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Brezin-Gross-Witten tau function
and isomonodromic deformations
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The Brezin-Gross-Witten tau function is a tau function of the KdV
hierarchy which arises in the weak coupling phase of the Brezin-
Gross-Witten model. It falls within the family of generalized Kont-
sevich matrix integrals, and its algebro-geometric interpretation
has been unveiled in recent works of Norbury. This tau function
admits a natural extension, called generalized Brezin-Gross-Witten
tau function. We prove that the latter is the isomonodromic tau
function of a 2 x 2 isomonodromic system and consequently present
a study of this tau function purely by means of this isomonodromic
interpretation. Within this approach we derive effective formulae
for the generating functions of the correlators in terms of simple
generating series, the Virasoro constraints, and discuss the relation
with the Painlevé XXXIV hierarchy.
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1. Introduction and results

The generalized Brezin-Gross-Witten (gBGW) tau function 7(t;v) is a for-
mal tau function of the Korteweg-de Vries (KdV) hierarchy; it depends on
infinitely many “times” t = (to,t1,t2,...) which are the usual flows of the
KdV hierarchy, while the parameter v € Z plays the role of an additional
discrete time of the hierarchy. With respect to the v-dependence it is a tau
function of the modified Kadomtsev-Petviashvili hierarchy [3]. The restric-
tion v = 0 corresponds to the what is usually called BGW tau function.
This tau function arises in the weak coupling phase of the BGW model
[22, 12] and was studied in [21, 31, 3, 15]; we review the definition of 7(t;v)
along with its relation with the BGW model in Sec. 1.1 below.
The first few terms of its formal expansion read
1 — 42 (1 —40%)(9 — 4?)

T(t;v) =1+ to +
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In [32] the author has found the algebro-geometric interpretation of
7(t;v = 0) (i.e. the BGW tau function proper) as a generating function
of intersection numbers on the moduli spaces M, ,, of stable curves of genus
g with n marked points, a result which parallels the Witten-Kontsevich
Theorem [34, 29]. More precisely, in [32] the author constructed certain co-
homology classes ©4, < H?2(2g9—2+n) (M—g,n% Q) for all g,n > 0 such that
2g —2+mn > 1. He also proved that
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(1.2)

where ¢; € H 2 (M—gm; Q) is, as customary, the first Chern class of the
cotangent line bundle at the jth marked point, j = 1, ..., n; the dimensional
constraint implies g = {1 + -+ + £, + 1 in (1.2).

Conjecturally [3, 4] the v-dependence of 7(t;v) should encode some de-
formation of the intersection numbers constructed in [32].

The main aim of this paper is to interpret the gBGW tau function as
an isomonodromic tau function, see details below. This isomonodromic ap-
proach allows us to explicitly compute all these intersection numbers by
means of the formulae of Thm. 1.1 below.

To state the theorem, let us introduce the following generating functions

1 "7 (t;v)
(1'3) S. (2’1,...,2 ;1/) =
: ' 61,.%% gy Oty - O,

t=0
for n > 1, and the matrix U(z;v)

kDU 3G2)0.G) G2),.GH),
| |

(1.4)  U(zv) = KN(82)F | —2(3-v),,,(3+v), , —2(3-v).,. (3+v),

0=

k>0

where hereafter (o), := a(a+1)--- (a4 ¢ — 1) denotes the rising factorial,

and conventionally we set (a)g := 1 and (a)_1 := —15; we also agree that
(—=1)!!:= 1. Then the main theorem can be stated as follows:
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Theorem 1.1. For all £ > 0 we have

or(t;v) (2¢— 1) (1 > (1 N >
= =" |-—v —+v
t—o 2P+ 1)1\ 2 e+1 \2 041

Oty
and for all n > 2 we have

(1.5)

_1yn—1 CUls ) Uls v
Sn(zl,...,zn;u):( 1) Z t (Z/{( L1s ) Z/{( Lns ))

(2o = 205)  (2y — 20,) (20, — 200)

LEG,

zZ1 + 22
1. — ——0p2-
( 6) (Zl _ 22)2 2

Thm. 1.1 is proven in Sec. 2.3. Note that U(z;v) is a power series in
z whose coefficients are polynomials in v. Moreover, U(z;v) satisfies the
following identity

(1.7) Uz —v) = [ : O] Utzv) [i (1)]

—v 1

from which we conclude, using (1.6), that the gBGW tau function is invariant
under v — —v, namely all the coefficients in the expansion of the gBGW
tau function are even polynomials in v.

In particular when v is a half-integer, U(z; v) is actually a Laurent poly-
nomial in z which reflects the fact that the gBGW tau function is a polyno-
mial in this case; see [3] for a description of these polynomials in terms of
Schur polynomials.

As an application of Thm. 1.1 we can derive explicit formule for the
intersection numbers of [32] by setting v = 0; more precisely, identifying

(1.8) / O Wl e PO 220H (ke =0)
. gn¥1 T RO+ D) (20, + ) Dy, - O, g

g,n

from (1.2), we have the following immediate Corollary.
Corollary 1.2. For all g > 1 we have

g1 (29 —1)N(2g —3)!

and for all n > 2 we have

5 (201 + 1)1+ (20, + 1)

Oy bt -+ - ahlr
20, +1 ... 920, +1 1+ 144y /_ g1 n
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:(—1)”_1 Z trU(z,;v=0)--- Uz, v=0)  z1+2 .

= (2 = 20) oy = 20) (20 — 2) (21— 22)2 "

With the aid of these formulae we have computed several intersection
numbers reported in the tables of App. A.

Remark 1.3. From (1.9) we can write a closed form for the generating
function of the one-point intersection numbers as follows

3X2 15X3  525X%
X9 O] ' ==
; / 0191 128 1024 T 32768 T

X 1 2
1.1 ~14+iy/=U|—-5,0,—=
( 0) 1 B < 2,0, >

where U(a,b, z) is the Tricomi confluent hypergeometric function [1], and
symbol ~ denotes the equality as asymptotic expansion, which here is valid
as X — 0 within the sector Re X > 0.

The identification of the Brezin-Gross-Witten tau function as an appro-
priate isomonodromic tau function allows us also to derive independently the
Virasoro constraints for this model, already known in the case v = 0 from
[21, 31, 15] and in the general case from [3] by other methods. In concrete
terms, we introduce the following differential operators, for m > 0;

(1.11)

20+1 1 1 — 402
L,, = ty — 20, Om.0-
Z 2 (te EO atg+m i 4 % 8tgatm 1—¢ < 16 ) 0

They satisfy the Virasoro commutation relations;
(1.12) [Lim, Ln]) = (m — n) Lp4n, m,n > 0.

Theorem 1.4 ([3]). The Virasoro operators annihilate the gBGW tau func-
tion;

(1.13) L, 7(t;v) =0, m > 0.

The proof of Thm. 1.4 by the isomonodromic method is contained in
Sec. 2.4. Note that the situation is slightly different from the Witten-Kont-
sevich case, where the Virasoro constraints include an additional equation
L_i7 =0 [34].
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Below we provide details on the approach and on the main results; proofs
are deferred to Sec. 2.

1.1. The Brezin-Gross-Witten tau function

We consider a partition function [22, 12] given by the following unitary
matrix integral

(1.14)
5 det”J 1 1 3
2 ) — (gt T P )2
Zn(Asv) e o, det? exptrﬁ (J U+ JU )dU, A 3 (JJ )

where dU denotes the normalized Haar measure on the unitary group U,,
fU dU = 1. The parameter 3 is the coupling constant and the external field

J is a complex nxn matrix; however, as emphasized in the notation En(A; v),
the partition function (1.14) actually depends only on the eigenvalues of the
Hermitian matrix A defined in (1.14). Without loss of generality we are going
to assume that A is diagonal with eigenvalues A1, ..., A, and that 5 = 1.

The parameter v in (1.14) was absent in the original formulation of the
model and is added here to match with the generalization introduced in
[31, 3]. Interestingly, this type of generalization had appeared also in the
Physics literature on QCD, see e.g. [30, 25, 2].

It was first argued in [31] that Z,(A;v) can be identified with a general-
ized Kontsevich model [28] with non-polynomial potential M ~! + vlog M,
see (1.17) below. We now describe this relationship in detail.

First, by a character expansion it is possible to compute [5, 33]

1.15 Zn(A;v) = i J v 315 k=1
(119 () Jl;[lj A2 N2)

where I,(x) denotes the modified Bessel functions of the first kind of order
a [1], and

— k1" _ ,
(1.16) Az, ...y xy) = det |:l‘j L’,k:l = E(:Ek —xj)

denotes the Vandermonde determinant.
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Introduce now the following generalized Kontsevich matrix integral [28
31, 3]
Jq H, () €XP tT (A’M + M~ + (v —n)log M) dM

1.1 Zn(A;v) =
(1.17) (A;v) fH yexptr (M1 + (v —n)log M) dM

where H,,(y) := {M = Udiag(z1,...,2,)U" : U € Uy, z; € v}, 7 being a
contour from —oo encircling zero counterclockwise once and going back to
—oo. With the help of the Harish-Chandra-Itzykson-Zuber formula one can
show that

- det[)\lﬁ”_lfk,,,,l(Q)\‘)]n _
1.18 Zn(AN:v) = | |r P — J I k=1
( ) ( 7V) . (j V) A(A% 7)\721)

Comparing (1.18) with (1.15) we finally conclude that

(1.19) Zn(A;v) = Hr—

Remark 1.5. In (1.14) v must be an integer, as the function det”U is
otherwise multi-valued on U, and the integral makes no sense. Nonetheless
in (1.17) v can be any complex number such that v # 1,2, 3...; notice however
that such poles come from the normalizing denominator in (1.17) only.

In the large A limit, corresponding to the weak coupling phase § — 0 in
(1.14), we consider the following expression [3]

Hz] 1 \/m (A V)
eZtrAdetVAH ' DG —v) Zn(h;
det[2+/7\je 2N Af 1Ik—u—1(2)\j)mk:1

- A(AlaaAn)

Tn(ALy ey Ay V) 0 =

(1.20)

which admits a regular asymptotic expansion as |Aj| — oo within the sector
larg A\j| < § — 4 for all j = 1,...,n; this is easily seen because the Bessel
functions have the following regular asymptotic expansion!

(1.21) Wrre P L, (20) ~ 14+ O

T.e. an asymptotic expansion in integer powers of A only, e.g. without exponen-
tial factors.
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as A — oo within the sector |arg A| < § — 0, for any ¢ > 0 [1]. It is known
that such an expansion for large A can be written as n — oo as a formal
power series in the odd Miwa variables

A2zl
1.22 Ay = 2L n > (.
( ) tf()\la 7A ) 2€+1 5 g_o

The gBGW tau function is, by definition, the formal expansion of (1.20) for
large A written in terms of the Miwa times (1.22). The limit n — oo means
that the expansion of (1.20) is a symmetric formal series in )\fl, D
which can therefore be expressed in terms of the symmetric polynomials
pe =k 1Y )\j_k ; the coefficients in front of any monomial in the p’s then
stabilize for n — oo and vanish for monomials involving even p’s. A complete
proof of these statements can be extracted from [24] or [14, Chap. 14].

The determinantal representation (1.20) and its subsequent generaliza-
tion (1.34) below are the starting point of our further considerations.

1.2. The bare ODE

The strategy of our proof involves the dressing of a bare Riemann-Hilbert
problem; this is the Riemann-Hilbert problem induced by the Stokes’ phe-
nomenon of a linear ODE in the complex plane, which we refer to as the
“bare ODE”. To formulate this bare problem we fix two angles a1, as in the
range

(1.23) <o <o<T

and define ¥ to be the contour in the z-plane consisting of the three rays
z < 0,argz = a1, arg z = ao, see Fig. 1. Introduce the following 2 x 2 matrix
=(z), analytic for z € C\ X:

(1.24)
o[ Al VRt K, (2vE) K .2vE) ]
\/; [n\/Zh,,,(2\/Z)fie‘”\/EK1,,/(2\/2) ﬁKl,u(zﬁ)] TSargz < ai

) [2[ ml.2vE) —K_.(2v7)
(Z).— \/; |:7l'\/2117u(2\/2) \/ZKl,V(2\/Z)] o] < argz < ag

2 mlo,(2vz)—ie TR, (2VZ) =K o,(2V7)
\/; [ﬂ\/ﬂw(2\/5)+ie‘i”’*\/EKH@\&) ﬁKl,,,(zﬁ)} 2 <argz <m

[1]

where I, (x), Ko(z) are the modified Bessel functions of order « of the first
and second kind respectively [1] and we stipulate henceforth that all the
roots are principal. Note that we are implying the dependence on v.

The following proposition is elementary and the proof is omitted.
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Proposition 1.6. In every sector of C\ X the following statements hold

true.

1. The following ODE is satisfied;?

(1.25) =) = [_12_ l} =(2).

2. We have the asymptotic expansion below as z — 00>

)

_o3 1 —(1—-2v)? 2—4v — zo3
(2) ~27 4G <1 + 162 [ £12+24u) (127241/)2] +0(z 1)) e?V?

(1.2

(=}

[1]

where

(1.27) G = % E _11] :

3. We have det =Z(z) = 1.

Moreover, the matrix Z(z) satisfies the following jump condition along
2

(1]

(1.28) (24) =E(22)S(2), z€X

where + denote boundary values as in Fig. 1 and S(z) is the following
piecewise constant matrix defined on 3;

10
. argz = «
(1.29) S(z) = |—iev 1 gz=m

2Hereafter we denote ' = %.

3We use the Pauli matrices oy = E) (1)} and o3 = [ 0 ]
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I A+

Figure 1: Contour ¥, and notation for the boundary values.

1.3. Extension of (A1, ..c; Apjv)

For later convenience we introduce an extension of 7, (A1, ..., Ap; V), defined
n (1.20), having the same regular asymptotic expansion when the \;’s go
to infinity within arbitrary sectors of the A-plane, not only within a sector
|arg A\j| < § — 4 for any 0 > 0, as for (1.20). The strategy is parallel to that
of [8].

We introduce, for —m < arg A\ < 7 and k£ > 1, the functions

(1.30)
(1K y_1(26'7N) - <arg\ < —3%
5 ml_y_1(2\) —ie 7K 1(2)) —5 <argA < G
E(N):= \/;)\k_l X mlg—py—1(2)) G <arg\ < %
Tly—1(2)) + iR 1 (20) L <argh < T
| —iKj—p—1(2e77TN) 5 <arg\ <.

The motivation behind this convoluted definition is that the above functions
have the same asymptotic expansion

(1.31) E(N) ~ N1+ 00 ), Ao

in every sector of —m < arg A < 7 appearing in the definition (1.30).
Remark 1.7. Note that

(1.32) £1(0\) = {511(/\2) —F<argA< %

+iZ1p(A\%eT?™) T < targh <7
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E.Ql()\2) —% < arg)\ < g
FiZao(A2eT27) 5 < fargh <m.

(1.33) () = {

For arbitrary Ay, ..., A, in C\ ¥4, we define

(1 34) T ()\ A ) — det [\/ 2Aje_2)‘j€k(Aj)};k:1
. Tn\Aly eeey Aps V) 1= A()\l,,)\n) .

By construction 7, (A1, ..., Ap; ¥) has the same regular asymptotic expan-
sion when the \;’s go to oo in every sector of the complex plane, see (1.31).
Notice that 7, (A1, ..., An; ) = Tn(A1, ..., Ans ) provided that G < arg \; <

Q2

o
1.4. Schlesinger transformations

Following the strategy already applied in [8, 11], we consider a dressing of the
bare ODE (1.25). This is conveniently expressed in terms of the Riemann-
Hilbert problem (RHP) 1.8 below.

Fix n > 0, and Ay, ..., A\, € C\ X; from now on we imply dependence on
this data. Introduce

S +vzE 0
(1.35) Dy(z) = J
jI;[l { 0 A—vz
(1.36) M, (2) = D (24)e?7* V3 S(2)e 29VZ- D, (2_)

where the notation + refers to the boundary values as in Fig. 1; the distinc-
tion between boundary values is only important along z < 0. The matrices
M,, read more explicitly

101 2 <0

- ) 0

n
el o4z H A+Hvz 1 argz = oy
(1.37) Ma(z) = | 157
- . 0
ie—ll/ﬂ'e—4\/2 H ;]J_r\/i 1 arg z = oo.

L 7j=1 7

Notice that M, (z) =1+ O(27°°) as z — oo along the rays argz = a1, as.

“We are free to deform the contour X if necessary, as the angles oy, g in (1.23)
are arbitrary.
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Riemann-Hilbert Problem 1.8. Find a 2 x 2 matrix

(1.38) [h(2) =Tn(z; A, An)

analytic for z € C\ ¥ satisfying the following jump condition along >
(1.39) Tu(z+) = Tz ) Mal(2),

the growth condition at zero

(1.40) I(z) ~0O(1)Z(z), z—0,

and the normalization condition at infinity

o

(141)  Tp(2) ~ 273 GYp(2), 2 — o0,

(142)  Yo(2) =1+ [_“;‘n _“gn] % +0 (%) € GL (2,(: ﬂ%ﬂ) :

for some constant a,, independent of z; G is defined in (1.27).

Remark 1.9. The jump on the negative semi-axis z < 0 in RHP 1.8 is
due to the multi-valuedness of /z. The position of this cut is completely
arbitrary. By considering the analytic continuation beyond this cut we find
that

(1.43) (2e>™) " T QY (26%™) = 27 T QY (2)ioy

which in turn implies the following symmetry property

(1.44) Y, (2e¥™) = 01V, (2)071.

Hence the coefficients in front of even, resp. odd, powers of /z have the

[u v] [ u ]
form , Tesp. .
vou —v —u

Remark 1.10. The conditions (1.40) and (1.41) are required to ensure
uniqueness of the solution to the RHP (1.8). The growth condition (1.40) is
necessary as the product of the jump matrices at z = 0 is not the identity
matrix. The necessity of the normalization condition (1.41) is explained as
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follows; indeed one may require the simpler boundary behaviour I'y,(z) ~
PEENE (1 + 0O (zfl/ 2)) However this would not uniquely fix the solution as
follows from the identity

10 m 1[5 —A] -
(1.45) [B 1:| 272 G=2z"121 @G <1+§[ﬁ B:|Z 1/2>

which would leave us with a one-parameter family of solutions, obtained

1 0
3 1],56@.1‘5

follows from the same identity (1.45) that the condition (1.41) removes this
ambiguity. This gauge fizing is chosen purely because of certain later con-
venience (see Lemma 1.14) and is otherwise entirely arbitrary. Indeed the
tau function to be defined shortly (see Rem. 1.11 below) is invariant under
any transformation multiplying I';, on the left by an arbitrary constant (in

one from the other by left multiplication by a matrix

z) matrix.

The matrix Z(z)e 2V?%s satisfies the jump condition (1.39) and the
growth condition (1.40) for n = 0 but the asymptotic expansion (1.26) does
not meet the requirement (1.41). However, as z — oo we have

(1.46)

1 0] o/ \ —2z0s 22 1—42[1 1 .
[381{2{41/2 1] E(z)e ~Z G<1+732\/E 1 1 +0 (71

which does fulfill (1.41), with ag = 152, Hence we define
1 0 - —2y/z0;
(1.47) P0(2) 1= s | S
16 1
which is by construction the solution to the full RHP 1.8 for n = 0.

Suppose now that the solution I',,(z) to RHP 1.8 exists; then the matrix

(148) \I]n(z) = Fn(z)D—l(Z)e2\/Zg3

n

has constant jumps along 3, therefore it satisfies a compatible system of
linear ODEs

oV, (z)
N

(1.49) Ul (2) = An(2)W,(2),
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where A, (z) is a rational function with simple poles at z = 0,A},...,\2
only while Q4 ,,(2),..., Qpn(z) are rational functions with simple poles at
z = A2,...,)2 only, as a consequence of the Liouville Theorem; compare
with the growth condition (1.40). The system (1. 49) is an isomonodromic
system in the sense of [27], whose tau function 7[(A1,..., \n;v) [27, 6] is
defined by

(1.50)

8(2\ log TL( AL, oy Ans V) = 2; 2tr <F (Z)F%(z)aﬂg;\fz)Mgl(zo dz
= ; res tr (T 1(z ,zﬁDn(z) Lz
-3 (rrem e 5o e).

Remark 1.11. Notice that the expression (1.50) is not affected by a gauge
transformation I',,(z) — BI',(2), with B € GL(2,C) a z-independent non-
degenerate matrix.

Theorem 1.12. We have
(1.51) T, oy As ) = Tn(A L, oy A )

where TL(A1, ..., An; V) is defined in (1.50) and Tp(A1, ..., \n; V) is defined in
(1.34).

The proof is contained in Sec. 2.1.

In the terminology of [26], the isomonodromic system (1.50) is obtained
by a sequence of n discrete Schlesinger transformations at the points z =
A ..., A2 of the ODE (1.25). We are applying here the RHP approach to
Schlesinger transformations introduced in [7].

1.5. The limit n — oo

Consider the (2,1)-entry of the jump matrix (1.37); the following identity

(1.52)

_ Aj —1—\/_ 1 \/E%_H
4
vz I l 76 p (2 E [(}\%-&-1 """—)\%44_1)_25&0

20+1

£>0
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holds uniformly over compact sets in |z| < min;|)\;|>. Together with the
definition of the Miwa times (1.22) it suggests to consider the phase function

(1.53) I(zt) = D (te — 2000) VT

>0

The Miwa times uniquely determine the n values A; up to permutations;
however they clearly are not independent from each other for any fixed n,
and therefore we want to explain in which sense we should understand the
large-n limit.

Our main interest is in the computation of the higher-order logarithmic
derivatives of the gBGW tau function at t = 0 (Thm. 1.1); however, the
definition of analytic function of infinitely many variables is problematic,
even more so for asymptotic expansions thereof. Therefore, for our purposes
it is sufficient to consider functions of only finitely many such variables by
setting tx4¢ = 0, £ > 0, for some K sufficiently large, and then evaluating
its log-derivatives. The “inductive limit” as K — oo makes sense because
ostensibly (as it will appear) the resulting formulas are independent of K as
long as K is large enough.

It is clearly not possible to fix the value of infinitely many Miwa times
given the n values Ay, ..., \,, so the logic of an analytic proof should pro-
ceed as follows (see [8] for more details); we choose an appropriate se-
quence of matrices A = diag()\gn), el /\7(171)) such that the correspond-
ing Miwa times tg(A(”)) tend, as n — oo, to a preassigned sequence t =
(t1,...,t5,0,0,0,0...). The fact that this is possible is a consequence of
the Padé approximation theorem for the function €’**), The limit of (1.34)
as n — oo is then considered as a function of finitely many Miwa times. In
this case it could be shown that it converges to the isomonodromic tau func-
tion for the RHP defined below (1.13) in a suitable sector of the variables
(t1,...,tx). The computation of the limit of its log-derivatives at t = 0
(within the sector) results in the formulas of Thm. 1.1, which are indepen-
dent of the truncation parameter K; this is due ultimately to the formulae
(1.64) and Lemma 2.5 which express the log-derivatives of 7(t) solely in
terms of the solution I'(z;t) of the RHP 1.13, together with the fact that
when the (K-truncated) t tends to zero within a suitable sector, the solution
I'(z;t) tends (uniformly) to the solution I'g(z) (1.47) of the bare ODE. See
also the last paragraph of this section.

The reader not interested in these analytical details, may consider the
RHP 1.13 directly as depending on infinitely many Miwa times and consider
all subsequent manipulations as formal.
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Keeping this in mind we will dispose of these details and formally set

(1.54)

(10, z2<0

1
M(2:t) i= e 2075 §(5)e?=+8)7s — [_iemew(z;t) 1] arg =z = ai

1 0
_ie—iwreQﬂ(z;t) 1 argz = az
\

where ¥ is defined in (1.53). We then consider the RHP 1.13 below which
is the (formal) reduction of RHP 1.8 by setting to zero the Miwa times

tk41 =tk =---=0.
Therefore from now on we agree that t := (to,t1, ..., tx,0,0,...), where
we remind that K is fixed but arbitrary. We also assume that tx # 0 satisfies

(1.55) Re (\/EQKHtK) <0, for argz = a2

so that M(z;t) ~ 1+ O(z~>°) along arg z = a1 2.

Riemann-Hilbert Problem 1.13. Find a 2 x 2 matrix I'(z;t), analytic
for z € C\ ¥ satisfying the following jump condition along %

(1.56) [(z4:t) = T(z—;t) M (23 ¢),
the growth condition at zero

(1.57) I'(z;t) ~O(1)E(2), z—0,
and the normalization condition at infinity

(1.58) T'(z:t) ~ 2 7 GY(2t), 2z — oo,

(1.59) Y(zt)=1+ [_aéfz) _‘LC(EJ % +0 (%) € GL (2,@ ﬂ%ﬂ) ,

for some function a(t) of t independent of z; G is defined in (1.27).

The considerations regarding the uniqueness exposed in Rem. 1.10 apply
equally well here; the solution of RHP 1.13 for t = (0,0, ...) is I'g(2) defined in

(1.47) by construction, satisfying (1.56), (1.57) and (1.58) with a(0,0,...) =
1—4v2
2 -
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Repeating the arguments of Sec. 1.4, assuming therefore that the unique
solution I'(z;t) to RHP (1.13) exists, we get a compatible system of linear
ODEs

(1.60)

aqjé?t) = A(z;£)¥(2;t), %Zt) =Qu(z;6)¥(z5t), £=0,..,K
for the matrix
(1.61) U(z;t) := F(z;t)e_ﬁ(z?t)%_

More precisely we have the following Lemma, which is proven in Sec. 2.2.

Lemma 1.14. The matrices Qq(z;t) are polynomials in z of degree £ + 1
which can be written as

(1.62) Qu(z3t) = — (‘1’('2;t)cr;«;\lf_l(z;t)\/E%H)Jr

where ()4 denotes the polynomial part® of a Laurent expansion in z around
z = 0o. The matriz A(z;t) is a rational matriz with a simple pole at z = 0
which can be written as

1 o3 20+ 1
1. A(z;t) == | ——= tr—20p0) (2t
( 63) (Zv ) > + EZ; 9 ( l Z,O) f(Za )

The system (1.60) is again an isomonodromic system in the sense of [27]
and its isomonodromic tau function 77(t;v) is defined by

0 I/q. . 1 —1 . / . aM(Zat) =1/,
o, log 7" (t;v) = 5t Etlr <F (z—;t)[V(2_;t) a1, M~ (z;t) | dz
(1.64) = Tes tr (T_l(z;t)F'(z;t)ag\/E%H) dz, (=1,.. K.

The meaning of the residue in (1.64) is formal and means simply (minus)
the coefficient of the power 2! of a formal power series; in this regard we
observe that T~ (z; )T (z; t)ag\/E%H is a power series in integer powers of
z only, thanks to (1.44).

5Note that by (1.44) the expression ¥(z;t)o3 ¥~ (z;t)y/z> " has an expansion
in integer powers of z only.
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Following arguments similar to [8, Prop. 3.6] we could also show that the
solution of RHP 1.13 exists in a domain of the form: |to| < 2, max;>1 |t;] < €
(for some € > 0) and argtx is a suitable range implied by (1.55). This would
allow us to conclude that log 7/ (t; v) is analytic in the same domain (i.e. 7/
does not vanish) and moreover that it admits an asymptotic expansion as
t — 0 within the same domain. These considerations, while important, are
not really necessary for the purposes of the present paper; in principle, the
width of the domain of the asymptotic expansion indicates the Gevrey class
of the function and hence the order of growth of the coefficients.

In view of the above discussion we shall identify 7/(t;v) = 7(t;v) in
all the formal computations below; in particular the proofs of Thm.s 1.1
and 1.4, contained in Sec. 2.3 and 2.4 resp., exploit the expression for the
logarithmic derivatives of the gBGW tau function in terms of the Jimbo-
Miwa-Ueno formula, i.e. of the second line in (1.64).

1.6. KdV and Painlevé XXXIV hierarchies

It is well known that the Kontsevich-Witten KdV tau function [34, 29] pro-
vides a solution to the Painlevé I hierarchy [16, 8]. Here we observe that
the gBGW tau function provides in the same way a solution to the Painlevé
XXXIV hierarchy.

More precisely, let us call x := ty and introduce

2
(1.65) u(z, t>1;v) = 922
which is a solution to the KdV hierarchy
R
3tg - dz C+1Y],

logT(IL‘,tzl;I/), tzl = (tl,tg, )

(1.66) (>1

satisfying the initial condition

1— 412

(1.67) u(z,t>1 = 0;v) = 8222

as we shall compute below in Sect. 1.6.1, see (1.83). In (1.66) we denote
Ly[u] the Lenard-Magri differential polynomials, normalized as

ren = (3 +2ud + ) Lolu]
£(+1[U = 0] =0

(1.68)  Lo[u] =1, { for ¢ > 0.

Let us now write the Virasoro constraint Ly = 0, see (1.11), as
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dlog T dlogT 1— 42
1. -2 20+ 1)t =
(1.69)  (2—2)—- +;< D+~ =0

and taking two derivatives in = we have

03 logT 0%logt 0 logt
1. -2 2 2 Ditp——— =
(1.70) (v —2)— 3= +27— 5 +;( ¢+ 1)t 5201, 0

The following proposition then follows from the definition (1.65) of uw and
the KdV hierarchy equations (1.66).

Proposition 1.15. If we setty =0 for ¢ > K+1, then u(x;ty,...,tx,0,..;v)
solves the Kth member of the PXXXIV hierarchy;

K
d
1.71 2 — 2)uy 2 Dty— =
(1.71) u+ (x—2)u +ZE:1( 0+ )tgdxﬁgﬂ[u] 0

which is an ODE in x, where t1,...,tx are regarded as parameters.

The Painlevé XXXIV hierarchy has been considered in [13] and it is re-
lated by a Miura transformation to the Painlevé II hierarchy, first introduced
in [20].

For example, the case K =1 in (1.71) is

3
(1.72) thmx + 9tuuy + (z — 2)uy + 2u = 0.

By the simple scaling

(1.73) =2 <%> " u(z) = (9%) : ()

(1.72) reads
(1.74) Vyyy + 6V —yvy, —20 =0

which we call, following the literature, see e.g. [13], the Painlevé XXXIV
equation.
It is known [23, 19] that (1.74) is equivalent to the Painlevé II equation

(1.75) Wy, = w + yw + a,

in the sense that the Miura transformation
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(1.76) v=—w? —wy, w= wta
20—y

is a one-to-one map between solutions to (1.74) and to (1.75).
Using (2.66), (2.67) and (2.68) we can write down explicitly the Lax pair
for (1.72) as

—2a —1
= [—z — 2a, + 4a? 2a]

A — 0 0 + —3t1a —3%
=30 0] " [6t1a® +3tia, — £ +1 3ta
+1 —(z—2)a—6t1aza—2t1a0,— 1 -2 _3tia,
2 |2(z—2)a?+12t1a, 0> +6tas s a+a+12t1a2+2(2—2)tr+ 21000 (£—2)a+6l1050+ 2100045 |

Indeed, the compatibility of ¥/ = A¥ and ¥, = QU implies the zero curva-
ture condition

(1.77)

1 0 0
— I — — =
AI @ [97 A] z [%tlaxxxx + 36t1axxax + 2(1" - 2)a$$ + 4ax O:| !

which, identifying u = 2a, from (2.69) below, gives (1.72). Setting t; = —3,
x — 2 =y and 4a(z) = a(y) we obtain the following Lax pair for (1.74);

20y —ya+2aaqy —1 20—y
22y Y 24 =¥
A 2 42 2 2 22
v a2 2atya’tayay —202ay —8al —daayy —dayyy 20y —yat2aay—1 | )
2z—5 -5 —ay =2 —a— =

by d
ety 5l

U = AU
U — QU = OQyyyy + 6ayayy —yay, — 20, =0
y =

which is (1.74) for v := . Finally we note that after a gauge transformation

on (1.78) of the form A= GAG™, 0 =GG1 + GG with G = [uly ﬂ
2

we obtain a Lax pair

2v,—1 2v—y

~ +2 ~ 0 -1
— 4z 2z —

(1L79) A= 2:—v— Y+ —QvQ-EZU—Uyy 1—42;@ , = [v -z 0 ]

for (1.74) in v directly.
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1.6.1. The bare tau function We now compute the “bare” tau function
for t = (z,0,0,...) using the solution of the bare RHP. The time = = t; is
related to scalings of the variable z in the RHP 1.13; hence, restricting to
real values of x for simplicity, we have

(1.80) F@;@;o,“»._(1—-%)23F0<<1—-g)2z>

where we assume —2 < x < 2 and take the principal branch of the square
roots. In other words, we are replacing /z — (1 — ) /z in the asymptotic
expansion of I'g(z); from (1.46) we see that as z — oo

(1.81)

73 — 41/2
D(3 (2,0,..)) ~ =~ %G (1 e Lo (21)> |

Using (1.81) a direct computation shows that

O log 7(z,0,...) = res tr (I (2;(2,0,..))I"(2; (2,0,...))o3) Vzdz

zZ=00
1 — 412

(1.82) = 5=

which provides the initial datum for the KdV hierarchy (1.66);

9? 1— 42
Moreover (1.82) implies that
(1.84) 7(2,0,..) =C(2—2)"5

for some nonvanishing integration constant C' # 0, which indicates that
RHP 1.13 for t = (z,0,...) is solvable for all values of x # 2.

Note. During the submission phase we were made aware that some of the
formulae (Thm. 1.1) will appear in a forthcoming work by B. Dubrovin, D.
Yang and D. Zagier [18]. The methods employed in the respective papers
are however substantially different.
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2. Proofs
2.1. Proof of Thm. 1.12

In this section we prove Thm. 1.12; the approach is exactly parallel to that
in [8, App. A}, which we refer to for further details (see also [11]).

2.1.1. The characteristic matrix Following [7] we introduce the char-
acteristic matriz G = [QM]?k:l with entries

(2.1)

P aTT—1()2 -1,,7%2
- res zf—>\§e2 Lo (ADTo(2)G™ 24 er 4y, —5 <argA < 3

Gir =

k —1 /2 F2ri -1,%
— res zi—Afel Lo (AjeT M 0o(2)G 2 i ey, 5 < Fargh <

Z=00

where e; = Ll)], e = [(1)], and the index in ej4j is understood mod 2

(e.g. e3 = e, e4 = €3); ['o(2) is as in (1.47), and note that the gauge factor
of (1.47) is irrelevant here, as G;, is invariant under I'g — BTy for any
B € GL(2,C).

The residue in (2.1) is by definition a formal residue, i.e. we regard

(2.2)
Lo(2)G 2% =27 @Y, (2)G 127 =140 (z71) e GL(2,C [=7'])

as a formal power series and the formal residue is simply the coefficient of
271 Tt can be checked that thanks to the property (1.44) the expression
(2.2) contains integer powers of z only.

Proposition 2.1. The determinant of the characteristic matriz (2.1) can
be expressed as

— —2X; N
(2.3) det G = C det [e &g(AJ)L’k:l

where the proportionality constant C' (irrelevant in the following) is

C = (—1)Ls](—)prit-,
(24) a ::jj{j : —Iarg)\j < g

5 }, bi::ﬁ{j:g<:|:arg)\j<7r}.
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Proof. Let us consider the case —5 < arg \; < § first; by the definition (2.1)
and simple algebra using (1.32), we see that the (2m+ 1)th, resp. (2m+2)th,
column of G is the second, resp. the first, entry in the row vector coefficient

of z7™ in
2N
1_—A_§[—52( DG +0(z7)
’ —2/\J)\2m
(2.5) =Y —— ey a)a+o (=),

m>0

where j is the row index of the columns of G. We note that the first column
of G is given by [e*”‘f&(/\j)]?:l and the second one by [—e*2/\j£2()\j)]?:1.
For the next columns we proceed by induction. Indeed, as the O(z71)
term in (2.5) does not depend on the row index j, it follows that the (2m +
1)th column is [e 2% )\]2»’”51 ()\j)]’;:l up to a linear combination of the previous
(odd) column. Similarly the (2m + 2)th column is [—e =2 )\?m&()\j)]?zl up
to a linear combination of the previous (even) columns. Now we recall [1]

(2.6)
Tos1(2\) = To_1(2)) — %IQ(Q)\), Kai1(2\) = Ko 1(2)) + %KQ(Q)\)

which implies

2.7)  Erpa(\) = A26.(N) — (k — 1)€pr1 () when — g <argh < g

and so

(2.8) AEL(A) = Eomp1(A) mod (§1(N), ..., Eam(N))
AE(N) = Eomga(N)  mod (E1(N), ..., omei(N)  (m >1).

It follows that the matrices G and [(—1)*"te=2% &k (Aj)] 7%=y differ by mul-
tiplication by a unimodular matrix, more precisely by a triangular matrix
with 1’s along the diagonal; in particular they have the same determinant
and Proposition is proven when —5 < arg\; < 7.

The case when § < darg); < 7 is completely analogous so we just
briefly comment on the differences; expression (2.5), in view of (2.1) and

(1.32), must be replaced by

j[ii§2( i), HE A1+ 0 (7))

z
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—2)\ )\Qm

(2.9) = 3 T e (), HE () + O (7))

m>0

while the recursion (2.7) must be replaced by
T
(2.10) Eer1(N) = &1 (V) + (k= )& (V) 5 < FTargA<m

which is again a consequence of (2.6). Hence (2.8) holds true in the case
5 < *arg); < m as well and as above, taking care of the £’s and *i’s, we
have the thesis. O

2.1.2. Schlesinger transform and Malgrange form The solution to
the “dressed” RHP 1.8 is related to the “bare” solution (1.47) by a rational
matrix. More precisely we have the following.

Proposition 2.2. Suppose RHP 1.8 has a solution I',,(2). Then there erists
a rational matriz R,(z) with simple poles at z = \2,..., \2 only such that

(2.11) I'n(z) = Rn(2)Lo(2)Dn(2).

Proof. Tt can be checked that R, (z) := T',(2)D;; ! (2)Ty*(2) does not have
jumps along ¥, while having at worse simple poles at z = A2,...,\2; the

thesis is now a consequence of Liouville’s Theorem. O

Hereafter we employ the short notation 9; := (%j and we consider the
case Re\; > 0 only for clarity’s sake; the general case is a straightforward
generalization.

The following variational formula has been proven in [7, App. BJ;

Ojlogdet G = Z res tr R R'@ Jpdy )

k

(2.12) + res tr (R, R0 ) +er_es tr (O 'Th0;U UL )
where

1 0
(2.13) Jk = Fo(z) |:0 )\i . z:| 5 k= 1, )

(2.14) Joo :=Do(2)Dp(2)G7 127,
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1 0
(2.15) U := [0 L )\ﬂ , k=1,..,n.

We are ready to give the proof of Thm. 1.12; let us compute the Mal-
grange form

(2.16) wn(0;) = L /Etr (Fn(z_)flfg(z_)f)jMn(z)M,fl(z)) dz

 2ri
by using ', = R, I'0D,, and M,, = D, MyD,, where
(2.17) My(z) 1= e*VZ=72G(z)e 2VF5,
compare with (1.29). After some elementary steps® we obtain
(2.18)
wn(05) = > res tr (R, 'R, T00;D,D;,'Ty" + Ty 'T0;D,D;, ")

Z=Zx
Z*E{)‘%r'nv)‘iroo}

and by using the identities

(2.19) 0jJoodot = To0;DD~IT !
we obtain (comparing with (2.12))

(2.20)

"k

wn(05) = 0;logdet G + ) res, tr (To' Ry R, To(9; Dy Dt — 0;UUY))
k=1""

as res tr (I‘a 1F68anDn) = 0. Introducing now the matrices

(2.21)
) 1 0
Ty, == DU, " = 0 LowOw—va | Rf =R, ToU;, k=1,..,n
Ae+vz

which are analytic at z = A\? and satisfy 9;D,,D,! — 8jUkUk_1 = OkaTk_1
we compute each summand in the right-hand side of (2.20) as

ves tr (R, 'R, T00; Ty T, 'Tyt) = res tr (U, Ty 'Ry (R, ToUy) 0, T T} )

—)\2 —)\2
z=A; z=X;

SWhich are explained in detail in [7, 8, 11].
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= res tr (U Ty 'Ry ) (RaDoUs) — R IGUy — R ToUL) O TR Ty )

z2=A2
= res tr ((R;)*l(RZ)’(‘)kaTgl) — res tr (FalfgéTka_l)
Z2=A2 z=A3
=0 =0
— res tr (Uk_lU/ﬂkaTk_l)
z2=A}

s b (g (e — V2) Ao /2
=N\ Mt vE ) ThesnOe —V3)

S Bl FEL I P PR

— — res
z2=A2 2 — )\%

L
2X,

From (2.20) we get, after a simple integration,

V)Y
(2.22) wn(0;) = 0jlog <% det Q) .

In view of (2.3) and (1.34) the proof of Thm. 1.12 is complete by observing
that the isomonodromic tau function is defined only up to multiplicative
constants by 9;log 7l = w(9;), see (1.50).

2.2. Proof of Lemma 1.14

In this proof we omit the dependence on (z;t). The matrix Q, = g—g\lf_l
(with ¥ as in (1.61)) has no jumps along ¥. In principle it may have an
isolated singularity at z = 0 (a pole or worse); however this cannot happen
because of condition (1.57). Therefore €y has a removable singularity at z =
0 and thus extends to an entire function. From inspection of the asymptotic
behaviour of ¥ at oo, it follows that {2y is an entire function of z with
polynomial growth at z = co. By the Liouville Theorem 2, is a polynomial of
z, which coincides then with the polynomial part of its asymptotic expansion;

()
Oty I

= (z—%aa—yy—la—lﬁ> —~ (qmgqj—1@>

=0
(2.23) — (g,agq,—l\/zwﬂ)

_l’_
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where the first term vanishes thank to our choice of normalization in (1.58).

The same reasoning applies to A = ¥/ ¥~! with the only exception that,
in view of growth condition at z = 0 (1.57), A has a simple pole at z = 0.
It follows by the Liouville Theorem that A is a rational function of z, which
coincides then with the Laurent expansion at oo truncated at the term in

z~1: namely

1 _
A= (200 N,

1 o3 o3 1
= -4 (= TeYY I o (W v )
4z =z + =z +
=0
o 20+ 1 _ 20—1
= —ﬁ — P (tg — 25@70) <Z\IJJ3\IJ 1\/2 )
>0 +
1 o 20+ 1
(2.24) = - —Z“ + Y g (te— 2600)2

£>0

where again the term indicated vanishes thank to our choice of normalization
in (1.58).

Remark 2.3. The expression (1.63) for t = 0 coincides with the ODE
(1.25) up to the gauge transformation (1.47); indeed, using the expression
(2.67) below for Qg and the initial conditions a(0,0,...) = =22 ¢(0,0,...) =

32
—% (which are read off the expansion of I'g(z2)) we see that (1.63)

reduces to
o3 o
Az = ——=— —
(2) 4z z
34402 1
== 16% 4 4 2
|:1 _ 9-—-40v°+416v 3+4v :|
256z 16z
1 0] [-x 1 1 0
(2.25) = |:3—81/+41/2 ] [ 2 5} [ 3—8u44u? ]
16 1 1 2z1 L™ 16 1

2.3. Proof of Thm. 1.1

The proof of Thm. 1.1 follows from the same algebraic manipulations first
introduced in [9] which have subsequently appeared many times, e.g. in
[10, 17, 11] and it is explained in detail for the reader’s convenience.
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2.3.1. One-point function We use (1.64) to compute

Zz—ﬂ 10log7(t) Zz - e tr (F_l(w;t)F,(w;t)ffiﬂ\/&) w'dw

Oty
>0 >0
= —tr (F_l(z; ) (z;t)o3v/2)
(2.26) = —tr (V20 (2;6) ¥/ (23 t)03) — 2¢/20 (25 t)

where we have used I' = Ue??3; evaluation at t = 0 of (2.26) gives, recalling
definition (1.3),

Si(zv) =2—tr (V2E 1 (2)Z (2)03)

(2.27) :2—tr< [ %} = )0351(2)>

where =(z) has been defined in (1.24), and we have used the ODE (1.25); in
(2.27) we identify =(z) with its asymptotic expansion at z = oo.
Lemma 2.4. We have, at the level of asymptotic expansions,

(2.28) VZE(2)o32 1 (2) = U(z;v)

where U(z;v) is defined in (1.4).

Proof. We compute U(z;v) in the sector a1 < argz < ag, the result holds
in every sector due to the fact that Z(z) has the same asymptotic expansion
in every sector by construction. Hence we compute

- 1 U Uiz
(2.29) VZEosE —\/E[u21 e
where

(2'30) ull = 2\/2 (I—V(Q\/E)Kl—u(2\/;) - Il—u(2\/g)K—V(2\/g)>
(2.31) Uy =41, (2v/2)K_,(2v/2)
(2.32)  Usy =42l (2v2) K10 (2V/7).

From the ODE (1.25) we deduce

(4[],

I
|
T8I
Nz =
| I



854 Marco Bertola and Giulio Ruzza

from which we obtain the system of ODEs

22’?/{{1 = —2zU19 + 2Uo
(2.34) 22’[/{{2 = —4l1 — 2019
22’1/[51 = 4ZU11 + 2VU21.

Consider, at the formal level, the following integral transform
+oo
(2.35) () = / Ft)eVar
0

i.e., more explicitly,

(2.36) f(z) = kaz_k_% = f(t) = 2 (QfII; 1
k>0

k>0

It has the following properties;

—_— 2/\

(2.37) 2277 =~ (WFW), =) = 3T,

Hence, by (2.34) and (2.37), the formal series Z/?l\l(t),b/{l\g(t),b/[g\l(t) satisfy
the system

— & (Wn(t)> = 2805 (t) + 2o (t)
(2.38) % (ﬂ/ﬁg(]ﬁ)) = —4L/{1\1(t) _ QV@(t)

& (W1 (1)) = 450 (1) + 200en ().

Solving for Z//{l\l(t) and U, (t) from the first two equations in (2.38) we obtain

1—2v —~ td —~

(2.39) Uy (t) = 1 Uia(t) + ZEUIQ()
<mmzawzbgﬁawﬂ@“jmx>(v®)££x>

and inserting this in the third equation in (2.38) we obtain the following
ODE;

L{12( ) + 2 (16 3t2) d—ulg( )

43
t (16 — t*) T

d3
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(2.41) + (4% = 7) t%l//{l\g(t) + (402 = 1) Una(t) = 0.

Now, from the expansions [1]

L) (24
24 Tolz) ~ zlmex = : k!)";i?,f )
A (-1)* (l - V) (l + 1/)
(2.43) Ko(x) ~ 5 ;0 2k!(2x;€k 2 k
we see that
1 1
(2.44) tha(2) = AL (VEK-L(2V5) = - (1 e (_>>

is a power series containing only negative odd powers of /z and so, from

(2.36),
(2.45) Uia(t) =1+ O ()

is a power series containing only positive even powers of t. Hence we are
interested in even power series solutions Ujz(t) = 1 + O(t?) to the ODE
(2.41); by the Frobenius method it is possible to conclude that there exists
exactly one such solution, which can be written in closed form in terms of
the Gauss hypergeometric function as

-~ 11 t* (z—¥)i (5 +v), *
2.4 H=oF (= —v, 2+l — ) = k12 A
(246)  Us(t) =251 <2 ny Ty ’16> 2 (k1)2 16F

k>0
Finally, inverting the transformation (2.36), we obtain

L)) (L4p 2=k
(2.47) Vit = Y BT G, GOl

k>0

which simplifies to the (1,2)-entry in (1.4) as (2k)! = 2Fk!(2k — 1)!!. The
other entries of (1.4) are obtained by substituting (2.47) into (2.39) and
(2.40). O

Returning now to (2.27), we compute using (1.4)

—a
tr([ 0

] U(z; 1/)) = —gun(z) + %17(2) + Ui2(2)

N



856 Marco Bertola and Giulio Ruzza

v (2k — )N <1 ) <1 > -k
=—= — |z v —+v)] z
QkZZO 8k k! 2 k1 \2 i
(2k—1)!![ (1 ) (1 >
+ — |- |-V —+v
];0 8k k! 2 pt1 \2 1
a0).G) )
+l5—v - +v z
2 K \2 k

- _gz% (%-u)k (%Jru)klz—k

k>1
(26— /1 1 K
22 T (37 a2 tY)”
k>1
(2k =3 /(1 1 —k
k>1 k k
hence (2.27) gives
(2.49)
1y OT(t;v) (2k=3)!" /1 1 _
. _ 1—¢ ) _ k
Sl(z,y)—z,z 4&6 B —2423]67%! §_V §+V z
>0 t=0 k>1 k k

from which (1.5) follows by the change of variable k =1 + /.

2.3.2. n-point function We first consider the two-point function; apply
> zz_l_b% on (2.26) to get

0,>0 ‘2

L1l 18 log 7(t)

050 a 2 8t€1at€2
== 5 (VA (25 6) ¥ (a5 6030 (2151))
£5>0
0
(2.50) —2) —19 (z15t).
05,>0

The second term is easily computed as

(2.51)

‘s 0 205 +1 Oy —1—1s z1 + 22
—2222 —19 (217 _—22 B 21" %9 :—m
0,>0 >0 L= =2




BGW tau function and isomonodromic deformations

For the first one we introduce
(2.52) R(z;t) := V2U(2;t)o30 1 (2;t)
and we rewrite from (1.62)

. ¢
(2.53) Q(z;t) = res de.

wW=00 w—z

Consequently we obtain

Dz e (VEQ, (215 6) U (215 )03 0 (215 1))

£,>0
R(w:t 0
=— E 252 M res MR(zl;t) dw
£2>0 w=eo (U)—Zl)Q

(2.54) — (R(22; t)R(zl;t)>

(22 — 21)?

and, using Lemma (2.4), evaluation at t = 0 gives
(2.55) R(z;t)|i—o = VZE(2)032 1(2) = U(z;v)

and (1.6) is proven for n = 2.
To prove (1.6) for arbitrary n > 3 we state the following Lemma.

Lemma 2.5. For all n > 2 we have

(2.56)

Z -t _1-g, 0" logT(t)
Zl “ e Zn —_—
Oty, --- Oty

(—1)nt tr (R(z15t) - R(zn; t)) 21 + 22

On.2-

n €6, (zo = 202) (s — 20,) (20, — 2) (21— 32)2

857

Bl

Proof. The proof is given by induction on n > 2; the induction base n = 2
has been proven above. Assume (2.56) holds true for some n > 2 then,

writing R(z) := R(z;t) for short,

(2.57)

Z 1 “1-¢,_, 0" log 7(t)
z

1 .. Zn+1 W
l1yeeiln120 4 (2
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Z Z - tr (R(z1) -+ R(zn))

0150 .EG, 8t€ 1 (2o, = 2i)  (20y — 20,) (20, — ZLI)'

USlng T\’,( ) = [Q¢(2), R(2)] it can be derived from (2.53) that

(2.58) 3 19 py = RELRE

Oty Z -z
>0

and so we rewrite (2.57) as

(—1)nt Z z": tr (R(21) -+ (R(zn41)R(2,) — R(2,)R(2n+1)) - - R(zn))

n LG, =1 (21 = 25) (2 — 20,) (20, — 200) (20, — 2n41)

_ (_1)n_1 Z Zn: tr (R(zbl) i 'R(ZL] JR (Zn+1)R(ZL )Rz ))

z,) (2., Zn)

LEGn ]:1 (ZLI - ZLZ) o (

1 1
X [—
ZL]‘ - ZTL+1 ZLJ'+1 - Zn—i—l

LA S (R(2) Rz, )R ()R (=) - R(z,))
e (2o, = 20,) (2, = Znt1) (g1 — 200) - (20, — 24,)

= (_1)71 Z tr (R(ZLI) o 'R(an+1))
(ZLI

n+1 LEG i1 - sz) T (an - ZLn+1)(ZLn+1 - ZLI)

where we have used the cyclic property of the trace. O

Finally (1.6) follows by evaluating (2.56) at t = 0 using (2.55), and the
proof of Thm. 1.1 is complete.

2.4. Proof of Thm. 1.4

Here we prove Thm. 1.4; hereafter we drop the explicit notation of depen-
dence on z,t,v and denote

~ 0
(2.59) to =1ty — 2000, Op:= 5 = —.

2.4.1. Preliminaries We collect here some simple results that will be
needed below.
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Lemma 2.6. The following identity holds true for all k > 0;

2k+

(2.60) Tes tr (zA Vo™ 1\/_2k+1> Ok logT = 0.

Proof. The (formal or not) residue of a total differential vanishes, hence
(2.61) Tes tr <\Il’03\11_1\/§2k+3>, dz=0
and computing the left hand side using ¥/ = A¥ we have
Tes tr ((Aq/)’ang*1\/22k+3 — AV UL 22
+2k2+ 3\11’031111\/52k+1> dz

= res tr (A’\IJJS\IJ +M M \/—2k+3

2k +
_|_

3;€ log T

where the two terms indicated cancel out thanks to the cyclic property of
the trace. O

Lemma 2.7. The following formule hold true, for all a,b,c > 0;
(2.62) Op0.log T = res tr (Qg\llag\ll_l\/E%H) dz,

zZ=00
(263)  Du0y0clogT = res tr ((8a(2§)+[ Q) \1/03\1/—1\/220“) d
Proof. We start from the definition (1.64)
(2.64) O:logT = res tr <\Il/03\11_1\/528+1) d

Z2=00

and applying 0 using 9,V = Q¥ we get

8bac logT = Zr:eoso tr ((quj)lagqj—l\/g2c+1 _ \11/03\IJ_IQI)\/EQC+1) d

— res tr (ngagq/—lﬁ2c+l + QW o=z
Zz2=00

(2.65) — Vo U=/ 2 dz
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where the two terms cancel due to the cyclic property of the trace; (2.62) is
proven. Now apply 9, to (2.62) to obtain

0a0p0. log T
= res tr ((((‘%Qg) Vo U1+ Q/an\PO'g\P_I . QZ‘IJUS‘P_IQa) \/52c+1> dz

Z=00

which simplifies to (2.63), once again thanks to the cyclic property of the
trace. H

As a last preliminary, let us use the expansion

(2.66)
Y(zt) =1+ % %]zt +[05] =7 4[4 o) a 7+ [f9] 2 0 (27F)

with a = a(t),..., g = g(t), to compute

(2.67)
o= 72 %)
(2.68)

0 — 2(ab — ac —e) — 2az 4a® +2c — 2z
Y7 2(ae —ad — @ +be—g) —2z¢ — 22 2(—ab+ac+e) +2az|’

and, by direct use of (1.64),

(2.69) 0o log T = 2a,
(2.70) O1logT = —4ab+ 3d + e.

2.4.2. Proof of Lo =0 We compute from (1.63)

, | oo 241z, 2€+1~
A=z 4—22+;Z LSy — 22 telde
>0 >0

2 1~
(2.71) = E; 0, - A.
>0

Substitution in (2.60) shows that for all £ > 0 we have

20+ 1~
>0
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2k +3
+

O log T

204+ 1~ 2k +1
= Z ; ty0pOk log T + 2+ O log T
>0

L
- ()
T

where we use (2.62) and the fact that AV = ¥’; the last identity implies
LoT = C for some constant C; evaluation at t, = 0, i.e. t; = —20y0, using
the definition of Lo in (1.11) shows that

(2.72)

Bolog 7] +1—4y2 1—4y2+1—4y2 0
=0 t=0 16 16 16

- Lot

T

where we use 0plog7|,_, = L 4” , which follows either by the explicit for-

mula (1.5) or by (1.82) with x = 0 Therefore Ly = 0.

Remark 2.8. The constraint Ly7 = 0 follows also from the dilation covari-
ance of the RHP 1.13. Concretely, the matrix ¥(e"z;t) (u € R) satisfies the
same jump condition as ¥(z;t), as the latter has been defined in (1.61) and
satisfies a jump condition with matrices independent of z, t; further we have
the asymptotic expansion as z — oo

(2.73)

(etz) v et E G (14 | ) W e 0 (57 ) et

where ty(u) = 3ty Tt follows that e1%T(e"z; t(—u)) solves RHP 1.13,
the solution of which is unique, hence

(2.74) [(z;t) = e D(e¥z; t(—u)).

Therefore, for all kK > 0 we have

res tr (F_l(z; ) (2; t)ag\/g2k+1)

Z=00

(2.75) = res tr (F_l(e“z;t(—u))F’(e“z;t(—u))ag\/EQHl)
Z=00

and the last expression does not depend on u by construction; setting the

first variation in u equal to zero we recover O (LOT) =0 for all £ > 0, from

which we can derive LoT = 0 as above.
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Note that due to the special point z = 0, RHP 1.13 does not have a
translation covariance property.
2.4.3. Proof of Ly = 0 As a consequence of the recursion
(2.76) 2Qp = Qo1 — (Qey1)g = 2% = Qg — Qe

where () denotes the constant term in z, we multiply (2.71) by z to get

20+ 1~
22A" = Z 5 te2Q) — zA
£>0

2£+1~ 2041~
_Z L — Z 5 £ty — 2A

£>0 £>0
20 + 1~ 20+ 1~ o o
- Z e Z 5 teSd — Zg *Z?’ —zA
£>0 >0
=zA
20+ 1~
(2.77) => + St — 224 — %
>0
and we use (2.60) with k +— k + 1:
2k +5
0= res tr (ZQA’\I/ag)\I/*l\/EQkJrl) dz + O log T
zZ=00
20+ 1~ 2k +5
= Z ;_ ty res tr(Q'Hl\I/ag\I/\/EzkH)dz + ;_ Oky1logT
>0 B
— res tr (ZzA\I/ag\Il_l\/E%H)
zZ=00

1
- xes tr (03\1103\11 1f2k+1>

20 —l— 1~ 2k +1
= Z 5 teOpy10k log T + 5 O+1log T
>0

1
2.78 ~ = res tr (o3 Wos /22 g
4 _

where we have used (2.62) and A¥ = ¥'.
Lemma 2.9. We have

2
(2.79) — res tr (03\1103‘1171\/22k+1> dz = 0 <@> )
2=00 T
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Proof. Note that

82
O <%T> = 0, (03 log T + (3plog 7)?)

= O,0% log T + 2(0p log 7) (90 log T)
(2.80) = 8k8(2) log 7 + 4a0,0g log T

where we have used (2.69) in the last step. Hence using Lemma 2.7 we obtain

Z=00

2
(2.81) O (@) = res tr ((3096 + [Q0, Q0] + 4al2)) ‘1103\1]71\/2%-5—1) d

and the statement (2.79) follows from the identity

(2.82) Do+ [, Q] + 4aQy = —03
which is easily checked using (2.67). O

Back to the proof of Li7 = 0, we see from the last line of (2.78) together
with Lemma 2.9 that we have proven 0O (L;T) = 0 for all k¥ > 0. Hence
Li7 = C7 for some constant C; evaluation at t = (0,0,...) shows that
C =0, e.g. by using (1.1), and so L7 = 0.

2.4.4. Proof of Lo = 0 Using the recursion (2.76) we see that
(2.83) 21 = Qgo — Qg1 = Qo — 200 — (1)

where again we denote ()o the constant term in z; we then compute from
(2.77)

Z3A':Z 5 2y, — 227 A —

—z

£>0 4

20+ 1~

= Z 5 te (Qgo — 22 — (Qey1)g) — 2224 — Zz

£>0

20 + 1~ 2041~ o

(2.84) = Z th£+2 Z 5 ty (Qg+1) — 3224 - ?32

£>0 >0

Lemma 2.10. We have the identity

204+ 1~ —b+c —a

(2.85) te (Qt1)g = [%(d —e) —b—c

>0

where a = a(t),...,e = e(t) are as in (2.66).
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Proof. Since (z?¥)’ satisfies the same jump condition as ¥ along ¥, it fol-
lows that the ratio (22¥)¥~! is an entire matrix-valued function; indeed
from (1.57) we see that this ratio is analytic also at z = 0. Since this ratio
has polynomial growth at z = oo, see (1.58), we conclude that (22¥)'¥~1
is actually a polynomial, which coincides with the polynomial part of its
expansion at z = oo;

(20) vt = (221 - ZQZ—Z’ + 22 RQY'Y G ¢ 22\1179'03\11_1>
20

+

1.
11
2 03 e0+1

93 2 —8 iy —1 128
2.86 :2z1—z—+<zz ray'yla 24) 1
(2.86) 1 N %;

However, it is trivial to compute (22¥)'¥~1 = 221 + 22A, which has no
constant term in z. Therefore also the constant term in z in (2.86) vanishes
and hence

20+ 1~ o3 s
— Z ; 17297281 = (zQZ*TGY'YflelzT)
0
>0 0
(2.87) | =b+ec —a
' T 2(d-e) -b-c

and the Lemma is proven. O

Back to the proof of Ly = 0, we obtain from (2.84) together with
Lemma 2.10

20+ 1~ —2—_b+c —a
34/ _ I a2 2
(2.88) 2?A = €E>O 5 g — 327 A+ [ Sd—e) Z-b- c}

and inserting this expression in (2.60) with k& — k + 2 we have

2k +7

0 = res tr <23A’\I/03\I/*1\/E2k+1> dz + O 1o log T

Z=00

2041~
= Z + ty res tr (QZJrQ\IlUg\I/_l\/EZkH) dz
o 2

— 3 res <z3A\1103\I/_1\/22k+1> dz

—Z—-b+c —a 1 2k+1
2
—i—zr:ezstr([ %(d—e) %_b_c]\lfag\ll Vz )dz
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2k +7

Okq2log T

20+ 1~ 2k +1
= Z 5 teOrOpyolog T + ;L Opaolog T

>0
(2.89) + res tr ([_35(07 b 2_)6 . —ba c] \1103\111\/E2k+1> dz.
z=00 5(d— 5-b-

The final part is the computation of the last term in the above equation.
This is done in the following Lemma.

Lemma 2.11. We have

(2.90)
—2_b+ec —a 1 ~2k+1 0001 T
2 _
ngtr([ %(d—e) %_b_c}‘llagklf Vz )dz—8k< 5 )

Proof. Note that

o (30817> — O (0001 log T + (8 log 7) (1 log 7))

-
= 00001 log T + (000 log 7) (01 log T) + (g log T) (0,01 log T)
(2.91) = 00001 log T + (—4ab + 3d + e) (0r0p log T) + 2a (001 log T)

where we have used (2.69) and (2.70). Using Lemma 2.7 and the explicit
expressions (2.67) and (2.68) we rewrite the last expression as

ves tr (9102 + [, ] + (—4ab+ 3d + €)% + 204 o v~z ) dz

Z2=0Q
—24c —a _1 2k+1
_ 2
2restr<[%(_d+e) E_C]\Ilcrglll NZ dz

Z=00 2

and since

(2.92) tr <[_Ob _Ob] \1/03\1/—1> =0.

the proof is complete. O

From (2.89) and Lemma 2.11 we obtain 0 (%) = 0, for all £ > 0.
It follows that Lot = C7 for some integration constant C'; evaluation at
t = (0,0,...) shows that C' =0, e.g. by using (1.1), and so La7 = 0.
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2.4.5. Proof of Thm. 1.4 We have proven L,7 = 0 for n = 0,1,2. It
remains to show that L, 17 = 0 for n > 2. The proof is given by induction
on n > 2: assume that L,7 = 0 for some n > 2, then exploiting the Virasoro
commutation relation (1.12) we have

1
(293) Ln+17' == —1 (LnLlT - Lan’T) =0
n fe—
and the proof of Thm. 1.4 is complete.

Appendix A. Tables of low genus n-point intersection
numbers (n = 2,3,4)

We introduce the notation

<C—)7T€1...Ten>::/ 9977’1 flfl/}f{l

where n > 1 and the genus g is found from the dimensional constraint as
g=li+- b+ 1.
Below we list some intersection numbers (0, 7y, - -- 73, ) forn = 2,3,4and 1 <

ly < .- < 4p; insertions of arbitrary positive powers 1y are not considered,
as the corresponding intersection numbers can be computed by the relations

1
<@77—(’)€T€1 U TKn) = (2g -2 + n)k<®77—€1 e T€n>7 <@7T0> = é
which follow from the Virasoro constraint Lgm = 0.

Two-point intersection numbers, 1 < ¢; < €3 < 10

(O = 2 (O,mm) = o (6,1) = 1200

(O, 1113) = ;ﬁ‘% (O, To13) = % (©,73) = %

(©,7m172) = SO0 0 myryy = DT (0, gy = DI
(0.7) = VBPID 6,1,y = LI
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(. ryrs) — LOISSUSSO0LS 1655391880305
2147483648 2147483648
(. 7y — 1009001583045225 (0,2) = 38605283045457975
137438953472 549755813888
(O ryrgy — BBBATS205 o 1TE2T5109165
2147483648 4294967296
(. ryryy — HAOZOOTIOSG0T5 . G53B0L6461837125
68719476736 1099511627776
(. rory) — 2A083995573458045225 (0,72) 1113215803724028329325
35184372088832 140737488355328
(O 7y = 2TLLLISOSTS o 162092299845375
2147483648 68719476736
(. ryry — JTOIBOIS00864375 ) 17661596600472900075
274877906944 35184372088832
(. ryrmy — A82303514500137475325
70368744177664
(0, rgr) — 208000146935538633150825
’ 2251799813685248
(©,72) = 113080337 TA2SS01 10334875 1917550351857
’ 9007199254740992 ’ 274877906944
(O nyray — S2ZBIOTI00625 o 18TO0513107631029675
2199023255552 70368744177664
(. ryray — 2A9T095829689640103925
562949953421312
(. 7o) — S3825A06833T34863087075
9007199254740992
(. ngray — TIB21414874363136506245625
72057594037927936
158520492299731872217358075625
(0, 7778) = 9223372036854775808
(0,72) = 0855445464368396327121143081625
8 36893488147419103232
(O 7y — SZATSZHALBAIL o G889659417119504025
1099511627776 70368744177664
295708708883846082825
(©,7379) =

140737488355328
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369515801101139991473175

(0, 74m9) = =307 199254710992
(. 7oryy — 2TAUTB20135036642415995375
36028797018963968
125147757076179666975625854375
(8, 7670) = 9223372036854775808
1102253769039087864679419064125
(8, 7rm0) = 4611686018427387904
(. rarg) — ZATOIBLBTS0035852615454506222625
590295810358705651712
(0,72 = 1733469999946 71233640488824722852375
2361183241434822606848
(O 7y — LOAO3TT818552027525
70368744177664
(0, 7y — L9TI39081099587301675
281474976710656
(0. 7y — TOLB195624ATOTO65764475
4503599627370496
(. 7ymg) — 2500TOTAITOOT4662230542875
72057594037927936
o | 7T472421040242962853142648625
(©,15m10) = 9223372036854775808
(. mymg) — LITAO482414606786703225513988 75
9223372036854775808
500074235050199763259348761844125
(8, 77710) = 147573952589676412928
(. remyy — H1BTIR2BTI9849533828112798529713375
4722366482869645213696
(. 7y — 1953593081 169798226020590227 1192680625
151115727451828646838272
(0,72 = 15304091806682856653605975519597917118125

604462909807314587353088

Three-point intersection numbers, 1 < €1 <l < U3 < T

1221

5 7221 524925
(©,m) = 2048

32768

55787625
524288

<@,7127'2> = <®,7’17'22> =
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8160299505 19922175 2914222815
(6.73) = 8388608 (6,7i'ms) = se21ad (O™ = ~omsag
(0,7375) = 561519776475 (©,772) = 200535367725
67108864 33554432
oo 49220655148485 5357097499513095
(0. 727%) = 3 cero012 (6:78) = 501067296
3237810975 623885820075
(0:7m) = gmpoe - (O M) = “{aiaiors
(0,73m) = ISBISSOTATATON o BAG9SISS012963
2147483648 1073741824
(. ryrary) — L0000310065902865 (0,72m) = 9904149022466054615
17179869184 137438953472
(O,m77) = 18518016575263905 (0,777) = 6857348740424943705
34359738368 549755813888
(0,7577) = 1083235806125607211875
4398046511104
(0,78 = 626729323148283152077875 (0,7775) = 141786313515
’ 140737488355328 ’ 67108864
(. ryryre) — ASUTS68819955 (0,7375) = 10605949781451255
1073741824 17179869184
(O ryrary) — STTTIOOWE05 o\ 1402639433346887505
8589934592 137438953472
(0,7275) = 921570953666202985075
1099511627776
(. ryrary) — L398468935031532625
274877906944
(. ryryre) — 059331622581763917525
4398046511104
(0. myryrs) — 12194632176420424912075
35184372088832
(0,727) = 8624935073223676996 7464575
1125899906842624
(©,m72) = 156664875383937753525
2199023255552
Lo 81578383422586747544925
<@,TQT>:

35184372088832
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17641912485909060186227775

2
(6,7375) = 281474976710656
(O,7472) = 13657290700342362804270453375
9007199254740992
(0,73 = 2465542659153253894620947800875
72057594037927936
(0,7275) = IBBST2IA0545 o AOT913S420722365
1073741824 17179869184
(0,737) = ISL0533831861819765 - 53H699T65T3402815
274877906944 137438953472
(0. ryrre) — Z3O1ATS064018637175
2199023255552
(0,737) = 44375064151791685937625
17592186044416
(O rimyry) — 2125208079453
4398046511104
(. nyryre) — L30TT2A68255073854375
70368744177664
(. 7y yre) — 2IITHHITIOTSTOT 6945925
562949953421312
, 93112338094913132221232801725
(8. 7i76) = 18014398500481984
(. ryrre) — SLITO0AAAITAZ099130175
35184372088832
(. nyrre) — L89989TISIOISTOLT95535007
562949953421312
(. rymre) — ATTB230T5542206407386332725
4503599627370496
(. ryramy) — LLT2A50506519716753635289317625
144115188075855872
(0,727) = 851876598415598596423734875348625
1152921504606846976
(O,m72) = 730726370725 7464770845025
562949953421312
Lo 5091178832597722958533665225
(0, 1218) =

9007199254740992
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~ 1444311966314562236238071599875

2
(0, 737) = 72057594037927936
(O,7472) = 1441637320153730808541734117691875
2305843009213693952
(0,7572) = 330507426847927743563704256091765375
18446744073709551616
(0,73 143076665085625524144439793856692206125
205147905179352825856
(0,7777) = 6984402623635 o 251T52492250634375
8589934592 137438953472
(0,72m) = 111353523842933046675
2199023255552
(. 7y — SOTOSTTAZ01506064725
1099511627776
(. ryryre) — 2070854371 T88125
17592186044416
(0,7277) = 4478331578178112272993375
140737488355328
(. ryryre) — ZB9IBFSETSOTGIS0S125
35184372088832
(. nyrre) — L39325851748909907 76793625
562949953421312
(. ryryre) — FAO0SI06930350525 13223405375
4503599627370496
(0,72m) = 3059801657033466012792328078875
144115188075855872
(. ryrre) — SL0480930027367663526525
981474976710656
(. ryrare) — 22001TT493899231641551387625
4503599627370496
(. ryrars) — OZISOSISTOII274053867326857T5
36028797018963968
(. ryrre) — SZATOIB05ISTTL32549996558547787
1152921504606846976
o\ 143219884965802657033319792435316375
<G),7'57'7> =

9223372036854775808
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848526584313597166576073475

(0, niemr) = 4503599627370496
(. nyrire) — STA0I220490958 7444098815575
72057594037927936
(. 7yrre) — ZLOABDOTOA32219600055525 76932625
576460752303423488
(. ryrre) — ZA23T21129060985782007T95791 156518125
18446744073709551616
(. rorre) — C19998882034043042447 T3719191475446125
147573952589676412928
(0,72m) = 29777660591694478072272815949606865930875
2361183241434822606843
oo 112335035527164091943704528125
<@, 717'7> =
36028797018963968
(0,772 = 100914607388283481934842002427125
: 576460752303423488
(0,772) = 36355816898739808749602039446104375
’ 4611686018427387904
(O,7472) = A5466584679729968624135916704886206375
’ 147573952589676412928
(0,7572) = 12903652923026817062431054523642958979875
’ 1180591620717411303424
(0,772 = 6840650520602244732461304449830082167319625
’ 18889465931478580854784
(0,73 1726520707483209249055570621199004902786559375

151115727451828646838272

Four-point intersection numbers, 1 < 1 < fy < ¥3< ¥, <4

)= -
iy o s
oty TS ) _ s
<@,¢%@73>::39%§§§£%£§Z§ <®’T”€73>::218ig§2§§335605



<@'nmﬁﬁ

<(),T%7274>::

(©, T1T2T37y) =
<(),T§7374>::
<CL717§74>::

<(),TQT§74>2Z

<@ Ty@74>-—

<() 717374>-—

<() 727374>
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~735717887208021375

780361916123475

2_ 2\ __
8589934592 (8, 7im3) =

262752685378695225

268435456

873

106548967987835464035

~ 38052819991224205965
34359738368
18292612579971274053495
549755813888
3673662570422147820860595
4398046511104
2427789302585325

<(),Tf¢4>::

4294967296 (6, 77) = 68719476736

8850749243175
67108864
817452184156462575

O, T17T5Ta) =
1073741824 (0, mmym)
| 331485533529675544845

17179869184
291943042036776585

274877906944 (6, rimsm) =
118386498222267325155
137438953472
56010334852393854391665
2199023255552
20324969779924668510855
1099511627776
11429170458388415369176365
17592186044416
 2654517578525246500814334825
140737488355328
_ 131539156256344231395
274877906944
63233221816668147658785
4398046511104
_ 35557413020470855924847955
70368744177664
12699006033434669177410125
3518437203332
8258498185220417475372945375
562949953421312
_ 1125163811582917554083844364188525
4611686018427387904

8589934592
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9176069448469610909455503375

(&) = 1125899906842624

(0,773) = 875127272791496314312666747195875
’ 4611686018427387904

(0,7578) = 332032047575230771772838453629775
’ 36893488147419103232

(© T4> _ 1468690879523188482162010010875275
Al 590295810358705651712

Appendix B. Tables of n-point correlators for v # 0

(n=2,3,4)
For an increasing sequence of indexes 0 < ¢; < --- < /£,, introduce the
notation
(©,70, + Tu, o
22641 .. 926t 1 dlogT(t;v)

(200 + 1) (20, + DN (3 - V) 1 (3 + V)y o Ot 0ty [y

Note that

926n+2

©,70, 10 )l = ( (©,70, -+~ 70,)-

20, + 1)12

Below we list some correlators (0,7, --- 7, ), for n = 2,3,4 and 1 < 41 <
-+ < {,; insertions of arbitrary positive powers 7y are not considered, as the
corresponding correlators can be computed from the relations

= 1
<@,7‘(])€Tgl Ty )y = (n + 2;€i>k (O, 79, -+ T, s (0,10)y = 5

which follow from the Virasoro constraint Lo7m = 0.

Two-point correlators, 1 < £ < €3 < 7

21 — 412
2

<@’ T >1/ = 96

115 — 1202

(©,m172), = — =35
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48v% — 124002 + 8371

2 _
(0.7), = 30720
61 — 412
Ol = Ty
16v* — 61612 4 6489
(0,773, = 73728
(©,73) — —3200/° + 229601* — 58780412 + 5087601
VA 10321920
89 — 412
S) =
(0 mm), = 5561
(O, 7y7) = 240v* — 1292002 + 195407
T2y = 10321920
—32005 + 30960r* — 110060412 + 13452101
(©,7374), =
94371840
(0,72) — 12800° — 19584000 + 121794241* — 34564424012 + 3670308261
Ay T 3397386240
367 — 1202
(0. 1175, = 590210
(O, 7y7s) = 48v* — 344817 + 70747
" 72750y = 23592960
—641° + 80481* — 37918012 + 6204501
<@, ’7‘37’5>V =
212336640
(©,1475),
~ 53760° — 10447361/° + 842959041* — 313776654412 + 44120931525
- 158544691200

(0,72) = (—21504v"" + 60121601° — 7344395521/° + 463991246401/*
— 14740661342441 + 18569159714025) /6975966412800

161 — 402
(0:7176), = 5o8240
(©.7970). = 16v* — 148002 + 39537
v 106168320
—44815 + 711200 — 428789212 4+ 90370575
(©,7376), =

19818086400
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(©,1476),

179208 — 43187205 4 43883168* — 207194148812 + 37189031175
B 697596641280
(0, 7576), = (—71681' + 24460800 — 3707907841° + 292950923200

— 1171373444748 + 18694588685175) /3044058071040
(0,73), = (28672v"% — 132321280"° 4 27939125761/° — 3270258634241°
+ 217682522031520* — 7703353371102481
+11233370707313175) /1582910196940800

205 — 412
(0. 1177), = Gos97380
<@mﬁ>:@%—%mﬂ+mM%
’ v 4954521600
<@fm7ﬂu=‘—myz_2%nEg;;;;;;?2+lmﬂ6a
(©,1417),
_12800° — 3750400/° + 468635841* — 273459816002 4 60930510741
N 7610145177600

(0, 75m7), = (—30720" + 12582400° — 23183654410 + 223863376320
— 109899290124412 + 21634639864743) /197863774617600
(0, 7677), = (409612 — 22425600 4 5693580801° — 806085491201/°
+ 65200603847520* — 2816782717713201/
+ 5038977351919497) /3409345039564800
(0,77) = (—16384v'" + 11612160v'* — 38876579841/'0 + 7542148441601°
— 890847254908801/° + 63178604037264801
— 2471825217609458521/2
+ 4096200945908249325) /204560702373888000

Three-point correlators, 1 < £; < f5 < ¥3< 4

(0,77), = 5éz(4u2129)(12u2183)

<@ﬂfﬁ%;:§%(uw4—3nw2+zwa
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—19208 + 87200 — 13898012 + 743835

2
(0:n72), = 24576
(©,73) — 384018 — 28544000 + 8415904v* — 11171768002 + 544019967
2y 1966080
1604 — 56812 + 5421
(6, 727s), = 6 5360872 +5
(©.717073), = —9601/5 + 624801 — 146862812 + 11894787
’ v 737280
) (40% — 97) (19205 — 149920* + 455716v% — 4725603)
(8,m7s), = 2359296
) (4v% — 97) (640° — 52320* + 16247612 — 1687653)
(0:n7), = 1179648
<@, 7'27'32>V
~ —51200'% 4 7795200% — 513004801/° + 17480590400 — 298977346921/
B 94371840
200937367953
94371840

(0,735) = (143360v'% — 304640000™° + 29157542400° — 1543311219201°
+ 4618556633936 — 724931099005681>

+459179785672551) /15854469120

_ 48v* — 240812 + 32631

(6.7im), = 73728

©.71mm1)., = —19205 4+ 1704004 — 55402002 + 6287587
’ v 1179648

<G), 7'227'4>V
~38400° — 52096005 + 292200000* — 76715256002 + 7717746271
B 94371840

(©,T17374),

12800° — 1792000/° + 102991681* — 27367952002 + 2756270497
B 47185920
(0, 7o7374), = (—1075200™° + 211366400° — 18266599681°

+ 8285755152001 — 191335544978012
+ 17636518588257) /15854469120

(0,7574), = (20480v'% — 54988801' 4 6760506881° — 465923847681/°
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+ 1840104258096 — 386704308683921/°
+ 333204689715201) /18119393280
(0,7177), = (—1075200"° + 22140160° — 19768439041,° + 913225565761/*
— 212438031403612 + 19595784735729) /31708938240
(©,7277) = (614400"* — 168038401' 4 20888373761/ — 1446829862401/
+ 57231550684320* — 1203053383978001/2
+ 1036636241938767) /72477573120
(©,7377) = (—819200'* + 293068801 '% — 49169786881 '
+ 4807179220480° — 28705415560128/°
+ 1026041519901072v* — 200528539050091641/2
+ 163754468046199125) /579820584960
(0,737) = (68812801'% — 31699763201'* + 6985775677441/
— 923019185930241'0 4 7763986997949952,/°
— 4172634502322334720° 4 138036371614014074241/*
— 2545596764424937899841/2
+ 1989616898883438578025) /389639433093120

Four-point intersection numbers, 1 < 1 < f5 < ¥3< ¥, <3

—7040% 4 192160* — 17843612 4 536219
1024

 —83205 4 351200* — 52658812 + 2692025
v 4096
<@,7‘127‘22>V

 115200° — 8099841/° + 22719008* — 2891188802 4 1362402633
B 196608

~ —522241"0 4 55334400 — 2505030400/° + 58142878401
v 3145728

—669080330201% + 297404488035
* 3145728

(0,73), = (1167360v'% — 174766080»'% + 117100019201/

(0.7), =

<®,7‘f’7‘2>

<@,7'17'23>
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— 4317989644801/° + 89391424765921/*
— 959170555102001% 4 407885857706205) /251658240

—3200% + 19568v% — 43148412 + 3309853
8192

<@,7'137'3>V =

<@,7’12727'3>V

130561 — 127334400 + 505956800 — 93123334412 + 6502812831
B 1179648
(0, m17373), = (—2918400"° + 414630400° — 25692499201/°

+ 832710196800* — 13684208670761/>
+ 8918605692729) /94371840
(©,7573) = (86016v'% — 167997441,™0 + 14961999361/° — 746794775041°
+21352321153760" — 323933598130801>
+200195343457965) /100663296
(0,7173) = (—194560'0 + 28526081° — 1805249281° + 5917711072
— 976844656601 + 637030135611) /9437184
(0, m1ma73) = (860160'% — 172625920'0 + 15677867521/° — 792314058241°
+ 22806104712160* — 346933438845841°
+ 214491988064241) /150994944
(©,7573) = (—56524801" + 14922342400 — 1843716966400
+ 132859079308800° — 5850133833212801/°
+ 153892162587940001* — 2201804415225803161/>
+ 1304681240667373029) /36238786560
(0,71735) = (—1884160v'* + 509071360»'* — 640517068801 '
+ 46759195609600° — 2075882759839361/°
+ 54848219590547041* — 786143708878388041°
+ 465952897851724971) /18119393280
(©,7273) = (81920000'% — 28190310400 '* + 4638177689601 '
— 45840708300800'” + 28885412572226561/°
— 1162045484610429441° + 28663339317769336321*
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— 391274116625264090401/°
+ 223991174448627845553) /289910292480

(0,73) = (—91750400'® + 4002611200 '® — 8498495488001 '*

+1109270576332800'% — 95201362726686721'°

+ 5448141266750694400° — 20445062672058146560/°

+ 4789430530506275749760* — 6290239045745431301868/2
+ 34987262575449026865339) /1803886264320
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