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Dodgson polynomial identities

Marcel Golz

Dodgson polynomials appear in Schwinger parametric Feynman
integrals and are closely related to the well known Kirchhoff (or
first Symanzik) polynomial. In this article a new combinatorial
interpretation and a generalisation of Dodgson polynomials are
provided. This leads to two new identities that relate large sums
of products of Dodgson polynomials to a much simpler expres-
sion involving powers of the Kirchhoff polynomial. These identities
can be applied to the parametric integrand for quantum electro-
dynamics, simplifying it significantly. This makes QED Feynman
integrals more accessible for both direct parametric integration via
computer algebra and more abstract algebro-geometric methods.
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1. Introduction

1.1. Background

Perturbative quantum field theory is the standard framework used by parti-
cle physicists to predict and explain high-energy experiments, e.g. at modern
colliders like the LHC. This necessitates the computation of a large number
of complicated integrals. These Feynman integrals grow quickly in number
and complexity, so on the one hand one wants to find methods to compute
them as efficiently as possible, and on the other hand one looks for hidden
structures that reduce the amount of necessary computations.

To that end, the Schwinger parametric representation of Feynman inte-
grals has proved to be very useful in recent years. It was already known in
the early days of quantum field theory [1, 2, 3, 4, 5, 6, 7], but fell somewhat
out of favour, since it was not as suitable for direct integration as other
versions of Feynman integrals. This problem was rectified when, building on
the connections to algebraic geometry found in [8], an algorithm for the sys-
tematic integration of parametric Feynman integrals was developed [9, 10]
and subsequently implemented in computer algebra [11].

The renewed interest in parametric Feynman integrals has already yield-
ed many interesting results [12, 13, 14, 15, 16, 17, 18, 19]. However, those
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have all been confined to scalar quantum field theories. In that case the

(unrenormalised) integral is simply of the form

φΓ =

∫
R

|EΓ|
+

dα1 · · · dαEΓ

exp
(
− ΦΓ

ΨΓ

)
Ψ2

Γ

,(1.1)

where Γ is a Feynman graph and ΨΓ, ΦΓ are two homogenous polynomials

that will be discussed extensively below.

There are numerous longstanding problems in gauge theories, like the

cancellation of transcendental numbers in the QED beta function [35, 37],

that might be more accessible with the methods of parametric Feynman in-

tegrals. However, in gauge theories they become much more complicated and

until recently the integrand could only be expressed in terms of complicated

derivatives of the scalar integrand [20, 15]. For quantum electrodynamics

the combinatorics of these derivatives have been analysed in [21] and it was

found that they can be expressed explicitly in terms of graph polynomials

similar to ΨΓ and ΦΓ. The other complication of QED, the tensor structure

consisting of products of Dirac matrices, was dealt with in [22]. Combin-

ing these results yields an (unrenormalised, massless) parametric Feynman

integral for QED that is of the form

φΓ =

∫
R

|EΓ|
+

dα1 · · · dαEΓ

exp
(
− ΦΓ

ΨΓ

)
Ψ

2+h1(Γ)
Γ

h1(Γ)∑
l=0

I
(l)
Γ

Ψl
Γ

(1.2)

where each I
(l)
Γ is essentially (cf. eq. (1.41) and sec. 4) just a sum over certain

subsets of chord diagrams D,∑
D

(−2)c̃(D)XD,(1.3)

where XD is a product of the polynomials from [21] and c̃(D) is an integer

determined by the combinatorial properties of D. In our main results, the-

orems 3.1 and 3.8, we prove that the sums in I
(0)
Γ and I

(1)
Γ are equal to a

simpler sum of the form

2−k

h1(Γ)∑
l=1

(−ΨΓ)
h1(Γ)−l+k(l + 1)! Zk

Γ

∣∣
l

for k = 0, 1,(1.4)
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where Zk
Γ

∣∣
l
is defined in sec. 2.3. This leads to cancellations of Kirchhoff

polynomials ΨΓ in eq. (1.2), significantly simplifying the integrand. On the
concrete example of a massless photon propagator graph in Feynman gauge

we show that the cases of k = 0, 1 suffice to express the superficially renor-
malised integral with a simple entirely scalar integrand.

1.1.1. Generalisations and extensions The results of this article are
not just applicable to this rather specific photon propagator. In a general

gauge one gets another sum and our results apply to each summand (see

eq. (4.2)). The same holds for the inclusion of masses, if one assumes quite
reasonably that all fermion masses are identical. The parametric renormali-

sation of massive integrals is much more cumbersome than the simple renor-
malisation procedure that we employ in section 4.1, but in principle not a

problem [16].

For a fermion propagator and a vertex with one external momentum set

to zero the differences are basically just a few different factors in the com-
putations of section 4.1 (e.g. the fermion propagator would be proportional

to /q rather than q2qμν − qμqν). The step to the full vertex function is more
complicated and needs more attention in future work. Much of this article

and especially section 3.2 is based on the assumption that the polynomial
ΦΓ factorises into q2ϕΓ with a q-independent ϕΓ. It will need to be seen

how much the results have to be modified if one has instead a polynomial
ΦΓ = q21ϕΓ,1 + q22ϕΓ,2 + (q1 + q2)

2ϕΓ,3.

Finally, in order to include subdivergences one also needs to understand

the higher order terms I
(k)
Γ with k ≥ 2. In eq. (1.4) we already suggest what

this should look like, although it is not yet entirely clear how the Zk
Γ

∣∣
l
have

to be defined for k ≥ 2.

1.2. Graph polynomials

A graph G is an ordered pair (VG, EG) of the set of vertices VG =
{v1, . . . , v|VG|} and the set of edges EG = {e1, . . . , e|EG|}, together with a

map ∂ : EG → VG × VG. We assume that G is connected and assign to each
edge e ∈ EG a direction by specifying an ordered pair ∂(e) = (∂−(e), ∂+(e)),
where the vertex ∂−(e) ∈ VG is called start or initial vertex while ∂+(e) ∈ VG

is called target or final vertex. In a common abuse of notation subgraphs

g ⊆ G are identified with their edge set Eg ⊆ EG. In the rare cases in which

the edge set does not uniquely identify the subgraph, i.e. when g contains
isolated vertices without incident edges, it will be mentioned explicitly. The
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number of independent cycles (loops, in physics nomenclature) is denoted
h1(G), which is the first Betti number of the graph.

Graph polynomials are polynomial valued invariants of a graph. The
polynomials that we are interested in all have in common that their variables
are the Schwinger parameters α = (αe)e∈EG

assigned to the edges of a graph
(which distinguishes them from other famous graph polynomials like the
Tutte polynomial [23, 24] and its various specialisations like the chromatic
polynomial [25, 26]). In the following we briefly introduce and review some
properties of six such graph polynomials that appear in Feynman integrals.

1.2.1. Kirchhoff and Symanzik A tree T is a graph that is connected
and simply connected, i.e. it has no cycles. A disjoint union of trees F =
�k
i=1Ti is called a k-forest, such that a tree is a 1-forest. If all vertices of G

are contained in such a subgraph T or F , then it is called a spanning tree

or spanning forest of G and we denote with T [k]
G the set of all such spanning

k-forests.
The Kirchhoff polynomial, which is especially in the physics literature

also often called the first Symanzik polynomial, is then defined as

ΨG(α) ..=
∑

T∈T [1]
G

∏
e/∈T

αe.(1.5)

It has been known for a very long time and was first introduced by Kirchhoff
in his study of electrical circuits [27]. In the 1950s it was then rediscovered
in quantum field theory [4]. We will often make use of the abbreviation

αS
..=

∏
e∈S

αe(1.6)

for any edge subset S ⊂ EG, such that ΨG =
∑

T αEG\T . The Kirchhoff
polynomial is homogeneous of degree h1(G) in α and linear in each αe.
Moreover, it also satisfies the famous contraction-deletion relation1

ΨG = ΨG//e + αeΨG\e.(1.7)

This means in particular that ΨG//e = ΨG|αe=0 and ΨG\e = ∂eΨG, where
∂e denotes the partial derivative w.r.t. αe. The definition of the Kirchhoff

1Note that we use the double-slash to denote contraction of an edge subset, as
opposed to contraction of a subgraph Γ/γ in the Hopf algebra of Feynman graphs.
The two notions differ if the subgraph in question is a propagator Feynman graph,
but in this article we will not encounter this problem.
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polynomial is commonly generalised to disjoint unions of graphs G = �iGi

(i.e. graphs with multiple connected components) via

ΨG
..=

∏
i

ΨGi
.(1.8)

Note that due to this definition one needs to exclude bridges from the
contraction-deletion relation, since ∂eΨG = 0 for any bridge e, whereas this
definition gives ΨG\e as the product of the polynomials of its two connected
components.

Many properties of graphs can be captured by matrices and we discuss
here some of the well known relations between graphs, matrices and the
Kirchhoff polynomial. The incidence matrix I is an |EG|×|VG| matrix whose
entries are defined as

Iev ..=

{
±1 if v = ∂±(e),

0 if e is not incident to v.
(1.9)

The Laplacian matrix L is defined as the difference of the degree and adja-
cency matrices of a graph. Since we will not need either of those two going
forward we instead use a well known identity to define the Laplacian as the
product of the incidence matrix and its transpose,

L ..= IT I.(1.10)

Instead of the full matrices we will actually always need the smaller matrices
in which one column (of I) or one column and one row (of L) corresponding
to an arbitrarily chosen vertex v0 of G are deleted. From now on we use I ′

and L′ for these |EG| × |VG| − 1 and |VG| − 1 × |VG| − 1 matrices, called
reduced incidence and reduced Laplacian matrix.

Finally, let A be the diagonal |EG| × |EG| matrix with entries Aij
..=

δijαei . With this setup the well known Matrix-Tree-Theorem [28] tells us
that

ΨG = αEG
det(I ′TA−1I ′).(1.11)

Note that here we have the inverse A−1, with entries A−1
ij = δijα

−1
ei . We call

the matrix in that determinant the weighted reduced Laplacian and denote
it with L̃′ = I ′TA−1I ′.

Remark 1.1. The polynomial Ψ∗
G = det(I ′TAI ′) is sometimes called dual

Kirchhoff polynomial. If G is planar then it is the Kirchhoff polynomial of
its planar dual graph G∗.
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Often I ′ and A are arranged in a block matrix

M ..=

(
A I ′

−I ′T 0

)
.(1.12)

This is called the expanded Laplacian or graph matrix of G [10, 8], and with
the block matrix determinant identity

det

(
S T

U V

)
= det(S) det(V − US−1T )(1.13)

one sees that

det(M) = det(A) det(I ′TA−1I ′) = ΨG.(1.14)

Example 1.2. Let G be the wheel with three spokes depicted on the left
of fig. 1.1. It has 16 spanning trees and the Kirchhoff polynomial is

ΨG = α1α2α4 + α1α2α5 + α1α3α4 + α1α3α5 + α1α2α6 + α1α3α6

+ α1α4α6 + α1α5α6 + α2α3α4 + α2α3α5 + α2α4α5

+ α3α4α5 + α2α3α6 + α2α4α6 + α3α5α6 + α4α5α6.(1.15)

Figure 1.1: The wheel with three spokes G = WS3 = K4 and a QED Feyn-
man graph Γ that corresponds to the wheel with edge e6 cut to become an
external photon edge.

Unlike the Kirchhoff polynomial, the second Symanzik polynomial is
not defined for generic graphs but only for Feynman graphs, which carry
additional information. Feynman graphs can have different types of edges,
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like photons ( ) and fermions ( ) in the graph on the r.h.s. of fig.
1.1. Moreover, Feynman graphs have so-called external edges, i.e. half edges

incident to only a single vertex. One associates to the external edges external
momenta qi, that are real Euclidean vectors qi ∈ R

4 for this article, but may
also be Minkowskian, D-dimensional, or complex, depending on context. To
distinguish them from generic graphs G we use Γ for Feynman graphs. The

second Symanzik polynomial is then defined as [4]

ΦΓ(α, q) ..=
∑

(T1,T2)∈T [2]
Γ

s(q, T1, T2)
∏

e/∈T1∪T2

αe(1.16)

where one sums over spanning 2-forests. The function s is the square of the
momentum flow between the two trees, i.e. the sum of all external momenta
entering either tree (which is the same for both trees due to momentum

conservation).

If, as in fig. 1.1 for example, there are only two (non-zero) external
momenta, such that q1 = −q2 ≡ q by momentum conservation, then the
second Symanzik polynomial factorises and we write

ΦΓ = q2ϕΓ.(1.17)

We focus on this case for this article. Note that ϕΓ is also a Kirchhoff
polynomial, namely that of the graph Γ•, which results from adding the
external edge between the two external vertices and then contracting it.

The second Symanzik polynomial can also be expressed in terms of ma-
trices. When deriving parametric Feynman integrals it appears in the form of

the inverse Laplacian L̃′−1
multiplied from both sides with vectors collecting

all external momenta. Using cofactors to invert the matrix and expanding
the matrix products as sums this yields

ΦΓ = αEΓ

∑
v1,v2∈V ′

Γ

qv1
· qv2

(−1)v1+v2 det(L̃′{v1}
{v2}),(1.18)

where V ′
Γ = VΓ \ {v0} is the set of all vertices except the one whose row and

column was removed from all matrices to get their reduced versions, and the
subscript and superscript on L̃′ indicate deletion of column v1 and row v2
from the matrix.

Example 1.3. Let Γ be the Feynman graph on the r.h.s of fig. 1.1. Its
Kirchhoff polynomial is just
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ΨΓ = α1α2 + α1α3 + α1α4 + α1α5 + α2α3 + α2α4 + α3α5 + α4α5

= (α2 + α5)(α3 + α4) + α1(α2 + α3 + α4 + α5),(1.19)

which is the derivative w.r.t. α6 of the Kirchhoff polynomial from example
1.2. There are a total of 10 spanning 2-forests, but not all of them con-
tribute to the second Symanzik polynomial. Consider the spanning 2-forest
with T1 = {e2, e5} and T2 just the isolated vertex v3 without edges. The ex-
ternal momentum q1 enters T1 in the vertex v1 and q2 (which has to be −q1
due to momentum conservation) enters T2 in v3. Hence, the corresponding
monomial is q21α1α3α4. An example of a forest that does not contribute is
T1 = {e2, e3} and T2 just the vertex v4. The external momenta entering T1

in v1 and v3 add up to 0, whereas T2 has no incident external edges at all.
Hence s(q1, q2, T1, T2) = 0 in this case. Overall, 8 of the 10 forests contribute
to yield the second Symanzik polynomial ΦΓ = q2ϕΓ with

ϕΓ = α1α2α4 + α1α2α5 + α1α3α4 + α1α3α5

+ α2α3α4 + α2α3α5 + α2α4α5 + α3α4α5.(1.20)

Here one sees that ϕΓ is indeed ΨΓ• = ΨG//e6 = ΨG

∣∣
α6=0

, where G is the
wheel from example 1.2.

1.2.2. Bonds and cycles A bond B ⊂ G is a minimal subgraph G such
that G \ B has exactly two connected components. A simple cycle C ⊂ G
is a subgraph of G that is 2-regular, i.e. all vertices have exactly two edges
incident to it, and it has only one connected component. The sets of bonds

and simple cycles of a graph G are denoted BG and C[1]
G .

In [21] two polynomials based on these types of subgraphs were defined
and it was shown that they can be used to express the Schwinger parametric
integrand in quantum electrodynamics without derivatives. The basic bond
polynomial and cycle polynomial are

βG(α, ξ) ..=
∑
B∈BG

(∑
e∈B

oB(e)ξe

)2

αBΨG\B,(1.21)

χG(α, ξ) ..=
∑

C∈C[1]
G

(∑
e∈C

oC(e)ξe

)2

ΨG//C ,(1.22)

where ξ = (ξ1, . . . , ξ|EG|) are formal parameters assigned to each edge
(later interpreted as auxiliary momenta, i.e. Euclidean 4-vectors), and
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oB(e), oC(e) ∈ {0,±1} are the signs of the relative orientations of e w.r.t.

some arbitrarily chosen orientation of the bond or cycle. Note that this choice

does not influence the sign of the polynomials, since these orientations only

appear within the square. Below we will abbreviate products of such signs

as oC(e1)oC(e2) = oC(e1, e2).

Via eq. (1.8) – the Kirchhoff polynomial definition for disconnected

graphs – these definitions extend to disconnected G as well. For Feynman

graphs the bond polynomial is closely related to the second Symanzik poly-

nomial. In fact, ΦΓ(α, q) is simply the evaluation of βΓ(α, ξ), where one sends

ξe → q for each e in some arbitrary path between the external vertices and

all others to 0 (and if there are n > 2 external vertices, then one does this

for n − 1 pairs of external vertices to get the correct linear combinations

ξe →
∑

±qi).

From these two polynomials we derive two families of polynomials that

we will from now on mostly mean when speaking of cycle or bond polyno-

mials:

β
(ei|ej)
G (α) ..=

1

2

∂2βG
∂ξi∂ξj

=
∑
B∈BG

oB(ei, ej)αBΨG\B(1.23)

χ
(ei|ej)
G (α) ..=

1

2

∂2χG

∂ξi∂ξj
=

∑
C∈C[1]

G

oC(ei, ej)ΨG//C(1.24)

Cycle and bond polynomials inherit many useful properties from the

Kirchhoff polynomial. They are clearly still linear in each αe and homogenous

of degree h1(G) + 1 (for βG, β
(ei|ej)
G ) and h1(G)− 1 (for χG, χ

(ei|ej)
G ). They

also satisfy the contraction-deletion relations and the following three useful

identities (proposition 2.8 and lemmata 2.9, 2.10, 2.11 in [21]):

χ
(e|e)
G = ΨG\e =

∂

∂αe
ΨG if e is not a bridge.(1.25)

β
(e|e)
G = αeΨG//e = αe ΨG|αe=0 if e is not a self-cycle.(1.26)

β
(e|e′)
G = −αeαe′χ

(e|e′)
G if e 	= e′.(1.27)

We also need the polynomial

Xe,μ
Γ (α, ξ) ..=

1

2αe

∂

∂ξe,μ
βΓ(α, ξ) = α−1

e

∑
e′∈EΓ

ξμe′β
(e|e′)
Γ .(1.28)
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More specifically, we need its evaluation ξ → q for the case of a single
external momentum,

Xe,μ
Γ (α, q) = qμxeΓ(α),(1.29)

which factorises similarly to the second Symanzik polynomial in eq. (1.17).

1.2.3. Dodgson and spanning forests In eq. (1.14) we have seen that
the Kirchhoff polynomial can be written as the determinant of the graph
matrix M . Motivated by this one considers minors of the graph matrix, i.e.
determinants

ΨI,J
G

..= det
(
MJ

I

)
,(1.30)

where the edge subsets I, J ⊂ EG with |I| = |J | in the subscript and su-
perscript denote deletion of all rows and columns indexed by edges in the
respective set. In general one often uses a third index set K for ΨI,J

G,K and

sets αe = 0 for all e ∈ K, but here we always have K = ∅. Note that ΨI,J
G

is only well-defined up to an overall sign since a different ordering of the
rows and columns in the graph matrix may change the sign of the determi-
nant. This will be discussed further below, but for now we just fix one such
ordering.

The ΨI,J
G are called Dodgson polynomials and appeared already in [8].

They were first named and systematically studied by Francis Brown in [10].
In the following we discuss some notable properties.

Passing to a minor For all A,B ⊂ EG

ΨI,J
G\A//B,K = ΨI∪A,J∪A

G,K∪B ,(1.31)

which justifies our setting K = ∅.

Determinant identities Let adj(M)[I, J ] be the restriction of the adju-
gate matrix of M to rows and columns indexed by I and J . Based on the
Desnanot-Jacobi identity [29]

det(adj(M)[I, J ]) = det(M)|I|−1 det(M I
J )(1.32)

for determinants one finds identities of the type

Ψ
{i1},{i3}
G Ψ

{i2},{i4}
G −Ψ

{i1},{i4}
G Ψ

{i2},{i3}
G = ΨGΨ

{i1,i2},{i3,i4}
G .(1.33)
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This case (|I| = 2 = |J |) is also called Dodgson identity2 and its generalisa-
tions are the crucial tool that we will work with below.

Combinatoric interpretation In the case of I ∩ J = ∅ = K the combi-
natoric interpretation for Dodgson polynomials given by Brown in [10, Prop.
23] simplifies to

ΨI,J
G =

∑
T⊂EG\(I∪J)

±
∏
e/∈T

αe(1.34)

where the sum is over edge subsets T that are simultaneously spanning trees
of (G \ I)//J and (G \ J)//I. A criterion for two monomials in this sum to
have the same or opposite signs is given in [13, Corollary 17]. Moreover, if
I and J do intersect, then

ΨI,J
G = Ψ

I\J,J\I
G\(I∩J)(1.35)

if G \ (I ∩ J) is still connected and zero otherwise. In particular, Ψ
{e},{e}
G =

ΨG\e.
Finally, the last graph polynomial that we will need is the spanning

forest polynomial [13, Def. 9]

ΦP
G =

∑
F=T1�···�Tk∈T [k]

P

αEG\F ,(1.36)

where P = P1, . . . , Pk is a partition of vertices of G and T [k]
P is the subset

of spanning k-forests which have the vertices of Pi contained in the tree Ti.
Being a sum over spanning forests and denoted by the same letter it is

no surprise to find that these polynomials are closely related to the second
Symanzik polynomial. Consider the matrix expression for ΦΓ from eq. (1.18).
The coefficients of a product qv1

· qv2
of external momenta are precisely the

spanning forest polynomials Φ
{v0},{v1,v2}
Γ , such that

ΦΓ = αEΓ

∑
v1,v2∈V ′

Γ

qv1
· qv2

(−1)v1+v2 det(L̃′{v1}
{v2}) =

∑
v1,v2∈VΓ

qv1
· qv2

Φ
{v0},{v1,v2}
G .

(1.37)

2Somewhat confusingly, it is also occasionally called Lewis Carroll identity and
both names are sometimes used to refer to the determinant identity eq. (1.32) [30].
Here we follow the conventions of [10].
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Note that Φ
{v0},{v1,v2}
G = 0 if either of the two vertices v1, v2 is equal to v0.

Hence, in this expression we can just sum over the entire vertex set and do
not need to write V ′

Γ.

1.3. Chord diagrams

Aside from Feynman graphs we need another very special kind of graph –
chord diagrams. They can be used to model the contraction and traces of
Dirac matrices, which is why they appear in QED Feynman integrals. For
proofs and a more in-depth discussion we refer to [22].

Classically, chord diagrams consist of a cycle on 2n vertices (the base)
and k ≤ n additional edges that pairwise connect 2k of the vertices of that
cycle (the chords), but here we need a slightly more general definition that
allows for multiple base cycles.

Definition 1.4. A chord diagram is a graph that consists of � ≥ 1 cycles
with 2n1, . . . , 2n� vertices and k ≤

∑
ni =.. N further edges, such that each

vertex is at most 3-valent.

Figure 1.2: Three chord diagrams of order n = 4 with one base cycle and
four, three and two chords respectively.

We denote with Dn
k the set of all chord diagrams3 with the respective

number and size of base cycles and chords, determined by the �-tuple n =
(n1, . . . , n�) ∈ N

�
+ and 1 ≤ k ≤ N . The set of 2-valent vertices of a chord

diagram is denoted V
(2)
D and we will often call them the “free vertices” of D.

3Here we always mean labelled diagrams, i.e. two diagrams that are isomorphic
as graphs but differ in the labelling of the vertices are viewed as different chord
diagrams. In practice we will always either fix an arbitrary labelling 1, . . . , 2N that
does not influence the result, or have a labelling fixed from context because the
diagram is derived from a Feynman graph in a certain way.
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1.3.1. Colours In addition to the distinction between base edges and
chords we will need to introduce more properties to differentiate between
certain types of edge subsets. This is achieved via colouring. For some finite
set K a map κ : EG → K is called an edge k-colouring if for every vertex
v of G all edges incident to it are assigned different colours, i.e. if κ is
injective in the neighbourhood of v. Chord diagrams D admit an edge 3-
coloring κ : ED → {0, 1, 2} that assigns two alternating colours 1 and 2 to
the edges of the base cycles and the third colour 0 to all chords. There are
2� possibilities of such a colouring corresponding to the exchange of colours
1 and 2 in some base cycles, so from now on we fix one such choice in all
diagrams. In drawings we visualise the colours with different line types:

0 ∼ 1 ∼ 2 ∼

Let Ei
D = κ−1({i}), Eij

D = κ−1({i, j}) be the edge subsets consisting only
of edges of the respective colour or colours. Each bicoloured edge subset can
be decomposed into collections of cycles Cij

D and paths P ij
D , where P12

D = ∅,
|P01

D | = |P02
D |, |C12

D | = �, and we define c2(D) ..= |C01
D |+ |C02

D |. The bicoloured
paths between the 2-valent vertices ofD can be joined in their shared vertices
to build tricoloured cycles, whose number we define to be c3(D). Often we
are only interested in the total number of such coloured cycles, which we
call c̃(D) ..= c2(D)+c3(D). Beware that this excludes the base cycles in C12

D ,
which are counted separately by �.

Figure 1.3: Colour decompositions of the left and right chord diagrams from
fig. 1.2.

Example 1.5. Let D1, D2, D3 be the three chord diagrams, left to right,
from fig. 1.2. For D1 and D3 the bicoloured subsets are depicted in fig. 1.3.
Since there are no 2-valent vertices in D1 all bicoloured components are
cycles. Simply counting them in the drawing one finds

c2(D1) = 3 c3(D1) = 0.
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D3, on the other hand, has four free vertices. We see that there is still a
bicoloured cycle on the very r.h.s. of fig. 1.3. The other bicoloured subsets
are paths, four of them, which combine into a single tricoloured cycle, such
that

c2(D3) = 1 c3(D3) = 1.

We leave it as an exercise for the reader to draw the bicoloured subsets of
D2, count the cycles, and confirm that also

c2(D2) = 1 c3(D2) = 1.

Contracting each path in P0i
D to a single edge of colour i maps the tri-

coloured cycles to a chord diagram D0 ∈ Dn0

0 , for some suitable n0 with∑
n0,i ≤ N , without any chords. Its base cycles correspond to the tricoloured

cycles and its vertices are the 2-valent vertices of D. We call this projection
map π0.

Figure 1.4: Visualisation of the projection map π0 for the case of diagram
D3 from fig. 1.2.

The final notion that we need to introduce is the signum sgn(u, v) of

two free vertices u, v ∈ V
(2)
D within a chord diagram. It is −1 if they are

not part of the same tricoloured cycle of D, and 0 or 1 if there are an even
or odd number of paths between them. Alternatively, in terms of π0(D),
sgn(u, v) = −1 if u and v are in different base cycles and is 0 or 1 if they
are in the same base cycle and are separated by an even or odd number of
base edges. In [22, Prop. 3.5] it was worked out how the numbers c2 and c3
change when a chord is added to a chord diagram D0 ∈ Dn

k with k < N .
Focussing only on the total number c̃ it reduces to

c̃(D) = c̃(D0) + sgn(u, v),(1.38)

where D = (VD0
, E0

D0
∪ {u, v}, E1

D0
, E2

D0
).



Dodgson polynomial identities 681

1.3.2. Chord diagrams and Feynman graphs In this section we es-
tablish the connection between Feynman graphs (and integrals) and chord
diagrams. For concreteness we focus on the case of photon propagator graphs
with a single fermion cycle, in Feynman gauge, and we ignore subdivergences.

The Feynman rules for a fermion cycle yield a trace

tr(γμ1
· · · γμ4h1

)(1.39)

where the matrices γμi
correspond to fermion edges (i odd) and vertices (i

even), and h1 ≡ h1(Γ) is the graph’s first Betti number. Since we are in
Feynman gauge every other matrix is contracted with metric tensors gμiμj

,
corresponding to the photon propagators (including the external photon,
see sec. 4.1.1). The trace can be visualised as a chord diagram DΓ ∈ D2h1

h1

in which each vertex is labelled by one matrix and contraction via metric
tensors is represented by chords.

We are now interested in sums over chord diagrams that result from
all possible additions of further chords to DΓ. Because the chords fixed in
place are always the same, we can consider smaller diagrams instead, namely
diagrams built on the projection D0

Γ = π0(DΓ). Even if DΓ has only one base

cycle the projection may contain multiple base cycles. Hence, let n ∈ N
�0
+

with
∑

ni = N = h1 be some suitable tuple representing the base cycle
structure of D0

Γ after the projection, such that D0
Γ ∈ Dn

0 . Then we denote
with Dk

Γ � Dn
h1−k the set of all chord diagrams that contain the base cycles

of D0
Γ ∈ Dn

0 as a subgraph together with h1 − k chords and have their
vertices labelled by fermion edges of the underlying Feynman graph. Each
such diagram corresponds to a trace of 4h1 Dirac matrices contracted with
2h1 − k metric tensors,4

Dk
Γ � D ∼

( ∏
(u,v)∈E0

D

gμuμv

)( ∏
(u′,v′)∈E0

DΓ

gμu′μv′

)
tr(γμ1 · · · γμ4h1 ).(1.40)

For k = 0 this trace is simply (−2)1+2h1+c̃(D) [22, Theorem 3.9]. Similar
results also hold if there are uncontracted matrices left, and for contractions
between products of multiple traces. Since there is only a single external
momentum q all matrices not contracted with metric tensors are contracted

4To be precise, these diagrams of course correspond to some product of traces
with a total of 2h1 Dirac matrices. However, the fixed chords in DΓ do not influence
c̃, so we can just take the factor (−2)h1 due to these h1 chords and otherwise work
with the smaller diagrams, even though we actually compute the contraction of a
larger product of matrices. See [22] for details.
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to /q = qργ
ρ, and with /q/q = q2 one finds that one always just has an integer

multiple of a power of q2. Applying this to the parametric integrand for QED
Feynman integrals from [21], which we will do in more detail in section 4,
yields sums of the form

I
(k)
Γ ∝

∑
D∈Dk

Γ

(−2)c̃(D)

( ∏
(u,v)∈E0

D

χ
(u|v)
Γ

) ∏
w∈V (2)

D

xwΓ ,(1.41)

which we will be able to rewrite with the two main theorems of this article.

2. Dodgson polynomials revisited

In order to prove the polynomial identities of section 3 we will need a variant
of the Dodgson polynomials that is in some sense a reinterpretation (in
section 2.1) but also a generalisation (in section 2.2). This then allows us
to define what we call partition polynomials, the polynomials Zk

Γ mentioned
above, in section 2.3.

2.1. Dodgson cycle polynomials

The relation χ
(e|e)
G = ΨG\e = Ψ

{e},{e}
G suggests a possible connection between

cycle and Dodgson polynomials, and indeed we find

Proposition 2.1.

χ
(i|j)
G = ±Ψ

{i},{j}
G(2.1)

for all i, j ∈ EG.

Proof. For i = j the proof is done and for i 	= j we use the combinatoric
interpretation from eq. (1.34),

Ψ
{i},{j}
G =

∑
T⊂EG\{i,j}

±
∏
e/∈T

αe.(2.2)

A sum over spanning trees can be decomposed into a double sum over paths
P ⊂ G\ i and spanning trees of the corresponding graph (G\ i)//P where all
paths are between endpoints ∂+(i) and ∂−(i) and contain the edge j. Then

adding i to each path completes it into a simple cycle CP = P ∪ {i} ∈ C[1]
G

that contains both i and j, and the corresponding monomials of χ
(i|j)
G and

Ψ
{i},{j}
G indeed agree, at least up to sign. The signs oC1

(i, j), oC2
(i, j) of two
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partial polynomials ΨG//C1
and ΨG//C2

in χ
(i|j)
G differ if and only if C1 ∪C2 is

– up to contraction of longer paths to single edges – isomorphic to K4:

Comparing this with the discussion of signs in Dodgson polynomials in sec-

tion 2 of [13], one finds that the endpoints of i are precisely the transposed

vertices given in [13, corollary 17] as a criterion for opposite signs. Therefore

all partial polynomials have the correct relative signs and only the overall

sign ambiguity of Dodgson polynomials remains, concluding the proof.

It should be noted that the sign ambiguity of the Dodgson polynomials is

of course not entirely absent from the cycle polynomials – the choice one has

to make is simply moved from the order of rows and columns in a matrix

to the orientations of edges in G. Since we always considered our graphs

together with some such fixed choice from the very beginning it does not

appear in the combinatorial definition of the cycle polynomials. Moreover, in

the context of Feynman integrals we can even have a physical motivation for

certain orientations, e.g. aligning all fermion edge orientations with fermion

flow.

We can use this to fix the choice of the graph matrix such that the

signs of χ
(i|j)
G and Ψ

{i},{j}
G agree. Furthermore, the interpretation of cycle

polynomials as a fixed-sign version of Dodgson polynomials also suggests

the definition of a higher order cycle polynomial via the Dodgson identity

eq. (1.33).

Definition 2.2. Let G be a connected graph and χ
(i|j)
G for all i, j ∈ EG

the cycle polynomial as defined in eq. (1.24). Then define an alphabet A =

{ai | i ∈ EG} in which each letter is associated to an edge of G and consider

two words u, v over this alphabet with |u| = k = |v|. The Dodgson cycle

polynomial is then defined as χ
(ai|aj)
G

..= χ
(i|j)
G if k = 1 and

χ
(u|v)
G

..= Ψ1−k
G

∑
σ∈Sk

sgn(σ)

k∏
i=1

χ
(ui|σi(v))
G ,(2.3)

where ui, σi(v) denote the i-th letter of u and (the permutation of) v, for

2 ≤ k ≤ h1(G).
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In this we simply recursively define χ
(u|v)
G for words of length k by re-

peatedly using the Dodgson identity eq. (1.33) or its generalisations derived
from eq. (1.32). For k = 2, 3 one has

χ
(a1a2|a3a4)
G = Ψ−1

G

(
χ
(a1|a3)
G χ

(a2|a4)
G − χ

(a1|a4)
G χ

(a2|a3)
G

)
,(2.4)

χ
(a1a2a3|a4a5a6)
G = Ψ−2

G

(
χ
(a1|a4)
G χ

(a2|a5)
G χ

(a3|a6)
G − χ

(a1|a4)
G χ

(a2|a6)
G χ

(a3|a5)
G

+ χ
(a1|a5)
G χ

(a2|a4)
G χ

(a3|a6)
G − χ

(a1|a5)
G χ

(a2|a6)
G χ

(a3|a4)
G

+ χ
(a1|a6)
G χ

(a2|a4)
G χ

(a3|a5)
G − χ

(a1|a6)
G χ

(a2|a5)
G χ

(a3|a4)
G

)
.(2.5)

Note that this also permits an expansion (essentially the cofactor expansion
of the determinant) that yields, e.g. for k = 3,

χ
(a1a2a3|a4a5a6)
G

= Ψ−1
G

(
χ
(a1|a4)
G χ

(a2a3|a5a6)
G − χ

(a1|a5)
G χ

(a2a3|a4a6)
G + χ

(a1|a6)
G χ

(a2a3|a4a5)
G

)
,(2.6)

which will be very useful later on.
Defining the polynomials like this imposes an ordering on the indices in-

stead of using unordered sets. This yields a symmetry χ
(u|v)
G = sgn(σ)χ

(u|σ(v))
G

for all permutations of letters in the words, which we will be able to exploit

for our purposes below. Moreover, note that χ
(u|v)
G = 0 if one of the words

contains a repeated letter and

χ
(u|v)
G = (−1)l+mχ

(u1···ûl···uk|v1···v̂m···vk)
G\e(2.7)

if ul = vm = ae.

Remark 2.3. The relation between Dodgson polynomials and “sums over
subgraphs of G containing cycles which satisfy certain properties” was al-
ready observed by Brown when he originally defined Dodgson polynomials
in [10, Remark 24], but not further pursued. At some point it might be
worthwhile to study what exactly these certain properties should be for
higher order polynomials, so one can give a direct combinatorial definition
analogous to eq. (1.24), but for this article the recursive definition above
shall suffice.

2.2. Vertex-indexed Dodgson polynomials

We just modified the Dodgson polynomial in a way that allows us to control
their signs by relating them to another polynomial also indexed by edge sub-
sets of the underlying graph. However, the graph matrix is an EG + VG − 1
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square matrix that also has rows corresponding to vertices of the graph. It is
therefore quite natural to extend the definition of the Dodgson polynomials
to include deletion of rows and columns labelled by vertices. Since the de-
terminant identity eq. (1.32) holds generally, irrespective of which columns
or rows are deleted, the polynomials given by such minors still satisfy the
Dodgson identity. Moreover, we have already seen the fixed-sign versions
of these types of Dodgson polynomials that we can use analogously to the
cycle polynomials in the previous section. Remember the spanning forest
polynomials used to rewrite the second Symanzik polynomial in eq. (1.37).
Using again the block matrix identity from eq. (1.13) we can write

Φ
{v0},{v1,v2}
G = (−1)v1+v2αEΓ

det(L̃′{v1}
{v2}) = (−1)v1+v2 det(M(G)

{v1}
{v2}).(2.8)

The ambiguous sign of the determinant is precisely cancelled by the factor

(−1)v1+v2 such that Φ
{v0},{v1,v2}
G is indeed a fixed-sign version of the Dodgson

polynomial Ψ
{v1},{v2}
G . Hence, we reuse our previous notation to define

χ
(av1 |av2)
G

..= Φ
{v0},{v1,v2}
G ,(2.9)

now with words (over an extended alphabet that includes vertices) indexing
it, as in the previous case of cycle Dodgson polynomials. In this notation
the Dodgson identity again takes the form

χ
(a1|a2)
G χ

(a3|a4)
G − χ

(a1|a3)
G χ

(a2|a4)
G = ΨΓχ

(a1a4|a2a3)
G ,(2.10)

and generalisations are analogous to eq. (2.3). Note that, where edge indices

lower the degree of the polynomial, such that deg(χ
(w1|w2)
G ) = h1(G)−|wi|, if

the letters of both wi correspond to edges, the vertex indices do the opposite.

For single letters, deg(χ
(ai|aj)
G ) = deg(Φ

{v0},{i,j}
G ) = h1(G) + 1, such that the

polynomial with two-letter words on the r.h.s. has to have degree h1 + 2.
Another property we get by courtesy of the spanning forest polynomial is
that

χ
(av|av)
G = ΨG|v=v0

.(2.11)

In other words, equal indices correspond to identification of that vertex with

v0 in the graph, analogous to the edge-indexed case χ
(ae|ae)
G = ΨG\e, which

indicated deletion of an edge.

In Φ
{v0},{v1,v2}
G the vertex v0 whose row and column are initially deleted

from the graph matrix is explicit. We will see below that it is actually useful
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to consider Dodgson polynomials coming from different such choices. Hence,

from now we will use the subscript χ
(u|v)
G,v0

to indicate it, whenever the choice
actually matters. Note that this is different from the subscript K in the
usual Dodgson polynomial ΨI,J

G,K , which indicates contracted edges and is
always empty for us.

2.3. Partition polynomials

With these new variants of the Dodgson polynomials we can define another
new polynomial that bridges the gap between Feynman graphs and the chord
diagrams associated to them. For this purpose, we briefly return to the case
of Dodgson polynomials only indexed by edge subsets of the underlying
graph, not vertices.

Let Γ be a suitable Feynman graph such that D0
Γ ≡ D ∈ Dn

0 with n ∈ N
�

and label all its vertices with the graph’s fermion edges, i.e. letters from an

alphabet A = {ai |i ∈ E
(f)
Γ }. Consider all pairs of monomial words (u, v) of

length |u| = N = |v| over this alphabet such that uv contains each letter
exactly once. Then the symmetries

χ
(u|v)
Γ = χ

(v|u)
Γ and χ

(u|v)
Γ = sgn(σ)χ

(u|σ(v))
Γ ∀σ ∈ SN ,(2.12)

induce an equivalence relation on these words via

(u, v) ∼ (u′, v′) ⇐⇒ χ
(u|v)
Γ = ±χ

(u′|v′)
Γ ,(2.13)

or equivalently

(u, v) ∼ (u′, v′) ⇐⇒ ∃ σ, σ′ ∈ SN s.t. u′ = σ(u), v′ = σ′(v).(2.14)

Let P denote the corresponding set of equivalence classes of pairs (u, v) that
satisfy the above mentioned properties. For the two coloured subsets of base
edges E1

D and E2
D define the corresponding subsets Pi ⊂ P by imposing an

additional constraint: For all edges (u, v) ∈ Ei
D we demand that the two

corresponding letters do not appear in the same word, i.e. au ∈ u and av ∈ v
or vice versa. The full set of equivalence classes is then the union P = P1∪P2.
Moreover, in most cases the Pi intersect only in exactly one element, which,
assuming the vertices of D are labelled consecutively within each base cycle,
is the class of pairs that contain all letters labelled with odd numbers in one
word and those labelled with even numbers in the other. The only exception
occurs if D has one or more base cycles of size 1. Then there is a base edge
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of either colour between the same two vertices, leading to some redundancy.

In particular, P1 = P2 if n = (1, . . . , 1).

Finally, we need to fix one distinguished representative of each class

with respect to which we consider permutations. Assuming some arbitrary

ordering of i-coloured base edges (u1, v1), . . . , (uN , vN ) ∈ Ei
D each equiva-

lence class contains exactly one element that we notate (uid, vid) such that

auj
and avj

are the j-th letters of uid and vid, or vice versa. For any other

ordering of base edges the designated element would be related to (uid, vid)
by the same permutation in both words, such that the choice of ordering on

Ei
D does not matter.

For all partitions of i-coloured base edges E = (E1, . . . , E|E|) ∈ P(Ei
D)

and (u, v) ∈ P define a map λE as follows. Let

Vj
..=

⋃
(u,v)∈Ej

{u, v} ⊆ VD(2.15)

be the set of vertices in the part Ej and consider the restriction

(uj , vj) = (u, v)|ak=1 ∀k∈VD\Vj
(2.16)

of (u, v) to the alphabet corresponding to these vertices. In each (uj , vj) all
letters not associated to this part of the partition are removed but, critically,

the order of the remaining letters is preserved. Then

λE(u, v) ..=

{
{(u1, v1), . . . , (u|E|, v|E|)} if |uj | = |vj | for all 1 ≤ j ≤ |E|,

∅ else.

(2.17)

The concatenations u1 · · · u|E| and v1 · · · v|E| are then permutations of u and v
(which are themselves permutations of the words uid, vid of their equivalence

class) and we define

sgnE(u, v)
..=

{
0 if λE(u, v) = ∅,

sgn(σ) sgn(σ′) else,
(2.18)

where σ, σ′ ∈ SN are the permutations with σ(uid) = u1 · · · u|E| and σ′(vid) =
v1 · · · v|E|. With this we are now ready to insert these types of words into

certain combinations of Dodgson polynomials, which we will call partition

polynomials.
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Definition 2.4. Let Γ be a QED Feynman graph with the associated chord
diagram DΓ such that D ≡ π0(DΓ) = D0

Γ ∈ Dn
0 with n ∈ N

�, N =
∑

i ni =
h1(Γ). Then we define the partition polynomial of Γ to be

Z0
Γ(α)

..=
∑

E∈P(E1
D)

(−ΨΓ)
N−|E|(|E|+ 1)!

∑
(u,v)∈P2

sgnE(u, v)
∏

(u′,v′)∈λE(u,v)

χ
(u′|v′)
Γ ,

(2.19)

where P(E1
D) is the set of all partitions of 1-coloured base edges of D.

Moreover, for 1 ≤ l ≤ N let

Z0
Γ

∣∣
l
..=

∑
E∈P(E1

D)
|E|=l

∑
(u,v)∈P2

sgnE(u, v)
∏

(u′,v′)∈λE(u,v)

χ
(u′|v′)
Γ(2.20)

such that

Z0
Γ =

N∑
l=1

(−ΨΓ)
N−l(l + 1)! Z0

Γ

∣∣
l
.(2.21)

Note that using partitions P(E2
D) in the first and words (u, v) ∈ P1 in the

second sum yields the exact same polynomial. This symmetry is not quite
obvious from this definition but will become so in the proof of theorem
3.1 below. However, the separate polynomials Z0

Γ

∣∣
l
do differ considerably

depending on whether one sums over P(E1
D) and P2 or P(E2

D) and P1.
Hence, when discussing these polynomials specifically, one should make clear
which one is chosen. We reiterate that the sum Z0

Γ is independent of this
choice, which only reflects two different possible decompositions.

Based on this definition we can introduce a similar polynomial that in-
corporates vertex-indexing in Dodgson polynomials. For the purposes of this
article it suffices to stick to a very specific vertex indexing, but it should cer-
tainly be possible to extend this to include any type of Dodgson polynomial.

Definition 2.5. Let everything be as in def. 2.4. Additionally, let Γ be a
Feynman graph with only two non-zero external momenta and x, y ∈ V ext

Γ
the corresponding external vertices. Let y be the additional letter represent-
ing y and assume that the deleted column and row of the graph matrix

corresponds to x, i.e. all Dodgson polynomials are χ
(u|v)
Γ ≡ χ

(u|v)
Γ,x . Define

Z1
Γ

∣∣
l
..=

∑
E∈P(E1

D)
|E|=l

∑
(u,v)∈P2

sgnE(u, v)
∏

(u′,v′)∈λE(u,v)

χ
(u′|v′)
Γ

∑
(u′,v′)∈λE(u,v)

(
χ
(u′y|v′y)
Γ

χ
(u′|v′)
Γ

− ϕΓ

ΨΓ

)
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= −l
ϕΓ

ΨΓ
Z0
Γ

∣∣
l
+

∑
E∈P(E1

D)
|E|=l

∑
(u,v)∈P2

sgnE(u, v)
∏

(u′,v′)∈λE(u,v)

χ
(u′|v′)
Γ

∑
(u′,v′)∈λE(u,v)

χ
(u′y|v′y)
Γ

χ
(u′|v′)
Γ

.

(2.22)

Then we define the first order partition polynomial of Γ to be

Z1
Γ(α)

..=
1

2

N∑
l=1

(−ΨΓ)
N−l+1(l + 1)! Z1

Γ

∣∣
l
.(2.23)

Note the additional factors of 1/2 and −ΨΓ, in contrast to eq. (2.19)

above. Together with the observation that ϕΓ = χ
(y|y)
Γ and ΨΓ = χ

(∅|∅)
Γ in

the first line of eq. (2.22) this suggests a straightforward generalisation

Zk
Γ(α)

..=
1

2k

N∑
l=1

(−ΨΓ)
N−l+k(l + 1)! Zk

Γ

∣∣
l
.(2.24)

Zk
Γ

∣∣
l
should contain something like a sum over all choices of k word pairs in

λE(u, v) to which the letter y is added. Then the factor 1 in Z0
Γ

∣∣
l
corresponds

to a sum over the unique choice of no element at all and the sum in Z1
Γ

∣∣
l

is the sum over choices of exactly one word pair. If this is in fact a correct

(i.e. useful) generalised definition shall be studied in future work. For now

we will concentrate on the cases of order 0 and 1.

3. Polynomial identities

The statement of our two main theorems is now that the two partition

polynomials Z0
Γ and Z1

Γ are in fact equal to the sums of chord diagrams,

with products of cycle polynomials in each summand, that appear in the

parametric integrand of QED.

3.1. The first summation theorem

Theorem 3.1.

Z0
Γ =

1

2

∑
D∈D0

Γ

(−2)c̃(D)
∏

(u,v)∈E0
D

χ
(au|av)
Γ .(3.1)
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In order to prove this we first need some auxiliary results. First we at-
tempt to study the summation by essentially working backwards and looking

at sums
∑

χ
(uid|vid)
Γ for (uid, vid) ∈ P2, which appear in the partition polyno-

mial for the single part partition E = {E1
D}.

Lemma 3.2. Let Pj be as above and cj2(D) ..= |C0j
D | the number of two-

coloured cycles consisting of chords and j-coloured base edges (such that
c2(D) = c12(D) + c22(D)). Then∑

(uid,vid)∈Pj

χ
(uid|vid)
Γ = (−ΨΓ)

1−N
∑

D∈D0
Γ

(−2)c
j
2(D)−1

∏
(u,v)∈E0

D

χ
(au|av)
Γ .(3.2)

Proof. Quick computations show that the claim holds for all n with N =∑
ni = 1, 2, and even N = 3 is only mildly tedious, as shown below in

example 3.3. We now reduce the l.h.s. of eq. (3.2) to a sum over expressions
corresponding to N − 1, in order to prove by induction.

Consider a word pair (x11 · · · x1N , x21 · · · x2N ) with all xij ∈ A. Assuming
this word is a representative (uid, vid) ∈ Pj , each pair (x1k, x2k) of k-th letters

corresponds to a base edge of Ej
D0

, for a chord diagram D0 ∈ Dn
0 . With eq.

(2.3) its Dodgson polynomial can be written as

ΨΓχ
(x11···x1N |x21···x2N )
Γ

=

N∑
k=1

(−1)1+kχ
(x11|x2k)
Γ χ

(x12···x1N |x21···x̂2k···x2N )
Γ

= χ
(x11|x21)
Γ χ

(x12···x1N |x22···x2N )
Γ −

N∑
k=2

χ
(x11|x2k)
Γ χ

(x1kx12···x̂1k···x1N |x21···x̂2k···x2N )
Γ .

(3.3)

Moving the letter x1k in the last line guarantees that the letter pairs (x1l, x2l),
with l 	= 1, k, are still paired up in the expansion. In fact, the word pairs

(x1kx12 · · · x̂1k · · · x1N , x21 · · · x̂2k · · · x2N )(3.4)

are the representatives (u′id, v
′
id) of an equivalence class of word pairs asso-

ciated to the diagram π0(D), where D is D0 together with the chord corre-
sponding to the letter pair (x11, x2k). The sum over all equivalence classes in
Pj can be realised by summing word pairs of the form

(x(1+t1)1 · · · x(1+tN )N , x(2−t1)1 · · · x(2−tN )N )(3.5)
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over all N -tuples in T = {t ∈ {0, 1}N | t1 = 0}. One finds

ΨΓ

∑
t∈T

χ
(x(1+t1)1···x(1+tN )N |x(2−t1)1···x(2−tN )N )
Γ

= χ
(x11|x21)
Γ

∑
t∈T

χ
(x(1+t2)2···x(1+tN )N |x(2−t2)2···x(2−tN )N )
Γ

−
N∑
k=2

∑
t∈T

χ
(x11|x(2−tk)k)
Γ χ

(x(1+tk)kx(1+t2)2···x̂(1+tk)k···x(1+tN )N |x21···x̂(2−tk)k···x(2−tN )N )
Γ .

(3.6)

Now we want to translate this back to vertices of a chord diagram. Let
u, v ∈ VD0

such that x11 = au, x21 = av and (u, v) ∈ Ej
D0

. Note that, by
definition of Pj , such u, v always exist. Then eq. (3.6) becomes

ΨΓ

∑
(uid,vid)∈Pj

χ
(uid|vid)
Γ

= 2χ
(au|av)
Γ

∑
(u′

id,v
′
id)∈P

u,v
j

χ
(u′

id|v′id)
Γ −

∑
w∈VD0

w �=u,v

χ
(au|aw)
Γ

∑
(u′

id,v
′
id)∈P

u,w
j

χ
(u′

id|v′id)
Γ ,(3.7)

where Pu,v
j and Pu,w

j are the classes of word pairs after addition of the chords
(u, v) or (u,w) respectively. Replacing these sums with the corresponding
r.h.s. of eq. (3.2) finishes the proof, where the factor of −(−2) in the first
term corresponds to the addition of the cycle that consists of the j-coloured
base edge (u, v) and the chord between those same vertices. All other chords
(u,w) added to D0 do not add two-coloured cycles but only split, twist or
merge base cycles when projected out with π0.

Example 3.3. Consider as an example N = 3 with a single base cycle.
Label vertices consecutively from 1 to 6 and choose j to be the colour of
(1, 2). Then the sum over word pairs in Pj on the l.h.s. of eq. (3.2) is

χ
(a1a3a5|a2a4a6)
Γ + χ

(a1a4a5|a2a3a6)
Γ + χ

(a1a3a6|a2a4a5)
Γ + χ

(a1a4a6|a2a3a5)
Γ .(3.8)

Expanding each term as defined in eq. (2.3) yields Ψ−2
Γ times 24 terms, 15

of which are distinct, such that one finds

4χ
(a1|a2)
Γ χ

(a3|a4)
Γ χ

(a5|a6)
Γ − 2χ

(a1|a2)
Γ χ

(a3|a5)
Γ χ

(a4|a6)
Γ − 2χ

(a1|a2)
Γ χ

(a3|a6)
Γ χ

(a4|a5)
Γ
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−2χ
(a1|a3)
Γ χ

(a2|a4)
Γ χ

(a5|a6)
Γ + χ

(a1|a3)
Γ χ

(a2|a5)
Γ χ

(a4|a6)
Γ + χ

(a1|a3)
Γ χ

(a2|a6)
Γ χ

(a4|a5)
Γ

−2χ
(a1|a4)
Γ χ

(a2|a3)
Γ χ

(a5|a6)
Γ + χ

(a1|a4)
Γ χ

(a2|a5)
Γ χ

(a3|a6)
Γ + χ

(a1|a4)
Γ χ

(a2|a6)
Γ χ

(a3|a5)
Γ

+χ
(a1|a5)
Γ χ

(a2|a3)
Γ χ

(a4|a6)
Γ + χ

(a1|a5)
Γ χ

(a2|a4)
Γ χ

(a3|a6)
Γ − 2χ

(a1|a5)
Γ χ

(a2|a6)
Γ χ

(a3|a4)
Γ

+χ
(a1|a6)
Γ χ

(a2|a3)
Γ χ

(a4|a5)
Γ + χ

(a1|a6)
Γ χ

(a2|a4)
Γ χ

(a3|a5)
Γ − 2χ

(a1|a6)
Γ χ

(a2|a5)
Γ χ

(a3|a4)
Γ .

Now one can simply check each summand by counting the cycles of the

corresponding chord diagram, while keeping in mind that only the bicoloured

cycles with chords and j-coloured base edges are counted. For example, in

the first term each factor corresponds to a chord (1, 2), (3, 4), (5, 6), each

spanning exactly one of the j-coloured base edges. Hence, there are three

such cycles and (−2)c
j
2(D)−1 = 4.

The obvious next questions is now: Can we find such an identity for all

partitions? Indeed, we can.

Lemma 3.4. Let E ∈ P(E1
D0

) be any partition of 1-coloured base edges of a

diagram D0 ∈ Dn
0 and P2 the corresponding word pairs as above. Then∑

(u,v)∈P2

sgnE(u, v)
∏

(u′,v′)∈λE(u,v)

χ
(u′|v′)
Γ

= (−1)1−|E|(−ΨΓ)
|E|−N

∑
D∈D|0E

(−2)c
2
2(D)−1

∏
(u,v)∈E0

D

χ
(au|av)
Γ ,(3.9)

where D|0E ⊂ D0
Γ � Dn

N is the subset of complete chord diagrams with base

cycles given by n (and vertices labelled by edges of Γ) that is restricted by

demanding that all chords of a diagram can only connect vertices that lie

within the same part of E.

Proof. Consider again the word pair (x11 · · · x1N , x21 · · · x2N ). The letter pairs

(x1i, x2i) correspond to 2-coloured base edges, so the 1-coloured base edges

correspond to pairs (x1(i+1), x2i) for i 	= n1, n1 + n2, . . . , N as well as

(x11, x2n1
), (x1(n1+1), x2(n1+n2)) etc. due to cyclicity in each base cycle. With

this we can represent the partitions of E1
D0

by partitions of {1, . . . , N}.
Assume at first that there is a single base cycle with n1 = N and the par-

tition has two parts, I = {i1, . . . , il1} ⊂ {1, . . . , N} and J = {j1, . . . , jl2} ⊂
{1, . . . , N} with jl2 = N . The extension to the general case is quite straight-

forward and discussed further below. Now look again at word pairs of the
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form

(x(1+t1)1 · · · x(1+tN )N , x(2−t1)1 · · · x(2−tN )N )

summed over all N -tuples in T = {t ∈ {0, 1}N | t1 = 0}. The map λE
restricts which tuples are permitted in the sum and describes how the re-
maining word pairs have to be split up. The only word pair that always
yields a nonempty set under λE is that of t = (0, . . . , 0) where one finds

λE(x11 · · · x1N , x21 · · · x2N )
(3.10)

= {(x1(i1+1) · · · x1(il1+1), x2i1 · · · x2il1 ), (x1(j1+1) · · · x1(jl2+1), x2j1 · · · x2jl2 )

with the cyclic identification x1(N+1) = x11 understood. By construction both
words in each pair have the same length, l1 and l2 respectively. Moreover,
we can note that regardless of the specific partition the same permutation
applied to both words of the concatenated pair

(x1(i1+1) · · · x1(il1+1)x1(j1+1) · · · x1(jl2+1), x2i1 · · · x2il1x2j1 · · · x2jl2 )

returns (x12 · · · x1Nx11, x21 · · · x2N ), so here sgnE((x11 · · · x1N , x21 · · · x2N ) =
(−1)N−1.

Next we need to study what happens for different word pairs, i.e. if the
letter pairs (x1r, x2r) are exchanged for all r in another subset R ⊂ {2, . . . N}.
If r and r− 1 are both in I or both in J then the swap of x1r and x2r results
in word pairs that still have equal length words since x1r is contained in
the same word pair as x2r. If r and r − 1 are not in the same part then we
find that exchange of any single letter pair (x1r, x2r) will lead to words of
different lengths in each pair such that the term does not contribute. Hence,
each exchange of a letter pair (x1r, x2r) with r ∈ I and r− 1 /∈ I will require
another exchange of (x1s, x2s) with a suitable s ∈ J to compensate and
return word pairs with non-vanishing contribution. Here we need to start
distinguishing between different types of partitions.

First, let I and J be sets of consecutive numbers (counting N and 1 as
such). Then there are only two r ∈ {1, . . . , N} such that r and r − 1 are
in different parts. Since only word pairs in which either both or neither are
exchanged contribute one finds that exactly half of all word pairs in P2 yield
non-empty sets of pairs under λE . Then the sum∑

(u,v)∈P2

sgnE(u, v)
∏

(u′,v′)∈λE(u,v)

χ
(u′|v′)
Γ
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contains 2N−2 terms that decompose into two factors with 2l1−1 and 2l2−1

terms corresponding to the two parts. Permutations with signum (−1)l1−1

and (−1)l2−1 can be used (analogous to the discussion of the sign above)
to align the original letter pairs (corresponding to 2-coloured base edges)
in each word pair. Then each such factor can be rewritten with lemma 3.2,
where one interprets it as arising from a certain smaller chord diagram base
cycle. That cycle, say for the part I, results from contraction of the path that
consists all 1-coloured base edges represented by the integers in J as well as
the 2-coloured base edges in between these (consecutive) 1-coloured edges
to a single 2-coloured base edge. Any pair of diagrams built on these smaller
base cycles corresponds to a larger diagram with the original base cycle
that one finds by simply cutting the contracted 2-coloured base edge in each
diagram and gluing them together. The number of 2-coloured cycles is almost
additive but the cutting removes one cycle in each diagram and restores only
one when gluing them together. Hence, c22(DI)−1+c22(DJ)−1 = c22(DIJ)−1.

This straightforwardly extends to partitions with any number of parts,
as long as each consists of consecutive base edges, and one finds∑
(u,v)∈P2

sgnE(u, v)
∏

(u′,v′)∈λE(u,v)

χ
(u′|v′)
Γ

= (−1)1−N

|E|∏
i=1

(
(−1)li−1(−ΨΓ)

1−li
∑

Di∈D0
Γ,i

(−2)c
2
2(Di)−1

∏
(u,v)∈E0

Di

χ
(au|av)
Γ

)
= (−1)1−|E|(−ΨΓ)

|E|−N
∑

D∈D|0E

(−2)c
2
2(D)−1

∏
(u,v)∈E0

D

χ
(au|av)
Γ

(3.11)

where l1, . . . , l|E| with l1 + . . . + l|E| = N are the cardinalities of each part.
This even extends further to partitions like {{1}, {3}, {2, 4}} where the part
{2, 4} does not contain consecutive base edges initially but 2 and 4 become
consecutive after factoring out the terms (contracting the base edges) cor-
responding to 1 and 3.

Next we look at the exact opposite case, i.e. we assume that I and J do
not contain any consecutive numbers at all. Note that then both parts need
to have the same cardinality |I| = |J | = N/2 and N has to be even. The
contributing word pairs can be found by considering all possible choices of
k ≤ N/2− 1 index swaps out of the set that contains 1 (which is kept fixed)
together with all possible choices of the same number of indices from the
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other set (in which all N/2 elements are permitted). The number of such

exchanges can be counted with Vandermonde’s identity to be

N/2−1∑
k=0

(
N/2− 1

k

)(
N/2

k

)
=

(
N − 1

N/2− 1

)
=

1

2

(
N

N/2

)
.(3.12)

The sum containing these terms does not factorise, but we can reduce it

to a sum of expressions corresponding to N − 1, allowing for proof by in-

duction. Choose one of the two parts and expand the corresponding factor

of each summand analogously to eq. (3.3). By construction the first term

on the r.h.s. cannot exist in these expansions, since x11 and x21 belong to

different word pairs. The sum contains fewer terms but the principle is the

same: Suitable permutation within the remaining word pair allows us to in-

terpret it as associated to a diagram that in turn resulted from addition of

a chord corresponding to the removed letter pair. Hence, we only pick up an

overall factor of −ΨΓ and can collect coefficients of each Dodgson polyno-

mial χ
(x1r|x2s)
Γ . By simply counting how often a given letter pair is or is not

involved in an exchange one finds that one can collect terms into groups of(
N − 2

N/2− 1

)
=

(
N − 2

(N − 2)/2

)
(3.13)

which is exactly twice the number of possible exchanges we would have

for N − 2. The coefficient of each χ
(x1r|x2s)
Γ corresponds to the sum in eq.

(3.11) but for a smaller diagram with N ′ = N − 1 and a corresponding

smaller partition. For the small cases of N = 2 and N = 4 the reduction

already yields factorising expressions (see example 3.5). For larger N that

is generally not the case and since N − 1 is odd it also cannot belong to

the case we discussed here. Instead, what happens is a partial factorisation

that allows us to collect the 2, 6, 20, . . . terms into 1, 3, 10, . . . pairs which

correspond to a non-factorising partition with a total cardinality of N − 2.

The corresponding partition consists of one part in which all elements are

still non-consecutive and one part that contains only exactly one pair of

consecutive numbers. Then the reduction process goes through for any such

partition with mixed consecutive and non-consecutive base edges, even for

more than two parts. If there are k pairs of consecutive base edges in one

part then this simply yields 2k−1 terms which correspond to a subset of the

possible word pairs resulting from some smaller diagram – but it is not the

full subset needed for the factorisation seen above.
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Finally, all of this goes through for any number of base cycles without
much change. The only difference is in which base edges are viewed as con-
secutive. For example, for a diagram with two base cycles of size n1 and n2

with n1 + n2 = N one has (1, n1) and (n1 + 1, N) as consecutive pairs, but
neither (1, N) nor (n1, n1 + 1).

Example 3.5. Consider an empty chord diagram D ∈ D4
0 on a single base

cycle with 8 vertices labelled 1–8. Let 2 be the colour of the base edges
(1, 2), (3, 4), (5, 6), (7, 8) and 1 the colour of (8, 1), (2, 3), (4, 5), (6, 7). The
word pairs in P2 are, up to possible permutations,

(a1a3a5a7, a2a4a6a8) (a1a3a5a8, a2a4a6a7) (a1a3a6a7, a2a4a5a8)

(a1a4a5a7, a2a3a6a8) (a1a3a6a8, a2a4a5a7) (a1a4a5a8, a2a3a6a7)

(a1a4a6a7, a2a3a5a8) (a1a4a6a8, a2a3a5a7).

The partitions with one part are very similar to those in example 3.3 but a
bit too large already to sensibly write them here in their fully expanded form.
With two parts there are three types of partitions. Firstly, if E = {E1, E2}
with |E1| = 3, |E2| = 1, then the factorisation is obvious. For example, for
E = {{(8, 1), (2, 3), (4, 5)}, {(6, 7)} one has

−χ
(a6|a7)
Γ

(
χ
(a1a3a5|a2a4a8)
Γ + χ

(a1a4a5|a2a3a8)
Γ + χ

(a1a3a8|a2a4a5)
Γ + χ

(a1a4a8|a2a3a5)
Γ

)
.

Similarly, for a partition like E = {{(8, 1), (2, 3)}, {(4, 5), (6, 7)} one also
finds a factorisation since the four terms one gets are

χ
(a1a3|a2a8)
Γ χ

(a5a7|a4a6)
Γ + χ

(a1a3|a2a8)
Γ χ

(a6a7|a4a5)
Γ

+ χ
(a1a8|a2a3)
Γ χ

(a6a7|a4a5)
Γ + χ

(a1a8|a2a3)
Γ χ

(a5a7|a4a6)
Γ .

The non-factorising partition E = {{(8, 1), (4, 5)}, {(2, 3), (6, 7)} yields three
terms that we can still simply expand explicitly:

Ψ2
Γ

(
χ
(a1a5|a4a8)
Γ χ

(a3a7|a2a6)
Γ + χ

(a1a8|a4a5)
Γ χ

(a3a6|a2a7)
Γ + χ

(a1a4|a5a8)
Γ χ

(a6a7|a2a3)
Γ

)
=
(
χ
(a1|a4)
Γ χ

(a5|a8)
Γ − χ

(a1|a8)
Γ χ

(a4|a5)
Γ

)(
χ
(a2|a3)
Γ χ

(a6|a7)
Γ − χ

(a2|a7)
Γ χ

(a3|a6)
Γ

)
+
(
χ
(a1|a4)
Γ χ

(a5|a8)
Γ − χ

(a1|a5)
Γ χ

(a4|a8)
Γ

)(
χ
(a2|a3)
Γ χ

(a6|a7)
Γ − χ

(a2|a6)
Γ χ

(a3|a7)
Γ

)
+
(
χ
(a1|a5)
Γ χ

(a4|a8)
Γ − χ

(a1|a8)
Γ χ

(a4|a5)
Γ

)(
χ
(a2|a6)
Γ χ

(a3|a7)
Γ − χ

(a2|a7)
Γ χ

(a3|a6)
Γ

)
=
(−2)1

(−1)1

(
χ
(a1|a4)
Γ χ

(a2|a3)
Γ χ

(a5|a8)
Γ χ

(a6|a7)
Γ + χ

(a1|a5)
Γ χ

(a2|a6)
Γ χ

(a3|a7)
Γ χ

(a4|a8)
Γ
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+ χ
(a1|a8)
Γ χ

(a2|a7)
Γ χ

(a3|a6)
Γ χ

(a4|a5)
Γ

)
+

(−2)0

(−1)1

(
χ
(a1|a4)
Γ χ

(a2|a6)
Γ χ

(a3|a7)
Γ χ

(a5|a8)
Γ + χ

(a1|a4)
Γ χ

(a2|a7)
Γ χ

(a3|a6)
Γ χ

(a5|a8)
Γ

+ χ
(a1|a5)
Γ χ

(a2|a3)
Γ χ

(a4|a8)
Γ χ

(a6|a7)
Γ + χ

(a1|a5)
Γ χ

(a2|a7)
Γ χ

(a3|a6)
Γ χ

(a4|a8)
Γ

+ χ
(a1|a8)
Γ χ

(a2|a3)
Γ χ

(a4|a5)
Γ χ

(a6|a7)
Γ + χ

(a1|a8)
Γ χ

(a2|a6)
Γ χ

(a3|a7)
Γ χ

(a4|a5)
Γ

)
.

With a quick drawing one can now check that the chord diagrams corre-
sponding to these terms are as expected and that the number of cycles is
indeed correct. Finally, expanding only one of the two polynomials in each
summand leads to the reduction from the proof of lemma 3.4:

χ
(a1|a4)
Γ χ

(a5|a8)
Γ

(
χ
(a3a7|a2a6)
Γ + χ

(a3a6|a2a7)
Γ

)
+χ

(a1|a5)
Γ χ

(a4|a8)
Γ

(
χ
(a2a7|a6a3)
Γ + χ

(a2a3|a6a7)
Γ

)
+χ

(a1|a8)
Γ χ

(a4|a5)
Γ

(
χ
(a2a6|a7a3)
Γ + χ

(a2a3|a7a6)
Γ

)
.

The final ingredient for the proof of this chapter’s main theorem is an
identity allowing summation of Stirling numbers of the second kind S(k, l).
They count the ways to partition a set of k elements into l non-empty sets.
To prove it we need a certain identity relating Stirling numbers and the clas-
sical polylogarithm. While the literature contains a number of well known
identities that do so, they are all either similar but not obviously equivalent
to the one we need, or appear without proof. Moreover, the commonly cited
references (e.g. [31, 32, 33], among many others) all appear to cite each other
or unavailable older literature, so it may actually be somewhat elucidating
to derive everything we need ourselves.

Proposition 3.6. Let

Lis(z) =

∞∑
l=1

zl

ls
|z| < 1, s ∈ Z(3.14)

be the classical polylogarithm and S(k, l) be the Stirling number of the second
kind. Then

Li−k+1(z) = (−1)k
k∑

l=1

S(k, l)
(l − 1)!

(z − 1)l
(3.15)

for integers k ≥ 2.
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Proof. For k = 2 the r.h.s. is

1

z − 1
+

1

(z − 1)2
=

z

(1− z)2
= z∂z

1

1− z
= z∂z

∞∑
l=0

zl =

∞∑
l=1

lzl = Li−1(z).

(3.16)

Now proceed by induction

Li−k+1(z) = z∂z Li−k+2(z) = (−1)k−1
k−1∑
l=1

S(k − 1, l)z∂z
1

(z − 1)l
(l − 1)!

= (−1)k
k−1∑
l=1

S(k − 1, l)
z

(z − 1)l+1
l!,(3.17)

and use partial fraction decomposition to find

S(k − 1, l)
z

(z − 1)l+1
l! = lS(k − 1, l)

(l − 1)!

(z − 1)l
+ S(k − 1, l)

l!

(z − 1)l+1

(3.18)

Using the recurrence relation S(k, l) = S(k− 1, l− 1)+ l(S(k− 1, l) the first
term is further rewritten as

lS(k − 1, l)
(l − 1)!

(z − 1)l
= S(k, l)

(l − 1)!

(z − 1)l
− S(k − 1, l − 1)

(l − 1)!

(z − 1)l
(3.19)

In the sum one now has a telescopic cancellation involving the second terms
of eqs. (3.18) and (3.19). The only remaining terms are

S(k − 1, 0)

z − 1
= 0 and S(k − 1, k − 1)

(k − 1)!

(z − 1)k
= S(k, k)

(k − 1)!

(z − 1)k
,

as well as the first part of the r.h.s. of eq. (3.19) summed up to l = k − 1,
such that overall

Li−k+1(z) = (−1)k
k∑

l=1

S(k, l)
(l − 1)!

(z − 1)l
.

Lemma 3.7. Let S(k, l) be the Stirling number of the second kind. Then

k∑
l=1

S(k, l)(−1)l(l + 1)! = (−2)k ∀k ≥ 1.
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Proof. For k = 1 the claim is checked directly. For k ≥ 2 we use the identity
derived for the polylogarithm in proposition 3.6 and note that a change of
the argument allows us to write

(−1)k Li−k+1

(
1 +

1

z

)
=

k∑
l=1

S(k, l)zl(l − 1)!(3.20)

with z < −1. Now let

L(z) ..=

k∑
l=1

S(k, l)zl(l + 1)! = z∂2
zz

k∑
l=1

S(k, l)zl(l − 1)!

= (−1)kz∂2
zz Li−k+1

(
1 +

1

z

)
.(3.21)

Computing the derivative one finds

L(z) =
(−1)k

(z + 1)2

(
Li−k−1

(
1 +

1

z

)
− Li−k

(
1 +

1

z

))
.(3.22)

Both polylogarithms start with terms linear in (z+1)/z, yielding divergences
when evaluating at z = −1, but upon closer inspection we see that they
precisely cancel each other. With z < −1 one has |1+1/z| < 1 such that we
are able to employ the classical sum representation of the polylogarithm, of
which only the first two terms are of interest to us:

L(z) =
(−1)k

(z + 1)2

( ∞∑
t=1

tk+1

(
z + 1

z

)t

−
∞∑
t=1

tk
(
z + 1

z

)t)(3.23)

=
(−1)k

(z + 1)2

(
z + 1

z
+ 2k+1

(
z + 1

z

)2

− z + 1

z
− 2k

(
z + 1

z

)2

+O
((

z + 1

z

)3
))

= (−2)k
(

1

z2
+

1

(z + 1)2
O
((

z + 1

z

)3
))

.

Now we can safely take the limit z → −1 to find

k∑
l=1

S(k, l)(−1)l(l + 1)! = L(−1) = (−2)k.(3.24)
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Proof of Theorem 3.1 First, use lemma 3.4 to rewrite the partition

polynomial as

Z0
Γ =

∑
E∈P(E1

D)

(−ΨΓ)
N−|E|(|E|+ 1)!

∑
(u,v)∈P2

sgnE(u, v)
∏

(u′,v′)∈λE(u,v)

χ
(u′|v′)
Γ

=
∑

E∈P(E1
D)

(−1)|E|+1(|E|+ 1)!
∑

D∈D|0E

(−2)c
2
2(D)−1

∏
(u,v)∈E0

D

χ
(au|av)
Γ .

The sum already contains c22(D), the number of 2-coloured cycles. Regarding

cycles of the other colour we can make the following observation: In each di-

agram with c12(D) ≤ N the 1-coloured cycles can themselves be interpreted

as a partition of E1
D in which each part is given by the base edges connected

to each other by chords. The diagrams in D|0E can only have chords con-

necting base edges within the same part of E , so each part in the partition

given by the 1-coloured cycles has to be a subset of a part of E . Counting
the number of ways of partitioning the c12(D) cycles of a given diagram into

partitions with |E| parts (i.e. counting the number of partitions E with a

certain number of parts such that D|0E contains the given diagram D) one

finds precisely the Stirling numbers of the second kind S(c12(D), |E|). Using

this, we can exchange summation over diagrams and partitions and find

Z0
Γ =

∑
E∈P(E1

D)

(−1)|E|+1(|E|+ 1)!
∑

D∈D|0E

(−2)c
2
2(D)−1

∏
(u,v)∈E0

D

χ
(au|av)
Γ

=
1

2

∑
D∈Dn

N

(−2)c
2
2(D)

( ∏
(u,v)∈E0

D

χ
(au|av)
Γ

) c12(D)∑
l=1

S(c12(D), l)(−1)l(l + 1)!.

Now lemma 3.7 is applied to evaluate the sum to (−2)c
1
2(D), which finishes

the proof.

3.2. The second summation theorem

Now that Z0
Γ is well understood we can proceed to the more complicated

Z1
Γ. Contrary to Z0

Γ they contain not only the cycle polynomials, but also

xeΓ, which we had defined in eq. (1.29). We begin by analysing these poly-

nomials and in particular their products a bit further. Building on this we

will then find that the summation theorem from the previous section can be

generalised rather straightforwardly to the following result.
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Theorem 3.8.

Z1
Γ =

1

2

∑
D∈D1

Γ

(−2)c̃(D)

( ∏
(u,v)∈E0

D

χ
(u|v)
Γ

) ∏
w∈V (2)

D

xwΓ .(3.25)

3.2.1. The polynomial xw
Γ The first step to prove this theorem is get-

ting a better understanding of the polynomials xwΓ and their products. We
begin with some general observations about their connections to bond and
spanning forest polynomials and then state the precise result that we will
need in lemma 3.9 below.

Analogous to eq. (1.37) we can also write the bond polynomial as

βG =
∑

v1,v2∈VG

ϑv1
ϑv2

Φ
{v0},{v1,v2}
G ,(3.26)

where the momenta qvi
are replaced with ϑvi

=
∑

e Ievi
ξe. With the defini-

tion of Xe,μ
G as derivative of the bond polynomial w.r.t. ξμe (see eq. (1.28))

one finds

Xe,μ
G = α−1

e

∑
v1,v2∈VG

Iev1
ϑμ
v2
Φ
{v0},{v1,v2}
G .(3.27)

Then we move to the physical case, i.e. a Feynman graph Γ in which we
evaluate the formal parameters ξe to physical momenta. For each edge there
are only two vertices, namely u1, u2 with ∂(e) = (u1, u2), such that Ieui

	= 0,
and Ieu1

= −Ieu2
for this pair. Hence, the polynomial reduces to

Xe,μ
Γ = −α−1

e

∑
v∈V ext

Γ

qμv
(
Φ
{v0},{u2,v}
Γ − Φ

{v0},{u1,v}
Γ

)
.(3.28)

Accounting for cancellations between spanning forests (i.e. their correspond-
ing monomials) that appear in both polynomials, the difference can be writ-
ten as

Φ
{v0},{u2,v}
Γ − Φ

{v0},{u1,v}
Γ = Φ

{v0,u1},{u2,v}
Γ − Φ

{v0,u2},{u1,v}
Γ .(3.29)

If we now specialise to the case of only two external vertices v1, v2 (or at
least only two with non-vanishing momenta), then this reduces further to

Xe,μ
Γ = qμα−1

e

(
Φ
{v0},{u1,v1}
Γ +Φ

{v0},{u2,v2}
Γ − Φ

{v0},{u2,v1}
Γ − Φ

{v0},{u1,v2}
Γ

)(3.30)
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In order to explain the overall sign we emphasise again that e is directed
from ∂−(e) = u1 to ∂+(e) = u2, and that we chose qv1

= q = −qv2
.

By the same principle as eq. (3.29) we can explicitly remove terms that
would cancel between these four summands:

Φ
{v0},{u1,v1}
Γ − Φ

{v0},{u2,v1}
Γ +Φ

{v0},{u2,v2}
Γ − Φ

{v0},{u1,v2}
Γ

(3.31)

= Φ
{v0,u2},{u1,v1}
Γ − Φ

{v0,u1},{u2,v1}
Γ +Φ

{v0,u1},{u2,v2}
Γ − Φ

{v0,u2},{u1,v2}
Γ

= Φ
{v0,u2,v2},{u1,v1}
Γ +Φ

{v0,u1,v1},{u2,v2}
Γ − Φ

{v0,u2,v1},{u1,v2}
Γ − Φ

{v0,u1,v2},{u2,v1}
Γ

= Φ
{u1,v1},{u2,v2}
Γ − Φ

{u1,v2},{u2,v1}
Γ .

This is now explicitly independent of the arbitrarily chosen vertex v0. We
can re-expand eq. (3.32) by including terms cancelled between the two to
get

Φ
{u1,v1},{u2,v2}
Γ − Φ

{u1,v2},{u2,v1}
Γ = Φ

{v1},{u2,v2}
Γ − Φ

{v1},{u1,v2}
Γ .(3.32)

This is now not only independent of the original arbitrary choice of v0 but
can actually be interpreted as Dodgson polynomials with respect to a graph
matrix in which v1 was removed:

Xe,μ
Γ = qμα−1

e

(
χ
(au2 |av2)
Γ,v1

− χ
(au1 |av2)
Γ,v1

)
= qμxeΓ.(3.33)

Lemma 3.9. Let Γ be a QED Feynman graph with only two non-zero ex-
ternal momenta qu = q = −qv at vertices u, v ∈ VΓ, and Γ• = Γ|u=v. Let
furthermore e, f ∈ EΓ be any two edges of Γ. Then

αeαfx
e
Γx

f
Γ = ΨΓ•β

(e|f)
Γ −ΨΓβ

(e|f)
Γ• .(3.34)

Moreover, if e 	= f this simplifies to

xeΓx
f
Γ = −ΨΓ•χ

(e|f)
Γ +ΨΓχ

(e|f)
Γ• ,(3.35)

which means that up to sign xeΓ = ±χ
(e|v)
Γ,u and the signs are such that

xeΓx
f
Γ = −χ

(e|v)
Γ,u χ

(f |v)
Γ,u .(3.36)

Proof. Let a, b, c, d ∈ VΓ be the not necessarily distinct endpoints of edges e
and f , with directions ∂(e) = (a, b) and ∂(f) = (c, d), and use letters a ≡ aa,
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b ≡ ab, etc. With eq. (3.33) the product is then

αeαfx
e
Γx

f
Γ =

(
χ
(b|v)
Γ,u − χ

(a|v)
Γ,u

)(
χ
(d|v)
Γ,u − χ

(c|v)
Γ,u

)
= χ

(b|v)
Γ,u χ

(d|v)
Γ,u − χ

(a|v)
Γ,u χ

(d|v)
Γ,u − χ

(b|v)
Γ,u χ

(c|v)
Γ,u + χ

(a|v)
Γ,u χ

(c|v)
Γ,u

= χ
(v|v)
Γ,u

(
χ
(b|d)
Γ,u − χ

(a|d)
Γ,u − χ

(b|c)
Γ,u + χ

(a|c)
Γ,u

)
−ΨΓ

(
χ
(bv|dv)
Γ,u − χ

(av|dv)
Γ,u − χ

(bv|cv)
Γ,u + χ

(av|cv)
Γ,u

)
.(3.37)

The coefficient of χ
(v|v)
Γ,u in the first summand is exactly the sum from eq.

(3.32) with different labels, such that

χ
(b|d)
Γ,u −χ

(a|d)
Γ,u −χ

(b|c)
Γ,u +χ

(a|c)
Γ,u = Φ

{u},{b,d}
Γ − Φ

{u},{a,d}
Γ − Φ

{u},{b,c}
Γ +Φ

{u},{a,c}
Γ

= Φ
{a,c},{b,d}
Γ − Φ

{b,c},{a,d}
Γ .(3.38)

χ
(v|v)
Γ,u itself is the Kirchhoff polynomial ΨΓ• = ϕΓ. The terms in the coeffi-

cient of ΨΓ can be interpreted as

χ
(av|dv)
Γ,u = χ

(a|d)
Γ•,u ,(3.39)

such that they add up to

Φ
{a,c},{b,d}
Γ• − Φ

{b,c},{a,d}
Γ• ,(3.40)

just like eq. (3.38). After putting all of this together we have proved the first

claim,

αeαfx
e
Γx

f
Γ = ΨΓ•

(
Φ
{∂−(e),∂−(f)},{∂+(e),∂+(f)}
Γ − Φ

{∂+(e),∂−(f)},{∂−(e),∂+(f)}
Γ

)
−ΨΓ

(
Φ
{∂−(e),∂−(f)},{∂+(e),∂+(f)}
Γ• − Φ

{∂+(e),∂−(f)},{∂−(e),∂+(f)}
Γ•

)
= ΨΓ•β

(e|f)
Γ −ΨΓβ

(e|f)
Γ• .(3.41)

For the second claim we simply remember eq. (1.27),

β
(e|f)
Γ = −αeαfχ

(e|f)
Γ for all e 	= f

and divide by αeαf on both sides. For the final claim we return from the

notation with Γ• to Dodgson polynomials. Then we have
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xeΓx
f
Γ = −ΨΓ•χ

(e|f)
Γ +ΨΓχ

(e|f)
Γ•

⇐⇒
χ
(v|v)
Γ,u χ

(ae|af )
Γ,u + xeΓx

f
Γ = ΨΓχ

(aev|afv)
Γ,u(3.42)

and the nature of the xeΓ becomes obvious from a comparison with the
Dodgson identity in eq. (1.33) or eq. (2.10).

3.2.2. The sum over D1
Γ Now that we know that the additional poly-

nomials xeΓ are also just Dodgson polynomials it seems reasonable to think
that the ideas used for the previous summation can also be used here. We
find that this is indeed the case, but there are some complications that we
need to consider first.

Note that D1
Γ has

|D1
Γ| =

(
2N

2

)
(2N − 3)!! =

2N(2N − 1)!

2(2N − 2)!
(2N − 3)!! = N(2N − 1)!!(3.43)

elements. They can be sorted into (2N − 1)!! groups of N diagrams, each
of which corresponds to a diagram D ∈ D0

Γ and all N possible choices to
remove one chord from it. Hence, a sum over D1

Γ can be split into a double
sum over D0

Γ and chords of each diagram. The addition of the final chord
always raises the total cycle number by one, by removing the tricoloured
cycle to add one bicoloured cycle of each colour. With polynomials one has∑
D∈D1

Γ

(−2)c̃(D)
( ∏

(u,v)∈E0
D

χ
(au|av)
Γ

) ∏
w∈V (2)

D

xwΓ

=
∑

D∈D0
Γ

(−2)c̃(D)−1
( ∏

(u,v)∈E0
D

χ
(au|av)
Γ

) ∑
(u,v)∈E0

D

xuΓx
v
Γ

χ
(au|av)
Γ

= −
∑

D∈D0
Γ

(−2)c̃(D)−1
( ∏

(u,v)∈E0
D

χ
(au|av)
Γ

) ∑
(u,v)∈E0

D

χ
(au|y)
Γ χ

(av|y)
Γ

χ
(au|av)
Γ

.(3.44)

Here and for the rest of this section we still assume that Γ has two external
vertices, say x, y ∈ VΓ, all Dodgson polynomials are with respect to the

vertex x with the incoming momentum qx = q, i.e. χ
(au|av)
Γ ≡ χ

(au|av)
Γ,x , and y

is the letter associated to the other vertex with the outgoing momentum.
Define the set of diagrams D|1E ⊂ D1

Γ restricted by a partition anal-
ogously to the previous case D|0E . Chords are only allowed between base
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edges belonging to the same part and the two free vertices are treated as if
they had a chord between them. In other words, a diagram D ∈ D1

Γ is in D|1E
if and only if the corresponding diagram D′ ∈ D0

Γ (resulting from addition
of the missing chord) is in D|0E .

The next lemma is the analogue of lemmata 3.2 and 3.4. Since the idea
behind the proof is very similar we directly combine them into one.

Lemma 3.10. Let E ∈ P(E1
D) be any partition of 1-coloured base edges.

Then

∑
(u,v)∈P2

sgnE(u, v)
∏

(u′,v′)∈λE(u,v)

χ
(u′|v′)
Γ

(
− |E|ΨΓ• +ΨΓ

∑
(u′,v′)∈λE(u,v)

χ
(u′y|v′y)
Γ

χ
(u′|v′)
Γ

)
= (−1)1−|E|(−ΨΓ)

|E|−N
∑

D∈D|1E

(−2)c
2
2(D)

( ∏
(u,v)∈E0

D

χ
(au|av)
Γ

) ∏
w∈V (2)

D

xwΓ .

Proof. Let wi = xi1 · · · xiN , i = 1, 2 be the two words from eq. (3.3) in the
proof of lemma 3.2. Append the letter y to the front of both words and
consider again the expansion

Ψ2
Γχ

(yw1|yw2)
Γ

= ΨΓχ
(y|y)
Γ χ

(w1|w2)
Γ +ΨΓ

N∑
i=1

(−1)iχ
(x1i|y)
Γ χ

(yx11···x̂1i···x1N |x21···x2N )
Γ

= ΨΓ• ΨΓχ
(w1|w2)
Γ −

N∑
i,j=1

(−1)i+jχ
(x1i|y)
Γ χ

(x2j |y)
Γ χ

(x11···x̂1i···x1N |x21···x̂2j ···x2N )
Γ .

(3.45)

The term ΨΓχ
(w1|w2)
Γ is precisely what was discussed in lemma 3.2 and

(−1)i+jχ
(x11···x̂1i···x1N |x21···x̂2j ···x2N )
Γ

with i = 1 was the coefficient of χ
(x1i|x2j)
Γ in its expansion. Hence, repeating

the steps from that proof we immediately find the result for |E| = 1:

∑
(uid,vid)∈P2

(
ΨΓχ

(uidy|vidy)
Γ −ΨΓ•χ

(uid|vid)
Γ

)(3.46)
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= (−ΨΓ)
1−N

∑
D∈D1

Γ

(−2)c
2
2(D)

( ∏
(u,v)∈E0

D

χ
(au|av)
Γ

) ∏
w∈V (2)

D

xwΓ .

Replacing the Dodgson polynomials with xwΓ (see eq. (3.36)) flips the sign
in front of the sum in eq. (3.45). Since it is a double sum we get a factor
of 2. This, together with a −1 due to the factor +ΨΓ on the l.h.s. raises
the power of −2 to c̃(D). This can be interpreted as due to the additional
tricoloured cycle that all diagrams D ∈ D1

Γ have.
Now we can simply repeat the arguments of lemma 3.4 to extend this to

|E| > 1 to finish the proof. Inclusion of the factor

∑
(u′,v′)∈λE(u,v)

χ
(u′y|v′y)
Γ

χ
(u′|v′)
Γ

(3.47)

simply turns each summand into a sum of |E| terms where one of the factors
in each of them is replaced with the Dodgson polynomials with appended

letters y. Expanding that factor as above yields the term χ
(y|y)
Γ = ΨΓ• in

each summand, so we need −|E|ΨΓ• to cancel it. The remaining terms can
then be collected into groups of terms that either already factorise or can
be reduced with the exact same arguments as in lemma 3.4.

3.2.3. An example Before we move on to prove the main theorem we
discuss an example to illustrate the previous lemma.

Consider a sum over word pairs (uid, vid) ∈ Pj as before, but add in each
Dodgson polynomial an additional letter y representing a vertex. Due to
this additional letter we constrain ourselves to an N = 2 example, namely
n = (2). The word pairs are then (a1a3, a2a4) and (a1a4, a2a3), where we
choose the colour j to be that of the edges (1, 2) and (3, 4), and we expand
the Dodgson polynomials as

Ψ2
Γ

(
χ
(a1a3y|a2a4y)
Γ + χ

(a1a4y|a2a3y)
Γ

)
=2χ

(a1|a2)
Γ χ

(a3|a4)
Γ χ

(y|y)
Γ − 2χ

(a1|a2)
Γ χ

(a3|y)
Γ χ

(a4|y)
Γ − 2χ

(a3|a4)
Γ χ

(a1|y)
Γ χ

(a2|y)
Γ

− χ
(a1|a3)
Γ χ

(a2|a4)
Γ χ

(y|y)
Γ + χ

(a1|a3)
Γ χ

(a2|y)
Γ χ

(a4|y)
Γ + χ

(a2|a4)
Γ χ

(a1|y)
Γ χ

(a3|y)
Γ

− χ
(a1|a4)
Γ χ

(a2|a3)
Γ χ

(y|y)
Γ + χ

(a1|a4)
Γ χ

(a2|y)
Γ χ

(a3|y)
Γ + χ

(a2|a3)
Γ χ

(a1|y)
Γ χ

(a4|y)
Γ .(3.48)

Note that there are 9 distinct terms. Firstly, we have the 3 = (2N − 1)!!
terms

χ
(y|y)
Γ

(
2χ

(a1|a2)
Γ χ

(a3|a4)
Γ − χ

(a1|a3)
Γ χ

(a2|a4)
Γ − χ

(a1|a4)
Γ χ

(a2|a3)
Γ

)
(3.49)
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corresponding to diagrams D ∈ D2
2 (� D0

Γ for some suitable Γ). Dividing by

ΨΓ one finds that this exactly agrees with the sum predicted in lemma 3.2

but with a factor χ
(y|y)
Γ .

The other 6 = N(2N − 1)!! terms are

−2
(
χ
(a1|a2)
Γ χ

(a3|y)
Γ χ

(a4|y)
Γ + χ

(a3|a4)
Γ χ

(a1|y)
Γ χ

(a2|y)
Γ

)
+χ

(a1|a3)
Γ χ

(a2|y)
Γ χ

(a4|y)
Γ + χ

(a2|a4)
Γ χ

(a1|y)
Γ χ

(a3|y)
Γ

+χ
(a1|a4)
Γ χ

(a2|y)
Γ χ

(a3|y)
Γ + χ

(a2|a3)
Γ χ

(a1|y)
Γ χ

(a4|y)
Γ ,(3.50)

and correspond to diagrams D ∈ D2
1 with one missing chord. Alternatively

we can write this as

2
(
χ
(a1|a2)
Γ x3Γx

4
Γ + χ

(a3|a4)
Γ x1Γx

2
Γ

)
− χ

(a1|a3)
Γ x2Γx

4
Γ − χ

(a2|a4)
Γ x1Γx

3
Γ

− χ
(a1|a4)
Γ x2Γx

3
Γ − χ

(a2|a3)
Γ x1Γx

4
Γ,(3.51)

and we see that the factors are as predicted by lemma 3.10, specifically the

|E| = 1 case in eq. (3.47).

We continue the example to a partition with two parts. Since we chose

the colour of the word pairs to be that of (1, 2) and (3, 4), the partition

needs to be of the other edges, i.e. E = {{(1, 4)}, {(2, 3)}}. One finds

−ΨΓ

(
χ
(a1|a4)
Γ χ

(a2y|a3y)
Γ + χ

(a2|a3)
Γ χ

(a1y|a4y)
Γ

)(3.52)

= −2χ
(a1|a4)
Γ χ

(a2|a3)
Γ χ

(y|y)
Γ + χ

(a1|a4)
Γ χ

(a2|y)
Γ χ

(a3|y)
Γ + χ

(a2|a3)
Γ χ

(a1|y)
Γ χ

(a4|y)
Γ

= −2χ
(a1|a4)
Γ χ

(a2|a3)
Γ ΨΓ• − χ

(a1|a4)
Γ x2Γx

3
Γ − χ

(a2|a3)
Γ x1Γx

4
Γ.

The above results from the pairs λE(a1a3, a2a4) = {(a1, a4), (a3, a2)}. Note

that this also yields a sign sgnE(a1a3, a2a4) = −1 in front of ΨΓ on the l.h.s.

since a4 and a2 are permuted when concatenating the two word pairs in

λE(a1a3, a2a4). The other word pair yields λE(a1a4, a2a3) = ∅, and thus no

polynomial. We see that only two diagrams are in D|1E , since (1, 4) and (2, 3)

are the only two possible chords that stay within one part of the partition

E = {{(1, 4)}, {(2, 3)}}. For the other term note that the −2 does not come

from the number of cycles but from |E| = 2 together with the signum.
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Proof of Theorem 3.8 The partition polynomial definitions 2.4 and 2.5

together with lemma 3.10 directly yield

Z1
Γ =

1

2

∑
E∈P(E1

D)

(−ΨΓ)
N−|E|(|E|+ 1)!

(3.53)

×
∑

(u,v)∈P2

sgnE(u, v)
∏

(u′,v′)∈λE(u,v)

χ
(u′|v′)
Γ

(
|E|ϕΓ −ΨΓ

∑
(u′,v′)∈λE(u,v)

χ
(u′y|v′y)
Γ

χ
(u′|v′)
Γ

)
=

1

2

∑
E∈P(E1

D)

(−1)|E|+1(|E|+ 1)!
∑

D∈D|1E

(−2)c
2
2(D)

( ∏
(u,v)∈E0

D

χ
(u|v)
Γ

) ∏
w∈V (2)

D

xwΓ .

Now we have almost the same situation as in theorem 3.1, except for the

summation over D|1E instead of D|0E . We can again exploit the one-to-one

correspondence between diagrams in D|0E and subsets of N diagrams in D|1E
to be able to use the same argument as before. This correspondence carries

over to the restricted sets and we can split the sum over D|1E into a sum

over D|0E and the chords of each diagram (see also eq. (3.44)). We then

have

Z1
Γ =

1

2

∑
E∈P(E1

D)

(−1)|E|+1(|E|+ 1)!

×
∑

D∈D|0E

(−2)c
2
2(D)−1

( ∏
(u,v)∈E0

D

χ
(u|v)
Γ

) ∑
(u,v)∈E0

D

xuΓx
v
Γ

χ
(u|v)
Γ

.(3.54)

Exchange of summations yields the same sum involving the Stirling numbers

of the second kind, which allows us to find c12(D). We now have

Z1
Γ =

1

2

∑
D∈D0

Γ

(−2)c̃(D)−1
( ∏

(u,v)∈E0
D

χ
(u|v)
Γ

) ∑
(u,v)∈E0

D

xuΓx
v
Γ

χ
(u|v)
Γ

=
1

2

∑
D∈D1

Γ

(−2)c̃(D)

( ∏
(u,v)∈E0

D

χ
(u|v)
Γ

) ∏
w∈V (2)

D

xwΓ ,(3.55)

where we take care to account for the reduced cycle number when translating

back to a sum over D1
Γ. This is exactly eq. (3.25) and the proof is done.
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4. Application to Feynman integrals

4.1. Structure of the integrand

We now return to Feynman integrals and apply the theorems we just proved.
In order to do so we first need to combine the results of [21] and [22]. Our
starting point is the unrenormalised integral

φΓ =

∫
R

|EΓ|
+

dα1 · · · dαEΓ

exp
(

ΦΓ

ΨΓ

)
Ψ

2+h1(Γ)
Γ

h1(Γ)∑
k=0

I
(k)
Γ

Ψk
Γ

from eq. (1.2). It is convenient to consider the k-th summand contracted
with a metric tensor corresponding to the two external vertices x, y ∈ VΓ.
Then

gμxμy
I
(k)
Γ =− tr(γμ1 · · · γμ2h1 )

( ∏
(u,v)∈E0

DΓ

gμuμv

)

×
∑

D∈Dk
Γ

( ∏
(u,v)∈E0

D

gμuμv

2
χ
(u|v)
Γ

) ∏
w∈V (2)

D

qμw
xwΓ(4.1)

is just a rewriting of the integrand as worked out in [21, eq. (72)]. The
sum over fermion edge subsets and pairings is interpreted in terms of chord
diagrams whose vertices are labelled by fermion edges and the additional

metric tensor adds a chord such that we indeed have sums over D0
Γ in I

(0)
Γ

etc.
As all throughout this article we stay in the special case of photon propa-

gator graphs, Feynman gauge, and quenched QED, which becomes manifest
in the terms above as follows:

• A propagator graph has only two external vertices with a single exter-
nal momentum q, such that one has the factorised polynomials qμw

xwΓ .
• Because it is a photon propagator there is one closed fermion cycle,
which leads to the trace of Dirac matrices. Since we have quenched
QED there is only exactly one such cycle and therefore no product of
traces.

• For a general gauge each I
(k)
Γ itself contains another sum

I
(k)
Γ =

h1−1∑
l=0

( ε

ΨΓ

)l
I
(k,l)
Γ(4.2)
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where the gauge parameter ε is such that Feynman gauge is ε → 0.

Each I
(k,l)
Γ is structurally similar to I

(k,0)
Γ but instead of a skeleton

chord diagram DΓ with h1 fixed chords it contains a sum over all
possible such skeletons with h1 − l fixed chords and then the usual
chord diagram sums over all possible additions of further chords. Note
that this in particular means that the sum over k then also goes up to

2h1−1. Here we stick to Feynman gauge and identify I
(k)
Γ ≡ I

(k)
Γ |ε=0 =

I
(k,0)
Γ for 0 ≤ k ≤ h1.

4.1.1. Contraction Next we apply the contraction theorem [22, Theorem
3.9] to remove all Dirac matrices and metric tensors. We find

gμxμy
I
(k)
Γ = 2h1+1(−q2)k

∑
D∈Dk

Γ

(−2)c̃(D)

( ∏
(u,v)∈E0

D

χ
(u|v)
Γ

) ∏
w∈V (2)

D

xwΓ .(4.3)

The final integer factor is computed as follows. There are a total of 2h1 − k
chords yielding (−2)2h1−k, but the h1−k non-fixed chords added to D0

Γ come
with a factor 1/2. Free vertices, corresponding to Dirac matrices contracted
with a momentum instead of a metric tensor yield powers of q2 and there
is one more factor of −2, due to the one base cycle of DΓ, whose sign is
cancelled by the −1 from the Feynman rules for a fermion cycle. Altogether
one finds

−(−2)1︸ ︷︷ ︸
1 base cycle/trace

· (−2)h1︸ ︷︷ ︸
fixed chords

E0
DΓ

· (−1)h1−k︸ ︷︷ ︸
other chords

E0
D

· (q2)k︸ ︷︷ ︸
free vertices

V (2)
D

= 2h1+1(−q2)k.(4.4)

For the actual integrand we are interested in I
(k)
Γ , not its contraction

with gμxμy
, so we need to work out what the effect of this contraction is.

To simplify notation, let μ and ν, without subscript, denote the space time
indices of the external vertices, previously written μx, μy. For k = 0 there are
no free vertices. In other words, the added chord between external vertices
causes the contraction gμνg

μν = 4 which is counteracted by a factor 2−2 for
all D ∈ D0

Γ. Hence,

I
(0)
Γ = gμν2h1−1

∑
D∈D0

Γ

(−2)c̃(D)
∏

(u,v)∈E0
D

χ
(u|v)
Γ = gμν2h1Z0

Γ(4.5)

with theorem 3.1.
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For k ≥ 1 the chord diagrams split into three disjoint subsets Dk
Γ,• ⊂ Dk

Γ.
The correction factor depends on the result of the Dirac matrix contraction
without contraction of the external vertices. This, in turn, is characterised
by sgn(x, y), the signum of the external vertices in the chord diagram (in-
troduced in section 1.3.1):

sgn(x, y) =

⎧⎪⎨⎪⎩
+1 → tr(/q/qqμqν) ∼ q2gμν

0 → tr(/qqμ/qqν) ∼ 2qμqν − q2gμν

−1 → tr(/qqμ)tr(/qqν) ∼ qμqν
(4.6)

Contracting the results on the r.h.s. with gμν one sees that the correction
factor is a −2 with the exponent 1+sgn(x, y) for all diagrams, including the
k = 0 case, in which only +1 occurs. We can define partial chord diagram
sums

Zk
Γ,•

..=
1

2

∑
D∈Dk

Γ,•

(−2)c̃(D)

( ∏
(u,v)∈E0

D

χ
(u|v)
Γ

) ∏
w∈V (2)

D

xwΓ ,(4.7)

based on these subsets. Then Z0
Γ,+ = Z0

Γ and Z0
Γ,− = Z0

Γ,0 = 0, and for k = 1
we have

Z1
Γ = Z1

Γ,+ + Z1
Γ,0 + Z1

Γ,−(4.8)

with theorem 3.8. For k > 1 similar equalities should hold, assuming one
defines the right k-th order partition polynomial, but, as we will see in the
next section, for a superficially renormalised integral these two will suffice.

With this notation the k-th summand now has become

I
(k)
Γ = 2h1(−q2)k

(
gμνZk

Γ,+ − 2
(
2
qμqν

q2
− gμν

)
Zk
Γ,0 + 4

qμqν

q2
Zk
Γ,−

)
= 2h1(−q2)k

(
gμν

(
Zk
Γ,+ + 2Zk

Γ,0

)
+ 4

qμqν

q2
(
Zk
Γ,− − Zk

Γ,0

))
,(4.9)

and the full unrenormalised integrand is

IΓ = 2h1
e
−ΦΓ

ΨΓ

Ψh1+2
Γ

(
gμνZ0

Γ −
h1∑
k=1

(−q2)k−1

Ψk
Γ

(
q2gμν

(
Zk
Γ,+ + 2Zk

Γ,0

)
(4.10)

+ 4qμqν
(
Zk
Γ,− − Zk

Γ,0

))
.
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Now this may seem somewhat problematic – we know the sum Z1
Γ,++Z1

Γ,0+

Z1
Γ,− (and can presumably generalise that knowledge to k > 1). But what

can we do about these combinations? As it turns out, we can exploit the
transversality of the photon propagator to modify the integrand such that
it only contains these types of sums, but first we want to renormalise it.

4.1.2. Renormalisation We (superficially) renormalise this integrand in
a BPHZ scheme following [16]. Consider a generic integral of the same form
as our Feynman integral, namely∫

R
n
+

dα1 · · · dαn

m∑
k=−1

e−XIk,(4.11)

where X and all Ik are rational functions in αi with overall degree (degree
of numerator minus degree of denominator) 1 and k − n respectively.

We can introduce an auxiliary variable t by inserting

1 =

∫ ∞

0
δ(t−

∑
i

λiαi)dt,

where each λi ∈ {0, 1} and at least one of them non-zero. Then scaling all
Schwinger parameters by αi �→ tαi turns eq. (4.11) into∫

R
n
+

dα1 · · · dαn δ(1−
∑
i

λiαi)

m∑
k=−1

IkTk(4.12)

with

Tk =

∫ ∞

0
dt tk−1e−tX = X−kΓ(k).(4.13)

The Gamma function has poles at negative integers and zero, corresponding
here to quadratic and logarithmic divergences for k = −1 and 0. They can
be parametrised for further study by regularising the t-integration with an
ε > 0:

T0
ε→0
=

∫ ∞

ε
t−1e−tXdt = − log ε− logX − γE +O(ε)(4.14)

T−1
ε→0
=

∫ ∞

ε
t−2e−tXdt =

e−εX

ε
−X

∫ ∞

ε
t−1e−tXdt︸ ︷︷ ︸
∼T0

(4.15)
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We see that the divergent terms are isolated and a simple subtraction like

T0 − T ′
0 = − log

X

X ′ ,(4.16)

is already enough to cancel a logarithmic divergence. The quadratic diver-
gence requires first an on-shell subtraction to remove the term ∼ ε−1, then
the usual subtraction for the remaining logarithmic divergence.

Note that, assuming convergence, the integral in eq. (4.12) can equiva-
lently be written projectively5∫

R
n
+

dα1 · · · dαn δ(1−
∑
i

λiαi)

m∑
k=−1

IkTk =

∫
σΓ

ΩΓ

m∑
k=−1

IkTk,(4.17)

where ΩΓ =
∑n

i=1(−1)i−1αidα1 ∧ · · · ∧ d̂αi ∧ · · · ∧ dαn and one integrates
over the subset of real projective space in which all parameters are positive

σΓ = {[α1 : . . . : αn] | αi > 0 ∀ i = 1, . . . , n}.(4.18)

For brevity we will use this notation from now on.
We can now apply this to the integrand. Simply counting the degrees

of the various homogenous polynomials that appear in numerator and de-
nominator one finds that the 0-th term is quadratically divergent, the next
one logarithmically, and all others are convergent. Hence, the (superficially)
renormalised integrand is

IRΓ =
2h1L

Ψh1+3
Γ

(
q2gμνϕΓZ

0
Γ + q2gμν

(
Z1
Γ,+ + 2Z1

Γ,0

)
+ 4qμqν

(
Z1
Γ,− − Z1

Γ,0

))(4.19)

=
2h1L

Ψh1+3
Γ

(
q2gμν

(
ϕΓZ

0
Γ + Z1

Γ,+ + 2Z1
Γ,0

)
− qμqν

(
4Z1

Γ,0 − 4Z1
Γ,−

))
,

with L = log q2/μ2.
At this point we can now impose transversality on the integrand to sim-

plify it. For the photon propagator transversality simply means that the
amplitude, the sum of all relevant Feynman integrals, is proportional to

5For a more thorough discussion of the bijection between R
n
+ and (a certain

subset of) projective space induced by the introduction of the delta function see
[34, sec. 2.1.3]. Of note in particular is the fact that it is completely independent of
the choice of the parameters λi, which is sometimes called the “Cheng-Wu theorem”.
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q2gμν − qμqν . This is manifestly not true for individual Feynman integrals,

let alone their integrands. However, since only their sum has physical mean-

ing we can simply redefine IRΓ such that it already satisfies transversality.

Whatever change this effects in the integral cancels when adding up all in-

tegrals. Here we get the condition

ϕΓZ
0
Γ + Z1

Γ,+ + 2Z1
Γ,0

!
= 4Z1

Γ,0 − 4Z1
Γ,−.(4.20)

We could now naively just use either side of this in the integrand. However,

we can also do better than that. Note that

ϕΓZ
0
Γ + Z1

Γ,+ + 2Z1
Γ,0 =

(
ϕΓZ

0
Γ + Z1

Γ,+ + Z1
Γ,0 + Z1

Γ,−︸ ︷︷ ︸
=Z1

Γ

)
+
(
Z1
Γ,0 − Z1

Γ,−
)
.

(4.21)

Now imposing the transversality condition eq. (4.20) yields

ϕΓZ
0
Γ + Z1

Γ = 3
(
Z1
Γ,0 − Z1

Γ,−
)

(4.22)

and the integrand becomes

IRΓ =
2h1L

Ψh1+3
Γ

(
q2gμν

(
ϕΓZ

0
Γ + Z1

Γ,+ + 2Z1
Γ,0

)
− 4qμqν

(
Z1
Γ,0 − Z1

Γ,−
))

= (q2gμν − qμqν)L
2h1+2

3

ϕΓZ
0
Γ + Z1

Γ

Ψh1+3
Γ

.(4.23)

We can also use the definitions of the partition polynomials to make the

cancellations more obvious:

ϕΓZ
0
Γ + Z1

Γ

Ψh1+3
Γ

=

h1∑
l=1

(−1)h1−l(l + 1)!

(
ϕΓZ

0
Γ

∣∣
l

Ψl+3
Γ

− 1

2

Z1
Γ

∣∣
l

Ψl+2
Γ

)
(4.24)

4.2. Examples

4.2.1. 1-loop photon propagator The 1-loop case is the only primitive

photon propagator and therefore the only example we can show in full with-

out discussing subdivergences. The Kirchhoff polynomial is ΨΓ = α1 + α2

and ϕΓ = α1α2. The only possible cycle polynomial χ
(1|2)
Γ and Z0

Γ

∣∣
1
are both
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Figure 4.1: The 1-loop photon propagator.

just 1 and Z1
Γ

∣∣
1
= −ϕΓ/ΨΓ. The integrand is therefore

ϕΓZ
0
Γ + Z1

Γ

Ψh1+3
Γ

= (−1)1−1(1 + 1)!

(
ϕΓ

Ψ4
Γ

+
1

2

ϕΓ

Ψ4
Γ

)
= 3

ϕΓ

Ψ4
Γ

= 3
α1α2

(α1 + α2)4

(4.25)

and the renormalised integral is

φR
Γ = (q2gμν − qμqν)

2h1+2

3
L

∫
σΓ

ΩΓ
ϕΓZ

0
Γ + Z1

Γ

Ψh1+3
Γ

= 8L(q2gμν − qμqν)

∫
σΓ

α1α2

(α1 + α2)4
ΩΓ

=
4

3
L(q2gμν − qμqν).(4.26)

The factor 4/3 is exactly the 1-loop coefficient of the QED beta function in

the conventions of [35, 36, 37].

4.2.2. 3-loop photon propagators For Feynman graphs with more than

one loop we can not compute the full integral without discussing subdiver-

gences and including the corresponding terms of Zimmermann’s forest for-

mula for a fully renormalised integrand. However, we can show what the

superficially renormalised part of the integrand looks like and especially em-

phasise the cancellations and reductions in size due to the two summation

theorems.

At two loops the examples are still rather simple so we go to three loops,

where the integrals start to become much more involved. For example, Z0
Γ

is now already a polynomial of degree h1(h1− 1) = 6, compared to just 2 at

two loops, and the number of chord diagrams rises to 15 (in Feynman gauge,

and already hundreds in general gauge) such that the reduction to h1 = 3
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Figure 4.2: The 3-loop topologies with one fermion cycle.

small summands in the partition polynomial now becomes significant. All

examples were computed with Maple.6

We focus on the graph in fig. 4.2h. Label edges and vertices as in fig. 4.3

Figure 4.3: From left to right: The graph Γ from fig. 4.2h with its external
photon edge closed – the corresponding chord diagram DΓ with fixed chords
corresponding to all photon edges – the projection D0

Γ = π0(DΓ).

with v1, v4 being the external vertices and e7 = (v2, v5) and e8 = (v3, v6) the

two photon edges. The Kirchhoff and second Symanzik polynomial consist

of 36 and 45 monomials, so we refrain from writing them out in full here.

An example for a cycle polynomial is:

χ
(1|6)
Γ = α2(α3 + α4 + α5 + α8) + (α3 + α4)(α5 + α7 + α8) + α7(α5 + α8)

(4.27)

6MapleTM is a trademark of Waterloo Maple Inc. [38].
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This one has so many terms since e1 and e6 share all their cycles, because
they are incident to the same external (i.e. 2-valent) vertex of Γ. In other

words, χ
(1|6)
Γ = χ

(1|1)
Γ = χ

(6|6)
Γ . Others are simpler:

χ
(1|3)
Γ = χ

(1|4)
Γ = χ

(3|6)
Γ = χ

(4|6)
Γ = −α2α5 + α7α8(4.28)

Here we have an example of monomials with different signs, which is due to
the fact that the two corresponding cycles are twisted relative to each other
(as discussed in the proof of proposition 2.1). One cycle is the fermion cycle,
the other crosses via both photon edges.

The partition polynomial Z0
Γ The word pairs we get from D0

Γ are

(a1a2a3, a4a5a6), (a1a5a3, a4a2a6), (a1a2a6, a4a5a3), (a1a5a6, a4a2a3).

For Z0
Γ

∣∣
1
we have the single partition E = {{(e1, e4), (e2, e5), (e3, e6)}}, such

that

Z0
Γ

∣∣
1
= χ

(a1a2a3|a4a5a6)
Γ + χ

(a1a2a6|a4a5a3)
Γ + χ

(a1a5a3|a4a2a6)
Γ + χ

(a1a5a6|a4a2a3)
Γ

= 1 + 0 + 0 + 1 = 2.(4.29)

Remark 4.1. Note that the two vanishing Dodgson polynomials are those
that have the letter pairs a1/a6 and a3/a4 within the same word. While
these are different letters we have seen above that their associated edges are
equivalent as far as the cycle space of Γ is concerned. This is reflected in the
behaviour of the Dodgson polynomials, which vanish as if the letters were
identical.

For Z0
Γ

∣∣
2
we have three partitions with two parts, consisting of one and

two edges respectively. For E1 = {{(e1, e4)}, {(e2, e5), (e3, e6)}} one has

λE1
(a1a2a3, a4a5a6) = {(a1, a4), (a2a3, a5a6)},

λE1
(a1a2a6, a4a5a3) = {(a1, a4), (a2a6, a5a3)},

λE1
(a1a5a3, a4a2a6) = {(a1, a4), (a5a3, a2a6)},

λE1
(a1a5a6, a4a2a3) = {(a1, a4), (a5a6, a2a3)}.

All permutations give positive signs and the corresponding polynomial is

2χ
(a1|a4)
Γ

(
χ
(a2a3|a5a6)
Γ + χ

(a2a6|a5a3)
Γ

)
= −2(−α2α5 + α7α8)(α7 + α8),(4.30)
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which is also the polynomial one finds analogously for E3={{(e1, e4),(e2, e5)},
{(e3, e6)}}. For the third, E2 = {{(e1, e4), (e3, e6)}, {(e2, e5)}}, the words are

λE2
(a1a2a3, a4a5a6) = {(a2, a5), (a1a3, a4a6)},

λE2
(a1a2a6, a4a5a3) = {(a2, a5), (a1a6, a4a3)},

λE2
(a1a5a3, a4a2a6) = {(a5, a2), (a1a3, a4a6)},

λE2
(a1a5a6, a4a2a3) = {(a5, a2), (a1a6, a4a3)}.

Again, the total sign is always positive but this time with sgn(σ) = −1 =

sgn(σ′), where e.g. a2a1a3 = σ(a1a2a3) and a5a4a6 = σ′(a4a5a6). The poly-

nomial is

2χ
(a2|a5)
Γ

(
χ
(a1a3|a4a6)
Γ + χ

(a1a6|a4a3)
Γ

)
= 2(−(α1 + α6)(α3 + α4) + α7α8)(α2 + α5 + α7 + α8).(4.31)

The last polynomial is always of the same form. The only partition E =

{{(e1, e4)}, {(e2, e5)}, {(e3, e6)}} has each base edge in a separate part such

that

λE(a1a2a3, a4a5a6) = {(a1, a4), (a2, a5), (a3, a6)},

λE(a1a2a6, a4a5a3) = {(a1, a4), (a2, a5), (a6, a3)},

λE(a1a5a3, a4a2a6) = {(a1, a4), (a5, a2), (a3, a6)},

λE(a1a5a6, a4a2a3) = {(a1, a4), (a5, a2), (a6, a3)},

and

Z0
Γ

∣∣
3
= 4χ

(a1|a4)
Γ χ

(a2|a5)
Γ χ

(a3|a6)
Γ

= (−α2α5 + α7α8)
2(−(α1 + α6)(α3 + α4) + α7α8).(4.32)

Remark 4.2. The fact that the λE are all non-vanishing and often the

same is due to the fact that D0
Γ has the base cycle structure n = (1, 1, 1)

(see fig. 4.3). In this case the partitions P(E1
D) and words P2 are in a sense

maximally compatible, since each 1-coloured base edge has a 2-coloured base

edge partner between the exact same vertices. In other words, P(E1
D) =

P(E2
D) and P1 = P2.
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The number of terms in the three polynomials Z0
Γ

∣∣
k
is 1, 22 and 15

respectively. For comparison, the full chord diagram sum consists of 437
monomials. Here we especially also see how hidden the factorisation of the
Kirchhoff polynomials can be. The expression aΨ2

ΓZ
0
Γ

∣∣
1
+ bΨΓZ

0
Γ

∣∣
2
+ cZ0

Γ

∣∣
3

should have 362 ·1+36 ·22+15 = 2103 terms. But the same monomials may
of course occur in different parts and add up or cancel to yield the 437 that
are left in the sum, obscuring the pattern. See also table 1 for the reduction
observed for other graphs.

Table 1: Number of terms in Z0
Γ compared to Z0

Γ/Ψ
6
Γ after cancellations for

all graphs from fig. 4.2a to 4.2h

(a) (b) (c) (d) (e) (f) (g) (h)
#Z0

Γ 9 9 44 84 348 231 448 437

#Z0
Γ/Ψ

6
Γ 9 9 44 15 16 72 53 38

Table 2: Total number of terms in the superficially renormalised integrand
with and without cancellations for all graphs from fig. 4.2a to 4.2h

(a) (b) (c) (d) (e) (f) (g) (h)
#(ϕΓZ

0
Γ + Z1

Γ) 528 681 1937 4698 17641 8210 22627 25575

#
ϕΓZ

0
Γ+Z1

Γ

Ψ6
Γ

88 329 387 513 1106 782 1637 2439

The partition polynomial Z1
Γ We do not need to repeat the discussion

of partitions etc. but can simply sum over all possible ways to append a
letter to the word pairs. For Z1

Γ

∣∣
1
this means we take Z0

Γ

∣∣
1
from eq. (4.29)

and get

Z1
Γ

∣∣
1
+

ϕΓ

ΨΓ
Z0
Γ

∣∣
1
= χ

(a1a2a3y|a4a5a6y)
Γ + χ

(a1a2a6y|a4a5a3y)
Γ

+ χ
(a1a5a3y|a4a2a6y)
Γ + χ

(a1a5a6y|a4a2a3y)
Γ .(4.33)

This already has 92 terms, so explicitly giving it here in terms of Schwinger
parameters would not be particularly enlightening. Similarly one finds e.g.

Z1
Γ

∣∣
3
+ 3

ϕΓ

ΨΓ
Z0
Γ

∣∣
3
= 4χ

(a1y|a4y)
Γ χ

(a2|a5)
Γ χ

(a3|a6)
Γ + 4χ

(a1|a4)
Γ χ

(a2y|a5y)
Γ χ

(a3|a6)
Γ

+ 4χ
(a1|a4)
Γ χ

(a2|a5)
Γ χ

(a3y|a6y)
Γ ,(4.34)

which has 1551 terms. We see that these expressions are still quite large, but
they nonetheless represent a massive reduction in size compared to the full
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integrand without cancellations. In table 2 the superficially renormalised
integrands with and without cancellations are compared and one finds a
reduction by roughly one order of magnitude.

References

[1] Yoichiro Nambu. Parametric representation of general Green’s func-
tions. Il Nuovo Cimento (1955-1965), 6(5):1064–1083, 1957. MR0091152

[2] Noboru Nakanishi. General integral formula of perturbation term in
the quantized field theory. Progr. Theor. Phys., 17(3):401–418, 1957.
MR0084383

[3] Noboru Nakanishi. Parametric integral formulas and analytic properties
in perturbation theory. Progr. Theor. Phys. Supplement, 18:1–81, 1961.
MR0136328

[4] Kurt Symanzik. Dispersion relations and vertex properties in perturba-
tion theory. Progr. Theor. Phys., 20(5):690–702, 1958. MR0103065

[5] Toichiro Kinoshita.Mass singularities of Feynman amplitudes. J. Math.
Phys., 3(4):650–677, 1962.

[6] M.C. Bergère and Yuk-Ming P. Lam. Bogolubov-Parasiuk theorem in
the α-parametric representation. J. Math. Phys., 17(8):1546–1557, 1976.
MR0424068

[7] M.C. Bergère and J.B. Zuber. Renormalization of Feynman amplitudes
and parametric integral representation. Comm. Math. Phys., 35:113–
140, 1974. MR0342090

[8] Spencer Bloch, Hélène Esnault, and Dirk Kreimer. On motives asso-
ciated to graph polynomials. Comm. Math. Phys., 267:181–225, 2006.
arXiv:math.AG/0510011v1. MR2238909

[9] Francis Brown. The massless higher-loop two-point function. Comm.
Math. Phys., 287:925–958, 2009. arXiv:0804.1660v1 [math.AG].
MR2486668

[10] Francis Brown. On the periods of some Feynman integrals, 2010.
arXiv:0910.0114v2 [math.AG].

[11] Erik Panzer. Algorithms for the symbolic integration of hyperloga-
rithms with applications to Feynman integrals. Comput. Phys. Comm.,
188:148–166, 2014. arXiv:1403.3385v1 [hep-ph].

http://www.ams.org/mathscinet-getitem?mr=0091152
http://www.ams.org/mathscinet-getitem?mr=0084383
http://www.ams.org/mathscinet-getitem?mr=0136328
http://www.ams.org/mathscinet-getitem?mr=0103065
http://www.ams.org/mathscinet-getitem?mr=0424068
http://www.ams.org/mathscinet-getitem?mr=0342090
http://www.ams.org/mathscinet-getitem?mr=2238909
http://www.ams.org/mathscinet-getitem?mr=2486668


Dodgson polynomial identities 721

[12] Francis Brown and Oliver Schnetz. A K3 in φ4. Duke Mathemat-
ical Journal, 161(10):1817–1862, 2012. arXiv:1006.4064 [math.AG].
MR2954618

[13] Francis Brown and Karen Yeats. Spanning forest polynomials and
the transcendental weight of Feynman graphs. Comm. Math. Phys.,
301:357–382, 2011. arXiv:0910.5429v1 [math-ph]. MR2764991

[14] Francis Brown, Oliver Schnetz, and Karen Yeats. Properties of c2 in-
variants of Feynman graphs. Adv. Theor. Math. Phys., 18(2):323–362,
2014. arXiv:1203.0188 [math.AG]. MR3273316

[15] Dirk Kreimer, Walter van Suijlekom, and Matthias Sars. Quantization
of gauge fields, graph polynomials and graph cohomology. Ann. Phys.,
336:180–222, 2013. arXiv:1208.6477 [hep-th]. MR3086033

[16] Francis Brown and Dirk Kreimer. Angles, scales and paramet-
ric renormalization. Lett. Math. Phys., 103(9):933–1007, 2013.
arXiv:1112.1180v1 [hep-th]. MR3077961

[17] Mikhail Kompaniets and Erik Panzer. Renormalization group functions
of φ4 theory in the MS-scheme to six loops. Proceedings of Science,
LL2016:038, 2016. arXiv:1606.09210 [hep-th].

[18] Thomas Bitoun, Christian Bogner, René Pascal Klausen, and Erik
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