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Rationalizing roots: an algorithmic
approach
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In the computation of Feynman integrals which evaluate to mul-
tiple polylogarithms one encounters quite often square roots. To
express the Feynman integral in terms of multiple polylogarithms,
one seeks a transformation of variables, which rationalizes the
square roots. In this paper, we give an algorithm for rationalizing
roots. The algorithm is applicable whenever the algebraic hyper-
surface associated with the root has a point of multiplicity (d− 1),
where d is the degree of the algebraic hypersurface. We show that
one can use the algorithm iteratively to rationalize multiple roots
simultaneously. Several examples from high energy physics are dis-
cussed.

1. Introduction

We may view a Feynman integral as a function of the number of space-time
dimensions D and the kinematic variables (Lorentz scalar products pi · pj
and masses mj). Within dimensional regularization, we are interested in
the Laurent expansion in ε = (4 − D)/2. Each coefficient of this Laurent
expansion is then a function of the kinematic variables.

A significant number of Feynman integrals evaluate to multiple poly-
logarithms, meaning that each term of the Laurent expansion in ε may be
expressed as a linear combination of multiple polylogarithms with prefac-
tors being algebraic functions of the kinematic variables. The arguments of
the multiple polylogarithms are again functions of the kinematic variables.
These arguments are often called letters, and the set of all letters the sym-
bol alphabet. Multiple polylogarithms are a special case of iterated integrals,
where all integration kernels are of the form

ωj =
dy

y − zj
,(1)

where the zj ’s are independent of the integration variable y (but may depend
on the kinematic variables). In Feynman integral computations it is not
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uncommon to encounter integration kernels like

dy√
(y − z1) (y − z2)

.(2)

These are not of the form as in equation (1). To express the result in terms
of multiple polylogarithms, we seek a transformation of the integration vari-
able which transforms the integration kernel into a rational function. Subse-
quently using partial fraction decomposition, we may express the integral in
terms of the integration kernels as in equation (1) plus trivial integrations.

In this paper, we consider the problem of finding a rational parametriza-
tion for the integration kernels. For several specific examples a rational
parametrization is known [1, 2, 3, 4, 5, 6, 7]. For Feynman integrals in
massless theories and enjoying a dual conformal symmetry the use of mo-
mentum twistor variables has been advocated quite recently [8]. The use of
these variables automatically rationalizes a subset of the occurring letters.
There is also an interesting connection of the symbol alphabet in massless
theories with cluster A-coordinates [9, 10]. An alternative to iterated inte-
grals are nested sums [11]. In this approach roots enter through binomial or
inverse binomial sums [12, 13, 14, 15].

Despite the considerations in the appendix of [1], however, to the best of
our knowledge, no systematic approach for finding a rational parametriza-
tion and working in the massless and the massive case alike has been put
forward in the physics community. Such a systematic approach is the topic
of this paper. We show that the problem can be tackled with methods from
elementary algebraic geometry [16, 17, 18, 19]. We present an algorithm –
well-known from algebraic geometry – that rationalizes the given root by first
associating an algebraic hypersurface to the root and then parametrizing this
hypersurface by an n-parameter family of lines, where n is the number of
variables occurring in the root. This method can be used, whenever the as-
sociated hypersurface is irreducible and has at least one point of multiplicity
(d−1), where d is the degree of the defining polynomial of the hypersurface.
In particular, the algorithm is neither constrained by the number of variables
n occurring in the root nor by the degree d of the associated hypersurface.
Using the method iteratively, we are also able to find parametrizations that
rationalize multiple roots simultaneously. We show that for a variety of roots
appearing in physics, which are known to be rationalizable, we can produce
rational parametrizations with the help of our method. In some cases, we
are even able to optimize known parametrizations.

However, not all algebraic hypersurfaces have a rational parametrization,
the simplest counter-example being given by a non-degenerate elliptic curve.
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These curves occur in Feynman integral computations. The corresponding
Feynman integrals do not evaluate to multiple polylogarithms.

As already mentioned, our algorithm works if the algebraic hypersurface
associated with the root is irreducible and possesses a point of multiplicity
(d − 1). Let us stress that the fact that an algebraic hypersurface does
not have a point of multiplicity (d − 1) does not imply that we cannot
parametrize the hypersurface by rational functions. The hypersurface may
or may not have a rational parametrization. There exist more advanced
methods from algebraic geometry which may be used in such a case, and
we will provide a simple example in appendix A. However, weighing the
required mathematical overload for these advanced methods against the fact
that we can produce parametrizations for a large class of rationalizable roots
occurring in physics with a basic algorithm, we find it useful and efficient
to restrict in this paper our attention to roots whose associated algebraic
hypersurface can be parametrized by lines.

This paper is organized as follows: in section 2 we give a motivational
example to illustrate the need for rational parametrizations in the context
of loop calculations. In section 3 we present a short warm-up exercise to get
a first idea on how to find rational parametrizations systematically. In sec-
tion 4 we introduce the required mathematical framework. Section 5 and 6
represent the central part of the paper: here we formulate the rationaliza-
tion algorithm and show how the method is to be used by discussing several
examples related to physics. In section 7 we draw our conclusions. Also, we
include an appendix where we present some examples of non-rationalizable
roots such as roots associated with elliptic curves and K3 surfaces and show
how one can prove the non-rationalizability of a given root in a mathemat-
ically rigorous way. Furthermore, we formulate and prove a theorem that
can, for a particular type of roots, be used to make our algorithm even more
efficient by reducing the degree of the associated hypersurface from d to
d
2 + 1 for d even. This theorem is, for instance, applicable to the Gramian
roots of [8].

2. Motivation

Let us consider a simple example, where a square root occurs. Figure 1 shows
a one-loop Feynman diagram relevant to the self-energy of a gauge boson. Let
us assume that the fermion circulating in the loop has mass m. We denote
the external momentum of the gauge boson by p and set x := p2/m2. We
work in dimensional regularization and we denote the dimension of space-
time by D = 4 − 2ε. Associated with the diagram of Figure 1 is the set of
Feynman integrals
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Figure 1: A one-loop Feynman diagram contributing to the gauge boson
self-energy with a massive fermion loop.

Iν1ν2
(D,x) =

(
m2

)ν1+ν2−D

2

∫
dDk

iπ
D

2

1[
m2 − k2

]ν1
[
m2 − (k − p)2

]ν2
.(3)

Here, ν1 and ν2 denote two integers. Integration-by-parts identities [20, 21]
relate integrals with different indices (ν1, ν2). For this example, we may
express any integral Iν1ν2

as a linear combination of two master integrals.
As the two master integrals we may take

I1 (ε, x) = I20 (4− 2ε, x) , I2 (ε, x) = I21 (4− 2ε, x) .(4)

The differential equation for �I = (I1, I2)
T reads

d

dx
�I =

(
0 0

ε
4x − ε

4(x−4) − 1
2x − 1+2ε

2(x−4)

)
�I.(5)

It is desirable to bring the differential equation into a form, where the only
explicit ε-dependence is through a prefactor ε on the right-hand side [22].
This can be achieved by changing the basis of master integrals. We divide
I2 by its maximal cut. The maximal cut of I2 is given by

MaxCut I2 ∼ 1√
−x (4− x)

,(6)

up to a constant prefactor. We set

J1 (ε, x) = 2εI1, J2 (ε, x) = 2ε
√

−x (4− x)I2.(7)

In the basis �J = (J1, J2)
T the differential equation reads

d

dx
�J = ε

(
0 0

− 1√
−x(4−x)

− 1
x−4

)
�J.(8)

This differential equation is now nicely in ε-form. However, a square root√
−x(4− x) sneaked in. We want to rationalize the square root by a change
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of variables from x to a new variable t. For the case at hand a solution is
well-known [3]: setting

x = −(1− t)2

t
(9)

removes the square root. Indeed, we have

d

dt
�J = ε

(
0 0
−1

t
1
t −

2
t+1

)
�J.(10)

This differential equation is now easily solved in terms of harmonic polylog-
arithms.

3. Warm-up exercise

Let us suppose we encounter the square root
√
1− x2 in our physical problem

at hand and we need to find an appropriate transformation ϕx : t �→ ϕx(t)
that turns

(11)

√
1− (ϕx(t))

2

into a rational function of t. One easily checks that the parametrization

(12) ϕx(t) =
1− t2

1 + t2

solves the problem, leading to

(13)

√
1− (ϕx(t))

2 =
2t

1 + t2
.

Now, the interesting observation is that we can construct the expression for
ϕx(t) in a systematic way. First of all, we name the square root by defining
y :=

√
1− x2. Taking the square, we observe that this yields the defining

equation

(14) x2 + y2 − 1 = 0

of the unit circle. Thus, it is quite natural to say that the square root
√
1− x2

is associated with the unit circle.
The circle is one representative of a fundamental class of mathematical

objects. It defines an algebraic curve, which in turn is a special case of the
more general concept of algebraic hypersurfaces, which are defined to be the
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Figure 2: Parametrizing the circle by a 1-parameter family of lines.

set of zeros of a polynomial. We see that asking for a rational change of
variables ϕx(t) which rationalizes the square root y =

√
1− x2 is the same

as asking for rational functions (ϕx(t), ϕy(t)) which parametrize the unit
circle. If one can find such rational functions, one would call the circle a
rational algebraic hypersurface.

For the square root
√
1− x2, the solution to the rationalization problem

is known since antiquity: consider a fixed point P on the circle and a variable
point Q moving on a line not passing through P . Then look at the second
point of intersection R of the line PQ with the circle. We observe that, if Q
traces its line, then R traces the circle. If we take the point P to be (−1, 0)
and assume Q to move along the y-axis, i.e., Q = (0, t), then the defining
equation of the line PQ is given by y = t(1 + x) from which we find the
parametrization

(15) R(t) := (ϕx(t), ϕy(t)) =

(
1− t2

1 + t2
,

2t

1 + t2

)

of the unit circle by a short calculation: simply determine the intersection
points of the line PQ : y = t(1+x) and the circle x2+y2 = 1. The first point
of intersection is P , the second one yields R(t). The geometric construction
described above is depicted in Figure 2.

Remarkably, this parametrization was already known 1500 BC [23].

Remark 3.1. Notice that, to calculate the expression for R(t), one solely
needs rational operations (addition, subtraction, multiplication, division) on
polynomial expressions with coefficients in Q. This is precisely the reason
why the above method returns a rational function of t.

We ensure rational coefficients by choosing P to be a point with all co-
ordinate entries lying in Q. In principle, nothing prevents us from taking

P /∈ Q2, e.g., choosing P =
(
− 1√

2
,− 1√

2

)
as the starting point of our con-
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struction. Still, the method would return a rational function. However, the
coefficients of this rational function would no longer be rational, but rather
contain factors of

√
2 (cf. Example 5.4).

Despite the simplicity of this example, we do not want to perform a
geometric construction for every root we need to rationalize. Instead, we are
looking for an algebraic, algorithmic approach to the problem. In the sequel
of this paper, we will show that such an algorithm can indeed be found for
a large class of roots.

4. Mathematical preliminaries

In this section, we will introduce the mathematical framework, which is
needed to study the rationalization problems we encounter in physics. We
begin by introducing the notion of affine algebraic hypersurfaces.

Definition 4.1. An affine algebraic hypersurface of dimension (n− 1) over
C is a set

(16) V = {(a1, . . . , an) ∈ An(C) | f(a1, . . . , an) = 0} ,

where f(x1, . . . , xn) ∈ C[x1, . . . , xn] is a non-constant polynomial in n vari-
ables and An(C) ≡ Cn is the affine space of dimension n over the com-
plex numbers. We call f the defining polynomial of V . If deg(f) = d, then
d is called the degree of V , denoted by deg(V ). If f =

∏m
i=1 f

ki

i , where
m, k1, . . . , km ∈ N and fi are the irreducible factors of f , we say that the
hypersurface defined by each polynomial fi, is a component of V . Moreover,
the hypersurface V is said to be irreducible if its defining polynomial is irre-
ducible, i.e., m = k1 = 1. Notice that the defining polynomial of V is unique
only up to multiplication by non-zero constants c ∈ C and powers ki ∈ N

of the factors of f : e.g., the polynomial g = cf2 defines the same hyper-
surface as f . We will therefore define algebraic hypersurfaces via reduced
polynomials, i.e., c = k1 = . . . = km = 1. Notice that one should not confuse
reduced polynomials with polynomials that are irreducible: for instance, the
polynomial f(x, y) = x2 − y2 = (x + y) · (x − y) is reduced but it is not
irreducible over C.

Let us have a look at some prominent examples of hypersurfaces: for
n = 2 one obtains a plane affine algebraic curve of degree d. Curves of
degree 1 are called lines, of degree 2 conics, of degree 3 cubics, etc. For
example, the unit circle with defining polynomial f(x, y) = x2 + y2 − 1 is
a conic, whereas the elliptic curve defined by f(x, y) = y2 − x3 − x − 1 is
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Figure 3: The nodal cubic V : y2 − x3 − x2 = 0.

a cubic. For n = 3 we obtain affine algebraic surfaces of degree d. If, for
instance, n = 3 and d = 4, we speak of an affine quartic surface.

The unit circle is an example of a smooth curve. However, one often
encounters singular points on hypersurfaces, and we will soon see that pre-
cisely these points, especially the ones with very high multiplicity, are crucial
for our rationalization method to work out. Therefore, let us define these
notions properly.

The tangent space TpV of a hypersurface V : f(x1, . . . , xn) = 0 at a
point p = (p1, . . . , pn) is itself an algebraic hypersurface and given by

(17) TpV :

n∑
i=1

∂f

∂xi
(p) · (xi − pi) = 0.

The singular points of a hypersurface are precisely the points which do not
allow for a well-defined tangent space.

Definition 4.2. If V is an affine algebraic hypersurface of dimension (n−1)
over C with defining equation f(x1, . . . , xn) = 0, then a point p ∈ An(C)
that satisfies

(18) f(p) =
∂f

∂x1
(p) = · · · = ∂f

∂xn
(p) = 0

is called a singular point of V . All non-singular points of V are called regular
points.

Example 4.3. Consider the nodal cubic V : f(x, y) = y2 − x3 − x2 = 0
depicted in Figure 3 and the point p = (0, 0). One easily verifies f(p) =
∂f
∂x (p) = ∂f

∂y (p) = 0, showing that this curve has a singular point at the
origin.

Definition 4.4. A point p ∈ V of a hypersurface V ⊂ An(C) with defining
polynomial f is said to be of multiplicity r ∈ N0, if there exists at least one
non-vanishing r-th partial derivative
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(19)
∂i1+···+inf

∂xi11 · · · ∂xinn
(p) 	= 0, where i1 + · · ·+ in = r

and, at the same time, all partial derivatives of lower order vanish at p, i.e.,

(20)
∂i1+···+inf

∂xi11 · · · ∂xinn
(p) = 0 with i1 + · · ·+ in = k for all k = 1, . . . , r − 1.

We write multp(V ) = r. Points p /∈ V , which do not belong to the hyper-
surface V , are of multiplicity 0. The regular points of V are of multiplicity
1. Every point p ∈ V with multp(V ) > 1 is, inevitably, a singular point of
V . In the case of curves, the multiplicity of a point is, loosely speaking, the
number of smooth branches passing through this point.

Looking at Example 4.3 again, we see that the nodal cubic has a point
of multiplicity 2 at the origin. All other points p ∈ V with p 	= (0, 0) are
regular points with multp(V ) = 1.

Remark 4.5. The notion of multiplicity is invariant under linear changes
of coordinates. Therefore, we may alternatively define the multiplicity of a
point as follows: note that we can always write

(21) f(x1, . . . , xn) = f0(x1, . . . , xn) + · · ·+ fd(x1, . . . , xn),

where f(x1, . . . , xn) is a polynomial of degree d, fk(x1, . . . , xn) with k =
0, . . . , d are homogeneous polynomials of degree k (cf. Definition 4.7) and
fd(x1, . . . , xn) is non-zero. We call fk(x1, . . . , xn) the homogenous compo-
nents of f(x1, . . . , xn). The multiplicity of an affine algebraic hypersurface
V : f(x1, . . . , xn) = 0 at the origin of An(C) can also be defined to be the
minimum of the degrees of the non-zero homogeneous components of f .

So, by taking into account Remark 4.5, we can also determine the multi-
plicity of a point p ∈ V ⊂ An(C) by moving p to the origin via a linear change
of coordinates and reading off the minimum of the degrees of the non-zero
homogeneous components of f . Let us conclude these considerations with
the following important corollary:

Corollary 4.6. Whenever we encounter a hypersurface V : f(x1, . . . , xn) =
0 of degree d with a point p = (p1, . . . , pn) of multiplicity r and move p =
(p1, . . . , pn) to the origin by considering

(22) g(x1, . . . , xn) := f(x1 + p1, . . . , xn + pn),



262 Marco Besier et al.

then g(x1, . . . , xn) can always be written as

(23) g(x1, . . . , xn) = gr(x1, . . . , xn) + · · ·+ gd(x1, . . . , xn),

where gk(x1, . . . , xn) with k = r, . . . , d are the homogeneous components of
g(x1, . . . , xn).

As we will see in the upcoming section, solely working with hypersurfaces
in affine space will not be sufficient. Some information about the hypersur-
face is hidden when working in the affine framework. Luckily, it turns out
that by passing to the projective closure one picks up this hidden informa-
tion. Therefore, it will be useful to consider hypersurfaces in projective space.

Definition 4.7. A projective algebraic hypersurface of dimension (n − 1)
and degree d over C is defined as the set

(24) Ṽ = {[a1 : . . . : an+1] ∈ Pn(C) |F (a1, . . . , an+1) = 0},

where F (x1, . . . , xn+1) ∈ C[x1, . . . , xn+1] is a non-constant polynomial in
(n+1) variables, which is homogeneous of degree d, i.e., for λ ∈ C non-zero,
one has

(25) F (λx1, . . . , λxn+1) = λdF (x1, . . . , xn+1).

Pn(C) is the n-dimensional complex projective space and [a1 : . . . : an+1]
are points of Pn(C), denoted in homogeneous coordinates.

All notions introduced for affine hypersurfaces, in particular the notions
of singular points and multiplicities, carry over to the projective setting in
the natural way. Now, the point is that we can turn every affine algebraic
hypersurface V of degree d with defining equation f(x1, . . . , xn) = 0 into a
corresponding projective hypersurface Ṽ of degree d via homogenization of
f . This means that Ṽ is defined by the polynomial

(26) fh(x1, . . . , xn, z) := zdeg(f)f
(x1
z
, . . . ,

xn
z

)
,

where fh(x1, . . . , xn, z) is homogeneous of degree d, by definition. Ṽ is called
the projective closure of V .

On the other hand, if F (x1, . . . , xn, z) is the defining polynomial of a
projective hypersurface, then F (x1, . . . , xn, 1) is the defining polynomial of
an affine hypersurface, which consists of the points of the projective hy-
persurface whose last coordinate is non-zero. These two procedures are,
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in fact, reciprocal to one another in the sense that, as fh(x1, . . . , xn, 1) =
f(x1, . . . , xn) and, if f is defined by f(x1, . . . , xn) := F (x1, . . . , xn, 1), then
fh(x1, . . . , xn, z) = F (x1, . . . , xn, z), as soon as the homogeneous polynomial
F is not divisible by z.

One may think of the affine hypersurface as one chart of the corre-
sponding projective hypersurface. The points of the projective closure of
an affine hypersurface which do not belong to the affine part are called
points at infinity. So, if the affine hypersurface V is defined by the polyno-
mial F (x1, . . . , xn, 1) and is consequently a chart of the projective hyper-
surface Ṽ : F (x1, . . . , xn, z) = 0, then the points at infinity of the affine
chart V would be the points [a1 : . . . : an : 0] ∈ Ṽ , i.e., the points
[a1 : . . . : an : 0] ∈ Pn(C) fulfilling F (a1, . . . , an, 0) = 0.

In total, a projective hypersurface Ṽ ⊂ Pn(C) of dimension (n− 1) has
(n + 1) affine charts, each obtained by setting one of the (n + 1) projec-
tive coordinates equal to 1, leaving the others as affine coordinates of the
respective chart.

To have an easy example in mind, let us consider the unit circle again,
i.e., the affine hypersurface Vxy : x2 + y2 − 1 = 0. The projective closure
of Vxy is the projective hypersurface Ṽ : x2 + y2 − z2 = 0. Consequently,
the unit circle is one affine chart of Ṽ . However, the two hyperbolas Vxz :
x2 + 1− z2 = 0 and Vyz : 1 + y2 − z2 = 0 are affine charts of Ṽ , as well. So,
from a projective point of view, these two hyperbolas and the unit circle are
the same curve.

Furthermore, we observe that each of the hyperbolas Vxz and Vyz has
one point at infinity, namely [1 : 0 : 1] and [0 : 1 : 1], respectively, whereas
the unit circle Vxy has the two complex points [1 : i : 0] and [1 : −i : 0] at
infinity.

5. The algorithm

Let us now introduce the class of roots we will be able to rationalize in a
straightforward, algorithmic manner. We will provide a more precise defini-
tion as soon as we have studied some first examples (cf. Definition 5.6). A
given root is called perfect if the associated algebraic hypersurface of degree
d is irreducible and has a point of multiplicity (d− 1).

Now, why is this notion useful? We have seen that we had to use a quite
manual geometric construction (cf. section 3) to rationalize the circle. In
practice, however, we do not want to draw curves or surfaces to find rational
parametrizations. We rather need an easy algebraic algorithm which allows
us to rationalize the given root straightforwardly. The point is, now, that
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for perfect roots, we find such an algorithm. To get an idea of how it works,
let us consider

√
1− x2 again.

Example 5.1. As we have already seen before, the hypersurface associated
with y :=

√
1− x2 is the unit circle V : f(x, y) = x2 + y2 − 1 = 0. Since

d = deg(V ) = 2, finding a point of multiplicity (d−1) is very easy. Recalling
that regular points p ∈ V are of multiplicity 1, we may choose any fixed
regular point p0 on the circle, e.g., p0 = (−1, 0) ∈ V as in section 3. Notice
that the irreducibility of f together with the existence of such a point shows
that

√
1− x2 is a perfect root in the above sense.

The next step is to translate p0 to the origin, i.e., we send x �→ x + 1
and y �→ y. The polynomial f becomes

(27) f(x, y) = f1(x, y) + f2(x, y)

with homogeneous components

(28) f1(x, y) = −2x and f2(x, y) = x2 + y2

of degree 1 and 2, respectively.
As in section 3, let us consider a family of lines y = tx through p0. We

determine the two intersection points of each of the lines with the circle
V : f(x, y) = 0 by plugging the line equation into f(x, y) = 0. We obtain

(29) 0 = f1(x, tx) + f2(x, tx) = xf1(1, t) + x2f2(1, t).

The solution x = 0 gives p0. The second solution yields

(30) x = −f1(1, t)

f2(1, t)
, y = −t

f1(1, t)

f2(1, t)
.

Switching back to the original setting by translating x �→ x− 1 and y �→ y,
we see that

(31) ϕx(t) = −f1(1, t)

f2(1, t)
− 1, ϕy(t) = −t

f1(1, t)

f2(1, t)

is precisely parametrization (15), which we already encountered in section 3.
In particular, ϕx(t) provides the sought after change of variables that ratio-
nalizes

√
1− x2.

Remark 5.2. Notice that we had a choice in picking the family of lines
through p0 which we intersected with the circle in equation (29). In fact,
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one can easily produce a different rational parametrization by considering a
different family of lines. For instance, take the family to be x = ty, substitute
x with ty in equation (29) and solve for y.

Example 5.3. Consider the square root y :=
√
x3 + x2. The associated

hypersurface V is irreducible, of degree d = 3 and given by the nodal cubic
V : f(x, y) = y2 − x3 − x2 = 0, which we have already discussed in Exam-
ple 4.3. We have seen that V has a point of multiplicity 3 − 1 = 2 at the
origin, proving

√
x3 + x2 to be a perfect root. Analogously to Example 5.1,

we can parametrize V by the family of lines y = tx, yielding

(32) ϕx(t) = t2 − 1, ϕy(t) = t3 − t.

However, if we intersect V with the family x = ty instead, we obtain a
different parametrization:

(33) φx(t) =
1− t2

t2
, φy(t) =

1− t2

t3
.

In the case of Example 5.3, there is only a single point of multiplicity
(d− 1), namely the origin. For the unit circle V : f(x, y) = x2 + y2 − 1 = 0,
however, every single point of V has multiplicity (d−1). This allows for the
construction of even more rational parametrizations of the circle, by simply
choosing another starting point p0. Notice that this also works for ellipses,
hyperbolas and, in fact, any irreducible conic.

Example 5.4. Consider the circle V : f(x, y) = x2 + y2 − 1 = 0 and

choose p0 =
(
− 1√

2
,− 1√

2

)
as opposed to our former choice (−1, 0). Moving

p0 to the origin, intersecting the circle with the family of lines y = tx and
finally translating p0 back to its original position, we obtain the following
parametrization:

(34) ϕx(t) =
1− (t− 2)t√
2 (1 + t2)

, ϕy(t) =
t2 + 2t− 1√
2 (1 + t2)

.

Not only does this show that we get different parametrizations for differ-
ent choices of p0, but it also makes the statements of Remark 3.1 more
explicit: choosing a point with irrational coordinates still leads to a rational
parametrization. The coefficients of these rational functions will, however,
no longer be rational, but will involve the irrationalities of p0.

Irrational coefficients are not particularly desired, so we try to avoid
them in the lucky situation of having multiple points of multiplicity (d− 1)
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to choose from. So, whenever possible, we choose our starting point p0 to
have rational coordinates.

Before we move on to a more sophisticated example of a rationalization
procedure, let us demonstrate how to identify the hypersurface associated
with a given root. The easiest case is the one, where we face a square root

(35)

√
p(x1, . . . , xn)

q(x1, . . . , xn)

of a rational function, where p(x1, . . . , xn), q(x1, . . . , xn) ∈ C[x1, . . . , xn] are
multivariate non-zero polynomials. The associated hypersurface is simply
obtained by naming the root, e.g., denote it by u, squaring the resulting
equation and clearing the denominator. Thus, the hypersurface V associated
with the root (35) is given as

(36) V : f(u, x1, . . . , xn) = q(x1, . . . , xn)u
2 − p(x1, . . . , xn) = 0.

Of course, square roots of rational functions are the standard use case, i.e.,
they are the most likely to appear in physical contexts. However, we want
to point out that the method presented here is not restricted to simple
square roots but can also be applied to roots of higher order and, by suitable
exponentiation and clearing of denominators, even to arbitrary algebraic
functions. In particular, this allows for the study of nested roots, as well. In
this way, we find an associated hypersurface for any algebraic function. For
example, the hypersurface V associated with the 3-rd root

(37)
3
√

x3 + x2

is given by

(38) V : f(u, x) = u3 − x3 − x2 = 0.

Indeed, the root (37) is perfect, since f is irreducible, deg(V ) = 3 and V has
a point of multiplicity 2 at the origin. We may also consider rather involved
nested roots, for instance

(39)

√
−2x2 − 3x+

√
16x3 + 9x2

2
.

Again, let us call this root u. By squaring, clearing the denominator and
squaring once more, we obtain

(40)
(
2u2 + 2x2 + 3x

)2
= 16x3 + 9x2.
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Simplifying this equation, we see that the hypersurface V associated with
(39) is given by

(41) V : f(u, x) = x4 − x3 + 2x2u2 + 3xu2 + u4 = 0.

We observe deg(V ) = 4 and, taking into account Remark 4.5, we immedi-
ately see that V has a point of multiplicity 3 at the origin. Furthermore, f is
irreducible. Consequently, the root (39) is perfect and in turn rationalizable
by the method presented in this paper.

Before formulating the full algorithm, let us investigate one example,
which is a bit more sophisticated since it contains more than one variable.

Example 5.5. Suppose we want to rationalize the square root

(42)

√
x4 + 4x2y2 + 4

4x2
.

Denoting this root by u, its associated affine hypersurface is irreducible and
given by

(43) V : f(u, x, y) = x4 + 4x2y2 + 4− 4u2x2 = 0.

First of all, we want to know whether or not u is a perfect root. We have
deg(V ) = 4. Thus, we need to prove the existence of some p0 ∈ V with
multp0

(V ) = 4−1 = 3. So, in order to find p0, we first try to solve condition
(18), since a point of multiplicity (d − 1) has, inevitably, to be a singular
point of the hypersurface as soon as d > 2. Unfortunately, it turns out that
the hypersurface V does not possess any affine singularities. In particular,
it does not possess any affine point of multiplicity 3.

However, there is one last hope: there might be points at infinity, which
we are not able to see in the affine setting, and some of these points might
be singular with the required multiplicity.

Indeed, one finds that the projective closure

(44) Ṽ : F (u, x, y, z) = x4 + 4x2y2 + 4z4 − 4u2x2 = 0

does have a singular point at p0 = [u0 : x0 : y0 : z0] = [1 : 0 : 1 : 0]
and, recalling Definition 4.4, one can check multp0

(Ṽ ) = 3. So, although not
immediately obvious, the square root u is perfect.

To actually rationalize u, we can just look at the problem from another
point of view, i.e., from another affine chart V ′ of Ṽ , for which p0 is not at



268 Marco Besier et al.

infinity. For instance, we may consider the chart in which the first homoge-

neous coordinate is equal to 1 via the map

P3(C) → A3(C)

[u : x : y : z] �→
(x
u
,
y

u
,
z

u

)
=: (x′, y′, z′), u 	= 0.

(45)

The singularity p0 ∈ Ṽ ⊂ P3(C) is mapped to the affine point p′0 :=

(0, 1, 0) ∈ V ′ ⊂ A3(C). So, finally, we have a quite similar situation as

in Example 5.1 and are now able to apply the same strategy.

Defining f̄ (x′, y′, z′) := F (1, x′, y′, z′), we translate p′0 to the origin of

the affine chart we are working in, i.e., we map x′ �→ x′, y′ �→ y′ − 1 and

z′ �→ z′. This yields

(46) f̄
(
x′, y′, z′

)
= f̄3

(
x′, y′, z′

)
+ f̄4

(
x′, y′, z′

)
with homogeneous components

f̄3
(
x′, y′, z′

)
= 8

(
x′
)2

y′ and f̄4
(
x′, y′, z′

)
=

(
x′
)4

+ 4
(
z′
)4

+ 4
(
x′
)2 (

y′
)2(47)

of degree 3 and 4, respectively.

In contrast to Example 5.1, we now have three instead of only two affine

variables involved so that we now need to consider a 2-parameter family

of lines passing through p′0. Practically, this means we set y′ = t1x
′ and

z′ = t2x
′ and plug these into the equation f̄ (x′, y′, z′) = 0. We obtain

0 = f̄3
(
x′, t1x

′, t2x
′)+ f̄4

(
x′, t1x

′, t2x
′)(48)

=
(
x′
)3

f̄3 (1, t1, t2) +
(
x′
)4

f̄4 (1, t1, t2) .

The solution x′ = 0 gives p′0, whereas the second solution yields

x′ = − f̄3(1, t1, t2)

f̄4(1, t1, t2)

y′ = −t1
f̄3(1, t1, t2)

f̄4(1, t1, t2)

z′ = −t2
f̄3(1, t1, t2)

f̄4(1, t1, t2)
.

(49)
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Translating back via x′ �→ x′, y′ �→ y′ + 1 and z′ �→ z′, we obtain

x′ = − 8t1
4t42 + 4t21 + 1

y′ = − 8t21
4t42 + 4t21 + 1

+ 1

z′ = − 8t1t2
4t42 + 4t21 + 1

.

(50)

Recall that we are still working in the affine chart V ′. So, the last remaining

step is to switch back to the original affine chart V , which is the actual

hypersurface associated with the square root u. This is simply done by sub-

stituting

(51) x′ =
x

u
, y′ =

y

u
and z′ =

z

u

in (50) and solving for x, y and u while putting z = 1. Finally, we obtain a

parametrization of V :

ϕu(t1, t2) = −4t42 + 4t21 + 1

8t1t2

ϕx(t1, t2) =
1

t2

ϕy(t1, t2) = −4t42 − 4t21 + 1

8t1t2
.

(52)

In particular, ϕx(t1, t2) and ϕy(t1, t2) provide the sought after change of

variables, which rationalizes the original square root u.

Having discussed these examples, we are now ready to give the precise

definition of perfect roots and formulate the general algorithm to rationalize

these.

Definition 5.6. An algebraic function q(x1, . . . , xn) in n variables is called

a perfect root, if the projective closure Ṽ of its associated affine hypersurface

V is irreducible and has at least one point p0 ∈ Ṽ with multp0
(Ṽ ) = d− 1,

where d = deg(V ) = deg(Ṽ ).
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For perfect roots, there is the following parametrization algorithm:

At this point, it is expedient to give some remarks: step 4) of the algo-
rithm returns the rational parametrization for V . Therefore,

(55) ϕx1
(t1, . . . , tn), . . . , ϕxn

(t1, . . . , tn)

give a change of variables, which rationalizes the perfect root u.
The reason why this algorithm works out is due to a generalization

of Bézout’s theorem [24]: by choosing a point of multiplicity (d − 1) as
the starting point of the family of lines that we use to parametrize the
hypersurface associated with the root, we make sure that a generic line
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of the family has only one unique further point of intersection with the

hypersurface. For instance, if we would choose a point other than the origin

in the case of the nodal cubic (cf. Example 4.3 and 5.3) and consider a family

of lines through this point, then each line would, in general, have two further

intersection points with the curve.

Notice that our analysis is not restricted to a single root at a time.

In fact, we can apply the above algorithm iteratively to construct a single

parametrization that rationalizes multiple roots simultaneously (cf. Exam-

ple 6.2).

Remark 5.7. As we have already seen in Remark 5.2 and Example 5.3,

we can easily obtain other parametrizations of the perfect root by changing

the n-parameter family of lines that we use to parametrize its associated

hypersurface. Thus, in addition to (54), we may also return

ϕu(t1, . . . , tn) = −t1
gd−1(t1, 1, t2, . . . , tn)

gd(t1, 1, t2, . . . , tn)
+ a0

ϕx1
(t1, . . . , tn) = −gd−1(t1, 1, t2, . . . , tn)

gd(t1, 1, t2, . . . , tn)
+ a1

ϕx2
(t1, . . . , tn) = −t2

gd−1(t1, 1, t2, . . . , tn)

gd(t1, 1, t2, . . . , tn)
+ a2

...

ϕxn
(t1, . . . , tn) = −tn

gd−1(t1, 1, t2, . . . , tn)

gd(t1, 1, t2, . . . , tn)
+ an

...

...

ϕu(t1, . . . , tn) = −t1
gd−1(t1, . . . , tn, 1)

gd(t1, . . . , tn, 1)
+ a0

ϕx1
(t1, . . . , tn) = −t2

gd−1(t1, . . . , tn, 1)

gd(t1, . . . , tn, 1)
+ a1

...

ϕxn−1
(t1, . . . , tn) = −tn

gd−1(t1, . . . , tn, 1)

gd(t1, . . . , tn, 1)
+ an−1

ϕxn
(t1, . . . , tn) = −gd−1(t1, . . . , tn, 1)

gd(t1, . . . , tn, 1)
+ an

(56)



272 Marco Besier et al.

and use the most convenient of these parametrizations to rationalize the

root under consideration.

The parametrizations obtained by choosing a different point of high mul-

tiplicity or different families of lines are not the only parametrizations one

can construct. In fact, given a parametrization

(57) ϕu(t1, . . . , tn), ϕx1
(t1, . . . , tn), . . . , ϕxn

(t1, . . . , tn)

of V and R1(t1), . . . , Rn(tn) are, for instance, arbitrary non-constant rational

functions, then

ϕu(R1(t1), . . . , Rn(tn)), ϕx1
(R1(t1), . . . , Rn(tn)), . . . , ϕxn

(R1(t1), . . . , Rn(tn))
(58)

parametrizes V , as well.

6. Applications in physics

Let us now justify the effort we made in the previous chapters by consider-

ing rationalization problems of some quite recent papers [1, 8, 25] that are

directly related to high energy physics.

Example 6.1. The first physical example we will present is the square root

Δ
{123456}
6 of [8] which also appears in the hexagon function bootstrap in

planar maximally supersymmetric Yang-Mills theory [25]. It is given by

(59) Δ
{123456}
6 =

√
(1− u1 − u2 − u3)

2 − 4u1u2u3.

Setting u := Δ
{123456}
6 , we see that the defining polynomial f of the hyper-

surface V associated with this root is

(60) f(u, u1, u2, u3) = (1− u1 − u2 − u3)
2 − 4u1u2u3 − u2.

Since deg(V ) = 3, we are looking for a point p0 ∈ V with multp0
(V ) =

3− 1 = 2. We find four points that satisfy this condition:

(61) {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (0, 1, 1, 1)}.
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So, for instance, we may choose p0 = (0, 0, 0, 1). Next, we consider the
polynomial

g(u, u1, u2, u3) : = f(u+ 0, u1 + 0, u2 + 0, u3 + 1)

= (1− u1 − u2 − (u3 + 1))2 − 4u1u2(u3 + 1)− u2

= g2(u, u1, u2, u3) + g3(u, u1, u2, u3)

(62)

with

g2(u, u1, u2, u3) = (u1 + u2 + u3)
2 − 4u1u2 − u2

g3(u, u1, u2, u3) = −4u1u2u3.
(63)

Using our algorithm, a rational parametrization of V is readily computed to
be

ϕu(t1, t2, t3) = −g2(1, t1, t2, t3)

g3(1, t1, t2, t3)

=
(t1 + t2 + t3)

2 − 4t1t2 − 1

4t1t2t3

ϕu1
(t1, t2, t3) = −t1

g2(1, t1, t2, t3)

g3(1, t1, t2, t3)

=
(t1 + t2 + t3)

2 − 4t1t2 − 1

4t2t3

ϕu2
(t1, t2, t3) = −t2

g2(1, t1, t2, t3)

g3(1, t1, t2, t3)

=
(t1 + t2 + t3)

2 − 4t1t2 − 1

4t1t3

ϕu3
(t1, t2, t3) = −t3

g2(1, t1, t2, t3)

g3(1, t1, t2, t3)
+ 1

=
(t1 + t2 + t3)

2 − 4t1t2 − 1

4t1t2
+ 1.

(64)

Example 6.2. The second example we want to study is relevant in the
context of planar QCD massive corrections to di-photon and di-jet hadro-
production and was first solved in [1]. Consider the following set of square
roots:

(65) A :=
{√

u+ 1,
√
u− 1,

√
v + 1,

√
u+ v + 1

}
.

Compared to (59), the individual roots of (65) look rather simple. The dif-
ficulty is, however, that we need to determine a change of variables that
rationalizes all square roots of the set (65) simultaneously.
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Rationalizing
√
u+ 1.

Denoting the square root by w, the hypersurface V associated with
√
u+ 1

is the conic curve defined by the polynomial f(u,w) = w2 − u − 1. Since
d = 2, any regular point p0 of V fulfills multp0

(V ) = d− 1. For instance, we
may choose p0 = (u0, w0) = (−1, 0). We define the polynomial

(66) g(u,w) := f(u− 1, w + 0) = g1(u,w) + g2(u,w)

with

(67) g1(u,w) = −u and g2(u,w) = w2.

The rationalization algorithm yields the following parametrization:

ϕu(t1) = −g1(1, t1)

g2(1, t1)
− 1 =

1− t21
t21

ϕw(t1) = −t1
g1(1, t1)

g2(1, t1)
=

1

t1
.

(68)

Rationalizing
√
u− 1.

Next, we want to find a parametrization which rationalizes the square root√
u− 1. However, at the same time, we have to guarantee that this new

parametrization ϕ̃u(t2) preserves the property of rationalizing the first square
root

√
u+ 1. In order to achieve this, the first step is to substitute the ex-

pression for ϕu(t1) in the square root
√
u− 1:

(69)
√

ϕu(t1)− 1 =

√
1− 2t21

t21
.

Since the denominator of the right-hand side already is a perfect square, the
root we actually need to rationalize is the one in the numerator. Denoting
this root by q, the associated hypersurface W is the conic curve defined
by the polynomial f(t1, q) = q2 + 2t21 − 1. Again, since d = 2, any regular
point p0 of W fulfills multp0

(W ) = d − 1. For instance, we may choose
p0 = (t10

, q0) = (0, 1). We define the polynomial

(70) g(t1, q) := f(t1 + 0, q + 1) = g1(t1, q) + g2(t1, q)

with

(71) g1(t1, q) = 2q and g2(t1, q) = q2 + 2t21.
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The rationalization algorithm yields:

ϕt1(t2) = −g1(1, t2)

g2(1, t2)
= − 2t2

t22 + 2

ϕq(t2) = −t2
g1(1, t2)

g2(1, t2)
+ 1 = 1− 2t22

t22 + 2
.

(72)

Now, we can write down the coordinate change ϕ̃u(t2) for u which rational-

izes the two square roots
√
u− 1 and

√
u+ 1 simultaneously:

(73) ϕ̃u(t2) := ϕu(ϕt1(t2)) =
t42 + 4

4t22
.

Indeed, we can check that, plugging ϕ̃u(t2) into the two square roots, we

obtain rational expressions

√
ϕ̃u(t2) + 1 =

t22 + 2

2t2√
ϕ̃u(t2)− 1 =

t22 − 2

2t2
.

(74)

Notice that, compared to the change of variables

(75) ϕ̃u(t2) =

(
t22 + 1

)
(t2(t2 + 4) + 5)

4(t2 + 1)2

given in [1], the result we obtained in (73) is more compact and can thus be

considered a slight improvement over the known parametrization.

Rationalizing
√
v + 1.

In principle, this could be done in the exact same manner as
√
u+ 1. A

change of variables which rationalizes
√
v + 1 is thus given by

(76) ϕ̃v(tv) =
1− t2v
t2v

.

However, as we will see below, working with (76) will yield a sextic sur-

face when we try to rationalize
√
u+ v + 1 in the upcoming iteration step.

Although this surface does have a rational parametrization, we are usually
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looking for the lowest degree possible. In fact, a more appropriate change of
variables to rationalize

√
v + 1 is provided by simply using

(77) ϕ̃v(tv) = t2v − 1,

which is the second, alternative output we get from the rationalization algo-
rithm (cf. Remark 5.7). We will see that, using (77), the next iteration step
will only lead to a quartic instead of a sextic surface.

Rationalizing
√
u+ v + 1.

Let us now rationalize the last square root of the set (65). Assuming that
the first three square roots of A are already rationalized by means of the
transformation

ϕ̃u(tu) =
t4u + 4

4t2u
ϕ̃v(tv) = t2v − 1,

(78)

we can express the remaining square root p :=
√
u+ v + 1 in terms of the

variables tu and tv:

(79) p =

√
t4u + 4t2ut

2
v + 4

4t2u
,

The relevant algebraic hypersurface for which we need to find a rational
parametrization is a quartic surface defined by the polynomial equation

(80) 0 = t4u + 4t2vt
2
u + 4− 4p2t2u.

The attentive reader may have noticed that the root (79) is precisely the
square root we have already studied in Example 5.5. A parametrization of
(79) is therefore given by

ϕp(s1, s2) = −4s42 + 4s21 + 1

8s1s2

ϕtu(s1, s2) =
1

s2

ϕtv(s1, s2) = −4s42 − 4s21 + 1

8s1s2
.

(81)
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Combining (81) with (78), we find the final change of variables for u and v

that rationalizes all of the four square roots in (65) simultaneously:

Φu(s1, s2) : = ϕ̃u(ϕtu(s1, s2))

Φv(s1, s2) : = ϕ̃v(ϕtv(s1, s2)).
(82)

Indeed, we check that

√
Φu(s1, s2) + 1 =

2s22 + 1

2s2√
Φu(s1, s2)− 1 =

2s22 − 1

2s2√
Φv(s1, s2) + 1 =

4s42 − 4s21 + 1

8s1s2√
Φu(s1, s2) + Φv(s1, s2) + 1 =

4s42 + 4s21 + 1

8s1s2
.

(83)

7. Summary

In this paper, we considered the problem of rationalizing roots. This problem

occurs in Feynman integral computations. Methods from algebraic geometry

allow us to address this problem. We discussed an algorithm, which allows

the rationalization of roots, whenever the associated hypersurface is irre-

ducible and has a point of multiplicity (d − 1), where d is the degree of

the polynomial defining the hypersurface. This algorithm covers many cases

from high energy physics that admit a rational parametrization. Not all roots

are rationalizable. In particular, this is true, if the associated hypersurface

is a smooth elliptic curve or a K3 surface. In an appendix, we discussed ex-

amples for both cases. Our proofs for the impossibility of rationalizing the

roots associated with these particular hypersurfaces may serve as a template

for answering rationalization questions in similar circumstances. We expect

our results to be useful for Feynman integral computations.

Appendix A. Limitations of the algorithm

There are roots, which are rationalizable, but where the associated algebraic

hypersurface does not possess a point of multiplicity (d − 1). These roots

cannot be rationalized with our algorithm. We are not aware of an example
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from particle physics, where this is the case. Instead, we give an example
from mathematics with no relation to physics. Consider the root

(84)

√
−2x2 +

√
8x2 + 1− 1

2
.

The associated curve is defined by the polynomial

(85) f(x, y) = x4 + 2x2y2 − x2 + y4 + y2.

Although this curve does not possess a point of multiplicity 3, it does have
a rational parametrization. One easily checks that replacing x by

(86) ϕx(t) =
t
(
t2 + 1

)
t4 + 1

rationalizes the root given in (84). To find this change of variables, one
needs to parametrize the associated curve by a family of circles instead of
parametrizing it by a family of lines. However, this algorithm is a bit more
involved and a possible topic for another publication.

Appendix B. Roots without rational parametrizations

There are roots, which we can prove to be not rationalizable. In this ap-
pendix, we give a few examples from particle physics.

B.1. Roots associated with elliptic curves

A square root of a cubic or quartic polynomial, where all zeros of the polyno-
mial are distinct, defines (together with a rational point) a non-degenerate
elliptic curve. Roots of this type cannot be rationalized. The obvious exam-
ples from physics are Feynman integrals where such roots occur explicitly
[26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50]. The most prominent example is given by the two-loop sun-
rise integral with non-vanishing internal masses. Let us discuss here a less
obvious example. We consider the phase space integration of the double-
real / single-virtual contribution to the differential N3LO cross section for
Higgs production in the heavy top mass limit [51, 52]. In this part of the
calculation one encounters the algebraic alphabet

A =
{
z, 1− z, 1 + z, 1 +

√
z, 1 +

√
1 + 4z, 2− z +

√
z (z − 4)

}
.(87)
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Following Example 6.2, one easily rationalizes the fourth and the fifth letter
of A with a single parametrization. However, it is not possible to rationalize
all letters of A simultaneously. It is not even possible to rationalize the last
two letters simultaneously. We show this by contradiction.

Suppose there exists a rational function ϕz(t) ∈ Q(t) such that the last
two letters of A are rationalized simultaneously, i.e., it is true that

(
1 +

√
1 + 4ϕz(t)

)
∈ Q(t) and

(
2− ϕz(t) +

√
ϕz(t) (ϕz(t)− 4)

)
∈ Q(t).

(88)

It follows that

(89)
√

1 + 4ϕz(t) ∈ Q(t) and
√

ϕz(t) · (ϕz(t)− 4) ∈ Q(t).

One concludes

(90)
√

(1 + 4ϕz(t)) · (ϕz(t) · (ϕz(t)− 4)) ∈ Q(t).

We give the function in (90) the name ϕu(t). This means, we have found
rational functions ϕu(t), ϕz(t) ∈ Q(t) which solve the polynomial equation

(91) u2 = (1 + 4z) · (z(z − 4)).

Thus, we have found rational functions, which parametrize the algebraic
curve defined by this polynomial. However, equation (91) defines a smooth
elliptic curve, i.e., a curve of genus 1, and it is known for more than 150
years [53] that algebraic curves can be parametrized by rational functions if
and only if their genus is 0. Contradiction.

We conclude that there is no rational function ϕz(t) ∈ Q(t) such that
the last two letters of A are rationalized simultaneously.

B.2. Roots associated with K3 surfaces

Computing the master integrals for massive two-loop Bhabha scattering in
QED up to order four in dimensional regularization, one can express the
results almost exclusively in terms of multiple polylogarithms [6]. However,
for one of the master integrals, it is not at all clear how to reexpress the in-
tegral in terms of these well-studied functions. The usual approach to tackle
this kind of problem is to rationalize the arguments of the logarithmic forms
which appear in the differential equation for the integral via an appropriate
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change of variables. This strategy is supported by the observation that ra-
tional arguments of the logarithmic forms always lead to results in terms of
multiple polylogarithms.

We start with a short argument that K3 surfaces are not parametrizable
by rational functions. It is well-known that on P1 there does not exist a non-
zero 1-form which is holomorphic everywhere: in fact, the 1-form dx has a
pole of order 2 at infinity, which can be seen by considering t = 1/x, where
t is a local coordinate in a neighborhood of infinity. We can use this basic
fact to prove that K3 surfaces are not parametrizable by rational functions.

If X is a K3 surface, it comes with a natural non-zero holomorphic 2-
form ω on X. For example, if X is given by a polynomial equation f = 0,
then ω can be written explicitly in local affine coordinates as the residue

(92) ω = Res

(
dy1 ∧ dy2 ∧ dy3

f

)
.

Now, if the K3 surface X would be parametrizable by rational functions, we
would have a rational map ϕ : P2 ��� X. We define Σ to be the finite set
of points in P2 for which ϕ is not defined. The pullback ϕ∗ω of ω by ϕ is a
holomorphic 2-form on P2\Σ which is locally given by ϕ∗ω = A(y1, y2) dy1∧
dy2, where A(y1, y2) is a holomorphic function in y1 and y2. But such a 2-
form cannot exist, as can be seen as follows: pick a line l ⊂ P2 which does not
pass through any of the points of Σ and on which A(y1, y2) does not vanish
identically. Note that for every line l in P2 we have l � P1. Without loss
of generality, i.e., by an appropriate change of coordinates, we can assume
that this line is given by l : y1 = 0. In this case, a normal vector field for l
is given by ϑ = ∂y1

. But then, the contraction ϕ∗ω ¬ ϑ = A(0, y2)dy2 of the
holomorphic 2-form ϕ∗ω with the normal vector field ϑ is a non-zero 1-form
which is holomorphic everywhere on l � P1. Contradiction.

Let us now return to two-loop Bhabha scattering. The integral under

consideration is f
(4)
11 of [6] and has the following differential equation:

df
(4)
11 =g1d log

(
1−Q

1 +Q

)

+g2d log

(
(1 + x) + (1− x)Q

(1 + x)− (1− x)Q

)

+g3d log

(
(1 + y) + (1− y)Q

(1 + y)− (1− y)Q

)
.

(93)

The most promising strategy in order to show that f
(4)
11 evaluates to mul-

tiple polylogarithms, is to find a change of variables ϕx(t1, t2) and ϕy(t1, t2)
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such that the arguments of the above logarithms become rational. This is,
for instance, the case when the square root

(94) Q =

√
(x+ y)(1 + xy)

x+ y − 4xy + x2y + xy2

is rationalized. However, although being the most promising approach to the
problem, we will show below that Q itself cannot be rationalized. A standard
reference for this subject is [54].

Let us give a brief sketch of the proof: by defining

(95) u :=
x+ y

Q
,

squaring (94) and clearing denominators, we obtain the following quartic
algebraic surface:

(96) V : u2 · (1 + xy) = (x+ y) ·
(
x+ y − 4xy + x2y + xy2

)
.

In order to show that the square root under consideration is not rationaliz-
able, we need to check that all singularities of the quartic surface V are of
multiplicity 2, showing that V has singularities of ADE type only. First of all,
we consider the projective closure Ṽ , which is defined by the homogeneous
polynomial

(97) F (x, y, u, z) = u2·
(
z2 + xy

)
−(x+y)·

(
(x+ y)z2 − 4xyz + x2y + xy2

)
.

The singular points [x : y : u : z] ∈ Σ ⊂ Ṽ of this projective hypersurface
are easily computed. One obtains

Σ = {[1 : 1 : 0 : 1], [1 : −1 : 0 : 0], [0 : 1 : 1 : 0], [0 : 1 : −1 : 0],

[0 : 0 : 1 : 0], [1 : 0 : 1 : 0], [1 : 0 : −1 : 0], [0 : 0 : 0 : 1]}.
(98)

Checking the partial derivatives at these points, we see that at each point,
at least one of the second derivatives is non-zero, i.e., all singular points of
Ṽ are of multiplicity 2. We conclude that all singularities are of ADE type.
Using SINGULAR [55, 56, 57], we find the following classification:

Singularity Type

[1 : 1 : 0 : 1], [1 : −1 : 0 : 1], [0 : 0 : 1 : 0] A1

[0 : 1 : 1 : 0], [0 : 1 : −1 : 0], [1 : 0 : 1 : 0], [1 : 0 : −1 : 0] A2

[0 : 0 : 0 : 1] A3
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Consequently, the hypersurface associated with the square root under con-
sideration is a K3 surface by the above arguments and in turn not rational-
izable.

Notice that this statement is just about Q itself. It does not prove that

f
(4)
11 cannot be written in terms of multiple polylogarithms. However, it is a
very strong indication that it is not possible.

A detailed mathematical analysis of the above K3 is carried out in [58,

59]. We also want to mention that there is recent progress in rewriting f
(4)
11 in

terms of known functions. In [60], it will be shown that f
(4)
11 can be expressed

in terms of elliptic polylogarithms. This can be achieved by exploiting the
fact that the above K3 has an elliptic fibration.

We may also utilize K3 surfaces to prove statements similar to the one
in appendix B.1. From [1] and Example 6.2 we know that all roots of the set

(99) A =
{√

u+ 1,
√
u− 1,

√
v + 1,

√
u+ v + 1

}
can be rationalized simultaneously. Let us now consider the case, where A
has one additional root

√
16u+ (4 + v)2. The choice of this new alphabet

(100) A′ =
{√

u+ 1,
√
u− 1,

√
v + 1,

√
u+ v + 1,

√
16u+ (4 + v)2

}
corresponds to the alphabet of topology A in [1]. Using the fact that K3
surfaces are not parametrizable by rational functions, we are able to prove
that the five letters ofA′ can not be rationalized simultaneously. Analogously
to appendix B.1, we will show this by contradiction.

Suppose there exist rational functions ϕu(t1, t2), ϕv(t1, t2) ∈ Q(t1, t2)
such that all letters of A′ are rationalized simultaneously, i.e., it is true that√

ϕu(t1, t2) + 1 ∈ Q(t1, t2),
√

ϕu(t1, t2)− 1 ∈ Q(t1, t2),√
ϕv(t1, t2) + 1 ∈ Q(t1, t2),

√
ϕu(t1, t2) + ϕv(t1, t2) + 1 ∈ Q(t1, t2)

(101)

and

(102)
√

16ϕu(t1, t2) + (4 + ϕv(t1, t2))2 ∈ Q(t1, t2).

It follows that√
(ϕu + 1) · (ϕu − 1) · (ϕv + 1) · (ϕu + ϕv + 1) · (16ϕu + (4 + ϕv)2)(103)

∈ Q(t1, t2),
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where ϕu ≡ ϕu(t1, t2), ϕv ≡ ϕv(t1, t2). We give the function in (103) the
name ϕw(t1, t2). This means, we have found rational functions ϕu(t1, t2),
ϕv(t1, t2), ϕw(t1, t2) ∈ Q(t1, t2) which solve the polynomial equation

(104) w2 = (u+ 1) · (u− 1) · (v + 1) · (u+ v + 1) ·
(
16u+ (4 + v)2

)
.

But this means that we have found rational functions, which parametrize
the algebraic surface defined by this polynomial. However, equation (104)
defines a K3 surface, which can be seen as follows: homogenizing the right-
hand side, we can write the hypersurface defined by (104) as

(105) X : w2 = F6(u, v, z),

which defines a hypersurface of degree 6 in the weighted projective space
P(1, 1, 1, 3), where u, v and z are homogeneous coordinates of weight 1, w is
a homogeneous coordinate of weight 3 and F6 is a homogeneous polynomial
of degree 6. (For an introduction to weighted projective space, see [61].)
This corresponds to a double cover π : X → P2 ramified along a sextic curve
C ⊂ P2 with defining polynomial F6. Since the singularities of a double
cover are always inherited from its ramification locus, it suffices to study
the singularities of the curve C : F6 = 0. To show that (104) defines a K3,
it is therefore enough to show that all singularities of C are of ADE type.
Notice, however, that we make explicit use of the fact that we are dealing
with a sextic ramification locus. A quartic double cover, for example, would
allow for a rational parametrization.

The curve C is given by a union of four lines Li : li = 0, i = 1, 2, 3, 4,
together with a smooth conic Q′ : q = 0

(106) C : l1 · l2 · l3 · l4 · q = 0

with polynomials

l1(u, v, z) = u+ z, l2(u, v, z) = u− z, l3(u, v, z) = v + z,(107)

l4(u, v, z) = u+ v + z

and

(108) q(u, v, z) = 16uz + (4z + v)2.

Since all components of C define smooth curves themselves, possible singu-
larities of C can only arise from intersection points of these components.
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The four lines intersect in six points:

L1 ∩ L2 = [0 : 1 : 0], L1 ∩ L3 = [−1 : −1 : 1], L1 ∩ L4 = [−1 : 0 : 1],

L2 ∩ L3 = [1 : −1 : 1], L2 ∩ L4 = [1 : −2 : 1], L3 ∩ L4 = [0 : −1 : 1].

(109)

Five of these points are A1 singularities of C, as they are just a simple
intersection point of two lines. However, [−1 : 0 : 1] is an exception. The
reason is that [−1 : 0 : 1] is a point of Q′, as well. So instead of two smooth
branches, we see that actually, three smooth branches of C pass through
this point. Consequently, [−1 : 0 : 1] defines a D4 singularity. Calculating
the intersection points of Q′ with each line, we obtain

L1 ∩Q′ = {[−1 : 0 : 1], [−1 : −8 : 1]} ,
L2 ∩Q′ = {[1 : −4− 4i : 1], [1 : −4 + 4i : 1]} ,
L3 ∩Q′ = {[1 : 0 : 0], [−9/16 : −1 : 1]} ,
L4 ∩Q′ = {[−1 : 0 : 1], [−9 : 8 : 1]} .

(110)

Despite [−1 : 0 : 1], all of these points are again intersections of two smooth
branches of C. Therefore, the singular locus of C is given by eleven A1

and a single D4 singularity. We see that all singularities of C and in turn all
singularities of the hypersurface (104) are of ADE type. It follows that (104)
defines a K3 surface and is in turn not parametrizable by rational functions.
Contradiction.

We conclude that there are no rational functions ϕu(t1, t2), ϕv(t1, t2) ∈
Q(t1, t2) such that all letters of A′ are rationalized simultaneously.

B.3. Non-rationalizability of alphabets and Kummer coverings

Let us put the ideas of the two preceding subsections into a slightly more
general context. Suppose we want to rationalize an alphabet containing mul-
tiple roots, e.g.,

(111)
{√

Q1(x1, . . . , xn),
√

Q2(x1, . . . , xn), . . . ,
√

Qr(x1, . . . , xn)
}
.

If we found such a parametrization, this would provide us with a rational
parametrization of the Kummer covering

(112) w2
1 = Q1, w2

2 = Q2, . . . , w2
r = Qr.
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These equations map to the hypersurface

(113) w2 = Q1 ·Q2 · · ·Qr

via

(114) (w1, . . . , wr, x1, . . . , xn) �→ (w1w2 · · ·wr, x1, . . . , xn).

If the Kummer covering is parametrizable, then the hypersurface (113) is
parametrizable, as well. To show non-rationalizability of the alphabet, it is
therefore sufficient to show that the hypersurface (113) does not possess a
rational parametrization. Let us stress that the converse statement is not
true: the rationality of the above hypersurface does not necessarily imply
rationality of the corresponding Kummer covering.

Actually, (113) is not the only hypersurface that one can associate with
the Kummer covering. In some cases, it might be easier to prove non-
rationalizability of a different hypersurface, e.g.,

(115) Q1 · w2 = Q2 ·Q3 · · ·Qr.

The Kummer covering maps to this hypersurface via

(116) (w1, . . . , wr, x1, . . . , xn) �→
(
w2 · · ·wr

w1
, x1, . . . , xn

)
.

Notice that, although being different hypersurfaces, (113) and (115) are,
however, birational and thus either rationalizable at the same time or not
rationalizable at the same time.

Appendix C. A theorem on a particular type of square roots

In this appendix, we will show that affine hypersurfaces of dimension n and
even degree d with defining equation

u2 =
(
F d

2
(x1, . . . , xn, 1)

)2
− 4 · F d

2
+1(x1, . . . , xn, 1) · F d

2
−1(x1, . . . , xn, 1)

(117)

are rational, if and only if the hypersurface defined by

(118) F d

2
+1(x1, . . . , xn, z) + F d

2
(x1, . . . , xn, z) + F d

2
−1(x1, . . . , xn, z) = 0
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is rational, where Fk ∈ C[x1, . . . , xn, z] are homogeneous polynomials in n+1
variables of degree k. The proof of the statement is constructive. Given a
rational parametrization of one of the above hypersurfaces, we will provide
a prescription how to obtain a rational parametrization of the respective
other.

Peering at the very special form of (117) and (118), one might think that
the whole scenario is too special and constrained to have any relevance for
practical applications. However, quite recently it turned out [8] that precisely
square roots of type

(119)

√(
F d

2

)2
− 4 · F d

2
+1 · F d

2
−1

and their rational parametrizations are crucial for direct Feynman-param-
etric loop integration of a large class of planar multi-loop integrals. For
instance, let us consider the following root appearing in [8]:

(120) Δ
{123567}
7 =

√
(1− u1 − u2 − u3 + u2u3u4)2 − 4u1u2u3 · (1− u4).

Obviously, one has d = 6 in this case. Homogenizing the equation, it is easy
to see that we can write

Δ
{123567}
7 =

√
(F3(u1, . . . , u4, 1))

2 − 4 · F4(u1, . . . , u4, 1) · F2(u1, . . . , u4, 1)

(121)

with the choice

F2(u1, . . . , u4, z) = u3 · (z − u4)

F3(u1, . . . , u4, z) = z3 − z2 · (u1 + u2 + u3) + u2u3u4

F4(u1, . . . , u4, z) = z2u1u2.

(122)

Now, the point is that, using the theorem of this appendix, we can refor-
mulate the question and, instead of asking for a rational parametrization
of

(
Δ

{123567}
7

)2
= (F3(u1, . . . , u4, 1))

2 − 4 · F4(u1, . . . , u4, 1) · F2(u1, . . . , u4, 1),

(123)

we can try to find a rational parametrization of

(124) 0 = F4(u1, . . . , u4, z) + F3(u1, . . . , u4, z) + F2(u1, . . . , u4, z).
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and utilize the parametrization of the latter hypersurface to rationalize the

original square root Δ
{123567}
7 . Viewing the square root from this perspective,

we only have to determine a point of multiplicity 3 instead of a point of
multiplicity 5. Using Definition 4.4, we need to solve

(125)

d−2∑
k=0

(
n+ k − 1

k

)

equations in order to find a point of multiplicity (d − 1). So to determine
a point of multiplicity 5 of the projective hypersurface corresponding to
(120), we would have to solve 126 equations. Using our theorem and trying
to find a point of multiplicity 3 for the projective closure of (124) instead,
we only need to solve 28 equations, which is already a huge improvement
and becomes even more significant when we consider roots with arguments
of higher degree and a higher number of variables.

Solving these 28 equations, we find that the hypersurface (124) has four
points of multiplicity 3 at infinity:

{[1 : 0 : 1 : 0 : 0 : 0], [1 : 0 : 0 : 1 : 0 : 0], [0 : 1 : 0 : 0 : 0 : 0], [1 : 0 : 0 : 0 : 0 : 0]}.(126)

So in order to rationalize Δ
{123567}
7 , we simply pick one of these points,

apply the main algorithm of this paper to rationalize (124) and finally use
the theorem presented below to transform the parametrization of (124) into

a parametrization for Δ
{123567}
7 .

Let us begin by proving that rationality of the algebraic hypersurface
defined by (117) implies rationality of the algebraic hypersurface defined by
(118).

Theorem C.1. We consider a rational affine complex algebraic hypersur-
face V ⊂ An+1(C) of dimension n defined by a polynomial equation of the
form

(127) u2 = fd(x1, . . . , xn),

where fd(x1, . . . , xn) is a polynomial in n variables of even degree d. Fur-
thermore, we assume that fd(x1, . . . , xn) can be written as

fd(x1, . . . , xn) =
(
F d

2
(x1, . . . , xn, 1)

)2
(128)

− 4 · F d

2
+1(x1, . . . , xn, 1) · F d

2
−1(x1, . . . , xn, 1),
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where F d

2
(x1, . . . , xn, z), F d

2
+1(x1, . . . , xn, z) and F d

2
−1(x1, . . . , xn, z) are ho-

mogeneous polynomials in n + 1 variables of degree d
2 ,

d
2 + 1 and d

2 − 1,
respectively. If

(129)
(
ϕV
u (t1, . . . , tn), ϕ

V
x1
(t1, . . . , tn), . . . , ϕ

V
xn
(t1, . . . , tn)

)
is a rational parametrization of V , then one can determine a rational pa-
rametrization

(130)
(
ϕW
x1
(t1, . . . , tn), . . . , ϕ

W
xn
(t1, . . . , tn), ϕ

W
z (t1, . . . , tn)

)
of the complex affine algebraic hypersurface W ⊂ An+1(C) of dimension n
and degree d

2 + 1, which is defined by the equation

(131) F d

2
+1(x1, . . . , xn, z) + F d

2
(x1, . . . , xn, z) + F d

2
−1(x1, . . . , xn, z) = 0.

Proof. We start with the formal ansatz

ϕW
x1

= λ · x′1
...

ϕW
xn

= λ · x′n
ϕW
z = λ.

(132)

Plugging this ansatz into equation (131), we obtain

λ
d

2
+1 · F d

2
+1(x

′
1, . . . , x

′
n, 1) + λ

d

2 · F d

2
(x′1, . . . , x

′
n, 1)(133)

+ λ
d

2
−1 · F d

2
−1(x

′
1, . . . , x

′
n, 1) = 0.

Despite the solution λ0 = 0, there are two other solutions λ±. For example,
λ+ is given by

λ+ = −
F d

2
(x′1, . . . , x

′
n, 1)

2 · F d

2
+1(x

′
1, . . . , x

′
n, 1)

+

√√√√(
F d

2
(x′1, . . . , x

′
n, 1)

2 · F d

2
+1(x

′
1, . . . , x

′
n, 1)

)2

−
F d

2
−1(x

′
1, . . . , x

′
n, 1)

F d

2
+1(x

′
1, . . . , x

′
n, 1)

= −
F d

2
(x′1, . . . , x

′
n, 1)

2 · F d

2
+1(x

′
1, . . . , x

′
n, 1)

+
u

2 · F d

2
+1(x

′
1, . . . , x

′
n, 1)

,

(134)
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where we defined u to be

u :=

√(
F d

2
(x′1, . . . , x

′
n, 1)

)2
− 4 · F d

2
+1(x

′
1, . . . , x

′
n, 1) · F d

2
−1(x

′
1, . . . , x

′
n, 1).

(135)

Now, by assumption, we have a rational parametrization of the hypersurface
V . Let us therefore substitute (u, x′1, . . . , x

′
n) by

(136)
(
ϕV
u (t1, . . . , tn), ϕ

V
x1
(t1, . . . , tn), . . . , ϕ

V
xn
(t1, . . . , tn)

)
.

In particular, ϕV
u (t1, . . . , tn) provides us with a rational expression for the

square root u in (135). But this means that, using the given parametrization
(136), we can express λ+ as

λ+(t1, . . . , tn) =−
F d

2

(
ϕV
x1
(t1, . . . , tn), . . . , ϕ

V
xn
(t1, . . . , tn), 1

)
2 · F d

2
+1

(
ϕV
x1
(t1, . . . , tn), . . . , ϕV

xn
(t1, . . . , tn), 1

)
+

ϕV
u (t1, . . . , tn)

2 · F d

2
+1

(
ϕV
x1
(t1, . . . , tn), . . . , ϕV

xn
(t1, . . . , tn), 1

)
(137)

turning λ+ into a rational function of t1, . . . , tn.
Since λ+(t1, . . . , tn) as well as ϕ

V
x1
(t1, . . . , tn), . . . , ϕ

V
xn
(t1, . . . , tn) are ra-

tional functions of t1, . . . , tn and, additionally, λ+ was precisely chosen in a
way such that (132) solves the defining equation (131) of W , we conclude
that

ϕW
x1
(t1, . . . , tn) = λ+(t1, . . . , tn) · ϕV

x1
(t1, . . . , tn)

...

ϕW
xn
(t1, . . . , tn) = λ+(t1, . . . , tn) · ϕV

xn
(t1, . . . , tn)

ϕW
z (t1, . . . , tn) = λ+(t1, . . . , tn)

(138)

is the sought after rational parametrization of W , proving W to be a rational
algebraic hypersurface.

Let us now prove the, for us more important, converse statement.

Theorem C.2. We consider a rational affine complex algebraic hypersur-
face W ⊂ An+1(C) of dimension n and degree d

2 + 1, where d ∈ N is even.
Suppose W is defined by a polynomial equation of the form

(139) F d

2
+1(x1, . . . , xn, z) + F d

2
(x1, . . . , xn, z) + F d

2
−1(x1, . . . , xn, z) = 0,
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where Fk are homogeneous polynomials of degree k. If

(140)
(
ϕW
x1
(t1, . . . , tn), . . . , ϕ

W
xn
(t1, . . . , tn), ϕ

W
z (t1, . . . , tn)

)
is a rational parametrization of W , then one can determine a rational pa-

rametrization

(141)
(
ϕV
u (t1, . . . , tn), ϕ

V
x1
(t1, . . . , tn), . . . , ϕ

V
xn
(t1, . . . , tn)

)
of the affine hypersurface V ⊂ An+1(C) defined by the polynomial equation

u2 =
(
F d

2
(x1, . . . , xn, 1)

)2
− 4 · F d

2
+1(x1, . . . , xn, 1) · F d

2
−1(x1, . . . , xn, 1).

(142)

Proof. We assume

(
ϕW
x1
, . . . , ϕW

xn
, ϕW

z

)
:=

(
ϕW
x1
(t1, . . . , tn), . . . , ϕ

W
xn
(t1, . . . , tn), ϕ

W
z (t1, . . . , tn)

)(143)

to be a rational parametrization of W , i.e., rational functions
(
ϕW
x1
, . . . , ϕW

xn
,

ϕW
z

)
satisfying

0 = F d

2
+1

(
ϕW
x1
, . . . , ϕW

xn
, ϕW

z

)
+ F d

2

(
ϕW
x1
, . . . , ϕW

xn
, ϕW

z

)
(144)

+ F d

2
−1

(
ϕW
x1
, . . . , ϕW

xn
, ϕW

z

)
.

One can rewrite this equation like

0 =
(
ϕW
z

) d

2
+1 · F d

2
+1

(
ϕW
x1

ϕW
z

, . . . ,
ϕW
xn

ϕW
z

, 1

)

+
(
ϕW
z

) d

2 · F d

2

(
ϕW
x1

ϕW
z

, . . . ,
ϕW
xn

ϕW
z

, 1

)

+
(
ϕW
z

) d

2
−1 · F d

2
−1

(
ϕW
x1

ϕW
z

, . . . ,
ϕW
xn

ϕW
z

, 1

)
.

(145)

By assumption, ϕW
z is a non-zero solution of (145), so it has to fulfill one of
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the following two equations

ϕW
z = −

F d

2

(
ϕW

x1

ϕW
z
, . . . ,

ϕW
xn

ϕW
z
, 1
)

2 · F d

2
+1

(
ϕW

x1

ϕW
z
, . . . ,

ϕW
xn

ϕW
z
, 1
)

±

√√√√√√
⎛
⎝ F d

2

(
ϕW

x1

ϕW
z
, . . . ,

ϕW
xn

ϕW
z
, 1
)

2 · F d

2
+1

(
ϕW

x1

ϕW
z
, . . . ,

ϕW
xn

ϕW
z
, 1
)
⎞
⎠

2

− 4 ·
F d

2
−1

(
ϕW

x1

ϕW
z
, . . . ,

ϕW
xn

ϕW
z
, 1
)

F d

2
+1

(
ϕW

x1

ϕW
z
, . . . ,

ϕW
xn

ϕW
z
, 1
) .

(146)

Rearranging these equations and taking the square, we get

(
ϕV
u

)2
=

(
F d

2

(
ϕV
x1
, . . . , ϕV

xn
, 1
))2

(147)

− 4 · F d

2
+1

(
ϕV
x1
, . . . , ϕV

xn
, 1
)
· F d

2
−1

(
ϕV
x1
, . . . , ϕV

xn
, 1
)
,

where we defined

ϕV
u := 2 · F d

2
+1

(
ϕW
x1

ϕW
z

, . . . ,
ϕW
xn

ϕW
z

, 1

)
· ϕW

z + F d

2

(
ϕW
x1

ϕW
z

, . . . ,
ϕW
xn

ϕW
z

, 1

)

ϕV
x1

:=
ϕW
x1

ϕW
z

...

ϕV
xn

:=
ϕW
xn

ϕW
z

.

(148)

We conclude that these definitions provide the sought after rational param-
etrization of V .
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