+κ−1 . Correspondingly, there is a natural functor from KL−κ−1(SO(3))�
KLκ(SO(3)) to Vir1+κ−1-mod.

On the other hand, there is no functor from KL−κ−1(SU(2)) �
KLκ(SU(2)) to Vir1+κ−1-mod. This fails in two ways: the dimensions (mod-
ulo 1

2) of families of modules of (odd, even) or (even, odd) weights differ from
the expected values by −1

4 and furthermore their mutual braiding has the
wrong sign.

This is not surprising as a N
SU(2)
1,−1 → N

SU(2)
1,0 junction cannot be obtained

from the basic junction N
SU(2)
0,1 → N

SU(2)
1,0 by any legitimate duality trans-

formation within the SU(2) gauge theory: indeed, ST±1S is not a legitimate
duality symmetry, only ST±2S and their powers are.

We can seek an appropriate junction in two ways: direct gauge theory
construction or composition of junctions.

(i) The physical construction of the junction requires one to place by
hand some extra degrees of freedom at the junction, in the form of an
holomorphic spin vertex algebra which includes SU(2) currents of level
1.27 We can take four real fermions as auxiliary degrees of freedom,
i.e. so(4)1. The junction vertex algebra is thus the coset

(8.6)
ŝu(2)κ × so(4)1

ŝu(2)κ+1
� Vir1+κ−1 × su(2)1.

(ii) We can map the problem by T 2RS to the construction of a junc-

tion N
SO(3)
0,1 → N

SO(3)
1,1 at coupling 2 + κ−1, and use the compo-

sition N
SO(3)
0,1 → N

SO(3)
1,0 → N

SO(3)
1,1 . The result is an extension of

Vir2+κ−1 ×Vir κ+1

2κ+1
. It can be identified with

(8.7) Vir1+κ−1 ×s̃u(2)1,

where s̃u(2)1 is the same vertex algebra as su(2)1, with a modified
choice of stress tensor.

27Coupling these to the gauge fields at the junction, one absorbs the gauge
anomaly associated to the change in the Chern–Simons levels across the junction.
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The two answers are essentially equivalent.

Simple modules over Vir1+κ−1 × su(2)1 corresponding to a pair of Weyl

modules Vm,κ and Vn,−κ−1 from the categories of boundary line defects

C
SU(2)
κ (N

SU(2)
1,−1 )∨ = KL−κ−1(SU(2)) and C

SU(2)
κ (N

SU(2)
1,0 ) = KLκ(SU(2)) are

produced in the coset description on the right hand side of (8.6) as the BRST

cohomology of the tensor product Vm,κ ⊗ V ⊗ Vn,−κ−1 under the diagonal

action of ŝu(2) of twice the critical level.

If their weights, m and n, have the same parity, then the coset module

coincides with the appropriate Virκ-module dressed by the vacuum module

of su(2)1 (or V ). But if the weights have opposite parity, then the coset

module is a Virκ-module dressed by the non-trivial module of su(2)1 (or V ).

This gives us the desired functor

KL−κ−1(SU(2))�KLκ(SU(2)) → (Vir1+κ−1 ×V ) -mod .

Note that the extra dressing cancels the troublesome −1
4 shifts in conformal

dimensions that would result in the undesired − sign in the mutual braiding.

A small aside: the junctions above are compatible with the tentative

direct gauge theory description of N
SO(3)
1,±1 involving an auxiliary 3d TFT

at the boundary. As we construct a junction involving N
SO(3)
1,±1 , we need in

particular to provide a boundary condition for the 3d TFT.

Such a boundary condition naturally supports a su(2)1 vertex algebra.

(i) In a direct gauge theory construction of N
SO(3)
1,−1 → N

SO(3)
1,0 , we can use

such su(2)1 as auxiliary degrees of freedom at the junction, rather than

an holomorphic vertex algebra such as so(4)1. That gives precisely the

GKO construction

(8.8)
ŝu(2)κ × su(2)1

ŝu(2)κ+1
� Vir1+κ−1 .

(ii) In a direct gauge theory construction of N
SO(3)
0,1 → N

SO(3)
1,−1 , the su(2)1

vertex algebra goes along for the ride, giving the expected Vir1+κ×
su(2)1.

8.3.2. Variants of N0,1 → N2,1 The simplest junction of this type oc-

curs for N
SO(3)
1,−2 → N

SO(3)
1,0 and its duality images, such as N

SU(2)
0,1 → N

SU(2)
2,±1 ,

etc. In the former conventions, it supports a sVir1+2κ−1 vertex algebra,

though in many constructions it emerges dressed by an extra decoupled
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Table 5: Global form of the gauge group and junctions, part 1

Junction SU(2) SO(3)

N0,1 → N1,0 Virκ Virκ
N0,1 → N1,−1 Vir1+κ Vir1+κ × su(2)1
N1,−1 → N1,0 Vir1+κ−1 × su(2)1 Vir1+κ−1

free fermion. This is the case, for example, of the composition N
SU(2)
0,1 →

N
SU(2)
1,0 → N

SU(2)
2,1 .

A direct gauge theory construction of a N
SO(3)
1,−2 → N

SO(3)
1,0 junction re-

quires a choice of auxiliary holomorphic spin-vertex algebra with a su(2)2
sub-algebra.28 The simplest choice is so(3)1, which leads to a junction vertex

algebra given by the super-GKO-like coset

sVir1+2κ−1 =
ŝu(2)κ × so(3)1

ŝu(2)κ+2

The lines of even weight on both boundaries end on appropriate coset mod-

ules, which are the degenerate modules of sVir.

Another interesting junction is N
SO(3)
0,1 → N

SO(3)
2,1 . Junction compo-

sition N
SO(3)
0,1 → N

SO(3)
1,0 → N

SO(3)
2,1 now produces the even subalgebra

(sVir2κ−1×
∧

R
)e.

Notice that the duality orbit of this junction does not include N
SO(3)
0,1 →

N
SO(3)
2,−1 , which will require an alternative construction. Instead, it includes

N
SU(2)
1,2 → N

SU(2)
1,0 , N

SU(2)
1,1 → N

SU(2)
1,−1 and N

SO(3)
1,−1 → N

SO(3)
1,1 .

The latter provides another perspective on the junction: the boundary

conditions for the 3d TFTs involved in N
SO(3)
1,−1 and N

SO(3)
1,1 can provide

su(2)1×su(2)1 auxiliary degrees of freedom, resulting in the coset description

(sVir1+2κ−1 ×
∧
R

)e =
ŝu(2)κ × su(2)1 × su(2)1

ŝu(2)κ+2

In order to study the final duality orbit, including N
SO(3)
0,1 → N

SO(3)
2,−1 , we

can look at N
SU(2)
1,−2 → N

SU(2)
1,0 . A direct gauge theory construction requires

28This is required in order to compensate for the shift of boundary Chern–Simons
coupling (note that the level of the ŝu(2) Kac–Moody algebra in so(3)1 is equal to
2 = n(SO(3))).
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an auxiliary holomorphic vertex algebra which has a su(2)2 sub-algebra,

but also includes fields of odd weight, so that all boundary lines can end

at the junction and we can find a fully faithful functor from the boundary

categories into the junction vertex algebra modules.

There are many choice of such a vertex algebra, and none is obviously

canonical. We can realize su(2)2 as the diagonal combination of two su(2)1’s,

each included in a separate so(4)1 factor.

We can describe the resulting junction vertex algebra as a coset

(8.9)
ŝu(2)κ × so(8)1

ŝu(2)κ+2

where ŝu(2) is embedded in the so(8)1 in a non-trivial way, acting separately

on two blocks of four fermions each. With a bit of care, we can simplify that

to

(8.10) (sVir1+2κ−1 × so(5))e

We can obtain the same result by a composition N
SU(2)
1,−2 → N

SU(2)
1,−1 →

N
SU(2)
1,0 leading to an extension of Vir× su(2)1 ×Vir× su(2)1.

Table 6: Global form of the gauge group and junctions, part 2

Junction SU(2) SO(3)

N1,−2 → N1,0 (sVir1+2κ−1 × so(5)1)e sVir1+2κ−1

N1,2 → N1,0 (sVir−1+2κ−1 ×
∧

R
)e sVir−1+2κ−1

N1,−1 → N1,1 (sVirκ−1
κ+1

× so(5)1)e (sVirκ−1
κ+1

×
∧

R
)e

8.3.3. Variants of D0,1 → N1,0 We know that both D
SU(2)
0,1 → N

SU(2)
1,0

and D
SO(3)
0,1 → N

SO(3)
1,0 support the Kac–Moody algebra ŝu(2)κ. Upon com-

pactification, these junctions produce the expected Dκ in Dκ(BunSL2
) or in

Dκ(BunPSL2
).

Very similar considerations apply to D
SU(2)
0,1 → N

SU(2)
1,k . These junctions

support ŝu(2)κ−k. Upon compactification, these junctions produceDκ−k⊗Lk

in Dκ(BunSL2
).

The same is true for D
SO(3)
0,1 → N

SO(3)
1,2k . These junctions support

ŝu(2)κ−2k. Upon compactification, these junctions produce Dκ−2k ⊗ L2k in

Dκ(BunPSL2
).
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A separate class of interesting junctions is D
SO(3)
0,1 → N

SO(3)
1,2k−1, which

cannot be produced by the action of T 2 on the standard junction. Instead,

we can consider the extension D
SO(3)
0,1 → N

SO(3)
1,0 → N

SO(3)
1,1 , leading to

ŝu(2)κ−1⊗ su(2)1, coupled to PSL2 bundles by the diagonal combination of
the currents.

Upon compactification, this junction produces an interesting object in
Dκ(BunPSL2

), which should be qGL dual to D−κ−1+1 ⊗ L−1 in
D−κ−1(BunSL2

).

8.3.4. Variants of D0,1 → N2,1 First, we can look atD
SU(2)
0,1 → N

SU(2)
2,±1 .

This should support ôsp(1|2)2κ∓1. Upon compactification, this junction
should produce a rather non-trivial object: the restriction of
D2κ−1[BunOSp1|2 ] to BunSL2

.
We thus expect this object to be qGL dual to D−κ−1±2 ⊗ L∓2 in

D−κ−1(BunPSL2
).

For SO(3) gauge group, we should distinguish two junctions not related
by dualities:

(i) D
SO(3)
0,1 → N

SO(3)
2,1 : the composition of junctions involving N

SO(3)
1,0 only

gives the (Grassmann) even part (ôsp(1|2)2κ−1)e.

(ii) D
SO(3)
0,1 → N

SO(3)
2,−1 : the composition of junctions involving N

SO(3)
1,−1 gives

instead (ôsp(1|2)2κ+1 × so(4)1)e.

8.3.5. Kernel junctions Now we have the information needed to study

a junction D
SU(2)
1,0 → D

SU(2)
1,0 or, equivalently, D

SO(3)
0,1 → D

SO(3)
1,0 . We can use

the composition D
SU(2)
0,1 → N

SU(2)
1,−1 → D

SU(2)
1,0 . Now the second junction has

an extra su(2)1 factor and the composition gives precisely d(2, 1| − κ)1.

Crucially, the coupling to SL2 bundles associated to D
SU(2)
0,1 employs

the ŝu(2)κ+1 sub-algebra, but the coupling to PSL2 bundles associated to

D
SU(2)
1,0 employs the diagonal sub-algebra of the ŝu(2)κ−1+1 × su(2)1 sub-

algebra.
This observation is very important: the currents in d(2, 1| − κ)1 have

either (even, even, even) or (odd, odd, odd) weights for the three subalgebras.
Under the diagonal sub-algebra of the ŝu(2)κ−1+1×su(2)1, though, they have
even weights and thus the coupling to PSL2 bundles is possible.

The sheaf of coinvariants of d(2, 1|−κ)1 is an object in Dκ+1(BunSL2
)⊗

Dκ−1+2(BunPSL2
) which can be mapped canonically (up to spin subtleties)

to an object in Dκ(BunSL2
)⊗Dκ−1(BunPSL2

), which is the conjectural qGL
kernel.
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An interesting variant is the junction D
SO(3)
0,1 → D

SO(3)
1,1 . We can use

the composition D
SO(3)
0,1 → N

SO(3)
1,0 → D

SO(3)
1,1 . The second junction can

be dualized to N
SU(2)
0,1 → D

SU(2)
1,−1 and then to N

SU(2)
0,1 → D

SU(2)
1,0 and thus

D
SO(3)
0,1 → N

SO(3)
1,0 . The composition gives a smaller vertex algebra: the coset

d(2,1|−κ)1
su(2)1

.

8.4. Spin subtleties

Finally, we include spin structures in our analysis. In the absence of a spin
structure, the SU(2) gauge theory is still T invariant. It comes in two vari-
ants, though, as we can define a standard theory SU(2)b based on an SU(2)
connection and a twisted theory SU(2)s based on an SpinC-like SU(2) con-
nections.

On the other hand, SO(3) gauge theory is invariant under T 4 rather
than T 2. We can denote the corresponding two versions of SO(3) gauge
theory as SO(3)b and SO(3)t, related by T 2.

Perhaps surprisingly, it is natural to take SO(3)t and SO(3)b to be
respectively the S-dual images of SU(2)b and SU(2)s. We thus have the
following duality groupoid:

(8.11)
SU(2)b ←→ SO(3)t ←→ SO(3)b ←→ SU(2)s

� S T 2 S �
T T

In this convention, Neumann boundary condition N1,0 does not require
a spin structure for SO(3)b but does require it for SO(3)t. Indeed, the Nahm
pole boundary condition for SU(2)b requires a choice of spin structure, but
does not for SU(2)s.

On the other hand, Neumann boundary condition N1,0 does not require
a choice of spin structure for either SU(2) theory, nor does Nahm for either
SO(3) theory.

Acting with T , we find that N1,±1 do not require a choice of spin struc-
ture for either SU(2) theory and thus should not require a spin structure
for either SO(3) theory as well.

On the other hand, acting with T 2 we find that N1,±2 require a spin
structure for SO(3)b but not for SO(3)t. Acting with S, we find that N2,±1

require a spin structure for SU(2)s but not for SU(2)b. This makes sense:
the boundary hypermultiplets are twisted into fields of integral spin, but
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transform as a doublet of SU(2). They are not naturally sections of SpinC-
like SU(2) bundle. On the other hand, the N2,±1 should not require a spin

structure for either SO(3) theory.

Standard Dirichlet boundary conditions only require a spin structure for
SU(2)s, and even then it is better to think about coupling to a background
SpinC-like SU(2) bundle at the boundary.

Upon compactification on a Riemann surface, we can map the four nodes
of our groupoid to four variants of the usual category of D-modules:

• SU(2)b → Dκ(BunSL2
), standard twisted D-modules.

• SO(3)b → Dκ(BunPSL2
), standard twisted D-modules.

• SO(3)t → G−Dκ(BunPSL2
), twisted D-modules modified by the gerbe

G.

• SU(2)s → Dκ(BunSpin−SL2
), twisted D-modules on a modified moduli

stack, that of SpinSL2
bundles on the Riemann surface X (we use

notation from Section 7.4).

This agrees with the duality statements in [34].

As an example of non-spin junctions, the N
SO(3)b
0,1 → N

SO(3)b
1,0 or

N
SU(2)s
0,1 → N

SU(2)s
1,0 junctions can be defined with no reference to spin struc-

ture and indeed support the standard Virκ algebra.

It is straightforward, if tedious, to build more examples of junctions
which do not require a spin structure.

Instead, we will just make a couple of observations about the duality
kernel vertex algebra.

• The conformal blocks of d(2, 1| − κ)1 will give an object in
Dκ+1(BunSL2

)⊗ Dκ−1+2(BunPSL2
). Because L2 is a section of the

gerbe G, this maps to an object in Dκ(BunSL2
)⊗G−Dκ−1(BunPSL2

),
as needed.

• Consider the subalgebra (d(2, 1| − κ)1 × so(3)1)e. This vertex alge-
bra can be coupled to SpinSL2

bundles. If we couple the second fac-
tor to the PSL2 bundles, the conformal blocks will give an object
in Dκ+1(Buns−SL2

)⊗Dκ−1+4(BunPSL2
). This maps canonically to an

object in Dκ(Buns−SL2
)⊗Dκ−1(BunPSL2

), as needed.

9. General gauge groups and discrete θ angles

Until now, we have employed a somewhat traditional perspective on the
S-duality groupoid, in which we focus on the standard 4d supersymmetric



Quantum Langlands dualities 295

gauge theories for a simple compact Lie group Gc and its Langlands dual
LGc.

The lift of the duality group from spin-TFTs to TFTs for the groups
U(1) and SU(2)/SO(3) forced us to consider some generalizations of that
structure, either involving SpinC-like modifications of the gauge group or
the images of the standard gauge theories under the duality transformation
T (we will call them T -images).

Even if we remain in the realm of spin-TFTs, it turns out that extending
the duality groupoid by introducing T -images of standard gauge theories,
however useful, is still incomplete [38, 8]. It turns out that the definition of
4d gauge theories can be modified by a variety of “discrete θ angles” and
some of the resulting modifications are not simply the T k-images of standard
gauge theories. Furthermore, there is a full duality groupoid generated by T
and Sm, whose nodes can be identified with a variety of thus modified gauge
theories.

The full duality groupoid organizes all theories associated to the Lie
algebras g and Lg into a complicated pattern of orbits, whose structure
depends sensitively on the specific gauge Lie algebra.

When such modified 4d gauge theories are compactified on a Riemann
surface Σ, we obtain as the result certain modifications of the sigma model
with the target MH(G), the Hitchin moduli space associated to Σ and G.
As a result, the corresponding categories of twisted D-modules on BunG
get modified in such a way that each connected component of BunG gets
equipped with an appropriate discrete B-field and the corresponding cat-
egories of Dκ-modules get twisted by appropriate gerbes. As a result, we
obtain a variety of duality relations involving these gerbe-twisted categories
of Dκ-modules.

This overall structure is reasonably well understood for the physical
gauge theories, but has to be further refined for the topologically twisted
gauge theories, because of spin subtleties.

There is some recent mathematical work [49, 48] which describes modi-
fications of the standard Geometric Langlands correspondence that appear
to be closely related to the modifications due to the discrete θ angles. It
would be very interesting to make the dictionary explicit and compare the
expected actions of S-duality on these data.

9.1. Topological actions and lattice of line defects

In order to consider topological modifications of gauge theory actions (a.k.a.
“discrete θ-angles”) in full generality, one has to study certain generalized
cohomology theories of BG.
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In the standard physical gauge theory, these generalized cohomology

theories will be associated to cobordisms of spin manifolds equipped with a

G bundle and perhaps an SU(4)R-bundle.

Alternatively, as the spinors in the physical theory transform in the

fundamental representation of the SU(4)R � Spin(6)R R-symmetry group,

while fields of integral spin transform in the representations of SO(6)R, it

should be possible to couple the theory to SpinSU(4)R-bundles, i.e. bundles on

a four-manifold M with the structure group (Spin(4) × SU(4))/Z2 (which

is a Z2-extension of the structure group SO(4) × (SU(4)/Z2) = SO(4) ×
SO(6)), such that the corresponding SO(4) × (SU(4)/Z2)-bundle has the

frame bundle of M along the first factor. These should be available on all

manifolds. Topological actions for this variant of the physical theories will be

classified by some cohomology theories associated to cobordisms of manifolds

equipped with a G-bundle and an SpinSU(4)R-bundle.

The latter choice is probably better in preparation for a topological twist.

It suggests that the spin-refined duality action, which we will explore later

on, may already be probed within the physical theory.

Upon topological twist, the classification of discrete θ-angles should sim-

plify a bit, as the cohomology theories will be associated to cobordisms of

manifolds equipped with a G-bundle only and should coincide with some

standard version of the group cohomology H4(BG,U(1)).

The group cohomology description of the topological action is well-suited

for understanding the compactification to the 2d sigma model on a Riemann

surface Σ with the target Hitchin moduli space MH(G). Indeed, there is

an obvious map Σ × BunG(Σ) → BG and the pull-back of the class in

H4(BG,U(1)) along that map can be integrated over Σ to give a class in

H2(BunG(Σ), U(1)), i.e. a discrete B-field, or equivalently a gerbe, of the

sigma model.29

Let us denote a choice of the theory as a pair (G,ω) with ω being a

choice of topological action added on top of the usual gauge theory action.

An important open question is to describe explicitly the action of the duality

groupoid on pairs (G,ω). This has not yet been done, as far as we know.30

What is known is the action of the duality groupoid there on a simpler piece

29Notice that this statement holds true for whatever generalized cohomology
theory is relevant to the problem at hand: a topological action for the gauge theory
will descend to a topological action for the 2d sigma model.

30While some of the spin subtleties are expressed in ω, to get a complete de-
scription of the possible theories one needs to allow SpinSU(4)R-bundles in addition
to G-bundles, as we explained above in the case of G = U(1) and SU(2)/SO(3).
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of data obtained from pairs (G,ω). It seems to capture the information
hidden in the pair (G,ω) that we need, up to the spin subtleties.

This piece of data is the lattice Λ of allowed electric and magnetic charges
for the line defects in the theory. We will use this data even though these line
defects are actually not available in general in the bulk of the topologically
twisted theory (only at the boundary), as a formal proxy for the underlying
topological action ω of the gauge theory. If we further add to Λ the data of
the topological spin associated to the line defects, we should be able to keep
track of spin subtleties.

Recall that the charges of line defects in a gauge theory with the Lie
algebra g are pairs (m, e) where m is in the magnetic weight lattice LP
(that is, the coweight lattice of g) and e is in the weight lattice P of g.

There is a natural (Dirac) inner product on LP × P :

(9.1) 〈(m, e), (m′, e′)〉 = m · e′ −m′ · e.

By definition, a lattice Λ of allowed line defects is a maximal local sublattice
of LP×P . Here “local” means that the restriction of the above inner product
to Λ should take integer values, and “maximal” means that it is not be
possible to add any other elements to Λ without violating locality property.
In particular, it follows that Λ necessarily contains LQ × Q, where Q ⊂ P
and LQ ⊂ LP are the lattices of roots and coroots, respectively. Hence such
λ is completely determined by its projection onto (LP/LQ)× P/Q.

The duality groupoid acts on Λ by transforming the elements in the
obvious way:

(9.2) Sm : (m, e) → (e,−m) T : (m, e) → (m, e+m).

In order to make contact with the cohomology class ω discussed above,
we rearrange the data in Λ a bit. First of all, we can read off the global
form of the gauge group G by looking at the sublattice of Wilson lines (0, e)
inside Λ, i.e. the intersection Λ∩P . This should be the weight lattice of the
gauge group G, which we denote by ΛG. Likewise, the intersection Λ ∩ LP
should be the coweight lattice of G, which we denote by ΛM

G . For each m the
values of allowed electric charges e in our theory (i.e. such that (m, e) ∈ Λ)
then form a torsor for ΛG. Picking a specific representative e of this coset,
we define a pairing ΛM

G × ΛM
G → U(1) by the formula

〈m,m′〉 = e2πi m
′·e,

which is symmetric because of the locality property. If we identify ΛM
G with

the possible magnetic fluxes on a sphere, this pairing is nothing but the
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evaluation of the corresponding cohomology class ω on the four-manifold
which is the product of two spheres.

In the next subsection, we will consider examples of lattices Λ in the case
of SLn. We will consider the projections of the lattices onto (LP/LQ)×P/Q.

9.2. Example: SL2, revisited

In this case, (LP/LQ)×(P/Q) = Z2×Z2 and there are three possible lattices
of charges whose projections onto (Z2,Z2) contain (0, 0) and either of the
three (0, 1), (1, 0) or (1, 1).

The first choice is SU(2) gauge theory, the second is the standard SO(3)
gauge theory, which we denote by SO(3)+ and the third is the T -image of
SO(3)+, which we denote by SO(3)−. The duality transformation S ex-
changes SU(2) and SO(3)+ and maps SO(3)− to itself.

The spin-enrichment of the duality groupoid keeps track of four distinct
variants of SO(3), corresponding to the basic SO(3)0 theory and to the T k

images SO(3)k. Now S relates SO(3)0 and Spin-SU(2), SO(3)1 and SO(3)3,
SO(3)2 and SU(2).

Upon compactification on a Riemann surface, SO(3)k gives Dk-modules
twisted by the gerbe associated to the kth power of the naive line bundle L.

9.3. Example: SLN

Ignoring spin subtleties, the number of distinct variants of slN gauge theories
is equal to the sum of the divisors of N .

As the basic SU(N) gauge theory is invariant under Γ0(N), the duality
groupoid images of SU(N) are counted by the index of Γ0(N) in PSL2(Z),
which is

(9.3) N
∏
p|N

(
1 +

1

p

)

Hence if N is square-free, all variants of slN gauge theories can be found
as images of SU(N) gauge theory under some gauge transformation. If not,
there are separate duality orbits.

9.3.1. Example: SL3 The Lie algebra sl3 gives an example with no sub-
tleties. The standard SU(3) gauge theory, the standard PSU(3)0 gauge
theory and the two T -images PSU(3)1,2 exhaust the possible variants, even
keeping track of the spin structure dependence. They are all in the same
duality orbit, with S exchanging PSU(3)1 and PSU(3)2.
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9.3.2. Example: SL4 This is a much more intricate example. Ignoring

spin subtleties, there are 7 variants of the gauge theory, but the main duality

orbit only includes 6 of them.

Starting from SU(4), which has line defects of charges (0, e), e ∈ Z4

and is T -invariant, S-duality gives (SU(4)/Z4)0, which has line defects of

charges (m, 0),m ∈ Z4. There are three more variants produced by the

action of T , (SU(4)/Z4)i with i = 1, 2, 3. The (SU(4)/Z4)1,3 are exchanged

by S, but (SU(4)/Z4)2 is mapped to a modified version of SU(4)/Z2, which

we denote by (SU(4)/Z2)1 = SO(6)1. On the other hand, the standard

(SU(4)/Z2)0 = SO(6)0 is invariant under both S and T .

If we keep track of spin subtleties, the situation should become even

richer. The Nahm pole for SU(4) requires a spin structure, suggesting that

its S-dual gauge theory’s Neumann boundary condition should require a spin

structure as well. Indeed, the periodicity of the θ angle in SU(4)/Z4 is twice

as long on non-spin manifolds, and (SU(4)/Z4)4 is a good candidate for the

S-dual of SU(4). We expect the S-dual of (SU(4)/Z4)0 to be Spin-SU(4).

Because of the identity STS = T−1ST−1 applied to SU(4), we get that

S maps (SU(4)/Z4)3 to (SU(4)/Z4)5. Similarly, S maps (SU(4)/Z4)1 to

(SU(4)/Z4)7.

The T operation does not fix SU(4)/Z2 = SO(6) anymore, but T 2 does.

We also have Spin-SO(6) versions of the gauge theory. It would be nice to

fill in the remaining structure of the duality groupoid.

10. Other duality kernels

In this section, we discuss another family of kernel vertex algebras Yκ(G)

associated to theD0,1 → D1,0 junction and thus to the standard qGL duality,

in which conformal dimensions away from the vacuum are strictly positive.

In the case when G is a reductive Lie group that is Langlands self-

dual (for instance, E8 or GLn) the vertex algebras Yκ(G) were introduced

in [36] and [16], as the result of a D0,1 → N1,−1 → D1,0 composition of

junctions. The objective of this section is to generalize that construction for

an arbitrary simple Lie group G and discuss the corresponding qGL duality

functors.

The generalization has two levels of complexity. For simply-laced groups,

it turns out that the simplest generalization of the above construction in-

volves the extended duality groupoid: we can build analogous D0,1 → D1,0

junctions for the generalized gauge theory G−1 which is the T−1 image of

the gauge theory associated to the adjoint form of the gauge group G.
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Notice that the G−1 theory is mapped by S to the T image of G, aka

G1. Indeed, S ◦G−1 = ST−1 ◦G = T (STS) ◦G = G1. On the other hand,

the RS transformation maps the G−1 theory to itself.

The construction of Yκ(G) is simpler than the one given in the Section 5

in that for general κ there is only one direct sum over dominant integral

weights (rather than two). The vertex algebra Yκ(G) comes equipped with

the action of two copies of ĝ = L̂g, of levels κ+ 1 and κ−1 + 1.

In the case that G is self-dual and simply-connected (which for simple

Lie groups means G = E8), we have already described this vertex algebra

and the corresponding kernel the qGL duality TST in Section 4.4. Tensoring

this kernel with the line bundle L−1
G on each factor BunG, we should then

obtain the kernel of the main qGL duality S. For other simply-laced simple

Lie groups the construction is identical, but tensoring with L−1
G maps the

kernel to a gerbe-twisted version of BunG.

The action on S on other nodes of the duality groupoid requires appro-

priate modifications of the vertex algebra Yκ(G). Based on the examples we

treat below in detail, we expect that the modifications are always finite in-

dex extensions of Yκ(G)⊗A for some rational vertex algebra A that depends

sensitively on the choice of gauge groups and discrete θ-angles.

We then generalize Yκ(G) to non-simply laced simple Lie groups. In this

case, Yκ(G) is larger: it involves two summations over dominant weights for

groups with the lacing number m = 2 and four for G2, which has lacing

number m = 3.

10.1. Construction of Yκ(G) for simply-laced G

Let’s recall and extend the construction in the self-dual case (see [36, 16]

and Section 4.4 above). Take G to be the adjoint form of the group, so that
LG is simply-connected.

Consider the following composition of junctions

(10.1) D0,1 → N1,−1 → D1,0

in the bulk theory T
G−1
κ ≡ T−1 ◦ TG

κ+1.

The first junction is the T−1 image of D0,1 → N1,0 in TG
κ+1. The corre-

sponding junction vertex algebra is ĝ of level κ+ 1.

The second junction is the RST−1 image of D0,1 → N1,0 in TG
κ−1+1. The

corresponding junction vertex algebra is ĝ of level κ−1 + 1.
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The composition of the two junctions gives an extension

Yκ(G−1) =
⊕
λ∈P+

Vλ,κ+1 ⊗ Vλ∗,κ−1+1,

where λ∗ was defined in Section 5.3. Notice that λ and λ∗ belong to the root
lattice and the vertex algebra has two ĝ- and G[[z]]-actions.

Applying the localization functor to it, we therefore obtain a twisted
D-module ΔTST

κ (G) on BunG×BunG, with the twists κ + 1 and κ−1 + 1
along the two factors, which we expect to be a kernel of the functor

E
G,TST
−κ−1 : D−κ−1(BunG) → Dκ−1+1(BunG)

corresponding to the qGL duality TST = TS1T . Since the action of T on
the category of κ-twisted D-modules corresponds to tensoring with the line
bundle LG, the kernel of the qGL duality S can now also be constructed:
we simply take the tensor product

ΔTST
κ (G)⊗ (L−1

G � L−1
G ).

This a now gerbe-twisted D-module on BunG×BunG with the twists κ
and κ−1 along the two factors, which should give rise to the kernel

E
G,S
−κ : G1 −D−κ(BunG) → G−1 −Dκ−1(BunG),

where G±1 is the Zn(G)-gerbe of n(G)th roots of L⊗±1
G .

For other choices of generalized gauge group, different from GAdj
−1 , the

procedure above can still be implemented, but we need to identify appro-
priate junctions D0,1 → N1,−1 for G and LG.

Based on general gauge theory considerations and past examples, we
expect the existence of junctions to support vertex algebras which include
two copies of ĝ as well as an auxiliary rational vertex algebras, which are
needed to implement correct functors from CG

κ (N1,−1). The composition of

such junctions should give a finite index extension of Yκ(G
Adj
−1 )⊗A for some

rational vertex algebra A.
It is far from obvious, though, that our strategy of composing simpler

junctions in order to produce, say, a D0,1 → N1,−1 junction will give vertex
algebras of this form, as we can see from the example in this remark.

Remark 10.1. Suppose that we start with the composition of junctions

(10.2) D0,1 → N1,−1 → D1,0
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in the bulk theory TG
κ rather than T

G−1
κ as we did before. Then we can

represent the second junction N1,−1 → D1,0 as the SRT−1 image of junction
D0,1 → N1,0 in T

LG
κ−1+1 because T−1 is a legitimate duality of T

LG
κ−1+1 (recall

that LG is assumed to be simply-connected). But we can no longer represent
the first junction as the T−1 image of D0,1 → N1,0 in TG

κ+1 because T−1 is
not a legitimate duality there.

Instead, we can try to build it as a composition of two junctions. The
simplest one is

(10.3) D0,1 → N1,0 → N1,−1

(again, in the bulk theory TG
κ ), where the second junction is the ST image

of the basic junction N0,1 → N1,0 in the bulk theory T
LG
−(κ+1)/κ. The vertex

algebra corresponding to (10.3) is therefore, for irrational κ,⊕
λ∈P+

ad

Vλ,κ ⊗M(λ∗,0),−κ/(κ+1),

where we use the notation (3.12). Hence the vertex algebra of the junction
(10.2) is, for irrational κ,

(10.4)
⊕

λ∈P+
ad,μ

∨∈P+

Vλ,κ ⊗M(λ∗,μ∨),−κ/(κ+1) ⊗ Vμ∨∗,κ−1+1.

Unfortunately, this vertex algebra has unbounded conformal dimensions.
That’s why we prefer Yκ(G) which does not suffer from this defect.

10.2. Kernels for SL2

In Section 8 we encountered the vertex algebra d(2, 1,−κ)1, which enters in
slightly different guises in the construction of duality kernels for a variety
of qGL dualities involving SU(2) and SO(3). According to the definition

above, Yκ(SO(3)1) ≡ d(2,1,−κ)1
su(2)1

.

Ignoring spin subtleties, but keeping track of the full groupoid with nodes
SU(2), SO(3)0 and SO(3)1 ≡ SO(3)−1, we summarize the appearances of
d(2, 1,−κ)1:

(i) The affine subalgebra ŝl(2)κ+1× ŝl(2)κ−1+2 of d(2, 1,−κ)1 can be used
to associate (via the localization functor) to the vertex algebra
d(2, 1,−κ)1 a twisted D-module on BunSL2

×BunPSL2
with the twists
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κ+1 along the first factor and κ−1+2 along the second factor. Then,

tensoring with the inverse of the generating line bundle LSL2
along

the first factor and the inverse of the generating line bundle LPSL2

along the second factor, we obtain a (κ, κ−1)-twisted D-module on

BunSL2
×BunPSL2

. This is our candidate for the kernel of the stan-

dard qGL duality associated to the S operation SU(2) → SO(3)0.

(ii) The coset d(2,1,−κ)1
su(2)1

allows conformal blocks to be defined as twisted

D-modules on BunPSL2
×BunPSL2

with the twist κ+1 along the first

factor and the κ−1 + 1 along the second factor. This is our candidate

for the kernel of a modified qGL duality associated to the S operation

SO(3)1 → SO(3)1.

In particular, we can naturally define Yκ(SO(3)0) = Yκ(SU(2)) =

d(2, 1,−κ)1, with appropriate choices of currents to couple to SL(2) and

PSL(2) bundles.

Spin subtleties manifest themselves in a rather straight-forward manner.

The spin-extended groupoid has nodes SU(2)b, SU(2)s, SO(3)0, SO(3)1,

SO(3)2 and SO(3)3 ≡ SO(3)−1.

(i) In the above statement (i), tensoring with L−1
PSL2

actually maps (κ−1+

2)-twisted D-modules on BunPSL2
to κ−1-twisted and G-twisted D-

modules on BunPSL2
. Thus, the resulting kernel should correspond to

the qGL duality S : SU(2)b → SO(3)2.

(ii) A different vertex algebra is required for the qGL duality SU(2)s →
SO(3)0. A likely candidate is the even part of d(2, 1,−κ)1×so(3)1. This

vertex algebra has an affine ŝl(2)κ+1 × ŝl(2)κ−1+4 subalgebra and the

spin and ŝl(2)κ+1 weight of fields are tied together. This means that

its localization functor yields κ-twisted D-modules along BunSpin−SL2

and κ−1-twisted D-modules along BunPSL2
.

(iii) The d(2,1,−κ)1
su(2)1

vertex algebra is the natural candidate for the qGL

duality SO(3)3 → SO(3)1.

(iv) Likewise, a kernel for the qGL duality SO(3)1 → SO(3)3 would require

a vertex algebra with an ŝl(2)κ+3 × ŝl(2)κ−1+3 sub-algebra. A possible

solution is to combine d(2,1,−κ)1
su(2)1

with the even part of so(3)1 × so(3)1.

10.3. Kernels for SL3

This is a particularly straightforward example. It has no spin subtleties, but

it illustrates the new challenges which arise when we go beyond SL2.
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We have learned above how to build a D0,1 → D1,0 junction in the
PSU(3)2 ≡ PSU(3)−1 generalized gauge theory. It supports the extension

of ŝl(3)κ+1 × ŝl(3)κ−1+1 we denote as Yκ(PSU(3)2).

The next simplest junction we can produce is a D0,1 → D1,0 junction in
the PSL(3)1 generalized gauge theory, the T image of the standard PSL(3)
theory.

As an intermediate step, we can decompose the junction as D0,1 →
N1,−2 → D1,0 and associate D0,1 → N1,−2 to a ŝl(3)κ+2 Kac–Moody algebra.
We are left with the problem of building N1,−2 → D1,0.

A similar, RS dual decomposition N1,−2 → N2,−1 → D1,0 gives an

ŝl(3)κ−1+2 factor, but still leaves a non-trivial problem: build an N1,−2 →
N2,−1 junction in the PSU(3)1 theory.

We can solve the problem with one final step: the composition N1,−2 →
N1,−1 → N2,−1 in the PSU(3)1 theory. Indeed, both partial junctions can be
dualized to N1,0 → N1,1 in the standard PSU(3) theory, i.e. N0,1 → N1,−1

in the SU(3) theory.

Keeping track of couplings, that gives a Wκ+1

κ+2
and a W κ+1

2κ+1
algebras.

We can then go back to the original junction and associate differently. The
D0,1 → N1,−2 → N1,−1 composition in the PSL(3)1 theory can be recognized

by the GKO coset construction ofW as supporting ŝl(3)κ+1×su(3)1, possibly
coupled to PSL(3) bundles through the total level κ+ 2 currents.

Overall, we obtained a junction D0,1 → D1,0 in the PSU(3)1 gauge
theory supporting an extension of

ŝl(3)κ+1 × ŝl(3)κ−1+1 × su(3)1 × su(3)1

we denote as Yκ(PSU(3)1). The extension involves the category of lines on
N1,−1 in the PSU(3)1 theory, i.e. the category of lines on on N1,−1 in the
standard SU(3) gauge theory: KLκ+1

κ+2
(sl3). In particular, it involves a sum

over all highest weights.

Conformal blocks of such vertex algebra give a potential S kernel for the
category of twisted D-modules associated to the PSL(3)1 theory.

It is very tempting to assume that the same vertex algebra may also
occur at a junction D0,1 → D1,0 in the standard SU(3) or PSU(3) gauge

theories. Indeed, it has an ŝl(3)κ+1 × ŝl(3)κ−1+3 sub-algebra and it may be
possible to couple it to SL3 × PSL3 bundles to produce D-modules with
the correct twists.

We cannot easily confirm this naive expectation by composing basic
junctions. With a small extra conjecture, we can get a somewhat similar
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statement, but involving an extra su(3) spectator factor. We have derived

ŝl(3)κ+1 × su(3)1 at D0,1 → N1,−2 → N1,−1 in the PSL(3)1 theory. We can
look as a similar composition: N0,1 → N1,−2 → N1,−1 in the PSL(3)1 theory.

In analogy with the SU(2) case, we conjecture that, up to a re-definition
of the stress tensor, there is an N0,1 → N1,−1 junction in the PSL(3)1 theory
which supports Wκ+1 × su(3)1. Equivalently, we conjecture that there is an
N0,1 → N1,0 junction in the PSL(3)2 theory which supports Wκ × su(3)1.

If this conjecture is correct, then a direct construction of D0,1 → D1,0

in the standard PSU(3)0 gauge theory can proceed as follows. We can first
decompose it to D0,1 → N1,−2 → N1,−1 → D1,0. The D0,1 → N1,−2 junction
can be produced from D0,1 → N1,−3 → N1,−2: N1,−3 → N1,−2 in PSU(3)0
is dual to N1,0 → N1,1 in PSU(3)0 and thus to N0,1 → N1,−1 in SU(3) and

supports Wκ+2

κ+3
. It can combine with ŝl(3)κ+3 to give ŝl(3)κ+2 × su(3)1 at

the D0,1 → N1,−2 junction.
Next, we map N1,−2 → N1,−1 in PSU(3)0 to N1,−1 → N1,0 in PSU(3)1,

to N0,1 → N1,−1 in PSU(3)1, to N0,1 → N1,0 in PSU(3)2. Then the junction
should support Wκ+2

κ+1
× su(3)1.

Assembling the pieces, we get an extension of ŝl(3)κ+2×su(3)1×Wκ+2

κ+1
×

su(3)1 at D0,1 → N1,−1 in PSU(3)0, which we can presumably be identified

with something like ŝl(3)κ+1× su(3)1× su(3)1× su(3)1. If this is correct, the
result will be some extension of

ŝl(3)κ+1 × ŝl(3)κ−1+1 × su(3)1 × su(3)1 × su(3)1.

It would be interesting to test this conjecture further. We leave that to
future work.

10.4. Sp(N) and SO(2N + 1) and other non-simply laced groups

The basic challenge here is that, unlike the simply-laced case, N1,−1 is not
self-dual under the basic duality RSm. Rather, it is mapped by RSm to
Nm,−1 �= N1,−1 if the lacing number m > 1. This means that if we want
to use the composition D0,1 → N1,−1 → D1,0 for a non-simply laced group
G, we need to describe the vertex algebra for the junction N1,−1 → D1,0

for the coupling κ and group G. Hence, we have to describe its RSm-dual:
D0,1 → Nm,−1 for the coupling (mκ)−1 and group LG.

In what follows, we will pretend that T is a legitimate duality for both
G and LG. We will simply ignore here subtleties concerning the global form
of the group.
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Consider first the case m = 2. Then we can decompose further the latter

junction as D0,1 → N1,−1 → N2,−1. The N1,−1 → N2,−1 junction for the

coupling (2κ)−1 and group LG is the same as N1,0 → N2,1 at (2κ)−1+1 and

group LG, which is the same as N0,1 → N1,−1 at − κ
1+2κ and the original

group G. In turn, that is the same as N0,1 → N1,0 at κ+1
2κ+1 and group G.

On the other hand, D0,1 → N1,−1 at (2κ)−1 and group LG is the same

as D0,1 → N1,0 at (2κ)−1 + 1 and group LG.

Thus, the resulting kernel vertex algebra Yκ(G) is a double extension of

gκ+1×W κ+1

2κ+1
(g)×L̂g(2κ)−1+1. For irrational κ, it can be written explicitly as a

double direct sum, as in Section 5. One can show that this vertex algebra has

non-negative conformal dimensions. When we apply the localization functor

to the vertex algebra Yκ(G), we should obtain a kernel in a suitable version

of the category of twisted D-modules on BunG×BunLG with the twists κ+1

along the first factor and (2κ)−1+1 along the second factor. This D-module

should give rise to the qGL duality TST .

When g = so(2n + 1), string theory suggests that the extension

W κ+1

2κ+1
(so(2n + 1)) × ŝp(n)(2κ)−1+1 should be identified with ôsp(1|n)κ−1+1

and hence the kernel vertex algebra is an extension of ŝo(2n + 1)κ+1 ×
ôsp(1|n)κ−1+1.

With a bit more care, and perhaps extra factors of so(2n+1) and sp(2n)

WZW models at level 1, we should be able to manufacture kernels adapted

to specific pairs of gauge groups and discrete θ-angles. Similar considerations

should apply to other groups of lacing number m = 2.

For lacing number m = 3, we need to work harder.

If we attempt a decomposition D0,1 → N2,−1 → N3,−1, the N2,−1 →
N3,−1 junction is easy: it is dual to N1,−1 → N3,−2, which is dual to N1,0 →
N3,1, dual to N0,1 → N1,1 and hence finally to N0,1 → N1,0.

On the other hand, D0,1 → N2,−1 requires a further decomposition, such

as D0,1 → N1,−1 → N2,−1.

Still, N1,−1 → N2,−1 is not an elementary junction. We can attempt

a further decomposition N1,−1 → N3,−2 → N2,−1. The first half is dual to

N1,0 → N3,1 and thus to N0,1 → N1,−1, which is elementary. The second half

is dual to N3,1 → N2,1 and then to N1,−1 → N3,−2, which we just analyzed.

Thus a potential kernel vertex algebra for lacing number m = 3 will be a

quadruple extension of the rough form ĝκ+1×Wκ′(g)×Wκ′′(g)×Wκ′′′(g)×
ĝ(3κ)−1+1.

We leave to future work checks of positivity of conformal dimensions for

this extension.
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11. Some future directions

This work leaves open a variety of questions in gauge theory, vertex alge-
bras and the Geometric Langlands Program. Here we list some of the most
important ones.

• Rational κ: What are the junctions associated to the extra boundary
conditions which only exist at rational values of κ?
Do sheaves of coinvariants of the corresponding junction vertex alge-
bras give rise to dual pairs of objects?
What is the best way to describe the limit of the kernel vertex algebras
constructed in this paper when κ tends to a rational value?
What are the limits of the corresponding qGL duality functors?
Do issues of temperedness affect equally all possible kernels obtained
from the junctions, or different kernels have a different domain of ef-
fectiveness?

• Same questions at the critical level. Furthermore, the theory of coin-
variants twisted by flat bundles needs to be developed mathematically.

• What is the full spin-refined duality groupoid?
• Can auxiliary rational vertex algebras be found, which can combine
with W- or Kac–Moody algebras to give elementary junctions for all
possible global forms of the gauge group?

• Is there some simple criterion which guarantees or forbids the existence
of junction vertex algebras with positive conformal dimensions?
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