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A note on BPS structures
and Gopakumar-Vafa invariants

Jacopo Stoppa

Dedicated to the memory of Boris Dubrovin

We regard the work of Maulik and Toda, proposing a sheaf-theo-
retic approach to Gopakumar-Vafa invariants, as defining a BPS
structure, that is, a collection of BPS invariants together with a
central charge. Assuming their conjectures, we show that a canon-
ical flat section of the flat connection corresponding to this BPS
structure, at the level of formal power series, reproduces the
Gromov-Witten partition function for all genera, up to some error
terms in genus 0 and 1. This generalises a result of Bridgeland and
Iwaki for the contribution from genus 0 Gopakumar-Vafa invari-
ants.

1. Introduction

The abstract notions of a BPS structure and of its variation package some
important properties of enumerative invariants of Donaldson-Thomas type
for Calabi-Yau threefolds [15, 17]. These notions are a special case of the
more general stability data introduced by Kontsevich and Soibelman [17];
the terminology is due to Bridgeland [4].

A given BPS structure defines BPS automorphisms of a certain infinite-
dimensional algebra, and these should be regarded as defining in a very natu-
ral way the monodromy of a flat connection ∇BPS on an infinite-dimensional
principal bundle over P1. This basic intuition was developed in several works
including [1, 2, 4, 6, 9, 17].

In the present note we are only concerned with a very special case of this
theory, so we can be almost self-contained: the relevant background material
may be found in Section 2. It is important to point out that we will work
at the level of formal power series, in a sense that will be made clear in the
following (and as explained, for example, in [2, 9], and in [1] Section 4.2).
This applies in particular to the connection ∇BPS and to its flat sections.
We do not try to prove “non-perturbative” results in the spirit of [5]: this is
a much harder, open problem, in general.
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The purpose of this note is to observe that the recent work of Maulik

and Toda [18, 21], concerning a geometric, sheaf-theoretic, definition of

Gopakumar-Vafa invariants, leads naturally to the introduction of a cor-

responding BPS structure. The work of Maulik and Toda is briefly reviewed

in Section 3. The principal virtue of this BPS structure is explained by our

main result, Theorem 4.3, which we summarise here in somewhat imprecise

terms.

Theorem 1.1 (see Theorem 4.3). Let us work at the level of formal power

series, and assume the conjectures of Maulik and Toda. Then the canonical

flat section, along the ray R>0, of the flat connection ∇BPS attached to the

Maulik-Toda BPS structure, has an expansion around t = 0 which repro-

duces the Gromov-Witten partition function expressed in Gopakumar-Vafa

form, except for some error terms due to Gopakumar-Vafa contributions to

Gromov-Witten invariants of genus 0 and 1.

Theorem 4.3 is proved in Section 4. As we will explain it can be seen as a

generalisation of a computation due to Bridgeland and Iwaki (see [4] Section

6.3) for the contribution from genus 0 Gopakumar-Vafa invariants. Again

that computation misses the Gopakumar-Vafa contributions to Gromov-

Witten invariants of genus 0 and 1.

Remark 1.2. Amore classical approach to Gopakumar-Vafa invariants uses

Pandharipande-Thomas stable pairs [19]. An analogue of Theorem 4.3 for

stable pairs is studied in [20]. It is interesting to compare the two approaches.

The Gopakumar-Vafa contributions emerge in two very different ways. The

genus 0 and 1 cases also play a special role in the stable pairs approach: for

example the genus 0 case leads to divergent integrals that require appropriate

regularisation.

The proof of Theorem 4.3 will show that (a specialisation of) the canon-

ical flat section of ∇BPS along R>0 may be written as a sum of contributions

from effective curve classes β, and that each such contribution can be re-

garded as a well-defined function of t ∈ R>0, with values in a certain ring

of formal power series. In particular it makes sense to consider the large

t asymptotics of each fixed β contribution. This is reminiscent of compu-

tations of the entries of the “central connection matrix” for the Dubrovin

connection in quantum cohomology [7, 8, 11], of which ∇BPS is an analogue.

The leading order term for these asymptotics is worked out in Section 5. We

point out that it defines in a natural way a formal family of automorphisms

of an algebraic torus, of the type studied in [12].
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2. Basic notions

Definition 2.1. A BPS structure (Γ, 〈−,−〉, Z,Ω) is the datum of a finite

rank lattice Γ (the charge lattice), endowed with a skew-symmetric bilinear

form 〈−,−〉 with values in Z (the intersection form), together with a group

homomorphism Z : Γ → C (the central charge) and a map of sets Ω: Γ → Q

(the BPS spectrum).

Usually the additional support condition is imposed: fixing some arbi-

trary norm || − || on Γ⊗R, there is a uniform constant C > 0 such that for

all α with Ω(α) �= 0,

|Z(α)| > C||α||.

In fact this does not play a role in the present note.

Definition 2.2. A BPS structure is integral if Ω takes values in Z, and

symmetric if we have Ω(α) = Ω(−α) for all α ∈ Γ.

Definition 2.3. A BPS structure is uncoupled if the locus in Γ where Ω

does not vanish is isotropic: that is for all α, β ∈ Γ with Ω(α),Ω(β) �= 0 one

has 〈α, β〉 = 0.

Definition 2.4. A framed variation of uncoupled BPS structures over a

complex or real analytic manifold M is a family of uncoupled BPS struc-

tures of the form (Γp, 〈−,−〉p, Zp,Ωp), parametrised by p ∈ M , such that

Γp, 〈−,−〉p and Ωp are all constant in p, while Zp ∈ Hom(Γ,C) varies holo-

morphically or real analytically with p.

Definition 2.5. We denote by C[Γ] the group-algebra of Γ endowed with

the usual commutative product, twisted by the form 〈−,−〉,

xαxβ = (−1)〈α,β〉xα+β

and with the Poisson bracket

[xα, xβ ] = (−1)〈α,β〉〈α, β〉xα+β .

We let C[Γ][[s]] denote the ring of formal power series in one variable over

C[Γ], and extend the above commutative product and Poisson bracket to

C[Γ][[s]] by C[[s]]-linearity.

Fix a norm || − || on Γ⊗ R which takes integer values on Γ ⊂ Γ⊗ R.
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Definition 2.6. For a fixed uncoupled BPS structure, the BPS automor-

phism S� ∈ AutC[[s]](C[Γ][[s]]) attached to a ray � ⊂ C∗ is defined by

S�(xα) = xα
∏

Z(β)∈�
(1− s||β||xβ)

Ω(β)〈α,β〉.

Remark 2.7. Here we make rigorous sense of the automorphisms S�, and

later on, of the BPS connection ∇BPS and its flat sections, by working with

formal power series in s and using the arbitrary norm || − ||. This approach
is not compatible with variations, except in the uncoupled case. We refer to

[2, 4, 17] for more details on the general case.

In what follows we denote by DerC[[s]](C[Γ][[s]]) the module of deriva-

tions as a commutative algebra. Note that a given central charge Z can be

regarded as such a derivation acting by Z(xα) = Z(α)xα.

It turns out that S� is a Poisson automorphism, and in fact it can be

expressed uniquely in the form

S� = expDerC[[s]](C[Γ][[s]])

⎛
⎝ad

∑
Z(α)∈�

DT(α)s||α||xα

⎞
⎠

for certain “Donaldson-Thomas” rational numbers DT(α) ∈ Q.

Definition 2.8. The BPS flat connection attached to a fixed uncoupled

BPS structure is the meromorphic connection ∇BPS on the trivial principal

AutC[[s]](C[Γ][[s]])-bundle over P1, of the form

∇BPS = d−
(
Z

t2
+

f

t

)
dt

for some f ∈ DerC[[s]](C[Γ][[s]]), and such that its generalised monodromy at

t = 0 is given by the collection of rays and automorphisms {�,S�}.

One can prove that for a fixed Z such a connection exists and is unique

(see [9]).

Definition 2.9. Fix a ray r ⊂ C∗, distinct from all � ⊂ C∗ for which S� �= Id.

The canonical flat section of ∇BPS along r is a real analytic function Xr(t),

defined for t ∈ r, with values in AutC[[s]](C[Γ][[s]]), such that ∇BPSXr(t) = 0

and we have exp(−Z/t)Xr(t) → Id as t → 0.
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Again one can show that this exists and is unique for a fixed Z (see

[9]), but in fact in the present uncoupled case it is quite easy to write down

the flat section explicitly. Namely, for each element α ∈ Γ we introduce a

function Fα(t), given by

Fα(t) = Ω(α)
t

2πi

∫
R>0Z(α)

log(1− s||α||xαe−Z(α)/z)

z − t

dz

z
.

Here the logarithm appearing in the integrand must be interpreted as the

usual formal power series expansion in s. It is straightforward to check that

Fα(t) is a well-defined holomorphic function of t ∈ C∗ \ {±R>0Z(α)}, with
values in C[Γ][[s]]. Let r ⊂ C∗ be a ray distinct from R<0 and all the � ⊂ C∗

for which S� �= Id. For all t ∈ r, we define a C[[s]]-linear endomorphism Xr(t)

of C[Γ][[s]] by

(2.1) Xr(t)(xα) = xαe
Z(α)/t exp

⎛
⎝∑

β∈Γ
〈α, β〉Fβ(t)

⎞
⎠ .

One can show that, for all α, Xr(t)(xα) is a real-analytic function of t ∈ r,

with values in C[Γ][[s]], and that Xr(t) defines a canonical flat section of

∇BPS [2, 9]. The crucial point for the latter claim is that, working modulo

any power of the formal parameter s, Xr(t) extends to a homolorphic func-

tion of t in the complement of finitely many rays � ⊂ C∗, with branch-cut

discontinuities along � given by the relation between clock-wise and counter-

clockwise limits

X+
r (t) = S� ◦X−

r (t).

This follows from a version of the Cauchy formula (sometimes called

Plemelj’s formula).

3. Maulik-Toda variation of BPS structure

Let X be a Calabi-Yau threefold. Maulik and Toda [18] proposed a new

approach to the problem of providing a sheaf-theoretic definition of the

Gopakumar-Vafa invariants of X.

Firstly they observed that in all existing sheaf-theoretic approaches (such

as those due to Hosono-Saito-Takahashi [13] and Kiem-Li [16]), once sheaf-

theoretic invariants Sn(β) have been introduced for n ∈ Z, β ∈ H2(X,Z),
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the corresponding conjectural relation to the Gopakumar-Vafa invariants

ng,β is always captured by the relations

(3.1) Sn(β) = S−n(β)

and

(3.2)
∑
n∈Z

Sn(β)y
n =

∑
g≥0

ng,β(y
1/2 + y−1/2)2g.

Note that the first property (3.1) implies that one can always find unique

integers ng,β so that the second relation (3.2) is satisfied.

Secondly, fixing a Kähler form ω, Maulik and Toda proposed to refine

the existing sheaf-theoretic approaches by considering the fine moduli space

M1(β), parametrising Gieseker ω-semistable torsion sheaves F ∈ Coh(X)

with dimension 1, fundamental class [F ] = β and holomorphic Euler char-

acteristic χ(F ) = 1, together with its Hilbert to Chow morphism

π : M1(β) → Chow(β).

Denoting by ΦM1(β) the perverse sheaf of vanishing cycles on M1(β) (con-

structed in [3, 16]), the proposed sheaf-theoretic invariants are given by

(3.3) Sn(β) = χ(pHn(Rπ∗ΦM1(β))).

Property (3.1) then follows from the self-duality of ΦM1(β) and Verdier du-

ality, and the sums appearing in (3.2) are automatically finite.

Remark 3.1. This definition of Sn(β) is a refinement of the torsion-sheaf

invariants enumerating curves in class β constructed by Joyce and Song

(see [15] Section 6.4), which are given by χ(ΦM1(β)). Conjecturally one has

an equivalence with Gopakumar-Vafa invariants χ(ΦM1(β)) = n0,β (loc. cit.

Conjecture 6.20). Note that this is compatible with specialising (3.2) to

y = −1.

Importantly for us Maulik and Toda [18, 21] conjecture that this new

sheaf-theoretic definition is very robust. In particular it should be indepen-

dent of the parameters in the construction in two crucial ways:

Cω: the invariants Sn(β) should not depend on the choice of Kähler form

ω used in defining Gieseker semistability;
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Cχ: the fine moduli space M1(β) can be replaced by any coarse moduli
spaceMm(β) of Gieseker ω-semistable sheaves F ∈ Coh(X) with [F ] =
β, χ(F ) = m ∈ Z, without affecting the invariants Sn(β), provided
the perverse sheaf of vanishing cycles ΦM1(β) is replaced by a suitable
perverse sheaf ΦMm(β), descended from the moduli stack Mm(β).

These conjectural properties provide strong motivation for introducing a
variation of BPS structures corresponding to the Maulik-Toda construction.

Definition 3.2. The Maulik-Toda BPS structure (Γ, 〈−,−〉, Z,Ω), for a
fixed Kähler form ω and complex parameter ε, is given by the following
choices:

• the charge lattice is Γ =
⊕3

i=0H2i(X,Z) ⊕ E, where the extra sum-
mand E is a copy of Z;

• the intersection form 〈−,−〉 is the Euler form on
⊕3

i=0H2i(X,Z), ex-
tended by zero to Γ;

• on H0(X,Z)⊕H2(X,Z)⊕E ⊂
⊕3

i=0H2i(X,Z)⊕E the central charge
is given by

Z(m,β, n) = Z((m,β, 0, 0), n) =

∫
β
(iω)−m+ nε,

and this is extended by zero to the rest of Γ;
• on H0(X,Z)⊕NE(X)⊕E ⊂

⊕3
i=0H2i(X,Z)⊕E the BPS spectrum

is given by

Ω(m,β, n) = Ω((m,β, 0, 0), n)

= (−1)nχ(pHn(Rπ∗ΦMm(β))).

The spectrum is then extended by the symmetry property

Ω(m,−β, n) = Ω((m,−β, 0, 0), n) = Ω(−m,β,−n),

for all β ∈ NE(X), and further extended by zero to the rest of the
charge lattice Γ.

Remark 3.3. Note that the BPS invariants underlying our structure vanish
if ±β is not an effective curve class. In particular we chose to set Ω(m, 0, n) =
0 for allm,n ∈ Z. A more natural choice would be to let instead Ω(m, 0, n) =
−χ(X), the invariant virtually enumerating zero-dimensional torsion sheaves
(see e.g. [15], Section 6.3). But this choice is irrelevant for our main result
Theorem 4.3, which is concerned with the case of an effective curve class,
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and would have only complicated Definition 3.2. The case β = 0 is already
covered by the computation of Bridgeland and Iwaki in [4], Section 6.3.

Lemma 3.4. Assume the condition Cω. Then the family of Maulik-Toda
BPS structures parametrised by a Kähler form ω and a complex parameter
ε is a framed variation of integral, uncoupled BPS structures.

Proof. Consider a BPS structure in the family. It is clearly integral, by
definition. Moreover the only elements of Γ for which Ω does not vanish
lie in H0(X,Z) ⊕ H2(X,Z) ⊕ E ⊂

⊕3
i=0H2i(X,Z) ⊕ E. The intersection

form is trivial along E, by definition, and restricts to the Euler pairing
on H0(X,Z) ⊕ H2(X,Z). But the latter pairing vanishes because X is a
threefold. It follows that each BPS structure in the family is uncoupled.
Finally the central charge Z varies real analytically with ω, ε, by definition,
while under the condition Cω the BPS spectrum Ω is constant.

Definition 3.5. Whenever we assume the condition Cχ we will write Ωn(β)
for the common value of all the invariants Ω(m,β, n), where β ∈ ±NE(X).

Lemma 3.6. Assume the condition Cχ. Then we have

Ωn(β) = Ω−n(β).

Proof. Under the condition Cχ we have

Ωn(β) = (−1)nχ(pHn(Rπ∗ΦM1(β))).

The required symmetry with respect to n then follows from the self-duality
of the object ΦM1(β) and Verdier duality, as observed by Maulik and Toda
[18].

4. Main result

In this Section we introduce and prove our main result, a more precise version
of Theorem 1.1 in the Introduction.

We consider a Maulik-Toda BPS structure in the sense of Definition 3.2,
for a fixed Kähler form ω and real parameter ε ∈ R.

Let ∇BPS denote the corresponding BPS flat cannection. As discussed in
Section 2 this is a well-defined flat connection on the trivial principal bundle
over P1, with structure group Aut(C[Γ][[s]]), and with singularities at t = 0,
t = ∞ (denoting by t a coordinate on C∗ ⊂ P1). Note that as we are assuming
ε ∈ R the real line does not contain central charges Z(m,β, n). A canonical
flat section along the positive real line R>0 is a real analytic function X(t),
with values in Aut(C[Γ][[s]]), which can be described explicitly.
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Definition 4.1. For each element

(m,β, n) ∈ H0(X,Z)⊕NE(X)⊕ E

we introduce two functions F±
m,β,n(t, Z), given by

F±
m,β,n(t, Z) =

= ±Ω(m,β, n)
t

2πi

∫
±R>0Z(m,β,n)

log(1− s||(m,β,n)||x±(m,β,n)e
∓Z(m,β,n)/z)

z − t

dz

z
.

It is straightforward to check that F±
m,β,n(t) are well-defined functions of

t ∈ R>0 with values in C[Γ][[s]].

Let [D] ∈ H4(X,Z) denote a divisor class, with a corresponding mono-
mial x[D] ∈ C[Γ].

Lemma 4.2. A canonical flat section X(t) of ∇BPS along the positive real
line is determined by the identity

X(t)(x[D]) =

= x[D] exp

⎛
⎝ ∑

β∈NE(X)

〈[D], β〉

⎛
⎝ ∑

m,n∈Z
F+
m,β,n(t, Z) + F−

m,β,n(t, Z)

⎞
⎠
⎞
⎠ .

Proof. This is a special case of the general solution (2.1).

Our main result concerns a specialisation of this explicit formula for
canonical solutions of ∇BPS. It is convenient to introduce the function

[
2 sin(x/2))−2

]
+
= (2 sin(x/2))−2 − 1

x2
+

1

6
,

as well as the notation

vβ = i

∫
β
ω.

Theorem 4.3. Assume the condition Cχ. For each β ∈ NE(X), consider
the specialisation given by

Fβ(t, Z) =

=
∑

m,n∈Z

(
F+
m,β,n(t, Z) + F−

m,β,n(t, Z)
)
|
(
s = x(m,β,n) = 1

)
.



636 Jacopo Stoppa

Then, Fβ(t, Z) is a well-defined function of t, Z, and it satisfies the differ-
ential equation

i

2π

∂

∂t
Fβ(t, Z)|

(
ε =

u

2π
, t =

u

(2π)2
)
=

=
∂

∂vβ

∑
g≥0

ng,β

∑
r>0

1

r
(2 sin(ru/2))2g

[
2 sin(ru/2))−2

]
+
e2πirvβ

in the sense of formal power series in the variables u, e2πivβ .

Remark 4.4. The formal power series

∑
g≥0

ng,β

∑
r>0

1

r
(2 sin(ru/2))2g−2e2πirvβ

is precisely the contribution of β to the Gromov-Witten partition function
written in Gopakumar-Vafa form. Theorem 4.3 says that this can be easily
computed from the asymptotics of a flat section of ∇BPS, through the formal
power series Fβ(u), up to the missing term

∑
g≥0

ng,β

∑
r>0

1

r
(2 sin(ru/2))2g

(
1

r2u2
− 1

6

)
e2πirvβ .

Note that the term 1/(r2u2) is the contribution from a “single” genus 0
Gopakumar-Vafa invariant (i.e. a contribution of 1 to n0,β) to Gromov-
Witten invariants of genus 0. This also holds for the term −1/6 up to a
factor of 2; in this case the contribution is to Gromov-Witten invariants of
genus 1.

Remark 4.5. In order to help comparison of this result with the computa-
tion by Bridgeland and Iwaki in [4] Section 6.3, we note that setting s = 1
simply gets rid of the formal parameters needed to make X(t) well-defined
in the sense of formal power series, while the specialisation x(m,β,n) = 1
corresponds to the choice of asymptotic behaviour ξ(γ) = 1 for Ω(γ) �= 0
appearing in [4], Theorem 3.2. Finally, the differential equation satisfied by
Fβ(u) is very close to the notion of tau function discussed in [4] Section 3.4,
although there is no analogue of our auxiliary variable ε in that case.

Proof of Theorem 4.3. According to Definition 4.1 we have

(
F+
m,β,n(t, Z) + F−

m,β,n(t, Z)
)
|
(
s = x(m,β,n) = 1

)
=
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= Ω(m,β, n)
t

2πi

∫
R>0Z(m,β,n)

log(1− e−Z(m,β,n)/z)

z − t

dz

z

− Ω(m,β, n)
t

2πi

∫
R<0Z(m,β,n)

log(1− eZ(m,β,n)/z)

z − t

dz

z
.

Assuming the condition Cχ we have Ω(m,β, n) = Ωn(β) for all m ∈ Z.
Moreover we recall that the central charge is given explicitly by

Z(m,β, n) =

∫
β
(iω)−m+ nε = vβ −m+ nε.

Therefore

(
F+
m,β,n(t, Z) + F−

m,β,n(t, Z)
)
|
(
s = x(m,β,n) = 1

)
=

= Ωn(β)
t

2πi

∫
R>0(vβ−m+nε)

log(1− e−(vβ−m+nε)/z))

z − t

dz

z

− Ωn(β)
t

2πi

∫
R<0(vβ−m+nε)

log(1− e(vβ−m+nε)/z))

z − t

dz

z
.

Recall we are assuming that t is a real variable and ε is a real parameter.
Therefore it is possible to deform the integration ray R>0(vβ −m + nε) to
the ray iR>0 within the open upper half-plane, without enclosing poles of
the integrand. Similarly we can deform R<0(vβ −m + nε) to iR<0vβ . As a
consequence we may rewrite

(
F+
m,β,n(t, Z) + F−

m,β,n(t, Z)
)
|
(
s = x(m,β,n) = 1

)
=

= Ωn(β)
t

2πi

∫
iR>0

log(1− e−(vβ−m+nε)/z))

z − t

dz

z

− Ωn(β)
t

2πi

∫
iR<0

log(1− e(vβ−m+nε)/z))

z − t

dz

z
.

Expanding the logarithm into a convergent power series and summing over
the finitely many values of n ∈ Z for which Ωn(β) �= 0, as well as over
|m| ≤ M for a cutoff integer M > 0, gives a well defined function

F≤M
β (t, Z) =

∑
n∈Z,|m|≤M

(
F+
m,β,n(t, Z) + F−

m,β,n(t, Z)
)
|
(
s = x(m,β,n) = 1

)

= −
∑
n∈Z

1

2πi
Ωn(β)

∫
iR>0

dz

z

t

z − t

∑
k>0

1

k
ekn

ε

z

∑
|m|≤M

e−k(vβ−m)/z
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+
∑
n∈Z

1

2πi
Ωn(β)

∫
iR<0

dz

z

t

z − t

∑
k>0

1

k
ekn

ε

z

∑
|m|≤M

ek(vβ−m)/z.

Making the change of variable z �→ −z in the integrals over iR<0 gives

F≤M
β (t, Z) = −

∑
n∈Z

1

2πi
Ωn(β)

∫
iR>0

dz

z

t

z − t

∑
k>0

1

k
ekn

ε

z

∑
|m|≤M

e−k(vβ−m)/z

+
∑
n∈Z

1

2πi
Ωn(β)

∫
iR>0

dz

z

t

−z − t

∑
k>0

1

k
e−kn ε

z

∑
|m|≤M

e−k(vβ−m)/z.

By Lemma 3.6, i.e. by the symmetry Ωn(β) = Ω−n(β), we have

F≤M
β (t, Z) = −

∑
n∈Z

1

2πi
Ωn(β)

∫
iR>0

dz

z

t

z − t

∑
k>0

1

k
ekn

ε

z

∑
|m|≤M

e−k(vβ−m)/z

+
∑
n∈Z

1

2πi
Ωn(β)

∫
iR>0

dz

z

t

−z − t

∑
k>0

1

k
ekn

ε

z

∑
|m|≤M

e−k(vβ−m)/z

(notice the change of sign in the second integrand). Collecting terms we find

F≤M
β (t, Z) =

= −
∑
n∈Z

1

2πi
Ωn(β)

∑
k>0

1

k

∫
iR>0

dz

z

(
t

z − t
− t

−z − t

)
ekn

ε

z

∑
|m|≤M

e−k(vβ−m)/z

= −
∑
n∈Z

1

2πi
Ωn(β)

∑
k>0

1

k

∫
iR>0

dz
2t

z2 − t2
ekn

ε

z

∑
|m|≤M

e−k(vβ−m)/z.

Writing z = ip for a real variable p gives

F≤M
β (t, Z) =

1

π

∑
n∈Z

Ωn(β)
∑
k>0

1

k

∫
R>0

dp
t

p2 + t2
e−ikn ε

p

∑
|m|≤M

eik(vβ−m)/p

=
1

π

∑
n∈Z

Ωn(β)
∑
k>0

1

k

∫
R>0

dp
t

1 + (pt)2
e−iknpε

∑
|m|≤M

eik(vβ−m)p,

where the last equality follows from the change of variable p �→ p−1. As
M → +∞ the function

k

2π

∑
|m|≤M

eipkm
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converges in the sense of tempered distributions to the Dirac comb

∑
m∈Z

δ(p− 2π

k
m).

Moreover for fixed t the function

∣∣∣∣ t

1 + (pt)2
e−iknpεeikvβp

∣∣∣∣
is of rapid decay as p → +∞. So we find a well defined limit function

Fβ(t, Z) = lim
M→+∞

F≤M
β (t, Z)

= 2
∑
n∈Z

Ωn(β)
∑
k>0

1

k2

∑
m>0

t

1 + (2πmk t)2
e−2πimnεe2πimvβ .(4.1)

Note that we are only summing over m > 0 since each integral over p is

performed along R>0, so contributions from δ(p− 2π
k m) with m ≤ 0 vanish.

Now the crucial property (3.2), expressing the relation between sheaf-

theoretic and Gopakumar-Vafa invariants, and the fact that by Definition

3.2 we have Ωn(β) = (−1)nSn(β), imply

∑
n∈Z

Ωn(β)y
n =

∑
g≥0

ng,β((−y)1/2 + (−y)−1/2)2g

=
∑
g≥0

ng,β(iy
1/2 − iy−1/2)2g

=
∑
g≥0

ng,β(−1)g(y1/2 − y−1/2)2g.(4.2)

Note that in fact this identity is independent of the choice (−1)1/2 = ±i.

According to (4.2), for fixed k,m we can perform the sum over n in (4.1) as

∑
n∈Z

Ωn(β)e
−2πimnε =

∑
g≥0

ng,β(−1)g(e−πimε − eπimε)2g.

This shows

(4.3)

Fβ(t, Z) = 2
∑
g≥0

ng,β(−1)g
∑
m>0

(e−iπmε − eiπmε)2ge2πimvβ

∑
k>0

1

k2
t

1 + (2πmk t)2
.
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Expanding the rational function of t and using the well-known identity

∑
k>0

1

k2s
= ζ(2s) =

|B2s|(2π)2s
2(2s)!

we obtain

Fβ(t, Z) =
1

π

∑
g≥0

ng,β(−1)g
∑
m>0

(e−iπmε − eiπmε)2ge2πimvβ

∑
r≥0

(−1)rm2r(2πt)2r+1
∑
k>0

1

k2r+2

=
1

π

∑
g≥0

ng,β(−1)g
∑
m>0

(e−iπmε − eiπmε)2ge2πimvβ

∑
s≥1

(−1)s−1m2s−2(2πt)2s−1
∑
k>0

1

k2s

=
1

π

∑
g≥0

ng,β(−1)g
∑
m>0

(e−iπmε − eiπmε)2ge2πimvβ

∑
s≥1

(−1)s−1m2s−2 |B2s|(2π)2s
2(2s)!

(2πt)2s−1.

In particular we note the identity

∫
∂

∂t
Fβ(t, Z)dvβ = −2πi

∑
g≥0

ng,β(−1)g
∑
m>0

1

m
(e−iπmε − eiπmε)2ge2πimvβ

∑
s≥1

(−1)s−1 |B2s|
(2s)(2s− 2)!

(4π2mt)2s−2.(4.4)

Let us introduce a new formal parameter u, which plays the role of the

Gromov-Witten coupling. It is related to the variables ε, t by

ε =
u

2π
, t =

u

(2π)2
.

With this specialisation, we may rewrite (4.4) as the differential equation

∂

∂t
Fβ(t, Z)|

(
ε =

u

2π
, t =

u

(2π)2
)
=
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= −2πi
∂

∂vβ

∑
g≥0

ng,β(−1)g
∑
m>0

1

m
(2i sin(mu/2))2g

∑
s≥1

(−1)s−1 |B2s|
(2s)(2s− 2)!

(mu)2s−2e2πimvβ .

We use the standard expansion around x = 0

(2 sin(x/2))−2 =
1

x2
− 1

12
+
∑
s≥2

(−1)s−1 |B2s|
(2s)(2s− 2)!

x2s−2

and the identity |B2| = 1
6 to compute

∑
s≥1

(−1)s−1 |B2s|
(2s)(2s− 2)!

(mu)2s−2 = (2 sin(mu/2))−2 − 1

m2u2
+

1

6
.

Thus the differential equation becomes, after a little simplification

∂

∂t
Fβ(t, Z)|

(
ε =

u

2π
, t =

u

(2π)2
)
=

= −2πi
∂

∂vβ

∑
g≥0

ng,β(−1)g
∑
m>0

1

m
(2i sin(mu/2))2g

(
(2 sin(mu/2))−2 − 1

m2u2
+

1

6

)
e2πimvβ .

This completes the proof.

Remark 4.6. Fixing t = u/(2π)2 and taking the limit ε → 0 in (4.4) gives
just the genus 0 contribution

2πin0,β

∑
m>0

1

m

(
(2 sin(mu/2))−2 − 1

m2u2
+

1

6

)
e2πimvβ .

This particular limit essentially reproduces Bridgeland and Iwaki’s calcula-
tion in [4] Section 6.3.

5. Large t behaviour

Let us recall the identity (4.3) from the proof of Theorem 4.3:

Fβ(t, Z) = 2
∑
g≥0

ng,β(−1)g
∑
m>0

(e−iπmε − eiπmε)2ge2πimvβ

∑
k>0

1

k2
t

1 + (2πmk t)2
.
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Since the sum over the genus g is finite, this shows that we may also regard
the function Fβ(t, Z) as a well-defined function of t ∈ R>0 with values in
C[e±iπε][[e2πivβ ]].

Therefore it makes sense to consider the behaviour of Fβ(t, Z) as t →
+∞, as a function with values in C[e±iπε][[e2πivβ ]]. Here we compute the
leading order term for this expansion. As we observed in the Introduction,
this is somewhat reminiscent of computations of the entries of the “central
connection matrix” for the Dubrovin connection in quantum cohomology
[7, 8, 11].

So rather than expanding the rational function of t as a formal power
series around t = 0 as in the proof of Theorem 4.3, we consider the function
of t defined by the series

∑
k>0

1

k2
t

1 + (2πmk t)2
=

∑
k>0

t

k2 + (2πmt)2
.

Notice the identity

∑
k>0

1

k2 + x2
=

πx coth(πx)− 1

2x2
.

In particular we have

∑
k>0

t

k2 + (2πmt)2
=

2π2mt coth
(
2π2mt

)
− 1

8π2m2t

Taking the limit for real t → +∞ shows that we have

∑
k>0

t

k2 + (2πmt)2
=

1

4m
+O(t−1),

uniformly in m > 0. In particular we find as t → +∞

Fβ(t, Z) =
1

2

∑
g≥0

ng,β(−1)g
∑
m>0

1

m
(e−iπmε − eiπmε)2ge2πimvβ +O(t−1).

Expanding

(e−iπmε − eiπmε)2g =

2g∑
h=0

(
2g

h

)
(−1)he2πi(g−h)mε
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we find

∑
m>0

1

m
(e−iπmε − eiπmε)2ge2πimvβ

=

2g∑
h=0

(
2g

h

)
(−1)h

∑
m>0

1

m
e2πim((g−h)ε+vβ)

= −
2g∑
h=0

(
2g

h

)
(−1)h log(1− e2πi((g−h)ε+vβ)).

Thus we have shown that there is an expansion as t → +∞

exp(〈[D], β〉Fβ(t, Z)) =
∏
g≥0

2g∏
h=0

(1− e2πi((g−h)ε+vβ))−
1

2
(−1)g+h(2gh )ng,β〈[D],β〉

+O(t−1),

where the product over g is finite. We observe that the leading order term
can be thought of as a formal family of automorphisms of an algebraic torus,
of the type studied in [12]. In other words it seems natural to associate to
this leading order term an automorphism of the ring C[x[D], e

±2πiε][[e2πivβ ]],
where [D] varies along divisor classes in H4(X,Z), which is C[[e2πivβ ]]-linear
and only acts nontrivially on the generators x[D], with the rule

x[D] �→ x[D]

∏
g≥0

2g∏
h=0

(1− e2πivβe2πi(g−h)ε)−
1

2
(−1)g+h(2gh )ng,β〈[D],β〉.
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