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Rooted tree maps
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Based on Hopf algebra of rooted trees introduced by Connes and
Kreimer, we construct a class of linear maps on noncommuta-
tive polynomial algebra in two indeterminates, namely rooted tree
maps. We also prove that their maps induce a class of relations
among multiple zeta values.

AMS 2000 subject classifications: 05C05, 05C25, 11M32, 16T05.
Keywords and phrases: Hopf algebra of rooted trees, noncommuta-
tive polynomial algebra, multiple zeta values, quasi-derivation relation,
Kawashima’s relation.

1. Introduction

A tree is a connected graph with no loops and a rooted tree is a tree with
a special node called a root such that any edge is oriented away from it.
We consider non-planar rooted trees which have no ordering of incoming
edges for each vertex. Thanks to the non-planarity, we can define the free
commutative algebra over Q generated by rooted trees. A product of rooted
trees is sometimes called a rooted forest. An important operator on the
algebra of rooted forests is the grafting operator B+, which is a Q-linear
map defined by sending any rooted forest to a single tree by attaching the
roots to a single new node which then becomes the new root. Because of
non-planarity of rooted trees, there is a unique rooted forest f for every
rooted tree t such that t = B+(f).

It is known that the algebra H of rooted trees is not only an algebra
but a Hopf algebra ([1, 7]). We also know that there exists the so-called
Connes-Moscovici Hopf subalgebra HCM in H.

Here comes a list of some notations in this paper.

• Δ: the coproduct on H
• H := Q〈x, y〉, the noncommutative polynomial algebra over Q in x
and y

• H1 := Q+ Hy ⊃ H0 := Q+ xHy, subalgebras of H
• M : H⊗ H → H given by M(v ⊗ w) = vw
• Ru: the right-concatenation map by u
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• Lu: the left-concatenation map by u
• z := x+ y ∈ H

• Q[X](d): the degree d homogeneous part of the polynomial ring Q[X].

Our first theorem is as follows.

Theorem 1.1. Let I be regarded as the identity map on H. For any rooted
forest f( �= I), we can define the Q-linear map from H to H, which is also
denoted by f , by

(i) If f = , then f(x) := xy and f(y) := −xy,
(i’) B+(f)(u) := RyRy+zR

−1
y f(u) for u ∈ {x, y},

(i”) If f = gh with g, h �= I, then f(u) := g(h(u)) for u ∈ {x, y},
(ii) For w ∈ H and u ∈ {x, y}, f(wu) := M(Δ(f)(w ⊗ u)).

For the construction of rooted forest maps, it is convenient to introduce
the additional map ψf := [f,Rx], where the bracket denotes the commuta-
tor. We call the number of nodes of a rooted forest f the degree of f . Our
second theorem states as follows.

Theorem 1.2. For any rooted forests f, g, we show the following:

(a) There is a map φf such that ψf = RyφfRx.
(b) If f �= I, f(Q · x+Q · y + H0) ⊂ xHy.
(c) φB+(f) = f +Rzφf .
(d) φf ∈ Q[Rz, rooted tree maps](deg f−1).
(e) [f, g] = 0.
(f) For any v, w ∈ H, f(vw) = M(Δ(f)(v ⊗ w)).

On the other hand, the multiple zeta values (abbreviated to MZV’s) are
defined, for an index (k1, . . . , kr) ∈ Nr with k1 > 1, by the convergent series

ζ(k1, . . . , kr) =
∑

m1>···>mr>0

1

m1
k1 · · ·mr

kr
∈ R.

It is known that there are many linear relatons among MZV’s. For example,
in [8], it is shown that the linear part of Kawashima relation [6] contains
the quasi-derivation relation, which is a slightly but strictly larger class of
relations than the derivation relation described in [4]. The quasi-derivation
relation was first formulated in [5] by modeling the Connes-Moscovici’s Hopf
algebra [2].

MZV’s are often investigated under the algebraic language due to Hoff-
man [3] which enables us to understand algebraic and combinatorial struc-
tures of MZV’s in a down-to-earth way. The Q-linear map Z : H0 → R called
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Figure 1: Example of rooted forests.

the evaluation map is defined by Z(1) = 1 and

Z(zk1
· · · zkr

) = ζ(k1, . . . , kr) (k1 > 1),

where zk := xk−1y for k ≥ 1. In what follows, all matters for MZV’s are com-
prehended based on this algebraic setup. Here, note that to find a relation
for MZV’s amounts to find an element in kerZ.

As an application of rooted tree maps, we show the third theorem as
follows.

Theorem 1.3. f(H0) ⊂ kerZ for any rooted tree map f .

The proof is similar to the one we have discussed on the quasi-derivation
relation in [8].

2. Rooted trees

For the sake of conventions, we begin with a short review of the theory of
rooted trees by Connes and Kreimer [1, 7].

2.1. The algebra H of rooted trees

A tree is a non-empty connected finite graph with no loops and a rooted tree
is a tree with a special node such that any edge is oriented away from it. The
planarity of rooted trees is defined by taking a linear ordering of incoming
edges for each vertex into account. In this paper we consider non-planar
rooted trees and the topmost node represents the root.

Let H be the free commutative algebra over Q linearly generated by
rooted forests:

H =
∑

f :rooted forest

Q · f.

Here the product of rooted trees is defined by the disjoint union. Thanks to
the non-planarity, the product of trees is commutative. The neutral element
is the empty forest denoted by I (this is not a tree but a forest). Obviously
H is algebraically generated by rooted trees.
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2.2. Grafting operator

Let T be the set of all rooted trees and 〈T 〉Q be its linear span over Q. The
grafting operator is the Q-linear map B+ : H → 〈T 〉Q defined by B+(I) =
and sending any rooted forest to a single tree by attaching the roots to a
single new node which then becomes the new root:

B+(t1t2 · · · tn) =

for rooted trees t1, . . . , tn. Because of non-planarity of rooted trees, there is
a unique forest f for every rooted tree t such that t = B+(f).

2.3. Grading

There is a natural grading on H by the number of nodes. Let Fn be the set
of all forests with n nodes. Put Hn := 〈Fn〉Q for n ≥ 1 and H0 := QI. Then
we have

H =
⊕

n≥0

Hn.

The product has the grading property

HlHk ⊂ Hl+k.

2.4. Coproduct

We define the coproduct Δ : H → H ⊗ H. The coproduct is to be multi-
plicative, that is

Δ(fg) = Δ(f)Δ(g)

and so we just need to define Δ(t) for tree t. Let t = B+(f), then we define
Δ(t) by virtue of

Δ ◦B+ = B+ ⊗ I+ (id⊗B+) ◦Δ,

that is

(2.1) Δ(t) = Δ ◦B+(f) := t⊗ I+ (id⊗B+) ◦Δ(f).

We also set Δ(I) = I⊗ I.
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This definition of Δ allows us to calculate the coproduct of rooted forests
recursively. Here are some examples of coproducts of rooted trees and forests.

Δ( ) = Δ ◦B+(I)

= B+(I)⊗ I+ (id⊗B+) ◦Δ(I)

= ⊗ I+ I⊗
Δ( ) = ⊗ I+ 2 ⊗ + I⊗
Δ( ) = ⊗ I+ ⊗ + I⊗

Δ( ) = ⊗ I+ ⊗ + 2 ⊗ + I⊗

Proposition 2.1. The algebra morphism Δ is coassociative, that is

(id⊗Δ) ◦Δ = (Δ⊗ id) ◦Δ.

Proof. The proof goes by induction on the grading.

Remark 2.2. (i) There is another geometric way to define the coproduct
Δ by using admissible cuts, which can be found in [1, 7].

(ii) The counit Î : H → Q is given by vanishing on all forests except for
Î(I) = 1. The antipode S : H → H is defined by

m ◦ (S ⊗ id) ◦Δ = I ◦ Î = m ◦ (id⊗ S) ◦Δ,

where m denotes the product on H. For example,

S(I) = I, S( ) = − , S( ) = − + , S( ) = .

Then it is known that (H,m, I,Δ, Î, S) forms a Hopf algebra (Hopf algebra
of rooted trees).

3. Rooted tree maps

By Subsection 2.3 the space H is graded by the degree. In this section we
construct rooted tree maps on H inductively by this degree and show that
they satisfy the proposition mentioned in the Introduction.

3.1. Degree 0 and 1

The only rooted forest of degree 0 is I, which is regarded as the identity map
on H. We know that Δ(I) = I ⊗ I and I(vw) = I(v)I(w) for any v, w ∈ H.
Put ψI = φI := 0. It obviously follows that ψI = RyφIRx.
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We see that F1 = { }. The coproduct of is given by

(3.1) Δ( ) = ⊗ I+ I⊗

as stated in Section 2.4. We define, for w ∈ H and u ∈ {x, y}, the Q-linear
map by

(3.2) (wu) = (w)u+ w (u)

and

(x) = − (y) = xy.

Lemma 3.1. We have

(3.3) [ , Rz] = 0.

Proof. For w ∈ H, [ , Rz](w) = (wz)− (w)z = (w)z+w (z)− (w)z =
0.

Then we are allowed to define the map associated to by

ψ := sgn(u)[ , Ru] = [ , Rx],

where sgn(u) = 1 or −1 according to u = x or y. Since ψ (w) = w (x) =
wxy, it follows that

(3.4) ψ = Ryφ Rx

by putting φ = id. This implies that

(3.5) (wu) = (w)u+ sgn(u)φ (wx)y (w ∈ H, u ∈ {x, y})

and in particular

(3.6) (Q · x+ H1) ⊂ Hy

because of (1) = 0. We also find the following.

Lemma 3.2. (Q · x+Q · y + H0) ⊂ xHy.

Proof. Using (3.5), we have (Q · x+Q · y +H0) ⊂ xH by induction on the
length of a word w ∈ H0. We have already obtained (3.6), and hence the
lemma holds.
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We obviously find that [ , ] = 0. We also have the following.

Proposition 3.3. We have

(vw) = (v)w + v (w)

for any v, w ∈ H.

Proof. By (3.1) and (3.2), we obtain the proposition by induction on the
degree of a word w.

3.2. Degree 2

In the first step, we prepare a lemma which is required several times below.

Lemma 3.4. If a Q-linear map f : H → H satisfies [f,Rx] = [f,Ry] = 0
and f(1) = 0, Then f ≡ 0.

Proof. Since f is Q-linear, it is only necessary to show f(w) = 0 for any
words w ∈ H. Write w = u1u2 · · ·un with u1, u2, . . . , un ∈ {x, y}. Since
[f,Rui

] = 0 for any 1 ≤ i ≤ n by assumption, we have

f(w) = f(u1u2 · · ·un) = f(u1u2 · · ·un−1)un = · · · = f(1)u1u2 · · ·un = 0.

There are two rooted forests of degree 2: and . Their coproducts
are

(3.7) Δ( ) = ⊗ I+ 2 ⊗ + I⊗ , Δ( ) = ⊗ I+ ⊗ + I⊗ .

We define, for w ∈ H and u ∈ {x, y}, the Q-linear maps and by

(wu) = (w)u+ 2 (w) (u) + w (u),(3.8)

(wu) = (w)u+ (w) (u) + w (u)(3.9)

and for u ∈ {x, y},

(3.10) (u) = ( (u)), (u) = RyRy+zR
−1
y (u).

Lemma 3.5. We have

[ , Rz] = [ , Rz] = 0.
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Proof. For w ∈ H, we get by (3.8)

[ , Rz](w) = (wz)− (w)z

= (w)z + 2 (w) (z) + w (z)− (w)z.

Since (z) = (z) = 0, this becomes 0 and hence [ , Rz] = 0. The proof
of [ , Rz] = 0 goes similarly by using (3.9).

Then we are allowed to define the maps associated to rooted forests of
degree 2 by

ψ := sgn(u)[ , Ru] = [ , Rx], ψ := sgn(u)[ , Ru] = [ , Rx].

By the coproduct rules (3.7), we calculate

ψ (w) = 2 (wx)y − wxzy, ψ (w) = (wx)y + wxzy,

and hence we have

(3.11) ψ = Ryφ Rx, ψ = Ryφ Rx

by putting

φ = 2 −Rz, φ = +Rz.

Notice that the property (c) in the Introduction holds for f = . These
expressions and (3.3) implies that

(3.12) φ , φ ∈ Q[Rz, ](1)

by assuming the degree of Rz to be 1. Moreover, (3.11) implies that

(wu) = (w)u+ sgn(u)φ (wx)y,(3.13)

(wu) = (w)u+ sgn(u)φ (wx)y(3.14)

for w ∈ H and u ∈ {x, y}, and in particular

(3.15) (Q · x+ H1), (Q · x+ H1) ⊂ Hy

because of (1) = (1) = 0. We also find the following.

Lemma 3.6. (Q · x+Q · y + H0), (Q · x+Q · y + H0) ⊂ xHy.
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Proof. Using (3.13) and (3.14), we have f(Q · x + Q · y + H0) ⊂ xH, where
f = or , by induction on the length of a word w ∈ H0. We have already
obtained (3.15), and hence the lemma holds.

Let f be or . Because of

[[f, ], Ru] = −[[ , Ru], f ]− [[Ru, f ], ],

(3.4) and (3.11), we see that

−sgn(u)[[f, ], Ru] = Ryφ [Rx, f ] +Ry[φ , f ]Rx + [Ry, f ]φ Rx(3.16)

−Ryφf [Rx, ]−Ry[φf , ]Rx − [Ry, ]φfRx.

But since we have already obtained [φ , f ] = 0 and [φf , ] = 0 by (3.12), we
have

(3.16) = −Ryφ ψf + ψfφ Rx +Ryφfψ − ψ φfRx

= −Ryφ RyφfRx +RyφfRxφ Rx +RyφfRyφ Rx −Ryφ RxφfRx

= −Ryφ RzφfRx +RyφfRzφ Rx.

This becomes 0 since the maps φ , φf , Rz are commutative pairwise. By
(3.10), we see that f(1) = 0. Hence by Lemma 3.4, we have

(3.17) [ , ] = [ , ] = 0.

Similarly, because of

[[ , ], Ru] = −[[ , Ru], ]− [[Ru, ], ]

and (3.11), we see that

−sgn(u)[[ , ], Ru] = Ryφ [Rx, ] +Ry[φ , ]Rx + [Ry, ]φ Rx

(3.18)

−Ryφ [Rx, ]−Ry[φ , ]Rx − [Ry, ]φ Rx.

By (3.12), (3.17) and Lemma 3.5, we have

[φ , ] = [φ , ] = 0,

and hence

(3.18) = −Ryφ ψ + ψ φ Rx +Ryφ ψ − ψ φ Rx
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= −Ryφ Ryφ Rx +Ryφ Rxφ Rx+Ryφ Ryφ Rx−Ryφ Rxφ Rx

= −Ryφ Rzφ Rx +Ryφ Rzφ Rx,

which becomes 0 since φ , φ ,Rz are commutative pairwise. Since
[ , ](1) = 0, we have

[ , ] = 0

by Lemma 3.4.

Proposition 3.7. We have

(vw) = (v)w + 2 (v) (w) + v (w),

(vw) = (v)w + (v) (w) + v (w)

for any v, w ∈ H.

Proof. By (3.7), (3.8) and (3.9), we obtain the proposition by induction on
the degree of a word w.

3.3. General degree

Suppose that we have constructed the rooted tree (or forest) maps of degree
less than n. Moreover we assume (a), (b), (d) and (e) in the Introduction for
any rooted forest maps f, g each of which degrees is less than n. We construct
all of the rooted forest maps of degree n and show that they satisfy (a), (b),
(d) and (e).

For any rooted forest f with deg f = n > 1, w ∈ H\Q and u ∈ {x, y},
we define

(3.19) f(wu) := M(Δ(f)(w ⊗ u)).

We also define, for u ∈ {x, y},

f(u) := RyRy+zR
−1
y g(u)

if f is a tree and f = B+(g), or otherwise

f(u) := g(h(u)),

where f = gh with non-empty rooted forests g and h. We notice that, in the
case of f = B+(g), the definition of f(u) makes sense because g(Q · x+Q ·
y + H0) ⊂ xHy.
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By definition, it follows that f(x) = −f(y), or equivalently f(z) = 0.
For any rooted forest of degree < n, we have obtained the same property.
Hence we are allowed to define the map

ψf := sgn(u)[f,Ru] = [f,Rx]

for u ∈ {x, y}.

Case I: f is a tree, i.e. f = B+(g).
By (2.1) and using Sweedler notation Δ(g) =

∑
a⊗ b, we find

ψf (w) = ψB+(g)(w) = B+(g)(wx)−B+(g)(w)x(3.20)

= M(((id⊗B+) ◦Δ)(g)(w ⊗ x))

= g(w)xy +
∑

b�=I

a(w)RyRy+zR
−1
y b(x).

Note that, for the last equality, we useB+(I) = andB+(f) = RyRy+zR
−1
y f

for f �= I. Since a(w)x = Rxa(w) = (aRx − ψa)(w) = (a − Ryφa)(wx),
b(x) ∈ xHy and again Δ(g) =

∑
a⊗ b,

(3.20) = g(wx)y −
∑

b�=I

a(w)b(x)y +
∑

b�=I

(a−Ryφa)(wx)L
−1
x RyRy+zR

−1
y b(x)

= g(wx)y +
∑

b�=I

(a−Ryφa)(wx)L
−1
x (R−1

y b(x))zy.

Therefore we obtain ψf = RyφfRx, where

(3.21) φf = g +Rz

∑

b�=I

RL−1
x R−1

y b(x)(a−Ryφa).

On the other hand, we find

ψg(w) =
∑

a �=g

a(w)b(x) =
∑

a �=g

a(w)xL−1
x b(x)

=
∑

a �=g

(a−Ryφa)(wx)L
−1
x b(x)

and hence by putting

(3.22) φg =
∑

a �=g

RL−1
x R−1

y b(x)(a−Ryφa),
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we find ψg = RyφgRx. Obviously, the condition a �= g is equivalent to the
condition b �= I. Combining (3.21) and (3.22), we have

φf = g +Rzφg.

(This is (c) in the Introduction.) This in particular asserts that φf ∈
Q[Rz, Tn−1](n−1), where Tn−1 stands for the set of all rooted trees of de-
gree ≤ n− 1.

Case II: f is not a tree, i.e. f = gh with g, h �= I.
By easy calculation we find

ψgh = gψh + ψgh.

Since ψg = RyφgRx and ψh = RyφhRx, we have

ψgh = gRyφhRx +RyφgRxh

= (Ryg − ψg)φhRx +Ryφg(hRx − ψh)

= Ry(gφh + φgh− φgRzφh)Rx.

Therefore we obtain ψf = RyφfRx, where

φf = gφh + φgh− φgRzφh.

This in particular asserts again that φf ∈ Q[Rz, Tn−1](n−1).

Therefore, for any rooted forest of degree n, we obtain (a) and (d) in
the Introduction. For any rooted forest f of degree n, we see that f(1) = 0.
Thereby we also have (b) in the Introduction by induction on a degree of a
word in H. (The proof goes similar to Lemma 3.2 and 3.6.)

Now the only we have to show is (e) in the Introduction for any rooted
forests f, g of degree ≤ n. For rooted forests f and g, we have

[[f, g], Ru] = −[[g,Ru], f ]− [[Ru, f ], g].

If deg f, deg g ≤ n, because of this and (a), we see that

−sgn(u)[[f, g], Ru] = [ψf , g]− [ψg, f ]

= Ryφf [Rx, g] +Ry[φf , g]Rx + [Ry, g]φfRx

−Ryφg[Rx, f ]−Ry[φg, f ]Rx − [Ry, f ]φgRx.(3.23)
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If f = , then φf = id and hence

[φf , g] = 0.

Since φg ∈ Q[Rz, Tn−1](n−1), we also have

[φg, f ] = 0.

Thus

(3.23) = −Ryψg + ψgRx +Ryφgψf − ψfφgRx

= −RyRzφgRx +RyφgRzRx = 0.

Since [f, g](1) = 0, we conclude [f, g] = 0 by Lemma 3.4.

Assume that [f, g] = 0 holds for rooted forests f, g of deg g = n and

deg f ≤ i with 1 ≤ i < n. Then, for a rooted forest f with deg f = i+ 1, we

have

[φf , g] = 0, [φg, f ] = 0

because of (d): φf ∈ Q[Rz, Ti](i), φg ∈ Q[Rz, Tn−1](n−1). Thus

(3.23) = −Ryφfψg + ψgφfRx +Ryφgψf − ψfφgRx

= −RyφfRzφgRx +RyφgRzφfRx = 0.

Since [f, g](1) = 0, we conclude [f, g] = 0 by Lemma 3.4. Thus we conclude

(e), the commutativity property, for any rooted forests f, g of degree ≤ n.

Proposition 3.8. We have f(vw) = M(Δ(f)(v⊗w)) for any rooted forest

map f of defree n and any v, w ∈ H.

Proof. By (3.19), we obtain the proposition by induction on the degree of a

word w.

As a consequence of this section, we have Theorem 1.1 and 1.2.

4. Application to MZV’s

In this section we show that rooted tree (or forest) maps constructed in the

previous section induce a class of relations among MZV’s. This will be done

by use of the Kawashima relation, which we recall in the following.
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4.1. Kawashima relation

Let zk := xk−1y for k ≥ 1. The harmonic (or stuffle) product ∗ : H1 ×H1 →
H1 is a Q-bilinear map defined by the following rules.

i) For any w ∈ H1, 1 ∗ w = w ∗ 1 = w.

ii) For any w,w′ ∈ H1 and any k, l ≥ 1,

zkw ∗ zlw′ = zk(w ∗ zlw′) + zl(zkw ∗ w′) + zk+l(w ∗ w′).

This is, as shown in [3], an associative and commutative product on H1.
Denote by ϕ an automorphism of H defined by ϕ(x) = z = x + y and

ϕ(y) = −y. The linear part of Kawashima’s relation [6, Corollary 4.9] is then
stated as follows.

Proposition 4.1. Lxϕ(Hy ∗ Hy) ⊂ kerZ.

Let τ be an anti-automorphism of H defined by τ(x) = y and τ(y) = x,
which is known to induce the duality for MZV’s: (1− τ)(H0) ⊂ kerZ. In [6],
Kawashima proved that Kawashima’s relation contains the duality formula:

Lemma 4.2. (1− τ)(H0) ⊂ Lxϕ(Hy ∗ Hy).

4.2. Main result 2

For w ∈ H1, let Hw(v) := w ∗ v (v ∈ H1). Denote by H1
n the degree n

homogenous part of H1. Let W be the Q-vector space generated by {Hw|w ∈
H1}, and Wn the vector subspace of W generated by {Hw|w ∈ H1

n}. Let W′

be the Q-vector space generated by {LzkHw|k ≥ 1, w ∈ H1}, and W′
n the

vector subspace of W′ generated by {LzkHw|1 ≤ k ≤ n, w ∈ H1
n−k}. The

Q-linear map λ : W′ → W is defined by

λ(LzkHw) = Hzkw.

Here, we show the well-definedness of the map λ. Assume that

(4.1)
∑

(zk,w)

C(zk,w)LzkHw = 0 (∈ W),

where the sum is over a finite number of pairs of words (zk, w). Applying
(4.1) to 1 ∈ H, we have

∑

(zk,w)

C(zk,w)zkw = 0.
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Then, for each zk, we have

∑

w

C(zk,w)w = 0

where the sum is over different words w. Therefore, each coefficient C(zk,w)

becomes zero, and hence, LzkHw’s are linearly independent. We also set

χx := τLxϕ. Then we have the following.

Theorem 4.3. Let n be a positive integer. For any rooted forest map f with

deg f = n, we have

(A) ϕτφfRxτϕ ∈ W′
n.

(B) χ−1
x fχx = −λ(ϕτφfRxτϕ) ∈ Wn.

Remark 4.4. In (B), the expression χ−1
x = ϕτR−1

y makes sense because (b)

in the Introduction has been shown in the previous section.

Proof of Theorem 4.3. We begin with the case of n = 1. We have

(4.2) ϕτφ Rxτϕ = −Ly ∈ W′
1,

and hence (A) holds. Because of (a) and (b) in the Introduction, we find

(4.3) R−1
y Ry = R−1

y (Ry − ψ ) = − φ Rx.

We also calculate

τϕLzk = − Rzk−1Rxτϕ

= −Rzk−1(ψ +Rx )τϕ

= Rzk−1(Ryφ Rx +Rx )τϕ

by using (a), (d) in the Introduction and Lemma 4.8. Hence we have

[χ−1
x χx, Lzk ] = χ−1

x χxLzk − Lzkχ
−1
x χx

= ϕτ( − φ Rx)τϕLzk − Lzkϕτ( − φ Rx)τϕ

= −ϕτRzk−1(Ryφ Rx +Rx )τϕ− ϕτφ RxτϕLzk

− Lzkϕτ( − φ Rx)τϕ

= −Lxkϕτφ Rxτϕ− ϕτφ RxτϕLzk

= [λ(−ϕτφ Rxτϕ), Lzk ].
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Here we use Lemma 4.9 and (4.2) for the last equality. By (4.3) and (1) = 0,

χ−1
x χx(1) = ϕτ( − φ Rx)τϕ(1) = −ϕτφ Rxτϕ(1),

and by Lemma 4.12 this is equal to λ(−ϕτφ Rxτϕ)(1). Therefore we con-
clude (B) for f = by using Lemma 4.13.

Now suppose that (A) and (B) hold for any rooted forest map of degree
< n and let f be any rooted forest map of degree n. We remark that

(4.4) R−1
y fRy = R−1

y (Ryf − ψf ) = f − φfRx,

which is because of (a) and (b) in the Introduction. We obtain
(4.5)
ϕτfτϕ = χ−1

x fχx + ϕτφfRxτϕ = (λ− 1)(−ϕτφfRxτϕ) ∈ (λ− 1)(W′
n−1)

because of (4.4) and (B). According to (e) in the Introduction, we have the
expression

φf =

n∑

j=0

djRzn−j (dj ∈ Q[rooted tree maps](j)),

and hence

φfRxτϕ =

n∑

j=0

djRzn−jRxτϕ =

n∑

j=0

djτϕLzn+1−j
.

We find

ϕτdjτϕ ∈ (λ− 1)(W′
j) (1 ≤ j ≤ n)

because of (4.5) and Lemma 4.11. Therefore we obtain

ϕτφfRxτϕ ∈ Q · Lzn+1
+

n∑

j=1

(λ− 1)(W′
j)Lzn+1−j

⊂ W′
n+1,

which is expected as (A) for f .
We calculate

fτϕLzk = −Rzk−1fRxτϕ = −Rzk−1(RyφfRx +Rxf)τϕ

by using (a), (d) in the Introduction and Lemma 4.8. Hence, by using (4.4)
and similar calculation above, we have

[χ−1
x fχx, Lzk ] = [λ(−ϕτφfRxτϕ), Lzk ].
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For this equality, we use Lemma 4.9 and (A) for f which has already been
obtained. By (4.4) and f(1) = 0,

χ−1
x fχx(1) = ϕτ(f − φfRx)τϕ(1) = −ϕτφfRxτϕ(1),

which is found to be equal to λ(−ϕτφfRxτϕ)(1) by using Lemma 4.12.
Therefore we conclude (B) for f by using Lemma 4.13. This completes the
proof.

Corollary 4.5. For any rooted forest map f �= I, there is an element w ∈ Hy
such that

fχx = χxHw.

Remark 4.6. Such w in the corollary is determined by

w = Hw(1) = χ−1
x fχx(1) = χ−1

x f(y).

Corollary 4.7. For any rooted forest map f �= I, we have

f(H0) ⊂ kerZ.

Proof. It is enough to show, for any rooted forest map f ,

f(xHy) ⊂ kerZ

because of H0 = Q+ xHy and f(Q) = {0}.
By definition of ϕ and τ , we find

χx(Hy) = xHy.

By the previous corollary, there exists w ∈ Hy such that

fχx = χxHw.

We also notice that

χx(Hy ∗ Hy) = (1− (1− τ))(Hy ∗ Hy) ⊂ Lxϕ(Hy ∗ Hy)

due to Lemma 4.2. Therefore we have

f(xHy) = fχx(Hy) = χxHw(Hy) ⊂ Lxϕ(Hy ∗ Hy).

Thanks to Proposition 4.1, we have the conclusion.

As a consequence, we have Theorem 1.3.
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4.3. Lemmata

The following lemmata are required in the proof of Theorem 4.3 in the
previous section.

Lemma 4.8. ϕLx = Lzϕ, ϕLy = −Lyϕ, τLx = Ryτ, τLy = Rxτ, τRx =
Lyτ, τRy = Lxτ .

Proof. Easy.

Lemma 4.9. For any X ∈ W′ and any l ≥ 1, we have [λ(X), Lzl ] =
XLzl + LxlX.

Proof. It is sufficient to show the case in which X = LzkHw, which follows
directly from

(4.6) [Hzkw, Lzl ] = LzkHwLzl + Lzk+l
Hw,

the harmonic product rule.

Lemma 4.10. For any k, l ≥ 1, we have (λ− 1)(W′
k)Lzl ⊂ W′

k+l.

Proof. The proof follows directly from (4.6).

Lemma 4.11. We have (λ− 1)(W′
k) · (λ− 1)(W′

l) ⊂ (λ− 1)(W′
k+l) for any

k, l ≥ 1.

Proof. Let d and d′ be the weights of words w and w′, respectively. The
assertion (λ − 1)(LzkHw) · (λ − 1)(LzlHw′) ∈ (λ − 1)(W′

k+l+d+d′) is only
necessary to show.

LHS = (Hzkw − LzkHw)(Hzlw′ − LzlHw′)

= Hzkw∗zlw′ −HzkwLzlHw′ − LzkHw∗zlw′ + LzkHwLzlHw′

= Hzk(w∗zlw′)+zl(zkw∗w′)+zk+l(w∗w′) − (LzkHwLzl

+LzlHzkw + Lzk+l
Hw)Hw′ − LzkHw∗zlw′ + LzkHwLzlHw′

= Hzk(w∗zlw′) − LzkHw∗zlw′ +Hzl(zkw∗w′) − LzlHzkw∗w′

+Hzk+l(w∗w′) − Lzk+l
Hw∗w′

= (λ− 1)(LzkHw∗zlw′ + LzlHzkw∗w′ + Lzk+l
Hw∗w′).

∈ RHS.

Hence, the lemma is proven.

Lemma 4.12. For any X ∈ W′, we have λ(X)(1) = X(1).
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Proof. (λ− 1)(LzkHw)(1) = Hzkw(1)− LzkHw(1) = zkw − zkw = 0.

Lemma 4.13. Let X ∈ W. If X(1) = 0 and [X,Lzk ] = 0 for any k ≥ 1, we
have X = 0.

Proof. If [X,Lzk ] = 0 for any k ≥ 1,

X(zk1
· · · zkn

) = zk1
X(zk2

· · · zkn
) = · · · = zk1

· · · zkn
X(1) = 0.
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