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Differential equations in automorphic
forms
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Physicists such as Green, Vanhove, et al show that differential
equations involving automorphic forms govern the behavior of gravi-
tons. One particular point of interest is solutions to (A — Au =
E,E3 on an arithmetic quotient of the exceptional group Eg. We
establish that the existence of a solution to (A — A\)u = E,Eg on
the simpler space SLo(Z)\SL2(R) for certain values of o and
depends on nontrivial zeros of the Riemann zeta function ((s).
Further, when such a solution exists, we use spectral theory to
solve (A — Nu = E,E on SL2(Z)\SLz(R) and provide proof of
the meromorphic continuation of the solution. The construction of
such a solution uses Arthur truncation, the Maass-Selberg formula,
and automorphic Sobolev spaces.
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1. Introduction

In [21], Green, Miller, Russo and Vanhove study the low energy expansions
of string theory amplitudes that generalize the amplitudes of classical su-
pergravity. In doing so they derive differential equations that model the
behavior of the 4-loop supergraviton. Such differential equations govern the
amplitudes of closed type II superstring theory. These differential equations
involve combinations of Eisenstein series in their expression.

The differential equations presented in [21I] are of the forms:

(A= X5)uy =0

(A= X5)uy =c

(A = Xg)uy = By
(A= Xs)uw = Eq - Eg

on the exceptional group Eg where ¢ is a constant and E, and Eg are
Eisenstein series. Solutions for the first three such equations are known.
Green, Miller, Russo and Vanhove express a version of these solutions in [21].
Furthermore, spectral solutions to similar equations is understood (see the
work of P. Garrett [I1], [I4]). The last equation, however, is more challenging
to solve. It should be noted that in [21], [4] and [22], the form of this last
equation was given where o« = 3. The Fourier expansion of an infinite class
of solutions has been worked out explicitly in the recent work of D’Hoker
and Duke [3].

As a precedent for solving such an equation, we will solve (A — Ay )y,
E.-Eg on I'\$) where I' = SLy(Z) and $ is the upper half plane, A =

0* 0?
y* | 5= + = | is the invariant Laplacian and A, = w(w — 1). There are
ox? = Oy?

of course many differences in these domains but examining the simpler do-
main will illuminate some of the necessary techniques for analyzing solutions
elsewhere. Furthermore, this technique allows us to compute the solution to
the differential equation in many cases at once. In [22] Green, Miller and
Vanhove present a solution on I'\$) where o = 8 =3/2 and A, = 12 and
D’Hoker, Green, Giirdogan and Vanhove give a solution for integer values
of @ and § in [5]. Our solution will subsume these findings.

In what follows, we will solve (A — Ay)uw = Eq - Eg on I'\$) using spec-
tral theory. This involves finding a spectral expansion for E,, - Ejg; however,
given that E, - Eg ¢ L*(I'\$)) no such expansion can be directly computed
as methods for computing L?-spectral expansions do not directly apply.
Thus, in order to guarantee convergence of the spectral integrals, we will
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subtract a linear combination of Eisenstein series from FE, - Eg and com-
pute the spectral expansion of this new function. We will then be able to
solve the differential equation in the usual way using global automorphic
Sobolev spaces. The computation of the spectral expansion for this new
function involves implementing tools developed by Zagier [28] and Cassel-
man [I] related to the extending the Rankin-Selberg method for functions
not of rapid decay (explanation of this phenomenon can also be found in
[17]). This method makes use of Arthur truncation and the Maass-Selberg
formula.

In Section and we will state our main results and prove the
existence and uniqueness of solutions to (A — A\y)uw = Eq - Eg on I'\§ for
almost all values of o and . In Sections and [4] we will compute the
spectral expansion of this solution. After computing an explicit form of the
solution, we will meromorphically continue the solution in w to the left-
half plane in Section [5.1] This proof relies upon the constructions involving
vector-valued integrals as presented by Gelfand, Pettis, and Grothendieck. A
brief summary of these constructions is provided in the appendix (Section@.

1.1. Background and motivation

Let E, and Eg be two Eisenstein series on I'\SLy(R) for I' = SLy(Z). Each
FE; can then be described as

Efz)= Y Im(y2)’

yeP\TI"

where P is the parabolic of SLy(R) restricted to I'. The following result of
the analytic continuation and functional equation is commonly known and
its proof can be found many places including (but not limited to) Epstein’s
[8] and Garrett’s [15] explication of Godement’s [19] 1966 work.

Theorem 1. For each z € 9, s(s — 1)&(s) - Es(z) has an analytic continu-
ation to an entire function of s and functional equation given by

E(28)Es =&£(2 —25)F1—s

where &(s) = 7~%/?T(£)((s) is the completed Riemann zeta function.

£(2 —2s)

Note that we will employ the notation c; = W so that the func-
S

tion equation for Fjy is given by Es = ¢s - E1_s.
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Furthermore, it is known (and proof can be found in [I5]) that the
Fourier-Whittaker expansion for E; (for s # 1) is given by

Es(z+iy) =y° + ey
1 o2s-1(|n])
75T (s)¢(25) Z :

n#0 ’n’5—5
T 12 alnly 9 o
X ﬁ/ tS e : 7'("77;:1/7 .e TiNnT
0

=y et 4 Y ol s) - Willnly) - 2
n#0

where
(‘n‘y \[/ 15— 1/2 —(t+< )ﬂ'\n|ydt

is the Whittaker function — the unique (up to scalars) solution u of u” —

As
<2 +47r2n2> -u=0for \s =s(s—1) — and
Y

_ 1 o2s-1(|n])
P =TI ol

and  o95_1(|n|)

is the sum of the (25 — 1) powers of positive divisors of n.

Recall that E, has a simple pole at s = 1 so the constant term cpE7 for
the a_1 coefficient of the Laurent expansion E4 at s = 1 will not have the
form y* + csy!7*. Instead, the Fourier-Whittaker expansion for E} is given
by

* . 3 TINT
Bi(x+iy) =y +C— "logy+ Y _p(n,1)- Wi(lnly) - ¢*
n#0

where C' = % ((s —1)cs) ‘ and Wj is as above. We will use the notation

cpE to refer to the constant term of the Eisenstein series at s.

We will later also need the Fourier-Whittaker expansion of cuspforms.
Indeed the archimedean parts of that of the Fourier-Whittaker functions for
a cuspform with A-eigenvalue Ay = s(s — 1) are the same as the Eisenstein
series (see [15]). We then have for f a cuspform on I'\$) that

flx+1y) = ch- s(|nly) - 27
n#0

for some constants ¢, with Wy(|n|y) as above.
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In what follows, we solve
(A= Ap)uy = Eq - Eg

on I'\$) where I' = SLy(Z) and $) is the upper half plane,

0? 0?
A=y (= + 2
/ (39:2 i 3y2)
is the invariant Laplacian and A\, = w(w — 1). First we must write out a

spectral expansion for E, - Eg.
For 0 < k € Z, the k'"-Sobolev norm on C2°(I'\$) is given by

IR = (=) f e

and we define the global automorphic Sobolev space H*(T'\$)) to be the com-
pletion of CZ°(I'\$)) with respect to | - |5. Ordinarily, for S in some Sobolev
space H*(I'\$)) we can write

(S,1)-1 1
S = S fy - fa 2l s~ S, E,) - E,ds
fch;n< > <1, 1> 47 (1/2)< >

(see Section [6] [13] or [7] for further explanation of global automorphic
Sobolev spaces and [24] for the spectral expansion). The problem is that
E, - Eg is not in such a Sobolev space so we cannot properly write this
spectral decomposition for S = E, - Eg. The trick we use is subtraction of
a finite linear combination of E, and Eg so that

S=FE. Eg— > cE,

1

will be in L? or even possibly in H* and we can give a decomposition with
respect to A.

1.2. Results

We will use the spectral relation in Section |§| to solve (A — \y)u = E, - Eg
on I'\SLs(R). Also, note that the automorphic Sobolev space H* in which
this solution exists is also defined in Section [6] Furthermore, we will show
that the solution we have found is unique.
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Consider the set

€= {(@.B) € (C—{1})’ | Re(a) > 1/2,Re(8) > 1/2,
Re(a + B) # 3/2, Re(B) # £1/2 + Re(a)}.

The following guarantees the existence of a unique solution to (A — \)u =
E, - Eg on I'\§ for all o, 5 € C. There are a few complex values eliminated
from the set C. We will address what happens with the solution when Re(a +
B) =3/2 and Re(f) = £1/2 + Re(«) in Section However, it should be
noted that the reason for the exclusion of the value 1 is that E has a pole
at s = 1.

Let £ be the vector space consisting of finite linear combinations of
Fisenstein series so that

E(T\H) := {ZaiFsi(z) ) a; € C and

F,,(z) € {C, Ej(2), Es,(2) for s; € C—1} }

This space has an LF-space structure as locally convex colimit of finite-
dimensional spaces.

Theorem 2. In Re(w) > 1/2, for (o,3) € C, (A —XNu= E,-Eg on I'\H
has a unique solution in H=>°(I'\$) & E(I'\$) with spectral expansion which
lies in H*(T'\$) @ E(T\9).

Proof. The existence of the solution can be seen in the computation of the
spectral expansion. First, we will subtract a finite linear combination of
Eisenstein series Ej5, so that

S=FE. -Ez—» B,
7

which will be in L2(T\$).
If S € L*(T\$), we can write a convergent spectral expansion

(5,1)-1 1
S = S,y - f+——7 +— (S,Es) - Esds
fch;n< > <1, 1> 47 (1/2)



Differential equations in automorphic forms 773

where this convergence occurs in L?. Furthermore, this expansion can be
extended by isometry to all of H~°. It the follows that we can write

(5,1)-1 1
Eo-Eg=Y ¢Es+ Y (S f)-f+ 20—
g ; f%rf > <1,1> 47 (1/2)

(S, Es) - Egds
which also converges in L?. Then, given that the spectral data in the expan-
sions above is given by eigenfunctions for A, the solution to (A — \y,)u =
E, - B is given by division by the corresponding eigenvalues.

It can be found in many sources such as [I5] that the theory of the
constant term implies that E, = 4y + cqy' ™ + R, where R, is rapidly de-
creasing. Thus

EoaBp = (y* +cay' ™" + Ra)(y” + csy' ™7 + Rp)
_ ya-i-ﬁ + ngl+a_ﬁ + cayl—a—i-,@ + Ca05y2_a_’8 +R

where R is rapidly decreasing since y® + coy'™® and 3% + 05y1_5 are of
moderate growth (and rapidly decreasing times moderate growth is rapidly
decreasing). Notice that different values of o and B will imply different
vanishing for terms of E, - Eg. Thus in different regimes, we will be required
to subtract different linear combinations of Eisenstein series as follows.

Assume that o # 1 and 5 # 1 since E5 has a pole at s = 1. Also, without
loss of generality, assume that Re(a) < Re(f).

(I): Suppose that 1/2 < Re(a) < Re(a) + 1/2 < Re(pB).

Z CiEsi = Lotp+ Ca- ElfaJrB
i
= ya+,8 + Ca—&-ﬁyl_a_ﬁ + Cayl_a+6 + Cacl—a-i-ﬂya_ﬁ

+ Ra+g + C(XR17Q+6.

Thus

S=FE. -Ez—)» oF,
%
= CﬁleraiB + cacng* - CaJrﬁyli

+ R - Ra+5 — CaRl—a+ﬁ~

a—f a—p B

a—
— CaCl—a+BY

Since 1/2 < Re(a) < Re(a) +1/2 < Re(),

cﬁyHﬂ_ﬂ " ca%y?_o‘_ﬁ _ ca+5y1—a—,3 _ Ca017a+,8ya_/8 c LQ(F\S’)).
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(IT): Suppose 1/2 < Re(a) < Re(f) < Re(a) + 1/2 but that a # 3. This
case yields two subcases depending on Re(a + f3):
(ITa) Suppose also that Re(a + 3) > 3/2.

Z cils, = at+8 +C - E1+a7,8 +cq - E17a+,8
A

_ yoH-B + Ca+,3y1_a_ﬁ + Raip+ Cﬁy1+a—6 + CBCHa—By_aJrﬁ

+cgR1va—p + caty P+ Cai—arpy® P + caRi—ats-
Thus
S=FE. -Ez—)» B,
27a76i

= CaCY —carpy' P = cgcrvapy”
+ R - Ra+,3 - CBR1+Q_5 — CaRl—a—’_IB.

a—p a+p B

a—
— CaCl—a+pBY

Since 1/2 < Re(a) < Re(8) < Re(a) + 1/2 and Re(a + 5) > 3/2,

Cacﬁy2_a_ﬁ - Conrﬁyl_a_ﬂ - C,BclJrafﬁy_a—i_ﬁ - CaclfaJrﬁya_ﬁ € LQ(F\f))-

(ITb) Now suppose instead that Re(a + 3) < 3/2.

Z cills, = Eqypt+cg-Eipapt+ca B aiptcacs  Fa o p
i
_ yoH-,B + Ca+ﬁy1—a—,8 + RaJrﬁ + Cﬁy1+a—5 4 Cﬁcl+a7ﬁy_a+ﬁ
+cgRivap +cay TP 4 cactarpy® P+ caRi_arp

+ coéclggff"‘*ﬁ + cac[;cz_a_gy‘”ﬁ*l + cacgRa—_ 3.
Thus
S=E. Ez—) B,
i
= —Ca+ﬁyl_a_ﬁ — CﬁCHa—ﬁy_aJrB - Caclfa+,3ya_/8 - Cacﬁczfafﬁyaw_l

+ R—Royg—cgRija—p — calli—atp — cacgRo_a—p.
Since 1/2 < Re(a) < Re(f8) < Re(a) + 1/2 and Re(a + ) < 3/2,

a—0 a+ B a+pB—1

—carpy' P = cgerrapy P = caciarpy®”

€ L*(T\9).

— CaCpC2—a—-BY
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(III): Suppose that o = 3. This will again yield two different cases based
on Re(a):
(IIIa) Suppose also that Re(a) > 3/4.

T
> B, = Eyq + 2ca B} — 3Ca

i

3 s
= 1% + c2ay' " + Roa + 2o <y - logy + C — §C’a + R1>

where C, = %cs

. Thus
=

. T
§= (Ea)2 B Z cills, = (Ea)2 — Fon — 2¢co By + gcoz
A

3 T
=2yP2 eyt 4 2ca; logy +C + §Ca +R

and so (E,)? — By — 2coF1 € L2(T\9) for Re(a) > 3/4.

Note that adding the constant §C, does not affect whether S is in L?
however, this regime will aid computation later in the paper and arrises
when taking the limit as 8 — « as seen in Lemma [4] below.

(IIIb) Instead suppose that 1/2 < Re(a) < 3/4.

™
§ ¢iEs, = Ba + 2o B + A Eo_90 — gCa
i
2a 1—2« 3
=y 4 oy +R2a+2ca<y—ﬁlogy+C+R1>

+ ci(y2_2a + CQ_Qayl_(z_za) + R — 3 Cy.
[hus

Y
S=(Ea)® = By = (Ba)® — Bz — 2ca B} — 2F2 20 + 3Ca

7

3 T
= —Couyt T2+ 2ca; logy — cea_0ay** 14+ C + gcoz +R

50 (Ey)? — Eaq — 2ca By — 2By o, € L2(T\$) for 1/2 < Re(a) < 3/4.
We have shown that for each « and (8 there is a linear combination of
Eisenstein series >, ¢;Es, so that S = E, - Eg — Y, ¢;Es, € L?. We can thus
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write a spectral expansion for each case for S and get

(S,1) -1 1/
Ey-Eg=)Y c¢Eg + S, f)y f+ L S,E,) - Esds
5 Z 2SI T+ T g ) (B

f cfm

in L2(I'\$) © ET\9H).

To establish uniqueness, suppose that there are two solutions u and
v to (A = Ay)u= E, - Eg in HX(T\$) ® E(T\H). Then (A — Ay)(u—v) =
E,-FEg— E,-FEg=0.Thus u — v is asolution to the homogeneous equation
(A — Ay)(u—wv) =0and A\, € R but this cannot be the case if Re(w) > 1/2
and Im(w) > 0. O

Observe that for Re(s) < 1/2, the functional equation gives Fg = c¢; -
Ey_s. Thus it is sufficient to consider the case where Re(a) > 1/2 and
Re(B) > 1/2. Many of the other values excluded from C are in fact prob-
lematic as will will see in Section [I.3] However, before we consider what is
happening at these values, we will give a spectral expansion for the solution
U

Theorem 3. In Re(w) > 1/2, for (o, 8) € C, (A = Nu=FE,-Eg on I'\H
has a unique solution in H=>°(I'\$) & E(I'\$) with spectral expansion which
lies in H*(T'\$) ® E(T\H) and is given by

" :Z ci s, L . 5C, N Z Ao, f x Eg) - f
v A

S; )\w T Te=h )\1 - )\w f ofm )\Sf - )\w
1
— A(E, Ey X Eg) - d
+ 47 (1/2) (87 o ﬁ> )\s - Aw i
where 1o—g = { (1) ZZ ; g and C,, = %cs -

The proof of this result will be given in Sections 2, 3, 4, and 5 where we
will construct the solution. Theorem [10]in Section [2| calculates the cuspidal
spectrum, Theorem [13]in Section [3| calculates the continuous spectrum and
Theorem [22]in Section [ calculates the residual spectrum. In these sections,
we will follow the regime presented in the proof of Theorem [2] and the final
solution will be obtained by division in Section [5| Finally, at the end of
Section 5, we will prove that the solution can be meromorphically continued
in w to Re(w) < 1/2.

Before we turn to the derivation of the solution, we will address what
appear to be oddities at some of the borderline cases in C.
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1.3. Limits in a and 3

One would expect that the equality regimes (aw = ) presented in Theorem
can be recognized as a limits if those of Re(a) = Re(f) and this is in fact
the case due to the addiction of the constant gC’a.

Lemma 4. ﬂlim Ccalbh—a+p+cg - Eryra—p= —gCa + 2co BT where C, =
—Q

%CSLZQ'

Proof. Recall that E has a simple pole at s =1 and thus the Laurent ex-
pansion for F is given by
a_y

ES:8_1+ao+a1(s—1)+a2(s—1)2+~-

Using this we have

6113& Cab—avp + 3 Eiya—p

= limca-< — +ao+a1(ﬁ—a)+--->

B—a ,8—04
a_1
+cp a_ﬁ—i—ao—i-al(a—ﬁ)—i----
. a—1
:ﬁh_%ca- ﬁ_a—i—ao—i-cu(ﬂ—a)—i----
o ()
li a_1<ca_cﬁ>+2 m d +2 T+ 2, EF
= lim ———= 4+ 2¢4a, = ———¢C Calo = —— c
B—a ﬁ—O& e 3ds ‘ls=a e 3°“ ol
where Cp, = %CS since
S=o
. a_1(ca —cp) d 7 d
lim ——— . = —q_1— = ——— .
Bl—% ,B—Oé “ ldscs s=a 3dSCS s=a

O

We can now express the equality case of (III) a limit of case (II).
Suppose as in case (II), 1/2 > Re(a) < Re(f) < Re(a) 4+ 1/2 where a # .
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If we also suppose as in (ITa) that Re(a + 8) > 3/2 then
S=F,- Eﬁ — (Ea+/3 + Cq - E17a+ﬁ +cp- E1+a,5) .

As 8 — « the first two terms become E,2 — Fs,. Thus 8 — «, when Re(a) >
3/4, we get that

S =5 (Ba)? — Eg — 2ca B} + gca.
Similarly, if we suppose as in (IIb) that Re(a + 8) < 3/2 then
S=FEy, Eg— (Eayg+ca - Er—ayg+cg-Eipa—p+cacgla_n_3).
Thus  — «, when Re(a) > 3/4, we get that
2 2 i
S — (Ea) — EQa — 2CQE1 — CaEQ,QQ =+ gCa.

However, despite this nice continuity where near where o = 3, one can
see that we are not guaranteed the existence of the solution when v = 5 and
Re(a) = 3/4. In fact, the strategy presented in Theorem [2| breaks down.
When Re(a) = 3/4 we have E2 = 3/2+2m(@)i 1 9¢ gy 4 c241/2-2m(a)i 1 R
and subtracting Fy 9, for example will cause the first term to vanish but
will also introduce a new non-L? term y!/2-2Im(®)i t5 appear. In fact, we
have the following results which only guarantee the existence of a solution
under certain conditions.

Theorem 5.

(i) In Re(w) > 1/2, for a # 3, 1/2 < Re(ar) < Re(f) < Re(a) +1/2 and
Re(a+ ) =3/2, (A = Nu = E,Ez on I'\$) has a unique solution in
H=°(T\9) & ET'\H) when 2a—1 or 25 —1 is a nontrivial zero of
((s). If it is also the case that Re(f3) = Re(a) +1/2, (A — Nu = E,Ep
on T'\$) has a unique solution in H=>°(I'\$) & E(I'\$) when 2ac — 1 is
a nontrivial zero of ((s).

(ii) In Re(w) > 1/2, for Re(a) = 3/4, (A — Nu = E% on T'\$ has a unique
solution in H=°(I'\$) & E(I'\$H) when 2a — 1 is a nontrivial zero of
¢(s)-

Before we proceed with the proof, it should be noted that in the theorem
above (ii) is a special instance of (i). However, we will provided a proof of
both for a few reasons. One reason being that we will be using limits from
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the left and right of the solutions previously found and the solutions appear
to be slightly different for o = 8 versus a # [ (since the S’s constructed are
differently) even though there limits are equal. However, the main reason is
that it is easier to follow the argument in the o = § case and then see how
it extends to the inequality case.

Proof. As shown in Theorem [2] to demonstrate the existence and uniqueness
of the solution, it suffices to construct appropriate S in L2(T'\$).

We will begin with a proof of (ii) since it is a simplified case of (i) and
exemplifies the same general phenomenon. Observe that in the regime where
a = 3, the S given by (IIla) and (IIIb) differ only by one term c2 Ey_oq.
This implies that we cannot have a simultaneous solution corresponding to
both

S = (En)? — Esq — 2ca B} + gca
and
2 * 2 ™
S = (Ea) — Ega — 2CaE1 — CQEQ,QQ + gCa

at Re(a) = 3/4 since their difference is not in L2(T'\$). In fact,

2-20 — Aw
in general, neither of these contrived S’s will be in L?*(T'\$)) in general since:

In regime (IIla),

S = (Ea)? — Eaq — 2ca B + gca

3 us
=2yt eyt 4 2ca; logy + C + gCa +R

and y>72@ ¢ L3(T'\$) for Re(a) = 3/4. Thus we would need ¢ = 0 in or-
der for S to be in L2. Recall that c, = 5(52(55)0‘) = 5(52(3;)1). For o = 3/4 + it,
this yields &(2a — 1) = £(1/2 + 2it). Then S € L?(I'\$) when 2a — 1 is a
nontrivial zero of &. Thus a solution to (A — N)u = E2 on T'\$) exists when
2a — 1 is a nontrivial zero of (.

In regime (IIIb),

% ™
S = (Ey)? — Foq — 2¢a B} — 2By 94 + gCa

3
= —coqyt T2 4 2604; logy — cea_0ay** 1 4+ C + gC’a +R

and 221 ¢ L2(T'\) for Re(a) = 3/4. Thus we would need either ¢2 = 0 or

c2—24 = 0. Observe that ca_g, = 0 when £(4ti) = 0 for o = 3/4 + it. Since

¢ have no zeros on the imaginary axis, we need only consider where ¢ = 0.
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As above, a solution to (A — A\)u = E> on I'\$) exists when 2o — 1 is a
nontrivial zero of .

Since, as previously stated, these solutions, given by regime (IIIa) and
(IIIb) may not be distinct. In fact, for a solution to exist, we need 2 Ey_9, —
0 as Re(a) — 3/4~. This will happen when c2 =0 or when Ey g, = 0E|
When ¢2 = 0 we see that the limit of the solution from each side of Re(a) =
3/4 will approach the above solution at Re(a) = 3/4.

Now let’s turn to case (i). Observe that in the regime where o # 3
and 1/2 < Re(a) < Re(f) < Re(a) +1/2, the S given by (Ila) and (IIb)
differ only by one term cncg - Eo_q—pg. This implies that we cannot have a
simultaneous solution corresponding to both

S = Ea . EIB - EOH—ﬁ - CB . E1+Oé—,3 — Cq * El_a+ﬁ
and
S=FE, Eg—FEypg—cg-Eipap—Ca Ei_atp—CaCs  Er_q_p

cacg - Ea_q_p

at Re(a + ) = 3/2 since their difference is not in L2(T'\$).

)\Q—Q—B - >\w
In fact, in general, neither of these contrived S’s will be in L2(T'\$)) in general
since:

In regime (IIa),

S = Ea . Eﬁ - Ea_;’_ﬁ - C/B . E1+a_ﬁ — Cq * El—OH—B

= cacy? P — Carpy TP —cgerrapy P —caciarpy® P + R

and y?~*= 8 ¢ L2(T'\$) for Re(a + B) = 3/2. Thus we would need ¢, = 0 or
cg = 0 in order for S to be in L?.
In regime (IIb),

S = Ea . Eﬁ — Ea+13 — Cﬁ . E1+047,8 — Cqy * El*OH*ﬁ

a—F B B

= _CaJrByli - CﬁclJrafoiaJr - CaclfaJrByai

— CQCBC27Q75ya+Bil +R

and y*tA~1 ¢ L2(T'\$) for Re(a+ B) = 3/2. Thus we would need either
ca =0,cg=00rci_orp=0.

Note that when Fy_5, = 0, the limits of S from the left and right of Re(a) = 3/4
will be equal but that neither S will be in L*(T'\$).
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Thus solution to (A — XN)u = E, - Eg on I'\$) exists when 2ac — 1 or 23 —
1lis a nontrivial zero of (. Furthermore, when Re(3) = Re(a) + 1/2, we also
have y*~# ¢ L2(T'\$). We will then need either ¢, = 0 or ¢;_445 = 0. How-
ever, in this case, we also have ¢1_qyg = c3/244 # 0.

Since, as previously stated, these solutions, given by regime (IIa) and
(ITb) may not be distinct. In fact, for a solution to exist, we need cqcp -
Ey_o—p — 0 as Re(a + ) — 3/27. This will happen when ¢, =0, ¢cg =0
or when Ey_,_g = 0. E|When ca = 0 or when cg = 0 we see that the limit
of the solution from each side of Re(a + ) = 3/2 will approach the above
solution at Re(a + ) = 3/2. O

The solution on these regions where say Re(a + ) = 3/2 will present
itself as a limit and will thus be identified with the corresponding limit of
the solution in Theorem [3| Explicitly, when oo # 3, 1/2 < Re(a) < Re(f) <
Re(a) +1/2 and Re(a + ) = 3/2 and 2a — 1 is a zero of ((s) (i.e. co =0),

S=FEo Eg—FEarp—cg-Eryap
is in L? for Re(a + ) = 3/2. In this case, the equation (A — \u = E,, -
Eg on I'\$) has a unique solution in H~>°(I'\$) @ £(I'\$) with spectral
expansion which lies in H?(I'\$)) @ £(T'\$) and is given by

Eotp L Eiya-p n Z Aa, f x Eg) - f

Uy =
)\a+6 - >\w )\1+a—,8 - )\w f ofm )\sf - )\w
1 E
— A5, Eq x Eg) - ———ds.
+ 471_1 (1/2) (37 X B) )\3 _ )\w s

We will conclude this section by showing that there are no solutions
in H3(T\$) @ £(T'\H) on the lines Re(a + 3) = 3/2 or Re(a) = 3/4 where
neither ¢, nor cg are zero. We will need the following preliminary results in
order to establish the other direction of the implied biconditional.

Lemma 6. Let &,...,&, be distinct real numbers and o1,...,0, real.
For non-zero complex ci,...,cpn, the function f(y) = Zj qy"ﬂ'“gi s in
L?([1,00), %) for if and only if o5 < 1/2 for all j.

Proof. 1f ju:= max; 0; < 1/2, then f(y) € L*([1,00), ).

2Note that when E5_o—p =0, the limits of S from the left and right of Re(a +
B) = 3/2 will be equal but that neither S will be in L?(I'\$).
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On the other hand, suppose that p = 1/2. Observe that

2 2
b d
2,05+ — 7 Loitig | Y
J L2([1,00),%%) J

' (€—€0) dy

=1 e yt\&i—8k) g0 toR 2T
LY TE R
-]7

If o = 1/2 then all the terms ;¢ y&=€k) yoitor gre in L' except for possibly
the sum over j, k with o; =1/2 = oy,

Suppose now that = 1/2 and o; = 1/2 = 0}. Among the tails for the
improper integral for the L?-norm-squared integrals are

T2
Z ¢;Ch / yi(ﬁj—ﬁk) @
¥ T Y

For j = k, the term is |c;|? - log T. For j # k, the term is

(TQ)Z'(EJ‘*&C) — 7§ —&k)
i(& — &)

The sum of the j # k is uniformly bounded in 7. The sum of the j =k
term is a strictly positive real multiple of logT" and goes to oo as T" — .
Thus an expression of the form }, c;y'/?H will be in L2([1, 00), %) only
when ¢; =0 for each j. Furthermore, if = 1/2 then f(y) cannot be in
L2([1,00), &)

Finally, in the case of x> 1/2, y'/27#. f(y) is in L*([1, 00), %) if f(y)
is and this reduces to the case where = 1/2 just treated. O

C;C

Lemma 7.

(i) Fora # 3,1/2 < Re(a)) < Re(B) < Re(aw) +1/2 and Re(a + B) = 3/2,
then EoEg ¢ L2(T\$) ® E(T\$) unless 2 — 1 or 28 — 1 is a zero of
¢(s)-

(i) For Re(a) = 3/4, then E2 ¢ L?(T\$) ® £(T'\$) unless 2a — 1 is a zero
of C(s).

Proof. We will again first establish the result of (ii) first. Assume a =/
and Re(a) = 3/4. We have E2 = ¢3/212m(a)i 4 9 o 4 (2qy1/2-2Im(e)i L R,
Subtracting Fa, and 2c,E] will eliminate the first term terms and what
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remains will be in L? with the exception of the term ¢2y'/2=2m(®)? Sub-
tracting cg{Eg_ga will cause the last term to vanish but will also introduce a
new non-L? term cicg_gayl/ 2+2Im(a)i ¢ appear. Furthermore, observe that
C2—24 cannot be zero for Re(a) = 3/4 since ((s) has no zeros on the line
Re(s) = 1. More formally, the non-rapidly decreasing terms of £(I"\$)) can be
written as linear combinations of the form ) j cjy(’friff and so by Lemma
c?xyl/?*?lm(a)i + Zj qy"]’”éi is not in L? except when ¢, = 0. Thus the only
way for E2 to be in L?(I'\$)) @ £(T'\$) is by ¢, being 0 and thus it is nec-
essary that ((2a —1) = 0.

For (i), assume a # 3, 1/2 < Re(a) < Re(f) < Re(a) + 1/2 and Re(a +
B) = 3/2. Then

EoEg = y3/2+Im(o¢+,3)i + Cﬁy1+a—ﬁ + cayl—a+,8 + Cacﬁy1/2—1m(a+,8)i +R.

Again, the first three terms can be eliminated putting what remains in L?
with the exception of the term Ca65y1/2_1m(a+ﬁ)i. Subtracting cocgla—_a—p
will cause the first term to vanish but will also introduce a new non-L?
term ca%cQ_a_gyl/“Im(o‘Jrﬁ)i to appear. Again cy_,_p cannot be zero for
Re(a + ) = 3/4 since ((s) has no zeros on the line Re(s) = 1. Furthermore,
by Lemma |§| ca0502_a_5y1/2+1m(a+ﬂ)i + Zj ijaﬁi&j is not in L? except
when ¢, =0 or cg = 0. Thus the only way for E,Es to be in L*(T'\$) @
E(I'\$) is by ¢, or cg being 0 and thus it is necessary that ((2a — 1) =0 or
¢(28—-1)=0. O

Lemma 8. If there exists a solution u to (A — ANu = E,-Eg on I'\$) in
H2(T\$H) ® E(T\H) then E,Eg € L*(T\H) @ E(T\9H).

Proof. Suppose u is a solution to (A —Au=FE,-FEg on I'\$) and u €
HXT\$) @ ET\H). Sayu = f + > apFs, for f € HX(T\$) and Y, arF, €
E(I'\$). Then

Eo-Eg= (A= Ay)u= (A=) (f + Zaszk>
k
= (A - )‘w)f + Zak()\sk - Aw)Fsk-
k

Thus

Bo Bz =Y ar(Ae, — M) Fs, = (A= Xy f € H'(T\H) = L*(T\$)
k

since f € H*(T'\9). O
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Combining the last two results, we see that if there were a solution u in

H2(T\$) @ E(T'\$) it would be contrived as above and thus there is no such
solutions on Re(a + ) = 3/2 where neither 2ac — 1 nor 25 — 1 is a zero of (.

Theorem 9.

(i) In Re(w) > 1/2, for a # 3, 1/2 < Re(a) < Re(f) < Re(a) +1/2 and
Re(a+ B) =3/2, (A — Nu = E,Eg on I'\$) has a unique solution in
H2(T\$) @ E(T\$) if and only if 2ac — 1 or 23 — 1 is a nontrivial zero
of ((5).

(ii) In Re(w) > 1/2, for Re(a) = 3/4, (A — Nu = E% on T'\$ has a unique
solution in H*(T'\$H) © E(T\H) if and only if 2 — 1 is a nontrivial zero
of ¢(s).

The proof of this result follows directly from Theorem [5|in conjunction
with Lemma [7] and Lemma [8

2. The cuspidal spectrum

We will now compute the cuspidal spectrum for the expansion of the solu-
tion. Let f be a cuspform with Fourier expansion

ch . ’n‘y 27rin:z:.
n#0
Theorem 10. For f a cuspform and (o, ) € C,

_ ahts—a
<S7 f>L2 = L(Oé,f X E,B) : W
F(oz+2,3—§)F(a—25+§)r(a+lg,3—§)r(a—l-2§-,3+§)
I(e)

X
= A(Oé,? X E/g)
for each S proposed in Theorem [3.

The proof of this result is given in the what remains of this section.
Before we investigate each case for each different S, we will first perform
two useful computations. Many examples of the following computations can
be found in relevant literature — for example, in [I6] or [20].
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Lemma 11. For each o and (3,

d d _ B+5—a
/ Fu-Ej- 7 x dy s
\$

L(Oé, f X Elg) : W
F(a+2ﬁf§)r(a72ﬁ+§)r(a+15575>r<a71;5+§)
()

X

= A(a,f X Eg).

Proof. The computation that follows we can will begin by examining 1/2 <
Re(a) < Re(a) 4+ 1/2 < Re(p) since fr\ﬁ E,-Eg-f d“;fy is holomorphic on
this region. Since it extends to meromorphic function of a and  (since
f is cuspform), we can evaluate it via identity principle by moving « to
Re(a) > 1 so that we can then unwind E,.

Thus, by unwinding, we have

—dx dy a —dxdy
B By P50 = [ 3w By 7
Y D\ epr Y

« *dxdy o la —dCCdy
ST L by P
P\$ Y 0 0 Y

since the fundamental domain of P\$)is {z =x +iy € H |0 < x < 1}. Now,
writing out the Fourier-Whittaker expansions for Eg and f, we have

'\$

[e'e) 1
/0 /O v | epBs+ 3 o, B) - Wa(Jnly) - v

n#0

; dz d
X Z Cm ’m‘y —27rzm:c $2y
m#0 Y

where ¢, W and ¢,, are defined in Section
00 1 )
= / / y CPEﬁ Z Cm, - |m‘y —2mimx
0o Jo 20

; dzx d
<ng n B Wg(|n]y Qﬂznac)'(ZCm_ ’m‘y 27sz;c>] $2y

n#0 m#0 Yy
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oL

1
CPEB Z Cm, - |m|y / e—27rzmz dr
0

m#0

1
L(n—m)x d
= 3l AWilinly) e, Wlmly) [ i ’dw]‘?

m,n#0 Yy

*lepEgs - ZC’"‘ s(Im]y) - do,m
m=#0

“J

d
+ > o(n, BWs(|nly) - ¢ s(\mly)'fsn,m]yg

m,n#0

We see that the sum is zero when n # m (furthermore, since f is a
cuspform the n = 0 term vanishes) and we get

/ S o, )W (nly) - e V. <|m\y>%’
n#0

— d
~ Y w(n,8) ¢ / ¥ - Wy(Inly) W(lnly) 5.
n#0 y

Replacing y by y/n, we have

;W/Omy W) W) %
= L(« f><E6)'/OOo Wi ( )W(y)zg
_ qBts—a T a+p—5 r a—B+3s r(etli= B8—3 T a—1+3+3
= Lo X Bs) - 5 rayma) e )FE@ R
:A(a,?ng).

O

Lemma 12. For anyr # 1, fr\g, E.-f % — 0 and fF\ﬁ Ef-TF da;dy _

Proof. Since the integrals extend to meromorphic function of r (since f is
cuspform), we can evaluate it via identity principle by moving r to Re(r) > 1
so that we can then unwind E,.

— dxdy da: dy ,— drdy
/ E - f —5 :/ E Im(yz)" / Im(2)" f —
r\s Yy '\$ y? P\$H Yy
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where the fundamental domain of P\$)is {z=x+iye H |0 <z <1}

d d — . d
/ T ay ch/ W ’n’y) </ e27mnx d(L’) 72/
P\ﬁ 0<z<1 Y

n>0

_ T dy
= Z cn/ Yy Ws(|nly)ono — = 0.
Y Y

>0
>0 0O

3

Finally, we should note that constants (such as §C,) are orthogonal to
cuspforms in L?(I'\$) so

—dxd
/ T, T $2y:o‘
F\.63 Yy

We can now quickly evaluate each case of S for each « and 3 presented
above.

2.1. Regimes

Recall the regimes set up in the proof of Theorem [2] Again, suppose that

a#1and g #1.
(I): When 1/2 < Re(a) < Re(a) +1/2 < Re(),

—dzd
<S»f>L2:/ (Eo Es — Earp—Ca E1_asp) [ 2y
F\j’) Y

_ — dx dy
:/ EaEﬂf—Ea+g f—Ca E1 oa+8 " f
\9

(II): Suppose 1/2 < Re(a) < Re(f) < Re(a) + 1/2 but that a # .
(ITa) If Re(av + 3) > 3/2 then

—dxd
<S7 f>L2 = / (Ea : EB - EaJrB —C3 - E1+a76 —Ca E1,a+5) : f Ty
5 Y
_ _ dxd
= . Eo Eg-f—FEqg-f—csg-Eiyap- f—Ca Ei_atp- f yy.
IR}

(ITb) If Re(a + ) < 3/2 then

(S, fir= = / (Ea Ep — Eayp— ¢ Eira-p
IRANG)

—dzxd
— Ca - ElfaJrB — CaCp - E27o¢fﬁ) f y2 Y
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:/ Ea'Eﬁ'?_Ea+,3'?_C,B'E1+af,3'?
r\$

—d:ndy
—ca B a+p ffcacﬁ EQQB f y

(III): Suppose o = f.
(IITa) Suppose also that Re(«) > 3/4 then

_ 2 _ « T _—dxdy
5= [ (B B =268+ 500) T

:/ (Ea)2 '?_EZa f_2CaE1 f+ C f
\$

dx dy

(IIIb) Now suppose 1/2 < Re(a)) < 3/4 then

_ 2 B « 2 ” dzdy
(S, f>L2 = \/1;\5'3 ((Ea) Eaq QCaEl CaE272a + 3Ca) f y2

dx dy

:/ (Bo)? f—Fon-f—2caFEf - f —EFy o0 - f + C f =2
T\®

In each of the above cases, we can use LemmalII|to evaluate the integral
of the first term and see that each of the remaining terms will integrate to
be zero using Lemma [12] Thus for each S, we get

_ aBts—a
(S, firz = L(a, f x Eg) - W

F(a+§*§)r( a*§+§)F( o+1— ,B S)F(aflJQrﬁJrE)
()

X

= A(a,? X Eﬁ).

3. The continuous spectrum

We want to compute

/ (S, E,) - Eyds
(1/2)

for each case of S. Though we have designed S so that S € L?(I'\$), there
is no guarantee that S - E is in L'(I'\$). However, observe that on Re(s) =
1/2, (S, E,) exists as a literal integral since S is (’)(y%_e) for some € > 0. This
can be seen by observing that E, = y° + csy'~* + Ry where R, is rapidly
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decreasing and so E - S is O(y'~¢). Thus

— d
/ E,-S y;ix < o0.
s Yy

Futhermore, in what follows we will show

Theorem 13. For each (o, B) € C,

[e.e]

(S,Es)12 = L(5,E4 X Ey) - /0 y* - Wa(y)Wa(y) Zé/ =A(5,E, X Ey)
for each S given in Theorem [2.

Knowing that these integrals converge and computing them directly are
two different things. In the style of Zagier [28] and Casselman [1], we will
use Arthur truncation to compute these spectral integrals. To make proper
use of the truncated Eisenstein series, we will also need that the limit of
these truncated Eisenstein series converges to the Eisenstein series itself.

3.1. Convergence of truncated Eisenstein series

Recall that Arthur truncation is defined as

yo+ey'™ y>T

/\TES =F, — (V2 where Ts(2) =
S ) -4 =t

vyeP\I'

For convenience we will label the sum 7 (z) := Z T¢(7y2) so that ATE, =

~yeP\T'
E, —07(2).
Let WU (z) := Z e (Im(yz)) be the Eisenstein series where ¢, (y) =
yeP\I'
{ye y>1 and define
0 y<l1

Bf = {f € LX(T\®) | (1 +[We))"f, f)r2 < 00}

for k € Z with norm | f|%,. = (1 + [¥|)* f, ). Let B7* be the dual to BY for
each k. ‘

Lemma 14. For some ¢ >0, S € BL.
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Proof. Recall that S is in L?(T'\$)) by design and in fact by examining the
construction of each S we see that S is O(yz"¢). By design, |U |- S-S is
O(y*=¢) and ((1 + |¥])S, S) > < oo as desired. O

Lemma 15. Given € > 0 and s with Re(s) = 1/2, both Es and ATE, are
in B L.

Proof. Let s be such that Re(s) = 1/2. In the cases of ((1 4+ |¥14.(2)])""-
E,, E) e and (1 + |U14c(2))) 71 - ATE,, ATE,) 12, both integrands are of or-
der O(y'~) since E; and ATE; are O(y'/?). When integrated against the
measure Z—g, these integrals will converge. O

Now we must show that the limit of the truncated Eisenstein series
approaches the original Eisenstein series in this topology.

Lemma 16. Given ¢ > 0 and s with Re(s) = 1/2, we have
Bgl—li%n N'E, = E,.

Proof. Consider E; where Re(s) =1/2 and o, > Re(s). We have

1
AT B, = < . /\TES,/\TES>
| ’Be 1+ |\Ijl+€’ 12
1
By N T
r\s 1+ (Wil y
1 dy dz
= | e (B —00(2) - (Bs — 65 (2
/F\b L+ Wy ( () () y?
= 1 dy dx
= — (B, —o7F - (Es — 0L ——
/0 /23‘0|>S11/22 14 |4 ( s (z)) ( s (Z)) y?
z?>1—y

T 1 dx dy
= iy T B B
o JIesy2 T 0] y
z2>1-y

0o
1
E. — (¢ 1-s
+/T /§|<1/22 1+‘\Ijl+e’ ( s (y + csy ))
z?>1—y

5 s\ dydx
x (Bs — (y° + sy %)) '22 )
Now
o (Bs —y® —coy' ) - (Bs —y° —csy' %) < = EEs € L?
1 + |q}1+€| S S S S EO_O S§H=s
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thus by Lebesgue’s Convergence Theorem as T — oo, the second integral
disappears and this becomes

drdy 1
1+ |\Ifl+€

> 1
- B, Fs— 2= "Eg,Es) = |Es% ..
A.Ang1+mH4 T 2 | %B sl
r°>1—y

O

3.2. Integrals of truncated Eisenstein series

It remains to compute

[ wEs
r\$ Yy

for each S.
We have that each S € L?. However, we will need something a bit stronger

to actually compute (S, /\TES) 2. For instance, we may know that NE; -

%
S % < 0o but since each S involved many terms that we would like to be
able to separate and compute, we need that each integral exists term-wise.
We will need a few results to address each of the terms for each S.

In order to compute term-wise, truncated pairings we will need the fol-
lowing three results. Lemma [17) will give us the first for the part of S which
consists of E, Fg paired against N E,. Lemma and Theoremwill allow
us to compute the integrals corresponding to the part of .S which consists of
linear combinations of Eisenstein series.

Lemma 17. For o, # 1,

— dyd
/ N Es-E.Eg ny
'\ Y
_ 1 T§+a+/571 + Ca Tgfaﬁ’ﬁ + s T§+a—,3
s+a+p5-1 S—a+p 5+a-—p
CaCp S—a—B+1 _ / 5 dy
+ —FT + L(s,Ey X Ej) - - W, %4 —
S—a_fB+1 (5, B x Ep) ! a(1)Ws(y) 3
Cs _= CaCs 35—
T st+a+p8 Tl s—a+p8
+—§—|—0¢+5 +1—§—0¢—|—5
€pCs 1-5+a—p3 CaCpCs 2—5—a—f
——T —T
1-5+a-p +2—§—a—ﬁ

~ e 3 plma)eln, B [y Waly) W) dy.

n#0 y=T
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d d
Proof. In the first term, we will compute / ANEs-E olEg ——— yor,
\$
[ B, 5,
r\$ Yy
. dyda:
— [ X meer - X w09 | Bk
9 \yep\r YEP\T
5 dyd:z:
= Z (Im(’yz) — Tg(’YZ)) E.E3
'\% ~yeP\TI'
5 dydaz
=/ (" = 75(2)) - BaBg —
P\$
by unwinding
- 5 dydx 5 dy dx
_/P\ﬁ(y — 75(z )) E Eg ——— )2 —l—%a\ﬁ(y — Tg(Z))-EaEﬁ 7
y<T y>T
B 5 dy dx dyda:
_ﬁ\ﬁy-Eang —ﬁ)\ﬁcy B Eg ——— 2
y<T y>T
dydx

P\%
y<T
Recall that the fundamental domain of P\$) is {z=z+iye H | 0 <
x < 1} so we have

- dy dx ! =
S.E Ea L7 — 52 . E,Ezdyd
/P\ﬁy allp y2 /0 /y<Ty allp AY AT

(A) Examining / y* - EaBg ———

y<T
/ / 2y + cay' ™+ Y e, ) Wallnly)e?™ ™ ][y” + cpy' P
y<T n#£0
£ plom, AW (Imly)e?™) dy i

m70
= / Yy + cay' ) (P + syt
y<T

v e(n, @)p(n, B) - Wal|nly)Wa(|nly) dy
n#0

since the product vanishes off the diagonal.
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(1) Examining the first term / Tyg_Q(yo‘ + cay TN (Y7 + 05y1_’3) dy:
y<

/ v 4 cat' )W+ cay' ) dy

y<T

:/ y§f2(ya+6 _’_Cay17a+ﬁ+Cﬂy1+a76+cacﬁy2fa76) dy
y<T

:/ y§+a+ﬁ—2 _|_Cay§—a+/3—1 +ng§+a_ﬁ_1 —I—ca05y§_o‘_ﬂ dy
y<T

_ 1 Statf-1 4 Ca yg—a+,3
s+a+p8-1 s—a+p

cs St+a—p3 Calp S—a—fB+1

+§+a—ﬁy +§—a—ﬁ+1y y=0

= ;Tg‘ka‘i’ﬁ*l + Ca T§7a+,3

St a+p8-1 S—a+p
Ty ey o G
- Jim, <s+aiﬁ—1ts+a+ﬁ_l tomaggt
+s_%if__5t5+a‘ﬁ+S<_(§ffi3%_1ts—a—ﬁ+1>.

Y
T

For Re(s) > Re(a+ B) > 1 where Re(a) > 0 and Re(3) > 0, this last
term

lim ( — 1 Frath-1 4 _ Ca [FatB
t=0t \S+a+ -1 s—a+p
s s+a—p €aCp s—a—B+1)\ _
— —t =0.
+§—|—oz—,8 +§—a—5+1

Thus, by the Identity Principle, we can meromorphically continue to get
that

/ v+ ey )W+ epy ) dy
y<T
_ 1 TstetB-1 4 Ca Ts5—a+p
s+a+pB-1 s—a+p
s S+a— Calp S—a—f+1
T5ta=p TsmahHL
+§+a—ﬁ +§—a—6+1
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(2) Examining the second term

[ v Y eln )l 6) - Wallnly)Walinly) dy
y<T n#0

/ Y elma)eln,B) - Wallnly)Wallnly) dy
Y=

. d
=3 o(n, a)g(n, B) / Y Wallalp Wl 3
replacing y by y/n we have

n,a)p(n, 5 d
=y Al [ W) 5

n#0 = y
= 5 dy
= L(8, Ea X Ep) - y - Way)Ws(y) -
y<T )
.. dyd:p
(B) Examining [3 \5 € -EoEp 7

y>T
Recall that the fundamental domain of P\$) is {z=z+iye H | 0 <
x < 1} so we have

1
csy - . B oEp dy dw = cgyl_g - EqEg @ dx
P\ﬁ 0 Jy>T y?

/ [l VAT VRED SECSA TN
>

n#0

dy dx

v+ sy P+ D plm, BYWs(|mly)e* 2

m##0
= sy T (Y F cay )P + eyt TP
yZT

+esy T Y p(n,a)p(n, B) - Wal|nly) Wi(Inly) dy
n#0

since the product vanishes off the diagonal.
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(1) Examining the first term . csy T (Y + cayt ) (WP + syt TP dy:
Y=

/( sy (Y + oyt ) (WP + eyt dy
y>T

:t/n esy IO sy T TP 4 cpesy TP cacpes y T TP dy
y=>T

_ Cs y—§+a+6 Cals 1-5—a+8
—S+a+p 1-5—a+p
oo
€sCs 1-54+a—8 CalpCs 2-5—a—p
T 5+a-p"Y T s —a_p? -
— lim Cs y—Stats Cals [-s—atp
imoo |\ —S+a+ 3 l1-5—a+8

€pCs 1—-5+a—4 CaCpCs 2-5—a—f
t t
"1 5+ta—5 N

Cs = CqCs =
S S o Stot+p ,  tabs Tl s5—a+p
Cﬂ+a+ﬂ s —atp

€5Cs 1-s+a-0 CaCBCs 2—5—a—pf
— T —T .
+1—§+a—5 +2—§—a—5

For Re(s) > Re(a+ ) > 1 where Re(a) > 1/2 and Re(5) > 1/2 the first
term

lim _ Cs pStats | 700403 [-s—atp
t—oo \ =5 +a+ [ l-5—a+p
€pCs 1-5+a—8 CalpCs 2-5—a—-8\ _
— — =0.
1 5+ta—35 N

Thus, by the Identity Principle, we can meromorphically continue to get
that

t/m sy Y + cay ) (WP sy P dy
y=>T
Cs _= CqCs 35—
= —— T st+a+p8 —Tl 5—a+pB
(—s—l—owl—ﬁ +1—§—0z+ﬁ

C5Cs 1-5+a—8 CalpCs 2—5—a—f3
— T — - T )
1-54+a—-p +2—§—0¢—B



796 Kim Klinger-Logan

(2) Examining the second term

[ e Y pln )t 8) - Wallnly)Walnly) dy
y=T n#0

/ Y el @), B) - Wallnly) Walnly) dy

n#0
_ / ey 1Y g, a)p(n, B) - Wal(nly) Wis(|nly) dy
y=T n#0
_ —1-5
- gow(n,awm,ﬁ) / T Wl Wil dy

replacing y by y/n we have

= c5 (n, a)p(n, B)n® T Wa(y)Wa(y) dy.
T;)so @ /y>Ty y)Wa(y) dy

Putting (A) and (B) together, we get:

dy da:
TT
/ N B EaFEg ——
'\
1 = Ca c =
— Ts—l—a—l—ﬁ—l + = Ts a+ + B Ts+a—ﬂ
s+a+p5-1 s—a+pf s+a—p
CaCB S—a—f+1 — / 5 dy
+———T + L(s,E, x E3) - - Wa(y)W, —
S—a—-B+1 ( a B) ySTy a(y) 5(y) Y2
T Cs ARERE S fac? pl—5—a+8
—S+a+p l1-5—a+p
CpCs 1-5+a—p CaCpCs 2-5—a—f
— T — =T
+1—§+0¢—5 +2—§—a—ﬁ
—cs Y p(n,a)p(n, ﬁ)ns/ Y~ Waly)Ws(y) dy.
n#0 y2T
O

We will also need the following two results for the parts of S which
consist of linear combinations of Eisenstein series.

dyd dyd
Lemma 18. / TE /\TE ny :/ TE - B, yaor
9 Yy r'\s y?

Proof. Recall that the fundamental domain for T'\$) is F ={z€ 9 | |z| >
1 & |Re(z)| < 1/2} so rewriting our integral we have
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dx dy

_ dx d _

/ NE,-ATE, xzy—/ / N Eg- NTE, —;
9 y 0<y<oo /IS, Y
dx dy

T T
|2|<1/2 2
0<y<TJ 350 Yy

— dx d
+/ / /\TES-/\TET ny.
Ty<ee ) FISV2, Y

Notice that since the first integral is only defined for y < 7T and on this
region, AT E, = E, by definition,

— dxd — dxd
/ ﬂx|<1/2 N By NE; ny - / ﬁx|<1/2 N E - E, x2y‘
0sy<T L Yy 0sy<T L7 Yy

Thus it remains to show this result for the second integral
dx dy

T T
[ [ A EATE, .
T<y<ooJ S50

For T > 1, this domain of integration is a cylinder so that
dx dy

T7 T
AT E, - ATE,
2
/TSySOO /;'511/52 y

— dx d
— / / /\T Es . /\TET xz Yy
T<y<oo J|z|<1/2 Yy

Writing this in terms of Fourier expansions, we have

- / / S o, 5)Ws([nly)e2min
T<y<oo J|z[<1/2

n#0
TINT dxdy
x| D p(m, s)Wa(jmly)e? 5
m##0 y
- / / S o, )T (nly)e2mim
T<y<oo Jiri<1/2 \ 25

TIMT d:vdy
X <Z p(m, s)Ws(|mly)e? > 2

mEZ
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since the integral will be zero when n # m i.e. when m = 0 (this computation
was seen previously as fol e2mi=m)z gy — do,m and the 0" coefficient of the
first Eisenstein series has been truncated to be made 0)

— dz d
N / / N Es-E, $2y
T<y<oo J|z|<1/2 Y

as desired. Combining the domains as originally stated, we have

dy dx

//\E ATE, 2:/ N, B, W
\$ Yy %

O

We will use this to compute the pairing for the linear combination terms
in S with the truncated Eisenstein series. Lemma [I8 allows for each of the
terms in the linear combination to become

/ ATE-EW:/ A E, /\TEdydx
s y>

and then we will use Maass-Selberg and unwinding of AT E.
Recall the following the Maass-Selberg relation (see Casselman [I] or
Garrett [I7] for proof) states that

Theorem 19. For two complex numbers r,s # 1 with r(r — 1) # s(s — 1),

/ AT B, - ATE, WO
s y?
Tr+s—1 TA=7)+s-1 Tr+(1—s)-1

rds—1 U ts—1  %rra—s-1
T(1=r)+(1-s)-1

l1-r)+(1-s5)-1

+ crCs

dy dx

Observe that when we are computing / AN E, -8 =2 the last few

"
dy\dz

terms of S will appear as fr 5 N Eg - E, . Using the previous two re-
sults, for each r in our linear comblnatlon S, we will have something of the
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form
o dud Tr+5-1 T(1=r)+5-1
/ /\TES'ET ny: — +C'r"—,
T\ Y r+s—1 (I-r)+s5-1
Tr+(1-5)-1 T(1=r)+(1-5)-1
ey G e s R T G

The following is a version of the Maass-Selberg relation for when r = 1.
We follow the style of argument for the original Maass-Selberg relation, thus
we will label it as a corollary.

Corollary 20. For all complex s with 0 # s(s — 1),

— dydx T° 751 375! 3 7571
NE, EfF 2= =" 4(C - — logT + ————
/F\55 STy FRR R +7r(§—1)2
T3 75 37°° 373
+cs< — —C— 4+ —— logT+2>.
1-5 S TS TS

Proof.

— dy dz / - dy dz
NE, E} == = Im(vz)® — 75(v2) | - BT
/F\f; 1 y2 I\ Z (72) Z (72) 1 Y2

’YEP\F ’yEP\F
- . dydx
— / S (Im(e)f - 75(r2)) - Bp B
'\% yeP\TI" Yy

5 dyd
— [ ) T
P\$ Y

by unwinding

. dy dz = dy dz
_ s, ok I =5 x2S
= o B e B

y<T y>T

from the definitions of 5. dud
. 5 ydx
(A) Examining /P\ﬁ Y- B} /2
y<T
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Recall that the fundamental domain of P\$) is {z=z+iye H | 0 <
x < 1} so we have

_ dud 1 _
ﬁ\ﬁys'ET o= :/ / y* % Ef dydx
y<T Yy 0 Jy<T

1
- / / 72 o B+ 3 o(n )Wi(lnly)e?™ne | dyda
0 y<T n#0

1
= 572 cpEr+y° 2. n, YW1 (|n|y)e*™ ™ dy dz.
Yy 1TY Pn, Yy Y
0 JysT n#£0

1
(1) Examining the first term / / y* 2. cpE} dy dx:
0 Jy<T

t§ t§—1 3 tE—l 3 t§—1
li —+C - — logt+ —— | =0.
e <s+ 51 ns-1°° +7r(s—1)2>

Thus, by the Identity Principle, we can meromorphically continue to get
that

1 5 5-1 5
_ 5 T" 37T
5—2 *
cepEfdyde = — 4+ C—— — 22 logT+ >~
/0 /y<Ty cPELayar =t O T a1 T i o)
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(2) Examining the second term

1
s 2 2mwine
) e(n, YWi(|nly)e™™™* dy dx:
L

n#0

1
[ [ v et Wiy dy ds
0 Jy<T

n#0
1
—/ ys 2 ngn DWi(|nly) dy - / 2Ty
yST n£0

= [ Y eln )Wa(nly) dy G =0
y<T n#£0

5 o dydx

1-5

(B) Examining /\5j sy ° - EY 7
Recall that the fundamental domain of P\$) is {z=a+iyeH | 0<

x < 1} so we have

_ dy d 1 - d
/ nglfs . Eik LQ'CE = / / nglis . Eik 7/!; dl’
P\ Yy 0 Jy>T Y

y>T
1
_3 " ) dy dx
— / / ey’ | erBp + S oln, )W (Infy)e2mine | LT
0 Jy>T 70 Yy
1
:/ / cgy*1*§~0pEik—i—cgy*l*g'Zgo(n, VW1 (|n|y)e*™™ dy da
y>T n#0

since the product vanishes off the dlagonal

1) Examining the first term csy 175 epEY dy da
1
y>T

_ _ 3
/ csy 18 cpEl dy = cS/ y_l_s . <y +C - — logy) dy
y>T y>T ™
_ _ 3 _
= Cs/ y P+ Cy T — Sy P logy dy
y>T ™

B yf§+1 yfg 3 yfg 3 yf§ 00
=Cs | ——= +C=— — —
—5+1 —3 T —3 TS T
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t7§+1 t7§ 3¢ 3t73
:Cghm ( — —|—Ci—* 10gt—|—2)
—S ™ — ™ S

t—oo \ —5+ 1
s+ T=5 3T7°° 37
—cs< — +C— — — logT—|—2>.
—s+1 -3 T —3§ TS

For Re(s) > 1, the first term

s+l t=%  3t° 3t°
cslim< — +C————1 t+2>:0.
™ — T S

t—oo \ —5 + 1 —3

Thus, by the Identity Principle, we can meromorphically continue to get

that
1 —_
/ / csy 1% cpEY dydx
0 Jy>T

T3 T-% 3T°°% 37%
:cs< - —-C + ——logT + — )

1-5 S TS T 52

(2) Examining the second term

1
/0 / T e )Wa(Inly)e* ™ dy da
yz

T

n#0
1 _ .
[ [ e Y et )Wl dyds
0 Jy=T n#0
1
[ e e ) Willaldy - [ ds
y=T n#0
_ / g5 Z o(n, YWi(|nly) dy - do,n = 0.
y=T n#0
Thus
- dy dx T3 T—5 3T7°° 375
1-5 * — _ _ _
ﬁ}\?c;y E17y2 cs<1_s C = +7r = logT+7T82>.
y>

Putting (A) and (B) together, we get:

dydr T® 5=t 375! 3 151
/ N B, B ; x:T_‘_C* e logT+ ———5
T\ y? 3 s—1 =ws-—1 m(s—1)
T3 T-5 3T 373
—1—05( ——C— 4+ —— logT—{—2>.
1-5 S m™ s TS
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Lastly, for when o = 3, we will need to compute fl"\.ﬁ - 2Cq dy o
Lemma 21. For each s,
= d 757! 75
/ NE, T, B _To, I T,
I\ 3 Y 3 s—1 3 -5
Proof.
/ AT, o dy dz
'\ 377 P
T dy dz
3Ca/ Z Im(v2)® Z m(72) —
T\ ep\r ~EP\T Y
™ 5 dy dx
= 3Ca/ Z (Im(”yz) — Tg("}/Z)) 5
'\% yeP\I' y
m = dy dz
= 35 Va y — Tg(Z)
3 P\& ( ) y2

by unwinding

o sdyde 7 15 dydx
— gCa ﬁ)\ﬁ Yy y2 - gca /};\5 CsyY y2
y<T

y>T

from the definitions of 75

sdyd
(A) Examining gC’a sCYoT,

o’ v
y<

Recall that the fundamental domain of P\$) is {z=z+iye H | 0 <
x < 1} so we have

m sdydx 7 _— T y T

e T _Te 2y = Tc,

3 “ﬁ’\ﬁy v 3 a/y<Ty Y= 3% 5 1l
y<T -

T Tgfl T t?*l
Tc., . ~To, - .
370 51 3 A s o1

For Re(s) > 1, the second term

t?— 1

11m —
t—0+t s —1
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Thus, by the Identity Principle, we can meromorphically continue to get

that
E sdyde _ m 751
scaﬁog?y y2 30“ 5—1
y<
- dydz
13 .
(B) Examining C’ P\ﬁ csY R

Recall that the fundarnental domain of P\$) is {z=x+iyeH | 0<
x < 1} so we have

_~dydx w _ S jinfty
C P\ ngl 8 y2 = 300‘/ Czy 1= de = gCSC y_s T
y>T y y=T
T t—° 7 T3
= gCgCa thrglojg — 30§Ca' —

For Re(s) > 0, the first term

-3
cz lim — =0
t—oo —§

Thus, by the Identity Principle, we can meromorphically continue to get

that
s dydx T T3
1
C’ \ csy e =—-c5Cq - .
y>T

Putting (A) and (B) together, we get:

— dyd 751 T
/ NEZe, Mo, —— + L0, —.
I\$ 3 Y 3 s—1 3 —s

d dw
Finally we can apply these results to compute each / NS . Ey Y —
Yy

'\$
We will now address each of the regimes presented in Theorem [2
3.3. Regimes

Recall the regimes set up in the proof of Theorem [2| Again, suppose that

a#1and g # 1.
(I): Assume 1/2 <Re(a) <Re(a)+1/2<Re(f) so S=FE, Es

— (Bat8 + ca E1—a+p).
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First assume that « # 1. Using the above Lemma Lemma [1§ and
Theorem [19] above, after canceling terms, we have

dyd
/ CE Es # = <EQE5, /\TES>L2
'\ Y

- <Ea+67 /\TES>L2 - <Ca : E17Q+57 /\T-ES>L2
—_ @ peta—py _ CaP Ts—a—B+1

S+a-—p s—a—pg+1
_ < dy
VLG Eax B |y Wal)Wsly)
y<T Y
€sCs 1-5+a—f CalpCs 2—5—a—
—= T — T
+1—§+a—5 +2—§—a—6
T—o—pB+s Tl-a—p-3
Ry e A gy
Ta—p+5-1 To—B—3
B E e R ey
—cs Y p(n,a)p(n, B)ns/ Y Waly)Ws(y) dy.
n#0 y2T

AsT — o0, the polynomials will vanish on 1/2 < Re(a) < Re(a) +1/2 <
Re(p) since Re(s) = 1/2. Furthermore, since

e plmadpln B’ [y Walg) Wty dy >0

n#0 y=T
as T'— oo, we have that
(S,Es)> =B7' — lim(s, AT Ey) e

= L Eax B)- [0 Wal)Waln) 55
7ra+ﬁ_§ ' F(?—i—(;—ﬁ)F(E—a-i-ﬁ)F(§+l—a—,3)1-\(§—l-;a+ﬁ)

= L(E, E, x Eg)

=A(5, B, X Eﬁ).

(IT): Assume 1/2 < Re(a) < Re(B) < Re(a) +1/2 but that a # .
(ITa) Suppose also that Re(a + ) > 3/2 so that

S=FE,- Eg — (Eonrﬁ +cs - Eija—pg+cCa- E1,a+/3) .
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Using the above Lemma Lemma [18] and Theorem [19] above, after
canceling terms, we have

dyd
/ NS . E, yf
'\ Yy
= (EoaEs, NTEg) 12 — (Boyp, ATES) 12
—(cg - Brya—p N Es)r2 — (Ca Brapp N Es) 2

_ Calp T-a—p+5+1
—a—f+35+1
_ 5 dy
FLEEax E) [ o Wal)Wal) )
y<T Yy
CaCBCs —a—f—5+2
T
R
+es Y pn,a)p(n, 5)%5/ y T Waly)Ws(y) dy
n#0 y2T
T—o—pB+s T—a—B—5+1
Tl B ts P B -s5+1
T—at+pf+5-1 T—o+p—3
Tt T i s 1 P fS T T 5
Ta—p+5-1 To—B—3
T CeCl-akp o] ettt L

As T — oo, the polynomials will vanish on 1/2 < Re(a) < Re(f) <
Re(a) + 1/2 where Re(a + ) > 3/2 since Re(s) = 1/2. Furthermore, since

- , ,B)n® T Way)Wa(y) dy — 0
c Zﬁ%gp(n a)p(n, B)n /y>Ty (v)Wp(y) dy

as T — oo, we have that

(S,E)p2=B"1— lim(S, AT E)

_ R dy
_ (5, Ea x E5)- / 7 Walp)Wal) S

po+h=3 | D(THB)r (gt p(Stiasd)p(s-liatd)

20()T(B) I'(s)

= L(5,E, x Eg) -

= A(g, E, x EB)'
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(ITb) Now suppose Re(a + 3) < 3/2 so
S=Ea- Eg—(Eatp+¢s Errap+ca Eiayp+cacs Era-p).
Using the above Lemma Lemma [1§ and Theorem [19] above, after

canceling terms, we have

dyd
/ NS E, y2x
r\$ Yy
= (EaEp, NTES) 12 — (Boip, NTES) 12 — (g - E11a_p, N Es)r2
- <Ca “E1-ats, /\TES>L2 - <Cacﬁ By _o-p, /\TES>L2

_ = dy
L. Eax E)- | Walw)Waln) )
y<T Y
— e 3 plma)eln O [y Waly)Wilw) dy
n#0 y=T
T—o—pB+s T—a—B—5+1 Ta—f—5+1
TCetB T pys S g 541 P A B—s+1
T—a+B—s Ta—p+5-1
— C3C1+a—BCs Th-3 — CaCl—a+8 a—B+5-1
To—B-3 Ta+6+s—2
— CaCl—a+3Cs a—B—3 CaCpC2—a—p a+fB+35-2
Toz—i—ﬂ—s—l
T eSS T s 1

As T — oo, the polynomials will vanish on 1/2 < Re(a) < Re(8) <
Re(a) + 1/2 where Re(a + ) < 3/2 since Re(s) = 1/2. Furthermore, since

S ) ’ s s Wa W, d 0
) g:;@(n a)o(n, B)n / L () W(y) dy —

as T' — oo, we have that

(S,E)p2=B1— lim(s, ANTE,)

_ < 3 dy
= LGB x B [0 Wal) W) 55
qot+B—3 F(g—’—g_ﬁ)F(g_g—i_ﬁ)F(§+1;a_ﬁ)F(g_lza+ﬂ)

20()T(B) I'(s)

= L(5, B, x Eg) -

= A(?, E, % Eg).
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(III): Suppose that o = f.

(IIIa) Also assume Re(a) > 3/4 so S = (Ea)? — Faq — 2¢a B + 5Ca.
Using the above Lemma Lemma Theorem Corollary and
Lemma 21| above, after canceling terms, we have

/ NS E, %
\$ Yy

. T
<(Eo¢)27 /\TES>L2 - <E2a, /\TES>L2 - <20aE17/\TEs>L2 + <§Ca7 /\TE5>

12
2

Ca 5—2a+1 = 5 dy
=@ e L(s. FE E,)- - W, W, —
S—9%2a+1 + (87 a X a) /y<Ty a(y) a(y) y2
2
CoCs 2—5—2a
—= " T
* 2—-—35— 2«
— e plmadpmaln® [y W) Waly) dy
n#0 y=>T
T(1—-20)+35-1 7(1—-20)+(1-5)—1
Tl o) 15 -1 P (1 —2a)+(1-3) -1
T§—1 3 TE—l 3 TE—l
—2¢,C — 2= log T + 20— ———
R R B T G-1)2
T 37°° 37°
— 2¢cqC5 <20aC’ - — logT + ——; )
— — m™ S
T 751 T T
Zo. . Ze-C
tgta g1 T35 —3

As T — oo, the polynomials will vanish on Re(a) > 3/4 since Re(s) =
1/2. Furthermore, since

%Zﬂmwmwﬁ/y+“%@%@@%0
n#0 y=T

as T — oo we have that

(S,Ey)p2 =B — lim(S, AT E,)

dy
72.

= L(3,Eq x Ey) - /Ooo y° - Wa(y)Wa(y)y
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(ITIb) Suppose that a = and Re(a) < 3/4 so S = (E4)? — Eoy —
2cq B — CaEg_ga + %Ca. Using the above Lemma Lemma Theo-

rem Corollary 20| and Lemma [21]| above, after canceling terms, we have

dy dz

r\$ Yy
<(Ea)27 /\TE5>L2 - <E2on ATES>L2 - <2CocEik7 ATES>L2

T
~ (2 By 90, NTES) 2 + <§Ca, /\TE5>L2

_ d
— (5. Fa % Ea) - / 5 Waly)Waly) 2
y<T Yy
s —1-3
— Y p(n, a)p(n, a)n / YIS W () Waly) dy
n#0 y=2T
(1-20)+5-1 7(1-20)+(1-5)~1
Tl o) 15 -1 P (1-2a)+(1-9) -1
s—1 3 s—1 s—1
_9 9,2t g T 42,2 ——
Cacf—l Caﬂ?—l gL+ Caﬂ(§—1)2
T-5 37 375
—2cacs<C — ————logT + ——; >
—S mw —S mw S

T(l—(2—2a))+§—1
- 6362—204 : =
(1-(2-2a))+s5-1
) T(1-(2—20))+(1-5)—1
T a2 e 20+ (1—5) — 1
T§—1 T -5

51 T3eCe 5

+ Ca'

wl

As T — oo, the polynomials will vanish on 1/2 < Re(a) < 3/4 since

Re(s) = 1/2. Furthermore, since

&3 p(n, a)p(n, a)n® / y1F  Waly)Waly) dyy — 0
n#0 y=T

as T' — oo we have that

(S,E)p2=B' — lim(S, AT E)
_ < 3 dy
= L(S,Ea X Ea) . ) y - Wa(y)Wa(y) ?
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Finally, for each «a, 8 € C, we have that

o _ d
(S, Ey) 2 = L(3, Ea x Ey) - / v Waly)Waly) yi; = A(3, Eq x Ey).
0

4. The residual spectrum

We will compute the residual spectrum (S, 1)2 for each S.

Theorem 22. (S,1);> =0 for each S presented in Theorem [
We will prove this in what follows with the following Lemma and the
use of truncated Eisenstein series.

Lemma 23. For each 8 and a # 1,

dx d
/ Eo-Ep— Farp— Ca- Biatg —s2 =0.
s y

Proof.

dx d
Eo+Eg = Eatp = Ca El-a+tp Ty

= Eq - Z Im(y2)7 — Z Im(y22)*H7

M\$ v €P\I' Yo €P\I'

_ dr d
—ca Y Im(ygz)tetd
v3E€P\I' y

o dz d
=/ > ((vy)ﬁ cEo— ()" = ca - (vp)! ”3) =
\$ ~yeP\I' Yy

by unwinding

_ dr d
= / (yﬁ “Eo — ya+6 —Cq - yl a+,3> Ty
P\$ Yy

Now, writing out the Fourier-Whittaker expansions for F,, we have

- /P : (yﬁ- <ya+cay1—a+zso<n,a>~Wa<|n|y>e2m)
9

n#0

_ B ey yl_o‘+5> dx Qdy
Yy
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- / \ (Wﬁ Feay 4y o(n,a) - Wa(lnly)e
P\$

n#0
dx d
s _ca.yl—aw)gy
Y
:/ ZSO n, Oé |n|zy) 2mine dl’dy
P\fj 70 y?
d d
_Zsana/ /y W ’n‘y) 2ming AL y —0.
n#0
]
4.1. Regimes

Recall the regimes set up in the proof of Theorem 2] Again, suppose that

a#1and g8 # 1.
(I): Suppose that 1/2 < Re(a) < Re(a) + 1/2 < Re(B) then

dx dy

(S, 1>L2 = / Ea . Eﬁ — EaJrﬁ — Cq * E1 at+B T o5 =0
\$

by Lemma
(IT): Suppose 1/2 < Re(a) < Re(f) < Re(a) + 1/2.
(ITa) Suppose also that Re(a + 3) > 3/2. Then

S =FEy-Esg—(Earp+caE1-arp+cs- E1rap)

which gives

dx dy
Y

s = | | Fa B = (B e Broa + €3 Bivas)
9
dxd
Z—Cﬁ'/ Erto-p—5— Y
\9

by Lemma

We will again use Arthur truncation to compute this integral as well
as a trick which involves passing the computation of a residue outside of
an integral. Given that E,. is a vector-valued holomorphic function, vector-
valued Cauchy (-Goursat) theory, as well as Gelfand-Pettis, implies that we
can pass the linear functional outside the integral (see [23] or [12]).
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Since Res,—1(E;)

(N'Brya—p, 1)1

by Lemma

s
:*'R r=
3 €S 1<

S— 5—

Kim Klinger-Logan

)

dy dx

N Eiia-p
\H
dy dz
2

m
ATE1yo_p - Res,—1(E,) - 3
\% Y

dyd
- Res,—1 / ATE1+a_/3 r y2a:
r\$ Y

dyd
- Res,—1 / A\ E1+a 8- /\TE yax
s y?

™

wl

wlx

Tr—i—a—/a’ Tl—r—i—a—,B

+cr

r+a—p l-r+a-p4

Tr—l—o+p T-r—a+p
+ Cl-&—oc—ﬁr_— + CrCH-oa—B) =0.

l—a+p —r—a+p

(IIb) Now suppose also that Re(a + 8) < 3/2. Then

S=FEq Eg— (Eatp+ca Er—atp+cg- Eira—p+ cacg Ea—a—p)

which gives

(S, 1)r2 = / Eo-Eg—FEarp = Ca- Ei—aip
s

by Lemma

dxdy
—cg-Biyapg—cCaCs-Fo o pg—5—

dwd
/ E1+a 5+Ca EQaﬁ Y

As (IIa), we again have that (ATEj,,_g,1)z2 = 0. We will again use
Arthur truncation to compute the last integral

</\TE2—Oc—ﬁa e = / /\TEQ—(X— 2
\®

= / /\TEQ,a,ﬁ’ . Resrzl(Er) .
\$
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since Res,—1(E;) = 2

dyd
= Res,_ / N'Eriap- E, ==
3 T\ y?

dyd
— T Res,_ / N By g NE, 28
3 '\ y?

by Lemma

s Tr+l-—a—p T-r+2—a-p
= — - Res,—
3 esr_1<r+1aﬂ+crr+2aﬂ
Tr—2+a+p T—r—14ao+p
+ co_ _— —a— =0
CQa,B 2+O&—|—B+CTCQO[B—T—1+OZ+ﬁ>

(III): Suppose that o = 3. Unlike the other spectral integrals, we will
consider this case as a limit of case (IT). Since both the limit and the integrals
converge nicely (as already proven in Section 1), we can interchange the limit
and the integral to get the following.

(IITa): Also suppose Re(a) > 3/4 so

S = (Ea)? — BEoq — 2caBf — 2 Ey_gn + ~C4

3
which gives
d d
:/ EQO( 2caE1+ C l‘ y
1"\53
= lim (E, - Eg — F, —cCo - E7_
drd
—cg Brta—p — caCs - Ea—a—p) " Y
by Lemma [4]
= lim Ea . Eﬁ - Ea_;’_ﬁ — Cq * El—a—i—,B
,B%a F\f) d d
x
—cg - BEiya—p—cacg-Eoqpgp—5— y =0

by part (IIa).
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(IIIb): Now suppose 1/2 < Re(a) < 3/4s0 S = (E,)? — Fao — 2co B} —
CzEg_ga + gCa which gives

N m _, dxd
<S, 1>L2 = / (Ea)2 — E2a — 2CaE1 — CiE27204 + gca Ty
\$ Yy
. dx dy
= /F\ﬁ élfé (Ea - B — Eoatp — Ca " Er—atp — ¢ Erya—p) )
by Lemma [4]
. dx d
—lim | EaEg—Faip—CaFioass— s Briap —2 =0

B—a F\fj y2

by part (IIb).
Putting these cases together we see that the residual spectrum (S, 1)72 =
0 for each S.

5. Spectral decomposition and solution

Finally, putting everything together we have

($,1)p=-1 1

S = S, f)pe - —
D (S F+ =+ g o

(S, Es) 2 - Esds

f cfm
— 1
= > Ma, fxEg) f+— A(3, B, x Ep) - Esds
4 (1/2)
f cfm

where this S € L?(I'\$).
Recall that we have found the spectral decomposition for S = E, - Eg —
1 ifa=p

0 ifa#p
to solve (A — Ag)uw = Eo - Eg on I'\SLy(R).

Y iCiEi + 1a—p- 5C, where 1,—p = but we want to use this

ie —
Eo Ez=) ¢iBs —lagp- 3Ca + > Mo, fxEp)-f
) f cfm

1
+ — AE,EQXE 'Est
47 (1/2) ( 5)

where
ZciEsi = Lgt8 + CaEl—a-I—B

i
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on 1/2 < Re(r) < Re(a) +1/2 < Re(3),

ZciEé’i = Eoyp + cgE1ya—p + Ca E1—a+p
7

on 1/2 <Re(a) < Re(f) < Re(a) + 1/2 and Re(a + 3) > 3/2 but a # 3,

Z CiEsi = La+pB + CﬁEl—l-a—B + caEl—a+B + CozCBE2—a—B

2

on 1/2 < Re(a) < Re(B) < Re(a) + 1/2 and Re(a + ) < 3/2 but a # S,

> B, = E2 + 2¢, B}

when a = and Re(a) > 3/4 , and

Y B, = By +2caBf + ¢t Bs-aa
i
when a = 5 and 1/2 < Re(a) < 3/4.
Now we can use this as well as the spectral relation in Section [6] to
solve (A — Ay)uy = Eqo - Eg on I'\SLy(R). In Re(w) > 1/2, for (o, 8) €C,
the solution is given by

> ;i Es, 3Ca 3 A, f x Ep) - f
w = - v HOL_ . 3 ?
B P )\sz_)‘w = )\I_Aw—i_fcf )\sf_)‘w
1 E
— A(S,Eq x Bg) - ———d
+ 47 (1/2) (8’ X B) )\5 — )\w s

and lies in H2(I'\$H) @ £(I'\$). Also, note that the automorphic Sobolev
space HF in which this solution exists is also defined in Section @ This
concludes our proof of Theorem

5.1. Meromorphic continuation of the solution

We will now meromorphically continue the solution

E,. TCy Ala, f x Eg) -
uwzz Cilus, _]laz,B' 3 +Z (an 5) f
i )\si - )\w )\1 - )\w f ofm sy T )\w
1 Es
A(?, E, % Eﬁ) . ds

R (1/2) )\5 - )\w
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in V:= H*'\$H) @ ET\$) which is initially defined on Re(w) > 1/2.

Observe that the first three terms of w,, will have meromorphic continu-
ation. Since Eisenstein series (and also constants) are constant in w and we
are only dividing by at most a simple pole given by these discrete combi-
nations of a and f, the first two terms have meromorphic continuation. In
the third term of u,,, again the L-function and cuspform will be constant in
w. Furthermore, we can see that the eigenvalues attached to cuspforms are
also discrete by examining the pre-trace formula:

F 1)|? 1
Z |F(z0)” + |<<11>>| + 41,/ |Eq(20)|* ds < T?.
F:: |A\r|<T ’ T J(1/2)

For the fourth term, it is important to note that the visual symme-
try on the continuous spectrum in misleading. More work must be done to
meromorphically continue this piece for the spectral expansion of u. These
meromorphic continuations do not exist in V but in a larger space M of
moderate-growth functions that includes Eisenstein series. For this reason
meromorphic continuation is best described in terms of vector-valued inte-
grals. This will require a bit of topological set-up.

Define

M = {feCO(F\ﬁ) sup Y - |f(z+iy)| < oo for somerER}.

Im(z)>+/3/2

The topology on M is a an inductive limit of Banach spaces

M} = {f e C°(I'\9)

sup ¥ - |f(z+iy)| <ooforreR
Im(z)>+/3/2

obtained by the completion of C°(I'\$)) with respect to norms |f|yr :=
sup " - |f(z+iy)| for f € M. Thus M is a strict colimit in the locally

Im(z)>/3/2

convex category of Banach spaces so is quasi-complete and locally convex.

Let & : M — N be a continuous linear map to a quasi-complete locally
convex topological vector space N and consider the N-valued integrals

Ci(I)Esi %Ca : (I)(l) A(Oz, f X Elg) : q)f
TIPS L R R T
— A5, — A e I A
1 DL,
— A(S, Eq x Eg) - ——— ds.
47 (1/2) )\s — >\w
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Of course, for ® the identity map M — M gives u,, itself and we anticipate
that ®(uy) = Uy, -

Lemma 24. ®(uy,) = uy,o in the region Re(w) > 1/2.
Proof. Observe that

Ci(I)Esi _
i )\si _)\w

BCo®(1) |y~ Afas] x By) -0

() = M — A Ao, — M

Lag -

+i,<1> A(5,Ey x Eg) - Es ds | .
4 (1/2)

In Re(w) > 1/2, the integral for u,, is a v-valued holomorphic function in
w. We have In that region, due to the properties of compactly supported
continuous-integrand Gelfand-Pettis integrals [12],

E
) A3, E, x Eg) - 2 ds)
( (1/2) >\s - )\w
= lim/ A(3, B, x Eg) Es g
T—00 J|im(s)|<T e ’ As — Aw

E
= lim ® / A5, E, x Eg) - *__ds
T—o00 < [Im(s)|<T ( B) )\5 — )\w >

PF
= lim A(3,Ey x Eg) - > ds
T—o00 [Im(s)|<T >\s - )\w
OF
= A(5,Ey x Eg) - > ds
(1/2) (5 B x Ep) As — Aw
since the limit is approached in V' C M. [l

Theorem 25. With continuous linear ® : M — N with N quasi-complete
and locally convez, the ® M -valued function w — o has meromorphic con-
tinuation as an N-valued function of w. Fxplicitly, the function

c;PE;. TCy - q)(l) A(a ? X EB) . (I)f
w.d = S b N A R A ’
Juw,® SR (R f;fm —
1 A(l—S,EaXEﬁ)'(I)Es—A(l—U},EaXEﬁ)-(I)Ew

ds

ami J i1 9 As — Aw
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has a meromorphic continuation to an N -valued function with the functional
equation Ji_y, o = Jy.o and

A1 —w, Ey x Eg) - ®E,
2(1 — 2w)

U, = Jw,{) +

Proof. From Lemma in Re(w) > 1/2 the expression for wu,, ¢ converges
as an N-valued integral. The meromorphic continuation of wu,, ¢ will be ob-
tained through rearranging the integral.

First, in Re(w) > 1/2 we add and subtract to obtain

¢ ®E TCq - ®(1) Ao, f X Eg) - f
= S A A Ak e ’
LD IS v wiak I E v W) D s, — M
i * f cfm
1 A1 —s,E, x Eg) - PFE;
471 (1/2) )\5 _)\w
OFE. 2C, - P(1 Ao, f x Eg) - ®
:ZC S P ()+Z (a,f x Eg)-®f
As, — Aw Al — Ay fetm As; — Aw
1 A(l—s,EaXEB)~<I>ES—A(1—w,EaxEﬁ)wI)Ewd
o S
4mi (1/2) )\3 _)\w
+ AL = w, By % Eg) - ®Fy— / LI
- @ : W S
v p 4 (1/2) AS — )\w
1 1

ds.

= Ju —w, Eq x Eg) - ®E, - —
Jus + A1 —w, E, x Eg) recll B v

By residues,

1 1
A(L = w, By x Bg) - ®E, - — d
(1w, Bo x Ep) 4m/(1/2) A=A

1 1
= A(l — w,Ea X Eﬁ) . @Ew . <_2 . ReSs—wAs_)\w>

A1 —w, By x Eg) - ®E,,
2(1 — 2w)

Since A(1 —w, E, x Eg) is a meromorphic C-valued function and w —
®F,, is a meromorphic N-valued function, A(1 —w, E, x Eg) - PE,, is a
meromorphic N-valued function with a meromorphic continuation from the
meromorphic continuation of Eisenstein series and A(w, E, x Eg). Observe
that although the Eisenstein series is invariant under w — 1 — w, the de-
nominator is skew-symmetric.
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We will now meromorphically continue the integral .J,, . First constrain
w so that is lies in a fixed compact set C' and take T large enough so
that T > 2|w| for all w € C. First, for Re(w) > 1/2 and s = § + it, we make
an attempt to cancel the vanishing denominator when s is close to w by
rearranging

Jw’q;. _ Ciq)Esi _ ﬂa:/j ) gca . fb(l) n Z A(Oé,? X EB) . @f
— Xs, = M R
_ 1 A(L =5, B X Bg) - @By — A1 —w, Eq X Bg) - ®Ey
47 (1/2) As - )\w
_ 1 AL~ s, o X Bg) - OE;
4y mZT )\s - )\w
—A(l—w,Eang)-éEw-l,/ L s
47 |t|>T )\5 — )\w
1 AL =5, B X Bg) - OBy — A1 = w, Bq X Bg) - By
47 [t|I<T )\s - )\w

The meromorphy of the leading integral is understood via the Plancherel
Theorem on the continuous automorphic spectrum. Up to constants, the
Plancherel Theorem for L? states that A(t) € L?(R) the spectral synthesis

integral
1 (e}

B A(t) - E, dt

for z € $ produces a function in H° and the map the A — B gives an isom-
etry.

Observe that A(1 —s, E, x Eg) € LQ(% +iR) since S € L*(T\$) and
A5, Eo x Eg) = (S, Es)12(r\s)- Hence for w in a fixed compact,

A(1 —s,E, x Eg) 5 (1
L = +R|.
N — Ay S 2+z

Composition with Plancherel isometry shows that

1 A1 — s, B, x Eg) - E,
/ (1—s,Eq x Eg) ds
t>T

Hi
U As — A

is a meromorphic L?(3 + iR)-valued function in w in the fixed compact.
Now, since |w| < T the meromophic continuation is given by the same in-
tegral, the invariance of the integrand under w — 1 — w remains.
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In the second summand,

1 1
Al —w, E Eg) - OFE, - — —d
( Wr Ha X B) v 473 /t|ZT )\s - )\w g

the leading coefficient A(1 —w, E, x Eg) - ®E,, has meromorphic continu-
ation and is invariant under w +— 1 —w. Since |w| < T' the meromorphic
continuation of the integrand is given by the same integral and the invari-
ance under w — 1 — w remains.

Finally, in the remaining summand,

1 A(l—S,EaXEg)“I)ES—A(l—ijaxEﬂ).(I)Ew

— d
47 [t|<T AS - )\w y

is a compactly-supported vector-valued integral. In order to show that the
integral is a meromorphic N-valued function of w, we will use the Gelfand-
Pettis criterion for existence of a weak integral.

Let Hol(€2, N') be the topological vector space of holomorphic N-valued
functions on a fixed open €2 which avoids the poles if F,, and has com-
pact closure C. It suffices to show that the integrand extends to a con-
tinuous Hol(2, V)-valued function of s where Hol(2, N) has the natural
quasi-complete locally convex topology from Corollary To show that the
integral extends to a holomorphic (and hence continuous) Hol(§2, N)-valued
function of s, it suffices to show that the integral extends to a holomorphic
N-valued function of two complex variables s and w.

By Cauchy-Goursat theory for vector-valued holomorphic functions (see
Appendix), near a point s,, the N-valued function s — ®E has a convergent
power series expansion

PE; = Ag+ A1(s — 80) + Aa(s — 50)2 + - -
with 4; € N and so A(1 — s, E, x Eg) - ®E has power series expansion
A1 —s,Ey x Eg) - ®PE; = By + Bi(s — s,) + Bay(s —so)% + - -
for some B,, € N. Then we have

A(1 = 5, Bo x Eg) - OBy — A(1 — w, By x Eg) - B,
= B1((s — 80) — (w — 55)) + Ba((5 — 55)% = (w — 55)%) + - --
= ((8 = 80) = (w—50)) - (B1 + Ba((s — s0) — (W —80)) + )
=(s—w) (B1+ Ba(s—80) — (w—50))+-)
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where (B1 + B2((s — so) — (w — 85)) + - -+ ) is a convergent power series in
s — 8o and w — s,. Thus the integrand, initially defined only for s # w ex-
tends to a holomorphic N-valued function F(s,w) including the diagonal
s =w = & + it with |t| < T. Thus the Hol(, N)-valued function f(s) given
by f(s)(w) = F(s,w) is holomorphic in w. Thus there is a Gelfand-Pettis
integral f|t‘<T f(3 +it)dt in Hol(Q2, N) as desired. Thus we have shown the
meromorphic continuation. The w — 1 — w symmetry is retained by the ex-
tension of the integral to the diagonal. O

6. Appendix
6.1. Spectral relation

The following can be found many places including P. Garrett’s [13] and A.
DeCelles’ [7].

Theorem 26. For f S Cff’(I‘\ﬁ), then <Af, E8>L2(F\f3) :)\s . <f, ES>L2(F\53) .
Proof. Let f € C*(I'\$). Note that the symmetry of A and compact sup-

port of elements of D allows integration by parts. Then we have the following
spectral relation

dx d dx d
AL B = | AFG)-Bios(2) Zﬂz o [0) AF=s(2) Zzy
dz d
— | F2) - AE-(2) S = A By rarvs)-
\9
O

For 0 < k € Z, the k'"-Sobolev norm on C2°(T'\$) is given by
FIe = (1= AFF, )
and H*(I'\$) is the completion of C2°(T'\$) with respect to | - |.

Theorem 27. There is a continuous injection H*(T'\$)) — H*1(T'\H) with
dense image.

Proof. Let f € C(I'\$) then (—=Af, f) > 0. We would like to show that
for a polynomial p with non-negative real coefficients (p(—A)f, f) > 0. It
suffices to show that ((=A)"f, f) >0
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For n = 2m even,

(CA)f, f) = (=2)P f, f) = (=A)" f.(=A)"f) = 0

For n =2m +1 odd,

(D) £, F) = (=A™ F ) = (=A)(=A)™f), (=A)™f) > 0
This gives
[flir = (L= ) = (L+ (AL ) + (L4 (=A)*(=A)f, f)
> ((L+ (=A)f, £ +0=|f[}.

Thus the identity map CZ°(I'\$)) extends to a continuous injection
HF1 — H* since C°(T'\$) is dense in both. Furthermore, the image is
dense. 0

Theorem 28. The differential operator A : C°(I'\H) — C(I'\$) is con-
tinuous when the source is given the H*t2 topology and the target is given
the H* topology for 0 > k € Z.

Proof. Using the latter negativity property of the previous proof, we have

IASIE = {1 = A)MAN), (Af)) = (A A+ (=AD", f)
<((APA+ (AN ) + (@A) + D)
= ((L+ (ANM2L, ) = 1 f R

g

Corollary 29. A extends by continuity from test functions to a continuous

linear map A : H*2(T\$) — HF(T\$) for each 0 < k € Z.

Proof. For test functions { f,,} forming a Cauchy sequence in the H*+! topol-
ogy, the continuity on the respective topologies on test functions means that
the extension-by-continuity definition

A(H*2im f,) = H*lim A f,,
n n
is well-defined and given a continuous map in those topologies. (]

Corollary 30. For fc H¥('\$), then (Af, Es)r2m\o)=As - (f, Es) 20\ 9)-
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Proof. Because (-, Eg)r2r\g) : L*(T\H) = L?(1/2 + [0, 00)) is an isometric
isomorphism obtained by extension by continuity on test functions, the lit-
eral spectral integrals in Theorem [26| extend by continuity to give the re-
sult. O

The same argument can be given for each function in
= = {orthonormal basis of cuspforms} U {1} U1/2 + [0, 00)

where the half-line parametrizes the Eisenstein series Ey /o ;.

6.2. Vector-valued integrals

There is at least one technical point to address. We will need a bit of ma-
chinery introduced by Gelfand (1936) [18] and Pettis (1938) [26]. Their con-
struction produces integrals of continuous vector-valued functions with com-
pact support. These integrals are not constructed using limits, in contrast
to Bochner integrals, but instead are characterized by the desired property
that they commute with linear functionals.

Let V' be a complex topological vector space. Let f be a measurable
V-valued function on a measure space X. A Gelfand-Pettis integral of f is
a vector Iy € V so that

a(ff)Z/XOéOf

for all o« € V*. Assuming that it exists and is unique, the vector I is denoted
Iy = fX f-

Uniqueness and linearity of the integral follow from the fact that V*
separates points by Hahn-Banach. Establishing the existence of Gelfand-
Pettis integrals is more delicate.

Theorem 31. Let X be a compact Hausdorff topological space with a fi-
nite positive regular Borel measure. Let V be a quasi-complete, locally con-
vex topological vectorspace. Then continuous compactly-supported V -values
functions f on X have Gelfand-Pettis integrals.

The importance of the characterization of the Gelfand-Pettis integral is
exhibited in the following corollary.
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Corollary 32. LetT :V — W be a continuous linear map of locally convex
quasi-complete topological vector spaces and fa continuous V-valued func-

tion on X. Then
()L

Proof. Since W* separates points, it suffices to show that

H<T</Xf)>zu</XTof).

Since poT € V*, the characterization of Gelfand-Pettis integrals gives

()= (1)~ pren (1)

6.3. Holomorphic vector-valued functions

We will recall some basic facts about vector-values functions, most of which
we will not prove here. However, for proofs and further explanation see
Grothendieck’s [23] for the original or Rudin’s [27].

Let f be a function of an open set (2 C C taking values in a quasi-
complete, locally convex space V. We say f is weakly holomorphic when
C-valued functions A o f are holomorphic for all A € V*.

Let Hol(€2, N') be the topological vector space of holomorphic N-valued
functions on a fixed open (2.

Theorem 33. For V a locally convexr quasi-complete topological vector
space, weakly holomorphic V -valued functions f are strongly holomorphic
in the following senses.

First the usual Cauchy-theory integral formulas apply:

f(z)z;mfyg(f)zdc

with v a closed path around z having winding number 1. Second, the function

f(2) is infinitely differentiable, in fact strongly analytic, that is, expressible

as a convergent power series Z cn(z — 2zo)"
n>0

with coefficients ¢, € V' given
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by Gelfand Pettis integrals echoing Cauchy’s formulas:

Cn

() (2, 1
)L IO

nl 2w

In [27], the proof also uses the fact that weak boundedness implies bound-
edness to first show that f is continuous. Then recapulation in the vector-
valued context is viable.

Now fix a non-empty open €2 C C. Let V' be quasi-complete, locally con-
vex, with topology given by seminorms {v}. The space Hol(£2, N) of holo-
morphic v-values functions on {2 has a natural topology given by seminorms
px (f) = sup,cg v(f(2)) for compacts K C 2 seminorms v on V.

Corollary 34. Hol(2, N) is locally convex, quasi-complete.
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