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We construct a gauged linear sigma model with two non-birational
Kähler phases which we prove to be derived equivalent, L-equiva-
lent, deformation equivalent and Hodge equivalent. This provides a
new counterexample to the birational Torelli problem which admits
a simple GLSM interpretation.
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1. Introduction

There has been recently growing interest both from a point of view of al-
gebraic geometry and string theory in the study of derived equivalent but
non-isomorphic pairs of Calabi–Yau threefolds. The first and most famous
example is the Pfaffian-Grassmannian equivalence observed in [Rød] and
proved in [Kuz3, BC]. In this case the equivalence is also interpreted in
[HTo, ADS] in terms of wall-crossing in the associated gauged linear sigma
model (GLSM for short). This last construction has its roots in physics, in
particular quantum field theory: from the seminal paper of Witten [Wit], a
rich literature on the subject emerged, alimented by the profound connec-
tion with string theory dualities, in particular mirror symmetry. Different
examples have been studied, mainly arising from toric varieties (i.e. giving
an abelian GLSM) while there are still few examples of GLSM associated to
non-abelian gauge groups. Some explicit examples of non-abelian GLSM are
studied in [JKLMR, DS] and these provide a new insight into mirror sym-
metry of determinantal Calabi–Yau threefolds. Moreover, a rigorous math-
ematical description of GLSM has been given in [FJR].

In [CDHPS], the authors study abelian GLSM theories with two non-
birational Kähler phases and observe a relation with Kuznetsov’s homo-
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logical projective duality [Kuz3]. They conjecture, in particular, that two
Kähler phases of a GLSM are always twisted derived equivalent. Examples
of such a phenomenon involving noncommutative varieties as well as par-
tial proofs of the conjecture have been found in [CDHPS, Sha]. The case of
non-abelian GLSM has been treated from the physics side in [Hor, HK, DS]
leading to the same conjecture for symmetric and skew-symmetric degener-
acy loci. The work of [Hor] has been reinterpreted in mathematical terms in
[RS], where the conjecture was proven for skew-symmetric degeneracy loci.
More generally, a relation between homological projective duality and vari-
ations of GIT stability for Landau-Ginzburg models has been established in
[Renn1].

Note that up to now most known geometric constructions of non-abelian
GLSM admitting two Kähler phases and leading to derived equivalent pairs
of Calabi–Yau threefolds are obtained by determinantal constructions (see
[Hor, HK, Renn2, HTa, JKLMR]).

On the other hand, an interesting case of derived equivalent and non-
birational pairs of Calabi–Yau threefolds was recently discovered in the con-
text of the Torelli problem. This is the family X25 of Calabi–Yau threefolds
of degree 25 in P9 studied by [GP, Kap, Kan, OR, BCP]. The elements of
this family, first introduced in [GP], are given by the intersection of two
generic PGL(10)–translates of the Grassmannian G(2, V5) embedded in P9

via the Plücker embedding.
Independently, in [OR] and [BCP], it is proved that for a general Calabi–

Yau threefold X̃ ∈ X25 intersecting the projective dual varieties of both
translates one obtains another Calabi–Yau threefold Ỹ ∈ X25 which is in
general not isomorphic to X̃, but which is derived equivalent, deformation
equivalent and Hodge equivalent to X̃. We shall say in such case that X̃
is dual to Ỹ . Such general dual pairs of Calabi–Yau threefolds in X25, in
particular, provide counterexamples to the birational Torelli problem. Note
that some GLSM interpretation of the duality on X25 has just appeared in
[CKS].

In [BCP], it is additionally shown that the following relation holds in
the Grothendieck ring of varieties:

(1) ([X̃]− [Ỹ ])L4 = 0,

where L is the class of the affine line. This means that X̃ and Ỹ are also
so-called L-equivalent.

A similar case has also been discussed in the work of Manivel [Man],
where the intersection of two translates of the ten-dimensional spinor vari-
ety in the projectivization of a sixteen-dimensional half-spin representation
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has been investigated. Here the intersection is a Calabi–Yau fivefold, and
the projective dual construction gives rise to a non-birational Calabi–Yau
fivefold, still, the two varieties have been proven to be deformation equiv-
alent, derived equivalent, L-equivalent and Hodge equivalent. Moreover, in
[BFMT], techniques to construct Calabi–Yau threefolds and fourfolds as or-
bital degeneracy loci have been explained. This leads, in particular, to all
families discussed above and may serve as a source of further examples of
derived equivalent and L-equivalent pairs of Calabi–Yau manifolds.

Let us point out that the notion of L-equivalence is somehow related
to the notion of derived equivalence. The problem whether derived equiv-
alence may imply L-equivalence has been first considered in [IMOU2], and
short after that the positive answer has been stated as a conjecture in [KS].
Note that it has already been proven (see [IMOU2, Efi]) that there is no im-
plication between derived and L-equivalence for abelian varieties. Still, up
to now, no counterexample is known among simply connected Calabi–Yau
manifolds.

In this paper, we consider the family X̄25 of Calabi–Yau threefolds given
as zero loci of sections of the vector bundle Q∨(2) on G(2, V5). As it was
pointed out in [Kap, IIM] and [OR], these varieties, still being smooth,
belong to the boundary of X25 and can be interpreted as the intersections of
infinitesimal translates of G(2, V5). For each such a manifold X we provide
a construction of a dual Calabi–Yau threefold Y in the same family, which
is not birational, but is derived equivalent and L-equivalent to X. Then,
as pointed out in [OR, Prop 2.1], they are also Hodge equivalent i.e. their
periods define equivalent integral Hodge structures. We furthermore observe
that our duality concept is an extension of the duality studied in [OR, BCP]
to the investigated boundary component X̄25 of X25. As explained in [OR],
we can then apply the Matsusaka–Mumford theorem (see [MM]), to provide
another proof of the fact that a general element of X25 and its dual are not
isomorphic.

We notice furthermore that for X,Y ∈ X̄25 a dual pair of Calabi–Yau
threefolds we have

(2) ([X]− [Y ])L2 = 0.

Comparing with (1), we see that the exponent of L in our formula which is
valid on the boundary divisor X̄25 is smaller than the exponent known to
annihilate the difference of classes of a dual pair in the general case X25.
A similar phenomenon occurs in the Pfaffian–Grassmannian equivalence.
The exponent is known only to be bounded by 6 in general and it is proven
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to be 1 on a boundary divisor (see [IMOU1]). It is an interesting problem
proposed in [KS] to understand the geometric meaning of the minimal ex-
ponent of L annihilating a difference of two classes of varieties. In [KS] this
exponent is conjectured to be related to the ranks of Fourier-Mukai kernels
associated to derived equivalences between the two varieties. One of the ad-
vantages of our direct approach is that from our proof of derived equivalence
of studied pairs of varieties one can explicitly find such Fourier Mukai ker-
nels. Note also that in general it is a nontrivial problem to understand the
behaviour of both derived and L equivalence in families. We hope that our
example, exhibiting a nontrivial behaviour of these equivalences in families,
may provide further insight into that subject.

Finally, we present a GLSM description of Calabi–Yau manifolds in our
family X̄25 which explains the duality equivalence of X and Y in terms of
wall crossing. We thus provide a GLSM construction with two non-birational
Kähler phases with simple geometric realizations as zero loci of sections of
a vector bundle, which are derived equivalent, deformation equivalent and
L-equivalent. In fact, our GLSM construction is based on a variation of GIT
(as in [BFK, Sect. 7]) and, to our knowledge, it is the only example known
so far where such VGIT leads directly to two non-birational Calabi–Yau
phases.

Our argument relies on the following diagram that we establish in Sec-
tion 2.

(3)

M

F

X G(2, V5) G(3, V5) Y

f1 f2

p q

The notation is the following:

• V5 is a five-dimensional vector space and G(k, V5) stands for the Grass-
mannian of k dimensional subspaces in V5.

• F is the flag variety given by the following incidence correspondence:

(4) F = {([V ], [W ]) ∈ G(2, V5)×G(3, V5) : V ⊂ W}
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• p and q are the natural projections from the flag variety F to the two
Grassmannians.

• The flag variety F has Picard group generated by the pullbacks of the
hyperplane bundles of the two Grassmannians G(2, V5) and G(3, V5).
We denote the pullbacks of the hyperplane sections of the Grassman-
nians G(2, V5) and G(3, V5) by O(1, 0) and O(0, 1) respectively. In this
notation M is a hyperplane section of the flag variety F , i.e. the zero
locus of a section s ∈ H0(F,O(1, 1)).

• We prove (see Lemma 2.1) that p∗O(1, 1) = Q∨
2 (2) and q∗O(1, 1) =

U3(2), where we call Ui the universal bundle of a GrassmannianG(i, V5)
and Qi its universal quotient bundle. The varieties X and Y are, re-
spectively, the zero loci of the sections p∗s and q∗s of Q∨

2 (2) and U3(2),
• f1 is a fibration over G(2, V5) with fiber isomorphic to P1, for points
outside the subvariety X whereas the fibers are isomorphic to P2 for
points on X. Similarly f2 is a map onto G(3, V5) whose fibers are P1

outside Y and P2 over Y .

In Section 3, we prove that, in general, if X and Y are dual they are
not birational. Using the fact that they have Picard number equal to 1, we
just need to prove that they are not projectively equivalent. The latter is
done in several steps. First, we prove that X and Y are contained in unique
Grassmannians. Furthermore the hyperplane section M of F is also uniquely
determined both by X ⊂ G(2, V5) and by Y ⊂ G(3, V5). We then deduce
that a linear isomorphism between X and Y must lift to an automorphism
of the flag variety F that preserves M . We describe explicitly the action
of these automorphisms on hyperplane sections of F and find a concrete
hyperplane which is not fixed by any of them.

The L-equivalence of X and Y is a direct consequence of diagram (3). It
is presented in Section 4. In Section 5, we show that the derived categories
of coherent sheaves of X and Y can be embedded in two different orthogonal
decompositions of the derived category of the hyperplane section M of the
flag variety F . This fact allows us to prove the derived equivalence of X and
Y with a sequence of mutations. Section 6 is devoted to the establishing of
a GLSM with two Kähler phases representing dual Calabi-Yau threefolds
from the family X̄25.

2. The description of the duality

Hereafter we will describe the families appearing in diagram (3) in greater
detail. In particular, we define the notion of duality between elements of
these families.
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First of all, with Lemma 2.1 we establish a relation between the vector

bundles we described in diagram (3) proving that the pushforwards ofO(1, 1)

are exactly the bundles appearing in the diagram.

Lemma 2.1. Let O(1, 1) = p∗O(1) ⊗ q∗O(1) be the hyperplane bundle on

the flag variety F . Then the pushforwards of O(1, 1) with respect to p and q

are, respectively, Q∨
2 (2) and U3(2).

Proof. Observe that the flag variety F can be interpreted as the projec-

tivization of the rank 3 quotient bundle Q∨ on the Grassmannian G(2, V5),

hence also the projectivization of Q∨(2). In this case, we have the relative

Euler sequence

(5) 0 −→ Ω1
G(2,V5)|F (a, b) −→ Q∨

2 (2) −→ OF1
(1) −→ 0

and on G(3, V5)

(6) 0 −→ Ω1
G(3,V5)|F (a, b) −→ U3(2) −→ OF2

(1) −→ 0

where for i = 2, 3 we called OFi
(1) the Grothendieck relative OP(Ei)(1)

associated to the corresponding bundle E2 = Q∨
2 (2) and E3 = U3(2). We

can compute the first Chern class of the relative Ω1
G(i,V5)|F from the relative

tangent bundle sequences, which is

(7) 0 −→ TG(3,V5)|F −→ TF −→ TG(3,V5) −→ 0

and the same sequence holds for G(2, V5). In both the sequences (5) and (6),

computing the first Chern class we get OFi
(1) = O(1, 1) for i = 1, 2. The

remaining part of the proof follows from a general fact that the pushforward

of the Grothendieck line bundle of a vector bundle E with respect to the

surjection to the base is E .

The picture emerging is the following:

(8)

O(1, 1)

Q∨
2 (2) F U3(2)

X G(2, V5) G(3, V5) Y

p∗ q∗

p q
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Moreover, we denote X := Z(p∗s) the variety of all the points in G(2, V5)
where p∗s vanishes. But x ∈ Z(p∗s) is equivalent to s(p−1(x)) = 0. Thus,
since F is a P2 bundle on G(2, V5), the fibers of the projection from M to
G(2, V5) over points outside X = Z(p∗s) are isomorphic to P1, whereas the
fibers over X will be isomorphic to P2. The same applies to Y in G(3, V5)
and the projection q|M .

Lemma 2.2. Let X be the zero locus of a section s2 ∈ H0(G(2, V5),Q∨
2 (2)).

Then s2 is uniquely determined by X up to scalar multiplication.
Similarly, if Y is the zero locus of a section s3 of U3(2) on G(3, V5), s3

is uniquely determined by Y .

Proof. We will prove the result for G(2, V5), the proof for the case of G(3, V5)
is identical. Let us suppose X is the zero locus of two sections s2 and s̃2.
Then, the Koszul resolutions with respect to these two sections can be ex-
tended to the diagram:

(9)

· · · Q2(−2) IX 0

· · · Q2(−2) IX 0

αs2

β

αs̃2

where the existence of the arrow β is given by the surjectivity of the map

Hom(Q2(−2),Q2(−2)) −→ Hom(Q2(−2), IX)

which is proven by tensoring the Koszul resolution of IX by Q2(−2) and
computing cohomology with the Borel-Weil-Bott theorem.

In particular, if two sections define the same X, then the identity of the
ideal sheaf lifts to an automorphism of Q2(−2). However, since

(10) Ext•(Q2,Q2) = C[0]

the only possible automorphisms of Q2(−2) are scalar multiples of the iden-
tity. That implies that the sections differ by multiplication with a non-zero
constant.

Corollary 2.3. Let X = Z(s2) ⊂ G(2, V5). Then there exists a unique
hyperplane section M of F such that the fiber p|−1

M (x) is isomorphic to P2

for x ∈ X and is isomorphic to P1 for x ∈ G(2, V5) \ X. Similarly for
Y = Z(s3) ⊂ G(3, V5) there exists a unique hyperplane section M of F such
that the fiber q|−1

M (x) is isomorphic to P2 for x ∈ Y and is isomorphic to P1

for x ∈ G(3, V5) \ Y .
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Proof. We consider only the case X = Z(s2) ⊂ G(2, 5) the other being
completely analogous. Since F is the projectivization of a vector bundle
over G(2, V5), using Lemma 2.1, then the pushforward p∗ defines a natural
isomorphism

H0(F,O(1, 1)) = H0(G(2, V5),Q∨
2 (2)).

Hence s2 = p∗(s) for a unique s ∈ H0(F,O(1, 1)). We define M = Z(s)
which satisfies the assertion by the discussion above. The uniqueness of M
follows from Lemma 2.2. Indeed, for any hyperplane section M̃ = Z(s̃), the
fibers p|−1

M̃
(x) are isomorphic to P2 exactly for x ∈ Z(p∗s̃), but Z(p∗s̃) = X

only if p∗s̃ is proportional to s2 which means that s̃ is proportional to s and
proves uniqueness.

Let us consider an isomorphism

(11) f : G(2, V5) −→ G(3, V5).

Every such isomorphism is induced by a linear isomorphism Tf : V5 −→ V ∨
5

in the following way:

(12) f = D ◦ φ2 : G(2, V5) −→ G(3, V5).

where D is the canonical isomorphism

(13) D : G(i, V5) −→ G(5− i, V ∨
5 )

and φi is the induced action of Tf on the Grassmannian:

(14) φi : G(i, V5) −→ G(i, V ∨
5 )

Similarly, we consider dual maps f∨ : G(3, V ∨
5 ) −→ G(2, V ∨

5 ), expressed
as f∨ = φ∨

2 ◦D∨.
Note that above maps f , D, φ2, φ3 are restrictions of linear maps be-

tween the Plücker spaces of the corresponding Grassmannians. By abuse of
notation we shall use the same name for their linear extensions. We can now
introduce the following notion of duality.

Definition 2.4. We define two Calabi–Yau threefolds X ⊂ G(2, V5) and
Y ⊂ G(3, V5) to be dual to each other if there exists a section s ∈ H0(F,O(1,
1)) such that for s2 = p∗s and s3 = q∗s we have X = Z(s2) and Y = Z(s3).

Definition 2.5. Given an isomorphism f : G(2, V5) −→ G(3, V5), we say
X ⊂ G(2, V5) is f -dual to Y ⊂ G(2, V5) if f(Y ) is dual to X.
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The following lemmas on duality will be useful in the proof of non-
birationality of general dual pairs.

Let us start by defining P = P(∧2V5)×P(∧2V ∨
5 ), where ∧2V5 is identified

with ∧3V ∨
5 by means of D. In that case F is a linear section of P (in its

Segre embedding) by a codimension 25 linear space.

Remark 2.6. Recall that the equations of F in P are described by the
following sections sx∗⊗y ∈ H0(P,O(1, 1))

(15) sx∗⊗y(α, ω) = ω(x∗) ∧ α ∧ y

for ω ∈ Λ2V ∨
5 = Λ3V5, α ∈ Λ2V5 and for every x∗ ⊗ y ∈ V ∨

5 ⊗ V5.
In other words, we have

sx∗⊗y(α, ω) = 0 for ([α], [ω]) ∈ F (2, 3, V5) ⊂ P(Λ2V5)× P(Λ3V5).

This defines a 25 dimensional subspace H0(IF (1)) ⊂ H0(P,O(1, 1))
spanned by linearly independent sections corresponding to x∗ = e∗i , y = ej
for i, j ∈ {1 . . . 5} and a chosen basis {ei} for V5.

Now, for every f as in (11) we define the following function:

(16) P � (x, y) ((f∨)−1(y), f(x)) ∈ P
ιf

which induces the following map at the level of sections:

(17) H0(P,OP (1, 1)) � s s ◦ ιf ∈ H0(P,OP (1, 1)).
ι̃f

Note that ιf is a linear extension of an automorphism of the flag variety
F ⊂ P . It is constructed in such a way that we have that X is defined
by a section p∗(s) ∈ H0(G(2, V5),Q∨

2 (2)) if and only if f(X) is defined by
q∗(ι̃f (s)) ∈ H0(G(3, V5),U∨

3 (2)).
Our aim is to interpret f -duality in the setting above as explicitly as

possible. For that we will identify H0(F,O(1, 1)) with a subspace HF of
sections in H0(P,O(1, 1)) invariant under our transformations.

Lemma 2.7. The space H0(P,O(1, 1)) decomposes as

H0(IF |P (1, 1))⊕H0(F,O(1, 1))

and the decomposition is invariant under the action of ι̃f for every isomor-
phism f : G(2, V5) → G(3, V5). More precisely ι̃fH

0(IF |P (1, 1)) =
H0(IF |P (1, 1)) and there exists a subspace HF ⊂ H0(P,O(1, 1)) isomorphic
to H0(F,O(1, 1)) such that ι̃f (HF ) = HF .
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Proof. It is well known that Aut(F ) 
 GL(V5)�Z/2. Moreover, the action
of Aut(F ) on F is linear and extends to an action of Aut(F ) on P compat-
ible with ι̃f . It follows that H0(IF |P (1, 1)) is invariant under ι̃f since it is
clearly invariant under Aut(F ). Furthermore the dual action of Aut(F ) on
P∨ preserves the dual flag variety, hence H0(IF∨|P∨(1, 1)) is invariant under

the dual action of ι̃f . We can define HF = H0(IF∨|P∨(1, 1))⊥. The latter
space is invariant under Aut(F ), so it is also invariant under ι̃f and the map
HF → H0(F,O(1, 1)) defined by restriction is an isomorphism.

Note that, by construction, the action of ι̃f on H0(F,O(1, 1)) corre-
sponds to the action ι̃f on HF . It means that we can think of H0(F,O(1, 1))
equipped with the action induced by ι̃f as a subset of H0(P,O(1, 1)) invari-
ant under the action of ι̃f on H0(P,O(1, 1)).

Remark 2.8. To get explicit equations defining HF in terms of matrices we
apply the procedure from Remark 2.6 to describe the equations of F∨ with
respect to the dual basis of V5. This allows us to have an explicit expression
for the equations defining HF in H0(P,O(1, 1)). In our choice of basis we
obtain explicit linear conditions on the entries of 10 × 10 matrices to be
elements of HF .

Lemma 2.9. The variety X is f -dual to Y if and only if there exists a
constant λ ∈ C∗ such that sections sX ∈ HF , sY ∈ HF defining X and Y
respectively satisfy ι̃f (sY ) = λsX .

Proof. By definition, X is f -dual to Y if there exists a hyperplane sec-
tion ŝ ∈ H0(F,O(1, 1)) such that p∗ŝ defines X while q∗ŝ defines f(Y ). By
Lemma 2.7 there then exists a unique section s ∈ HF such that ŝ = s|F .
Now, by definition of ι̃f , since q∗s defines f(Y ) we have p∗(ι̃f )−1(s) defines
Y . Furthermore by Lemma 2.7 we know that (ι̃f )

−1(s) ∈ Hf . We conclude
from Lemmas 2.1, 2.2 and 2.7 that up to multiplication by constants s = sX
and (ι̃f )

−1(s) = sY .

From now on, let us fix a basis of V5 inducing a dual basis on V ∨
5 , and

natural bases on ∧2V5 and ∧2V ∨
5 which are dual to each other.

A section s ∈ H0(P,OP (1, 1)) is represented by a 10 × 10 matrix S in
the following way

(18) s : (x, y) yTSx

where x and y are expansions of x and y in the chosen bases of ∧2V5 and
∧2V ∨

5 . Once fixed our bases, φ2 is represented by a 10×10 invertible matrix



Torelli problem for Calabi-Yau threefolds with GLSM description 735

Mf , which is the second exterior power of the invertible matrix associated
to Tf .

We can now describe very explicitly the f -duality in terms of matrices
using the following.

Lemma 2.10. If S is the matrix associated to s ∈ H0(P,OP (1, 1)) then the
matrix associated to ι̃f (s) is M−1

f STMf .

Proof. On a pair (x, y), the map ιf acts via ιf (x, y) = ((φ∨
2 )

−1(y), φ2(x)).
Furthermore, in our choice of basis φ2(x) = Mfx and (φ∨

2 )
−1(y) = (MT

f )
−1y.

This yields:

(19) ι̃f (s)(x, y) = s ◦ ιf (x, y) = (Mfx)
TS(MT

f )
−1y = yTM−1

f STMfx.

Remark 2.11. In [OR, sec. 5], it is proven that [v] ∈ P(gl(V )) defines a
section sv of ∧2V (1), whose projection toH0(G(2, V5),∧2Q2(2)) cuts out the
threefold X[v]. Then sv corresponds to a 10×10 matrix S that we defined in
(18). Hence, from Lemmas 2.9 and 2.10 follows that X[v] and X[vT ] are D-
dual. This means that our duality is equivalent to the duality notion defined
in [OR, sec. 5], extending the duality defined on X25.

3. Non birationality of dual threefolds

In this section, we prove that a general section s ∈ H0(F,O(1, 1)) gives rise
to two non-isomorphic Calabi–Yau threefolds X = Z(p∗s) and Y = Z(q∗s),
this result will be stated in Theorem 3.6. Before proving the theorem, we will
discuss some auxiliary results. In [BCP], an argument to show that every
X̃ ⊂ X25 is contained in just one pair of Grassmannians has been explained.
Using similar ideas, we will prove an analogous result for the boundary X̄25

of the family, namely that every Calabi–Yau threefold in X̄25 is contained in
just one Grassmannian.

From now on we will make extensive use of Borel–Weil–Bott theorem,
which allows to compute the cohomology of every Schur functor of the bun-
dles U∨ and Q∨ on a Grassmannian. As we will see, most of the bundles we
will deal with can be represented in such a way. For a detailed account on
the topic we recommend [BCP], while for a more general approach on many
different formulations of the Borel–Weil–Bott theorem we refer to [Wei].

Lemma 3.1. Let X be a Calabi–Yau threefold described as the zero locus of
a section of Q∨

2 (2). Then the following equalities hold for every t ≥ 0:

H0(G(2, V5),Q2(−t)) = H0(X,Q2|X(−t));(20)
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H0(G(2, V5),∧2Q2(−t)) = H0(X,∧2Q2|X(−t)).(21)

In particular, H0(X,Q2|X) 
 V and H0(X,Q2|X(−t)) = H0(X,
∧2Q2|X(−t)) = 0 for t strictly positive.

Proof. Let us consider the following short exact sequence which comes from
tensoring the ideal sheaf sequence of X with Q2:

(22) 0 −→ IX/G(2,V5) ⊗Q2(−t) −→ Q2(−t) −→ Q2|X(−t) −→ 0

Given this sequence, we need to show the vanishing of the first two degrees
of cohomology for IX/G(2,V5) ⊗ Q2. To do this, we consider the sequence
obtained tensoring with Q2 the Koszul resolution of the ideal sheaf of X:

0 −→ Q2(−5− t)
θ−−→ Q2 ⊗Q∨

2 (−3− t) −→

−→ Q2 ⊗Q2(−2− t)
φ−−→ IX|G(2,V5) ⊗Q2(−t) −→ 0

(23)

The bundles Q∨
2 (−5− t) and Q2⊗Q∨

2 (−3− t) have no cohomology in degree
0 and 1: this follows from the isomorphisms

Q∨
2 (−5− t) 
 ∧2Q∨

2 ⊗ (∧3Q∨
2 )

⊗(4+t)

Q2 ⊗Q∨
2 (−3− t) 
 (∧3Q∨

2 )
⊗(2+t) ⊗ ∧2Q∨

2 ⊗Q∨
2

(24)

which, in turn, proves H0(G(2, V5), ker(φ)) = H0(G(2, V5), coker(θ)) = 0 in
(23). SinceQ2⊗Q2(−2−t) has no cohomology in the first two degrees, due to
Q2⊗Q2(−2−t) 
 (∧2Q∨

2 )
⊗(2+t), then also H0(G(2, V5), IX/G(2,V5)⊗Q2) = 0

and H1(G(2, V5), IX/G(2,V5) ⊗Q2) = 0. This, together with (22), proves our
claim (20). The second equality follows from a totally analogous computa-
tion, namely it involves the tensor product of the ideal sheaf sequence with
the wedge square of Q2.

Lemma 3.2. Let X be a Calabi–Yau threefold described as the zero locus of
a section of Q∨

2 (2). Then the restriction Q∨
2 (2)|X is slope-stable.

Proof. The Mumford slope of a vector bundle is invariant up to twists and
dualization, so the problem reduces to asking whether Q2|X is stable. There-
fore, let us suppose there exists a subobject F ⊂ Q2|X . Then, since G(2, V5)
has Picard number one, we have c1(F) = O(t) and this leads to the injection

(25) 0 −→ O −→ ∧rQ2|X(−t)
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where r is the rank of F , which can be one or two. To have F as a desta-

bilizing object for Q2|X , t must be strictly positive in order to satisfy the

inequality of Mumford slopes

(26)
t

r
= μ(F) ≥ μ(Q2|X) =

1

3
.

On the other hand, the injection in (25) means that ∧rQ2|X(−t) has global

sections: what is left to prove is that it can be true only for zero or negative t.

The latter follows from Lemma 3.1.

Let us suppose X is contained in two Grassmannians G1 and G2, where

the latter is the image of the former under an isomorphism of P9. Since

both the restrictions of the normal bundles Ni|X = NGi/P9 |X = Q∨
2i(2)|X

are stable, every morphism between them must be zero or an isomorphism.

Below we furthermore prove that the isomorphism class of the normal bundle

determines the Grassmannian. Combining these two facts will give us the

uniqueness of the Grassmannian containing X.

Lemma 3.3. Let X be a Calabi–Yau threefold described as the zero locus of

a section of Q∨
2 (2). Then the following isomorphism holds:

(27) H0(P9,O(1)) 
 H0(X,OX(1))

Proof. The claim follows by proving the following isomorphisms separately:

H0(P9,OP9(1)) 
 H0(G(2, V5),OG(2,V5)(1))

H0(G(2, V5),OG(2,V5)(1)) 
 H0(X,OX(1))

The first comes from the O(1)-twist of the Koszul resolution of the ideal

sheaf of G(2, V5) ⊂ P9, which proves the vanishing of the cohomology of

IG(2,V5)(1), thus the desired result. The second isomorphism is proved in a

similar way, with the resolution

(28) 0 −→ O(−4) −→ V5⊗O(−2) −→ V5⊗O(−1) −→ IG(2,V5)/P9(1) −→ 0

and Kodaira’s vanishing theorem.

Lemma 3.4. Let X1, X2 ∈ X 25. If φ ∈ GL(∧2V5) induces an isomorphism

φ : X1 → X2 such that φ∗NG(2,V5)|P(∧2V5)|X2

 NG(2,V5)|P(∧2V5)|X1

, then

φ = ∧2ψ for some ψ ∈ GL(V5).
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Proof. Consider Xi ⊂ G(2, V5). Since NG(2,V5)|P9 = Q∨
2 (2), we have

NG(2,V5)|P9 |Xi
= Q∨

2 (2)|Xi
for i = 1, 2. Let us now note that the surjection

(29) V5 ⊗O −→ Q2 −→ 0

implies the following

(30) ∧3 V5 ⊗O −→ ∧3Q2 −→ 0,

and ∧3Q2 
 O(1). Hence, this last surjection tells us that

(31) H0(G(2, V5),O(1)) 
 ∧3H0(G(2, V5),Q2).

From Lemma 3.1, for i = 1, 2, we have that

H0(G(2, V5),Q2) 
 H0(Xi,Q2|Xi
))

while Lemma 3.3 tells us that H0(P9,O(1)) 
 H0(Xi,O(1)). Then, since
H0(G(2, V5),Q2) 
 V5, φ∗ induces an automorphism ψ of V5 which by the
above satisfies the assertion.

Corollary 3.5. If X ⊂ P9 is a Calabi–Yau threefold from the family X̄25,
then X is contained in a unique Grassmannian G(2, 5) in its Plücker em-
bedding.

Proof. Suppose that X is contained in two Grassmannians G1, G2 for each
of them we have an exact sequence:

0 → NX|Gi
→ NX|P9 → NGi|P9 |X → 0

Combining the two exact sequences we obtain a map: φ : NX|G1
→ NG2|P9 |X .

Note that we have NX|Gi

 NGi|P9 |X 
 Q∨

2i(2)|X . By stability of Q∨
2i(2) we

have φ is either trivial or an isomorphism. If it is an isomorphism it induces
an isomorphism NG1|P9 |X 
 NG2|P9 |X and we conclude by Lemma 3.4. If
it is trivial it lifts to an isomorphism NX|G1


 NX|G2
which again gives

an isomorphism NG1|P9 |X 
 NG2|P9 |X and permits us to conclude again by
Lemma 3.4.

Now we are ready to prove the main theorem of this section.

Theorem 3.6. Let F be the partial flag manifold F (2, 3, V5), let p and q be
the projections to the two Grassmannians G(2, V5) and G(3, V5).

Then a general section s ∈ H0(F,O(1, 1)) gives rise to two non-birational
Calabi–Yau threefolds X = Z(p∗s) and Y = Z(q∗s).
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Proof. Because of Lemma 2.2, we deduce that if there exists an isomorphism
mapping X to Y , then it is given by a map f : G(2, V5) → G(3, V5). Recall

that such a map is determined by a linear isomorphism from Tf : V5 → V ∨
5 .

Thus, because of Corollary 3.5, X and Y are dual and isomorphic only

if there exists f : G(2, V5) → G(3, V5) such that X is f -dual to X. This, by
Corollary 2.10 translates to the fact that a section sX ∈ HF from Lemma 2.7
defining X on F satisfies M−1

f STMf = λS for S being the matrix associated

to the section sX and some constant λ. But since S and ST are similar

matrices then multiplication by λ must then preserve the spectrum of S.
The proof amounts now to find a matrix S corresponding to an element of
HF with spectrum that is not fixed by multiplication with λ �= 1 and such

that the equation

STM −MS = 0

has no solutions among matrices M of the form M = ∧2T . This is done via
the following script in Macaulay2 [GS]:

R=QQ[a_1..a_25]

S=matrix{

{ 1 ,0,0,0,0,0,0,0,0,0},

{0, 2 ,0,0,0,0,0,0,0,0},

{0,0, 0 ,0,0,0,0,0,0,0},

{0,0,0, 0 ,0,0,0,0,0,0},

{0,1,0,0, 0 ,0,0,0,0,0},

{0,0,0,0,0, 1 ,0,0,0,0},

{0,0,0,0,0,0,-1 ,0,0,0},

{0,0,0,0,0,0,0,-1 ,0,0},

{0,0,0,0,0,0,0,0,-1 ,0},

{0,0,0,0,0,0,0,0,0,-1 }}

T=genericMatrix(R,5,5)

M=exteriorPower(2,T)

Sol=ideal flatten(transpose(S)*M-M*S)

saturate(Sol, ideal det T).

Here we chose S a matrix satisfying the equations defining HF =

H0(IF∨|P∨)⊥ as in Remark 2.8.

This implies that a general hyperplane section s of the flag variety F

yields two Calabi–Yau threefolds X and Y which are dual, but not pro-
jectively isomorphic. By the fact that the studied manifolds have Picard
number one we conclude that they are not birational.
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Remark 3.7. The above proof being very explicit has the advantage that it
permits to show a concrete example of a pair of Calabi–Yau varieties in our
family which are dual but not birational. We can however perform a more
conceptual proof, which is more susceptible to generalization and permits
to estimate the expected codimension of the fixed locus of our duality. It is
based on ideas of Kleiman transversality of a general translate. We sketch
it below. Let us first observe that a general element in HF is a matrix
with distinct non-zero eigenvalues and whose spectrum is not preserved by
multiplication with any λ ∈ C\{1}. This can be checked in a specific example
and expanded by openness. For such elements S the space of matrices M ∈
GL(∧2V ) which satisfy SM = MST is a 10 dimensional subset of symmetric
matrices. To see that, we put S in Jordan normal form S = J−1DJ with
D diagonal with distinct nonzero entries and then J−1DJM = MJTDJ−T

leads to the conclusion that JMJT commutes with D hence is diagonal. It
follows that M is symmetric and moves in a 10 dimensional family MJ .

Now note that GL(10) acts transitively on the space of invertible sym-
metric matrices viaK·M = KTMK. We finally observe that SM−MST = 0
has a solution of the form M = ∧2N with N ∈ GL(V ) exactly when
MJ∩∧2GL(V ) is non-empty, where we denote ∧2GL(V ) the image ofGL(V )
in GL(∧2V ). Observe that the space of symmetric matrices in ∧2GL(V ) is
of dimension 15 and is represented by elements of GL(V ) which are symmet-
ric. We can now perform a dimension count based on Kleiman transversality
([Klei, Theorem 2, Lemma 1]) proving that the set of G ∈ GL(10) such that
G ·MId∩∧2GL(V ) �= ∅ has dimension ≤ 70. More directly, we can use [Klei,
Lemma 1] for a map θ from GL(10) to some variety B whose general fibers
are of dimension 25 and meet the locus

{G∈GL(10) |∃Ddiagonal with distinct nonzero eigenvalues : G−1DG∈HF }

The latter fibration exists for dimensional reasons. Then from the inequality
25 + 10 + 15 < 55 we deduce by [Klei, Lemma 1] that for general b ∈ B we
have θ−1(b) · MId ∩ ∧2GL(V ) = ∅. This implies that for every G ∈ θ−1(b)
and every D diagonal with distinct nonzero eigenvalues there is no solution
to SM = MST when S = G−1DG and M ∈ ∧2GL(V ). By our choice of
fibration the latter includes some S ∈ HF which completes the proof.

Corollary 3.8. If X̃, Ỹ are general Calabi–Yau threefolds in X25 which are
dual in the sense of [OR, BCP] then they are not birational.

Proof. Consider an open neighborhood U ⊂ X25 of a general X ∈ X̄25.
Consider also the family V of duals parametrized by U. Now U and V are
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families of polarized Calabi–Yau threefolds such that, by Theorem 3.6, there

exists a fiber of U which is not isomorphic to the corresponding fiber of V.

Then by the Matsusaka–Mumford theorem [MM] the corresponding general

fibers are not isomorphic and consequently general dual pairs in X25 are not

isomorphic.

4. The L-equivalence in the Grothendieck ring of varieties

Hereafter we will show how, in the relation (1), the power of L drops to two.

This result is due to the characteristics of the fibrations described in (3),

which are special to X̄25.

Theorem 4.1. Let s be a generic section of O(1, 1) on the flag F , let p

and q be the projections to G(2, V5) and G(3, V5). Then, given X = Z(p∗s)
and Y = Z(q∗s), we have the following relation in the Grothendieck ring of

varieties, where L is the class of the affine line.

(32) ([X]− [Y ])L2 = 0

Proof. With the aid of previous results, the proof is immediate from the

following claim.

Claim. The maps πi define P2-bundles over the Calabi–Yau threefolds and

P1-bundles over the complements of the Calabi-Yau threefolds in the Grass-

mannians. In particular, the maps πi are piecewise trivial fibrations.

Indeed, p−1(X) = P(Q∨
2 (2)|X) whereas the preimage of G(2, V5)\X is given

by p−1(G(2, V5)\X) = P((Q2(2)|X)/(p∗s|G(2,V5)\X) ·OG(2,V5)|G(2,V5)\X). The

latter quotient is a vector bundle since p∗s does not vanish outside X. The

argument for q is completely symmetric.

Using the claim we write the following relations in the Grothendieck ring

of varieties:

[M ] = [X][P2] + [G(2, V5)\X][P1](33)

[M ] = [Y ][P2] + [G(3, V5)\Y ][P1](34)

W compare the two expressions and, using properties of the Grothendieck

ring of varieties, we get

(35) 0 = [X]([P2]− [P1])− [Y ]([P2]− [P1])
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which, via the formula

(36) [Pn] = 1 + L+ L
2 + · · ·+ L

n,

yields the desired result.

5. Derived equivalence

From a theorem of Orlov in [Orl], we deduce the following orthogonal de-
compositions for a hyperplane section of F :

Db(M) =
〈
Db(G(2, V5)), D

b(G(2, V5))⊗O(1, 1), p∗Db(X)
〉

=
〈
Db(G(3, V5)), D

b(G(3, V5))⊗O(1, 1), q∗Db(Y )
〉(37)

In the remainder of this section, we will provide a sequence of mutation with
the aim of proving the following equivalence of categories:〈

Db(G(3, V5)), D
b(G(3, V5))⊗O(1, 1), q∗Db(Y )

〉
∼−→〈

Db(G(2, V5)), D
b(G(2, V5))⊗O(1, 1),ΦDb(Y )

〉(38)

where Φ is a functor given by a composition of mutations. That would prove
an equivalence between this last exceptional collection and (37), thus proving
that Db(X) 
 Db(Y ).

Exceptional collections for Grassmannians and flag varieties have been
described by Kapranov in [Kapr], where a method to construct them has
been given in terms of Schur functors of the universal bundle, but we will use
the minimal Lefschetz decomposition for G(2, V5) introduced by Kuznetsov
in [Kuz2]. The advantage of this collection, which can be recovered from the
Kapranov one with a sequence of mutations as explained in [Kuz2], is that
it generates a very simple helix involving only twists of two vector bundles.
The collection is the following:

DbG(2, V5) =
〈
O,U∨

2 ,O(1),U∨
2 (1),O(2),U∨

2 (2),O(3),U∨
2 (3),O(4),U∨

2 (4)
〉

(39)

The duality isomorphism between G(2, V5) and G(3, V5) exchanges U∨
2 with

Q3 and allows us to write a minimal Lefschetz exceptional collection
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for the Grassmannian G(3, V5):

DbG(3, V5) = 〈O,Q3,O(1),Q3(1),O(2),Q3(2),O(3),Q3(3),O(4),Q3(4)〉 .
(40)

Now, before venturing in the computation of the mutations which will lead

to the derived equivalence, let us prove some useful cohomology calculations:

Lemma 5.1. The following relation holds for non negative integers a, b

which satisfy 2 + a ≤ b ≤ 7 + a except for b = 3 + a:

Ext•(Q3(1, b),O(2, 2 + a)) = 0

Proof. The proof is merely an application of Borel–Weil–Bott theorem, in

particular, we are interested in understanding on which conditions on a and

b we can obtain H0(F,Q∨
3 (1, 2 + a− b)) = 0.

Due to the Leray spectral sequence, our problem simplifies to showing

that the pushforward of this bundle with respect to one of the two projections

from the flag has no cohomology.

Namely, due to the projection formula, we have:

q∗Q∨
3 (1, 2 + a− b) = U3(1)⊗Q∨

3 (2 + a− b) = ∧2U∨
3 ⊗Q∨

3 (2 + a− b)

= ∧2U3 ⊗
(
∧3U3

)⊗(2+a) ⊗Q∨
3 ⊗

(
∧2Q∨

3

)⊗b

The Bott-Weil theorem states that cohomology vanishes in every degree if

two or more of the following integers coincide:

9 + a; 8 + a; 5 + a; 3 + b; 1 + b.

and this completes the proof.

A similar result can be obtained with the same argument:

Lemma 5.2. The following relation holds for non negative integers a, b

which satisfy 3 + a ≤ b ≤ 7 + a:

Ext•(O(1, b),O(2, 2 + a)) = 0

Another useful vanishing condition comes from the Leray spectral se-

quence:
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Lemma 5.3. Let F and F ′ be vector bundles on F such that they are

pullbacks of vector bundles on the same Grassmannian. Then the following

relation holds for every a, b, c, d such that d− b is either one or two:

(41) Ext•(F(a, b),F ′(c, d)) = 0

Proof. We observe that

F∨(−a,−b)⊗F ′(c, d) = p∗(F∨ ⊗F ′(c− a))⊗ q∗O(d− b).

The pushforwards of q∗O(−1) and q∗O(−2) to G(2, V5) have no cohomology,

thus F∨(−a,−b)⊗F ′(c, d) is acyclic. Due to the Leray spectral sequence we

have

(42) H0(F,F∨(−a,−b)⊗F ′(c, d)) = H0(G(2, V5), p∗F∨(−a,−b)⊗F ′(c, d))

and this yields the desired result.

The following lemmas provide some useful mutations which we will use

in the further computations.

Lemma 5.4. We have the following mutation in the derived category of a

Grassmannian G(k, V5) for every choice of the integers a, b:

LO(a,b)U(a, b) = Q(a, b)

Proof. The following fact

(43) Ext•(Q(a, b),O(a, b)) = C
n[0]

follows from Borel–Weil–Bott theorem, it tells us that the mutation we are

interested in is the cone of the morphism

(44) V5 ⊗O −→ Q.

From the universal sequence

(45) 0 −→ U −→ V5 ⊗O −→ Q −→ 0

we see that the morphism is surjective, thus the cone yields the kernel U .
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Lemma 5.5. In the derived category of G(3, V5) the following mutations
can be performed:

RO(a+1,b−1)Q3(a, b) = Q2(a, b)(46)

RO(a+1,b−1)U3(a, b) = U2(a, b)(47)

Proof. With Borel–Weil–Bott theorem we can compute the following:

(48) Ext•(Q3(a, b),O(a+ 1, b− 1)) = C[−1]

so a mutation involving that Ext is an extension. The relevant exact sequence
is

(49) 0 −→ O(1,−1) −→ Q2 −→ Q3 −→ 0,

which can be found computing the rank one cokernel of the injection U2 ↪−→
U3, comparing the universal sequences of the two Grassmannians and ap-
plying the Snake Lemma, this proves our first claim.

In order to verify the second one, we write the sequence involving the
injection between the universal bundles, which is

(50) 0 −→ U2 −→ U3 −→ O(1,−1) −→ 0.

The related Ext, in this case, is C[0], so the mutation is the cone of the
relevant morphism, yielding the desired result.

Now we are ready to introduce the following result, which is the key of
the proof of the derived equivalence.

Proposition 5.6. Let X and Y the zero loci of the pushforwards of
s ∈ H0(F,O(1, 1)). Then the following functor is an equivalence of cate-
gories 〈

Db(G(3, V5)), D
b(G(3, V5))⊗O(1, 1), q∗Db(Y )

〉
∼−→〈

Db(G(2, V5)), D
b(G(2, V5))⊗O(1, 1),Φ ◦ q∗Db(Y )

〉(51)

where Φ is a functor given by a composition of mutations.

Proof. The idea of the proof is writing the collection for the hyperplane
section in a way such that we can use our cohomology vanishing results to
transport line bundles O(a + 1, b − 1) to the immediate right of Q3(a, b),
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then use Lemma 5.5 to get rid of Q3(a, b), thus transforming vector bundles
on G(2, V5) to vector bundles on G(3, V5). The exceptional collection for M
with the G(3, V5) description is the following:

Db(M) =〈O,Q3,O(0, 1),Q3(0, 1),O(0, 2),Q3(0, 2),O(0, 3),Q3(0, 3),

O(0, 4),Q3(0, 4),O(1, 1),Q3(1, 1),O(1, 2),Q3(1, 2),O(1, 3),

Q3(1, 3),O(1, 4),Q3(1, 4),O(1, 5),Q3(1, 5), q
∗DbY 〉

Our first operation is sending the first five bundles to the end, they get
twisted with the anticanonical bundle of M , which, with the adjunction
formula, can be shown to be ωM = O(2, 2).

Db(M) =〈Q3(0, 2),O(0, 3),Q3(0, 3),O(0, 4),Q3(0, 4),O(1, 1),Q3(1, 1),

O(1, 2),Q3(1, 2),O(1, 3),Q3(1, 3),O(1, 4),Q3(1, 4),O(1, 5),

Q3(1, 5),O(2, 2),Q3(2, 2),O(2, 3),Q3(2, 3),O(2, 4), φ1D
bY 〉

where we introduced the functor

(52) φ1 = R〈O(2,2),Q3(2,2),O(2,3),Q3(2,3),O(2,4)〉 ◦ q∗

Applying Lemma 5.1, we observe that O(1, 1) can be moved next toQ3(0, 2).
Then we can use Lemma 5.5 sending Q3(0, 2) to Q(0, 2). This can be done
twice due to the invariance of the operation up to overall twists, yielding:

Db(M) =〈O(1, 1),Q2(0, 2),O(0, 3),Q3(0, 3),O(0, 4),Q3(0, 4),Q3(1, 1),

O(1, 2),Q3(1, 2),O(1, 3),O(2, 2),Q2(1, 3),O(1, 4),O(2, 3),

Q3(1, 4),O(1, 5),Q3(1, 5),Q3(2, 2),Q3(2, 3),O(2, 4), φ1D
bY 〉

We are tempted to perform the same operation with Q3(0, 3) and O(1, 2),
but O(1, 2) cannot pass through the bundles in between, since there are
non-vanishing Ext involved. We can avoid the problem using the fact that
Q3(1, 1) 
 Q∨

3 (1, 2) and that we can mutate this last bundle in U∨
3 (1, 2)

acting with O(1, 2), due to the dual formulation of Lemma 5.4.

Again, all these operations can be performed twice:

Db(M) =〈O(1, 1),Q2(0, 2),O(0, 3),O(1, 2),Q(0, 3),O(0, 4),Q3(0, 4),

U∨
3 (1, 2),Q3(1, 2),O(1, 3),O(2, 2),Q2(1, 3),O(1, 4),O(2, 3),

Q(1, 4),O(1, 5),Q3(1, 5),U∨
3 (2, 3),Q3(2, 3),O(2, 4), φ1D

bY 〉.
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Now, O(0, 3) and U∨
3 (1, 2) qualify for a mutation of the type described

in Lemma 5.5, to get them closer to each other we observe that, due to

Lemma 5.2, the Ext between O(0, 3) and O(1, 2) vanishes, and, for a similar

application of Borel–Weil–Bott theorem, also the Exts between U∨
3 (1, 2) and

the two bundles at its left are zero. Applying the same sequence of mutations

to the (1, 1)-twist of these objects we get the following collection:

Db(M) =〈O(1, 1),Q2(0, 2),O(1, 2),U2(0, 3),U∨
2 (1, 2),O(0, 3),O(0, 4),

Q3(0, 4),Q3(1, 2),O(1, 3),O(2, 2),Q2(1, 3),O(2, 3),U2(1, 4),

U∨
2 (2, 3),O(1, 4),O(1, 5),Q3(1, 5),Q3(2, 3),O(2, 4), φ1D

bY 〉.

Again, thanks to the dual formulation of Lemma 5.4, O(1, 3) can mutate

Q3(1, 2) to U∨
3 (1, 3), so we can apply Lemma 5.5 to transform Q3(0, 4) in

Q2(0, 4). But then O(1, 3) ends up next to O(0, 4), which is orthogonal to

it by application of Lemma 5.2, so they can be exchanged. Passing through

Q2(0, 4) via Lemma 5.4 and mutating it to U2(0, 4), O(0, 4) goes right next

to U∨
3 (1, 3), which is mutated to U∨

2 (1, 3) by applying Lemma 5.5.

Once we have done the same for the (1, 1)-twists, we have transformed

all the rank 2 and rank 3 vector bundles on G(3, V5) in vector bundles

on G(2, V5). What we still need to do is to remove the twists involving

powers of the hyperplane class of G(3, V5) and, consequently, recognize an

exceptional collection of G(2, V5) and its twist. Removing all the duals we

get the following result:

Db(M) =〈O(1, 1),Q2(0, 2),O(1, 2),U2(0, 3),U2(2, 2),O(0, 3),O(1, 3),

U2(0, 4),U2(2, 3),O(0, 4),O(2, 2),Q2(1, 3),O(2, 3),U2(1, 4),

U2(3, 3),O(1, 4),O(2, 4),U2(1, 5),U2(3, 4),O(1, 5), φ1D
bY 〉.

First we send O(1, 1) to the end, then we use Lemma 5.3 to order the bundles

by their power of the second twist:

Db(M) =〈Q2(0, 2),O(1, 2),U2(2, 2),O(2, 2),U2(0, 3),O(0, 3),O(1, 3),

U2(2, 3),Q2(1, 3),O(2, 3),U2(3, 3),O(3, 3)U2(0, 4),O(0, 4),

U2(1, 4),O(1, 4),O(2, 4),U2(3, 4),U2(1, 5),O(1, 5), φ2D
bY 〉

where we defined

(53) φ2 = RO(3,3) ◦ φ1.
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Now we send the last 10 objects to the beginning and reorder again the
collection with respect to the second twist, obtaining the following:

Db(M) =〈U2(1, 1),O(1, 1),U2(−2, 2),O(−2, 2),U2(−1, 2),O(−1, 2),O(0, 2),

U2(1, 2),Q2(0, 2),O(1, 2),U2(2, 2),O(2, 2)U2(−1, 3),O(−1, 3),

U2(0, 3),O(0, 3),O(1, 3),U2(2, 3),Q2(1, 3),O(2, 3), φ3D
bY 〉,

where

φ3 = L〈U2(3,3),O(3,3),U2(0,4),O(0,4),U2(1,4),O(1,4),O(2,4),U2(3,4),U2(1,5),O(1,5)〉 ◦ φ2

(54)

Now we observe that Q2(0, 2) is orthogonal to U2(1, 2), so they can be ex-
changed: this allows us to mutate Q2(0, 2) to U2(0, 2) sending it one step to
the left. After doing the same thing with O(1, 1)–twists of these bundles,
the last steps are tensoring everything with O(−2,−2) and sending the first
two bundles to the end.

We get:

Db(M) =〈U2(−4, 0),O(−4, 0),U2(−3, 0),O(−3, 0),U2(−2, 0),O(−2, 0),

U2(−1, 0),O(−1, 0),U2(0, 0),O(0, 0),U2(−3, 1),O(−3, 1),

U2(−2, 1),U2(−1, 1),O(−1, 1),U2(0, 1),O(0, 1),U2(1, 1),O(1, 1),

φ4D
bY 〉

We defined the last functor

(55) φ4 = T (−2,−2) ◦R〈U2(1,1),O(1,1)〉 ◦ φ3

where T (−2,−2) is the twist with O(−2,−2).

Now, if we observe the first half of the collection, we can recognize
DbG(2, V5): in fact, if we take the Kuznetsov collection (39), we can trans-
form U2 to U∨

2 (−1) in every Lefschetz block. Then, acting repeatedly with
the canonical bundle to send object from the end to the beginning of the
collection, we get our result, once we define Φ ◦ q∗ = φ4.

We have shown that both Db(X) and φ4D
b(Y ) can figure as the last

block of the first row in (37), so, for the uniqueness of the orthogonal com-
plement, there is an equivalence of categories

(56) Db(X) → φ4D
b(Y )
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Moreover, it is a known fact that the left and the right mutations define
an action of the braid group on the set of exceptional collections: the right
mutation provides an inverse for the left mutation, as explained, for example,
in [HIV] and [Shi]. Thus we deduce that the categories Db(Y ) and φ4D

b(Y )
are equivalent.

Summing all up, the content of this section provides a proof for the
following theorem:

Theorem 5.7. Let X and Y be dual Calabi–Yau threefolds in the sense of
Definition 2.4. Then they are derived equivalent.

6. The GLSM construction

In this final section we will give a GLSM realization of dual pairs (X,Y )
of Calabi–Yau threefolds in X̄25. Namely, we will construct a gauged linear
sigma model with two Calabi–Yau phases associated to different chambers
of the space of the stability parameter such that the critical loci are dual
threefolds Y and X.

The mathematical description of the GLSM we will use throughout this
work is due to Okonek, to whom we are very thankful for his insights, while
a thorough exposition of the subject has been given by Fan, Jarvis and
Ruan in [FJR]. In their work, as an example, a similar construction of the
Grassmannian G(k, n) as a GIT quotient with respect to GL(k,C) has been
constructed, and the GLSM of a section of

⊕
j O(dj) has been investigated,

giving a formal definition of the critical loci in both the phases appearing in
the model.

Definition 6.1. Let V be a vector space endowed with the action of a
reductive group G. We call gauged linear sigma model the data of a G-
invariant function

(57) V C.w

called superpotential. Furthermore, we define critical locus associated to the
superpotential w the following variety:

(58) Crit(w) = Z(dw).

Fixed a character

(59)
G C∗

g ρg

ρ
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the notion of semistability

(60) V ss
ρ = {v ∈ V : {(ρ−1g, gv)|g ∈ G} ∩ {0} × V = ∅}

allows us to define the vacuum manifold as a GIT quotient:

(61) Mρ = Crit(w) //ρ G.

The notion of phase transition is encoded in the variation of stabil-

ity conditions: namely, changing the character ρ leads to different vacuum

manifolds. According to the theory of stability conditions, the regions of

the space of characters characterized by the same GIT quotients are called

chambers, thus the problem of phase transitions of a GLSM is interpreted

as a problem of wall crossing.

Example 6.2. Let G be a reductive group, E = P ×G F a vector bundle

with base B = P/G and s ∈ H0(B, E). Given a G-module U containing P
with codU (U\P) ≥ 2, we define the gauged linear sigma model of s to be a

map

(62)

U × F∨ C

(u, λ) λ · ŝ(u)

š

where the function

(63) ŝ : U F

is completely defined by s, namely by the requirement of satisfying the G-

equivariancy condition

(64) s([p]) = [p, ŝ(p)].

and, then, extended uniquely to U , which is always possible as long as the

above condition on the codimension is fulfilled.

By asumption there exists a character ρ whose G-semistability condition

on U×F∨ has semistable locus V ss
ρ0

= P×F∨. In this case, the critical locus

of the superpotential will be determined by the following.
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Lemma 6.3 (Okonek’s lemma). Let š be a superpotential defined by a reg-
ular section s ∈ H0(B, E). Then the following isomorphism holds:

(65) Crit(š) 
 Z(ŝ).

Proof. By definition, we have

(66) Z(dš) = {(u, λ) ∈ E∨ : ŝ(u) = 0, λ · dŝ(u) = 0}.

Since s is a regular section, then ŝ is regular. Then, since its Jacobian dŝ
has maximal rank, λ · dŝ(u) = 0 if and only if λ = 0.

Then the vacuum manifold will be the GIT quotient of the zero locus of
ŝ with respect to G. This, in turn, gives

(67) Mρ0
= Z(s).

We observe that this construction can be used to realize the zero locus of
a section of a homogeneous vector bundle as a phase of a GLSM, provided
a family of characters such that the GIT quotient with respect to a given
chamber yields the right subset of the vector space U × F∨.

Varying the character ρ leads to different semistable loci, which, in turn,
define different GIT quotients. These are called phases of the physical theory.
An interesting physical problem is to discuss phase transitions of a gauged
linear sigma model, which means wall-crossing between different chambers.

In the following, we will present our GLSM construction leading to the
varieties discussed above. First, we will give the following characterization
of the bundle U3(2) over G(3, V5):

(68)

U3(2) =
Hom(C3,V5)\{rk<3}×C

3

GL(3,C) � (B, v) ∼ (Bg−1, det g−2gv)

G(3, V5) =
Hom(C3,V5)\{rk<3}

GL(3,C) � B ∼ Bg−1.

s

In this setting, chosen a rank three 5× 3 matrix B, the section s is defined
by the following:

(69) s(B) = (B, ŝ1(B)b1 + s2(B)b2 + s3(B)b3) ,
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where bi are the three columns of B. Thus, in order to respect the expected
degree, ŝ must be a vector of three quintics in the entries of B. In this
way we have defined the image of s in V5 ⊗ O(2). In particular, since
U3(2) = q∗O(1, 1), the quintics ŝi(B) will be such that the second coordinate
in (69) will be a vector of five polynomials which are quadratic in the 3× 3
minors of B. Moreover, we see that s extends to a map

(70)
Hom(C3, V5) Hom(C3, V5)× C3

B (B, ŝ(B)).

s

From the definition of ŝ we construct the following superpotential:

(71)
Hom(C3, V5)× (C3)∨ C

B,ω ω · ŝ(B)

s

Note that this formulation of a GLSM fits into the physical description of
[HTo]. In particular, the choice of a superpotential of the form given by
[HTo, (2.6)] can be written, in physical terms, as

(72) W =

∫
d2θTr(PBŝ(B)),

where ω = PB and P1, . . . P5 are superfields transforming as P �→ det g2P
under the gauge group, which is U(3), and the integration is on two fermionic
coordinates of the superspace.

Now, let ρτ be the character defined by ρτ (g) = det g−τ . This leads to
two different chambers in the space of stability conditions.

6.0.1. The chamber τ > 0 A pair (B,ω) is stable if there are no se-
quences {gn} satisfying

(73) lim
n→∞

det gn = 0

such that the sequence {(Bg−1
n , det(gn)

2ωg−1
n )} has a limit. We observe that

the term Bg−1
n will always diverge in the limit, unless B has not maximal

rank. In this latter case, it will be possible to choose a sequence gn such that
g−1
n has no limit, but Bg−1

n is finite. Since det(gn)
2ωg−1

n is always finite, we
get no further condition on ω.
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Thus the GIT quotient relative to the chamber τ > 0 will define the
bundle U∨

3 (−2) over G(3, V5) and the vacuum manifold, due to Lemma 6.3,
is isomorphic to the Calabi–Yau threefold Y = Z(s). Moreover, being the
superpotential š G-invariant,the map š+ in Diagram (74) is well defined:

(74)

U∨
3 (−2) C U3(2)

Z(s) ⊂ G(3, V5) G(3, V5).

š+

s

6.0.2. The chamber τ < 0 Here, in order to achieve semistability, we
need to test our pairs (B,ω) with sequences gn, where det gn tends to infinity.
In this setting, we claim that the semistable locus is given by the following
set:

(75) V ss
− = {(B,ω) ∈ Hom(C3, V5)× (C∨)3 : ω �= 0, kerω ∩ kerB = 0}.

First of all, the case ω = 0 is ruled out by the fact that there always exist
a sequence {gn} with det gn → ∞ such that (Bg−1

n , 0) has a limit. Thus,
let us suppose ω �= 0. To show that the set described in (75) contains the
semistable locus, let us suppose kerω ∩ kerB is non trivial. Then we fix a
basis of V5 and C3, where

(76) B =

⎛
⎜⎜⎜⎜⎝
0 b12 b13
0 b22 b23
0 b32 b33
0 b42 b43
0 b52 b53

⎞
⎟⎟⎟⎟⎠ ; ω =

(
0 ω2 ω3

)
.

We can then exhibit a sequence {gn}, with det gn = n, such that both ω and
B are fixed under its action. This is achieved, for example, with

(77) g−1
n =

⎛
⎝n3 0 0

0 1/n2 0
0 0 1/n2

⎞
⎠ .

To prove the other inclusion, we must show that, if kerω ∩ kerB = 0, there
is no sequence {gn} with det gn → ∞ such that the sequence gn · (B,ω) has
a limit.
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Again, we can fix a basis of V5 in order to achieve

(78) B =

⎛
⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 b33
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎠ ; ω =

(
0 0 1

)
.

In that case we define (Bn, ωn) the pair gn · (B,ω). Then we form Mn to be

the 3 × 3 matrix whose first two rows are the first two rows of Bn and the

third row is ωn. Then we note that

(79) detMn = det g2n det g
−1
n = det gn → ∞

hence Mn has no limit, so neither does gn · (B,ω).

We observe that, since kerω is two-dimensional, the condition kerω ∩
kerB = 0 implies rkB ≥ 2, otherwise the kernels would intersect in a non

trivial vector space.

The critical locus of our superpotential, in the phase τ < 0, is described

by the following equations in V ss
− :

(80) Z(dš) =

{
ω · dŝ = 0
ŝ = 0

The request of having ω �= 0 in the kernel of the transpose of dŝ can be

rephrased saying that the Jacobian of ŝ has a non-trivial kernel and this is

not possible if B is maximal rank. This fact, combined with the condition

rkB ≥ 2, yields rkB = 2, which automatically satisfies ŝ = 0.

In the following we will determine the explicit expression for the func-

tions ŝ(B) via the pushforward of the general expression of a hyperplane

section of the flag. This determines uniquely a section of U3(2) on G(3, V5)

and we can read ŝ(B) by confronting the result with (69). We will adopt the

convention of the summation of repeated indices in order to lighten the no-

tation. Furthermore the square brackets encasing a set of indices will mean

that a tensor is made antisymmetric with respect to permutation of those

indices, namely

T[i1,...ik] =
1

k!

∑
σ∈Sk

εσTσ(i1)...σ(ik)

where εσ is the sign of the permutation σ.
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A general section S ∈ H0(F,O(1, 1)) can be written in the following

way:

(81) S(A,B) = Sijklmψijk(B)ψlm(A),

where A is the matrix given by a basis of a representative of a point in

G(2, V5), while B is the same for G(3, V5), ψlm(A) is the 2 × 2 minor of A

obtained choosing the rows l and m and ψijk(B) is the 3 × 3 minor of B

defined in the same way. Note that the functions ψ are, by definition, com-

pletely antisymmetric, thus S will be antisymmetric with respect to (i, j, k)

and (l,m).

Let us choose a basis of V5 such that A is given by the second and the

third columns of B. Thus we can use the linearity of ψklm(B) with respect

to the variables br1 and write S in the following ways:

S(A,B) = Sijklmψ[ij(A)bk]1ψlm(A);(82)

S(A,B) = Sijklmψijk(B)
∂

∂bp1
ψplm(B)(83)

From (82) we can write the pushforward s1 of S to G(2, V5): seeing

(b11, . . . , b51) as a vector in Q[A], the usual inner product in V5 allows us

to define, as an element of Q∨
2 (2), the vector whose r-th component is

s1,r = Sijklm ∂

∂br1
ψ[ij(A)bk]1ψlm(A)

= Sijklmψ[ij(A)δk]rψlm(A)

(84)

In a similar way, we can define from (83) a section s2 of U3(2), if we note

that {∂b11 , . . . , ∂b51} define a basis of linear functionals on U3[B]. We get:

(85) s2 = Sijklmψijk(B)

⎛
⎜⎜⎜⎜⎜⎝

ψ1lm(B)

ψ2lm(B)

ψ3lm(B)

ψ4lm(B)

ψ5lm(B)

⎞
⎟⎟⎟⎟⎟⎠ .

In the description of the GLSM, we defined a section of U(2) with the fol-

lowing expression:
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(86) s2(B) = B, ŝ1(B)

⎛
⎜⎜⎜⎜⎝
b11
b21
b31
b41
b51

⎞
⎟⎟⎟⎟⎠+ ŝ2(B)

⎛
⎜⎜⎜⎜⎝
b12
b22
b32
b42
b52

⎞
⎟⎟⎟⎟⎠+ ŝ3(B)

⎛
⎜⎜⎜⎜⎝
b13
b23
b33
b43
b53

⎞
⎟⎟⎟⎟⎠ .

Confronting the last equation with (85) leads us to write the following ex-
pression for ŝ(B):

(87) ŝr(B) = Sijklmψijk(B)
∂

∂bpr
ψplm(B).

In the above, we wrote ŝ as a function defined on Hom(C3, V5)\{rk < 3}
with values in C3, but we note that, as expected, it extends by zeros to a
function on all Hom(C3, V5). Namely, if the rank of B is smaller than three,
all the 3× 3 minors vanish, so ŝ(B) = 0. Then, by inspection, we see that ŝi
is linear in the entries of the i-th column of B and quadratic in the entries
of the other two columns.

Now, since rkB = 2, let us choose a basis where the first column of
B vanishes. This reduces the system of 15 equations ω · dŝ = 0 to five
quartics. The overall factor ω1 appearing in each of them can be discarded
since the choice of having b1 = 0 and the condition kerB ∩ kerω = 0 imply
ω1 �= 0. Moreover, since the five quartics are independent on the entries of
b1, they are quadrics with respect to the 2×2 minors of the matrix obtained
discarding the first column from B. Summing all up, the critical locus for
the phase τ < 0 is given by

(88) Crit(š) = {(B,ω) : kerB ∩ kerω = 0; rkB = 2, ∂b1i ŝ1 = 0}.

Finally, computing the derivatives of (87) with respect to the entries of the
first column of B, we get

(89)
∂

∂bp1
ŝ1(B) = Sijklmψ[ij(A)δk]qψlm(A)

which are exactly the quadrics appearing in (82).
So far, we got no conditions on ω except for ω1 �= 0: the critical locus of

the superpotential in the chamber τ < 0 is a bundle E over the zero locus
of the five quadrics in G(2, V5). However, we still have a GL(3,C)-action on
this bundle: a matrix B with zeros in the first column is fixed by a stabilizer
of GL(3,C) given by matrices of the form
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(90) g−1
n =

⎛
⎝a b c
0 1 0
0 0 1

⎞
⎠

with a �= 0 and all the triples (ω1, ω2, ω3) with nonvanishing ω1 lie in the
same orbit with respect to this stabilizer, which acts freely on them. So the
action is transitive and free. Quotienting E with respect to the GL(3,C)-
action, yields exactly the Calabi–Yau threefold X, this proves the compati-
bility of our GLSM construction with the description of diagram (3).
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tions mathématiques de l’IH ÉS, 105 (2007) 157. MR2354207

[KS] Alexander Kuznetsov, Evgeny Shinder. Grothendieck ring of va-
rieties, D- and L-equivalence, and families of quadrics. e-Print:
arXiv:1612.07193, 2016. MR3848025

[MM] T. Matsusaka, David Mumford. Two fundamental theorems on
deformations of polarized varieties. Amer. J. Math., 86, 668–684.
MR0171778

[Man] Laurent Manivel. Double spinor Calabi-Yau varieties. e-Print:
arXiv:1709.07736, 2017. MR3936623

http://www.ams.org/mathscinet-getitem?mr=3912058
http://www.ams.org/mathscinet-getitem?mr=3036443
http://www.ams.org/mathscinet-getitem?mr=3021322
http://www.ams.org/mathscinet-getitem?mr=0733363
http://www.ams.org/mathscinet-getitem?mr=0360616
http://www.ams.org/mathscinet-getitem?mr=3830796
http://www.ams.org/mathscinet-getitem?mr=2434094
http://www.ams.org/mathscinet-getitem?mr=2354207
http://www.ams.org/mathscinet-getitem?mr=3848025
http://www.ams.org/mathscinet-getitem?mr=0171778
http://www.ams.org/mathscinet-getitem?mr=3936623


760 Micha�l Kapustka and Marco Rampazzo

[Orl] Dmitri Orlov. Triangulated categories of singularities and equiv-

alences between Landau-Ginzburg models. Sbornik: Mathematics,

197 (2006), no. 12, 1827–1840. MR2437083

[OR] John C. Ottem, Jørgen V. Rennemo. A counterexample to the

birational Torelli problem for Calabi–Yau threefolds. e-Print:

arXiv:1706.09952, 2017. MR3816394

[Renn1] Jørgen V. Rennemo. The fundamental theorem of homologi-

cal projective duality via variation of GIT stability. e-Print

arXiv:1705.01437, 2017.

[Renn2] Jørgen V. Rennemo. The homological projective dual of

Sym2
P(V ). e-Print arXiv:1509.04107, 2015.

[Rød] Einar Andreas Rødland. The Pfaffian Calabi–Yau, its Mir-

ror, and their link to the Grassmannian G(2,7). e-Print:

arXiv:math/9801092, 1998. MR1775415

[RS] Jørgen V. Rennemo, Ed Segal. Hori-mological projective duality.

e-Print: arXiv:1609.04045, 2016. MR3992034

[Sha] Eric Sharpe. GLSM’s, Gerbes, and Kuznetsov’s Homological Pro-

jective Duality. J. Phys.Conf. Ser. 462 (2013), no. 1, 012047.

[Shi] Evgeny Shinder. Derived Categories: Lecture 2. http://e-shinder.

staff.shef.ac.uk/Mainz-Lecture-2.pdf, 2013.

[Wei] Jerzy Weyman. Cohomology of vector bundles and syzygies, Cam-

bridge Tracts in Mathematics, no. 149, Cambridge University

Press (2003). MR1988690

[Wit] Edward Witten. Phases of N = 2 theories in two-dimensions.

Nucl.Phys. B 403 (1993) 159–222. MR1232617

Micha�l Kapustka

Institute of Mathematics of the Polish Academy of Sciences
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