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Picard-Fuchs equations of families of QM

abelian surfaces

Amnon Besser and Ron Livné

We describe an algorithm for computing the Picard-Fuchs equation
for a family of twists of a fixed elliptic surface. We then apply this
algorithm to obtain the equations for several examples, which come
from families of Kummer surfaces over Shimura curves, as studied
in our previous work. We use this to find correspondences between
the parameter spaces of our families and Shimura curves.

1. Introduction

Let π : X → P1 be a family of complex algebraic varieties. As s ∈ P1 varies,
the periods of the fibers Xs, i.e., integrals of holomorphically varying dif-
ferential forms against a topologically constant family of homology classes,
satisfy a certain differential equation, known as the Picard-Fuchs equation,
whose coefficients are rational functions. These equations and their power
series solutions are interesting in several respects.

Many of the previously studied examples were families of elliptic curves
with some extra structure. Here we study families of abelian surfaces with
quaternionic multiplication over Shimura curves.

Let B be a division quaternion algebra over the field Q of rational num-
bers, which is indefinite in the sense that B ⊗Q R ∼= M2×2(R). Let M be a
maximal order in B. Then, the group Γ of norm one elements inM embeds
in SL2(R), via the embedding of B in M2×2(R), as a discrete congruence sub-
group. The quotients of the complex upper half plane H by Γ, and more gen-
erally by congruence subgroups Γ′ ⊂ Γ, are algebraizable as moduli spaces
of abelian surfaces whose endomorphism algebras are certain orders in M
(so called quaternionic multiplication, or QM, abelian surfaces), together
with some extra structures [11, Chapter 7]. Under mild assumptions these
quotients, known as Shimura curves, carry a universal family of such abelian
surfaces. Since equations for K3 surfaces are easier to write down than for
abelian surfaces, it is natural to consider instead the universal family of the
associated Kummer surfaces. These are obtained by taking the fiber by fiber
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quotient by multiplication by ±1, and blowing up the resulting singularities
at the two-torsion points. The universal families of these Kummer surfaces,
which we call QM Kummer surfaces, have the further advantage of exist-
ing in more cases than the universal families of the corresponding abelian
surfaces.

In trying to write explicit equations for QM Kummer surfaces, we were
led to study in [3] families of quadratic twists of a fixed elliptic surface (see
Section 3). We identified 11 such families explicitly related to QM Kummer
surfaces. Each of these is a family of varieties over P1 for which we know that
the generic fiber is isogenous, in a possibly complicated way, to a Kummer
surface associated with a QM abelian surface. Consequently, there is a cor-
respondence between the base spaces for these families, and Shimura curves.
In [3] we carried out a detailed analysis of this correspondence, which was
highly involved and required a delicate study of finite discriminant forms.

The main new ingredient in the present work is Algorithm 2, which
computes the Picard-Fuchs equation for a family of twists of a fixed elliptic
surface, together with Theorem 4.3, that proves its validity. A nice feature of
our algorithm is that it only requires knowledge of the Picard-Fuchs equation
of the elliptic surface which we twist. As input to our algorithm we thus need
a method for computing the Picard-Fuchs equation for an elliptic fibration.
We describe an algorithm for doing this borrowed from a MAPLE script
of F. Beukers. We furnish a proof that this algorithm works since we have
found no record of this in the literature.

After describing the algorithm and proving our main result, Theorem 4.3,
we apply the algorithm to the study of the families of QM Kummer surfaces
described above. In all of the examples we expect the resulting Picard-Fuchs
equation to be of degree 3, and furthermore to be the symmetric square (see
Section 5) of a degree 2 equation. This turns out indeed to be the case and
we list the resulting degree 2 differential equations.

On the Shimura curve side, these degree 2 equations have been studied
by Elkies in [5]. This suggests using these Picard-Fuchs equations to discover
and verify the correspondences (often isomorphisms) between the bases of
the families we study and the related Shimura curve. We describe a method
for doing this and apply it in all the examples. We note that while this
method falls short of a rigorous proof of the existence of a correspondence
between the underlying moduli problems, it is far easier than the analysis
carried out in [3]. In fact, we already used the results of the present work
in [3] to exclude some potential correspondences. Furthermore, we have one
example (no. 4 in Section 8) where the methods of this paper show the
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consistency of our conjectured isomorphism between the parameter spaces,
even though we still do not have a proof of this isomorphism.

2. The Picard-Fuchs equation

We briefly recall the Picard-Fuchs differential equation for a family of vari-
eties over a curve. For further details see for example [10].

Let C be a smooth complex analytic curve and let V/C be a local system
of C-vector spaces of dimension n over C. The locally free rank n OC-module
V := V ⊗C OC carries a canonical connection ∇ defined by the condition
that it vanishes on sections of V . We fix a meromorphic vector field d/dt on
C, e.g., the one associated with a rational parameter t if C = P1. Contracting
∇ along d/dt gives the covariant derivative operator

∇d/dt : V → V.

Let α be a meromorphic section of V. Since V has rank n, there is going
to be a relation

m∑
i=0

ai(∇d/dt)iα = 0

with m ≤ n and meromorphic functions ai on C. We may normalize this by
insisting that am = 1.

Suppose γ ∈ V ∗(U), for some open U ∈ C, where V ∗ is the dual of V .
The evaluation of γ on α, which we suggestively write as

∫
γ α, is a meromor-

phic function on U and is called a period of α. Since∇ vanishes on sections of
V it follows easily that the period y =

∫
γ α satisfies the differential equation

dm

dtm
y +

m−1∑
i=0

ai
di

dti
y = 0,

which is called the Picard-Fuchs equation associated with α.
When V comes from geometry, a bit more can be said. Suppose that

π : X → C is a smooth projective family of algebraic varieties, and that V
is the family of cohomology groups

V = Rlπ∗C

For some non-negative integer l. In this case, V is canonically identifies with
the vector bundle of de Rham cohomology groups,

V ∼= Rlπ∗Ω•X/C ,
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and the connection ∇ is identified with the Gauss-Manin connection on
the latter vector bundle. If C and π are algebraic, it follows easily that we
may take α to be an algebraic (meromorphic) section of V and that then
the coefficients ai in the Picard-Fuchs equation will be rational functions on
C. We will call this a Picard-Fuchs equation associated with the H l of the
family.

In geometric situations we may further take α to be a section in the
sub-bundle π∗Ω

l
X/C and we may take γ to be a family of Homology classes,

so that the associated period is now indeed the integral
∫
γ α.

In our applications, it will always be the case that the sub-bundle π∗Ω
l
X/C

will be of rank 1. Thus, α is determined up to a product by a rational
function. The Picard-Fuchs equation is in some sense unique then, since
we may recover easily the equation associated with such a product from
the equation for α (see also Section 6 for how to remove the remaining
ambiguity).

We can also consider Picard-Fuchs equations associated with sub-local
systems V ⊂ Rlπ∗C provided our chosen α resides in V ⊗OC .

We now describe the local systems considered in this work. Let H be
the complex upper half plane. Let πu : Eu → H be the universal family of
elliptic curves, whose fiber over τ ∈ H is

Euτ = C/Z〈1, τ〉.

We consider the resulting local system

Sh := R1π∗C,

which has a constant fiber C2. See [12, § 12] for a detailed discussion. Note
that πu∗Ω

1
Eu/H has the section dz, where z is the standard coordinate on C,

whose associated periods are 1 and τ , hence its Picard-Fuchs equation is
y′′ = 0.

Let Γ ⊂ SL2(R) be a discrete group, acting on H by fractional linear
transformations. It acts on Sh via the standard representation of SL2(R)
on C2. When Γ ⊂ SL2(Z) is a subgroup of finite index not containing −Id,
the quotient XΓ := Γ\H has a family EΓ := Γ\Eu of elliptic curves above it,
and both are algebraizable. Moreover, the quotient Γ\Sh is a local system
on XΓ, isomorphic to R1πΓ

∗C, with πΓ the induced projection.
Let B be an indefinite rational quaternion algebra and let Γ ⊂ B× be as

in the introduction. Let πu : Au → XΓ be the associated universal family of
abelian surfaces with quaternionic multiplication (ignoring for the time being
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the finite number of singular fibers over the elliptic points). Analytically, it
can be written as the quotient of C2 ×H, by the semi-direct product of Γ
and the additive group of a lattice in B. Then (see [2]) the local system
R2πu∗C splits as a direct sum of a 3-dimensional constant local system and
a system isomorphic to the symmetric square, Symm2(Sh), of Sh.

Recall that the Kummer surface associated to an abelian surface A is
the resolution of singularities of the quotient A/± 1 obtained by blowing
up the 16 singularities at the 2-torsion points. For any family πA : A→ X
of abelian surfaces, let πS : S = Kummer(A)→ X be the associated fam-
ily of Kummer surfaces. Then, the local system R2πS∗C splits as a sum
of R2πA∗ C and a 16-dimensional system coming from the blowups of the
singularities at the 2-torsion points. This 16-dimensional system is trivi-
alized by the finite covering given by the 2-torsion points. In particular,
when A = Au is the universal family over a Shimura curve we see that
R2πS∗C splits as a sum of Symm2(Sh) and a 19-dimensional system, triv-
ialized by a finite covering. Furthermore, we have an inclusion of sheaves,
πS∗Ω2

S/X ⊂ Symm2(Sh)⊗OXΓ
. Consequently the Picard-Fuchs equation sat-

isfied by the periods of a relative 2-form ω on S is going to be of degree 3,
and will be the symmetric square of a Picard-Fuchs equation of degree 2
associated with the local system Sh (see Section 5 for symmetric squares of
equations).

3. Elliptic surfaces and their Picard-Fuchs equations

An elliptic surface, which we shall only consider over P1, is a smooth and
connected compact complex algebraic surface E, together with a surjective
morphism π : E → P1, such that the generic fiber is a curve of genus 1. We
will always assume that the fibration is relatively minimal and has a given
section, denoted 0.

For all but a finite number of points s ∈ P1, the fiber Es = π−1(s) is an
elliptic curve. The singular locus Σ = Σ(E) of the fibration is the (finite)
subset of P1 over which the fibers are singular (namely, π is not everywhere
smooth). Kodaira [9] classified all possible types of singular fibers (see also
[1, Chapter V.7]).

The generic fiber of an elliptic surface may be given by a Weierstrass
equation of the form y2 = f(x), where f(x) = ax3 + bx2 + cx+ d and a,b,c,d
are rational functions of the parameter t on P1.

Given two distinct points α and β in P1, the quadratic twist Eα,β at
these points can be described in two ways. Algebraically, if E has Weier-
strass equation y2 = f(x) and α and β are finite points, then Eα,β has the
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Weierstrass equation

(3.1)
t− α
t− β

y2 = f(x).

Analytically, Eα,β can be described as follows. Take the double cover B′ →
P1 ramified at α and β and let E′ be the pullback surface. Now quotient E′

by the transformation which identifies the two fibers above each fiber of E
with sign −1 and resolve the evident singularities.

Definition 3.1. Let E → P1 be an elliptic surface as above with s ∈ Σ =
Σ(E). For λ ∈ P1 − Σ let Es,λ be the twisted family at s and at λ. These
surfaces vary in a family T Ws(E) over the λ-line P1(λ)− Σ.

The local system R1π∗C over P1 − Σ has dimension 2. Its dual is the
homological invariant (tensored with C) associated by Kodaira to the elliptic
surface, and we denote it by F .

A Picard-Fuchs equation for the H1 of a general elliptic surface E, cor-
responding to the invariant differential ω = dx/y, can be computed using
Algorithm 1. It is taken from a MAPLE script of F. Beukers (see Section 9).
We failed to find it documented anywhere so we give a short proof that it in-
deed works. Note that in this algorithm the quantities qi and cj are initially
variables but eventually get assigned values which are rational functions in t.

Algorithm 1: Computing a Picard-Fuchs equation for an elliptic
surface

Input: An elliptic surface given by a Weierstrass equation
y2 = ax3 + bx2 + cx+ d, with a, b, c, d rational functions of t

Output: The Picard-Fuchs equation y′′ + c1y
′ + c2y = 0 satisfied

by the periods of the invariant differential ω = dx/y

f ← ax3 + bx2 + cx+ d (f = f(t, x));

ft ← ∂f
∂t ;

ftt ← ∂ft
∂t ;

fx ← ∂f
∂x ;

q ← q4x
4 + q3x

3 + q2x
2 + q1x+ q0;

qx ← ∂q
∂x ;

e← −ftt·f
2 + 3f2

t

4 − c1
ft·f

2 + c2f
2 + 3fx·q

2 − f · qx;
C ← COEFFICIENTS(e, x);
(c1, c2, q0, q1, q2, q3, q4)← SOLVE(C = 0);
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We note that the equations to be solved in the last step of the algorithm
are in fact 7 linear equations in the 7 variables ci and qj , with coefficients
which are rational functions in t, so solving them is just linear algebra.

Proposition 3.2. Algorithm 1 gives the Picard-Fuchs equation for H1 of
the elliptic surface E.

Proof. We express y in terms of x as y = f(x)1/2. Applying the covari-
ant Gauss-Manin differentiation with respect to t amounts to differenti-
ating (after eliminating y) with respect to t. On the invariant differential
ω = f(x)−1/2dx we find

∇d/dtω = −1

2
f−

3

2 ftdx

∇2
d/dtω =

(
3

4
f−

5

2 f2
t −

1

2
f−

3

2 ftt

)
dx.

Now we may write the general differential operator of degree 2 applied to ω,

∇2
d/dtω + c1(t)∇d/dtω + c2(t)ω(3.2)

=

(
3

4
f−

5

2 f2
t −

1

2
f−

3

2 ftt −
1

2
c1f
− 3

2 ft + c2f
− 1

2

)
dx.

For the appropriately chosen c1 and c2 this will give a trivial de Rham
cohomology class on E/P1. Reduction theory (see for example [8]) tells us
that it is going to be the (relative) differential of a rational function of the
form q(x)/yn and examining the poles at the 2-torsion points shows that
one can take n = 3 and q a polynomial of degree at most 4. This is given by

(3.3) d
q(x)

y3
= d

q(x)

f3/2
=

(
−3

2
q · f−

5

2 · fx + qxf
− 3

2

)
dx.

To find the Picard-Fuchs equation, we equate (3.2) to (3.3), multiply by
f5/2 to clear denominators. This gives the quantity e in the algorithm. Then
we simply solve e = 0, identically in x, expressing the ci’s and qj ’s in terms
of t. �

To illustrate the algorithm, we consider the elliptic surface which is number 9
on our list. It has equation y2 = f with f = 4x3 − 3t2(9t2 − 8)x− t2(27t4 −
36t2 + 8). Then ft = −2t(8 + 81t4 − 24x+ 18t2(3x− 4)) and ftt = −16−
810t4 + 48x− 108t2(3x− 4), fx = 3(8t2 − 9t4 + 4x2). We consider a general
degree 4 polynomial q = q0 + q1x+ q2x

2 + q3x
3 + q4x

4 and its derivative
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qx = q1 + 2q2x+ 3q3x
2 + 4q4x

3. Then, the equation obtained from equat-
ing (3.2) to (3.3) multiplied by f5/2 becomes

16c2x
6 + ((216t3 − 96t)c1 + (192t2 − 216t4)c2 + 648t2 − 96)x4

+ ((324t5 − 288t3 + 32)t+ (−216t6 + 288t4 − 64t2)c2

+ 1620t4 − 864t2 + 32)x3 + ((−1458t7 + 1944t5 − 576t3)c1

+ (729t8 − 1296t6 + 576t4)c2 + 4374t6 − 3240t4 + 1152t2)x2

+
(
(−3645t9 + 6480t7 − 3240t5 + 384t3)c1

+ (1458t10 − 3240t8 + 2160t6 − 384t4)c2

+ 10935t8 − 12960t6 + 5400t4 − 768t2
)
x

+ (−2187t11 + 4860t9 − 3456t7 + 864t5 − 64t3)c1

+ (729t12 − 1944t10 + 1728t8 − 576t6 + 64t4)c2

+ 8748t10 − 14580t8 + 8208t6 − 1440t4 + 128t2

= −2q4x
6 − 6q3x

5 +

(
−10q2 +

(
−135

2
t4 + 60t2

)
q4

)
x4

+ (−14q1 +

(
−81

2
t4 + 36t2

)
q3 + (−108t6 + 144t4 − 32t2)q4)x3

+ (−18q0 +

(
−27

2
t4 + 12t2

)
q2 + (−81t6 + 108t4 − 24t2)q3)x2

+

((
27

2
t4 − 12t2

)
q1 + (−54t6 + 72t4 − 16t2)q2

)
x

+

(
81

2
t4 − 36t2

)
q0 + (−27t6 + 36t4 − 8t2)q1

We equate the coefficients of the respective powers of x and solve the result-
ing equations to get the unique solution

q0 =
32t2

3(t2 − 1)

q1 = −4
−16 + 180t2 − 378t4 + 243t6

9(t2 − 1)

q2 = −2
40− 99t2 + 81t4

3(t2 − 1)

q3 = 0

q4 = −8
1 + 9t2

9t2(t2 − 1)

c1 =
3t2 − 1

t(t2 − 1)
, c2 =

9t2 + 1

9t2(t2 − 1)
.
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4. The Picard-Fuchs equation for a family of twists

In this section we prove our main theorem, Theorem 4.3, which describes
the differential equation satisfied by the periods of the H2 of the family of
twists T Ws(E), described in Definition 3.1, of a fixed elliptic surface E. We
will in fact show that the periods for this H2 can be recovered from the
periods for H1 of E and the differential equation can be recovered solely
based on a Picard-Fuchs equation for H1 of E.

To simplify the notation, we assume that s = 0, i.e., that the twists
are at 0 and a varying point. Recall from the description following (3.1)
that E0,λ can be obtained from E as follows: One takes a double covering
πλ : B′ → P1 which is ramified exactly over 0 and λ. Let dλ : B′ → B′ be the
deck transformation of the covering. One considers the pullback π∗λE and
takes the quotient π∗λE/Dλ where Dλ is the map (s, e) 7→ (dλ(s),−e), i.e.,
the map that identifies the fibers at s and dλ(s) but via the map −1. The
result may have singularities at the fixed points 0 and λ of dλ and resolving
them one obtains E0,λ. We henceforth ease notation and write Eλ for E0,λ.

We now write a particular homology class Γλ ∈ H2(Eλ,C). We will ob-
tain Γλ by modifying a fixed homology class Γ′ ∈ H2(E,C). In fact, we take
Γ′ in H1(P1 − Σ, F ), where F is the homological invariant (see Section 3).
An element of H1(P1 − Σ, F ) consists of a formal sum

∑
(γi, xi) where γi

are paths in P1 − Σ and xi is a section of Fγi , in such a way that the obvious
boundary map vanishes. Write the one form on the elliptic surface E, dx/y,
as a family of differential forms ωt and consider the function Gi on the path
γi given at a point t by Gi(t) =

∫
xi(t)

ωt.

Having fixed Γ′ we can write a family of 2-homology classes Γλ in
H2(Eλ,C) as follows. Each path γi can be pulled back to B′. If one of
the pullbacks is δi then the other one is dλ(δi). The section xi pulls back to
both of these lifts. Since we identify the fiber at s with the fiber at dλ(s) via
the map −1 and since −1 acts as −1 on the first homology it is clear that
Γ′λ :=

∑
(δi, xi) +

∑
(dλ(δi),−xi) descends to the required homology class

Γλ ∈ H2(Eλ,C).
Let us now write explicitly a period associated with this homology class.

We first need to choose a holomorphic differential 2-form ηλ on Eλ. We have
a 2-form on E, η = ωt ∧ dt. We can write an affine model for B′, the double
cover of P1 ramified at 0 and λ, as s2 = t(t− λ). The form s−1 · π∗λ has the
right behavior with respect to deck transformations and therefore descends
to the required form ηλ on Eλ. Note that multiplying by s−1 eliminates the
zeroes that dt acquires from the ramified cover. We now compute the period
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∫
Γλ
ηλ. An easy computation shows this is equal to∫

Γ′
λ

s−1π∗λη

=
∑
i

(∫
δi

s−1Gi(πλ(s))π∗λdt+

∫
dλδi

s−1(−Gi(πλ(s)))π∗λdt

)
= 2

∑
i

∫
δi

s−1Gi(πλ(s))π∗λdt

= 2
∑
i

∫
γi

(t(t− λ))−1/2Gi(t)dt.

Dividing by 2 we get the period

u(λ) :=
∑∫

γi

(t(t− λ))−1/2Gi(t)dt.

Our goal is now to compute a differential equation satisfied by u. In doing
so, we will only use the fact that the Gi satisfy the Picard-Fuchs equation
for the elliptic family E, an equation of degree 2 of the form

(4.1) y′′ + b1(t)y′ + b2(t)y = 0,

with bi rational functions of t. The computation is inspired by the compu-
tation in [4, 2.10].

Lemma 4.1. Suppose y = y(t) satisfies (4.1). Then, for a fixed λ, the func-
tion z = zλ(t) := (t(t− λ))−1/2y satisfies the equation

z′′ + αλ(t)z′ + βλ(t)z = 0

(derivatives with respect to t) with

αλ(t) = b1(t) +
2t− λ
t(t− λ)

βλ(t) = b2(t) + b1(t)
2t− λ

2t(t− λ)
− λ2

4t2(t− λ)2
.

Proof. A straightforward computation. �
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Suppose now that we are given two rational functions p(t) = pλ(t) and
q(t) = qλ(t). We have, deriving with respect to t,

(pz + qz′)′ = p′z + (p+ q′)z′ + qz′′.

If we impose the relation

(4.2) p+ q′ = αλq,

then we can write

p′z + (p+ q′)z′ + qz′′ = p′z + q(z′′ + αλz
′) = p′z − qβλz,

by using the differential equation for z. The relation (4.2) gives p = αq − q′
so that p′ = α′q + q′α− q′′ and we finally end up with the relation

(pz + qz′)′ = (α′q + q′α− q′′ − qβ)z.

Now, we can do the following: We have u(λ) =
∑∫

γi
zλ(t)dt. Since z depends

on λ only through division by
√
t− λ, we easily get by differentiating n times

with respect to λ inside the integral sign,

(4.3)
dnu

dλn
=

1 · 3 · · · · · (2n− 1)

2n

∑
i

∫
γi

z

(t− λ)n
dt.

Lemma 4.2. There is a choice for q such that we may expand α′q + q′α−
q′′ − qβ as a polynomial in (t− λ)−1 with coefficients which are rational
functions of λ,

(4.4) α′q + q′α− q′′ − qβ =
∑
n

cn(λ)(t− λ)−n.

Proof. First let q0 be the least common multiple of the denominators of α
and β as rational functions of t. Then, α′q0 + q′0α− q′′0 − q0β is a polyno-
mial in t and can therefore also be written as a polynomial in t− λ, with
coefficients which are rational functions of λ. Suppose that this polynomial
has degree m. Then, we may simply take q = q0(t− λ)−m. �

We may modify the paths γi to homotopic paths making sure that
√
t− λ

is single valued on each path. Also, the sums of the monodromies of the Gi
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around the paths γi is 0 because Γ′ is closed. Thus, we have,

0 =
∑
i

∫
γi

d

dt

(
pλzλ + qλ

d

dt
zλ

)
dt

=
∑
i

∫
γi

(
dαλ
dt

qλ +
dqλ
dt
αλ −

d2qλ
dt2
− qλβλ

)
zλdt

=
∑
i

∫
γi

∑
n

cn(λ)(t− λ)−nzλdt

=
∑
n

cn(λ)
∑
i

∫
γi

zλ
(t− λ)n

dt

=
∑
n

c̃n(λ)
dnu

dλn
,

by (4.3), with

c̃n(λ) =
2n

1 · 3 · · · · · (2n− 1)
cn(λ).

We have therefore proved the following.

Theorem 4.3. Let E be an elliptic surface whose periods satisfy the dif-
ferential equation (4.1). Then, algorithm 2 computes a differential equation
with polynomial coefficients satisfied by a non-trivial period for H2 of the
family T W0(E).

To demonstrate algorithm 2, we continue with the example that we used
to demonstrate algorithm 1, resulting in a Picard-Fuchs equation y′′ + b1y

′ +
b2y = 0 with b1 = (1−3t2)

(t−t3) , b2 = (1+9t2)
(9t2(t2−1)) . We compute the quantities

α = b1 +
2t− λ
t(t− λ)

=
2λ− 3t− 4λt2 + 5t3

t(t− λ)(t2 − 1)

β = b2 + b1
2t− λ

2t(t− λ)
− λ2

4t2(t− λ)2

=
16t2(9t2 − 2) + λ2(81t2 − 5) + λ(46t− 234t3)

36(λ− t)2t2(t2 − 1)
.

The denominators of α and β are respectively t(t− λ)(t2 − 1) and 36(λ−
t)2t2(t2 − 1) with a least common multiple of q0 = −36(λ− t)2t2(t2 − 1). It
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Algorithm 2: Computing a differential equation for periods of
T W0(E)

Input: A Picard-Fuchs equation y′′ + b1(t)y′ + b2(t)y = 0 for an
elliptic surface E

Output: A vector c̃ such that a Picard-Fuchs equation for the
family of twists T W0(E) is given by

∑
n c̃n(λ)d

nu
dλn

α← b1(t) + 2t−λ
t(t−λ) ;

β ← b2(t) + b1(t) 2t−λ
2t(t−λ) −

λ2

4t2(t−λ)2 ;

q0 ← LCM(DENOMINATOR(α),DENOMINATOR(β));
pol0 ← α′q0 + q′0α− q′′0 − q0β (derivatives w.r.t. t);
m← DEG(pol0);
q ← q0(t− λ)−m;
pol← (α′q + q′α− q′′ − qβ)t←s+λ (derivatives w.r.t. t);
cn(λ)← COEFFICIENT(s−n in pol);
c̃n(λ)← 2n

1·3·····(2n−1)cn(λ);

then suffices to take m = 3 and obtain

q = q0(λ− t)−3 =
36t2(t2 − 1)

λ− t
.

Now we compute

α′q + q′α− q′′ − qβ =
32t2 + λ2(5− 81t2) + λ(98t− 54t3)

(λ− t)3

and changing variables t = s+ λ we get

pol = 54λ− 135λ2s−3 + 135λ4s−3

− 162λs−2 + 324λ3s−2 − 32s−1 + 243λ2s−1.

We consider the coefficients of s−n for n = 0, 1, 2, 3, and multiply them
by 1, 2, 4/3, 8/15 respectively to obtain the coefficients of the Picard-Fuchs
equation for the family of twists: c3y

′′′ + c2y
′′ + c1y

′ + c0y = 0 with

c3 = 72λ2(λ2 − 1), c2 = 216λ(2λ2 − 1), c1 = 486λ2 − 64, c0 = 54λ.
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5. K3 surfaces

In [3] we studied a particular class of elliptic fibrations. Out of the list of el-
liptic fibrations with 4 singular fibers compiled by Herfurtner [6], we picked
out the ones for which the twists give K3 surfaces, generically with Picard
number 19. These K3 surfaces are then isogenous to Kummer surfaces asso-
ciated with Abelian surfaces whose isogeny algebra is a rational quaternion
algebra. We further picked out only the examples in which the quaternion
algebra in question is indefinite. There are 11 examples, which we list below
(Table 1, see also [3, Table 1]). The method for deciding which families of
twists correspond to quaternion algebras and the method for determining
the discriminant of the associated algebra are detailed in [3, Proposition 2
and Lemma 2].

As discussed in Section 2, for each of the examples above, the resulting
Picard-Fuchs equation should be of degree 3 and should be a symmetric
square of a degree 2 equation, which is a Picard-Fuchs equation for the
Shimura local system descended to the base. In this section we verify that
this is indeed the case, and we compute the degree 2 equations.

Symmetric squares of differential equations are considered, for example
in [10, Example 6.5.2]. Given a differential equation of degree 2, y′′ + ay′ +
by = 0, one looks for the equations satisfied by z = y2. The result is

z′′′ + αz′′ + βz′ + γz = 0(5.1)

with α = 3a, β = 4b+ 2a2 + a′, γ = 4ab+ 2b′.

If we are given a differential equation of degree 3, we can check if it is a
symmetric square of one of degree 2 and find the “square root” as described
in Algorithm 3.

Algorithm 3: Taking the square root of a degree 3 differential
equation

Input: A differential equation z′′′ + αz′′ + βz′ + γz = 0
Output: A differential equation y′′ + ay′ + by = 0 whose

symmetric square equals the input equation, if it exists

a← α/3;
b← (β − 2a2 − a′)/4;
c← γ − 4ab− 2b′;
if c 6= 0 the equation is not a square



i
i

“5-Besser” — 2019/1/4 — 10:45 — page 843 — #15 i
i

i
i

i
i

Picard-Fuchs equations of families of QM abelian surfaces 843

Not surprisingly, in all 11 examples, the resulting differential equation
turns out to be the symmetric square of an equation of degree 2. As an
example, consider the differential equation obtained in Section 4 for the
twists in example 9. We first normalize the equation to get the equation
z′′′ + αz′′ + βz′ + γz = 0 with

α = 3
(2λ2 − 1)

λ(λ2 − 1)
, β =

243λ2 − 32

36λ2(λ2 − 1)
, γ =

3λ

4λ2(λ2 − 1)
,

and then apply the algorithm to get

a =
(2λ2 − 1)

λ(λ2 − 1)
, b =

4 + 27λ2

144λ2(λ2 − 1)
,

and c = 0, so that this is indeed the square of the equation

y′′ +
(2λ2 − 1)

λ(λ2 − 1)
y′ +

4 + 27λ2

144λ2(λ2 − 1)
y = 0.

In Table 1 below we list the examples together with the resulting equa-
tions of degree 2 (one can recover the degree 3 equation using (5.1)).

The first column is the example number, which is the same as in Table 1
in [3]. The second column gives the types of singular fibers for the based
elliptic surface and their locations and the third column gives the coefficients
of the degree 2 equation. The final column gives the expected discriminant

for the associated quaternion algebra. In the table γ =
−(1+

√
−2)

4

3 and δ =
(1+
√
−7)

7

512 . Conjugates for such elements are over Q.

6. Schwarzian derivatives

Our goal in the rest of this work is to compare the differential equations
that we obtained in the previous section to those obtained by Elkies in [5].
One essential problem is that the equation depends in an essential way on
the choice of the section of the de Rham bundle. Even if, as is the case for
us, the choice is between different sections of a line bundle, it still means
that the periods could be multiplied by an arbitrary rational function. To
compare two differential equations it is best to compare quantities which are
invariant with respect to such scaling.

This can be done as follows for equations of degree 2. Consider the quo-
tient of two independent solutions. This is invariant with respect to scaling.
It depends of course on the choice of the two solutions, but only up to a
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1
I1, I1, I8, II
γ, γ̄,∞, 0
3
4 ,

3
4 ,

3
4 ,

35
36

a = 27−21λ+6λ2

27λ−14λ2+3λ3 , b = 3(−1−6λ+3λ2)
16λ2(27−14λ+3λ2) 6

2
I1, I2, I7, II
−9
4 ,
−8
9 ,∞, 0

3
4 ,

3
4 ,

3
4 ,

35
36

a = 144+339λ+144λ2

144λ+226λ2+72λ3 , b = −2+36λ+27λ2

4λ2(72+113λ+36λ2) 6

3
I1, I4, I5, II
−10, 0,∞, 1

8
3
4 ,

3
4 ,

3
4 ,

35
36

a = −5+119λ+16λ2

λ(−10+79λ+8λ2) , b = 6(−1+7λ+2λ2)

(1−8λ)2λ(10+λ)
15

4
I2, I3, I5, II
−5
9 , 0,∞, 3

3
4 ,

3
4 ,

3
4 ,

35
36

a = 15+39λ−36λ2

30λ+44λ2−18λ3 , b = −23−246λ+81λ2

48(−3+λ)2λ(5+9λ)
10

5
I1, I1, I7, III
δ, δ̄,∞, 0
3
4 ,

3
4 ,

3
4 ,

15
16

a = 64+39λ+16λ2

64λ+26λ2+8λ3 , b = −2+4λ+3λ2

4λ2(32+13λ+4λ2) 14

6
I1, I2, I6, III
4, 1,∞, 0
3
4 ,

3
4 ,

3
4 ,

15
16

a = 8−15λ+4λ2

2λ(4−5λ+λ2) , b = −1−6λ+3λ2

16λ2(4−5λ+λ2) 6

7
I1, I3, I5, III
−25

3 , 0,∞, 1
5

3
4 ,

3
4 ,

3
4 ,

15
16

a = 25−369λ−60λ2

50λ−244λ2−30λ3 , b = −167+630λ+225λ2

16(1−5λ)2λ(25+3λ)
6

8
I2, I3, I4, III
−1
3 , 0,∞, 1

3
4 ,

3
4 ,

3
4 ,

15
16

a = 1+3λ−12λ2

2λ+4λ2−6λ3 , b = −1−9λ+9λ2

16(−1+λ)2(λ+3λ2)
6

9
I1, I1, I6, IV
1,−1,∞, 0
3
4 ,

3
4 ,

3
4 ,

8
9

a = 1−2λ2

λ−λ3 , b = 4+27λ2

144λ2(−1+λ2) 6

10
I1, I2, I5, IV
−27

4 , −1
2 ,∞, 0

3
4 ,

3
4 ,

3
4 ,

8
9

a = 27+87λ+16λ2

27λ+58λ2+8λ3 , b = −3+16λ+6λ2

4λ2(27+58λ+8λ2) 10

11
I3, I3, I2, IV
∞, 0,−1, 1
3
4 ,

3
4 ,

3
4 ,

8
9

a = −1+λ+4λ2

2(−λ+λ3) , b = −13−22λ+27λ2

144(−1+λ)2(λ+λ2)
6

Table 1: Twists of elliptic surfaces.
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fractional linear transformation. Applying the Schwarzian derivative, to be
recalled next, removes this ambiguity. Our reference for this material is [5]
(see also [7]).

Definition 6.1. The Schwarzian derivative of a function z = z(ζ) with
respect to the parameter ζ is the function [5, (13)]

Sζ(z) =
2z′z′′′ − 3(z′′)2

(z′)2

where derivatives are with respect to ζ.

We recall the following relevant results

Proposition 6.2. 1) If z1 is obtained from z by a fractional linear trans-
formation, then Sζ(z1) = Sζ(z).

2) If z is the quotient of a basis of solutions to the differential equa-
tion y′′ + ay′ + by = 0, derivative taken with respect to ζ, then the
Schwarzian derivative of z, which is independent of the choice of so-
lutions by the first part, is given by [5, (17)]

Sζ(z) = 4b− a2 − 2a′.

This gives our required invariant. To describe the dependency of the
Schwarzian derivative on the parameter ζ, it is better to replace Sζ(z) by
the quadratic differential

(6.1) σζ(z) = Sζ(z)(dζ)2.

Suppose now that ζ is a function of η. Then we have the formula [5, (14)]

Sη(z) =

(
dζ

dη

)2

Sζ(z) + Sη(ζ)

and thus

(6.2) ση(z) = σζ(z) + ση(ζ).

Suppose now that we have a local system over a curve X, giving rise,
using a local parameter ζ, to a Picard-Fuchs equation of degree 2. Let z
be the quotient of two basis elements of solutions, giving rise to a sigma
invariant σζ(z); It depends only on the local system and the parameter ζ.
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Let us pull back the system to a curve Y with local parameter η, so that ζ is
a function of η. The periods remain the same, so the corresponding quotient
of solutions is still z, pulled back to Y , and we may write the associated
sigma invariant with respect to η, ση(z), which is determined from the sigma
invariant on X using (6.2). Thus, if we suspect that a local system on Y is
the pull back of the local system on X via a given morphism we can use
sigma invariants and (6.2) to confirm (but not prove!) this suspicion.

Suppose now that we want, in the situation above, to guess the formula
for a morphism that will pull back a given system on X to a given system on
Y . We will derive from the sigma invariant a certain residue which will have
a very simple behavior with respect to morphisms and will make it easy to
guess such a morphism.

A quadratic differential σ = f(ζ)(dζ)2 has a well defined residue, denoted
res(σ), which is the coefficient of ζ−2 in f . With a change of variable ζ = ζ(η)
which has order n the residue is multiplied by a factor of n2.

Suppose now that ζ = ηn. Then, by (6.1),

Sη(ζ) = 2
n(n− 1)(n− 2)ηn−3

nηn−1
− 3

(
n(n− 1)ηn−2

nηn−1

)2

= η−2
(
2(n− 1)(n− 2)− 3(n− 1)2

)
= η−2

(
2(n2 − 3n+ 2)− 3(n2 − 2n+ 1)

)
= η−2(1− n2),

and therefore ση(ζ) = (1− n2)(dη/η)2. Therefore, using (6.2), if the residue
of σζ(z) is α then the residue of ση(z) is

(6.3) n2α+ (1− n2) = 1− n2(1− α).

This leads to the following.

Definition 6.3. The Schwarzian residue of a quadratic differential σ is
given by the formula

ress(σ) = 1− res(σ).

By (6.3) we have

Proposition 6.4. if ζ = ζ(η) is a change of variables of degree n then

resS ση(z) = n2 resS σζ(z).
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We observe in particular that the Schwarzian residue of the sigma in-
variant of a local system is independent of parameter and under pullback it
will multiply by n2 at a point where the ramification index is n. Note that
at points where the differential is holomorphic the Schwarzian residue is 1
and not 0.

In our examples, the local system pulls back to the Shimura local system
Sh over the upper half plane H. Recall that the Picard-Fuchs equation with
respect to the standard parameter on H of this system is simply y′′ = 0 and
the sigma invariant is 0 so the Schwarzian residue is 1 at every point. Thus,
for our systems, the Schwarzian residue at every point is always 1/n2 for
some positive integer n, which we call the Schwarzian index at the point. It
is, of course, just the ellipticity index of the point.

In the following table we list for the examples we have the sigma in-
variant (with respect to the parameter λ, neglecting the dλ2 term, and the
Schwarzian indices at points when it is bigger than 1 (where the original
fibration had a singular fiber).

7. The results of Elkies

In [5] Elkies computes certain differential equations associated with Shimura
curves. While this is not stated explicitly, these are exactly the Picard-
Fuchs equations associated with the Shimura local system descended to the
Shimura curve because the quotient of the two solutions gives the coordi-
nate τ on the upper half plane, just as for the Shimura local system, as in
Section 2.

We briefly list the types of Shimura curves considered. For more infor-
mation one may consult [5] or [3] (our notation is consistent with the latter
reference). For each discriminant D (always the product of an even number
of primes) the Shimura curve VD is the quotient of the upper half plane by
the group Γ of norm one elements in a maximal order in a quaternion alge-
bra of discriminant D (see the introduction). For each prime p|D it carries
a modular involution wp and these involutions commute with each other so
that we can also set wn =

∏
p|nwp for n|D. We let V ∗D be the quotient of VD

by the group generated by all its modular involutions. Finally, for a prime p
which does not divide D there is a modular curve VD,p, which corresponds to
an additional “Γ0(p)” structure, This retains all of the previous involutions
but has an additional involution wp.

In table 3 we give, for each relevant curve, the equation that Elkies finds,
the associated sigma invariant and the Schwarzian indices at the relevant
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1
γ, γ̄,∞, 0
2, 2, 2, 6

3(945−652λ+142λ2−60λ3+9λ4)

4λ2(27−14λ+3λ2)2

2
−9
4 ,
−8
9 ,∞, 0

2, 2, 2, 6
20160+42008λ+41331λ2+17388λ3+3888λ4

4λ2(72+113λ+36λ2)2

3
−10, 0,∞, 1

8
2, 2, 2, 6

3(25−210λ+2179λ2+216λ3+16λ4)

(1−8λ)2λ2(10+λ)2

4
−5
9 , 0,∞, 3

2, 2, 2, 6
2025+4295λ+9156λ2−1809λ3+729λ4

12(−3+λ)2λ2(5+9λ)2

5
δ, δ̄,∞, 0
2, 2, 2, 4

3840+2072λ+43λ2+220λ3+48λ4

4λ2(32+13λ+4λ2)2

6
4, 1,∞, 0
2, 2, 2, 4

3(20−33λ+28λ2−7λ3+λ4)

4λ2(4−5λ+λ2)2

7
−25

3 , 0,∞, 1
5

2, 2, 2, 4
15(125−675λ+4244λ2+501λ3+45λ4)

4(1−5λ)2λ2(25+3λ)2

8
−1
3 , 0,∞, 1

2, 2, 2, 4
3(1+3λ+13λ2−6λ3+9λ4)

4(−1+λ)2(λ+3λ2)2

9
1,−1,∞, 0
2, 2, 2, 3

32+49λ2+27λ4

36λ2(−1+λ2)2

10
−27

4 , −1
2 ,∞, 0

2, 2, 2, 3
648+1824λ+3157λ2+476λ3+48λ4

λ2(27+58λ+8λ2)2

11
∞, 0,−1, 1
2, 2, 2, 3

27+5λ+64λ2+5λ3+27λ4

36λ2(−1+λ2)2

Table 2: Sigma invariants and Schwarzian indices.

points. The equations of Elkies are in non-normalized form ay′′ + by′ + cy =
0, so one needs to normalize first before computing the sigma invariant.

Here δ1 is a solution to the equation 16t2 + 13t+ 8 = 0.
For discriminant 6 Elkies does not write down the equation explicitly,

though he gives a recipe to discover one of 4 possible equations. As he notes,
however, since there are only 3 elliptic points, the sigma invariant is uniquely
determined by the indices of ellipticity. Suppose that these are at t = 0, 1,∞.
The most general form of σ is

σ =

(
a

t2
+

b

(t− 1)2
+
c

t
+

d

t− 1

)
(dt)2
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V ∗10

t(t− 2)(t− 27)y′′

+10t2−203t+216
6 y′

+( 7t
144 −

7
18)y = 0

σ = 10368−7296 t+3157 t2−119 t3+3 t4

4 (−27+t)2 (−2+t)2 t2

27, 2,∞, 0
2, 2, 2, 3

V ∗14

t(16t2 + 13t+ 8)y′′

+(24t2 + 13t+ 4)y′

+(3
4 t+ 3

16)y = 0

σ = 192+440 t+43 t2+1036 t3+960 t4

4 t2 (8+13 t+16 t2)2

δ1, δ̄1, 0,∞
2, 2, 2, 4

V ∗15

(t− 81)(t− 1)ty′′

+(3t2

2 − 82t+ 81
2 )y′

+( t
18 −

1
2)y = 0

σ = 35t4−3680t3+244242t2−244944t+177147
36(t−81)2(t−1)2t2

1, 81, 0,∞
2, 2, 2, 6

Table 3: Elkies’s list of differential equations.

and one has the condition c+ d = 0 to avoid a pole of order 3 at ∞. The
residues are a, b and a+ b+ d at 0, 1 and∞ respectively, from which all the
coefficients are easily determined. In the case at hand, Elkies chooses the
coordinate t so that the indices are 2, 4, 6 at 0, 1 and ∞ respectively. This
gives

σ =

(
3

4t2
+

15

16(t− 1)2
+

103

144t
− 103

144(t− 1)

)
(dt)2.

8. comparison with the results of Elkies

In this section we compare Elkies’s list with the list of differential equations
we obtained in Section 5. Let us explain more precisely what we mean by
this. In each of our 11 examples we have a family of K3 surfaces over P1. In
their relative H2’s we have identified a certain rank 3 sub-local system and
we know that is is the symmetric square of another, rank 2, local system.
Finally, we computed a Picard-Fuchs equation for this rank 2 system. On the
other hand, over each Shimura curve V there is a family of abelian surfaces
with quaternionic multiplication and in its relative H1 there is a certain
rank 2 local system. Elkies implicitly computes a Picard-Fuchs equation for
these systems.

Algebraic Geometry [3] tells us that for each of the 11 examples there is
a Shimura curve V such that every K3 surface appearing as a fiber of the
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family is related to a Kummer surface of a QM abelian surface appearing in
the universal family above V . This gives rise to a correspondence between
the projective line at the base of the family of K3 surfaces and V , which is
of the form V ← X → P1.

Algebraic Geometry further tells us that the rank 2 local system will be
preserved under the correspondence, so that the pullbacks of the two systems
to X will be isomorphic. Having only this information at hand, in addition
to the computed sigma invariants of the systems on both V and P1, the
transformation formula (6.2) and the behavior of the Schwarzian indices, we
attempt in this section to find the required correspondence, or at least a list
of possible correspondences. We are satisfied if we find a correspondence such
that the pullbacks of the two sigma invariants to X are the same. This is not
a proof that the correspondence is the correct one, a fact which then needs
to be established by more precise means [3, Section 8]. It can nevertheless be
used to exclude certain possible correspondences (see [3, Subsection 8.2]). In
what follows we indicate our guess for the correspondence, point that it is
indeed compatible with the sigma invariants (which can be checked directly
using (6.2)) and note if we have identified the correspondence on the level
of moduli problems in [3].

No. 10 - Corresponds to discriminant 10. The correspondence has to
carry the special points of the fibration at λ = −27/4,−1/2,∞,0 with respec-
tive Schwarzian indices 2, 2, 2, 3 to the special points t = 27, 2,∞, 0 with the
same respective indices for the equation that Elkies finds for V10/(w5, w2). It
is trivial to guess the relation t = −4λ. A change of variables for the sigma
invariants confirms this. It can be proved rigorously (see [3, Subsection 8.3])
that the λ-line is isomorphic to V14/(w2, w5)

No. 5 - Corresponds to discriminant 14. The correspondence has to carry
the special points of the fibration at λ = δ, δ̄,∞, 0 with respective Schwarzian
indices 2, 2, 2, 4 to the special points t = δ1, δ̄1, 0,∞ with the same respec-
tive indices for the equation that Elkies finds for V14/(w7, w2). Since δ is
a solution of the equation 4x2 + 13x+ 32 = 0 it is easy to guess the rela-
tion t = 2/λ. A change of variables for the sigma invariants confirms this. It
can be proved rigorously (see [3, Subsection 8.1]) that the λ-line is indeed
isomorphic to the Shimura curve V14/(w2, w7).

No. 3 - Corresponds to discriminant 15. The correspondence has to carry
the special points t = 1, 81, 0,∞ with respective Schwarzian indices 2, 2, 2, 6
for the equation that Elkies finds for V15/(w5, w3) to the special points of
the fibration at λ = −10, 0,∞, 1/8 with the same indices. This can be done
with the change of variables λ = t−81

8t and a change of variables for the sigma
invariants confirms this. It can be proved rigorously (see [3, Lemma 10]).
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No. 4 - Corresponds to discriminant 10. In this case we speculated (but
could not prove) that the λ-line was the curve V10,3/〈w2, w5, w3〉. Here we
show this is consistent with the Picard-Fuchs equations. According to Elkies,
the curve V10,3/〈w2, w5〉 is a degree 4 cover of V ∗10, rational with a coordinate
x such that

t =
(−6 + 6x)3

(1 + x)2 (17− 10x+ 9x2)

(this is equation (57) in [5] but the 7 there should be corrected to 17, as
for example in the computation between equations (59) and (60)). From the
expression

63

9τ + 8
with τ =

(3x2 + 5)2

9(x− 1)3

which is also from (57) in [5], it is easy to see that the map x→ t sends
1,∞,−1, 5 to 0, 0,∞, 2 with multiplicities 3, 1, 2, 2 respectively, ±

√
−5/3 to

27 with multiplicity 2, the two roots of 9x2 − 10x+ 5 = 0 to 2 with mul-
tiplicity 1, and the two roots of 9x2 − 10x+ 17 = 0 to ∞ with multiplic-
ity 1. Thus, the elliptic points for V10,3/〈w2, w5〉 are going to be at x =∞
with multiplicity 3 and at the roots of the equations 9x2 − 10x+ 5 = 0 and
9x2 − 10x+ 17 = 0 with multiplicity 2. The involution w3 is given by Elkies,
just after (57), to be w3(x) = 10

9 − x and so a coordinate on the quotient is
given by

ζ = 9

(
x− 5

9

)2

= 9x2 − 10x+
25

9
.

We see that the elliptic points will map to ζ =∞,−20/9,−128/9, so these
will be elliptic of degree 6, 2, 2, and in addition the ramification point 0 is
elliptic of degree 2. We can map ζ to λ with the correct orders of ramification
by

λ = 3− 128

3ζ + 128
3

= 3− 128

3(9x2 − 10x+ 17)
.

This is confirmed by the matching of the sigma invariants.
Other examples correspond to discriminant 6. Some of them are directly

interrelated. Consider examples number 6 and 8. The special points are
λ1 = 4, 1,∞, 0 and λ2 = −1/3, 0,∞, 1 respectively with the same indices.
There is a finite number of ways to carry one set to the other preserving
the indices, and testing each one using the sigma invariants we get the
correct transformation λ1 = 1− 1/λ2. It turns out (see [3, Subsection 8.7])
that making this change of variable makes the two base elliptic fibrations
isogenous.
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Consider next examples 9 and 11. The special points in both cases are
∞, 0,−1, 1 but with indices 2, 3, 2, 2 in example 9 and 2, 2, 2, 3 in example 11.
Testing again the finite number of possible transformations with the sigma
invariants gives λ2 = (1 + λ1)/(1− λ1). It is proved in [3, Subsection 8.8]
that this again makes the two base fibrations isogenous. Thus, we do not
need to consider examples 8 and 11, being isogenous to 6 and 9 respectively.

No. 6 - For V6/(w2, w3) it turns out to be slightly better to work with the
coordinate ζ = 1/(1− t) so that the elliptic points are at ζ = 0, 1 and∞ with
indices 6, 2 and 4 respectively. To get the required ellipticity behavior for the
λ-line, with elliptic points at λ = 4, 1,∞, 0 with indices 2, 2, 2, 4, one may
consider a degree 3 map having ramification type (2, 1) over ∞, producing
indices 2 and 4, ramification 3 above 0, producing an additional index 2 and
ramification type (1, 2) above 1, producing one additional index 2 and an
additional non-elliptic point. This can be arranged by a map of the form
ζ = cλ−1((λ− 1)3 for the appropriate c for which this ramifies above 1. So
c is the value for which one of the roots of the derivative (c(λ− 1)3 − λ)′ =
3c(λ− 1)2 − 1 is mapped to ζ = 1. We have for that root

1 = c
(λ− 1)3

λ
=
λ− 1

3λ

hence λ = −1/2 and c = 4/27. Consider the equation for λ to map to ζ = 1.
As an equation on λ− 1 the sum of the 3 roots should be 0, hence the third
root should be 3, so that the additional preimage of 1 is 4. Thus, the cover
we found matches perfectly with the λ-line. Summarizing, we have

t = 1− 1

ζ
= 1− 27λ

4(λ− 1)3
.

This is confirmed by the sigma invariants.
No. 9 - Here the elliptic points are at 1,−1,∞ and 0 with indices 2, 2, 2

and 3. In trying to relate them with the elliptic points for ζ it is very easy to
guess the relation ζ = λ2, and this is confirmed by the σ-invariants. Thus,
the λ-line is a double cover of V ∗6 ramified above the elliptic points of order
4 and 6. This was used in [3, Subsection 8.2] to prove that the λ-line is
V6/〈w6〉.

No. 7 - The elliptic points are −25/3, 0,∞, 1/5 and with indices 2 at the
first 3 points and 4 at the last point. Here we guess that the base for the
family of twists is isomorphic to the quotient V6,5/〈w2, w3, w5〉. Elkies finds
a coordinate x on V6,5/〈w2, w3〉 for which the action of w5 is given by [5,
(37)] w5(x) = (42− 55x)/(55 + 300x). The two fixed points of this action
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are 7/30 and −3/5. Thus, a coordinate on the quotient is provided by

(8.1) y = ((x+ 3/5)/(x− 7/30))2.

The map from X∗0 (5) to V6/(w2, w3) is given by [5, Equation 36] by

t = (1 + 3x+ 6x2)2(1− 6x+ 15x2) = 1 + 27x4(5 + 12x+ 20x2).

The relation between t and ζ is

(8.2) ζ = 1/(1− t) =
−1

27x4(5 + 12x+ 20x2)
.

The ramification above ζ = 0 is of order 6 at infinity. The ramification over
ζ =∞ is of order 4 at x = 0 and order 1 at each of the roots of 5 + 12x+
20x2. The ramification over ζ = 1, or t = 0, is of order 1 at each of the roots
of 1− 6x+ 15x2 and of order 2 at each of the roots of 1 + 3x+ 6x2. Thus
the elliptic points of the cover are of order 4 at the roots of 5 + 12x+ 20x2

and of order 2 at each of the roots of 1− 6x+ 15x2. These two pairs of
points are interchanged by w5. The elliptic points of order 4 are mapped
to y = −9/16 while those of order 2 are mapped to y = −24. In addition
we get elliptic points at the ramification points of the covering at y = 0
and y =∞, both of order 2. Now, if we guessed correctly, there would be a
Möbius transformation sending the 4 elliptic points to the 4 singular points
of the elliptic surface, sending y = −9/16 to λ = 1/5. It is easy to check that
the unique transformation of this type is λ = −25y/(3(24 + y)). Composing
with (8.1) we get

λ =
−(3 + 5x)2

5(1− 6x+ 15x2)
.

This, as usual, is confirmed by pulling back the σ-invariants. Our guess can
be proved rigorously [3, Subsection 8.6].

No. 2 - The elliptic points are at −9/4,−8/9,∞, 0 with indices 2, 2, 2, 6
respectively.

We try to guess that this family corresponds to V6,7/〈w2, w3, w7〉. Elkies
writes a coordinate x on V6,7/〈w2, w3〉 for which the action of w7 is given by
[5, (40)] w7(x) = (116− 9x)/(9 + 20x). The two fixed points of this action
are −29/10 and 2. Thus, a coordinate on the quotient is provided by

(8.3) y =

(
x+ 29/10

x− 2

)2

.
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The map from V6,7/〈w2, w3〉 to V ∗6 is given by [5, (39)] by

t =
−
(
25 + 4x+ 4x2

) (
2− 12x+ 3x2 − 2x3

)2
108 (37− 8x+ 7x2)

= 1− (2x2 − x+ 8)4

108(7x2 − 8x+ 37)
.

This looks nicer with ζ

(8.4) ζ = 1/(1− t) =
108

(
37− 8x+ 7x2

)
(8− x+ 2x2)4 .

The preimage of ζ = 0 is 6 times∞ plus the two roots of 7x2 − 8x+ 37. The
preimage of ζ =∞ is 4 times each of the roots of 2x2 − x+ 8. The preimage
of ζ = 1, or t = 0, is 2 times each of the roots of 2− 12x+ 3x2 − 2x3 plus
each of the roots of 4x2 + 4x+ 25. Thus the elliptic points of V6,7/〈w2, w3〉
are the two roots of 7x2 − 8x+ 37 with index 6, and the roots of 4x2 + 4x+
25 with index 2. Two pairs of points are interchanged by w7. The elliptic
points of order 6 are mapped to y = −243/100 while those of order 2 are
mapped to y = −24/25. In addition we get elliptic points at the ramification
points of the covering at y = 0 and y =∞, both of order 2. Now, if we
guessed correctly, there would be a Möbius transformation sending the 4
elliptic points to the 4 singular points of the elliptic surface, sending y =
−243/100 to λ = 0. It is easy to check that the unique transformation of
this type is

λ =
486 + 200y

−216− 225y
.

Composing with (8.3) we get

λ =
−8

(
37− 8x+ 7x2

)
9 (25 + 4x+ 4x2)

.

This is confirmed by the σ-invariants. Our guess can be proved rigorously [3,
Subsection 8.5].

9. Software

All the relevant computations for this work can be downloaded from http:

//www.math.bgu.ac.il/~bessera/picard-fuchs/. They are in the form
of a MATHEMATICA notebook. The notebook is self explanatory. It loads
the following files:

http://www.math.bgu.ac.il/~bessera/picard-fuchs/
http://www.math.bgu.ac.il/~bessera/picard-fuchs/
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• pf.m - main file contains all the algorithms

• data.m - file contains the equations for the elliptic fibrations on Her-
furtner’s list

• elkiesdata.m - contains the differential equations obtained by Elkies.

The relevant functions contained in the file pf.m

• picfucs function - computes the Picard-Fuchs equation for an elliptic
surface. This is just a translation into Mathematica of the Maple script
by Beukers, which may be found at http://www.staff.science.uu.
nl/~beuke106/picfuchs.maple

• Twistpf function - computes the Picard-Fuchs equation for the family
of twists given the equation for the original elliptic fibration.

• SigChVar function - makes a change of variable for the sigma invariant.

• DRes function - computes the residue of a quadratic differential.
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