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Bhabha scattering and a special pencil of
K3 surfaces

Dino Festi and Duco van Straten

We study a pencil of K3 surfaces that appeared in the 2-loop di-
agrams in Bhabha scattering. By analysing in detail the Picard
lattice of the general and special members of the pencil, we iden-
tify the pencil with the celebrated Apéry–Fermi pencil, that was
related to Apéry’s proof of the irrationality of ζ(3) through the
work of F. Beukers, C. Peters and J. Stienstra. The same pencil
appears miraculously in different and seemingly unrelated physical
contexts.

Introduction

The electron-positron scattering process e++e− → e++e− is called Bhabha

scattering, after Homi J. Bhabha, who calculated the differential cross-

section to lowest order in 1935, [4]. This calculcation can be found in almost

any textbook on quantum field theory and is now routinely relegated to the

exercise sheets of the courses on the subject.

At lowest order, there are two Feynman diagrams contributing to the

amplitude of this process, called the scattering and the annihilation diagram.

Scattering and annihilation diagrams.

In terms of the Mandelstam variables

s = −(p1 + p2)
2, t = −(p1 − p3)
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the answer obtained by Bhabha can be written in the form
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where α = e2/�c ≈ 1/137 is the fine-structure constant and m is the mass
of the electron (cf. [7, pp. 2, 3]).

The three terms in the formula have an interesting interpretation in
terms of the two Feynman diagrams. As the determination of the cross
section involves the square modulus of the amplitude, the first and last term
in the formula describe the contributions of scattering and annihilation,
whereas the middle term represents the interference (or ‘exchange’) between
the two virtual processes.

According to the rules of Quantum Electrodynamics (QED), the com-
plete amplitude for Bhabha scattering appears as a sum of integrals that
correspond to certain Feynman diagrams. The next order of approximation
depends on the virtual processes described by the ten different 1-loop dia-
grams and at 2-loops there are many diagrams to consider.

The corresponding integrals in fact diverge and need to be regularised.
One of the most powerful regularisation schemes is dimensional regularisa-
tion. All integrals are taken in D spacetime dimensions, then developed as a
Laurent series in ε = 4−D

2 and regularised by subtracting the polar part. It
was found in [6], [7] that all coefficients in the ε-expansion of 1-loop Feynman
integrals can be represented in terms of so-called harmonic polylogarithms, a
class of functions introduced in [22], evaluated at arguments that are rational
expressions in variables x, y related to the Mandelstam variables

−s = m2 (1− x)2

x
, x =

√
4m2 − s− i

√
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4m2 − s+ i
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s
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−t = m2 (1− y)2

y
, y =

√
4m2 − t− i

√
t√

4m2 − t+ i
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t
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In [19] the 2-loop master integrals were reconsidered and expressed in
terms of Chen iterated integrals: the irrationality

Q =

√
(x+ y)(1 + xy)

x+ y − 4xy + x2y + xy2
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was needed as argument in the logarithmic forms of the differential equation
associated to one special master integral. The same irrationality appears
in [9], where the same 2-loop master integrals are reconsidered, but this
time are expressed in terms of elliptic polylogarithms. The question arises if
one can ‘undo’ the square root by a rational substitution of the form

x = x(s, t), y = y(s, t).

More precisely, if we introduce a further variable z and put z = (x+ y)/Q,
we obtain, after squaring and clearing denominators, a quartic surface in
the complex affine space in A3

C
with equation

(1) Q : z2(1 + xy) = (x+ y)(x+ y − 4xy + x2y + xy2).

The quartic Q.

Remark 0.1. The quartic Q has eight singular points, all of type Ak for
some k, two of which are visible in the picture above; six more singular
points lie in the plane at infinity. More precisely, the singular points have
the following coordinates.

Coordinates Singularity

(0 : 0 : 0 : 1) A3

(0 : 1 : 1 : 0), (0 : 1 : −1 : 0), (1 : 0 : 1 : 0), (1 : 0 : −1 : 0) A2

(1 : 1 : 0 : 1), (0 : 0 : 1 : 0), (1 : −1 : 0 : 0) A1

As this quartic has only simple singularities (see remark above), it is
birational to a K3 surface, which implies that no rational parameterisation
is possible, see also [10].

Using coordinate transformations, this surface defined by the irrational-
ity Q can be transformed in many different forms. In his talk (June 2, 2015)
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at the MITP conference Amplitudes, Motives and beyond, Johannes Henn

mentioned the particular nice surface with the equation

0 = 1 +
x2

1− x2
+

y2

1− y2
+

z2

1− z2
,

which after clearing of denominators leads to the equation

B : 0 = f(x, y, z) := 1− (x2y2 + y2z2 + z2x2) + 2x2y2z2.

He posed the question if this surface is rational, i.e., if there exist non-

trivial rational functions x(s, t), y(s, t), z(s, t) that satisfy the above equation

identically, thus providing a rational parametrisation of the surface B. The

answer to this question is no. In this paper we will compute the geometric

Picard lattice of a family of K3 surfaces containing B and we will show

that this surface is in fact a well-known beauty, as stated in the following

theorem.

Theorem. The surface B is birational to a K3 surface with Picard number

equal to 20. Its geometric Picard lattice is isomorphic to

U ⊕ E8(−1)2 ⊕ 〈−4〉 ⊕ 〈−2〉.

It is not hard to see that the 8 points (x, y, z) = (±1,±1,±1) are ordi-

nary double points and make up all singularities of the surface B in affine

space, but more complicated singularties are present at infinity. By the re-

ciprocal transformation

u =
1

x
, v =

1

y
, w =

1

z

the surface is mapped to a surface R

R : 0 = 1 +
1

u2 − 1
+

1

v2 − 1
+

1

w2 − 1

which after clearing denominators produces a slightly simpler equation

R : 0 = u2v2w2 − u2 − v2 − w2 + 2

for the surface.
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The surface B and its reciprocal R.

1. The pencil and representation as double sextic

The above surface R can be seen as a member of a nice symmetric (cf.
Remark 1.1) one-parameter family of surfaces with equation

R : 0 = 1 + s+
1

u2 − 1
+

1

v2 − 1
+

1

w2 − 1
= 0 ⊂ A1 × A3,

where we consider s as parameter. We write

π : R → A1, (u, v, w, s) 	→ s

for the projection and denote by Rs = π−1(s) the fibre over s, so R = R0.
Clearing denominators we can write the equation for Rs ⊂ A3 as:

u2v2w2 − u2 − v2 − w2 + 2 + s(u2 − 1)(v2 − 1)(w2 − 1) = 0.

Remark 1.1. From its defining equation, one can easily see that Rs admits
(at least) 48 automorphisms: those coming from changing the sign of and
permuting the coordinates. More precisely, these automorphisms generate a
subgroup of Aut(Rs) isomorphic to

S3 � (Z/2Z)3,

where the action of S3 on (Z/2Z)3 is given by permuting the coordinates.

In order to study the geometry of these surfaces, we will brutally break
the symmetry and use this equation to express w2 in terms of u, v (and s),
obtaining

w2 =
u2 + v2 − 2 + s(u2v2 − u2 − v2 + 1)

u2v2 − 1 + s(u2v2 − u2 − v2 + 1)
.
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Using the birational map (u, v, w) 	→ (1/u, 1/v, w) =: (x, y, w) the threefold

R is seen to be birationally equivalent to the threefold given by

w2 =
f1
f0

with

fi(x, y) := (1− x2y2) + (s− i)(x2 − 1)(y2 − 1), i = 0, 1.

Using the map (x, y, w) 	→ (x, y, wf1(x, y)), we see that R is birationally

equivalent to the threefold defined by the equation

w2 = f1 · f0.

This represents our threefold as a double cover, ramified over the union of

two s-dependent quartic curves. Let us write Fi(x, y, z) for the homogeniza-

tion in z of the polynomial fi, for i = 0, 1. The quartics in P2 with homo-

geneous coordinates (x, y, z) defined by F1 and F2 intersect in the points

(±1 : ±1 : 1) with multiplicity 2 and in the points (1 : 0 : 0), (0 : 1 : 0)

with multiplicity 4. The last two points form also the singular locus of both

curves.

The Cremona transformation γ on the base points

(1 : 0 : 0), (0 : 1 : 0), (1 : 1 : 1)

transforms these singular quartics into non-singular cubics Bi defined by the

vanishing of the polynomials

Gi(x, y, z) := (x2+y2)z−2xy(x+y)+(s+1− i)(2x− z)(2y− z)z, i = 0, 1.

We let P := P(1, 1, 1, 3) be the weighted projective space on the variables

x, y, z of weight 1 and a variable w of weight 3 and let D to be the threefold

in A1 × P defined by the equation

(2) D : w2 = G0 ·G1.

The fibre over s of the map D → A1 will be denoted by Ds.

So we have shown the following result.

Proposition 1.2. The family R is birationally equivalent to the family D.
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2. Singularities of the generic fibre

We first consider the generic fibre Dη, i.e. the fibre over the generic point η ∈
A1. The surface Dη is the double cover of P2 branched over the union of the
two smooth cubic curves B0, B1. As a consequence, the branch curve B :=
B0∪B1 and hence the surface Rη, has singularities of type A2n−1 at a point
where B0 and B1 have intersection multiplicity n. A direct computation
learns that, for generic s, the curves B0 and B1 intersect in exactly four
points Pi, i = 1, 2, 3, 4.

Point P1 P2 P3 P4

Coordinates (1 : 0 : 0) (0 : 1 : 0) (1 : 1 : 2) (−1 : 1 : 0)

Multiplicity 3 3 2 1

Singularity A5 A5 A3 A1

So the surface Rη has exactly 4 singular points Qi, i = 1, 2, 3, 4 corre-
sponding to the singular points Pi, i = 1, 2, 3, 4 of the branch curve B. All
singularities are of type Ak, hence we have the following corollary.

Corollary 2.1. The minimal resolution of Dη is a K3 surface.

As is well-known (see e.g. [1]), the minimal resolution

π : S −→ Dη

is obtained by replacing a singular point of type Ak by a chain of k pro-
jective lines. For example, to resolve the singularity of the branch curve
B at P1, one needs three blow-ups and hence we get three exceptional di-
visors D1,2, D1,1, D1,0, intersecting in a chain. The strict transform of the
branch locus intersects the exceptional divisor coming from the last trans-
form, say D1,0, in two distinct points and does not intersect the other two.
By Riemann–Hurwitz, the double cover of D1,2 and D1,1 is an unramified
double cover of P1, i.e., two copies of P1; the double cover of D1,0 is a double
cover of P1 ramified above two points, i.e., it is isomorphic to P1. Let E1,i

and E1,−i be the two components of the double cover of D1,i, for i = 1, 2, and
let E1,0 the cover of D1,0. As D1,1 intersect D1,0 and D1,2, we have that E1,1

intersect E1,0 and E1,±2. As the name of the components are only defined up
to a switch of the cover, we define E1,2 as the component of the double cover
D1,2 intersecting E1,1. It follows that E1,−1 intersects E1,−2 and E1,0. Hence
the divisors E1,−2, E1,−1, E1,0, E1,1, E1,2 give rise to an A5-configuration. We
will use the analogous notations for the exceptional divisors lying above the
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other points Qi, i = 2, 3, 4. So we have exceptional divisors Ei,j on S lying
above the point Qi; the divisor Ei,0 will always denote the middle one, the
divisors Ei,±1 will be those intersecting E0, for i = 1, 2, 3, the divisor Ei,±2

will denote the divisors intersecting Ei,±1, for i = 1, 2.

3. Some divisors on the generic fibre

It is our aim to determine the Picard lattice of the smooth model S of
the generic fibre Dη. Not all the divisors we present here are defined over
K = Q(s), some of them are defined only over an algebraic extension of
degree 2. The divisors we present are of three types:

• hyperplane section,
• exceptional divisors coming from the resolution of the singularities of
Dη,

• pullback on S of components of the pullback on Dη of plane lines that
are tritangent to the branch locus B.

We will denote the hyperplane class by H. As to the exceptional divisors,
we have seen that the resolution of the singularities of Dη gives rise to
5 + 5 + 3 + 1 = 14 linearly independent divisors Ei,j .

Further divisors on S can be obtained from the pullback of lines of P2

that intersect the branch locus B with even multiplicity everywhere. These
pullbacks are themselves linearly equivalent to the hyperplane section, but
they are reducible and their components are linearly independent to the
fifteen divisors listed so far.

Let K be a fixed algebraic closure of K = Q(s), and let α be a square
root of s2 − s inside K. We put L := K(α) and consider the following lines
in P2

L.

	1 : z = 0, 	2 : z = 2x, 	3 : z = 2y, 	4 : z = x+ y,

	5 : z = x
s+α , 	6 : z = y

s+α , 	7 : z = x
s−α , 	8 : z = y

s−α .

Lemma 3.1. Let 	 be any of the lines defined above, that is, 	 = 	i for some
i ∈ {1, ..., 8}. Then 	 intersects B with even multiplicity everywhere.

Proof. Notice that in the equation of any of the lines 	i, one can express
z in terms of x or y. Then, in order to prove the statement, it is enough
to substitute z with the expression in terms of the other variables in the
equation of B, and check that in this way one obtains a polynomial that is
a square in L[x, y].
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Proposition 3.2. Let 	i be one of the lines defined above, and let Di :=
π−1(	i) denote the pullback of 	i on Dη. Then Di splits into two components,
Li and L′

i, both isomorphic to 	i.

Proof. It is obvious in view of Lemma 3.1. For more details see, for exam-
ple, [15, Proposition 1.2.26].

For every line 	i we explicitly fix a component of the pullback on Dη, by
writing down the explicit equations.

L1 : z = 0 , w = 2xy(x+ y) L2 : z = 2x , w = 2x2(x− y)

L3 : z = 2y , w = 2y2(y − x) L4 : z = x+ y , w = α(x− y)2(x+ y)

L5 : z = x
s+α , w = xy(x− (α+ s)y)/s

L6 : z = y
s+α , w = xy(y − (α+ s)x)/s

L7 : z = x
s−α , w = xy(x+ (α− s)y)/s

L8 : z = y
s−α , w = xy(y + (α− s)x)/s

4. Intersection numbers

These eight divisors, together with the fifteen aforementioned ones, give us
a list of twenty-three divisors. The next step is to compute the intersection
numbers of these divisors.

Lemma 4.1. We have the following values for the intersection numbers of
H:

(1) H2 = 2;
(2) H · Ei,j = 0, for every i, j;
(3) H · Li = 1, for every i.

Proof. (1) By definition, H is the pullback of a line in the plane. Two lines
in the projective plane always meet in one point. As Dη is a double
cover of the plane, the pullbacks of the lines will meet in two points. As
S is birational to Dη and we considered two general lines, the statement
holds on S as well. Hence, using the fact that lines in the plane are all
linearly equivalent, we conclude that H2 = 2.

(2) One can choose a line in P2 not passing through Pi, for i = 1, ..., 4. The
statement follows.

(3) Two lines on the plane always meet in one point, hence the pullback of
	i meets H in two points. But this pullback splits into two isomorphic
components, Li and L′

i, each of them intersecting H in one point.
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Lemma 4.2. The intersection numbers of the exceptional divisors are as

follows:

(1) E2
i,j = −2;

(2) Ei,j · Ei,j′ = 1 (for j �= j′) if and only if |j − j′| = 1, Ei,j · Ei,j′ = 0

otherwise;

(3) Ei,j · Ei′,j′ = 0, for every i �= i′.

Proof. (1) By construction, every Ei,j has genus 0. Since S is a K3 sur-

face, its canonical divisor K is trivial. Then the result follows by the

adjunction formula (cf. [18, Proposition V.1.5]).

(2) Follows directly from the labeling of the components Ei,j .

(3) If i �= i′, it means that the divisors lie above distinct points of Dη, and

therefore they do not intersect.

Lemma 4.3. We have the following intersection matrix for L1, ..., L8.⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0
0 0 −2 0 0 0 0 0
0 0 0 −2 0 1 0 1
0 0 0 0 −2 0 1 0
0 0 0 1 0 −2 0 1
0 0 0 0 1 0 −2 0
0 0 0 1 0 1 0 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Proof. By Proposition 3.2, Li is a genus 0 curve on the K3 surface S we

have L2
i = −2 by the adjunction formula. The intersection numbers Li · Lj

for i �= j can be explicitly computed on Dη (see the accompanying MAGMA

code [16]), using their defining equations. Also, we already know that if 	i
and 	j meet in any of the points P1, ..., P4, then Li · Lj = 0.

The intersection numbers Li · Ej,k are slightly more difficult to deter-

mine, as the exceptional divisors Ej,k only live on S. The following partial

determination of these intersections will be sufficient for our purposes.

Lemma 4.4. The following statements hold.

(1) Each of the divisors L1, L7, L8 intersect either E1,2 or E1,−2; they do

not intersect the other exceptional divisors above Q1.

(2) Each of the divisors L1, L5, L6 intersect either E2,2 or E2,−2; they do

not intersect the other exceptional divisors above Q2.
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(3) L2 intersects either E2,2 or E2,−2; it does not intersect the other excep-
tional divisors above Q2; it does intersect either E3,1 or E3,−1; it does
not intersect E3,0 nor any exceptional divisor above Q1.

(4) L3 intersects either E1,2 or E1,−2; it does not intersect the other excep-
tional divisors above Q1; it does intersect either E3,1 or E3,−1; it does
not intersect E3,0 nor any exceptional divisor above Q2.

(5) L4 intersect E3,0 and E4,0; it does not intersect any other exceptional
divisor.

(6) E4,0 intersects L1 and L4; it does not intersect any other of the Li’s.
(7) L1, L5, ..., L8 do not intersect any exceptional divisor above Q3.
(8) L5, L6 do not intersect any exceptional divisor above Q1.
(9) L7, L8 do not intersect any exceptional divisor above Q2.

Proof. The statements can easily be proven by case by case analysis. As an
example, we provide the argument for the first statement. The others are
analogous.

The lines 	1, 	7, 	8 intersect at the point P1. This implies that L1, L2, L8

intersect the exceptional divisor lying above Q1. As none of these lines is
tangent to any of the irreducible components of B in P1, we have that they
get separated from the branch locus already after the first blow up, i.e., they
intersect D1,2. The statement follows from the definition of E1,±2.

5. The geometric Picard lattice of S

We let S = K ⊗K S and denote by Λ the sublattice of PicS generated by
the divisors H,Li, Ej,k.

Proposition 5.1. The lattice Λ has rank 19, signature (1, 18) and its dis-
criminant group is isomorphic to Z/12Z.

Proof. Lemma 4.4 determines some of the intersection numbers Li · Ej,k,
but not all of them. In fact, the intersection numbers concerning the ex-
ceptional divisors above Q1 and Q2 are only determined up to the double
cover involution. The same holds for the intersection numbers L3 ·E3,±1 and
L2 ·E3,±1. Using the fact that we only defined these exceptional divisors up
to the double cover involution, we can fix some of the intersection numbers.

We define E1,2 as the extremal exceptional divisor above Q1 intersect-
ing L1. It follows that L1 · E1,2 = 1 and L1 · E1,−2 = 0. Analogously, we
define E2,2 as the extremal exceptional divisor above Q2 intersecting L1. It
follows that L1 · E2,2 = 1 and L1 · E2,−2 = 0. Finally, we define E3,1 as the
extremal exceptional divisor above Q3 intersecting L2. It hence follows that
L2 · E3,1 = 1 and L1 · E3,−1 = 0.
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These definitions leave fourteen intersection numbers pairwise undeter-
mined. The values of these intersection numbers can only vary between 1
and 0, and hence it is possible to run through all the possible values. The
Picard lattice of a K3 surface injects into the H1,1 of the surface (in fact,
Lefschetz (1, 1)-theorem tells us that if X is a K3 surface over C, then
PicX ∼= H2(X,Z) ∩H1,1(X), cf. [20, 1.3.3]). As the H1,1 of a K3 surface is
20-dimensional, we only look for those combinations of intersection numbers
giving a Gram matrix of rank less than or equal to 20.

Among all the combinations in {0, 1}×7, four satisfy this condition. A
computation shows that these four combinations all give rise to a lattice as
in the statement of the result.

Corollary 5.2. The lattice Λ is isometric to the lattice

U ⊕ E8(−1)⊕2 ⊕ 〈−12〉.

Proof. The lattice in the statement has the same rank, signature, discrim-
inant group, and discriminant form as Λ. Then the result follows from [21,
Corollary 1.13.3].

We now will show that Λ is in fact the full Picard lattice.

Lemma 5.3. The family D is not isotrivial.

Proof. We will see in the next section that the fibers above s = 1 and s = −1
have non-isometric geometric Picard lattices (cf. subsections 6.1 and 6.3),
and therefore the fibers themselves are not isomorphic as K3 surfaces.

Corollary 5.4. ρ(S) ≤ 19.

Proof. As the family D is a 1-dimensional non-isotrovial family. Then, recall-
ing that S is birational to the generic fiber Dη of the family, the statement
follows for example from [13, Corollary 3.2].

Proposition 5.5. The surface S has geometric Picard rank 19.

Proof. From Corollary 5.4 we know that the geometric Picard number is at
most 19; Proposition 5.1 tells us that Λ is a sublattice of Pic(S) of rank 19.
Hence the rank of Pic(S) is exactly 19.

Theorem 5.6. The lattice Λ is the whole geometric Picard lattice Pic(S).

Proof. In this proof, for sake of brevity, let P denote the geometric Picard
lattice of S. Assume by contradiction that Λ is not the whole geometric



Bhabha scattering and a special pencil of K3 surfaces 475

Picard lattice P of S; from Proposition 5.5 the Picard lattice of S (here
simply denoted by P ) has rank 19, and therefore Λ is a proper finite-index
sublattice of P . As Λ has discriminant 12 (cf. 5.1), it follows that P has
discriminant 3. So P is an even lattice of rank 19 and discriminant −3,
getting a contradiction as even lattices of odd rank have even discriminant.
This shows that Λ is the whole Picard lattice.

Corollary 5.7. The transcendental lattice T (S) of S is isometric to the
lattice

U ⊕ 〈12〉.
Proof. It follows from [21, Corollary 1.13.3], noticing that the lattice in
the statement satisfies the hypothesis. Note that we know the form on the
discriminant group AT as it is minus the form on ANS(X), which we know
by Theorem 5.6.

6. Special fibers

For special values of s, the singularities of the branch curve B change. We
will compute the geometric Picard lattice in these particular cases, obtaining
examples of singular K3 surfaces with non-isometric Picard lattice. This
implies that these fibers are not isomorphic, proving Lemma 5.3.

The computations performed and the arguments used in these special
cases are completely analogous to the general case, and therefore they will be
omitted in this paper. They are nevertheless available in the accompanying
MAGMA code (cf. [16]). Notice that as these surfaces turn out to have Picard
lattice with maximal rank, no particular upper bound on the rank is needed.

6.1. The case s = 1

The surface D1 in the weighted projective space P(1, 1, 1, 3) is a double cover
of P2 ramified along a sextic which has exactly seven singular points:

Q1 = (1 : 0 : 0 : 0), Q2 = (0 : 1 : 0 : 0),

Q3 = (1 : 1 : 2 : 0), Q4 = (−1 : 1 : 0 : 0),

Q5 = (1 : 0 : 1 : 0), Q6 = (0 : 1 : 1 : 0),

Q7 = (1 :1 : 1 : 0).

The pointsQ1 andQ2 are singularities of A5-type; the pointQ3 is of A3-type;
the points Q4, ..., Q7 are of A1-type.
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The curve B for s = 1.

Consider the following five lines of P2.

	1 : z = 0, 	2 : z = 2x, 	3 : z = 2y, 	4 : z = x, 	5 : z = y.

All these lines intersect the branch locus of D1 with even multiplicity every-

where. Let S1 → D1 be the resolution of the singularities of D1. Proceeding

as in the previous sections, we find that the (geometric) Picard lattice of S1

is isometric to the lattice

U ⊕ E8(−1)⊕2 ⊕ 〈−4〉 ⊕ 〈−2〉.

From this it also follows that the transcendental lattice T (S1) is isometric

to the lattice 〈2〉 ⊕ 〈4〉 (as it is the only positive definite binary quadratic

form with discriminant 8).

Remark 6.1. As the discriminant of PicS1 is −8, we know by Elkies and

Schütt (cf. [26, Section 10]) that the geometric Picard lattice of S1 is realised

over Q, i.e., PicS1 = PicS1. This can also be directly observed by noting

that all the divisors used are defined over Q.

6.2. The case s = 0

The surface S0 is isomorphic to S1. To see this, it is enough to notice that

the branch locus of S0 is obtained by reflecting the branch locus of S1 with

respect to the line x+y−z = 0. Then the two surfaces have the same Picard
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lattice. It follows that the geometric Picard lattice of S0 is isometric to the
lattice

U ⊕ E8(−1)⊕2 ⊕ 〈−4〉 ⊕ 〈−2〉.
Notice that the surface S0 is the fiber of our family corresponding to the
surfaceQ (cf. (1)) we started with. As it is a singular K3 surface, its automor-
phism group is infinite and therefore it has more than just 48 automorphisms
(cf. Remark 1.1). In [24, Section 10.2], Shimada provides a finite set of gen-
erators for the automorphisms group, consisting of the 48 symmetries and
six extra automorphisms coming from reflection with respect to the walls of
the ample chamber which do not correspond to −2-vectors.

6.3. The case s = −1

The surface X−1 has exactly five singular points,

Q1 = (1 : 0 : 0 : 0), Q2 = (0 : 1 : 0 : 0),

Q3 = (1 : 1 : 2 : 0), Q4 = (−1 : 1 : 0 : 0),

Q5 = (0 :0 : 1 : 0).

The pointsQ1 andQ2 are singularities of A5-type; the pointQ3 is of A3-type;
the points Q4, Q5 are of A1-type.

The curve B for s = −1.
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In order to generate a sublattice of the Picard lattice we use the excep-

tional divisors lying above the singular points, the hyperplane sections and

the divisors L1, ..., L8 defined before, with α a square root of 2. Using the

same strategy as before we have that the geometric Picard lattice of X−1 is

isometric to the lattice

U ⊕ E8(−1)⊕2 ⊕ 〈−12〉 ⊕ 〈−2〉.

Reasoning as in Subsection 6.1, we show that T (S−1) is isometric to 〈2〉 ⊕
〈12〉. In [25, Theorem 1.2(1)], Shimada proves that the automorphism group

of the surface is generated by 15 involutions.

6.4. The case s = 2

Using the same argument as in Subsection 6.2, one sees that S2 is isomorphic

to S−1.

7. Transformation to the Apéry–Fermi-family

We have seen that

R : 0 = 1 + s+
1

u2 − 1
+

1

v2 − 1
+

1

w2 − 1

is birationally a pencil of K3 surfaces with U ⊕ 〈12〉 as transcendental lat-

tice.

We will now explain how this family is related to a famous piece of

mathematics that started with Apéry’s spectacular proof of the irrationality

of ζ(3), in which the Apéry numbers

A0 = 1, A1 = 5, A2 = 73, A4 = 1445, . . . , An :=

n∑
k=0

(
n

k

)2(n+ k

k

)2

played an important role. In the paper [3], F. Beukers and C. Peters showed

that the generating function

Φ(λ) :=

∞∑
k=0

Anλ
n
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of the Apéry numbers is a period function of a certain pencil A → P1 of K3

surfaces. The differential operator

θ3 − λ(2θ + 1)(17θ2 + 17θ + 5) + λ2(θ + 1)3,

of which Φ(λ) is the unique solution, holomorphic around 0, was identified

as the Picard–Fuchs operator of the pencil, which has

0, 17 + 12
√
2, 17− 12

√
2, ∞

as singularities.

Somewhat later, C. Peters and J. Stienstra [23] studied the level sets of

the Laurent polynomial

F := x+
1

x
+ y +

1

y
+ z +

1

z
,

which turned up in the theory of Fermi surfaces, [17]. These are affine parts

of K3 surfaces, and the pencil

Z : x+
1

x
+ y +

1

y
+ z +

1

z
= ξ +

1

ξ

over the ξ-line has

θ3 − ξ2(θ + 1)(17θ2 + 34θ + 20) + ξ4(θ + 2)3, θ = ξ
d

dξ

as Picard–Fuchs operator, and

0, ±3±
√
2, ∞

as singularities. This operator is just the pullback of the Apéry operator via

the substitution λ = ξ2. In fact, the family A → P1 can be identified as the

quotient of Z → P1 by the map induced by

(x, y, z, ξ) 	→ (−x,−y,−z,−ξ)

and thus provides a simpler and more symmetric description of the Apéry–

Fermi pencil A → P1 of [3]. Obviously, the Apéry–Fermi family itself is a
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pullback from the family

F : x+
1

x
+ y +

1

y
+ z +

1

z
= t

over the t-line. Note that this family still has a symmetry, as the fibre over t
is isomorphic to the fibre over −t via the map (x, y, z) → (−x,−y,−z). As a
result, the Picard–Fuchs operator of F has a symmetry and is the pullback
via the substitution μ = 1/t2 of the operator

θ3 − 2μ(2θ + 1)(10θ2 + 10θ + 3) + μ2(2θ + 1)(θ + 1)(2θ + 3), θ := μ
d

dμ
,

with singularities at 0, 1/4, 1/36, ∞. So this is a close relative of the Apéry
operator; the holomorphic solution Ψ(μ) around 0 expands as follows:

Ψ(μ) =

∞∑
n=0

bnμ
n = 1 + 6t+ 90t2 + 1860t3 + 44730t4 + . . .

bn :=

(
2n

n

)
an, an :=

n∑
k=0

(
m

k

)2(2k
k

)
.

The differential equation and the numbers bn appeared in [14] in certain
models of conductivity in crystals. The number bn counts the number of
paths of length 2n in the standard cubical lattice Z3 with the Euclidean
distance. The series

∞∑
n=0

anμ
n

is the period of a rational elliptic surface with singular fibres I6, I3, I2, I1 and
appears in [28]. It can be realised by the family of cubics

(x+ y)(y + z)(z + x) + μxyz = 0.

In their paper [23], Peters and Stienstra also determined the Picard
lattice of the general fibre of the Apéry–Fermi family and found them to be

U ⊕ (−E8)
⊕2 ⊕ 〈−12〉

which is exactly the lattice we found for our family of K3 surfaces! By the
global Torelli theorem for K3 surfaces, we suspect the two families to be
related. One can use the determination of the Picard lattice for the special
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members of Section 6 and compare them with the Picard lattices of for the
special members of the Apéry–Fermi family determined in [23]. This suggests
the identification

t = ±(2− 4s)

of the fibres of the families R and F . And indeed, if we put

G(x, y, z) :=
1

x2 − 1
+

1

y2 − 1
+

1

z2 − 1

then the substitution

x 	→ 1 + x

1− x
, y 	→ 1 + y

1− y
, z 	→ 1 + z

1− z

converts G into F , up to a factor and a constant. To be precise, one has the
following

Remarkable identity

4G

(
1 + x

1− x
,
1 + y

1− y
,
1 + z

1− z

)
= F (x, y, z)− 6.

Hence, the above substitution maps the pencil of surfaces

0 = 1 + s+
1

x2 − 1
+

1

y2 − 1
+

1

z2 − 1

to the pencil of surfaces

x+ 1/x+ y + 1/y + z + 1/z = 2− 4s.

So we see that our family R is, up to a linear transformation in the
parameter, the Apéry–Fermi family F ! There is much more to be said about
the rich algebraic geometry around this pencil. Note that by removing de-
nominators we obtain the family of quartics given by

x2yz + yz + xy2z + xz + xyz2 + xy − (2− 4s)xyz = 0.

We refer to [2] for a recent contribution. In that paper, Bertin and
Lecacheux prove (among other things) that the generic member of the fam-
ily admits 27 elliptic fibrations, and they also describe the singular fibers of
all of them.

We remark that the Apéry–Fermi family and its Picard–Fuchs operator
also play a role in the analysis of the equal mass scalar Feynmann diagram
shown below.
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Banana graph.

From the extensive literature on the subject, we mention [30], [29], [5],
[8].

Another interesting occurence of the family of K3 surfaces with the same
Picard lattice is the family of Hessian quartics of the family of cubic surfaces

Ca : 0 = x30 + x31 + x32 + x33 − 3x20(x1 + x2 + x3)

described in [12, Proposition 5.7.(4)]. This gives yet another realisation of
the pencil as a family of quartics in P3.

We conlude with the remark that the appearance of the irrationality Q
from the introduction is to be expected from the symmetry considerations.
In fact, as already stated in [19], it is natural to introduce a variable z related
to the third Mandelstam variable u by the relation

−u = m2 (1− z)2

z
.

Then the well-known relation

s+ t+ u = 4m2

between the Mandelstam variables translates directly into the algebraic re-
lation

(1− x)2

x
+

(1− y)2

y
+

(1− z)2

z
+ 4 = 0,

which upon expansion is just the equation

x+
1

x
+ y +

1

y
+ z +

1

z
= 2.

By the above Remarkable Identity, this surface is the transform of the surface
R = R0.

On this surface there is a symmetric collection of divisors and the 2-loop
amplitudes appearing in Bhabha scattering seem to be special solutions of
a natural differential system on this K3 surface, rather then on the affine
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x, y-plane, and a theory of harmonic polylogarithms should properly be for-
mulated as living on the above K3 surface.

So we see the ‘same’ pencil of K3 surfaces appearing over and over again,
with a multitude of links to various physical contexts. A question posed by
J. Stienstra [27] is if there are more direct links between these physical
occurrences that would provide a priori explanations for the miracles.
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