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From Möbius inversion to renormalisation

Joachim Kock

This paper traces a straight line from classical Möbius inversion
to Hopf-algebraic perturbative renormalisation. This line, which
is logical but not entirely historical, consists of just a few main
abstraction steps, and some intermediate steps dwelled upon for
mathematical pleasure. The paper is largely expository, but con-
tains many new perspectives on well-known results. For example,
the equivalence between the Bogoliubov recursion and the Atkin-
son formula is exhibited as a direct generalisation of the equivalence
between the Weisner–Rota recursion and the Hall–Leroux formula
for Möbius inversion.
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Keywords and phrases: Möbius inversion, perturbative renormalisa-
tion, bialgebras, coalgebras.

Introduction

The goal of the present contribution is to explain the connection between
Möbius inversion and renormalisation theory, through a sequence of straight-
forward generalisations. The flavour of renormalisation concerned is the
BPHZ renormalisation of perturbative quantum field theories, introduced
by Bogoliubov, Parasiuk, Hepp and Zimmermann (1955–1969), and more
specifically its Hopf-algebraic interpretation discovered by Kreimer [32] in
1998. Subsequent work of Connes, Kreimer [9, 10], Ebrahimi-Fard, Guo,
Manchon and others [18, 17], distilled the BPHZ construction into a piece
of abstract algebra, involving characters of a Hopf algebra with values in a
Rota-Baxter algebra. It has important connections with disparate subjects
in pure mathematics, such as multiple zeta values, numerical integration,
and stochastic analysis. The construction itself can be viewed from vari-
ous perspectives, such as that of Birkhoff decomposition and the Riemann–
Hilbert problem [9, 10], the Baker–Campbell–Hausdorff formula and Lie
theory [18], or the abstract viewpoint of filtered non-commutative Rota–
Baxter algebras [17]. There are excellent surveys of these developments,
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such as Ebrahimi-Fard–Kreimer [19] (focusing on physical motivation), Man-
chon [36] (generous with mathematical preliminaries on coalgebras and Hopf
algebras), and the longer survey of Figueroa and Gracia-Bond́ıa [22] (partic-
ularly relevant in the present context for exploiting also the combinatorial
viewpoint of incidence algebras).

The present expository paper derives the construction as a direct gen-
eralisation of classical Möbius inversion: after the abstraction steps from
the classical Möbius function via incidence algebras to abstract Möbius in-
version, the remaining step is just to add a Rota–Baxter operator to the
formulae. This is very close in spirit to Kreimer’s original contribution [32],
where the counter-term was staged as a twisted antipode, but the explicit
interpretation in terms of Möbius inversion seems not to have been made
before, and in any case deserves to be more widely known. The perspective
is attractive for its simplicity, and leads to clean and elementary proofs (and
slightly more general results—bialgebras rather than Hopf algebras). For
ampler perspectives and deeper connections to various areas of mathemat-
ics, we refer to the bibliography and the pointers given along the way.

Before starting from scratch with Möbius inversion in classical number
theory (§2), it is appropriate to begin in §1 by indicating more precisely
where we are going, with a brief introduction to BPHZ renormalisation
from an abstract viewpoint. After Möbius inversion for arithmetic functions
in §2, we move to Möbius inversion in incidence algebras in §3; we deal with
both posets and Möbius categories. In §4 we establish the abstract Möbius
inversion principle, for general filtered coalgebras with the property that the
zeroth piece is spanned by group-like elements. This is inspired by recent
work on Möbius inversion in homotopical contexts. Finally in §6 we add a
Rota–Baxter operator to the abstract Möbius inversion formulae. This yields
directly the Bogoliubov recursion of renormalisation, and simultaneously the
Atkinson formula.

1. Hopf-algebraic BPHZ renormalisation

Perturbative quantum field theory is concerned with expanding the scatter-
ing matrix into a sum over graphs. The Feynman rules assign to each graph
of the theory an amplitude. Unfortunately, for many graphs with loops (non-
zero first Betti number), the corresponding amplitude is given by a divergent
integral. Renormalisation is the task of extracting meaningful finite values
from these infinities.

In the (modern account of the) BPHZ approach, the first step consists
in introducing a formal parameter, the regularisation parameter ε, in such
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a way that the amplitudes no longer take values directly in the complex

numbers but rather in the ring of Laurent series C[ε−1, ε]]. The amplitudes

are now well defined: the divergences are expressed by series with a pole

at ε = 0. The next step is to subtract counter-terms for ‘divergent’ graphs.

The minimal subtraction scheme aims simply to subtract the pole part, but

the naive attempt—just subtracting the pole part for a given graph—turns

out to be too brutal, destroying important physical features of the Feynman

rules. The problem can be localised to the fact that a divergent graph may

itself have divergent subgraphs, and these sub-divergences should be sorted

out first, before attempting to determine the counter-term for the graph as

a whole. In the end, the correct procedure, found by Bogoliubov and Para-

siuk [5] and fine-tuned and proved valid by Hepp [29], is a rather intricate

recursive over-counting/under-counting procedure, of a flavour not unfamil-

iar to combinatorists. The development culminated with Zimmermann [48]

finding a closed formula for the counter-term, the famous forest formula,

instead of a recursion.1 One crucial property is that the renormalised Feyn-

man rule remains a character, just like the unrenormalised Feynman rule,

expressing the fundamental principle that the amplitude of two independent

processes is the product of their amplitudes. The renormalised Feynman rule

assigns to every graph a power series without pole part, and the desired fi-

nite amplitude can finally be obtained by setting ε to 0. This procedure,

called BPHZ renormalisation, is described in many textbooks on quantum

field theory and renormalisation (e.g. [8], [40]).

Kreimer’s seminal discovery [32] is that the combinatorics in this pro-

cedure is encoded in a Hopf algebra of graphs H. As a vector space, H is

spanned by all 1PI graphs of the given quantum field theory. The multipli-

cation in H is given by taking disjoint union of graphs. The comultiplication

Δ : H → H ⊗H is given on connected 1PI graphs Γ by

Δ(Γ) =
∑
γ⊂Γ

γ ⊗ Γ/γ,

where the sum is over all (superficially divergent) 1PI subgraphs γ (possibly

not connected), and the quotient graph Γ/γ is obtained by contracting each

connected component of γ to a vertex (the residue of γ). Altogether, H is

a Hopf algebra, graded by loop number. The regularised Feynman rules are

1Important as it is, the forest formula is not dealt with in the present exposition,
as it is not clear how it relates to general Möbius inversion; but see [22] and [37]
for important insight in this direction for certain special classes of Hopf algebras.
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characters φ : H → A with values in A = C[ε−1, ε]]. The BPHZ counter-term
φ− is given by the recursive formula (for deg Γ > 0)

φ−(Γ) = −R
[
φ(Γ) +

∑
γ⊂Γ

γ �=∅,γ �=Γ

φ−(γ)φ(Γ/γ)
]
,

or more conceptually:

φ− = e − R
[
φ− ∗ (φ−e)

]
,

where ∗ is convolution of linear maps H → A (see 4.2 below for the def-
inition), where e is the neutral element for convolution, and R : A → A
is the idempotent linear operator that to a Laurent series assigns its pole
part. The recursion is well founded, thanks to the grading of H: the con-
volution refers to taking out subgraphs via Δ, and the arguments to φ− in
the convolution are graphs with strictly fewer loops than the input to φ− on
the left-hand side of the equation, since (φ− e) vanishes on graphs without
loops.

The renormalised Feynman rule is finally given in terms of convolution2

as

φ+ := φ− ∗ φ.
It takes values in KerR = C[[ε]], so that it makes sense finally to set ε = 0
to obtain a finite amplitude for each graph. The crucial fact that φ− and φ+

are again characters turns out to be a consequence of a special property of
the operator R, namely the equation

(1) R(x · y) +R(x)·R(y) = R
(
R(x)·y + x·R(y)

)
,

which is to say that R is a Rota–Baxter operator.3

2That φ+ can be written as a convolution was realised by Connes and
Kreimer [10] (thus exhibiting the renormalisation procedure as an instance of the
general mathematical construction called Birkhoff decomposition). Previously φ+

was computed via an auxiliary construction known as Bogoliubov’s preparation
map.

3Kreimer himself did isolate conditions on R ensuring that φ− and φ+ are again
characters, but it was Brouder who observed that these conditions can be formu-
lated as a single “multiplicativity constraint”, namely (1) (see [33], footnote 4);
Connes and Kreimer [10] referred to this multiplicatitivity constraint. Ebrahimi-
Fard then pointed out that this constraint is the Rota–Baxter equation (the first
published mention being [15]), and started to import results and methods from this
mathematical theory.
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The abstraction of these discoveries is the purely algebraic result that

for any graded Hopf algebra H and for any commutative algebra A with a

Rota–Baxter operator R like this, the same procedure works to transform a

character φ : H → A into another character φ− such that the convolution

φ+ := φ− ∗φ takes values in the kernel of R (the abstraction of the property

of being pole free). This is the result we will arrive at in Section 6, from the

standpoint of Möbius inversion.

It must be stressed that this neat little piece of algebra is only a minor as-

pect of perturbative renormalisation, as it does not account for the analytic

(or number-theoretic) aspects of Feynman amplitudes, e.g. the computa-

tion of the individual integrals. The merit of the Hopf-algebraic approach is

rather to separate out the combinatorics from the analysis, and explain it in

a conceptual way. It is also worth remembering that assigning a renormalised

amplitude to every graph is not the end of the story, because there are in-

finitely many graphs (their number even grows factorially in the number of

loops), and in general the sum of all these finite amplitudes will still be a

divergent series in the coupling constant. New techniques are being applied

to tackle this problem, such as resurgence theory (see for example [13]). The

present contribution deliberately ignores all these analytic aspects.

2. The classical Möbius function

2.1. Arithmetic functions and Dirichlet series. Write

N
× = {1, 2, 3, . . .}

for the set of positive natural numbers. An arithmetic function is just a

function

f : N× → C

(meant to encode some arithmetic feature of each number n). To each arith-

metic function f one associates a Dirichlet series

F (s) =
∑
n≥1

f(n)

ns
,

thought of as a function defined on some open set of the complex plane. The

study of arithmetic functions in terms of their associated Dirichlet series is

a central topic in analytic number theory [1].



176 Joachim Kock

2.2. The zeta function. A fundamental example is the zeta function

ζ : N× −→ C

n �−→ 1.

The associated Dirichlet series is the Riemann zeta function

ζ(s) =
∑
n≥1

1

ns
.

2.3. Classical Möbius inversion.4 The classical Möbius inversion princi-
ple for arithmetic functions says that

if f(n) =
∑
d|n

g(d)

then g(n) =
∑
d|n

f(d)μ(n/d),

where μ is the Möbius function5

(2) μ(n) =

{
0 if n contains a square factor

(−1)r if n is the product of r distinct primes.

2.4. Example: Euler’s totient function. Euler’s totient function is by
definition

ϕ(n) := #{1 ≤ k ≤ n | (k, n) = 1}.

It is not difficult to see that we have the relation

n =
∑
d|n

ϕ(d),

so by Möbius inversion we get a formula for ϕ:

ϕ(n) =
∑
d|n

d μ(n/d).

4This is due to Möbius [39], see Hardy and Wright [28], Thm. 266.
5According to Hardy and Wright [28] (notes to Ch. XVI), the Möbius function

occurs implicitly in the work of Euler as early as 1748.
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2.5. Dirichlet convolution. A conceptual account of the Möbius inversion
principle is given in terms of Dirichlet convolution for arithmetic functions:

(f ∗ g)(n) :=
∑
i·j=n

f(i)g(j),

which corresponds precisely to (pointwise) product of Dirichlet series. The
neutral element for this convolution product is the arithmetic function

ε(n) :=

{
1 if n = 1

0 else.

Now the Möbius inversion principle reads more conceptually

f = g ∗ ζ ⇒ g = f ∗ μ,

and the content is this:

Proposition 2.6. The Möbius function is the convolution inverse of the
zeta function.

2.7. Example (continued). Let ι denote the arithmetic function ι(n) = n.
Its associated Dirichlet series is∑

n≥1

n

ns
= ζ(s− 1).

Restating the Möbius inversion formula for Euler’s totient ϕ in terms of
Dirichlet convolution yields

ι = ϕ ∗ ζ ⇒ ϕ = ι ∗ μ,

so that the Dirichlet series associated to ϕ is

ζ(s− 1)

ζ(s)
.

3. Incidence algebras

In the 1930s, Möbius inversion was applied in group theory by Weisner [47]
and independently by Hall [27].6 Both were motivated by the lattice of sub-

6Hall defined and computed Eulerian functions of groups using Möbius inversion
in subgroup lattices. For cyclic groups, this recovers Euler’s totient function.
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groups of a finite group, but found it worth developing the theory more

generally; Weisner for complete lattices, Hall for finite posets.

In the 1960s, Rota [41] systematised the theory extensively, in the set-

ting of locally finite posets, and made Möbius inversion a central tool in

enumerative combinatorics. The setting of posets is now widely consid-

ered the natural context for Möbius inversion (see for example Stanley’s

book [45]). Cartier and Foata [7] developed the theory for monoids with the

finite-decomposition property, and Leroux [35] unified these contexts in the

general notion of Möbius category, reviewed below. More recently, Lawvere

and Menni [34] and Gálvez, Kock, and Tonks [24, 25, 26] took Leroux’s

ideas further into category theory and homotopy theory.7 These abstract

developments were crucial for distilling out the perspectives of the present

contribution.

We briefly recall the notions of incidence algebras and Möbius inversion

for posets and Möbius categories. All proofs will be deferred to the abstract

setting of Section 4. Throughout, k denotes a ground field, ‘linear’ means

k-linear, and ⊗ is short for ⊗k.

3.1. The incidence (co)algebra of a locally finite poset. A poset (P,≤)

is called locally finite if all its intervals [x, y] := {z ∈ P : x ≤ z ≤ y} are

finite. The free vector space CP on the set of intervals becomes a coalgebra

7Lawvere and Menni [34] gave an ‘objective’ version of Leroux’s theory: this

means working with the combinatorial objects themselves instead of the vector

spaces they span. The classical theory is obtained by taking cardinality. One ad-

vantage of this approach—beyond making all proofs natively bijective—is that one

can eliminate finiteness conditions, if just one refrains from taking cardinality: the

constructions work the same with infinite sets, and at this level, Möbius inver-

sion works for any category, not just Möbius categories. More recently, Gálvez,

Kock, and Tonks [24, 25, 26] discovered that simplicial objects more general than

categories admit incidence algebras and Möbius inversion, and passed to the ho-

motopical context of simplicial ∞-groupoids. Where categories express the general

ability to compose, their notion of decomposition space expresses the general ability

to decompose, in a appropriate manner so as to induce a coassociative incidence

coalgebra, and an attendant Möbius inversion principle. There are plenty of exam-

ples in combinatorics of coalgebras and bialgebras which are the incidence coalgebra

of a decomposition space but not of a category or a poset. An example relevant to

the present context is the Connes–Kreimer Hopf algebra of rooted trees [9], which is

the incidence bialgebra of a decomposition space but not directly of a category [24,

Ex. 0.1]. (Various quotient constructions are possible, though, such as those given

by Dür [14] and Kaufmann–Ward [30].)
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(CP ,Δ, ε) with comultiplication Δ : CP → CP ⊗ CP defined by

Δ([x, y]) :=
∑

z∈[x,y]
[x, z]⊗ [z, y]

and counit ε : CP → k defined as

ε([x, y]) :=

{
1 if x = y

0 else.

The incidence algebra of P is the convolution algebra of CP (with values

in the ground field); the multiplication is thus given by

(α ∗ β)([x, y]) :=
∑

z∈[x,y]
α([x, z])β([z, y]),

and the unit is ε.

3.2. The zeta function. The zeta function is defined as

ζ : CP −→ k

[x, y] �−→ 1.

(Note that this function is constant on the set of intervals, but of course not

constant on the vector space spanned by the intervals.)

Theorem 3.3 (Rota [41]8). For any locally finite poset, the zeta function

is convolution invertible; its inverse, called the Möbius function μ := ζ−1,

is given by the recursive formula

μ([x, y]) =

⎧⎨
⎩
1 if x = y

−
∑

μ([x, z]) if x < y.

z∈[x,y]
z �=y

This is a recursive definition by length of intervals, well founded because

of the condition z 
= y.

8The result was essentially proved already by Weisner [47] (but only for complete
lattices) and by Hall [27] (but only for finite posets).
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Corollary 3.4. We have

f = g ∗ ζ ⇒ g = f ∗ μ.

In other words,

if f([x, y]) =
∑

z∈[x,y]
g([x, z])

then g([x, y]) =
∑

z∈[x,y]
f([x, z])μ([z, y]).

In fact, Rota proved more:

Theorem 3.5 (Rota [41]). φ : CP → k is convolution invertible provided
φ([x, x]) = 1 for all x ∈ P ; the convolution inverse ψ is determined by the
recursive formula

ψ([x, y]) =

⎧⎨
⎩
1 if x = y

−
∑

ψ([x, z])φ([z, y]) if x < y.

z∈[x,y]
z �=y

The recursion can be written more compactly as

ψ = ε − ψ ∗ (φ−ε)

Indeed, subtracting ε from φ inside the sum expresses the fact that we don’t
want the last summand (z = y), and adding the term ε outside the sum
expresses the first case (x = y).

3.6. Möbius categories (Leroux). Leroux [35] introduced the common
generalisation of locally finite posets and Cartier–Foata monoids: Möbius
categories. Recall that posets and monoids are special cases of categories: a
poset can be considered as a category whose objects are the elements of the
poset, and in which there is an arrow from x to y if and only if x ≤ y in the
poset. This means that arrows now play the role of intervals, and splitting
intervals becomes factorisation of arrows. A monoid can be considered as a
category with only one object, the arrows being then the monoid elements,
composed by the monoid multiplication. The finiteness conditions for posets
and monoids now generalise as follows. A category is Möbius if every arrow
admits only finitely many non-trivial decompositions (of any length). For a
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Möbius category C, the set of arrows C1 forms a linear basis of its incidence
coalgebra, where the comultiplication of an arrow is the set of all its (length-
2) factorisations

Δ(f) :=
∑

b◦a=f

a⊗ b,

immediately generalising the comultiplication of intervals of a poset. The
counit ε : C1 → k sends identity arrows to 1 and all other arrows to 0 (again
exactly as the case of intervals in a poset). The incidence algebra is the
convolution algebra of this coalgebra, i.e. the algebra of maps C1 → k with
multiplication given by convolution: (α ∗ β)(f) :=

∑
b◦a=f α(a)β(b). Note

that ε is the neutral element for convolution.
An example of a Möbius category which is neither a poset nor a monoid

is given by the free category on a quiver. Its incidence algebra is then the
path algebra of the quiver [12].

The zeta function is the function C1 → k sending every arrow to 1.

Theorem 3.7 (Content–Lemay–Leroux [11]). For C a Möbius category, the
zeta function is convolution invertible with inverse

μ = Φeven − Φodd.

Here Φeven(f) is the number of even-length chains of arrows composing to f
(not allowing identity arrows), and similarly for Φodd.

This alternating-sum formula goes back to Hall [27], and was also ex-
ploited by Cartier and Foata [7].9 We shall give a slick proof of it in the
abstract setting of the next section, where we shall also relate it to Rota’s
recursive formula

(3) μ = ε− μ ∗ (ζ − ε),

valid in any Möbius category.

3.8. Example. In the incidence algebra of the monoid (N,+, 0), the Möbius
function is

(4) μ(n) =

⎧⎪⎨
⎪⎩
1 if n = 0

−1 if n = 1

0 if n > 1.

9It is important also because of its relation to Euler characteristic. For example,
for a finite poset P with a minimal and a maximal element added, the alternating-
sum formula for the Möbius function coincides with the usual formula for Euler
characteristic of the order complex of P (see Stanley [45]).
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This is easily proved by checking that this function satisfies the recursion of
the general formula (3).

Hence the inversion principle says in this case

if f(n) =
∑
k≤n

g(k)

then g(n) = f(n)− f(n− 1).

In other words, convolution with the Möbius function is Newton’s (back-
ward) finite-difference operator. So convolution with μ acts as ‘differenti-
ation’ while convolution with ζ acts as ‘integration’. If we interpret the
sequences a : N → k as formal power series, then the zeta function is the
geometric series, while the Möbius function is 1− x, as follows from (4).

3.9. Example. For the monoid N×, the incidence algebra is the classical
algebra of arithmetic functions under Dirichlet convolution, recovering the
classical Möbius inversion principle as in Section 2. Again, the closed for-
mula (2) for the Möbius function can be established easily by simply showing
that it satisfies the general recursive formula. A better proof explores the
fact that the incidence algebra of a product (of Möbius categories) is the
tensor product of the incidence algebras, and that the Möbius function of
a product is the tensor product of Möbius functions. Now it follows from
unique factorisation of primes that N× is the (weak10) product

N
× �

∏
p

(N,+)

identifying a number n =
∏

p p
rp ∈ N× with the infinite vector (r2, r3,

r5, . . .) ∈
∏

pN. The classical formula (2) for the Möbius function now follows

as the product of infinitely many copies of the Möbius function in (4).11

3.10. Example: powersets—the inclusion-exclusion principle. Let
X be a fixed finite set, and consider the powerset of X, i.e. the set P(X) of
all subsets of X. It is a poset under the inclusion relation ⊂. An interval in
P(X) is given by a pair of nested subsets of X, say T ⊂ S. If the cardinality

10Weak means that only finitely many factors are allowed to be non-trivial.
11This fact also gives a nice proof of the Euler product expansion (see [28,

Thm. 280])

ζ(s) =
∏

p prime

1

1− 1
ps

from 1737 (almost a hundred years earlier than Dirichlet and Möbius).
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of X is n, then clearly P(X) is isomorphic as a poset to 2n, where 2 denotes
the 2-element poset [0, 1] ⊂ (N,≤), so it follows from (4) and the product
rule that the Möbius function on P(X) is given by

μ(T ⊂ S) = (−1)|S−T |.

This is the inclusion-exclusion principle. As an example of this, consider
the problem of counting derangements, i.e. permutations without fixpoints.
Since every permutation of a set S determines a subset T of points which
are actually moved, we can write

perm(S) =
∑
T⊂S

der(T )

(with the evident notation). Hence by Möbius inversion, we find the formula
for derangements

der(S) =
∑
T⊂S

(−1)|S−T | perm(T ),

which is a typical inclusion-exclusion formula.

4. Abstract Möbius inversion

For background on coalgebras, bialgebras and Hopf algebras, a standard ref-
erence is Sweedler [46]. The little background needed here is amply covered
also in [36].

4.1. Coalgebras. Let (C,Δ, ε) be a filtered coalgebra. Recall that a filtra-
tion of a coalgebra is an increasing sequence of sub-coalgebras

C0 ⊂ C1 ⊂ C2 ⊂ · · · = C

such that

Δ(Cn) ⊂
∑

p+q=n

Cp ⊗ Cq,

and recall that an element x ∈ C is group-like when Δ(x) = x ⊗ x; this
implies ε(x) = 1. It follows that group-like elements are always of filtration
degree zero. We make the following standing assumption (see [31]):

(5) We assume that C0 is spanned by group-like elements.
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4.2. Convolution algebras. The various convolution products seen so far
are all instances of the following general notion. If (C,Δ, ε) is a coalgebra
and (A,m, u) is an algebra, then the space of linear maps Lin(C,A) becomes
an algebra under the convolution product: for α, β ∈ Lin(C,A), define α ∗ β
to be the composite

C
Δ−→ C ⊗ C

α⊗β−→ A⊗A
m−→ A,

that is, in Sweedler notation [46]:

(α ∗ β)(x) =
∑
(x)

α(x(1))β(x(2)).

The unit for the convolution product is

e := u ◦ ε.

Theorem 4.3.12 If φ ∈ Lin(C,A) sends all group-like elements to 1, then
φ is convolution invertible. The inverse ψ is given by the recursive formula

(6) ψ = e − ψ ∗ (φ−e).

We shall give a slick proof consisting mostly of definitions.13

4.4. Main Construction. Put ψ0 := e and

ψn+1 := ψn ∗ (φ−e).

Put also

ψeven :=
∑

n even

ψn and ψodd :=
∑
n odd

ψn.

Finally put

ψ := ψeven − ψodd

12I do not know of any reference for this result. It may be new, but is in any case
a straightforward abstraction of the theorems of Rota and Content–Lemay–Leroux
already quoted, once the degree-zero condition (5) has been identified [31].

13The proof ingredients go a long way back. The even-odd splitting was first
used by Hall [27] for complete lattices, then by Cartier–Foata [7] for monoids, and
by Content–Lemay–Leroux [11] for Möbius categories, and further exploited in [34]
and [25]. The recursive formula goes back to Weisner [47]. The combined proof is
inspired by [6].
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In other words, ψ =
∑

n≥0(−1)n(φ−e)∗n. This is an infinite sum of functions,
but it is nevertheless well defined, because for every input, only finitely many
terms in the sum are non-zero. Indeed, given an element x ∈ C of filtration
degree r, then for n > r the n-fold convolution power of (φ−e) involves the
n-fold comultiplication of x, and since n > r at least one of these factors
must be of degree 0, and hence is killed by (φ−e), thanks to the standing
assumption (5).

Now from ψn+1 = ψn ∗ (φ−e) we get

ψodd = ψeven ∗ (φ−e) and ψeven = e+ ψodd ∗ (φ−e),

and subtracting these two equations we arrive finally at the formula

ψ = e − ψ ∗ (φ−e)

of the theorem.

Proof of Theorem 4.3. First of all, the recursive formula is meaningful: since
φ sends group-like elements to 1, it agrees with e in filtration degree 0 (thanks
to the standing assumption (5)). Therefore, in the convolution product on
the right-hand side, ψ is only evaluated on elements of filtration degree
strictly less than the element given on the left-hand side. Rearranging terms
gives ψ ∗ φ = e, showing that ψ is an inverse on the left.

All the arguments can be repeated with ψn+1 = (φ−e) ∗ ψn (instead of
ψn+1 = ψn ∗ (φ−e)), arriving at the right-sided formula ψ = e − (φ−e)∗ψ,
and rearrangement of the terms now shows that ψ is also an inverse on the
right.

5. Möbius inversion in bialgebras

Suppose now that B is a bialgebra, still assumed to be filtered, and still
assumed to have B0 spanned by group-like elements. Recall that a bialgebra
is simultaneously a coalgebra and an algebra, enjoying in particular the
compatibility

(7) Δ(x · y) = Δ(x) ·Δ(y) ∀x, y.

For the target algebra A, we must now assume it is commutative. This
is used in the proof of Lemma 5.2 below, and the rest of the paper depends
on that lemma.
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5.1. Multiplicativity. Call a linear map φ : B → A multiplicative14 if it

preserves multiplication:

φ(x · y) = φ(x) · φ(y) ∀x, y.

Lemma 5.2. The convolution of two multiplicative functions is again a mul-

tiplicative function. In particular, multiplicative functions form a monoid.

Proof. This follows immediately from the bialgebra axiom (7): by expansion

in Sweedler notation we have on one hand

(α ∗ β)(xy) (7)
=

∑
(x),(y)

α(x(1)y(1))β(x(2)y(2))

=
∑

(x),(y)

α(x(1))α(y(1))β(x(2))β(y(2)),

(assuming that α and β are multiplicative), and on the other hand

(α ∗ β)(x)(α ∗ β)(y) =
∑

(x),(y)

α(x(1))β(x(2))α(y(1))β(y(2)).

Since A is assumed commutative, these two expressions are equal.

Note that multiplicative functions do not form a linear subspace, as the

sum of two multiplicative functions is rarely multiplicative.

Lemma 5.3. As before, assume φ : B → A sends group-like elements to 1

and is multiplicative. Then for any α : B → A multiplicative we have

(α ∗ φ′)(xy) = (α ∗ φ′)(x)α(y) + α(x)(α ∗ φ′)(y) + (α ∗ φ′)(x)(α ∗ φ′)(y),

where for short we use the temporary notation φ′ := (φ− e).

Proof. This is simply linearity: substitute φ − e for φ′, expand both sides

of the equation, and use multiplicativity of α, φ, and α ∗ φ (thanks to

Lemma 5.2).

14Note: in number theory, for arithmetic functions α : N× → C, the word ‘mul-
tiplicative’ is used for something else, namely the condition α(mn) = α(m)α(n) for
all m and n relatively prime. The notions are not directly related, because N

× is
not a bialgebra for the usual multiplication: for example, Δ(2 · 2) has three terms
whereas Δ(2)Δ(2) has four terms.
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Proposition 5.4. Suppose φ sends group-like elements to 1, and let ψ de-

note its convolution inverse. If φ is multiplicative, then so is ψ.

Proof. The proof goes by induction on the degree of xy. If both x and y are

group-like (i.e. degree 0), it is clear that ψ(xy) = 1 = ψ(x)ψ(y). Now for

the induction step. We use the shorthand notation φ′ := φ− e. First use the

recursive formula (6):

ψ(xy) = −(ψ ∗ φ′)(xy).

By induction, the ψ inside the convolution is multiplicative, because its

arguments are all of lower degree (the only case of equal degree in the left-

hand tensor factor corresponds to degree 0 in the right-hand tensor factor,

which is killed by φ′ = φ−e), so we can apply Lemma 5.3:

= −(ψ ∗ φ′)(x)ψ(y)− ψ(x)(ψ ∗ φ′)(y)− (ψ ∗ φ′)(x)(ψ ∗ φ′)(y),

and then the recursive equation (6) backwards (four times):

= ψ(x)ψ(y) + ψ(x)ψ(y)− ψ(x)ψ(y) = ψ(x)ψ(y).

5.5. Antipodes for bialgebras. Recall that a filtered bialgebra B is con-

nected if B0 is spanned by the unit, and that any connected bialgebras is

Hopf [46]. We shall call B not-quite-connected [31] in the situation where

B0 is spanned by group-like elements.15 A notion of antipode for not-quite-

connected bialgebras was introduced recently by Carlier and Kock [6]. It

specialises to the usual antipode in the case of a connected bialgebra, and

in any case it still serves to compute the Möbius function as μ = ζ ◦S as for

Hopf algebras.

In fact, the antipode S itself is an example of abstract Möbius inversion,

as we now proceed to explain. The idea is simply that one can use the

bialgebra B itself as algebra of values, and invoke abstract Möbius inversion

in Lin(B,B). The identity B → B does not in general admit a convolution

inverse, because it does not send all group-like elements to 1. But if we just

fix that artificially then we can give it as input to the general construction,

and the outcome will be the antipode S in the sense of [6].

15Related notions of almost connected appear in the literature for Feynman cat-
egories [30] and for cooperads [23], in both cases with constructions of bialgebras
and Hopf algebras as motivation.
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To this end, we need to choose B+, a linear complement to B0 ⊂ B, and
we need to choose it inside Ker ε. (Note that if the filtration is actually a
grading, then B+ is canonical, namely the span of all homogeneous elements
of positive degree. In practice, B is often of combinatorial nature and a basis
is already given.) Define the linear operator T : B → B by

T (x) =

{
1 if x group-like

x if x ∈ B+.

Now apply the Main Construction 4.4, writing S instead of ψ:

S0 := e, Sn+1 := Sn ∗ (T − e), S := Seven − Sodd,

arriving at the recursion

S = e − S ∗ (T−e).

By the general Möbius inversion Theorem 4.3, S is the convolution inverse to
T . (Note that so far the arguments do not involve multiplicativity—neither
T nor S are multiplicative for general not-quite-connected bialgebras.) But
the neat feature of this S is that it can invert ‘anything multiplicative’, by
precomposition. Precisely:

Proposition 5.6. Suppose φ : B → A takes group-like elements to 1, and
let ψ denote its convolution inverse. If φ is multiplicative, then

ψ = φ ◦ S.

Proof. We calculate

φ ∗A (φ ◦S) (1)
= (φ ◦ T ) ∗A (φ ◦S) (2)

= φ ◦ (T ∗B S)
(3)
= φ ◦ (ηB ◦ ε) (4)

= ηA ◦ ε = e.

Here (1) holds because φ takes all group-like elements to 1, and T only
replaces general group-like elements by the particular group-like element 1.
Step (2) follows immediately from the assumption that φ is multiplicative.
Step (3) is the fact that S is convolution inverse to T , and step (4) is the
fact that φ is unital.

It is obviously an important property that for multiplicative functions,
Möbius inversion can be given uniformly by precomposition with the an-
tipode. For this reason, algebraic combinatorics gradually shifted emphasis
from Möbius inversion to antipodes [44]—when they are available. However,
we shall see that it is Möbius inversion that generalises to renormalisation,
not the antipode.
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6. Direct-sum decomposition and renormalisation

Coming back to the case of a coalgebra C, the Möbius inversion principle
says that for every linear function φ : C → A (taking value 1 on the group-
like elements) there exists another linear function ψ : C → A that convolves
it to the neutral e.

Sometimes one is interested in less drastic transformations. For example,
given a linear subspace K ⊂ A, is it possible to convolve φ into K? This
question is precisely what BPHZ renormalisation answers: in this case, A is
an algebra of ‘amplitudes’, K is a subalgebra of ‘finite amplitudes’, and the
result of convolving a map φ : C → A into K is renormalisation. In detail
the set-up is the following.

6.1. A decomposition problem. Suppose we have a decomposition

A = A+ ⊕A−

of A into a direct sum of vector spaces. Let R : A → A denote projection16

onto A− relatively to this direct-sum decomposition, so that A+ = KerR.
Given φ : C → A (sending group-like elements to 1) find another ψ :

C → A such that ψ ∗ φ takes values in A+, or at least maps Ker ε to A+. In
other words, find ψ such that R(ψ ∗ φ)(x) = 0, for all x ∈ Ker ε.

This problem can be approached precisely as in the Möbius inversion
case (which is the case where A− = A and R is the identity map). The only
change required is to define a modified convolution product ∗R on Lin(C,A),
defined as17

α ∗R β := R(α ∗ β).
Note that ∗R is generally neither associative nor unital, but none of these
two properties are needed in the following main construction.

6.2. Main Construction. Put ψ0 := e and

ψn+1 := ψn ∗R (φ−e).

(Note that since ∗R is not associative, the parentheses cannot be omitted
when expanding. They must be pushed left, as for example in ψ2 =

(
ψ0 ∗R

16In 6.5 below we shall impose the Rota–Baxter axiom.
17This modified convolution product should not be confused with the so-called

double product in the non-commutative algebra Lin(C,A), defined as α ∗R β :=
R(α) ∗ β + α ∗ R(β) + α ∗ β. The double product (in the case where R is Rota–
Baxter) plays a role in Lie-theoretic aspects of renormalisation [18].
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(φ−e)
)
∗R (φ−e), which is different from ψ0 ∗R

(
(φ−e) ∗R (φ−e)

)
.) As in the

classical case, put

ψeven :=
∑

n even

ψn and ψodd :=
∑
n odd

ψn,

and finally

(8) ψ := ψeven − ψodd

Just as in the classical case, these are locally finite sums. This is a conse-

quence of the filtration of C—the argument is not affected by the fact that

the convolution has been modified.

Now from ψn+1 = ψn ∗R (φ−e) we get

ψodd = ψeven ∗R (φ−e) and ψeven = ψ0 + ψodd ∗R (φ−e),

and subtracting these two equations we arrive finally at the formula

(9) ψ = e − ψ ∗R (φ−e)

Lemma 6.3. ψ sends group-like elements to 1.

Proof. This is clear from (9) since φ− e kills group-like elements.

Lemma 6.4. For all x ∈ Ker ε, we have

(i) ψ(x) ∈ ImR = A−
(ii) (ψ ∗ φ)(x) ∈ KerR = A+.

If we assume 1 ∈ A+, then (ii) holds for all x ∈ C.

Proof. Assuming x ∈ Ker ε, the first statement is obvious from (9). It fol-

lows that we have R(ψ(x)) = ψ(x). Rearranging the terms of the recursive

equation (9), we see that

ψ ∗R φ = e− ψ + ψ ∗R e = e− ψ +R(ψ).

For x ∈ Ker ε, the right-hand side is zero, whence the second statement. If

not x ∈ Ker ε then we can assume x group-like, and then (ψ ∗ φ)(x) = 1 by

Lemma 6.3. So then (ii) follows from the alternative assumption 1 ∈ A+.
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6.5. Bialgebra case, Rota–Baxter equation, and multiplicativity.
For a bialgebra instead of coalgebra, it is natural to demand that ψ be
multiplicative, provided φ is so. To achieve this, it turns out one should just
demand the direct-sum decomposition A = A+ ⊕ A− to be multiplicative,
in the sense that both A+ and A− are subalgebras (although not unital
subalgebras).

Lemma 6.6 (Atkinson [2]). To give such a subalgebra decomposition A =
A+ ⊕ A− is equivalent to giving an idempotent linear operator R : A → A
satisfying the Rota–Baxter equation:18

(10) R(x · y) +R(x)·R(y) = R
(
R(x)·y + x·R(y)

)
∀x, y.

Proof. This check is direct: given R, it follows directly from the Rota–Baxter
equation that both A+ := Ker(R) and A− := Im(R) are subalgebras (closed
under multiplication). Conversely, given a subalgebra decomposition A =
A+ ⊕A−, it is easy to check the Rota–Baxter equation.

Proposition 6.7. Suppose φ sends group-like elements to 1. If φ is multi-
plicative, then so is ψ.

Proof. We use the shorthand notation φ′ := φ−e. We calculate on one hand

ψ(xy) = −R
[
(ψ ∗ φ′)(xy)

]
= −R

[
(ψ ∗ φ′)(x)ψ(y) + ψ(x)(ψ ∗ φ′)(y) + (ψ ∗ φ′)(x)(ψ ∗ φ′)(y)

]
,

by induction on deg(xy), using Lemma 5.3, exactly as in the proof of Propo-
sition 5.4 in the classical Möbius case.

On the other hand, we compute (using (9) twice):

ψ(x)ψ(y) =
(
−R

[
(ψ ∗ φ′)(x)

]) (
−R

[
(ψ ∗ φ′)(y)

])
.

Now apply the Rota–Baxter identity (10):

=−R
[
(ψ∗φ′)(x)·(ψ∗φ′)(y)−R[(ψ∗φ′)(x)]·(ψ∗φ′)(y)−(ψ∗φ′)(x)·R[(ψ∗φ′)(y)]

]
18The equation is more generally written θR(xy)+R(x)R(y) = R

(
R(x)y+xR(y)

)
for a fixed scalar weight θ, in order to accommodate the θ = 0 case, which is the
equation satisfied by integration by parts. The equation relevant presently is thus
the weight-1 Rota–Baxter equation, according to the classical convention. More
recent sources (including [16], [20], [21]) tend to use the opposite convention, where
the θR(xy)-term is on the other side of the equation, and the weight relevant to
BPHZ recursion is thus instead called weight −1.
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and use (9) backwards twice:

= −R
[
(ψ ∗ φ′)(x)·(ψ ∗ φ′)(y) + ψ(x)·(ψ ∗ φ′)(y) + (ψ ∗ φ′)(x)·ψ(y)]

]
,

which agrees with the computation of ψ(xy).

6.8. Non-concluding historical remarks. Equation (9) is the abstract

BPHZ recursion of Section 1, often called the Bogoliubov recursion. The

Hall–Leroux style even-odd formula

ψ = ψeven − ψodd

of Equation (8) features less prominently in renormalisation theory, see [19]

and [20]. Expanded, it says

ψ =
∑
n≥0

(−1)nψn =
∑
n≥0

(−1)nR(R(R(· · · ∗ φ′) ∗ φ′) ∗ φ′),

where the nth term of the sum has n applications of R and n convolution

factors, and where as usual we use the shorthand φ′ := φ − e. This is the

solution of Atkinson [2] to the factorisation problem posed by R. Atkinson

actually uses the abstract form of the ‘Bogoliubov’ recursion in his Second

Proof [2], in a way similar to the proofs above. The equivalence between

Atkinson’s formula and the Bogoliubov recursion has been exploited further

in the context of renormalisation and Lie theory by Ebrahimi-Fard, Manchon

and Patras [21]. It is striking that it comes about from the two aspects of

general Möbius inversion.

* * *

Frederick Atkinson spent the first part of his mathematical life work-

ing in analytic number theory, contributing in particular to the theory of

arithmetic functions and Dirichlet series. His 1949 paper with Cherwell [3]

(cited in Hardy and Wright [28]), is about average values of arithmetic func-

tions related by Möbius inversion. In the 1950s his interests shifted to func-

tional analysis and operator theory, which was the context for his interest

in Baxter’s work, leading to his 1963 paper [2] already mentioned. For more

information about Atkinson’s life and work, see [38].

The notion of Rota–Baxter algebra had been introduced by Glen Bax-

ter [4] in fluctuation theory of sums of random variables in 1960. Rota,

Cartier, Foata, and others realised the usefulness of the notion (at the time
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called Baxter algebras19) also in algebra and combinatorics, notably in the
theory of symmetric functions, and Rota [42] used elementary category the-
ory to unify several results by establishing them in the free Rota–Baxter
algebra. For a glimpse into the extensive theory of Rota–Baxter algebras,
with emphasis on their use in renormalisation, see [16, 17, 18].

Gian-Carlo Rota was a main character both in the development of
Möbius inversion and in the development of Rota–Baxter algebras, in both
cases making these constructions into general tools. Naturally, he also com-
bined these two toolboxes: for example, in his 1969 proof of the so-called
Bohnenblust–Spitzer identity (see also [21]) in the free (and hence in every)
Rota–Baxter algebra [43], a key point is showing that the signs in that for-
mula arise from the Möbius function of the partition lattice [41]. Rota did not
have the idea of entangling the Rota–Baxter operator with the recursions of
Möbius inversion itself, though. From the ahistorical viewpoint of the present
contribution, this is what Bogoliubov [5] and Atkinson [2] achieved—without
having the general theory of Möbius inversion at their disposal.
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