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Modular graph functions and asymptotic
expansions of Poincaré series

Daniele Dorigoni and Axel Kleinschmidt

In this note we study SL(2,Z)-invariant functions such as modular
graph functions or coefficient functions of higher derivative correc-
tions in type IIB string theory. The functions solve inhomogeneous
Laplace equations and we choose to represent them as Poincaré
series. In this way we can combine different methods for asymp-
totic expansions and obtain the perturbative and non-perturbative
contributions to their zero Fourier modes. In the case of the higher
derivative corrections, these terms have an interpretation in terms
of perturbative string loop effects and pairs of instantons/anti-
instantons.
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1. Introduction

1.1. Two instances of SL(2,Z) in string theory

SL(2,Z) automorphic forms and functions arise in closed string theory in at
least two distinct instances, depending on the interpretation of the modular
group SL(2,Z). In the first instance, SL(2,Z) plays the role of the mapping
class group of the toroidal genus-one world-sheet and is thus associated to
perturbative aspects of the string at one-loop order and the group SL(2,Z)
acts on the modular parameter τ of the string world-sheet. The second
instance is when SL(2,Z) is the non-perturbative U-duality group of the
type IIB string in ten dimensions, and we shall now describe both cases in
more detail.

The appearance of SL(2,Z) automorphic forms in closed string scatter-
ing at one-loop order has been recently formalised in the framework of mod-
ular graph functions [1] and modular graph forms [2, 3], where an SL(2,Z)-
invariant or covariant function is associated with a certain graph that is to
be thought of as describing a Feynman diagram on the toroidal world-sheet.
The modular function is then obtained from the graph by Feynman-type
rules and the resulting functions quickly go beyond the usual types of holo-
morphic or non-holomorphic modular forms when considering complicated
Feynman diagrams. Understanding them is crucial for exploring the struc-
ture of the low-energy expansion of string theory at one-loop order, see [4–13]
for further work on this topic for type II and heterotic strings.

In the second instance, the group SL(2,Z) is interpreted as the non-
perturbative U-duality group of ten-dimensional type IIB string theory [14].
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Now, SL(2,Z) acts on the axio-dilaton of the string that includes the string
coupling gs and is thus a non-perturbative symmetry, relating perturbative
and non-perturbative effects in gs. The symmetry, together with differential
constraints from supersymmetry, is powerful and very constraining and can
serve to predict effects in string theory and its low-energy effective approx-
imation that are hard to compute otherwise [15–21], if one can determine
the exact function invariant under SL(2,Z), an increasingly difficult task
as one progresses in the low-energy approximation, e.g., higher curvature
corrections to the four-graviton sector of the form D2kR4 with increasing k.

1.2. Inhomogeneous equations and Poincaré series

A common feature of both instances is that the SL(2,Z)-invariant functions
that arise generically satisfy inhomogeneous Laplace equations. Denoting
the variable on which SL(2,Z) acts by z = x + iy ∈ H for both cases, this
differential equation is of the form

(Δ− s(s+ 1)) f(z) = R(z) ,(1.1)

where Δ = y2
(
∂2
x + ∂2

y

)
is the SL(2)-invariant scalar Laplacian and R(z)

an SL(2,Z)-invariant right-hand side. In the first instance (modular graph
functions), f(z) has a known representation as a multi-lattice sum, whereas
in the second instance f(z) is in general unknown. But even in the multi-
lattice sum case, it is often not obvious how to extract different explicit
forms of the modular graph function, such as the Fourier expansion that
contains (elliptic) single-valued multi-zeta values [22–24].

The aim of this paper is to provide tools for analysing f(z) in the case
when R(z) can be represented as a convergent Poincaré series

R(z) =
∑

γ∈B(Z)\SL(2,Z)
ρ(γz)(1.2)

with the standard SL(2,Z) action

γ =

(
a b
c d

)
∈ SL(2,Z) ⇒ γz =

az + b

cz + d
,(1.3)

and where the Borel subgroup

B(Z) =

{
±
(
1 m
0 1

) ∣∣∣∣m ∈ Z

}
⊂ SL(2,Z)(1.4)
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thus acts by translations z �→ z +m. The quotient by B(Z) in the Poincaré

sum (1.2) indicates that the function ρ(z) is periodic, ρ(z +m) = ρ(z) for

all m ∈ Z, and is necessary in order to avoid divergences.

A representation of the form (1.2) for R(z) is easy to obtain for the

case of the simplest modular graph functions and for the D6R4 correction
coefficient as it is known in this case that R(z) is a polynomial (of second

order) in non-holomorphic Eisenstein series

Es(z) =
∑

γ∈B(Z)\SL(2,Z)
[Im(γz)]s(1.5)

= ys +
ξ(2s− 1)

ξ(2s)
y1−s

+
2

ξ(2s)
y1/2

∑
n�=0

|n|s−1/2σ1−2s(n)Ks−1/2(2π|n|y)e2πinx ,

whose Poincaré series is absolutely convergent for Re(s) > 1. In the second

line, we have given the Fourier expansion of Es(z) in terms of the completed

Riemann zeta function ξ(k) = π−k/2Γ(k/2)ζ(k), the divisor sum σk(n) =∑
d|n d

k and the modified Bessel function Ks(y). The Eisenstein series Es(z)
has a standard analytic continuation to Re(s) < 1 (obtainable from (1.5))

and also satisfies the functional relation ξ(2s)Es(z) = ξ(2(1 − s))E1−s(z).

The continuation implies in particular that E0(z) = 1.

The strategy proposed in [25] (see also [1, 26]) is to represent the function

f(z) in (1.1) also as a Poincaré series

f(z) =
∑

γ∈B(Z)\SL(2,Z)
σ(γz)(1.6)

with a periodic ‘seed function’ σ(z) = σ(z+m) for all m ∈ Z. If this sum is

absolutely convergent, one may attempt to solve the equation

(Δ− s(s+ 1))σ(z) = ρ(z)(1.7)

instead of (1.1) due to the SL(2,Z)-invariance of the Laplacian. The com-

plexity of this equation is typically less than that of the original equa-

tion (1.1). The price to pay for this is that one has to analyse in more
detail the convergence of (1.6), that one has to provide appropriate bound-

ary conditions for (1.7) and lastly that one only has indirect information

about f(z) through (1.6) even if σ(z) is completely known.



Modular graph functions and asymptotic expansions 573

1.3. Outline

In this paper, we shall study how to extract information about the Fourier
expansion of f(z) from that of σ(z) and will address different subtleties
that arise. We focus mainly on the zero Fourier mode of f(z) and study its
perturbative part (power series in y) and non-perturbative part (power series
in e−2πy). In the case of SL(2,Z) U-duality, these terms are interpreted as
string perturbative and instanton/anti-instanton corrections to the higher-
derivative correction term. In the case of modular graph functions, they
encode the asymptotic behaviour of the one-loop scattering amplitude as
the torus world-sheet degenerates to a very thin torus of large diameter.

In Section 2, we review how to generally relate the Fourier expansion of
f(z) to its Poincaré seed σ(z) and a certain important proposition of Za-
gier’s that can be used to extract from this the asymptotic expansion of the
zero mode of f(z). This procedure will be carried out for a general class of
seeds σ(z) in Section 3 and the subsequent sections contain several exam-
ples of modular graph functions and the D6R4 higher-derivative correction
that all can be mapped back to this general class. Two appendices contain
complementary technical details for some of the calculations carried out in
the main body of the paper.

2. General strategy

It is well-known how to relate the Fourier expansion of f(z) to that of σ(z)
if the two are related through the convergent Poincaré series relation (1.6),
see for instance [27, 28] or the brief review in Appendix A.1. If the Fourier
expansions of f(z) and σ(z) are given by

f(z) =
∑
n∈Z

an(y)e
2πinx , σ(z) =

∑
n∈Z

cn(y)e
2πinx ,(2.1)

then one has

an(y) = cn(y) +
∑
c>0

∑
m∈Z

S(m,n; c)

∫
R

e
−2πinω−2πim ω

c2(y2+ω2) cm(2.2)

×
(

y

c2(y2 + ω2)

)
dω .

Here, S(m,n; c) denotes in general a Kloosterman sum

S(m,n; c) =
∑

q∈(Z/cZ)×
e2πi(mq+nq−1)/c ,(2.3)
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a finite sum over all 0 ≤ q < c that are co-prime to c such that q is a

multiplicatively invertible element of Z/cZ as indicated in the sum.

Our main interest at present lies with the zero mode a0(y) and therefore

we are faced with making sense of

a0(y) = c0(y) +
∑
c>0

∑
m∈Z

∑
q∈(Z/cZ)×

e2πimq/c

∫
R

e
−2πim ω

c2(y2+ω2) cm(2.4)

×
(

y

c2(y2 + ω2)

)
dω

= c0(y) + y
∑
c>0

∑
m∈Z

∑
q∈(Z/cZ)×

e2πimq/c

∫
R

e
−2πm it

yc2(1+t2) cm

×
(

y−1

c2(1 + t2)

)
dt

= c0(y) + y
∑
c>0

∑
q∈(Z/cZ)×

∫
R

c0

(
y−1

c2(1 + t2)

)
dt+ I ,

for a given set of Fourier modes cm(y) of a seed σ(z). Here, we have intro-

duced the separate notation

I = y
∑
c>0

∑
m �=0

∑
q∈(Z/cZ)×

e2πimq/c

∫
R

e
−2πm it

yc2(1+t2) cm

(
y−1

c2(1 + t2)

)
dt(2.5)

for the contribution from the non-zero modes cm with m �= 0 to a0.

We are interested in the asymptotic expansion of this expression around

y → ∞. We see that the exponent in the integral contains the combination

my−1 and also the typical seed Fourier modes contain m accompanied by

y−1 after some manipulations, so that we are faced with expanding a sum

of a function evaluated at multiples of its argument asymptotically. Zagier

has proved a very useful result for this situation [29]. Consider a smooth

function ϕ(t) for t > 0 such that itself and all its derivatives are of rapid

decay at infinity. Assume also that around the origin one has the asymptotic

series ϕ(t) ∼
∑

n≥0 bnt
n. Then

∑
m≥0

ϕ((m+ a)t) ∼ Iϕ
t

+
∑
n≥0

bnζ(−n, a)tn(2.6)

as asymptotic expansion around t = 0 for the periodic sum with a > 0.
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Here, ζ(−n, a) is the Hurwitz zeta function1 and

Iϕ =

∫ ∞

0
ϕ(t)dt .(2.7)

Let us briefly indicate where the terms come from. Plugging in näıvely
the expansion of ϕ(t) leads to [29]

∑
m≥0

ϕ((m+ a)t) ∼
näıve

∑
m≥0

∑
n≥0

bn(m+ a)ntn =
∑
n≥0

bn

⎛
⎝∑

m≥0

(m+ a)n

⎞
⎠ tn

(2.8)

=
∑
n≥0

bnζ(−n, a)tn .

The calculation above is formal since the two sums cannot be interchanged:
the m-sum is divergent and we have used the Hurwitz zeta function as
analytic continuation.

The other term in (2.6) is what Zagier calls the Riemann term and can
be understood by viewing the sum as an approximation to the Riemann
integral for small t, where 1

t is the length of the interval.2

Zagier has also proved extensions of (2.6) for the case when ϕ(t) is not
C∞ at the origin but includes terms of the form ts log t or t−s for s > 0,
see [29].

3. Asymptotic expansion for general seed

We will now present the details of the strategy outlined in the previous
section and we consider the asymptotic expansion of the Poincaré series
associated to a very general type of seed function. In particular suppose the
non-zero Fourier mode of the seed is of the form

cm(y) = σa(|m|)(4π|m|)byre−2π|m|y(3.1)

for parameters a, b and r. This is true, up to an overall constant, for all the
modular graph functions and all other concrete examples we shall present
later are (possibly infinite) combinations of such terms.

1We note for reference that the Hurwitz zeta function is related to the Bernoulli
polynomials by the relation ζ(1− k, a) = −Bk(a)

k for positive k.
2This is the term that was missed in [25] where only the analytically continued

ζ terms were found. This explains why [25] was off at one specific power of the
asymptotic variable.
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Plugging (3.1) into the relevant part of the Fourier mode of the Poincaré
sum (2.4) leads to a contribution from the non-zero modes of the form

I = y
∑
c>0

∑
m �=0

∑
q∈(Z/cZ)×

θmq

∫
R

e
−2πm it

yc2(1+t2)σa(|m|) (4π|m|)b
(yc2(1 + t2))r

(3.2)

× e
−2π|m| 1

yc2(1+t2)dt

= 2y1+b−r
∑
c>0

c−2r+2b
∑
m>0

∑
q∈(Z/cZ)×

θmqσa(m)

(
4πm

yc2

)b

×
∫
R

e
−2πm 1+it

yc2(1+t2)
1

(1 + t2)r
dt

=
23−2r+2bπy1+b−r

Γ(r)

∑
c>0

c−2r+2b
∑

q∈(Z/cZ)×

∑
m>0

θmqσa(m)

(
πm

yc2

)b

×
∑
k≥0

(−πmy−1c−2)k

k!

Γ(2r + k − 1)

Γ(r + k)
,

when using (A.9) for the integral and having defined θ = e2πi/c. The pa-
rameter r must have Re(r) > 1/2 for the integral to converge so we will
assume it in what follows. For positive integer r, the quotient of Γ functions
becomes a polynomial in k such that one could write this as a polynomial
in times e−πm/yc2 . In general the sum over k produces the hypergeometric
function 1F1(2r − 1, r;−πm/yc2), but we shall leave it as a sum.

In order to determine the asymptotic behaviour of this expression we
analyse first the sum over m that can be written as

∑
m>0

θmqσa(m)

(
πm

yc2

)b∑
k≥0

(−πmy−1c−2)k

k!

Γ(2r + k − 1)

Γ(r + k)

(3.3)

=

c∑
h=1

∑
m≥0

∑
n>0

θnhqna+b((m+ h̃)t)b
∑
k≥0

(−(m+ h̃)t)k

k!
nkΓ(2r + k − 1)

Γ(r + k)

by writing out the divisor and grouping terms in additive classes modulo c,
and where we have introduced h̃ = h

c and t = π
yc .

The sum over m in (3.3) is of the general form studied in [29] and thus
amenable to formula (2.6). We assume b > −1 and not an integer at first,
other cases can be obtained from the final result by analytic continuation.



Modular graph functions and asymptotic expansions 577

As (3.3) is already expanded in powers of t, we can immediately write down
the asymptotic expansion for fixed h as

∑
m≥0

∑
n>0

θnhqna+b((m+ h̃)t)b
∑
k≥0

(−(m+ h̃)t)k

k!
nkΓ(2r + k − 1)

Γ(r + k)
(3.4)

∼ Ih
t
+ δh,c ζ(a+ 1)

Γ(a+ b+ 1)Γ(2r − a− b− 2)

Γ(r − a− b− 1)
t−a−1

+ tb
∑
n≥0

(−t)n

n!
ζ
(
− b− n,

h

c

)Γ(2r + n− 1)

Γ(r + n)
Li−a−b−n(θ

hq) ,

where the extra term for h ≡ c (mod c) is the ‘Riemann term’ in the asymp-
totic expansion of the sum over n while the ‘Riemann integral term’ Ih in
the sum over m is given for all h by

Ih =

∫ ∞

0

∑
n>0

θnhqna+btb
∑
k≥0

(−nt)k

k!

Γ(2r + k − 1)

Γ(r + k)
dt(3.5)

=
Γ(b+ 1)Γ(2r − b− 2)

Γ(r − b− 1)
Li1−a(θ

hq)

when using (A.11). Note also that the quotient of gamma functions in (3.4)
is again a polynomial in n for positive integral r.

Summing this over h, q and c can be done with the help of formu-
las (A.22) and (A.23) to obtain the following expression for I of (3.2):

I ∼ 23−2r+2bπy1+b−r

Γ(r)

[
y

π

Γ(b+ 1)Γ(2r − b− 2)

Γ(r − b− 1)

ζ(2r − a− 2b− 2)ζ(1− a)

ζ(2r − a− 2b− 1)

(3.6)

+
( y
π

)a+1 Γ(a+ b+ 1)Γ(2r − a− b− 2)

Γ(r − a− b− 1)

ζ(2r − a− 2b− 2)ζ(a+ 1)

ζ(2r − a− 2b− 1)

+

(
π

y

)b ∑
n≥0

(
−π

y

)n Γ(2r + n− 1)

n! · Γ(r + n)

× ζ(−b− n)ζ(−a− b− n)ζ(2r − a− b+ n− 1)ζ(2r − b+ n− 1)

ζ(2r + 2n)ζ(2r − a− 2b− 1)

]
≡ I(a, b, r) .

Here, we have set Lis(1) = ζ(s) by analytic continuation and introduced a
short-hand notation for terms of this type. The powers of y appearing in the
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above expression are y2+b−r, y2+a+b−r and then y1−r−n for n ≥ 0.
We also note that the quotient of zeta functions appearing can be rewrit-

ten as a Dirichlet series of two divisor sums as

ζ(−b− n)ζ(−a− b− n)ζ(2r − a− b+ n− 1)ζ(2r − b+ n− 1)

ζ(2r + 2n)
(3.7)

=
4 sin

(
π(b+n)

2

)
sin

(
π(a+b+n)

2

)
Γ(1 + b+ n)Γ(1 + a+ b+ n)

(2π)a+2b+2n+2

×
∑
m>0

σa(m)σa+2b+2−2r(m)m−1−a−b−n

where we have used the functional equation for the Riemann zeta function
and an identity of Ramanujan’s. The only n-dependence is in the exponent
of the new summation variable m, but with this rewriting it appears man-
ifest that for general parameters a, b, and r, the sum over n is a factorially
divergent asymptotic series.

We will now provide some concrete examples and show how the proce-
dure described above allows us to reproduce the perturbative expansion of
the zero Fourier mode for certain Poincaré sums and how it can also be used
to retrieve the non-perturbative, exponentially suppressed terms.

4. Modular graph functions

In this section, we apply the method outlined in Section 2 to modular graph
functions by making use of expression (3.6) derived in the previous section.
Rather than giving a general analysis, we present two exemplary cases that
highlight also how to deal with certain analytical continuations and singu-
larities.

4.1. The C3,1,1 modular graph function

We consider first the example of the modular graph function C3,1,1(z) that
is given explicitly by the double-lattice sum [1]

C3,1,1(z)

(4.1)

=
∑

(m1,n1),(m2,n2)∈Z2

(mi,ni) �=(0,0)

(m1+m2,n1+n2) �=(0,0)

y5

π5|m1z + n1|6|m2z + n2|2|(m1 +m2)z + (n1 + n2)|2
,
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and its zero mode has the known terms [1, 5]

a0(y) =
2π5

155 925
y5 +

2π2ζ(3)

945
y2 − ζ(5)

180
+

7ζ(7)

16π2
y−2 − ζ(3)ζ(5)

2π3
y−3(4.2)

+
43ζ(9)

64π4
y−4 +O(e−4π|n|y) .

This result was derived by studying the zero mode of the differential equation

satisfied by C3,1,1(z) directly, with appropriate boundary conditions. We

shall rederive this result from the Poincaré series method outlined above.

The function f(z) = C3,1,1(z) satisfies the differential equation [1]3

(Δ− 6) f(z) =
172π5

467 775
E5(z)−

8π5

42 525
E2(z)E3(z) +

ζ(5)

10
.(4.3)

Using the Poincaré series representation (1.5) for E3 and E5 we deduce that

the seed function σ(z) for f(z) has to satisfy the differential equation

(Δ− 6)σ(z) =
172π5

467 775
y5 − 8π5

42 525
y3E2(z) +

ζ(5)

10
yε .(4.4)

We have introduced a regulating yε for the constant term ζ(5)/10 in (4.3),

keeping in mind that limε→0Eε(z) = 1 is constant by the standard analytic

continuation of the convergent Eisenstein series and this shows how to deal

with constant sources in the original differential equation.

The differential equation (4.4) can be solved for the Fourier modes cm(y)

of the seed σ(z) =
∑

n∈Z cn(y)e
2πinx by [25]

c0(y) =
2π5

155 925
y5 +

2π2ζ(3)

945
y2 +

ζ(5)

10(ε(ε− 1)− 6)
yε ,

cm(y) =
2π2

945
σ−3(|m|)y2e−2π|m|y , (m �= 0) .

(4.5)

Here, we have used the Fourier expansion of the Eisenstein series from (1.5)

and the simple form of cm(y) is tied to the fact thatK3/2 appearing in E2 has

an exact expansion around y → ∞. The particular solution of the Laplace

equation (4.4) above has been fixed by requiring the correct asymptotic

behaviour fixed uniquely from the behaviour of the right-hand side.

3Note that the Eisenstein series in [1] are normalised differently from those
in (1.5).
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4.1.1. Perturbative contributions to the zero mode Note that the
seed function (4.5) is precisely of the type (3.1) described in the previous
section when we substitute a = −3, b = 0, r = 2. As it will be shortly clear
it is better to keep b as a regulator and send it to zero only at the very end,
this is by no mean necessary but it allows us to have a uniform description
given by the asymptotic expansion of seeds of the type (3.1). (Otherwise,
one could use the extension of Zagier’s method to include log-terms.)

The solution (4.5) can now be substituted into (2.4) to obtain the zero
mode of C3,1,1(z) =

∑
n∈Z an(y)e

2πinx and the contribution I from all cm(y)
with m �= 0 to a0(y) is precisely captured by the general formula (3.6)
specialized to the present case

I ∼ lim
b→0

2π2

945
I(−3, b, 2) ,(4.6)

= lim
b→0

4bπ3

945y1−b

[
y

π

Γ(1 + b)Γ(2− b)

Γ(1− b)

ζ(5− 2b)ζ(4)

ζ(6− 2b)

+

(
π

y

)b ∑
n≥0

(
−π

y

)n (n+ 2)

n!

× ζ(−n− b)ζ(3− n− b)ζ(3 + n− b)ζ(6 + n− b)

ζ(4 + 2n)ζ(6− 2b)

]
,

here the second term of (3.6) is absent since it is proportional to ζ(a + 1)
that in the present case is ζ(−2) = 0.

It is simple to see that b serves as a regulator only for the n = 2 term
in the infinite series by producing a finite limit for the ζ(−2 − b)ζ(1 − b)
term and can be set to zero in all the remaining terms. Furthermore this
asymptotic series does actually truncate when b → 0 due to the presence of
the first two zetas ζ(−n− b)ζ(3−n− b) → 0 when n ≥ 4 since either one of
the two zetas will be evaluated at a negative even integer, hence vanishing.
This opposite parity, crucial for the truncation of the asymptotic series, can
be traced back to the odd index of the divisor function σ−3(|m|), appearing
in the seed function (4.5). For general index (in particular even) divisors the
asymptotic expansion (3.6) will not truncate.

With these considerations in mind it is fairly simple to take the limit for
b → 0 in (4.6) obtaining

(4.7) I ∼ ζ(5)

90
− 2ζ(3)2

21πy
+

7ζ(7)

16π2y2
− ζ(3)ζ(5)

2π3y3
+

11ζ(9)

32π4y4
.
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As the zero mode of C3,1,1(z) is given according to (2.4) by

a0(y) = c0(y) + y
∑
c>0

∑
q∈(Z/cZ)×

∫
R

c0

(
y−1

c2(1 + t2)

)
dt+ I ,(4.8)

and we have computed the asymptotic expansion of I, it remains to deter-
mine the contributions from c0(y). These are with (4.5) given by4

c0(y) + y
∑
c>0

φ(c)

∫
R

c0

(
y−1

c2(1 + t2)

)
dt(4.9)

→
ε→0

2π5y5

155 925
+

2π2ζ(3)y2

945
− ζ(5)

60
+

2ζ(3)2

21πy
+

21ζ(9)

64π4y4
.

Compared to the asymptotic calculation of I, this is an exact result and we
have taken the limit of ε → 0 after performing the integral of c0.

Combining (4.7) and (4.9) leads to the full asymptotic zero mode per-
turbative expansion of C3,1,1(z) as already presented in (4.2). As we will
see shortly see it will also be possible to extract from equation (4.7) the
complete non-perturbative completion of the zero mode which is entirely
captured by the perturbative data.

4.1.2. Non-perturbative terms We have just reconstructed the full
perturbative expansion of the zero-mode of the C3,1,1(z) modular graph
function, however it is simple to see from the partial differential equation
(4.3) that due to the Eisenstein series (1.5), this zero-mode will need to
receive infinitely many non-perturbative corrections of the the form e−4πmy

with m ∈ N.
Given an asymptotic power series, a standard approach to reconstruct

the full non-perturbative contributions out of the perturbative data is given
by resurgent analysis and Borel–Ecalle resummation [30] (see also [31]), but
unfortunately this is not directly amenable to the present case due to the
truncation of the perturbative series (4.2) to a finite number of terms. Here,
we only need to consider the contribution from I in (4.6) since the zero mode
c0(y) does not produce an asymptotic tail but only gives rise to a simple
Laurent polynomial in y as presented in equation (4.9).

However, thanks to our analysis of the asymptotic expansion of this
Poincaré series via the seed function presented in equation (4.7) we will see

4The Euler totient function φ(c) gives the cardinality of (Z/cZ)× and has Dirich-

let series
∑

c>0 φ(c)c
−s = ζ(s−1)

ζ(s) .
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that we can reconstruct the complete non-perturbative transseries expansion
for (4.2) entirely out of the purely perturbative data (4.7) in a beautiful
example of Cheshire-cat resurgence [32–34].

Our starting point is the asymptotic expansion (4.6) before taking the
b → 0 limit

I(b) = Ipert(b) +
4επ3+b

945y

∑
n≥4

(
−π

y

)n

(4.10)

× (n+ 2)

n!

ζ(−n− b)ζ(3− n− b)ζ(3 + n− b)ζ(6 + n− b)

ζ(4 + 2n)ζ(6− 2b)
,

where we split the infinite asymptotic series into the sum of a piece

Ipert(b) =
4bπ2

945y−b

Γ(1 + b)Γ(2− b)

Γ(1− b)

ζ(5− 2b)ζ(4)

ζ(6− 2b)
+

4bπ3+b

945y

3∑
n=0

(
−π

y

)n

(4.11)

× (n+ 2)

n!

ζ(−n− b)ζ(3− n− b)ζ(3 + n− b)ζ(6 + n− b)

ζ(4 + 2n)ζ(6− 2b)

with non-vanishing b → 0 limit, reproducing precisely the perturbative ex-
pansion (4.7), and an asymptotic tail that vanishes when b → 0.

To make this manifest we can rewrite the asymptotic tail using Rie-
mann’s functional equation and shift n → n+ 4 to obtain

I(b) = Ipert(b) +
16π5−b

945 ζ(6− 2b)
sin(πb)(4.12)

×
∑
n≥0

(4πy)−n−5 (n+ 6)Γ(n+ 2 + b)Γ(n+ 5 + b)

(n+ 4)!

× ζ(5 + n+ b)ζ(2 + n+ b)ζ(7 + n− b)ζ(10 + n− b)

ζ(2n+ 12)
.

As anticipated the tail is a Gevrey-1 asymptotic series, i.e., growing like
n!, regular in the b → 0 limit and multiplied by sin(πb) that also vanishes
manifestly in the same limit. Our strategy will be now to keep this vanishing
sin(πb) while setting b = 0 in all the remaining regular terms5 and then try to

5This is not necessary and one can repeat this analysis while keeping b �= 0 in
all terms, the expression will just be slightly more involved but the final result for
the non-perturbative corrections will not change when we take b → 0.
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perform a Borel–Ecalle resummation (see for example [31]) of the asymptotic

tail

Iasy(b) =
16

π
sin(πb)

∑
n≥0

(4πy)−n−5(6 + n)Γ(n+ 2)(4.13)

× ζ(2 + n)ζ(5 + n)ζ(7 + n)ζ(10 + n)

ζ(2n+ 12)
.

To proceed with this strategy we would need first to find a measure

dμ(t), say for t ∈ R
+, whose momenta

(4.14)

∫ ∞

0
tn+5 dμ(t) = dn

have the same asymptotic growth as the coefficients cn = (6 + n)Γ(n +

2) ζ(2+n)ζ(5+n)ζ(7+n)ζ(10+n)
ζ(2n+12) of equation (4.13). More precisely we require the

modified Borel transform

(4.15) B(t) =
∑
n≥0

cn
dn

tn+5 ,

to have finite radius of convergence, thus defining a germ of analytic func-

tions at the origin t = 0. If this happens we can commute the formal series

in equation (4.13) with the above integral to define a possible resummation

of the original asymptotic series via

(4.16)

16

π
sin(πb)

∫ ∞

0

∑
n≥0

cn
dn

(
t

4πy

)n+5

dμ(t) =
16

π
sin(πb)

∫ ∞

0
B

(
t

4πy

)
dμ(t) .

Under certain reasonable assumptions (see [30, 31]), this integral defines an

analytic function in a certain sector of the complex y-plane whose asymptotic

expansion for y 
 1 coincides with (4.13).

The usual Borel kernel amounts to considering the simple measure

dμ(t) = e−t tα dt so that the momenta (4.14) are simply dn = Γ(n+ 4 + α).

In the present case we could consider this measure however we would not

be able to compute analytically the standard Borel transform for the given

coefficients cn of equation (4.13) due to the presence of the ratio of Riemann

zetas. An alternative would be to find a measure whose momenta dn cancel

in the Borel transform not only the factorial growth of the coefficients cn but
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also this particular ratio of zetas, so to make the modified Borel transform

(4.15) amenable to calculation, however no such measure is known to us.6

To proceed, we realise that we can write that particular ratio of zetas,

as discussed in equation (3.7), in terms of the Dirichlet series

(4.17)
ζ(2 + n)ζ(5 + n)ζ(7 + n)ζ(10 + n)

ζ(2n+ 12)
=

∑
m>0

σ−3(m)σ−5(m)m−n−2 ,

so that we can rewrite (4.12) as an infinite series of a very simple asymptotic

expansion evaluated at shifted coupling y → my very reminiscent of [37]:

Iasy(b) =
16

π
(4πy)−3 sin(πb)

∑
m>0

σ−3(m)σ−5(m)(4.18)

×
∑
n≥0

(4πmy)−n−2(6 + n)Γ(n+ 2) .

At this point we can just use standard Borel transform to resum the

asymptotic tail. We make use of the known Laplace integral

(4.19)

∫ ∞

0
e−t(t/z)n+1dt = z−n−1Γ(n+ 2)

6 It is interesting to notice that the coefficients of the asymptotic tail are schemat-
ically of the form Γ(n+α)Π4

i=1ζ(n+αi)/ζ(2n+ β). Had there been instead only a
single zeta function multiplying the gamma we would have known a measure [35]
(see also [36]) whose momenta would produce both:

∫ ∞

0

tn
dt

4 sinh2(t/2)
= Γ(n+ 1)ζ(n) ,

valid for n ≥ 2, or more generally we find that the measure dμ(t) =
Liβ−α(e

−t) tα−1 dt has momenta

∫ ∞

0

tndμ(t) = Γ(n+ α)ζ(n+ β)

valid for n > −α when β − α > 1, or n > 1 − β when β − α ≤ 1. A Borel–Ecalle
resummation with this modified kernel is possible and in [37] it was shown that one
can reinterpret an asymptotic series with coefficients of the form Γ(n+ α)ζ(n+ β)
as a series with simpler coefficients evaluated at shifted couplings y → my with
m ∈ N for which it is easier to evaluate the full non-perturbative completion. A
very similar phenomenon will arise in the present case.
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to give a well-defined resummation of the formal asymptotic series

F (z) =
∑
n≥0

z−n−2(6 + n)Γ(n+ 2) �→ Sθ[F ](z)(4.20)

≡
∫ ∞e−iθ

0
e−z t

⎡
⎣∑
n≥0

tn+1(6 + n)

⎤
⎦ dt

=

∫ ∞e−iθ

0
e−z t t(6− 5t)

(t− 1)2
dt ,

where θ = arg z and Sθ denotes what is usually referred to as directional

Borel resummation.

We define in this way the resummation of the asymptotic series (4.18):

(4.21) Iasy(b) =
16

π
(4πy)−3 sin(πb)

∑
m>0

σ−3(m)σ−5(m)Sθ[F ](4πmy) .

However, we see that since arg(4πmy) = 0, the relevant region y > 0, is

a Stokes direction, i.e. a singular direction for the Borel transform (4.20).

This means that if we define the two lateral resummations

(4.22) S±[F ](4πmy) = lim
θ→0+

∫ ∞e∓iθ

0
e−4πmyt t(6− 5t)

(t− 1)2
dt ,

we will have a very simple, yet non-zero, discontinuity for (4.20) called Stokes

automorphism:

S−[F ](4πmy)− S+[F ](4πmy) =

∮
t=1

e−4πmyt t(6− 5t)

(t− 1)2
dt(4.23)

= −2πie−4πmy(4 + 4πmy) .

This means that our resummation (4.21) would give rise to ambiguities

in defining the value for the starting asymptotic series (4.21) when y > 0,

since as just shown we would get two different results by taking the limit

arg(4πmy) → 0± in (4.21); furthermore, although the formal expression

(4.13) we started with is manifestly real for y > 0 neither of the two lateral

resummations is.

To obtain a real and unambiguous resummation for y > 0 we have to

consider a kind of average between the two lateral resummations, usually
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referred to as median resummation [31], and define the resummation of (4.18)

Iasy(b) =
16(4πy)−3

π

∑
m>0

σ−3(m)σ−5(m)
[
sin(πb)S±[F ](4πmy)(4.24)

− π(±i sin(πb))e−4πmy(4 + 4πmy)
]
,

where the sign is according to arg y < 0 or arg y > 0. We have subtracted
half of the Stokes automorphism (with sign) from the lateral resummations
so that in practice this amounts to using a principal value prescription to
compute the lateral resummation (4.21) for θ = arg y = 0. Clearly the
asymptotic expansion for y 
 1 of the above equation coincides with (4.18)
since we have only added non-perturbative terms, and precisely thanks to
these non-perturbative terms the median resummation produces a real and
unambiguous result in the limit arg(4πmy) → 0±, i.e. y > 0.

As we send b → 0 we see that both the asymptotic tail and the non-
perturbative contributions seem to vanish, however, we will make the hy-
pothesis that this is an example of Cheshire-cat resurgence [32–34] for which
the non-perturbative terms will still be present in this limit despite the van-
ishing of the asymptotic tail. We make the assumption that the transseries
parameter, i.e. the factor σ = ±i sin(πb) has also a real part and it ex-
ponentiates to σ → exp(±iπb), so that its imaginary part still vanishes in
the b → 0 limit, while its real part remains and the full transseries be-
comes

I(b) = Ipert(b) +
16

π(4πy)3

∑
m>0

σ−3(m)σ−5(m)(4.25)

×
[
sin(πb)S±[f ](4πmy)− πe±iπbe−4πmy(4 + 4πmy)

]
→
b→0

Ipert(0)− 16(4πy)−3
∑
m>0

σ−3(m)σ−5(m)e−4πmy(4 + 4πmy)

= Ipert(0)−
∑
m>0

σ−3(m)σ−5(m)(πy)−2me−4πmy

(
1 +

1

πmy

)
,

which reproduces precisely the non-perturbative contribution that can be
easily extracted from the PDE (4.3) and have been recently discussed in
[26]. In principle, if we had a PDE formulation for the seed function with
b �= 0, it should be possible to extract the complete transseries parameter
without having to assume any exponentiation hypothesis, however at the
present time this deformed PDE description in b is lacking.
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To conclude this section, we want to stress the importance of the result:

from a suitable deformation of the seed function we obtain a perturbative

expansion of the zero Fourier mode that does not truncate. Using a clever

rewriting of the Riemann zeta functions we can write this asymptotic tail

as an infinite series of two divisor functions times a simpler asymptotic

series evaluated at shifted coupling 4πmy. The Borel–Ecalle resummation

of this asymptotic tail forces us to introduce non-perturbative terms of the

form e−4πmy, entirely encoded in the perturbative data, and, under some

reasonable assumption, these non-perturbative terms survive even when we

remove this b regulator thus giving us the full non-perturbative completion

of the zero Fourier mode for the modular graph function.

4.2. The C2,1,1 modular graph function

We consider next the example of the modular graph function C2,1,1(z) that

is given explicitly by the double-lattice sum

C2,1,1(z)

(4.26)

=
∑

(m1,n1),(m2,n2)∈Z2

(mi,ni) �=(0,0)

(m1+m2,n1+n2) �=(0,0)

y4

π4|m1z + n1|4|m2z + n2|2|(m1 +m2)z + (n1 + n2)|2
,

and its zero mode has the known terms [1, 5]

a0(y) =
2π4

14 175
y4 +

πζ(3)

45
y +

5ζ(5)

12π
y−1 − ζ(3)2

4π2
y−2 +

9ζ(7)

16π3
y−3(4.27)

+O(e−4π|n|y) .

As mentioned already for C3,1,1, this result was derived by studying the zero

mode of the differential equation satisfied by C2,1,1(z) together with its large

y limit. We shall rederive this result from the Poincaré series method.

The function

f(z) = C2,1,1(z)−
2π4

14 175
E4(z)(4.28)
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satisfies the differential equation [1]7

(Δ− 2) f(z) =
π4

2 025

(
E4(z)− E2(z)

2
)
.(4.29)

The reason for choosing this particular combination is that the leading per-

turbative power y4 of y cancels on the right-hand side when plugging in (1.5).

The right-hand side is problematic now because the E2
2 term contains a

linear term in y due to (1.5) and from the seed function point of view this

will introduce divergences upon Poincaré summation. This is very general

and a special treatment must be made to discuss modular functions with

source terms of the form E2
s , i.e., squares of Eisenstein series. This was also

noticed in [38] where differential equations with non-linear sources EsEs′

were analysed using spectral theory and the case s = s′ had to be treated
separately. This also happens for the D6R4 case discussed in Section 5.

The way to proceed is to deform the differential equation [25] and to

write E2
2 as the limit of E2E2+ε as ε → 0. The deformed Laplace equation

in this case can be taken as

(Δ− (2 + ε)(1 + ε)) f(z) =
2π−εζ(4 + 2ε)

45
(E4+ε(z)− E2(z)E2+ε(z)) .

(4.30)

Proceeding as for the C3,1,1 case and using the Poincaré series (1.5) for

the Eisenstein series E4+ε and E2+ε, one can deduce that the seed function
σ(z) for f(z) has to satisfy an associated differential equation that can be

solved for its Fourier modes expansion σ(z) =
∑

n∈Z cn(y)e
2πinx by [1, 25]

c0(y) =
π−3−εζ(3)ζ(4 + 2ε)

(1 + ε)
y1+ε ,

cm(y) =
π−3−εζ(4 + 2ε)

(1 + ε)
σ−3(|m|)y1+εe−2π|m|y , (m �= 0) .

(4.31)

Once again, as anticipated in Section 3, this seed function is of the

general type (3.1) discussed above when we substitute a = −3, b = 0, r =

1+ ε. As for the C3,1,1 case, it is better to keep b �= 0 as a regulator and send

it to zero only after having computed the asymptotic series (3.6), finally we

will send ε → 0.

7Again note that the Eisenstein series in [1] are normalised differently from those
in (1.5).
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The solution (4.31) can now be substituted into (2.4) to obtain the zero
mode of f(z) =

∑
n∈Z an(y)e

2πinx and the contribution I from all cm(y) with
m �= 0 to a0(y) is precisely captured by the general formula (3.6) specialized
to the present case

I ∼ lim
b→0

π−3−εζ(4 + 2ε)

(1 + ε)
I(−3, b, 1 + ε)

(4.32)

= lim
b→0

21+2b−2εyb−ε

π2+εΓ(2 + ε)

[
y

π

Γ(b+ 1)Γ(2ε− b)

Γ(ε− b)

ζ(3 + 2ε− 3b)ζ(4)

ζ(4 + 2ε− 2b)

+

(
π

y

)b ∑
n≥0

(
−π

y

)n

× Γ(n+1+2ε)ζ(−n− b)ζ(3− n− b)ζ(1 + n+ 2ε− b)ζ(4 + n+ 2ε− b)

n! · Γ(n+ 1 + ε)ζ(4 + 2n+ 2ε)ζ(4 + 2ε− 2b)

]
,

where the second term of (3.6) is absent once again since it is proportional
to ζ(a+ 1) that in the present case is ζ(−2) = 0.

Once more b regularises the n = 2 term and the asymptotic series termi-
nates at n = 3 due to the presence of the first two zetas ζ(−n−b)ζ(3−n−b)
vanishing for n ≥ 4 in the limit b → 0.

Taking the limit b → 0 we produce

I ∼ 21−2εζ(3 + 2ε)ζ(4)

π3+εΓ(2 + ε)

Γ(2ε)

Γ(ε)
y1−ε(4.33)

− 4−εΓ(1 + 2ε)ζ(3)ζ(4 + 2ε)

π−2−εΓ(1 + ε)Γ(2 + ε)ζ(2 + 2ε)
ζ(1 + 2ε)y−ε+

+
5ζ(5)

12π
y−1 − ζ(3)2

4π2
y−2 +

7ζ(7)

48π3
y−3 ,

where we have already taken the limit ε → 0 in all the terms of (4.32) besides
the first and the n = 0 term since they deserve some comments.

First of all, we notice in the first term of (4.32) that we have the ratio
Γ(2ε−b)/Γ(ε−b) for which the two limits b → 0 and ε → 0 do not commute!
This means that, had we started with the undeformed equation (4.29), for
which ε = 0 to begin with, we would have found the wrong coefficient. The
deformation of the PDE source term E2

s → EsEs+ε is crucial.
Secondly, this deformation is also crucial to regularise the divergences

arising in the integral of the zero mode c0(y) of the seed function caused
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by the presence of a linear term in y in the expansion E2
2 . In particular,

we see that the n = 0 term in equation (4.32) produces a term in (4.33)
proportional to ζ(1 + 2ε).

Having computed the contribution I to the zero mode a0(y) in (2.4), we
still have to consider the part coming from c0(y). With (4.31) this is given
by

c0(y) + y
∑
c>0

φ(c)

∫
R

c0

(
y−1

c2(1 + t2)

)
dt(4.34)

=
πζ(3)

90
y +

∑
c>0

φ(c)c−2−2ε

(
4−εΓ(1 + 2ε)ζ(3)ζ(4 + 2ε)

π−2−εΓ(1 + ε)Γ(2 + ε)
y−ε

)

=
πζ(3)

90
y +

4−εΓ(1 + 2ε)ζ(3)ζ(4 + 2ε)

π−2−εΓ(1 + ε)Γ(2 + ε)

ζ(1 + 2ε)

ζ(2 + 2ε)
y−ε .

As previously stated, the deformation (4.30) is essential otherwise we would
have produced the divergent expression

∑
c>0 φ(c)c

−2 signalled by the ζ(1+
2ε) factor. We note that the divergent term coming from the integral of the
zero mode is matched exactly and with opposite sign by the n = 0 term in
(4.33).

Combining (4.33) and (4.34) we cancel the divergent term and we can
safely send ε → 0 to recover the full asymptotic zero mode perturbative ex-
pansion of C2,1,1(z) already presented in (4.27), after adding back in the zero

modes coming from 2π4

14 175E4 in order to relate f(z) to C2,1,1(z) via (4.28).
One can repeat a similar analysis as we did in Section 4.1.2 and extract from
equation (4.32) using (3.7) the complete non-perturbative completion of the
zero mode. We have checked that this matches exactly the non-perturbative
corrections recently found in [26] using a completely different approach.

5. The D6R4 correction in type IIB

We now employ the method of Section 3 to derive the asymptotic expansion
of the D6R4 coefficient function in ten-dimensional type IIB superstring the-
ory. Calling this function f(z), it was argued in [20] to satisfy the differential
equation

(Δ− 12) f(z) = −4ζ(3)2E3/2(z)
2(5.1)

by considering compactified eleven-dimensional supergravity and making ex-
tensive use of supersymmetry.
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A Poincaré series representation of f(z) was given in [21]. Here, we use a
slightly different one that stems from the deformed problem studied in [25] in
order to avoid problems related to the square of the E3/2 on the right-hand
side, similar to the discussion in Section 4.2.

The non-zero Fourier mode of the deformed D6R4 seed is given by [25]

cn(y) =
8ζ(3 + 2ε)

1− 4ε2
σ−2(|n|)y1+ε

(
(1− 2ε)K2(2π|n|y) +

5− 2ε

π|n|y K3(2π|n|y)

(5.2)

− 10− 4ε

Γ(7/2− ε)(π|n|y)1/2+ε
K7/2−ε(2π|n|y)

)
.

The virtue of this combination is that it is regular for y → 0 and it has a
convergent expansion for y ∼ 0 of the form yεe−2π|n|y ∑


≥0 a
(4π|n|y)
, plus
possibly log y terms. Note that, as derived in full detail in Appendix B.1,
this expansion is not the usual expansion for Bessel functions at y = 0. It
is crucial for the evaluation of the integral of the seed function, as in equa-
tion (3.2), to have both the exponential factor and a convergent expansion
around the origin, the asymptotic nature of the Poincaré series will arise
by performing the sum over the Fourier mode number n after integration
and not by using the asymptotic expansion for the Bessel functions. Let
us also note that we are focussing on the expansion around y = 0 in this
discussion—even though we are ultimately interested in the asymptotic ex-
pansion of a0(y) around y → ∞—is that the formula (2.4) for a0(y) involves
an ‘S-transformation’ of y, that exchanges the asymptotic regimes.

Our strategy will be to write (5.2) as a combination of the basic general
building blocks (3.1) and this can be done most conveniently by considering
a shift-differential operator acting on a single term. Using the properties
of Bessel functions and confluent hypergeometric functions and after some
tedious calculations, that we relegate to Appendix B.1, one finds that the
non-zero Fourier mode (5.2) of the deformed seed function can be written
succinctly as

cn(y) = D
[
σ−2(|n|)(4π|n|)αy1+α+εe−2π|n|y

]
α=0

,(5.3)

where D is a shift-differential operator in an auxiliary variable α. We refer to
Appendix B.2 for all the details while for the rest of the present discussion
we only need to remember that D is function only of α and not of y or n,
and that its action commutes with the procedure discussed in Section 3 to
extract the asymptotic expansion for the Poincaré series.
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In particular we notice immediately that the form of the non-zero Fourier
mode (5.3) is precisely of the type (3.1) considered previously. This means
that the perturbative part to the zero mode of the D6R4 coefficient function
coming from the non-zero Fourier modes of the seed function can be obtained
directly from equation (3.6) specialized to the present case

(5.4) I ∼ D [I(−2, α, 1 + α+ ε)]α=0 .

The application of the shift-differential operator in α after using (3.6)
is rather involved but straightforward, the details have been relegated to
Appendix B.3. Once all the terms are collected we obtain (see equation
(B.38))

I ∼ 2

3
ζ(2)ζ(3)y + 4ζ(4)y−1 − πζ(3)2ζ(5)

4ζ(6)
y−2 +

4ζ(6)

27
y−3(5.5)

− π5/2Γ(ε+ 1/2)ζ(1 + 2ε)ζ(3 + 2ε)

(9− 6ε)Γ(1 + ε)ζ(2 + 2ε)
y−ε +O(ε) .

We note the occurrence of ζ(1 + 2ε) that diverges in the limit ε → 0.
As before, in order to obtain the complete perturbative zero mode of the

D6R4 coefficient function we also need the contributions coming from the
zero-mode of the seed function; however, these are easier to obtain.

The zero Fourier mode of the deformed seed is given by

c0(y) =
2ζ(3)ζ(3 + 2ε)

3− 6ε
y3+ε +

π2ζ(3 + 2ε)

9− 6ε
y1+ε .(5.6)

Its contribution to the zero mode of the Poincaré sum is just like for ordinary
Eisenstein series. Hence we obtain

c0(y) + y
∑
c>0

φ(c)

∫
R

c0

(
y−1

c2(1 + t2)

)
dt(5.7)

=
2ζ(3)ζ(3 + 2ε)

3− 6ε

[
y3+ε +

ξ(5 + 2ε)

ξ(6 + 2ε)
y−2−ε

]

+
π2ζ(3 + 2ε)

9− 6ε

[
y1+ε +

ξ(1 + 2ε)

ξ(2 + 2ε)
y−ε

]

with the completed zeta function ξ(s) = π−s/2Γ(s/2)ζ(s). We see that the
last term contains a ξ(1+2ε) ∝ ζ(1+2ε) that diverges in the limit ε → 0. As
it happened in Section 4.2, also in here this term is the reason that one has
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to deform the differential equation. Near ε = 0 the above expression takes
the form

(5.7) =
2

3
ζ(3)2y3 +

πζ(3)2ζ(5)

4ζ(6)
y−2 +

2

3
ζ(2)ζ(3)y(5.8)

+
π5/2Γ(ε+ 1/2)ζ(1 + 2ε)ζ(3 + 2ε)

(9− 6ε)Γ(1 + ε)ζ(2 + 2ε)
y−ε +O(ε) ,

such that the final total perturbative zero mode of the D6R4 coefficient
function that arises by combining with (5.5) is

E(0,1) ∼
2

3
ζ(3)2y3 +

4

3
ζ(2)ζ(3)y + 4ζ(4)y−1 +

4ζ(6)

27
y−3 +O(e−2πy)(5.9)

in agreement with [20, 21]. The three terms represent the perturbative tree-
level, one-loop, two-loop and three-loop contributions to the four-graviton
scattering amplitude in ten-dimensional type IIB string theory. The term
proportional to y−3 is a homogeneous solution to the differential equa-
tion (5.1) satisfied by the D6R4 correction that comes out correctly of the
Poincaré series approach. The correctness of the three-loop term was verified
in a direct pure spinor calculation in [39].

The regularisation with ε is important to both circumvent a divergent
Poincaré series and to correct the y1 term. As already explained in Sec-
tion 4.2, this regularisation is necessary because the inhomogeneous Laplace
equation (5.1) satisfied by the D6R4 correction contains a source term, aris-
ing from the square of the R4 coefficient function, that is precisely of the
form E2

3/2. From the seed function analysis this term has to be regularised
via E3/2E3/2+ε as we did for the C2,1,1 modular graph function.

6. Conclusions

In this paper, we have presented a method for obtaining the asymptotic
expansion of certain classes of Poincaré series f(z) whose seed Fourier modes
are associated with the class (3.1). It is also possible to obtain non-pertur-
bative information from this asymptotic expansion using resurgent analysis
as we have demonstrated in several examples.

At the moment the focus of our studies has been entirely devoted to
the derivation of the zero mode sector. An obvious future direction is to
extend our analysis to the non-zero modes and derive their perturbative
and non-perturbative expansions starting from the integral form (2.2).
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Another task yet to be completed is the reconstruction of the non-

perturbative corrections to the D6R4 coefficient function by combining the

use of the shift operator introduced to rewrite the Fourier modes (5.3) to-

gether with a Cheshire-cat type of resurgence similar to the discussion in

Section 4.1.2 for the simpler setup of the C3,1,1 modular graph function.

Furthermore, even within the class of modular graph functions discussed

in the present paper, it is conceivable that from our asymptotic expan-

sion (3.6) it will be possible to write the general expression of the non-

perturbative corrections, reconstructing them entirely out of the perturba-

tive data. For the two cases C3,1,1 and C2,1,1 discussed in here we have

checked that these non-perturbative corrections match exactly the one de-

rived recently in [26] using a completely different approach.

We have little doubt that our method can be applied to many more

modular graph functions, for example those in the class Ca,b,c studied in [1]

or the tetrahedral functions studied in [9] and whose Laplace equations are

known. Since the Laplace equation for a given value of (a, b, c) higher than

the examples considered here can generally involve also sources involving

other Ca′,b′,c′ functions (before diagonalisation of the Laplacian), we expect

the corresponding Fourier modes to be more involved but still derivable

from (3.1), presumably up to the action of a differential operator. It is also

extremely interesting to understand how to extend our analysis to different

type of multiplicative functions, besides the divisor sum σa, appearing in the

seed function (3.1) and whether or not such cases exist within string theory.

There are several possible generalisations of the present analysis pre-

sented here. Besides an extension to the analysis of the non-zero modes

f(z), one tantalising avenue seems to be to use the methods to investigate

higher-derivative terms in the type IIB effective action starting from D8R4

whose exact form is currently unknown. Laplace equations for D8R4 and, in

particular, D10R4 have been proposed in the literature [20, 40] and it would

be interesting to analyse them via the Poincaré series approach and study

their perturbative terms.

It is also conceivable to extend the present strategy beyond SL(2,Z)

to higher rank groups. According to the two instances in the introduction,

there are two different generalisations: either going to higher genus world-

sheets (which means Sp(2g,Z) for low genus g) or going to higher rank

U-duality groups (which means En(Z) for compactification of type II on a

space-time torus Tn−1). Modular graph functions for world-sheets of genus

two and higher have been explored recently [41–46] with a focus on obtaining

the perturbative terms in the non-separating divisor limit of the Riemann
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surface that is similar to the asymptotic expansion studied in the present
paper.

For higher rank U-duality groups En(Z), there is a fair amount known
for the lowest derivative corrections R4 and D4R4, see [47–50], where the
solutions can be given in terms of parabolic Eisenstein series, i.e., Poincaré
sums of characters of a parabolic subgroup. As Eisenstein series satisfy ho-
mogeneous differential equations and since there are many methods available
for analysing them, these cases have been treated in detail. The situation
is less clear starting from D6R4 where the differential equation implied by
supersymmetry again is inhomogeneous [20, 51, 52]. For some higher rank
cases, solutions have been proposed in the literature based on different meth-
ods [25, 51, 53]; however, their equivalence and their full physical content in
terms of an asymptotic expansion are in general not known. We hope that
the methods of the present paper can also help to study these functions.

Appendix A. Useful identities

A.1. From Poincaré series to Kloosterman sums

In this appendix, we briefly review how to obtain the relation (2.2) between
the Fourier coefficients of the seed of a Poincaré and those of the summed
function. We follow [27, 28] to which we direct the reader for additional
details and references.

The Poincaré sum (1.6) is a sum over cosets in B(Z)\SL(2,Z). These
can be represented by matrices (

a b
c d

)
(A.1)

with c ∈ Z and d > 0 coprime, where choosing a representative of the
coset means choosing any fixed solution for a and b of the condition ad −
bc = 1. The sum over coset classes with coprime c and d can be further
refined by grouping the terms in d modulo c using a further right quotient
B(Z)\SL(2,Z)/B(Z) as follows. Multiplying by elements from B(Z) on the
right means (

a b
c d

)(
1 k
0 1

)
=

(
a b+ ak
c d+ ck

)
,(A.2)

so one may sum over all k ∈ Z and all elements in Z/cZ that coprime with c
as long as c �= 0. This is the set (Z/cZ)× that appears in many places in this
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article. For c = 0, there is only the term d = 1 and the coset is represented

by the identity element. Therefore the Poincaré sum (1.6) is

f(z) = σ(z) +
∑
c>0

∑
d∈(Z/cZ)×

∑
k∈Z

σ

(
a

c
− 1

c(c(z + k) + d)

)
,(A.3)

where we have rewritten the argument of σ using ad − bc = 1 with a any

fixed solution. The sum over c �= 0 is restricted to positive numbers as the

right quotient by B(Z) also includes a possible sign change.

Performing a Poisson resummation on k ∈ Z leads to

f(z) = σ(z) +
∑
c>0

∑
d∈(Z/cZ)×

∑
n∈Z

∫
R

e−2πinωσ

(
a

c
− 1

c(c(z + ω) + d)

)
dω .

(A.4)

Shifting the integration variable ω → ω+x+d/c then yields with z = x+ iy

f(z) = σ(z) +
∑
n∈Z

e2πinx
∑
c>0

∑
d∈(Z/cZ)×

e2πind/c
∫
R

e−2πinω(A.5)

× σ

(
a

c
− 1

c2(ω + iy)

)
dω

= σ(z) +
∑
n∈Z

e2πinx
∑
c>0

∑
d∈(Z/cZ)×

e2πind/c
∫
R

e−2πinω

×
∑
m∈Z

e2πima/ce
−2πim ω

c2(ω2+y2) cm

(
y

c2(ω2 + y2)

)
dω ,

where we have inserted the Fourier expansion σ(z) =
∑

m∈Z cm(y)e2πimx at

the given argument.

From the above equation we can read off the Fourier modes of f(z) =∑
n∈Z an(y)e

2πinx as

an(y) = σn(y) +
∑
c>0

∑
d∈(Z/cZ)×

∑
m∈Z

e2πind/c+2πima/c(A.6)

×
∫
R

e
−2πinω−2πim ω

c2(y2+ω2) cm

(
y

c2(y2 + ω)

)
dω .

Replacing d by q one arrives at (2.2).
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A.2. Integrals of Fourier modes

The Fourier modes we encounter are combinations of terms of the form
cn(y) ∝ yre−2πny for some power r. For the zero modes in (2.4) we then
have to evaluate integrals of the type∫

R

e
−2πm 1+it

yc2(1+t2)
1

(1 + t2)r
dt .(A.7)

Expanding the exponential, the individual terms are in the class (for Re(a+
b) > 1) ∫

R

1

(1 + it)a
1

(1− it)b
dt = 22−a−bπ

Γ(a+ b− 1)

Γ(a)Γ(b)
,(A.8)

such that

∫
R

e
−2πm 1+it

yc2(1+t2)
1

(1 + t2)r
dt =

π

4r−1Γ(r)

∑
k≥0

(−πmy−1c−2)k

k!

Γ(2r + k − 1)

Γ(k + r)
,

(A.9)

valid for Re(r) > 1/2. For integer r this is a polynomial of degree r − 1
in πm

yc2 times exp(−πm
yc2 ). For generic r we can rewrite the result using the

shift operator Dα = e∂α that satisfies Dk
αf(α) = f(α+k). Then the formula

becomes

∫
R

e
−2πm 1+it

yc2(1+t2)
1

(1 + t2)r
dt =

π

4r−1Γ(r)
exp

(
−πm

yc2
Dα

)
Γ(2r + α− 1)

Γ(α+ r)

∣∣∣∣
α=0

.

(A.10)

Another integral that will be useful is

∫ ∞

0

∑
n>0

θnhqn−stb
∑
k≥0

(−nt)k

k!

Γ(2r + k − 1)

Γ(r + k)
dt(A.11)

=
Γ(b+ 1)Γ(2r − b− 2)

Γ(r − b− 1)
Lis+b+1(θ

hq)

that can be computed using the shift operator Dα and also uses∫ ∞

0
tbLis(θ

hqe−t)dt = Γ(b+ 1)Lis+b+1(θ
hq) .(A.12)
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A.3. Sums of polylogarithms

In this appendix, we consider sums of the form

∑
c>0

c−s
∑

q∈(Z/cZ)×

c∑
h=1

ζ
(
1− k,

h

c

)
Lin(θ

hq) ,(A.13)

where θ = e2πi/c is a primitive c-th root of unity. The parameters k and n

need not be integers in this expression and in fact many expressions become

singular when they are.

First, we note that the Hurwitz zeta function can be rewritten according

to [54]

ζ
(
1− k,

h

c

)
=

Γ(k)

(2π)k

(
i−kLik(θ

h) + ikLik(θ
−h)

)
.(A.14)

The two terms are related by complex conjugation, so it is sufficient to

consider one of them. Therefore the basic object we are facing is

∑
c>0

c−s
∑

q∈(Z/cZ)×

c−1∑
h=0

Lik(θ
h)Lin(θ

hq) ,(A.15)

where we have shifted the h-summation using the periodicity of θh.

Under the (numerically verified) assumption that the object obtained by

summing over q and h and dividing by Lik(1)Lin(1) is multiplicative in c, it

is sufficient to consider the case c = p
, where p is a prime and � an integer.

In that case one has to determine

Sk,n(p

) =

p�−1∑
h=0

∑
q∈(Z/p�Z)×

Lik(θ
h)Lin(θ

hq)(A.16)

=


−1∑
m=0

∑
a∈(Z/p�−mZ)×

∑
q∈(Z/p�Z)×

Lik(θ
apm

)Lin(θ
apmq)

+ Lik(1)Lin(1)φ(p

) ,

where we have grouped the sum over h into different classes. Now one uses

that for gcd(a, p
−m) = 1 the second factor in the sum is independent of a
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and yields

∑
q∈(Z/p�Z)×

Lin(θ
apmq) =

∑
q∈(Z/p�Z)×

Lin(θ
pmq)(A.17)

= Lin(1)p
m
(
p(
−m)(1−n) − p(
−m−1)(1−n)

)
,

while the first factor leads to

∑
a∈(Z/p�−mZ)×

Lik(θ
apm

) = Lik(1)
(
p(
−m)(1−k) − p(
−m−1)(1−k)

)
.(A.18)

We obtain therefore

1

Lik(1)Lin(1)

p�−1∑
h=0

∑
q∈(Z/p�Z)×

Lik(θ
h)Lin(θ

hq)

(A.19)

=


−1∑
m=0

[
pm

(
p(
−m)(1−n) − p(
−m−1)(1−n)

)(
p(
−m)(1−k) − p(
−m−1)(1−k)

)]
+ φ(p
)

= (1− pk−1)(1− pn−1)p−
(k+n−2) 1− p
(k+n−1)

1− pk+n−1
+ φ(p
) .

For the Dirichlet series written as an Euler product we next need to form

∑

≥0

Sk,n(p

)p−
s = Lik(1)Lin(1)

(1− p1−k−s)(1− p1−n−s)

(1− p2−n−k−s)(1− p1−s)
,(A.20)

leading for sufficiently large Re(s) to

∑
c>0

c−s
∑

q∈(Z/cZ)×

c−1∑
h=0

Lik(θ
h)Lin(θ

hq) = ζ(k)ζ(n)
ζ(n+ k + s− 2)ζ(s− 1)

ζ(k + s− 1)ζ(n+ s− 1)
.

(A.21)

where we have also substituted Lik(1) = ζ(k) to continue Lik(1) to most

values of k. As said before this calculation requires k and n to be analytically

continued and the above formula works well to determine limiting values.
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Returning to the original expression (A.13) we then find

∑
c>0

c−s
∑

q∈(Z/cZ)×

c∑
h=1

ζ
(
1− k,

h

c

)
Lin(θ

hq)(A.22)

=
Γ(k)

(2πi)k
ζ(k)ζ(n)

ζ(n+ k + s− 2)ζ(s− 1)

ζ(k + s− 1)ζ(n+ s− 1)
+ c.c.

=
ζ(1− k)ζ(n)ζ(n+ k + s− 2)ζ(s− 1)

ζ(k + s− 1)ζ(n+ s− 1)
.

Here, c.c. stands for the complex conjugate and we have used the functional
equations for ζ(k) and Γ(k) for the simplified expression.

We also note

∑
c>0

c−s
∑

q∈(Z/cZ)×

c∑
h=1

Lin(θ
hq) =

∑
c>0

c−s+1−nφ(c)Lin(1) =
ζ(n)ζ(s+ n− 2)

ζ(s+ n− 1)
.

(A.23)

When taking limits it can be useful to remember that the derivative of
the Riemann zeta function at negative even integers satisfies

ζ ′(−2n) = (−1)n
(2n)!

2(2π)2n
ζ(2n+ 1) .(A.24)

Appendix B. Expanding the D6R4 seed modes

In this appendix, we perform the rewriting of the Fourier mode of D6R4 seed
function presented in (5.2) and derive its contribution to the asymptotic
expansion of the zero mode of the D6R4 coefficient itself.

B.1. Bessel functions and confluent hypergeometric functions

The modified Bessel function can be written as

Ks(z) =
√
πe−z(2z)sU(s+ 1

2 , 2s+ 1; 2z)(B.1)

in terms of the confluent hypergeometric function U(a, b; z) that is a variant
of Kummer’s function

M(a, b; z) = 1F1(a, b; z) =
∑

≥0

(a)

(b)


z


�!
,(B.2)
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defined in terms of the rising Pochhammer symbols (a)
 = a · (a+1) · · · (a+
�− 1) = Γ(a+
)

Γ(a) . For b /∈ Z one has the relation [54]

U(a, b; z) =
Γ(1− b)

Γ(a− b+ 1)
M(a, b; z) + z1−bΓ(b− 1)

Γ(a)
M(a− b+ 1, 2− b; z) .

(B.3)

Putting this back into (B.1) makes the symmetry Ks(z) = K−s(z) manifest.

The second term in (B.3) contains a finite number of singular terms (in z)

for b > 1 but b /∈ Z.

We also require the expansion of the confluent hypergeometric function

U(a, n+ 1; z) around z = 0 when n ∈ Z≥0. This is given by [54]

U(a, n+ 1; z) = Ũ(a, n+ 1; z) +
Γ(n)

Γ(a)
z−n

n−1∑

=0

(a− n)

(1− n)


z


�!
(B.4)

where

Ũ(a, n+ 1; z)(B.5)

=
(−1)n+1

Γ(a)Γ(a− n)

∑

≥0

Γ(a+ �)z


Γ(n+ 1 + �)Γ(1 + �)

× (log(z) + ψ(a+ �)− ψ(n+ �+ 1)− ψ(�+ 1))

contains the regular and log terms and the digamma function is the loga-

rithmic derivative of the gamma function according to ψ(x) = Γ′(x)/Γ(x).
Using formulas (B.1), (B.3) and (B.4) we can obtain the expansion of Ks(z)
of the form

Ks(z) = e−z × (shifted Laurent series around z = 0) .(B.6)

The lowest power that occurs in the series is z−s for any real s > 0.

We note that we can rewrite (B.5) by introducing an auxiliary parameter
α as in Appendix A.2. In this way one obtains with the shift operator Dα =

e∂α the following compact expression for the regular part Ũ(a, n+ 1; z):

Ũ(a, n+ 1; z) =
(−1)n+1

Γ(a)Γ(a− n)

∑

≥0

∂α

[
Γ(a+ �+ α)z
+α

Γ(n+ �+ 1 + α)Γ(�+ 1 + α)

]
α=0

(B.7)
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=
(−1)n+1

Γ(a)Γ(a− n)

∑

≥0

D

α∂α

[
Γ(a+ α)zα

Γ(n+ 1 + α)Γ(1 + α)

]
α=0

=
(−1)n+1

Γ(a)Γ(a− n)

1

1−Dα
∂α

[
Γ(a+ α)zα

Γ(n+ 1 + α)Γ(1 + α)

]
α=0

.

B.2. Rewriting the D6R4 seed

The specific combination appearing in the D6R4 seed Fourier mode is

cn(y) =
8ζ(3 + 2ε)

1− 4ε2
σ−2(n)(2π|n|)−1−ε

(B.8)

× z1+ε

[
(1− 2ε)K2(z)+

10− 4ε

z
K3(z)−

(10− 4ε)21/2+ε

Γ(7/2− ε)z1/2+ε
K7/2−ε(z)

]
,

where we use z = 2π|n|y.
We shall first rewrite the second line in the form e−z×(convergent power

series in z), showing along the way that there are no negative powers of z
appearing in this particular combination. As a second step we shall write the
whole expression as the action of a differential operator acting on a simpler

term.

The expansions of the various Bessel functions near z = 0 are

K2(z) =
√
πe−z

[
(2z)2Ũ(52 , 5; 2z) +

Γ(4)

Γ(5/2)
(2z)−2

(
1 + z +

z2

4
− z3

12

)]
,

(B.9)

K3(z) =
√
πe−z

[
(2z)3Ũ(72 , 7; 2z) +

Γ(6)

Γ(7/2)
(2z)−3

×
(
1 + z +

3z2

8
+

z3

24
− z4

192
+

z5

320

)]
,

K7/2−ε(z) =
√
πe−z

[
(2z)7/2−εΓ(2ε− 7)

Γ(ε− 3)
M(4− ε, 8− 2ε; 2z)

+ (2z)ε−7/2Γ(7− 2ε)

Γ(4− ε)
M(ε− 3, 2ε− 6; 2z)

]

=
√
πe−z

[
(2z)7/2−εΓ(2ε− 7)

Γ(ε− 3)
M(4− ε, 8− 2ε; 2z)
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+ (2z)ε−7/2Γ(7− 2ε)

Γ(4− ε)

(
1 + z +

2− ε

5− 2ε
z2 +

1− ε

15− 6ε
z3

+
∑

>3

(ε− 3)

(2ε− 6)


(2z)


�!

)]
.

Note that, as stressed above, this is not the usual asymptotic expansion

of the Bessel functions around z = 0 where we have stripped away the

exponential factor, necessary for the convergence of the integral (2.4).

Taking into account also the pre-factors of the second line of (B.8), the

possible singular and constant terms are of the orders z−3+ε, z−2+ε, z−1+ε

and zε with coefficients (after dropping the common
√
πe−z):

z−3+ε : (10− 4ε)
Γ(6)

Γ(7/2)
2−3 − 10− 4ε

Γ(7/2− ε)
22ε−3Γ(7− 2ε)

Γ(4− ε)
= 0 ,(B.10)

z−2+ε : (10− 4ε)
Γ(6)

Γ(7/2)
2−3 − 10− 4ε

Γ(7/2− ε)
22ε−3Γ(7− 2ε)

Γ(4− ε)
= 0 ,

z−1+ε : (1− 2ε)
Γ(4)

Γ(5/2)
2−2 +

3

8
(10− 4ε)

Γ(6)

Γ(7/2)
2−3

− 2− ε

5− 2ε

10− 4ε

Γ(7/2− ε)
22ε−3Γ(7− 2ε)

Γ(4− ε)
= 0 ,

zε : (1− 2ε)
Γ(4)

Γ(5/2)
2−2 +

1

24
(10− 4ε)

Γ(6)

Γ(7/2)
2−3

− 1− ε

15− 6ε

10− 4ε

Γ(7/2− ε)
22ε−3Γ(7− 2ε)

Γ(4− ε)
= 0 .

Therefore, the non-zero Fourier mode (B.8) of the seed of the D6R4 function

can be written in an expansion where every term is at least of the order z1+ε:

cn(y) =
8
√
πζ(3 + 2ε)

1− 4ε2
σ−2(n)(2π|n|)−1−εe−z

(B.11)

×
[
4(1− 2ε)z3+εŨ(52 , 5; 2z) +

Γ(4)

4Γ(5/2)
(1− 2ε)

(
z1+ε

4
− z2+ε

12

)

+ 8(10− 4ε)z3+εŨ(72 , 7; 2z) +
Γ(6)

8Γ(7/2)
(10− 4ε)

(
−z1+ε

192
+

z2+ε

320

)

− 16
(10− 4ε)Γ(2ε− 7)

Γ(7/2− ε)Γ(ε− 3)
z4−εM(4− ε, 8− 2ε; 2z)
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− 8
10− 4ε√

π
z−3+ε

∑

>3

(ε− 3)

(2ε− 6)


(2z)


�!

]
,

=
8
√
πζ(3 + 2ε)

1− 4ε2
σ−2(n)(4π|n|)−1−εe−z

×
[
(1− 2ε)(2z)3+εŨ(52 , 5; 2z) + (20− 8ε)(2z)3+εŨ(72 , 7; 2z)

+
1− 10ε

12
√
π

(2z)1+ε +
5 + 14ε

120
√
π
(2z)2+ε

+ 22+2εΓ(ε− 3/2)

π

(
Γ(1 + ε)

Γ(2ε− 2)Γ(5)
(2z)1+ε +

Γ(2 + ε)

Γ(2ε− 1)Γ(6)
(2z)2+ε

+
Γ(3 + ε)

Γ(2ε)Γ(7)
(2z)3+ε

)
− 22+2εΓ(ε− 3/2)

π

×
∑

≥0

(
Γ(4 + �− ε)(2z)4+
−ε

Γ(8 + �− 2ε)Γ(1 + �)
− Γ(4 + �+ ε)(2z)4+
+ε

Γ(8 + �)Γ(1 + �+ 2ε)

)]

where we have also inserted the expansion of Kummer’s function (B.2). Note
that the above expression has a smooth limit ε → 0 in which the sum over �
disappears, reflecting the fact that K7/2−ε → K7/2 with a finite expansion,
and the three terms in the second line also disappear such that

cn(y) −→
ε→0

8
√
πζ(3)σ−2(n)(4π|n|)−1

(B.12)

× e−z

[
(2z)3Ũ(52 , 5; 2z) + 20(2z)3Ũ(72 , 7; 2z) +

2z

12
√
π
+

(2z)2

24
√
π

]
.

We further simplify (B.11) by writing it as the application of a differ-
ential on a simpler function. This was already done for the Ũ functions
in (B.7).

We start with the terms involving Ũ and rewrite the relevant part
of (B.11) as

(1− 2ε)(2z)3+εŨ(52 , 5; 2z) + (20− 8ε)(2z)3+εŨ(72 , 7; 2z)(B.13)

= − 1

1−Dα
∂α

[
(1− 2ε)(2z)3+ε

Γ(5/2)Γ(−3/2)

Γ(5/2 + α)(2z)α

Γ(5 + α)Γ(1 + α)

+
(20− 8ε)(2z)3+ε

Γ(7/2)Γ(−5/2)

Γ(7/2 + α)(2z)α

Γ(7 + α)Γ(1 + α)

]
α=0
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= − 1

π

D2
α

1−Dα
∂α

[(
α2 − 13α+ 2− 2ε(α2 + 3α+ 10)

)
× Γ(1/2 + α)

Γ(5 + α)Γ(α− 1)
(2z)1+α+ε

]
α=0

.

We note also that

− 1

π
(1 +Dα)∂α

[(
α2 − 13α+ 2− 2ε(α2 + 3α+ 10)

)
(B.14)

× Γ(1/2 + α)

Γ(5 + α)Γ(α− 1)
(2z)1+α+ε

]
α=0

=
1− 10ε

12
√
π

(2z)1+ε +
5 + 14ε

120
√
π
(2z)2+ε ,

so that the first line of the square brackets in (B.11) can be rewritten as

(1− 2ε)(2z)3+εŨ(52 , 5; 2z) + (20− 8ε)(2z)3+εŨ(72 , 7; 2z) +
1− 10ε

12
√
π

(2z)1+ε

(B.15)

+
5 + 14ε

120
√
π
(2z)2+ε

= − 1

π

1

1−Dα
∂α

[(
α2 − 13α+ 2− 2ε(α2 + 3α+ 10)

)
× Γ(1/2 + α)

Γ(5 + α)Γ(α− 1)
z1+α+ε

]
α=0

.

The three contributions in the second line of (B.11) can be written as

22+2εΓ(ε− 3/2)

π

(
Γ(1 + ε)

Γ(2ε− 2)Γ(5)
(2z)1+ε +

Γ(2 + ε)

Γ(2ε− 1)Γ(6)
(2z)2+ε

(B.16)

+
Γ(3 + ε)

Γ(2ε)Γ(7)
(2z)3+ε

)

=
22+2ε

π
Γ(ε− 3/2)(1 +Dα +D2

α)

[
Γ(1 + α+ ε)

Γ(5 + α)Γ(2ε− 2 + α)
(2z)1+α+ε

]
α=0
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The last line of (B.11) involving the �-sum takes the form

− 22+2εΓ(ε− 3/2)

π

∑

≥0

(
Γ(4 + �− ε)(2z)4+
−ε

Γ(8 + �− 2ε)Γ(1 + �)
− Γ(4 + �+ ε)(2z)4+
+ε

Γ(8 + �)Γ(1 + �+ 2ε)

)(B.17)

= −22+2εΓ(ε− 3/2)

π

1

1−Dα

[
Γ(4 + α− ε)(2z)4+α−ε

Γ(8 + α− 2ε)Γ(1 + α)

− Γ(4 + α+ ε)(2z)4+α+ε

Γ(8 + α)Γ(1 + α+ 2ε)

]
α=0

.

In this way, the whole seed Fourier mode cn(y) can be written as (finite)
linear combinations of terms of the form σa(n)(4π|n|)byre−2π|n|y together
with the action of differential operators on them, where we recall that z =
2π|n|y.

The notation we introduce for this rewriting is

cn(y) = c(1)n (y) + c(2)n (y)(B.18)

where

c(1)n (y) = D(1)
(
σ−2(n)(4π|n|)−1−ε(2z)1+α+εe−z

)
,

(B.19)

c(2)n (y) = −25+2εζ(3 + 2ε)Γ(ε− 3/2)√
π(1− 4ε2)

1

1−Dα

[
σ−2(n)(4π|n|)−1−εe−z

×
(
Γ(4 + α− ε)(2z)4+α−ε

Γ(8 + α− 2ε)Γ(1 + α)
− Γ(4 + α+ ε)(2z)4+α+ε

Γ(8 + α)Γ(1 + α+ 2ε)

)]
α=0

and

D(1)f(α) = − 8ζ(3 + 2ε)√
π(1− 4ε2)

∂α
1−Dα

[(
α2 − 13α+ 2− 2ε(α2 + 3α+ 10)

)(B.20)

×
Γ(α+ 1

2)

Γ(5 + α)Γ(α− 1)
f(α)

]
α=0

+
25+2εζ(3 + 2ε)Γ(ε− 3/2)√

π(1− 4ε2)
(1 +Dα +D2

α)

×
[

Γ(1 + α+ ε)

Γ(5 + α)Γ(2ε− 2 + α)
f(α)

]
α=0

.
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The reason that we have split the Fourier mode cn(y) in this way is because

the two parts have different contributions to the asymptotic expansion.

B.3. Applying the general formula for the asymptotic expansion

We now apply the general formula (3.6) for the asymptotic expansion of

Fourier modes of the type (3.1) to (B.18) to obtain the asymptotic expansion

for z → 0 in a similar decomposition

I ∼ I(1) + I(2) ,(B.21)

where, after exchanging the differential operator and the asymptotic expan-

sion,

I(1) = D(1)I(−2, α, 1 + α+ ε)(B.22)

will be evaluated momentarily and I(2) follows from applying (3.6) to c
(2)
n (y).

We begin by showing that I(2) vanishes in the asymptotic expansion

for ε → 0. Writing out the geometric series 1/(1 − Dα) =
∑


≥0D


α again,

a single term in c
(2)
n (y) contributes to the asymptotic expansion either as

I(−2, 3 + �− 2ε, 4 + �− ε) or I(−2, 3 + �, 4 + �+ ε) which are given by

I(−2, 3 + �− ε± ε, 4 + �± ε)

(B.23)

=
21−επy−ε

Γ(4 + �± ε)

[
y

π

Γ(4 + �− ε± ε)Γ(3 + �+ ε± ε)

Γ(ε)
+

+
π

y

Γ(2 + �− ε± ε)Γ(5 + �+ ε± ε)

Γ(2 + ε)

ζ(2 + 2ε)ζ(3)

ζ(3 + 2ε)

+

(
π

y

)3+
−ε±ε ∑
n≥0

(
−π

y

)n Γ(7 + 2�+ n± 2ε)

n! · Γ(4 + �+ n± ε)

× ζ(−3−�−n+ε∓ε)ζ(−1−�−n+ε∓ε)ζ(4+�+n+ε±ε)ζ(6+�+n+ε±ε)

ζ(8+2�+2n±2ε)ζ(3+2ε)

]
.

Inspecting this expression we see that all individual terms are continuous

and finite in the limit ε → 0 (since � ≥ 0 and n ≥ 0), and we can set ε = 0;

the very first term even vanishes. Since the two terms with ±ε appear with
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opposite signs in c
(2)
n (y) their contribution to the (perturbative) asymptotic

behaviour vanishes when ε → 0 and thus:

I(2) ∼
ε→0

0(B.24)

and we are left with the contribution I(1) in (B.22) coming from c
(1)
n (y).

In order to evaluate (B.22) we first note that

I(−2, α, 1 + α+ ε)

(B.25)

=
21−2επy−ε

Γ(1 + α+ ε)

[
y

π

Γ(1 + α)Γ(α+ 2ε)

Γ(ε)

ζ(2 + 2ε)ζ(3)

ζ(3 + 2ε)

− 1

12

π

y

Γ(α− 1)Γ(2 + α+ 2ε)

Γ(2 + ε)

ζ(2 + 2ε)

ζ(3 + 2ε)

+

(
π

y

)α ∑
n≥0

(
−π

y

)n Γ(1 + 2α+ 2ε+ n)

n! · Γ(1 + α+ ε+ n)

× ζ(2− α− n)ζ(−α− n)ζ(3 + α+ 2ε+ n)ζ(1 + α+ 2ε+ n)

ζ(2 + 2α+ 2ε+ 2n)ζ(3 + 2ε)

]
.

We begin with the contributions from the second line of the differential
operator in (B.20). These can be evaluated fully since

D

α

[
Γ(1 + α+ ε)I(−2, α, 1 + α+ ε)

Γ(5 + α)Γ(2ε− 2 + α)

]
α=0

=
Γ(1 + �+ ε)I(−2, �, 1 + �+ ε)

Γ(5 + �)Γ(2ε− 2 + �)
,

(B.26)

and the factor 1/Γ(2ε − 2 + �) goes to zero when ε → 0 and � = 0, 1, 2.
Therefore, we only need to analyse the potentially diverging terms for ε → 0
in I(−2, �, 1 + � + ε). Inspecting (B.25), there are no such terms for � = 1
and � = 2. For � = 0, there is such a term when n = 0 in the sum and this is
the only possible contribution. The result is that the second line of (B.20)
contributes as

lim
ε→0

(
26ζ(3)Γ(−3/2)

√
π
ζ(0)ζ(1 + 2ε)

Γ(5)Γ(2ε− 2)

)
= −32

9
πζ(3)(B.27)

to the asymptotic expansion of I(2), i.e. to the y-independent terms.
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We are then left with the first line of the differential operator (B.20)
acting on I(−2, α, 1 + α + ε) given in (B.25). We treat the three terms in
I(−2, α, 1+α+ ε) separately as they contribute at specific orders in y: The
first term only contributes at order y1, the second term only at order y−1

and the third term in (B.25) contributes at all orders y−k for k ≥ 0 (and
potentially log(y)).

In order to evaluate the action of the differential operator on the first
term in (B.25), we observe that for cancelling the 1/Γ(ε) in this expression,
one requires α = 0 in the numerator of (B.20) and thus should not apply
any of shift operators D


α contained in the differential operator, otherwise
the result vanishes for ε → 0. The complete contribution at linear order in
y in the limit is therefore

y1: −16ζ(2)ζ(3)
y√
π
lim
ε→0

∂α

[
(α2−13α+2)

Γ(α+1/2)Γ(1+α)Γ(α+2ε)

Γ(α− 1)Γ(5 + α)Γ(ε)

]
α=0

(B.28)

=
2

3
ζ(2)ζ(3)y .

This deals completely with the first term in (B.25).

Proceeding to the second term in (B.25) we are dealing with the order
y−1. Since the potentially diverging Γ(α−1) cancels between (B.25) and the
differential operator, we are left with

22−επ3/2y−1−ε

3(1− 4ε2)

∂α
1−Dα

[ (
α2 − 13α+ 2− 2ε(α2 + 3α+ 10)

)(B.29)

×
Γ(α+ 1

2)Γ(2 + α+ ε)ζ(2 + 2ε)

Γ(1 + α+ ε)Γ(5 + α)Γ(2 + ε)

]
α=0

−→
ε→0

4π3/2ζ(2)

3
y−1∂α

1

1−Dα

[ (
α2 − 13α+ 2

) Γ(α+ 1/2)Γ(2 + α)

Γ(1 + α)Γ(5 + α)

]
α=0

=
4π3/2ζ(2)

3
y−1∂α

[
2α(α− 2)(α+ 1)Γ(α+ 1/2)

Γ(4 + α)

]
α=0

= −40ζ(4)

3
y−1

The limit ε → 0 can be taken first since there are no singularities in this
limit and the geometric sum converges uniformly. This is the complete con-
tribution from the second term in (B.25).
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The final contribution we need to evaluate is the third sum term in (B.25)
when the first line of the differential operator (B.20) is applied to it. This
can have contributions at orders y−k for k ≥ 0 and the lowest few values
of k have to be analysed differently from the generic cases due to diverging
terms.

Let us denote by

un = (−1)n
(
π

y

)α+n
(B.30)

× Γ(1+2α+n+2ε)ζ(2−α−n)ζ(−α− n)ζ(3 + α+ n+ 2ε)ζ(1+α+n+ε)

n! · Γ(1 + α+ n+ ε)ζ(2 + 2α+ 2n+ 2ε)ζ(3 + 2ε)

the nth term in the sum of the third term in (B.25). We note that most terms
depend only on α+ n that also sets the order in y. Potential divergences in
un come from the zeta functions when the argument approaches one. This
can happen for ζ(2 − α − n) when (α, n) = (1, 0) or (α, n) = (0, 1) and for
ζ(1+α+n+ε) when (α, n) = (0, 0). Shifts in α come from expanding out the
geometric sum 1/(1 − Dα) =

∑

≥0D



α. In the differential operator (B.20)

there is also a factor 1/Γ(α − 1) that can vanish for α = 0 or α = 1 and
combine with diverging terms in un.

At order y0 and for the first line of the differential operator there is
only a contribution from the u0 in (B.25) and one should not apply any
shift operator Dα for this order in y. This contribution has a divergent
contribution in the limit ε → 0 and comes out as

y0 :
32

9
πζ(3)− π5/2Γ(ε+ 1/2)ζ(1 + 2ε)ζ(3 + 2ε)

(9− 6ε)Γ(1 + ε)ζ(2 + 2ε)
y−ε +O(ε)(B.31)

that has to be combined with (B.27) and thus cancels the finite piece. We
also see that there is an explicit divergent piece due to the ζ(1+2ε) that we
leave as it is since it combines with a piece coming from c0(y).

At order y−1, there are two contributions coming from the third term
in (B.25), one with u1 and no α-shift and one with u0 and a single α shift.
Combining the two leads to8

y−1 :
52ζ(4)

3
y−1(B.32)

that has to be combined with the contribution (B.29).

8Here, as elsewhere, potential log(y) terms cancel.
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At order y−2, there are three contributions from the third term in (B.25).
Combining these leads to

y−2 : −πζ(3)2ζ(5)

4ζ(6)
y−2 .(B.33)

At order y−3, there are four contributions from the third term in (B.25).
Combining these leads to

y−3 :
4ζ(6)

27
y−3 .(B.34)

In order to analyse the general term y−k with k ≥ 4 we note first that
there are no potential singularities when ε → 0, so we take this limit first.
Then we are left with evaluating for k ≥ 4

y−k : −16
√
πζ(3)∂α

[ k∑

=0

D

α

(
(α2 − 13α+ 2)(B.35)

× Γ(α+ 1/2)

Γ(5 + α)Γ(α− 1)Γ(α+ 1)
uk−


)]
α=0

.

Inspecting (B.30) we see that the only the combination α+n appears in the
zeta functions. Therefore all terms in the inner sum have the same common
factor

ζ(2− α− k)ζ(−α− k)ζ(3 + α+ k)ζ(1 + α+ k)

ζ(2 + 2α+ 2k)
.(B.36)

If k is even, this function starts at order α2 when expanded around α = 0
due to the vanishing of the zeta function at negative even integers. Since
the sum multiplying this common factor is regular at α = 0 this shows that
there are no contributions at order y−k for k = 2n ≥ 4 with n an integer.
For odd k the quotient of the zeta functions starts at order α0.

If k is odd, we then look in more detail at the non-zeta factors that
multiply the common zetas

(
π

y

)α+k k∑

=0

(−1)k−


(B.37)

× ((α+ �)2 − 13(α+ �) + 2)Γ(α+ �+ 1/2)

Γ(5 + α+ �)Γ(α+ �− 1)Γ(α+ �+ 1)

Γ(1 + 2α+ k + �)

Γ(k − �+ 1)Γ(1 + α+ k)
.
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We have verified that this sum starts at order α2 for odd 5 ≤ k ≤ 99 and
are confident that this holds for all odd k ≥ 5. This means that there are
no terms in the asymptotic expansion of the form y−k with k > 3.

Let us collect all terms in the asymptotic expansion of I as defined
in (B.21). Combining the terms (B.27), (B.28), (B.29), (B.31), (B.32), (B.33)
and (B.34) leads to

I ∼ 2

3
ζ(2)ζ(3)y + 4ζ(4)y−1 − πζ(3)2ζ(5)

4ζ(6)
y−2 +

4ζ(6)

27
y−3(B.38)

− π5/2Γ(ε+ 1/2)ζ(1 + 2ε)ζ(3 + 2ε)

(9− 6ε)Γ(1 + ε)ζ(2 + 2ε)
y−ε +O(ε) .

Acknowledgements

We would like to thank Jens Funke, Herbert Gangl, Jan Gerken and Oliver
Schlotterer for useful discussions. DD would like to thank the Albert Einstein
Institute and in particular Hermann Nicolai for the hospitality and support
during the various stages of this project. AK gratefully acknowledges support
from the Simons Center for Geometry and Physics, Stony Brook University
at which part of the research for this paper was performed.

References

[1] E. D’Hoker, M. B. Green and P. Vanhove, “On the modular structure of
the genus-one Type II superstring low energy expansion,” JHEP 1508
(2015) 041 [1502.06698 [hep-th]]. MR3402124

[2] E. D’Hoker and M. B. Green, “Identities between modular graph
forms,” J. Number Theor. 189 (2018) 25 [1603.00839 [hep-th]].

[3] E. D’Hoker and J. Kaidi, “Hierarchy of modular graph identities,”
JHEP 1611 (2016) 051 [1608.04393 [hep-th]].

[4] M. B. Green and P. Vanhove, “The Low-energy expansion of the one
loop type II superstring amplitude,” Phys. Rev. D 61 (2000) 104011
[hep-th/9910056].

[5] M. B. Green, J. G. Russo and P. Vanhove, “Low energy expansion of
the four-particle genus-one amplitude in type II superstring theory,”
JHEP 0802 (2008) 020 [0801.0322 [hep-th]]. MR2386025
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MR1704654

http://dx.doi.org/doi:10.1088/1126-6708/2006/01/093
http://arxiv.org/abs/hep-th/0510027
http://dx.doi.org/doi:10.4310/CNTP.2015.v9.n2.a3
http://arxiv.org/abs/1404.2192
http://dx.doi.org/doi:10.4310/CNTP.2016.v10.n4.a2
http://arxiv.org/abs/1512.05689
http://www.ams.org/mathscinet-getitem?mr=3636673
http://arxiv.org/abs/1708.07998
http://www.ams.org/mathscinet-getitem?mr=3841543
http://dx.doi.org/doi:10.1007/JHEP01(2019)155
http://arxiv.org/abs/1803.00527
http://www.ams.org/mathscinet-getitem?mr=3919340
http://dx.doi.org/doi:10.1007/JHEP05(2018)194
http://arxiv.org/abs/1803.10250
http://www.ams.org/mathscinet-getitem?mr=3814993
http://arxiv.org/abs/1902.04180
http://www.ams.org/mathscinet-getitem?mr=3953938
http://www.ams.org/mathscinet-getitem?mr=1942691
http://arxiv.org/abs/1511.04265
http://www.ams.org/mathscinet-getitem?mr=3793195
http://www.ams.org/mathscinet-getitem?mr=2257528
https://www.math.u-psud.fr/~ecalle/publi.html
http://www.ams.org/mathscinet-getitem?mr=0522981
http://www.numdam.org/item/AIHPA_1999__71_1_1_0
http://www.ams.org/mathscinet-getitem?mr=1704654


Modular graph functions and asymptotic expansions 615
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