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An odd variant of multiple zeta values

MicHAEL E. HOFFMAN

For positive integers i1, ..., i, with i; > 1, we define the multiple
t-value t(i1,...,4x) as the sum of those terms of the usual infinite
series for the multiple zeta value ((i1,...,4) with odd denomina-
tors. Multiple t-values can be written as rational linear combina-
tions of the alternating or “colored” multiple zeta values. Using
known results for colored multiple zeta values, we obtain tables
of multiple ¢-values through weight 7, suggesting some interesting
conjectures, including one that the dimension of the rational vec-
tor space generated by weight-n multiple t-values has dimension
equal to the nth Fibonacci number. Like the multiple zeta values,
the multiple t-values can be multiplied according to the rules of
the harmonic algebra. Using this fact, we obtain explicit formulas
for multiple ¢t-values with repeated arguments analogous to those
known for multiple zeta values. We express the generating func-
tion of the height one multiple ¢-values t(n,1,...,1) in terms of
a generalized hypergeometric function. We also define alternating
multiple t-values and prove some results about them.
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1. Introduction

In the past few decades the multiple zeta values
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have appeared prominently in both number theory and physics. In this paper
we consider the related quantities
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which we call multiple ¢-values. In both these definitions i1, 12, ...,4; are
positive integers with i; > 1; we call k the “depth” and ¢; + --- + i the
“weight.” Our study reveals that multiple ¢-values have remarkable parallels
to, and contrasts with, multiple zeta values.

Our notation is adapted from N. Nielsen [24], who wrote t,, for ¢(n) and
gave the formula

(1.2) Z t(2n — 2i) = 2”2_ Lican).

This may be compared with the formula (also given in [24])

n—1

(1.3) > ¢(2i)¢(2n — 2i) =

i=1

2n+1

¢(2n).

Of course

=Y =Y S Y =)+ 500,

n>1 n odd n even

so that t(i) = (1 — 27%)¢(4) and the classical formula

(_1)n—132n(27r)2n
2(2n)!

¢(2n) =

is paralleled by

(_1)n—1B2n(22n _ 1)7T2n
2(2n)!

(1.4) t(2n) =

Eq. (1.4) can be expressed by the generating function

(1.5) Zt(2n)x2"_1 = Z—x tan (%) ,

n=1

from which Nielsen’s formula (1.2) follows easily by differentiating both sides

of Eq. (1.5) and then comparing that to the result of squaring both sides.
The multiplication of multiple ¢-values as series works just like the mul-

tiplication of multiple zeta values as series, so that we have, for example,

t(2)t(3,1,1) = ¢(2,3,1,1) + t(5,1,1) + ¢(3,2,1,1) + #(3,3,1) + ¢(3,1,2,1)
+1(3,1,3) +¢(3,1,1,2).
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Consequently (paralleling [11, Thm. 2.2]), any symmetric sum of multiple ¢-
values, e.g., t(3,2,2)+t(2, 3,2)+t(2, 2, 3), is a rational polynomial in ordinary
t-values, e.g.,

£3,2,2) + £(2,3,2) + £(2,2,3) = %t(2)2t(3) _ %t(3)t(4) —H(2)i(5) + (7).

In particular, any multiple t-value with all its arguments equal to the same
integer k is a rational polynomial in the t-values t(k),t(2k),t(3k),.... In
view of Eq. (1.4) above, this means that, when k is even, a multiple ¢-value
of the form t(k,k,..., k) (with n repetitions) is a rational multiple of 7"*,
just as with multiple zeta values. For example, the well-known identities

7T2n 22n+17T4n 6(271.)611

C({2}n) = Gni )l C({4}n) = (@n+2)0 C({6}n) = (6n+3)!

(where {k},, means k repeated n times) have multiple ¢-value counterparts

7T2n 7.‘.4n 37.r6n

(16)  H{2h) = g M) = gy POk =

As with multiple zeta values, one can define t-star values by

) . 1
(17) t*(l]_,...,lk) — Z W

... ik
ni>ne>->ny>1 101 e Ty
n,; odd
for positive integers i1,...,i; with ¢; > 1. S. Muneta [21] gave an iden-

tity expressing ¢*({2m},) as 72™" times a rational polynomial in Bernoulli
numbers; similarly, in Theorem 3.7 below we give an identity expressing
t*({2m},) as 7™ times a rational polynomial in Euler numbers. The case
m=11is

7.‘_271

t*({2}n) = W(_l)nEZn-

Despite the parallels, the algebra of multiple t-values is quite different
in some ways from the algebra of multiple zeta values. Both the duality
theorem and the “double shuffle relations” [16] of multiple zeta values are
missing for multiple ¢-values. The difference already appears in weight 3:
while for multiple zeta values there is the famous identity {(2,1) = ((3), for
multiple ¢-values one has instead

(1.8) t(2,1) = —%t(?)) +£(2)log 2.
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Nevertheless, as we show in §4, any multiple ¢-value is a rational linear
combination of ordinary and alternating (or “colored”) multiple zeta values,
the latter being forms such as

i>j5>1

Existing tables of such values [3, 4] can be used to give formulas for multiple
t-values in terms of alternating multiple zeta values; in Appendix A we give
such formulas through weight 7. As with multiple zeta values, all known
relations of multiple ¢-values are homogeneous by weight.

Examination of the tables leads to several conjectures, which are pre-
sented in §2 below. Conjecture 2.1 asserts that the algebra of multiple t-
values admits a weight-decreasing derivation, which can easily be seen not
to exist in the case of multiple zeta values. Conjecture 2.2 states that the
rational vector space generated by the multiple ¢-values of weight n has
dimension equal to the nth Fibonacci number. (Conjecture 2.3, due to B.
Saha [26], gives this a concrete form by proposing a basis for the weight-n
multiple ¢-values.) This compares to the well-known conjecture that the di-
mension of the rational vector space of weight-n multiple zeta values is the
nth Padovan number.

In §3 we prove the analogue for multiple t-values of the symmetric sum
theorem for multiple zeta values [11]. This implies the the results for repeated
arguments given in Egs. (1.6) above. In §4 we show how any multiple ¢-value
can be written as a sum of alternating multiple zeta values.

The “height one” multiple zeta values ((n,1,...,1) are rational polyno-
mials in the ordinary zeta values (i), ¢ > 2; indeed this follows from the
generating-function identity [5, 12]

I'(1—a)I'(1—y)
I'(l—z—y)

(1.9) > Cli+ 1 {1} ety =1

5,521
It is already apparent from

37 1
t(3,1) = ——t(4) — =¢(3,1) + t(3) log 2
60 2
that multiple ¢t-values of height one are more complicated. Nevertheless, in
85 we express
H(z,y) = > t(i+1,{1};-1)z"y

4,521
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as the value of a generalized hypergeometric function (Theorem 5.1 below).
In contrast with the generating function (1.9) for height one multiple zeta
values, which is symmetric in « and y, H(x,y) is very far from symmetric;
e.g., the series

((2) +£(2,1) +£(2,1,1) + £(2,1,1,1) + - -

converges (and in fact converges to twice Catalan’s constant; see Eq. (5.1)
below), while

t(2) +t(3) +t(3) +t(4)+---,

like the corresponding series of multiple zeta values, diverges.

In §6 we define alternating multiple ¢-values in a manner analogous to
alternating multiple zeta values. Then one can write a formula for ¢(7, ..., n)
in terms of the t-values of even integers and the values of the Dirichlet beta
function at odd integers, and in fact there are explicit formulas

= ktl * 5 ktl 3k
t({Th) = (- JQTM and t({3}) = (1)} Jm-

The multiple t-value (1.1) can be written in terms of the Hurwitz mul-
tiple zeta function

. , 1
Clit, .. yig;an, ... a,) = Z —

n1>>nk>1
discussed in [22]; taking a; = - -+ = a; = —3, we have
A10)  Hioig) = 2, d ).

Double t-values t(n,m) are referred to as “double zeta values of level 2”7 in
[17] and [23], where they are written as (°°(m,n) and (°(m,n) respectively.

2. Conjectures on the algebra of multiple t-values

Let ! be the underlying rational vector space of the noncommutative poly-
nomial algebra Q(z1, 22, ... ), and let $° be the subalgebra of of ' generated
by 1 and those monomials that start with z;, ¢ > 1. From [12] we have the
following result.
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Theorem 2.1. The rational vector space $' with the product x defined
recursively by wy * 1 = 1% wy = wy and

(2.1) ziwy * Zjwa = zi(wy * zjwa) + 2 (z;w1 * wa) + Ziyj(wi * wa)

for all monomials wy,ws of H' is a commutative algebra. Further, H' is a
polynomial algebra, H° is a subalgebra, and $H' = H0[z1].

We recall that the quasi-symmetric functions QSym are the set of formal
power series f in z1,x9,... of bounded degree such that, for any sequence
i1 < ig < --- < ip, the coefficient of

ni,ne
11 12 1p

in f is the same as the coefficient in f of

Then QSym is an algebra, and it contains the symmetric functions Sym as a
proper subalgebra. As a vector space, QSym is generated by the monomial
quasi-symmetric functions

_ n1 Np
Mp,,...;n, = § : Ty, i, -

i1 <<

In [12] the following result is proven.

Theorem 2.2. (9, %) is isomorphic to the algebra QSym of quasi-symmet-
ric functions via the map that sends zp, -+ - zn, to My, . n,-

Henceforth we will identify $° with the subalgebra QSym’ of QSym
generated by My, . n, with n; > 1. Let T be the subspace of R generated
over the rationals by 1 and the multiple ¢-values. Theorem 3.1 below gives a
homomorphism 6 : $° — T, which we can also regard as a homomorphism
from QSym" to T. Now in [14] it is shown that the linear map A_ : QSym —
QSym with A_(1) = 0 and

M

0, otherwise,

iyeina)y i =1,

A_(Mg,...i0) = {

is a derivation. It is also evident that A_(QSym”) € QSym’. We make the
following conjecture.
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Conjecture 2.1. The algebra T admits a derivation d such that df = 0A_.

By Corollary 4.1 below, 2* times any multiple t-value of depth k is a
signed sum of alternating multiple zeta values. Now the Multiple Zeta Value
Data Mine [4] gives formulas for all alternating multiple zeta values through
weight 12 as rational linear combinations of what are believed to be basis
elements (all the relations there are proved, but it is possible that the “basis”
is really just a spanning set, as undiscovered rational relations may exist).
Using this resource, we have expressed multiple ¢-values through weight 7 as
rational linear combinations of products of (1) ordinary ¢-values t(n), n > 2;
(2) log2; and (3) selected alternating multiple zeta values. The particular
alternating multiple zeta values used are taken from the conjectural basis
used in [4]; through weight 7 they are

¢(3,1), ¢(3,1,1), ¢(5,1), ¢(3,1,1,1), ¢(5,1,1), ¢(3,3,1), ¢(3,1,1,1,1).

These formulas are listed in the Appendix A below. For these formulas, d is
formal differentiation with respect to log 2. For example,

1(2,8,1) =~ 21(6) - %t(?))Q B +

and
1 4
dt(2,3,1) = —§t(5) + ?t(Q)t(?)) =1(2,3).
We note that if Z denotes the Q-subalgebra of R spanned by 1 and the
multiple zeta values, then no derivation d of Z with d( = (A_ can exist. For
if there were such a d, we would have

((2) = CA-(Mz1)) = d((2,1) = d((3) = CA-(M(3)) = 0.

If we write Z,, for the Q-subspace of Z spanned by multiple zeta values
of weight n, then it is generally believed that dim Z,, = P,,, where P, is the
nth Padovan number (i.e., P, =0, P, = P3 =1, and P, = P,_o+ P,_3
for n > 3). It is unlikely that this will be proved soon, because of the
difficulty of showing, for example, that ¢(3)? is not a rational multiple of
¢(6). Nevertheless, it has been known for some time that dim Z,, is at most
P,, and indeed F. Brown [6] proved that the set of cardinality P, suggested
by the author in [12] — the multiple zeta values of weight n whose exponent
strings have only 2’s and 3’s — spans Z,,. If T,, denotes the Q-subspace of T
spanned by all multiple t-values of weight n, we offer the following conjecture.
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Conjecture 2.2. Forn > 2, dim T, = F,,, the nth Fibonacci number (de-
fined by F1 = Fo =1 and Fyy0 = Fyy1 + F,, form >1).

From Appendix A it follows that dim T,, < F,, for n < 7. If we let A,, be
the Q-subspace of R generated by all the alternating multiple zeta values of
weight n, then it is a long-standing conjecture that dim A, = F, 41, and it
is known that dimA,, < Fj,4+1 (see [28, Thm. 13.2.1]).

We note that Conjecture 2.1 implies the surjectivity of d : Tp,41 — Tp,
since any multiple ¢-value t(i1,...,i;) € T, would be the image under d of
t(i1, ..., ik, 1) € Tpy1. Hence Conjectures 2.1 and 2.2 together imply that
dim(T,, Nkerd) = F,,_o for n > 3. A more explicit form of this comes from
the following conjecture of B. Saha [26], which is similar to the author’s
conjecture on Z,, in [12].

Conjecture 2.3 (B. Saha). Forn > 2, T, has basis
Cp =A{tla1 +1,a2,...,a;) a1+ +a, =n—1, a; € {1,2}}.

Conjecture 2.3 is consistent with the relations in Appendix A; in fact,
in Appendix B we express all multiple ¢t-values through weight 7 in terms
of elements of C,. Note that for n > 3, C,, is the union of disjoint subsets
c¥) = {t(a1 + 1,a9,...,a,) € Cy | ar = j}, j = 1,2; further,

t(a1 + 1,a9,...,a,) € C,(Lj) implies t(a1 +1,a2,...,a,-1) € Cp—;.

This gives an inductive proof that |C),| = F,, but note also that C,, Nkerd =
P

The relation between the Q-subalgebras 7 and Z of R is far from clear.
Since ((n) is a rational multiple of ¢(n) for n > 2, any rational polynomial
in the ordinary zeta values is in 7. In particular, Z,, C T, for n < 7. M.

Kaneko and H. Tsumura [18] make the following conjecture, which implies
that Z C 7.

Conjecture 2.4 (M. Kaneko and H. Tsumura). A basis for Z,, is given by
the set of elements t(2)*t(ny,...,n,) with all the n; odd and at least 3, and
ny+---+n, =n—2k.

We remark that the number of elements in Kaneko and Tsumura’s con-

jectural basis for Z,, is the coefficient of " in

1 1 1 1 1

12 1-6B-6 - 1-2 1-L£ 1-22-f
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and this latter function is well-known as the generating function of the
Padovan numbers P,, mentioned above.

3. Multiple t-values as homomorphic images

The following result for multiple ¢-values parallels the result [12, Thm. 4.2]
for multiple zeta values.

Theorem 3.1. There is an algebra homomorphism 0 : H° — R sending 1

to 1 and z;, -z, to t(i1,...,ix) for all positive-integer strings (i1,...,ix)
with 11 > 1.
Proof. The point is that the recursive rule (2.1) for the words in the z’s
corresponds to the rules for multiplying the ¢(iy, ..., i), e.g.,

123, 1) = £(2,3,1) +£(3,2,1) + £(3,1,2) + £(5,1) + £(3,3). O

The next result corresponds to the symmetric-sum theorem [11, Thm.
2.2] for multiple zeta values.

Theorem 3.2. Let i1,...,1; be integers all 2 or greater. If the symmetric
group Sy acts on strings of length k by permutation, then

l

D to- (i, ik) = > D) [T D] 4|

oESK B={B,...,B,}€ll; s=1 \jeB,
where I, is the set of partitions of the set {1,2,...k} and
¢(B) = (card By — 1)!(card By — 1)! - - - (card B; — 1)!
for a partition B € Il with blocks By, ..., B.
Proof. The following identity holds in QSym [15, Thm. 2.3]:

Y Mer= Y (DMB) M) M, M,
€Sk 'B:{Bl,...,Bl}GHk

where I = (iy,...,i) and by = ZjeBs ij. Apply the homomorphism 6 to
obtain the conclusion. O

If we take iy = --- = 4 = n in this result, we get an expression for
multiple ¢-values of repeated arguments. With a little work, we can state it
in terms of integer rather than set partitions.
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Corollary 3.1. If n > 2, then

YE—t)

() = ¥ s th/\

AFE

where £(X\) is the number of parts of the partition A and m;(\) is the multi-
plicity of © in A.

Proof. Set iy = --- =i = n in Theorem 3.2 to get
Rk = 30 (CDF O = Dl (= DAL - EnA),

part. {B1,..., B}
of {1,...,k}

where we write \; for card B;. Now the number of partitions { B, ..., B;} of
the set {1,...,k} corresponding to a partition A = (A1,...,N\;) of k is

1 kN (k=X 1 k!
ml()\)mg(/\) s <)\1> < )\2 > T ml(/\)mg()\) e )\1!A2! cee /\1!7

SO

B (=Dt =) (= 1)! ctn)) =
t({n}r) = )\ZH:C mi(N)ma(A) - Al Al t(nAr) - -t(nX) =

> D Hinhy) - HnA),

P! (A)!lml(A)mg(/\)!sz(A) -

and the result follows. O

An alternative way to express the preceding result is as follows. Let
Py(z1,...,z;) be the polynomial that expresses the kth elementary sym-
metric function e; in terms of the power sums pq,...,px, i.e.,

(31) ek:Pk(p17p27"'7pk)

(cf. [20, Egs. (2.14")]). Then

(3.2) t({n}y) = Pu(t(n), t(2n),. .., t(kn)).

If n is even, Corollary 3.1 and Eq. (1.4) imply that ¢({n}x) is a rational
multiple of 7%, As we see below, for small even values of n there are effective
formulas for this rational multiple.
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As shown in [12], the homomorphism ¢ : $° — R can be extended to
$! by defining ((21) = v (Euler’s constant). This extension has the prop-
erty that it sends the generating function H(z) of the complete symmetric
functions to I'(1 — z). For 6 we have the following.

Theorem 3.3. The homomorphism 0 : H° — R can be extended to a homo-
morphism 6 : §' — R such that

O(H(z)) = 73 5T (1 - 5”) .

Proof. In view of Theorem 2.1 above, it suffices to define 6(z1), which we
set equal to log 2. Then because

1 1 = ol N il
(3.3) — =) (— — —) =—+log2+ t(i)x
2 2 2 ;

(for which see [10, Eqgs. (8.370, 8.373)]), where 9 is the logarithmic derivative
of the gamma function, we have

ora) =350 (7).

where P(z) = ;4 piz*~L. Since P(z) is the logarithmic derivative of H(x),
the conclusion follows. Cf. [7, Eq. (0.7b)]. O

If we extend the notation t(i1,...,4x) to all strings of positive integers
i1,...,1 by letting

t(ilv v 7Zk) = Q(Mik,m,’h)’

then Theorem 3.2 and Corollary 3.1 are true without restrictions on the
positive integers involved. For example, we then have

_ ()~
(3'4) t({l}k) - % m1()\)!1m1(>‘)m2()\)!2m2(>‘) . _t()‘l) e t()\l>'

We note that M 1 (n repetitions of 1) is the elementary symmetric func-
tion ey, so
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1+ gt({l}k):n’“ = 0E(x) =0 (ﬁ) JTe 5T (1 +~”"> -

by Theorem 3.3.
We now return to multiple ¢-values of the form t(n,n,...,n) for n > 2.

Theorem 3.4. For n > 2, the generating function

Z ({n}tr)z

is given by
Zn(z)
Zn(3)

where Z,(x) is the corresponding generating function for multiple zeta val-
ues:

To(z) =

Zu(@) =1+ 3 C({n})at
k=1

Proof. We start by noting that

H(z)~! = exp ( /0 ’ P(t)dt> —ep (Y pf” ,

n>1

so that the generating function E(z) = > -qen2" of the elementary sym-
metric functions is

E(z) = H(—z)"' = exp Z w

n>1

Now t({n}) is the image under 6 of the symmetric function P,(ex), where
Pnr : QSym — QSym takes any monomial quasi-symmetric function
My, t,,..t, t0 Myy, . ni,- Then T (z) is the image under 6P, of E(z"), and
so can be written

exp Z (1)t (nk)a™" — exp Z (—1)F (1 — 277 (nk)x*

k k
k>1 k>1
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_1\k—1 n xk‘n _1\k—-1 n :L,kn T
e [ UG S G Z,(2)

k>1 & k>1 k2tn Zn (3)

From this result we can deduce the identities in Egs. (1.6) above, using
the known results about multiple zeta values. From [5] we have

m
(2] Vi
7 | [ sin(e™ 5" ),

ZZm -
7j=1
so it follows from Theorem 3.4 that
- (2i-Vni TEL
(3.5) Tom(x) = Hcos (e BT 5 ) :
=1

Hence

from which Egs. (1.6) follow.
For m = 4 we have

H ( (2§ —1)7i 7Tl'>
COS 8 — ] =
2

[@(onra:) + ®(Brx) + @(e%omw) + @(e%ﬁﬂx)] ,

| =

where oo = , /1 + %, B=,/1 \/—, and ®(x) = cosx + coshz. From this

follows

8k

(3.6) t({8}%) = WK?’ +2v2)%F 4 (3 — 2v/2)%).
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An equivalent identity is given by C-L. Chung [8]. Eq. (3.6) may be compared
to the corresponding formula from [5]:

8(27)8k

C{8h) = m[(fﬁ +2v2)% 4 (3 - 2v/2)% ),

For m = 5 we have

5
1 . . .
— |1+ g [cos(p2]_17r:1:) + cos(p¥Lomx) + cos(pQJ_lTﬂx)] ,

where p = eis, 0 = $(v5—1), and 7 = 1(v/5+1). From this it follows that

5710k (Llok + 1)

(37) H{10h) = g

where Ly, is the nth Lucas number. This corresponds to the result of [5] that

10(27) %% (Lygpas + 1)
(10k + 5)! :

C({10}y) =
For m = 6 we have

Tyo(x H cos ( g ;) - % [1+ ®(&ma) + (E3ma) + ()]

L
D

Mw

[ (€23 2mz) + B(¥yma) + @(523'57133)} ,

Il
o

J

where £ = e%, v=vV2++3,0=+v2—-1+/3, and ® is as above. From this

follows

37T12k

(38)  ({12)) = [z e [(2 4 V3)% (2 - VB) 4 2% 4 (—1)"2].
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This may be compared to the corresponding result in [5]:

12(27) 12k

m[@ FV/3)0R 3 (2 (/3)0K+3 | gBk+3],

C({12}) =

Z. Shen and L. Jia [27, Thm. 2] establish a general result for ¢({2m},,) that
is somewhat less explicit than the cases given here.

Multiple ¢-star values are defined by Eq. (1.7) above. We have the fol-
lowing result, which corresponds to [11, Thm. 2.1]. The notation is as in
Theorem 3.2 above.

Theorem 3.5. Let i1,...,i be integers all 2 or greater. If the symmetric
group Sy acts on strings of length k by permutation, then

> (o (in,. i) = > B [Tt D4

oeS), B={B,...B}ell, s=1 \jEB.
Proof. See [15, Thm. 4.1]. O
If we take i1 = i3 = -+ = i, = n in this theorem we get a formula for

t*({n}r), n > 2, comparable to Corollary 3.1 above.
Corollary 3.2. Ifn > 2, then

) o)
{nte) = Z mp(A) 1 M mgy(N)2m=(N) . ... H Hng).

A-n j=1

As with Corollary 3.1, this result has an expression involving the sym-
metric functions. Let Qx(x1, ..., k) be the polynomial expressing the com-
plete symmetric function Ay in terms of power sums p1,pa,...,pr. Then

£ (fn}) = Qu(t(n), 12n), ... t(kn)).

We can extend t* to any string of positive integers using Theorem 3.3. Then
there is an analogue of Eq. (3.4) for t*.

1
m1 (A1 Ny (X)12m2(0) ...

t({1h) =)

-k

t(A1) - -t( ).

We can also express the numbers t*({n}) using generating functions. Here
we have a result similar to Theorem 3.4.
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Theorem 3.6. For integers n > 2,
- .
L+ 3 ({np)atn = 222
k=1 nr

Proof. We note that t*({n}) is the image under 6P, of hy, so that

< . t(nk)xkn
L ({nh)at™ = 02, (H(w)) = exp | Y 52—
k=1

k>1

__ o9—nk n wkn
e 3 02

k
k>1

Now proceed as in the proof of Theorem 3.4. U

In the case where n is an even integer 2m, we can express t*({n};) as a
rational multiple of 7. Similar results have been proved by Shen and Jia
[27], and by Chung [8].

Theorem 3.7. For positive integers m and k,

. _(_1)mk 7\ 2mk 2mk < 2ni (1),
(2mh) =g (5) e | K

Nyt +n, =mk
n; >0

Proof. We follow Muneta’s proof [21] of the corresponding result for multiple
zeta-star values. Using the infinite product for cosine, we have

2mik _1

ik i e m (2z)?

™ = 1]— ——— .

sec (7‘1’6 ZL’) H ( Gh—1)2 )
h=1

From this follows

m—1 ) o0 22m N\ L
(3.9) H sec (71'6777:7/ x) = H <1 — %)

k=0 h=1

since

(I—emu)(l—emnu)---(1— e u)=1—u".

Now the right-hand side of Eq. (3.9) can be expanded as
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(21,)2m (2113)4m
10) 1 ——
S hz @hs — 17 h; (2hy — D)2y — 177

=1+ it*({Qm}k)(Qx)zkm.
k=1

On the other hand, using the Maclaurin series for secant we can expand the
left-hand side of Eq. (3.9) as

m—1 o)

(—1)7 By Zmikg —
11 ZWW 7| =

k=0 \ j=0

o0
Z Z (_1)nmEj0Ej1 e Ejm,l e%[j1+2j2+...+(m—1)jm,1] (7_‘.3:)2771717

it (200)M2ZI)Y - (Zm)!

where we have used the fact that only powers of 2™ appear in the expansion.
The latter expression can be written as

3 (o S,

ni+---4+n,,=nm

)2nm

> (rx
D™D Gt
~= (2nm)
and comparing coefficients with Eq. (3.10) gives the conclusion. O

4. Multiple t-values and alternating multiple zeta values

Following [13], let €3 be the underlying rational vector space of the non-
commutative polynomial algebra on generators z,,, n € {1,2,...} and
p € {0, 1}, with the product % defined recursively by

(4.1) awy * bwy = a(wy * bwsg) + b(awy * we) + (a o b)(wy * we)
for words w1, wy and letters a, b. Here the operation o is given by

Zny,p1 © Fnape = Fnitng,pitpes

where addition in the second subscript is taken mod 2. Then if &) is the
subspace generated by all words that do not begin with 21 g, (€9,%) is a
subalgebra of (&, *). There is a homomorphism Z : ) — R defined by

(_1)M1p1+-"+mkpk

Z(Zn17p1 T anpk) = Z

my i
my > >m>1
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The series on the right-hand side of the preceding equation is an alternating
or “colored” multiple zeta value. The usual notation for multiple zeta values
can be extended to such quantities by using an upper bar, e.g., ((3,2,1)
denotes Z(z3122,021,1)-

For any u € €5 and monomial w of &€, let coeff,, (w) denote the coefficient
of w in u. Call an element u € €, totally symmetric if

coeffy, (zn, py =+ Zngpr) = coeffy(2n, 0 2ny0)
for any monomial 2, p, - - - Zn, p, Of &2, and totally antisymmetric if
fFo( e ) = (_1)P1+"'+’Pk £ ( e )
COCLu\Zny,py * " Zniypr) = COCM Y (Zn,,0 " * " Zny,0)-

Let Qfg be the vector space of totally symmetric elements of €y, and 03‘24 the
vector space of totally antisymmetric elements.

Theorem 4.1. Qfg and 05‘24 are subalgebras of (€, x). Further, both are iso-
morphic to (9, *).

Proof. We use the result of [13] that &5 is isomorphic to a subring of the
power series ring Q[[¢1, t2,...]] via the map ¢ : €y — Q[[t1, ta,...]] given by

¢(Zn17171 o anpk) = Z (_1)mlpl+m+mkpkt2111 e t%ck
my > >me>1

Now let u € &5, and consider ¢(u) € Q[[t1,t2,...]]. For any monomial
Znypyt Zng,p, OCCUTTING N U,

1
o Z (_1)m1p1+~~+mkpk coeffu(zm,o . 'an,O)
0 pr=0

M-

coeff 4, (t, =ty ) =

3

1

(14 (—=1)™) coetty,(2n,,0 - Zny.0)

I
=

~.

kcoeffy (2,0 Zne0), if all the m; are even,

Il
O N =

otherwise.

Thus ¢ sends &5 to the subring of Q[[t1,s,...]] generated by the power
series
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Z g

mi>mao>--->mg>1, m; even

This is evidently isomorphic to QSym.
Now suppose u € €4'. For any monomial 2y, ,, - - Zn, p, OCCUrring in u,
we have

1 1
coeff () (s, -+ o) = Z o Z (—1)mPE P coeffy (20, p, + Zngp)
p1=0 Pr=0

1
— Z e (_1)(m1+1)p1++(mk+1)pk Coeﬁ'u(znho e Zm.,,())

i=1
B ok coeff (2,0 - Zn,0), if all the m; are odd,
B 0, otherwise.

Thus ¢ sends &' to the subring of Q[[t1, s, ...]] generated by power series
Z t?nll .. 't%kw
mi>me>-->mg>1, m; odd

which is also isomorphic to QSym. O
We can define functions S : §1 — (’Eg and 4 : H! — @‘24 by

S(an e an) = Z Zni,pr " Rne,pr
p17~--’pk€{0:1}
A(an e znk) = Z (_1)p1+...+pkzn1,pl © 2ng,pe-

p17~--’pk€{0:1}

By the preceding proof we have

(4.2) 08 (2, -+ 2n,) = 2" S et
mi1>-->mE>1, m; even

and

(4.3) GA(zn, - 2n,) = 2° > th

my>-->mi>1, m; odd
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Now consider the homomorphism ev : Q[[t1,%2,...]] = R sending t; to
%. Of course this doesn’t make sense on all of Q[[¢1, t2, .. .]], but by Eq. (4.3)
it does send ¢pA(zp, - - - 2n,) to 2¥t(ny, ..., n1) if ny > 1. Hence we have the
following.

Corollary 4.1. For positive integers aq, .. .,ap with a1 > 2,

1
t(a1,~--,ak):2—k Z €1---exCleroar, ... e 0ay),
€1,..,€==F1

where the sum is over the 2% k-tuples (eq,. .., €e;) with each ¢; € {1, -1}, and
o is defined by 100 =1 and —1 01 = 1.

For double t-values this is

1

_(C(av b) - C(avi)) - g(da b) + C((I,B)),

(4.4) ta,b) =

as stated in [17] and [23]. The preceding result expresses a t-value of depth
k as a sum of 2* alternating multiple zeta values. Actually one can do some-
what better: it is possible to write such a multiple t-value as a sum of 281
alternating multiple zeta values as follows. We require a bit of additional no-
tation. For p < k, let L,((i1, ..., i) be the sum of all (’;) alterating multiple
zeta values in which the upper bar is applied to exactly p of the positive
integers i;, e.g.,

L2C(i17 i2ai3) = ((217%272.3) + <(517i27g3) + C(ilag2ag3)'

Then we have the following result.

Corollary 4.2. For positive integers ay,...,ar with a; > 2,
1 1
t(al, e ,ak) = <2k1 — 2a1+---+ak> C(al, N ,CLk)
1
+F Z Lp(_f(al,...,ak).
2<p<k even

Proof. Using the notation just introduced, the previous corollary can be
stated

k

(4.5) 2—kz DPLyClar, ... a) = ta,. .., ax).
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Now apply ev to Eq. (4.2) above to get

k

_ 1 g

2 kZLPC(al""’ak): Z W:z “ akC(ah'"?ak‘)v
p=0 k

ny>->np>1 0 L
n; even

which when added to Eq. (4.5) gives the conclusion. O
We note that already in the case k = 2, Eq. (4.4) can be replaced by

Ha,b) = (% _ ﬁ) C(ab) + 5¢(@D).

The function Z : Qfg — R can be written as the composition ev ¢R,
where R sends 2y, p, =+ Zngpe t0 Znypy -+ Znypr- (Note that ev makes sense
on ¢R(EY).) This gives us the following result.

Theorem 4.2. The image Z(€5 N €Y) C R is the set Z of rational linear
combinations of multiple zeta values, and the image Z (€4 N €Y) C R is the
set T of rational linear combinations of multiple t-values.

5. A generating function

In this section we obtain a formula for the generating function of height one
multiple t-values, i.e.,

H(z,y) =Y ti+1,{1}; )2y = Y 0(zip12] Ha'y’.

i,j=>1 i,j>1

To this end we introduce some functions indexed by words as follows. For a

nonempty word w = zp, 2, - - - 2, of H* and r € C, define

7“2j1+1

Low)y= > , ‘ :
1> >0 (271 + 1)Pr- - 2k + 1)

Then £,(w) converges if [r| < 1, and L£1(2p, - - - 2p,) = t(p1,...,pk) if p1 > 1.
We have the following result.

Lemma 5.1. For k > 1,

d 1o oz ) i >,
d—Lr(z][,lzp2 czp) =47 TT(ZPI 12p; """ Zpy.) ?fpl
" m’c’r(zpz"'zpk)v pr1:1~
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In the case k =1, we have
iL () = 1L (2p—1), ifp1 > 1,
T 1) T .
dr P ﬁu prl =1.
Proof. Evidently
7“2]1

d
— L (2p, 2p, -+ 2p) = Z . ] . )
dr ji>Shezo GaE P (2 1P

which is clearly 1L, (2, —12p, - - 2p,) if p1 > 1. Otherwise, it’s

r2(j2+1) + r2(j2+2) + [ r

j2>j3;>j’“>0 (242 + 1)P2 - (2 + 1)Pr 1 — 12

LT(’sz e zpk)'

The case k = 1 follows since

T'3 ,r.5 T 1
£ = —+ -+ = dt. O
(1) rtg gt /Ol_tQ
We now obtain our formula for H(z,y).
Theorem 5.1.
Ity 1-—= 1
H(.’L’,y)—gF2|: 23 3Ez 71:|
2072

Proof. Define generating functions

Ho(w,y) = Y Lolzinz] D'y’
4,521

and

Gr(y) = E Lr(z?)yn - Lr(21)y —|— LT(Z%):U2 + LT(Zi)))yg + e,
n>1

By Lemma 5.1, the derivative of G, with respect to r is

1 T r Y Yy
12 + 1-— r2£r(21)y2 + er(z%)gﬁ o= 1—1r2 * 1-— TQGT(y)'

Hence
dG, Ty Yy

dr  1—72 7 1—¢p2
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or

and thus

T 1 y )
Gy, =(1-r?)"2 / y(1—s?)2"lds = y(1 —r2)g%/ (1—7r%u)> tu"2du
0 0

where we used Euler’s integral formula for 9 F7. Then G, can be written (via
[25, 15.16.1])

Again using Lemma 5.1,

dH, 1 TP T
= - Lr(ziZ{ ):L'Zy] =—-G, + —H,
dr Ti,jzzl T T
or
i v E (D) (-t
— —H. = S
e (EO
It follows that
d 00(34_1)“ (£_1+3)
_(T—.IH ) =y 2 2 2 2 r28—$
I = Ty
and thus
P ICES TR S0 N
" = (% 1)--(%—1—3) 2s —x +1

where (x), means z(z + 1)---(x + n — 1). Now set »r = 1 to obtain the
conclusion. ]



552 Michael E. Hoffman

The coefficient of xy in the definition of H(x,y) is ¢(2), while from
531351
In fact this equality generalizes, but first we need a lemma. (As above, {a},

means n repetitions of a.)

Theorem 5.1 it can be seen to be 3F5 ( ) so these must be equal.

Lemma 5.2. If

then

Proof. Note that

T
1—

a
3Fy
X

> (a)s(b)s 1
o3 @0

whose nth derivative is seen to be

(a)s(b)s 1 > (a)s(b)s 1
| |
" Z (c)ss! (2s4+1—2a)" * n.xg (€)ss! (2s+1— z)ntl
Then
1 da» T abl_—x} > (a)s(b) 1
= F y Uy 75 1| = s\U)s

P = ol dan 01—x3 2[ ¢, 52 ;% (c)ss! (2s+1)

and the conclusion follows since (3) /(3), = Tﬁrl O

Now we can deduce the following corollary of Theorem 5.1.
Corollary 5.1. Forn > 2, t(n) = p,41F, ( { } { }n, )

Proof. Theorem 5.1 implies that
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t(n) = coefficient of 2" 'y in H(z,y) =

) 1. T
coefficient of 2"~ ! in 1

Now apply Lemma 5.2 with a =1, b = %, and ¢ = % O
Note also that

t(2,{1}n—1) = coefficient of zy" in H(x,y) =

1. 14y 1
coefficient of 4™ ! in 3F2[ §2§ 2. 1],
212
and setting y = 1 in Theorem 5.1 gives
i 1.1, 1=z
Zt(n, {1};_1) = coefficient of ™! in — 3F2|: ’3 ’3;1 ;1]
j=1 20 2

Applying Lemma 5.2 with ¢ = b = 1 and ¢ = % to the latter gives the
following.

Corollary 5.2. Forn > 2,

it n, {1};-1) = nt1Fn [ {{ }}” L 1]

In particular, for n = 2 we have

- 1,1,1
(5.1) > o2, {1} _3F2[ ! ’32;1] = 2G,
j=1 272
where G = ZJ 2o (2]+%2 is Catalan’s constant (see [19, Eq. (7.4.4.183a))).

Conjecture 2.1 above implies that H(z,y) = ¢¥1°82A(x,y), for A(z,y)
not depending on log 2. Using the tables of Appendix A, it appears that

£(3) 37

Aley) = oy ety G o)ty () + 3661 2

*(é(l) @)+ 143 1)>my3+...

through degree 4.



554 Michael E. Hoffman

6. Alternating multiple t-values

We can define alternating multiple ¢t-values in a way similar to alternating
multiple zeta values: for the algebra €Y defined in §3, there is a homomor-
phism 7 : €} — R defined by

(71)m1p1+"'+mkpk
T(Znum e 'anpk) = Z (2m1 _ 1)n1 . (ka _ 1)nk ’

my>-->m>1

We write, e.g., t(3,2,1) for T'(23122,021,1). Then (i) = —f(n), where j is
the Dirichlet beta function

B(s) = Z ((71)71 Re(s) > 0.

n=0 2n + 1)5 7
In particular, ¢(1) = —%F and ¢(2) = —G. From the integral representation
1 -1
- rtan™ " x
t(1,1) = ——d
(1L,1) /0 1+a22 &

we have ¢(1,1) = § — Zlog?2.
X For any positive integer n, define a Q-linear map Pn o H > &) by
Prn(1l) =1 and

j’n(zz’1 S Zi) = Znigiy tt Znigin
where we recall that the second subscript is to be considered mod 2.
Proposition 6.1. P is a homomorphism.

Proof. The key point to check is that the definition of P, is compatible
with the recursive definitions (2.1) and (4.1) of the products in $! and &
respectively. Using induction on word length, we have, for words w, v of ',

Pr(ziw * zjv) = Pp(2i(w * 2jv) + 2 (2w * V) + zipj (W * v))
= 2 i(Pr(w) * Pr(270)) + 2njj (P (ziw) * Pr(v))
+ Zm‘—&-nj,i—&-j(j)n(w) * an(U))
= 2 i(Pr (W) * 2 j P (V) + 20 (2nii P (W) * P (v))
+ Znitngii (Po(w) * P (v))
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Then we have a homomorphism b, = TP, : H' — R, and applying it
to Eq. (3.1) above gives an analogue of Eq. (3.2) for alternating multiple
t-values, i.e.,

t({n}r) = Pi(t(n),t(2n),t(3n),t(4n),...),

and this holds for all positive integers n. For example, t(1,1) = T #(2,2) =

%2 - 1’%, and t(3,3) = 30720 In fact, we have an explicit formula for
the generating function of the values t({n}x) when n is odd, providing a
counterpart to Eq. (3.5) above (see also [5, Eq. (35)] for the alternating

multiple zeta values).
Theorem 6.1. For nonnegative integers m,
2m

1+Z ({2m T 1}p,)z2m+DE H(l—(—l)jsin(e%”_;))%

k=1 j=0

Proof. As in §2, P, H, and E are the generating functions of power-sum,
complete, and elementary symmetric functions respectively. Starting with

0o 00
™ ™ ™ T _ — k L
k > 0 even k>1odd

(which follows from Eq. (1.5) above and [2, Eq. (23.2.22)]) we have

2m

™ Z { 27 ji 2mji XL 27 ji 2rji XL
— e2m+1 tan <e2m+1 _> — e2m+1 sec <62m+1 _)} =
4 2 2

oo
(2m-+1) Z (@m + Dk)aZmtDk=1 Z (2m41)k)a 2Dk
>1lo k > 2 even

or

(2m~+1)2>™ 09y P(22™H)

|
| —
3&:
-+
o]
=]
/N
:Q
3
l‘°| 8
N———
|
—~
[a—
N—
3
wn
o)

a
/N
3
N———
| I
I

for n = 1. The integral of the left-hand side is
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2m

5 2 [l (see (75)) = (=710 (e (7 ) + tan (757) )

=0
2m 1
_ sin (7))
_logjl_IO <1+( 1)’ sin <773 5 )) .

Since
d 2m+1 Hl(”«"ZmH 2 9 2m1
we have
2m ‘ S .
Oom1 H (2> H1) = HO (1 +(—1) sin (ew 7)) :
]:

and the conclusion follows using E(t) = H(—t)"1.

Our result for ¢({1}x) is as follows (cf. [5, Eq. (62)] for ¢({1}x)).
Corollary 6.1. For all positive integers k,

k
T
L=

H({Th) = (-

Proof. From the preceding result

1+Oot({1} )k = /1 — sin 2
i

so it suffices to show that

n

V1—sinz = 2:(71)“;rlJ ©
n=0

2nnl’

This can be seen by writing the left-hand side as

oo [e.e]

(_l)nZQn (_1)71221171 _ 2 oz

D B DI E ey kb e
n=0 n=1

and then noting that the right-hand side of Eq. (6.1) squares to 1 —sin z.
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We also have the following formula for ¢({3}).
Corollary 6.2. For all positive integers k,

- k1 33k
t({3}) = (-1l Jm-

Proof. In view of Theorem 6.1 it suffices to show

V(1 =sinz)(1 + sin(wz))(1 — sin(w?z)) =

1
3 [cos & + cos(wz) + cos(w?z) — 1+ sinz — sin(wz) + sin(w%)]

for w = e . To show this, first express the right-hand side as
2 2

QCosEcosw—mcosw—x — 1+2sin£sinw—xsinw—x
2 2 2 2 2 2

and square it. Now use double-angle formulas for cosine and sine to rewrite
the result in terms of sine and cosine of x, nz, and 7%z, and compare to the
square of the left-hand side: after cancellation, the two can be seen to be the
same using the addition formula for cosine and the equality 1 +w? = w. O

Appendix A. Multiple t-values of weight < 7

K1) = —%t(?)) +1(2)log 2

(3,1) = —2—375(4) - %g(é, 1)+ £(3) log 2
12,2) = it(ﬁl)
t(2,1,1) = %t(ﬁl) + %g(é, 1) — %t(B) log 2 + %t(2) log? 2
K4, 1) = —%t(5) - %t(2)t(3) +t(4) log 2
1(3,2) = ~31(5) + %t(Q)t(?))
12,3) = —%t(5) + ;t(Z)t(3)
HB3,1,1) = — 25 4(5) + 24(2)H(3) — ~¢(3,1,1) — “-4(4) log 2

248 21 2 60
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1. 1
— =((3,1)log2 + ~t(3) log®2

2 2
H2,2,1) = %t(5) — 2 H2)H(3) + 31(4) log?
H2,1,2) = %t(E)) - %t(Z)t(B)
H2,1,1,1) = —%t(a ot (2)(3) + 03, 1,1) + %t(zl) log 2

1 - 1 1
+ ZC(?” 1)log2 — Zt(S) log?2 + 675(2) log® 2

73 17 1

t(5,1) = —@t(@ + %t(3)2 — 5C(S, 1) +t(5) log 2
14,2) = —%t(G) + %t(3)2
13,3) = —%t(6) + %t(i’))?
12, 4) = %t(G) - %t(3)2
t(4,1,1) = %t(ﬁ) — %t(sf + ig(S, 1) — %t(5) log2 — %t(Q)t(3) log 2
+ %t(4) log? 2
K3,2.1) = 13—172t(6) _ %(3)2 + 34(5, 1) — %t(5) log 2 + %t(?)t(?)) log 2
£3,1,2) = %t(@ _ 2%1&(3)2
£2,3,1) = —%t(6) - %t(gﬁ - %t(2)((3, 1)+ 34(5, 1) - %t(5) log 2
+ 21(2)1(3) log 2
12,1,3) = 12—17275(6) - %t(S)Q + %t(2)§(3, 1)
(2,2,2) = 11(6)
t(3,1,1,1) = %t(G) - %t(i’))z - %C(B, 1) - %g(?), 1,1,1)
23

5 1. -
— log2 + —t(2 log2 — = 1,1)log?2
—1(5)log2 + - ()H(3) log 2 — 5¢(3,1,1) log

37 oo 1 oo 1 .
- 12075(4) log“2 — 4{(3,1)log 2+6t(3) log® 2
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H2,2,1,1) = o t(6) — 21(3)° + 3H2)C(3, 1) — 1C(5,1) + £1(5) log2
_ %t(2)t(3) log 2 + %t(4) log? 2
H2,1,2,1) = —%t(G) + %t(sf - 24(5, 1)+ %t(5) log 2
_ %t(Q)t(S) log 2
H2,1,1,2) = —11—675(6) + %t(3)2 _ %t(Q)C(S, 1)
(2,1,1,1,1) = —1—i’2t(6) + 439t(3)2 — %C(S, 1)+ %4(3, 1,1,1)
_ %t@) log2 + %t(Q)t(?)) log 2 + %c(é, 1,1)log2
+ 11710t(4) log? 2 + %c(:‘s, 1)log?2 — %t(?)) log® 2
+ it@) log* 2
£6,1) = —%m) - %t(3)t(4) - %t(Q)t(S) +4(6) log 2
15,2) = —%t(?) + %t(3)t(4) + 3—51t(2)t(5)
H4,3) = —%t(?) + gt(g)t(z;) _ gt(2)t(5)
1(3,4) = —%t(?) + %t(B)t(él) + gt(z)t(m
H2,5) = —%m) - %t(3)t(4) + %t(2)t(5)
(5,1,1) = 2618529t(7) - 2432890t(3)t(4) + %t@)t@) + %g(S, 1,1)
- ég(g, 3,1) — ;—it(G) log 2 + ;—;t(3)2 log2 — %c(g, 1)log?2

1
+5t(5) log? 2

19887 1033 27
= (7)) — ot (3)t(4) + ——
315017~ 175 ) + 557

1 1 1
¢(3,3,1) — ?t(G) log 2 + ?t(3)2 log 2

34
HA,1,2) = 24(7) — 243)(a) + 2 1(2)i(5)

—1
8 28 62

t(2)t(5) + i4(5, 1,1)

t(4,2,1
()?) 17
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20229 56 407 1 -

13,3,1) = 20 (7) + S t(3)H(4) + <o H2)HE) — 5H(3)C(3,1)
_ 37114(5’ L)+ %4(3,3, 1) — %t(G) log 2 + %t(3)210g2
28865 1973 560 1 _
t(3,1,3) = th - @t(?ﬂt(‘l) - Et@)t(f)) +5t(3)¢(3,1)
21 - 7
+ ﬁC(57 ]-7 1) - 3_4C(37 37 1)
3 3 15
€3.2,2) = <oH(7) + H(3)H) — ()
12,3,2) = §t<7) _ %t(Q)t(5)
3 1 8
1(2,2,3) = —H(7) + 1)) — 1))
6933 2347 265 3 -
t(2,4,1) = —th) + mt@)t(‘l) - @t@)t(@ - 1—74(57 1,1)
1 - 11 1
+ 3—44(3, 3,1) + %t(G) log2 — ?t(3)2 log 2
5 5 18
H2,1,4) = 2H(7) + JH(B)H() — 31H(2)(5)
35117 1801 106 5
1) = - S0y B0y - 1 ) - Do
+ %c(:’s, 3,1) + %t(& log 2 — %t(?))Q log 2 + 24(5, 1)log?2
_ it(5) log22 — %t(2)t(3) log?2 + ét(4) log® 2
2373 51 1 1 _
32,11 = 2558 7) - PLigyia) - 2@t(s) + S350

1 37 33, 1
+ ZC(E)’ 1L,1)+ Et(G) log2 — @t(S) log 2 + ZC(E)’ 1)log2

1 2 3 2
4t(5) log®2 + 14t(2)t(3) log” 2

1 2 2
77617 . 3903 3 07 7

(3,1,2,1) = ~ 69088\ )+ 176050 )t(4) + @t( )t(5) — @C(a 11)

- 61
+ i4(3, 3,1) 4+ ——t(6)log2 — %t(S)Q log 2

136 168

126255 13301 365 1 -
1(3,1,1,2) = ————1(7) + —==t(3)¢ —t(2)t(5) — =t(3)¢(3,1
(3,1,1,2) = =g HT) + Ty tBHA) + S2H(2)H(5) — t(3)C(3, 1)

21 T -
—22¢(5,1,1) + — 1
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8297 152 2921 1 _
6(2,3,1,1) = — ooct(7) + o t(3)0(4) — oo t(2)1(5) = 5(2)C(3,1,1)
1 5 - 2 3

—(¢(5,1,1) + — 1) — —t(6)log2 — —(3)?log 2
705,11 + 122C(3,3,1) — - (6) log 2 — o-t(3)" log
1 - 1 1
— 5t(2)¢(3, 1) log 2+ 2((5,1) log 2 — 7¢(5) log? 2
2
+ ?t(2)t(3) log? 2
43073 11813 1813 -
1 = — i
1 - 27 - 9 27
- 1)+ =—=¢(5,1,1) — — 1) + ——1(6)log 2
5 1 _
— %t(3)210g2 + 5t(2)((3, 1) log 2
126255 2587 1169 1 .
1 - 21 7 -
— ¢ 1) —=¢(5,1,1) + — 1
1 (3)¢(3,1) 346(5, ; )+68C(3,3, )
1 3 15 1
£(2,2,2,1) = ———t(7) — —t(3)t(4) + —=t(2)t —1(6) log 2
15 3 53
(2,2,1,2) = ——(7) — —t(3)t(4) + —t(2)t(5
15 1 71
£(2,1,2,2) = o H(7) = 77tB3)(4) + 5 t(2)E(5)
15729 1259 431 93  _
1,1,1,1) = ——t(7) — —— 4) — ——t(2 —((5,1,1
5 - 1, - 5
— 1) — =¢(3,1,1,1,1) + —t(6) log 2
+136C(3,3, ) 2((3, 1,1, )+56 (6) log
27 9 1. -
- mt(?)) log2 + EC(E)’ 1)log2 — 5((3, 1,1,1)log2
23 5 1. -
~ 1060 log? 2 + 2t 16) log? 2 — 1B LD) log? 2
37 f 1 1
— %t(él) log®2 — EC(?)’ 1)log32 + ﬂt(3) log* 2
2,211, 1) = —04(T) — 24(3)t(4) + “24(2)H(5) + 24(2)c(3,1,1)
9032 21 744 4 T
1 23 2
— —((5,1,1) + ——t(6) log2 — —1(3)?log 2
G5, 1,1) + oo t(6) log 2 — —o1(3)% log
1 - 1. 1
+ 7t(2)¢(3,1) log 2 - EC(E” 1)log2 + Et(E)) log? 2
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3 1

— = #(2 log? 2 + —+(4) log® 2
28t( )t(3)log™ 2 + 24t( ) log
341 2 89

ST + 2H(B)H() — o r(2)u(5) - it(2)§(3, 1,1)

1 = 1 - 11 121
— =t 1) — — 1) — —t(6)1log 2 + —t(3)?log 2
SHB)C3,1) — 150(3,3,1) — H(6) log 2 + (3)*log

- 1
- SC(E), 1)log2 + gt(f)) log?2 — Zt(2)t(3) log? 2

13353 419 1529
t(2,1,1,2,1) = ——¢ ——t(3)t(4) — ——=t(2)t

1 21 - 7

- Zt(2)4(gv L, 1) + ﬁC(& 1, 1) - ﬁC(gv 3, 1)

1 1 1 _
— Et(6) log 2 + gt(3)2 log 2 — 7t(2)((3,1) log 2
21989 10093 1715

H2,1,1,1,2) = T t(T) = 1ot (B)HA) = o t2)HE)

1 _ 1 _ 21 7
2407 7 26 3 -

1. 3 2
- 1,1,1,1) — —+#(6)1 —#(3)%1

3 1 35
— Z¢(5,1)log2 + =C(3,1,1,1) log 2 — —¢(5) log? 2
164(5, ) log +4C(3, ,1,1)log 496t(5) og

1. - 11
(2)t(3)log? 2 + $¢G.L 1) log? 2 + 55t log® 2

1 1
—t(3)log?2 + —(2) log® 2
15 (3)log™ 2 + 120 (2)log

£(2,1,2,1,1) =

+1t
21
1
—((3,1)log®2 —
+24C(3,)0g

Appendix B. Multiple t-values in terms of Saha elements
t(4) = 4t(2,2)
t(5) = 7t(3,2) + 6£(2,1,2)
K4, 1) = %t(i&, 2) — #(2,1,2) + 44(2,2, 1)

12,3) = gt(?), 2) +4(2,1,2)

£(6) = 48(2,2,2)

19 25
6(5,1) = —51(3,1,2) = °4(2,2,2) + 74(3,2,1) + 64(2,1,2,1)
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4 8
£(4,2) = —51(3,1,2) + 5#(2,2,2)
14 28
£(3,3) = —gt(?), 1,2) + S4(2,2,2)
100
£(2,4) = (3,1,2) + 5 t(2,2,2)
173

1
t(4,1,1) = —#(3,1,2) — —#(2,2,2) + 4¢(2,1,1,2) + =#(3,2, 1
()7) 18(377) 18(77)+(7)7)+2(377)
—#(2,1,2,1) +4¢(2,2,1,1)
5 29 5
£(2,3,1) = —1(3,1,2) = -1(2,2,2) + 26(2,1,1,2) + 1(3,2,1)
+4(2,1,2,1)

2
H2,1,3) = —1(3.1,2) + %5t(2, 2,2) — 2¢(2,1,1,2)

211 62 152

HT) = —5t(3.2,2) + 312, 2,1,2) - 4(2,1,2,2)
£6,1) = 4177243 £3,2,2) + 2239315(2,2,1,2) + ;—8t(2,1,2,2) 484(2,2,2,1)
#(5,2) = %t(s 2,2) + %t@ 2,1,2) + 23915(2,1,2,2)
1(4,3) = %t(?) 2,2) + 1259 12,2,1,2) + 2%15(2,1,2,2)
£(3,4) = ;Z; £(3,2,2) + 15287t(2,2,1,2) . %t(2,1,2,2)
{2,5) = —i’gi £(3,3,2) + 2}(2,2,1,2) _ 2—St<2,1,2,2)

15,1,1) = 1014—7065 13,2,2) + %t@ 2.1,2)+ %t@, 1,2,2) 4 74(3,1,1,2)
F66(2,1,1,1,2) — %915(3, 1,2,1) — %5t(2, 2,2,1) + (3,2, 1,1)
66(2,1,2,1,1)

£(4,2,1) = —%t(i&ﬂﬂ) Z;gz H2,2,1,2) = ot(21,2,2) - 375(3,1,2,1)
+ gt(?, 2,2, 1)

H4,1,2) = —%t(B,Q,Z) - %t(Q,Z, 1,9) - %t@, 1,2,2)

£(3,3,1) = %t(S,Z,Q) 122 £(2,2,1,2) + ét(z 1,2,2) + 2¢(3,1,1,2)
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14 28
~ 513121+ 2,221

595 7
t(3,1,3 ——1(3,2,2 t(2,2,1,2 t(2,1,2,2) —2¢(3,1,1,2
(’7) 1392( ) 232( ”) 58(?77) (”7)

295 93 2
1(2,3,2) = ——1(3,2,2) — —<t(2,2,1,2 t(2,1,2,2
(’3’) 348(3 ) 58( 77) 9(”7)

649 o7 )

t(2,2 2,2 t(2,2,1,2 t(2,1,2,2
H2.2,3) = 1511(3:2:2) + 5351(2,2,1,2) - =21(2,1,2,2)

11887 269 11 4
t(2,4,1) = —1(3,2,2) + —1(2,2,1,2 t(2,1,2,2) + -t(3,1,2,1
(77) 2088( )—"_348( 77) 87(777)—"_9(777)

+$t(2221)

55 3 1
2,1,4) = — 2,2) — -1(2,2,1,2) — -t(2,1,2,2
t(’?) 48t(377) 8t(777) 2t(?77)

11503 539
t(4,1,1,1) = ———1(3,2,2) — —1(2,2,1,2) — —1(2,1,2,2
(7?7) 2088(?7) 348(’77) 174(?77)

1 1 173
S1(3,1,1,2) — (2,1,1,1,2) + —t(3,1,2,1) — =—£(2,2,2,1
+2t(37 Y Y ) t(’ Pt B )+18t(37 Y Y ) 18 t(? ) Y )

1
442, 1, 1,2,1) + 51(3,2,1,1) — #(2,1,2,1,1) +4(2,2,1, 1, 1)
1355 31 9
H2,3,1,1) =~ o1(3,2,2) = 171(2,2,1 2) +1(2,1,2,2)
29
+§t(3,1,1,2) 12,1,1,1,2) - ¢ (3,1,2 1) - 122,21

+26(2,1,1,2,1) + gt(?;, 2,1,1) +#(2,1,2,1,1)

7787 859 35
2.1 1) = —— 2,2 t(2,2,1,2 —1(2,1,2,2
t( b ?37 ) 1044t(3 ) 174 ( ) ) )+ 87t( b b ) )
85
+2t(2,1,1,1,2) — §t(3, 1,2,1) + 5(2.2,2,1) - 26(2,1,1,2,1)
113 37 15
t(2,1,1 2,2 —1(2,2,1,2) — —1(2,1,2,2) — 2¢(2,1,1,1,2
( b b ’3) 174 (3 ) 29 ( ) ) ) ) 29 ( b ) ) ) ( ) ) ) b )
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